WO2011036083A1 - Système turbocompound et composants - Google Patents
Système turbocompound et composants Download PDFInfo
- Publication number
- WO2011036083A1 WO2011036083A1 PCT/EP2010/063588 EP2010063588W WO2011036083A1 WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1 EP 2010063588 W EP2010063588 W EP 2010063588W WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- turbine
- low
- stage
- compressor
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims abstract description 42
- 238000002485 combustion reaction Methods 0.000 claims abstract description 27
- 238000011144 upstream manufacturing Methods 0.000 claims abstract 2
- 238000011084 recovery Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000013011 mating Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/013—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/04—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/004—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/007—Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B41/00—Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
- F02B41/02—Engines with prolonged expansion
- F02B41/10—Engines with prolonged expansion in exhaust turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/04—Units comprising pumps and their driving means the pump being fluid-driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/22—Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to the field of supercharged by exhaust gas turbochargers internal combustion engines.
- It relates to an internal combustion engine with a two-stage exhaust gas turbocharger, comprising a high-pressure stage, a low pressure stage, and arranged parallel to the high-pressure stage means for energy recovery.
- This energy can be obtained directly as mechanical power from the turbocharger shaft (power take out, PTO).
- PTO power take out
- a subset of the exhaust gas may be expanded in a utility turbine and also converted to mechanical energy.
- the mechanical power can be supplied to the drive shaft or converted by a generator into electrical power.
- the excess energy of the charge depends at least quadratically on the engine load. As a result, with a reduction in engine load from 100% to 50%, the additional power is reduced by at least a factor of 4. Size Marine engines virtually never ride at 100% load. Typically, they are operated in the range of 50 to 85% load. As a result, the average additional power that can actually be generated falls below 2% of rated engine power on average, which makes the considerable investment for the turbocompound system unattractive. The spread of known turbocompound systems with turbine or PTO is correspondingly low.
- the object of the invention is to maximize the recoverable additional power over the entire operating range between 50 and 100% engine load.
- the pressure ratios between the high and low pressure stages are specifically set for a 2-stage charging, whereby the quadratic dependency of the additional power obtainable via the power turbine or the power take-out is bypassed by the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow can.
- the pressure ratio ⁇ , ⁇ above the low pressure compressor is at least 50 percent greater than the pressure ratio ⁇ , ⁇ across the high pressure compressor.
- Fig. 1 shows the diagram of an internal combustion engine with a two-stage
- Fig. 2 shows the diagram of an internal combustion engine with a two-stage
- FIG. 3 shows a diagram with the turbine characteristics of exhaust gas turbochargers with a diameter ratio D T / D V > 1 and a diameter ratio
- Fig. 4 is a diagram of the turbine expansion ratios in one and two stages
- FIG. 1 shows schematically a per se known two-stage supercharging system of an internal combustion engine.
- the internal combustion engine 2 has a charge air receiver 1 on the inlet side and an exhaust gas receiver 3 on the outlet side.
- the high-pressure exhaust gas coming from the combustion chambers of the engine passes through a high-pressure exhaust gas line 5 into a high-pressure turbine 15 of a two-stage exhaust gas turbocharger.
- the exhaust gas partially expanded in the high-pressure turbine 15 flows via a low-pressure exhaust gas line 16, a low-pressure exhaust gas receiver 4 and a further low-pressure exhaust gas line 6 into a low-pressure turbine 7 and via an exhaust line 8 into the open.
- the low-pressure compressor 10 connected to the low-pressure turbine 7 sucks the combustion air via a suction line 9 and presses them via a low-pressure charge air cooler 12 and a low-pressure charge air line 11 in the high-pressure compressor 18 driven by the high-pressure turbine 15, from which it acts as a high-pressure charge air via a high-pressure charge air cooler 21 and a Hochdruckladeluft effet 19 and the charge air receiver 1 enters the combustion chambers of the engine 2.
- the charging system shown in Figure 1 also has a power take-out (PTO) device for removing power from the high-pressure exhaust gas turbocharger 33.
- the extracted power can be converted directly into a connected to the shaft of the exhaust gas turbocharger generator 25 into electrical power.
