WO2011036083A1 - Système turbocompound et composants - Google Patents

Système turbocompound et composants Download PDF

Info

Publication number
WO2011036083A1
WO2011036083A1 PCT/EP2010/063588 EP2010063588W WO2011036083A1 WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1 EP 2010063588 W EP2010063588 W EP 2010063588W WO 2011036083 A1 WO2011036083 A1 WO 2011036083A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
turbine
low
stage
compressor
Prior art date
Application number
PCT/EP2010/063588
Other languages
German (de)
English (en)
Inventor
Ennio Codan
Adrian Rettig
Original Assignee
Abb Turbo Systems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Turbo Systems Ag filed Critical Abb Turbo Systems Ag
Publication of WO2011036083A1 publication Critical patent/WO2011036083A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of supercharged by exhaust gas turbochargers internal combustion engines.
  • It relates to an internal combustion engine with a two-stage exhaust gas turbocharger, comprising a high-pressure stage, a low pressure stage, and arranged parallel to the high-pressure stage means for energy recovery.
  • This energy can be obtained directly as mechanical power from the turbocharger shaft (power take out, PTO).
  • PTO power take out
  • a subset of the exhaust gas may be expanded in a utility turbine and also converted to mechanical energy.
  • the mechanical power can be supplied to the drive shaft or converted by a generator into electrical power.
  • the excess energy of the charge depends at least quadratically on the engine load. As a result, with a reduction in engine load from 100% to 50%, the additional power is reduced by at least a factor of 4. Size Marine engines virtually never ride at 100% load. Typically, they are operated in the range of 50 to 85% load. As a result, the average additional power that can actually be generated falls below 2% of rated engine power on average, which makes the considerable investment for the turbocompound system unattractive. The spread of known turbocompound systems with turbine or PTO is correspondingly low.
  • the object of the invention is to maximize the recoverable additional power over the entire operating range between 50 and 100% engine load.
  • the pressure ratios between the high and low pressure stages are specifically set for a 2-stage charging, whereby the quadratic dependency of the additional power obtainable via the power turbine or the power take-out is bypassed by the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow can.
  • the pressure ratio ⁇ , ⁇ above the low pressure compressor is at least 50 percent greater than the pressure ratio ⁇ , ⁇ across the high pressure compressor.
  • Fig. 1 shows the diagram of an internal combustion engine with a two-stage
  • Fig. 2 shows the diagram of an internal combustion engine with a two-stage
  • FIG. 3 shows a diagram with the turbine characteristics of exhaust gas turbochargers with a diameter ratio D T / D V > 1 and a diameter ratio
  • Fig. 4 is a diagram of the turbine expansion ratios in one and two stages
  • FIG. 1 shows schematically a per se known two-stage supercharging system of an internal combustion engine.
  • the internal combustion engine 2 has a charge air receiver 1 on the inlet side and an exhaust gas receiver 3 on the outlet side.
  • the high-pressure exhaust gas coming from the combustion chambers of the engine passes through a high-pressure exhaust gas line 5 into a high-pressure turbine 15 of a two-stage exhaust gas turbocharger.
  • the exhaust gas partially expanded in the high-pressure turbine 15 flows via a low-pressure exhaust gas line 16, a low-pressure exhaust gas receiver 4 and a further low-pressure exhaust gas line 6 into a low-pressure turbine 7 and via an exhaust line 8 into the open.
  • the low-pressure compressor 10 connected to the low-pressure turbine 7 sucks the combustion air via a suction line 9 and presses them via a low-pressure charge air cooler 12 and a low-pressure charge air line 11 in the high-pressure compressor 18 driven by the high-pressure turbine 15, from which it acts as a high-pressure charge air via a high-pressure charge air cooler 21 and a Hochdruckladeluft effet 19 and the charge air receiver 1 enters the combustion chambers of the engine 2.
  • the charging system shown in Figure 1 also has a power take-out (PTO) device for removing power from the high-pressure exhaust gas turbocharger 33.
