WO2011034529A1 - Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale - Google Patents

Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale Download PDF

Info

Publication number
WO2011034529A1
WO2011034529A1 PCT/US2009/057144 US2009057144W WO2011034529A1 WO 2011034529 A1 WO2011034529 A1 WO 2011034529A1 US 2009057144 W US2009057144 W US 2009057144W WO 2011034529 A1 WO2011034529 A1 WO 2011034529A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
fluorescing
access
subintimally
vascular access
Prior art date
Application number
PCT/US2009/057144
Other languages
English (en)
Inventor
Christopher K. Smith
John R. Ross
Original Assignee
Revolutionary Medical Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Revolutionary Medical Technologies filed Critical Revolutionary Medical Technologies
Priority to PCT/US2009/057144 priority Critical patent/WO2011034529A1/fr
Publication of WO2011034529A1 publication Critical patent/WO2011034529A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0208Subcutaneous access sites for injecting or removing fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/0208Subcutaneous access sites for injecting or removing fluids
    • A61M2039/0238Subcutaneous access sites for injecting or removing fluids having means for locating the implanted device to insure proper injection, e.g. radio-emitter, protuberances, radio-opaque markers

Definitions

  • the present invention relates to improved vascular access ports.
  • the present invention relates to a vascular access port designed for subintimal implantation wherein at least a portion of the port is made from a UV fluorescing polymer which allows the user to see the port during access use.
  • a vascular access port is a vascular implantable port that is designed for subintimally implantation. It is designed for repeated access to the vasculature, for example, for administration of a desired product by injection. Typically, a vascular access port is fixed in position by suturing to underlying fascia in the desired location. Both single and dual access ports (or multiple devices) are frequently utilized on a patient. These devices are made of polymers or metals such as a polysulfone, an acetal plastic or titanium. [003] Typically they are used for a patient requiring repeated access of the vascular system for delivery of medications, nutritional supplementation, fluids, blood, blood products, sampling of blood and the like. Where dual access ports are used, they are for combination therapy, simultaneous infusions, withdrawal of body fluids and bolus delivery during continuous infusion. A number of commercially available versions are currently sold, for example, the "Vortex" sold by Angiodynamics Inc.
  • ports have problems associated with their use. Injection into the port is typically accomplished by the nursing staff or worse lower level medical technicians without the ability to read ultra sound or other techniques for finding the port to access with a needle. Accordingly, it is typical that these technicians and staff thus use either touch or a previously done "diagram" to place the needle. Because of the location and the like of the port these personnel are almost attempting to access the port blindly. Stick site errors result in the patient presenting complications such as pseudoaneursms, aneurysms, thrombus, clots and blockage with the possibility of total occlusion of the graft needing replacement.
  • a vascular access port can be made easier to use by one trying to insert a needle in such graft. This can be accomplished by inclusion within or on the port of a composition which absorbs UV light and fluoresces, i.e. a UV fluorescing composition, upon exposure to a source of UV light, such as a black light.
  • a composition which absorbs UV light and fluoresces i.e. a UV fluorescing composition
  • a vascular access port at least a portion of which comprises a biocompatible UV fluorescing material, wherein the UV fluorescing material is positioned in the port such that, upon exposure to a UV light source, the port or a portion of the port subintimally implanted fluoresces sufficiently to improve the visibility of the location of the graft to a health care worker attempting to access the port.
  • a vascular access port at least a portion of which comprises a UV fluorescing material wherein the UV fluorescing material is positioned such that, when the port is subintimally implanted, upon exposure to a UV light source, the port or a portion of the port fluoresces sufficiently to improve the visibility of the location of the port by the health care worker;
  • Figure 1 is a perspective view of an embodiment of the present invention where there are two bands of UV fluorescing compound.
  • Figure 2 is a perspective view of an embodiment of the present invention where there is a port with a ring entirely made with a single UV fluorescing polymer.
  • the present invention relates to the inclusion of a material which fluoresces upon application of UV light in at least a portion of a vascular access port.
  • the present invention can include just around the injection sites or the entire device, which can be totally or partially under the skin during use. It can be the portion closest to the skin or any portion as desired.
  • the present invention overcomes the limitations and problems of the prior art for those medical technicians attempting to insert a needle or other device into a vascular access port. Even though the problem has been around since the introduction of vascular access ports and still exists, and technology moves at a rapid pace, no previous solution accomplishes the results of the present invention.
  • the terms “a” or “an”, as used herein, are defined as one as or more than one.
  • the term “plurality”, as used herein, is defined as two, or more than two.
  • the term “another”, as used herein, is defined as at least a second or more.
  • the terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language).
  • the term “coupled”, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically.
  • an embodiment or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention.
  • the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
  • vascular access port is a biocompatible device which is placed subintimally and usually attached by sutures to the underlying fascia. They are designed for adding or taking away fluids to/from the vasculature where multiple access is required to the patient, for example, during chemo treatment of cancer. A healthcare worker would use the port rather than continually inject or add new injection sites.