- PTO power take-out
- a useful turbine 20 arranged in the high-pressure exhaust line parallel to the high-pressure turbine 15, which in a certain load range, for example 40% to 100% of the engine load, over a can be shut off by a shut-off valve 26 and branching off from the high pressure exhaust line 5 Nutzturbine exhaust gas line 28 can be acted upon by high pressure exhaust gas.
- a generator 25 is coupled to the power turbine.
- the power of the power turbine can be used mechanically, for example, by transmitting the power of the power turbine to the engine crankshaft via a gear transmission and a clutch.
- the additional power that can be gained via the power turbine or the power take-out depends strongly on the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow. Both the expansion ratio and the exhaust gas mass flow decrease at least linearly with the engine load. The product of the two factors gives the at least quadratic dependence.
- This quadratic dependence can be avoided.
- This division can be characterized by the ratio ⁇ , ⁇ / ⁇ , ⁇ .
- the ratio is according to the invention at least 1 .5 be, the ideal value is 2.
- the expansion ratio of the high-pressure turbine for taking off the additional power is used: the expansion ratio of the high-pressure turbine remains almost constant in the range between 50% and 100% of the engine load, as shown in FIG , 4 I see.
- This diagram shows the expansion ratios of exhaust gas turbines as a function of engine load.
- Curve 1 shows the expansion ratio of a turbine in single-stage supercharging
- curve 2 the expansion ratio of the low-pressure turbine of a two-stage supercharger
- the engine 3 the expansion ratio of the high-pressure turbine of the two-stage supercharger.
- the recoverable additional power is thus determined only by the exhaust gas mass flow, which varies linearly with the engine load.
- the recoverable additional power reaches up to 50% of the shaft power of the high-pressure turbocharger. This removal of the additional power affects the high pressure turbocharger mating.
- the decisive variable for the turbocharger mating is the running number of the turbine v. It is defined as
- a conventional turbocharger is designed with a diameter ratio D T / D v s 0.9. This results in the balance between compressor and turbine power a running number of about 0.7, in which the turbine efficiency is typically at an optimum.
- the problem can be solved by the high-pressure turbine or the high pressure turbine diameter D T is shown larger than the high pressure compressor diameter: the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.
- the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
Le turbocompresseur à deux étages du moteur à combustion interne (2) est pourvu d'un étage haute pression comprenant une turbine haute pression (15) mue par les gaz d'échappement haute pression (5) du moteur à combustion interne et un compresseur haute pression (18) relié en entraînement à la turbine haute pression; d'un étage basse pression comprenant une turbine basse pression (7) montée en série avec la turbine haute pression, en aval (15), reliée à la turbine haute pression (15) au moyen d'une conduite de gaz d'échappement basse pression (16, 6), et un compresseur basse pression (10) monté en série avec le compresseur haute pression (18), en amont, au moyen d'une conduite d'air de suralimentation basse pression, le compresseur basse pression étant relié en entraînement à la turbine basse pression (7); et d'éléments (20, 25) de récupération d'énergie disposés parallèlement à l'étage haute pression. Le turbocompresseur est caractérisé en ce que le rapport de pression πV,ND sur le compresseur basse pression est supérieur d'au moins 50 % au rapport de pression πV,HD sur le compresseur haute pression.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009042283.8 | 2009-09-22 | ||