  • the extracted power can be converted directly into a connected to the shaft of the exhaust gas turbocharger generator 25 into electrical power.
  • PTO power take-out
  • a useful turbine 20 arranged in the high-pressure exhaust line parallel to the high-pressure turbine 15, which in a certain load range, for example 40% to 100% of the engine load, over a can be shut off by a shut-off valve 26 and branching off from the high pressure exhaust line 5 Nutzturbine exhaust gas line 28 can be acted upon by high pressure exhaust gas.
  • a generator 25 is coupled to the power turbine.
  • the power of the power turbine can be used mechanically, for example, by transmitting the power of the power turbine to the engine crankshaft via a gear transmission and a clutch.
  • the additional power that can be gained via the power turbine or the power take-out depends strongly on the expansion ratio of the turbocharger turbine and the available exhaust gas mass flow. Both the expansion ratio and the exhaust gas mass flow decrease at least linearly with the engine load. The product of the two factors gives the at least quadratic dependence.
  • This quadratic dependence can be avoided.
  • This division can be characterized by the ratio ⁇ , ⁇ / ⁇ , ⁇ .
  • the ratio is according to the invention at least 1 .5 be, the ideal value is 2.
  • the expansion ratio of the high-pressure turbine for taking off the additional power is used: the expansion ratio of the high-pressure turbine remains almost constant in the range between 50% and 100% of the engine load, as shown in FIG , 4 I see.
  • This diagram shows the expansion ratios of exhaust gas turbines as a function of engine load.
  • Curve 1 shows the expansion ratio of a turbine in single-stage supercharging
  • curve 2 the expansion ratio of the low-pressure turbine of a two-stage supercharger
  • the engine 3 the expansion ratio of the high-pressure turbine of the two-stage supercharger.
  • the recoverable additional power is thus determined only by the exhaust gas mass flow, which varies linearly with the engine load.
  • the recoverable additional power reaches up to 50% of the shaft power of the high-pressure turbocharger. This removal of the additional power affects the high pressure turbocharger mating.
  • the decisive variable for the turbocharger mating is the running number of the turbine v. It is defined as
  • a conventional turbocharger is designed with a diameter ratio D T / D v s 0.9. This results in the balance between compressor and turbine power a running number of about 0.7, in which the turbine efficiency is typically at an optimum.
  • the problem can be solved by the high-pressure turbine or the high pressure turbine diameter D T is shown larger than the high pressure compressor diameter: the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.
  • the diameter ratio D T / D V should be at least 1, preferably 1 .1 to 1 .2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Le turbocompresseur à deux étages du moteur à combustion interne (2) est pourvu d'un étage haute pression comprenant une turbine haute pression (15) mue par les gaz d'échappement haute pression (5) du moteur à combustion interne et un compresseur haute pression (18) relié en entraînement à la turbine haute pression; d'un étage basse pression comprenant une turbine basse pression (7) montée en série avec la turbine haute pression, en aval (15), reliée à la turbine haute pression (15) au moyen d'une conduite de gaz d'échappement basse pression (16, 6), et un compresseur basse pression (10) monté en série avec le compresseur haute pression (18), en amont, au moyen d'une conduite d'air de suralimentation basse pression, le compresseur basse pression étant relié en entraînement à la turbine basse pression (7); et d'éléments (20, 25) de récupération d'énergie disposés parallèlement à l'étage haute pression. Le turbocompresseur est caractérisé en ce que le rapport de pression πV,ND sur le compresseur basse pression est supérieur d'au moins 50 % au rapport de pression πV,HD sur le compresseur haute pression.
PCT/EP2010/063588 2009-09-22 2010-09-16 Système turbocompound et composants WO2011036083A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009042283.8 2009-09-22
DE102009042283A DE102009042283A1 (de) 2009-09-22 2009-09-22 Turbocompoundsystem und Komponenten

Publications (1)