  • the devices comprise an injection port for adding or taking a fluid away, a chamber and a tube which is in fluid communication with the chamber and a patient's vasculature. Placement of the device is where the access point is above or just under the skin making the port difficult to find by the healthcare worker.
  • the biocompatible vascular access port can be made of a biocompatible polymer or metal which are within the skill in the art.
  • Medicaments, blood, neutrients or other material can be added or taken away from a patients vasculature by inserting a needed in to the port access hole and injecting or withdrawing fluid. It is clear that insertion of a needle through the skin and into the port should be as accurate as possible each time because of the problems associated with poor needle insertion which can cause infection and a whole host of other complications as described above.
  • biocompatible UV fluorescing material relates to a biocompatible material which can be incorporated in, coated on or used to make a vasculature access port of the present invention.
  • These compositions are photo- chromic substances, which are known to be essentially colorless but have the property of photo-reacting to longwave ultraviolet (UV) light (about 250 to 400 nm) and can change to a variety of colors and shades.
  • UV longwave ultraviolet
  • the intensity of the resulting visible color reds, violets, blues, etc
  • the intensity of the resulting visible color is directly proportional to the intensity of the UV light source, i.e. the more intense the UV light the more intense the resulting visible light will be.
  • One method of producing the present invention is to incorporate a
  • photochromic compound directly into the polymer or other matrix making up the port.
  • the polymer can be injection molded or the like directly into the port shape from there.
  • plastic which could incorporate the compound for photochromic behavior include polyol(allyl carbonate)-monomers, polyacrylated, polyethylenes, polypropylenes, polyvinyl chloride, polymethylmethacrylates, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyacetal resins, acetyl cellulose, poly vinyl acetate, poly vinyl alcohols, poly urethanes, poly carbonates, polystyrenes, including copolymers and other
  • biocompatible polymer molecules The color of the fluorescing material will depend on the photochromic composition selected for inclusion in the present invention.
  • Another means of preparing the present invention is to incorporate the photochromic compound in one polymer and bind the polymer to the polymer or metal of the vascular access port. That way a particular area could be caused to glow and not just the entire vascular access port itself. While the photochromic compound could be included in just a portion of the fabrication material, separate polymer containing photochromic polymers (using the same or different polymers, metals or other biocompatible materials) would be easier to make. In one embodiment, only the area that around where a needle is to be inserted will glow. In another embodiment two sites, one on each side of the injection site could be caused to glow. It is clear the same or different colors could be used if multiple positions are cased to glow.
  • UV light source would refer to a longwave UV light, in one embodiment hand held, of sufficient light intensity to cause the UV polymer to glow considering its position subcutaneously, and still be able to visually observe the UV glow of the photochromic compound beneath the skin.
  • UV handheld devices are well known within the art and are mentioned here for convenience.
  • a patient in need of a vascular access port would have a vascular access port of the present invention surgically implanted and positioned in an appropriate place subintimally and sutured to the underlying fascia by a healthcare worker or technician.
  • a vascular access port of the present invention Once a vascular access port of the present invention is positioned in place in a patient, the healthcare worker would turn on a high intensity UV light and shine it in the general area (an arm or leg for example) where a vascular access port was placed and look for the appropriate glow. The worker could then, while observing the glow, insert the appropriate needles into the vascular access port for use in the patient.
  • FIG. 1 is a perspective view of an embodiment of a UV glowing vascular access port 1 .
  • the vascular access port 1 is positioned subintimally and fastened to the underlying fascia by suturing the portl by using suture holes 5 which are in base 3.
  • the outer wall of chamber 6 has top 10.
  • Top 10 has in the center access point 15 for insertion of a needle or the like.
  • the outer ring 18 is the outer edge of top 10.
  • left portion 20 and right portion 21 of ring 18 are made of UV glowing material.
  • the port also has tubing 13 which extends to the vasculature as desired.
  • the UV polymer in this embodiment is depicted as glowing but would need to have a UV source of light shined on the patient for the bands to continue to glow.
  • the bands could also be reinforced as needed since it is intended that there will be multiple needle sticks into this region of the vascular access port.
  • FIG. 2 is a perspective view of another vascular access port 1 of the present invention.
  • a vascular access port 1 has the outer ring 18 made entirely of UV glowing polymer 23 such that upon exposure to the UV light, the entire outer ring 18 will glow.
  • a single color would be impregnated or coated into the port outer ring 18 used for the vascular access port.
  • Other features known for other vascular access ports could be included as well; however, the main feature of UV glowing polymer would remain the same.
  • One skilled in the art in view of this disclosure could easily pick colors of polymers that fluoresce as well as means of combining multiple colors and colors at particular locations in the vascular access port.
  • the disclosure in the specification and the claims which follow the specification are to be read broadly and not intended to be limited by any specific example or embodiment herein. While the outer top of the port shown with the fluorescing polymer, the port could have such polymer placed at any desirable position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