DE102009042283A DE102009042283A1 (de) | 2009-09-22 | 2009-09-22 | Turbocompoundsystem und Komponenten |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036083A1 true WO2011036083A1 (fr) | 2011-03-31 |
Family
ID=43402222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/063588 WO2011036083A1 (fr) | 2009-09-22 | 2010-09-16 | Système turbocompound et composants |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102009042283A1 (fr) |
WO (1) | WO2011036083A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102562265A (zh) * | 2012-01-11 | 2012-07-11 | 清华大学 | 二级涡轮增压系统 |
GB2508866A (en) * | 2012-12-13 | 2014-06-18 | Bowman Power Group Ltd | Turbogenerator system and method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011108194A1 (de) * | 2011-07-20 | 2013-01-24 | Daimler Ag | Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens |
DE102012224078A1 (de) * | 2012-12-20 | 2014-06-26 | Mtu Friedrichshafen Gmbh | Verbrennungsmotor |
US10174670B2 (en) | 2014-02-25 | 2019-01-08 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Multi-stage electric centrifugal compressor and supercharging system for internal combustion engine |
DE102019120817A1 (de) * | 2019-08-01 | 2021-02-04 | Man Energy Solutions Se | Anordnung zur Energiebereitstellung |
NL2026301B1 (en) * | 2020-08-19 | 2022-04-14 | Daf Trucks Nv | Alternative Turbo Compounding |
US20240154139A1 (en) * | 2022-11-08 | 2024-05-09 | Joby Aero, Inc. | Hydrogen recirculation turbocharger |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3807372A1 (de) | 1988-03-07 | 1989-09-21 | Asea Brown Boveri | Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine |
JPH06229253A (ja) * | 1993-02-04 | 1994-08-16 | Isuzu Motors Ltd | 排気エネルギー回収装置 |
JP2000356136A (ja) * | 1999-06-14 | 2000-12-26 | Yanmar Diesel Engine Co Ltd | 内燃機関の二段過給装置 |
EP1101917A2 (fr) * | 1999-11-17 | 2001-05-23 | Isuzu Motors Limited | Dispositif de suralimentation d'un moteur Diesel |
US20020056444A1 (en) * | 2000-10-05 | 2002-05-16 | Etsuo Chou | Air-supplying structure for multi-cylinder engine |
EP1754870A2 (fr) * | 2005-08-18 | 2007-02-21 | Volkswagen Aktiengesellschaft | Moteur à combustion turbocompressé |
EP2053208A1 (fr) * | 2007-10-26 | 2009-04-29 | Deere & Company | Système de moteur de composant turbo à faible émission |
US20090241540A1 (en) * | 2008-03-31 | 2009-10-01 | Caterpillar Inc. | System for recovering engine exhaust energy |
WO2010005805A2 (fr) * | 2008-07-07 | 2010-01-14 | Borgwarner Inc. | Dispositif de suralimentation à plusieurs étages d’un moteur à combustion interne |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7933253U1 (de) * | 1979-02-19 | 1980-07-24 | Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) | Abgasturboladeraggregat zum Aufladen von Verbrennungsmotoren |
DE4141159C1 (en) * | 1991-12-13 | 1993-04-29 | Asea Brown Boveri Ag, Baden, Aargau, Ch | Two-stage supercharging for IC engine - involves two separate turbocharger units with compressors in series and turbines in parallel. |
JP3979294B2 (ja) * | 2003-01-22 | 2007-09-19 | トヨタ自動車株式会社 | 多段ターボチャージャの制御装置 |
DE102004030703A1 (de) * | 2004-06-25 | 2006-03-09 | Daimlerchrysler Ag | Abgasturbolader für eine Hubkolben-Brennkraftmaschine und Hubkolben-Brennkraftmaschine |
-
2009
- 2009-09-22 DE DE102009042283A patent/DE102009042283A1/de not_active Withdrawn
-
2010
- 2010-09-16 WO PCT/EP2010/063588 patent/WO2011036083A1/fr active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3807372A1 (de) | 1988-03-07 | 1989-09-21 | Asea Brown Boveri | Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine |
JPH06229253A (ja) * | 1993-02-04 | 1994-08-16 | Isuzu Motors Ltd | 排気エネルギー回収装置 |
JP2000356136A (ja) * | 1999-06-14 | 2000-12-26 | Yanmar Diesel Engine Co Ltd | 内燃機関の二段過給装置 |
EP1101917A2 (fr) * | 1999-11-17 | 2001-05-23 | Isuzu Motors Limited | Dispositif de suralimentation d'un moteur Diesel |