Publication Number Publication Date
WO2011036083A1 true WO2011036083A1 (fr) 2011-03-31

Family

ID=43402222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063588 WO2011036083A1 (fr) 2009-09-22 2010-09-16 Système turbocompound et composants

Country Status (2)

Country Link
DE (1) DE102009042283A1 (fr)
WO (1) WO2011036083A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562265A (zh) * 2012-01-11 2012-07-11 清华大学 二级涡轮增压系统
GB2508866A (en) * 2012-12-13 2014-06-18 Bowman Power Group Ltd Turbogenerator system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108194A1 (de) * 2011-07-20 2013-01-24 Daimler Ag Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens
DE102012224078A1 (de) * 2012-12-20 2014-06-26 Mtu Friedrichshafen Gmbh Verbrennungsmotor
US10174670B2 (en) 2014-02-25 2019-01-08 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Multi-stage electric centrifugal compressor and supercharging system for internal combustion engine
DE102019120817A1 (de) * 2019-08-01 2021-02-04 Man Energy Solutions Se Anordnung zur Energiebereitstellung
NL2026301B1 (en) * 2020-08-19 2022-04-14 Daf Trucks Nv Alternative Turbo Compounding
US20240154139A1 (en) * 2022-11-08 2024-05-09 Joby Aero, Inc. Hydrogen recirculation turbocharger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807372A1 (de) 1988-03-07 1989-09-21 Asea Brown Boveri Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine
JPH06229253A (ja) * 1993-02-04 1994-08-16 Isuzu Motors Ltd 排気エネルギー回収装置
JP2000356136A (ja) * 1999-06-14 2000-12-26 Yanmar Diesel Engine Co Ltd 内燃機関の二段過給装置
EP1101917A2 (fr) * 1999-11-17 2001-05-23 Isuzu Motors Limited Dispositif de suralimentation d'un moteur Diesel
US20020056444A1 (en) * 2000-10-05 2002-05-16 Etsuo Chou Air-supplying structure for multi-cylinder engine
EP1754870A2 (fr) * 2005-08-18 2007-02-21 Volkswagen Aktiengesellschaft Moteur à combustion turbocompressé
EP2053208A1 (fr) * 2007-10-26 2009-04-29 Deere & Company Système de moteur de composant turbo à faible émission
US20090241540A1 (en) * 2008-03-31 2009-10-01 Caterpillar Inc. System for recovering engine exhaust energy
WO2010005805A2 (fr) * 2008-07-07 2010-01-14 Borgwarner Inc. Dispositif de suralimentation à plusieurs étages d’un moteur à combustion interne

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7933253U1 (de) * 1979-02-19 1980-07-24 Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) Abgasturboladeraggregat zum Aufladen von Verbrennungsmotoren
DE4141159C1 (en) * 1991-12-13 1993-04-29 Asea Brown Boveri Ag, Baden, Aargau, Ch Two-stage supercharging for IC engine - involves two separate turbocharger units with compressors in series and turbines in parallel.
JP3979294B2 (ja) * 2003-01-22 2007-09-19 トヨタ自動車株式会社 多段ターボチャージャの制御装置
DE102004030703A1 (de) * 2004-06-25 2006-03-09 Daimlerchrysler Ag Abgasturbolader für eine Hubkolben-Brennkraftmaschine und Hubkolben-Brennkraftmaschine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3807372A1 (de) 1988-03-07 1989-09-21 Asea Brown Boveri Verbrennungsmotor mit zweistufigem abgasturbolader und nutzturbine
JPH06229253A (ja) * 1993-02-04 1994-08-16 Isuzu Motors Ltd 排気エネルギー回収装置
JP2000356136A (ja) * 1999-06-14 2000-12-26 Yanmar Diesel Engine Co Ltd 内燃機関の二段過給装置
EP1101917A2 (fr) * 1999-11-17 2001-05-23 Isuzu Motors Limited Dispositif de suralimentation d'un moteur Diesel
US20020056444A1 (en) * 2000-10-05 2002-05-16 Etsuo Chou Air-supplying structure for multi-cylinder engine
EP1754870A2 (fr) * 2005-08-18 2007-02-21 Volkswagen Aktiengesellschaft Moteur à combustion turbocompressé
EP2053208A1 (fr) * 2007-10-26 2009-04-29 Deere & Company Système de moteur de composant turbo à faible émission
US20090241540A1 (en) * 2008-03-31 2009-10-01 Caterpillar Inc. System for recovering engine exhaust energy
WO2010005805A2 (fr) * 2008-07-07 2010-01-14 Borgwarner Inc. Dispositif de suralimentation à plusieurs étages d’un moteur à combustion interne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BYUNGCHAN LEE, ZORAN FILIPI, DENNIS ASSANIS, DOHOY JUNG: "Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements", SAE INT. J. ENGINES, vol. SAE, no. 2009-, 01-1471, 1 January 2009 (2009-01-01), pages 1335 - 1346, XP002616212 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562265A (zh) * 2012-01-11 2012-07-11 清华大学 二级涡轮增压系统
GB2508866A (en) * 2012-12-13 2014-06-18 Bowman Power Group Ltd Turbogenerator system and method
GB2508866B (en) * 2012-12-13 2020-05-20 Bowman Power Group Ltd Turbogenerator system and method