La présente invention concerne un nouvel orifice d'accès vasculaire destiné à administrer des agents chimio-thérapeutiques et autres, implanté de manière sous-intimale et fixé au fascia. Par inclusion d'un ou de plusieurs polymères fluorescents à ultraviolets (UV) dans l'orifice, un agent de la santé peut faire briller une lumière UV dans la zone de l'orifice et utiliser le polymère fluorescent pour trouver le site d'injection.
PCT/US2009/057144 2009-09-16 2009-09-16 Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale WO2011034529A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2009/057144 WO2011034529A1 (fr) 2009-09-16 2009-09-16 Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/057144 WO2011034529A1 (fr) 2009-09-16 2009-09-16 Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale

Publications (1)

Publication Number Publication Date
WO2011034529A1 true WO2011034529A1 (fr) 2011-03-24

Family

ID=43758918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/057144 WO2011034529A1 (fr) 2009-09-16 2009-09-16 Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale

Country Status (1)

Country Link
WO (1) WO2011034529A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122016A1 (de) * 2015-12-16 2017-06-22 Teratron Gmbh Port und Portortungsvorrichtung
KR101887096B1 (ko) * 2017-03-07 2018-08-09 주식회사 메디튤립 피하 정맥 접근 포트 및 이를 가지는 약물 주입 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107482A1 (en) * 2001-02-08 2002-08-08 Rocamora Jose M. Introducer with multiple sheaths and method of use therfor
US20040147803A1 (en) * 2002-10-07 2004-07-29 Hegde Anant V. Vascular assist device and methods
US20060193885A1 (en) * 2004-12-24 2006-08-31 Celxcel Pty Ltd Implantable biomaterial and a method of producing same
US20080132832A1 (en) * 2006-10-11 2008-06-05 Becton, Dickinson And Company Vascular access device including a tear-resistant septum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107482A1 (en) * 2001-02-08 2002-08-08 Rocamora Jose M. Introducer with multiple sheaths and method of use therfor
US20040147803A1 (en) * 2002-10-07 2004-07-29 Hegde Anant V. Vascular assist device and methods
US20060193885A1 (en) * 2004-12-24 2006-08-31 Celxcel Pty Ltd Implantable biomaterial and a method of producing same
US20080132832A1 (en) * 2006-10-11 2008-06-05 Becton, Dickinson And Company Vascular access device including a tear-resistant septum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122016A1 (de) * 2015-12-16 2017-06-22 Teratron Gmbh Port und Portortungsvorrichtung
DE102015122016B4 (de) 2015-12-16 2019-05-16 Teratron Gmbh Port und Portortungsvorrichtung
KR101887096B1 (ko) * 2017-03-07 2018-08-09 주식회사 메디튤립 피하 정맥 접근 포트 및 이를 가지는 약물 주입 장치
WO2018164422A1 (fr) * 2017-03-07 2018-09-13 주식회사 메디튤립 Orifice d'accès à une veine sous-cutanée et dispositif d'injection de médicament le comportant
US10946182B2 (en) 2017-03-07 2021-03-16 Medi Tulip Co., Ltd. Subcutaneous vein access port and medicine injection device having the same

Similar Documents

Publication Publication Date Title
US20100010339A1 (en) Method and device for easy access to subintimally implanted vascular access ports
US20100198079A1 (en) Method and device for easy access to vascular graft cannulation sites
EP0809523B1 (fr) Dispositif d'acces implantable
JP4959131B2 (ja) 可撓性注入ポート
MXPA04012616A (es) Un metodo para implantar un puerto de inyeccion flexible.
US7824365B2 (en) Percutaneous access
US8529525B2 (en) Implantable vascular access system
US20070073248A1 (en) Trocar-cannula complex, cannula and method for delivering biologically active agents during minimally invasive surgery
EP0746381A1 (fr) Dispositif d'acces implantable
US8808261B2 (en) Ureteral bypass devices and procedures
Rouzrokh et al. Totally implantable subpectoral vs. subcutaneous port systems in children with malignant diseases
WO2011034529A1 (fr) Procédé et dispositif pour un accès facile à des orifices d'accès vasculaire implantés de manière sous-intimale
MXPA02003055A (es) Cateter con una superficie parcialmente texturizada.
US11826516B2 (en) Ureteral bypass devices and procedures
US20080294148A1 (en) System and method for refilling an implanted delivery device
CA2361039A1 (fr) Systeme d'acces et procedes faisant intervenir des canules reversibles
WO2024028628A1 (fr) Cathéter de collecte de sang ayant une capacité d'implantation à long terme
Crabtree Peritoneal Dialysis Access: Catheters and Placement
AU2011205152B2 (en) A method for implanting flexible injection port
Nourbakhsh et al. How to care for implanted ports
JP2002119598A (ja) 血管内留置用バルーンカテーテル
Lopez et al. Radiological insertion of an implantable drug delivery system
MXPA97006271A (en) Implantable access device
CA2325829A1 (fr) dispositif d'acces implantable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849617

Country of ref document: EP

Kind code of ref document: A1