US20020056444A1 (en) * | 2000-10-05 | 2002-05-16 | Etsuo Chou | Air-supplying structure for multi-cylinder engine |
EP1754870A2 (fr) * | 2005-08-18 | 2007-02-21 | Volkswagen Aktiengesellschaft | Moteur à combustion turbocompressé |
EP2053208A1 (fr) * | 2007-10-26 | 2009-04-29 | Deere & Company | Système de moteur de composant turbo à faible émission |
US20090241540A1 (en) * | 2008-03-31 | 2009-10-01 | Caterpillar Inc. | System for recovering engine exhaust energy |
WO2010005805A2 (fr) * | 2008-07-07 | 2010-01-14 | Borgwarner Inc. | Dispositif de suralimentation à plusieurs étages d’un moteur à combustion interne |
Non-Patent Citations (1)
Title |
---|
BYUNGCHAN LEE, ZORAN FILIPI, DENNIS ASSANIS, DOHOY JUNG: "Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements", SAE INT. J. ENGINES, vol. SAE, no. 2009-, 01-1471, 1 January 2009 (2009-01-01), pages 1335 - 1346, XP002616212 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102562265A (zh) * | 2012-01-11 | 2012-07-11 | 清华大学 | 二级涡轮增压系统 |
GB2508866A (en) * | 2012-12-13 | 2014-06-18 | Bowman Power Group Ltd | Turbogenerator system and method |
GB2508866B (en) * | 2012-12-13 | 2020-05-20 | Bowman Power Group Ltd | Turbogenerator system and method |
Also Published As
Publication number | Publication date |
---|---|
DE102009042283A1 (de) | 2011-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011036083A1 (fr) | Système turbocompound et composants | |
DE102009006359B4 (de) | Vorrichtung und Verfahren zur variablen Abgasturboaufladung und Abgasrückführung | |
EP2534353B1 (fr) | Moteur à combustion interne suralimenté | |
DE3807372C2 (de) | Verbrennungsmotor mit zweistufigem Abgasturbolader und Nutzturbine | |
DE102016201464B4 (de) | Aufgeladene Brennkraftmaschine mit Abgasturboaufladung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine | |
DE102010035085B4 (de) | Kraftwagen mit einer Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine | |
DE102017200800A1 (de) | Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine mit Ladeluftkühlung | |
EP2196659A1 (fr) | Système de charge à deux niveaux pour la circulation de gaz d'échappement | |
WO2008068060A1 (fr) | Dispositif de suralimentation | |
WO2010088710A1 (fr) | Moteur à combustion interne | |
DE3623541A1 (de) | Brennkraftmaschine mit wenigstens einem turbolader | |
DE102009026469A1 (de) | Verfahren zur Ladedruckregelung einer Aufladeeinrichtung und Aufladeeinrichtung | |
EP2356328A1 (fr) | Système de suralimentation à deux étages pour recirculation de gaz d'échappement | |
EP2530274A2 (fr) | Moteur à combustion interne chargé | |
DE212015000133U1 (de) | Mehrstufige Verdichteranlage zur Erzeugung eines komprimierten Gases | |
DE102015216105A1 (de) | Verfahren zur Regelung des Ladedrucks einer aufgeladenen Brennkraftmaschine mit mindestens zwei Verdichtern und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens | |
DE19853360A1 (de) | Brennkraftmaschine mit zwei Abgasturboladern | |
DE102011108194A1 (de) | Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens | |
WO2007107301A1 (fr) | Machine a combustion interne et procede d'utilisation d'une machine a combustion interne | |
EP2058485B1 (fr) | Moteur à combustion interne chargé et procédé de fonctionnement d'un tel moteur à combustion interne | |
DE102015204313A1 (de) | Aufladesystem für eine Brennkraftmaschine und Verfahren dafür | |
DE202011110100U1 (de) | Aufgeladene Brennkraftmaschine | |
DE102011120337A1 (de) | Verbrennungskraftmaschine, insbesondere für einen Kraftwagen | |
EP2058486B1 (fr) | Moteur à combustion interne suralimenté et procédé de fonctionnement d'un tel moteur à combustion interne | |
DE102007024527A1 (de) | Turbolader-Vorrichtung für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10754330 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10754330 Country of ref document: EP Kind code of ref document: A1 |