Also Published As

Publication number Publication date
DE102009042283A1 (de) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2011036083A1 (fr) Système turbocompound et composants
DE102009006359B4 (de) Vorrichtung und Verfahren zur variablen Abgasturboaufladung und Abgasrückführung
EP2534353B1 (fr) Moteur à combustion interne suralimenté
DE3807372C2 (de) Verbrennungsmotor mit zweistufigem Abgasturbolader und Nutzturbine
DE102016201464B4 (de) Aufgeladene Brennkraftmaschine mit Abgasturboaufladung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102010035085B4 (de) Kraftwagen mit einer Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
DE102017200800A1 (de) Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine mit Ladeluftkühlung
EP2196659A1 (fr) Système de charge à deux niveaux pour la circulation de gaz d'échappement
WO2008068060A1 (fr) Dispositif de suralimentation
WO2010088710A1 (fr) Moteur à combustion interne
DE3623541A1 (de) Brennkraftmaschine mit wenigstens einem turbolader
DE102009026469A1 (de) Verfahren zur Ladedruckregelung einer Aufladeeinrichtung und Aufladeeinrichtung
EP2356328A1 (fr) Système de suralimentation à deux étages pour recirculation de gaz d'échappement
EP2530274A2 (fr) Moteur à combustion interne chargé
DE212015000133U1 (de) Mehrstufige Verdichteranlage zur Erzeugung eines komprimierten Gases
DE102015216105A1 (de) Verfahren zur Regelung des Ladedrucks einer aufgeladenen Brennkraftmaschine mit mindestens zwei Verdichtern und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE19853360A1 (de) Brennkraftmaschine mit zwei Abgasturboladern
DE102011108194A1 (de) Aufladeeinrichtung für eine Verbrennungskraftmaschine eines Kraftwagens
WO2007107301A1 (fr) Machine a combustion interne et procede d'utilisation d'une machine a combustion interne
EP2058485B1 (fr) Moteur à combustion interne chargé et procédé de fonctionnement d'un tel moteur à combustion interne
DE102015204313A1 (de) Aufladesystem für eine Brennkraftmaschine und Verfahren dafür
DE202011110100U1 (de) Aufgeladene Brennkraftmaschine
DE102011120337A1 (de) Verbrennungskraftmaschine, insbesondere für einen Kraftwagen
EP2058486B1 (fr) Moteur à combustion interne suralimenté et procédé de fonctionnement d'un tel moteur à combustion interne
DE102007024527A1 (de) Turbolader-Vorrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10754330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10754330

Country of ref document: EP

Kind code of ref document: A1