WO2011034079A1 - Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and cured film containing electrically conductive microparticles - Google Patents

Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and cured film containing electrically conductive microparticles Download PDF

Info

Publication number
WO2011034079A1
WO2011034079A1 PCT/JP2010/065919 JP2010065919W WO2011034079A1 WO 2011034079 A1 WO2011034079 A1 WO 2011034079A1 JP 2010065919 W JP2010065919 W JP 2010065919W WO 2011034079 A1 WO2011034079 A1 WO 2011034079A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive fine
fine particles
parts
metal complex
refractive index
Prior art date
Application number
PCT/JP2010/065919
Other languages
French (fr)
Japanese (ja)
Inventor
聖人 室内
賢児 林
薫 鈴木
大剛 溝口
雅昭 村上
Original Assignee
大日本塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本塗料株式会社 filed Critical 大日本塗料株式会社
Priority to CN201080036039.9A priority Critical patent/CN102473475B/en
Priority to KR1020127009864A priority patent/KR101752221B1/en
Publication of WO2011034079A1 publication Critical patent/WO2011034079A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material

Definitions

  • the present invention relates to a conductive fine particle dispersion excellent in storage stability, a conductive fine particle-containing photocurable composition, and a conductive fine particle-containing cured film obtained from the composition, and more specifically, plastic, metal, wood, A photocurable composition that can form a conductive fine particle-containing cured film having excellent transparency and an antistatic function on the surface of various substrates such as paper, glass, and slate, and the transparency obtained from the composition
  • the present invention relates to a cured film having an excellent antistatic function and a conductive fine particle dispersion having excellent storage stability used for preparing such a photocurable composition.
  • a curable composition that can form a cured film such as a transparent conductive film that is excellent in transparency and has an antistatic function. Things are required.
  • antireflection films are used in image display devices such as liquid crystal displays and cathode ray tube display devices and optical products.
  • the antireflection film is required to have a scratch resistance and a function of preventing adhesion of foreign matters such as dust and dirt. Therefore, the high refractive index layer of the antireflection film is required to have excellent scratch resistance and antistatic properties in addition to high transparency and high refractive index properties.
  • a method of adding a surfactant, a conductive polymer, or conductive fine particles mainly composed of a metal oxide to the curable composition is known.
  • a method of adding conductive fine particles is common.
  • a method for adding such conductive fine particles there is a method in which a chelating agent is blended in a resin solution or a solvent, and an inorganic oxide is dispersed in the blend (for example, see Patent Documents 1 and 2).
  • the conductive fine particle dispersion and the curable composition used for the above-mentioned applications it is required that the conductive fine particles have a small particle diameter and that the dispersion is excellent in storage stability. Since the chelating agents described in Patent Documents 1 and 2 form chelates with metals, there is a problem of corroding metal equipment and coating equipment used in the dispersion treatment process.
  • a cured film having excellent transparency and an antistatic function can be formed on the surface of a substrate and used in a dispersion treatment process.
  • Conductive fine particle-containing photocurable composition that does not corrode metallic equipment and coating equipment to be used,
  • Various cured films such as a transparent conductive film obtained from the conductive fine particle-containing photocurable composition, (3)
  • the present inventors have obtained a conductive fine particle dispersion having excellent storage stability by dispersing conductive fine particles and a metal complex in a dispersion medium.
  • the present inventors have found that by using such a conductive fine particle dispersion, a photocurable composition containing conductive fine particles can be obtained without corroding metal equipment or coating equipment in the course of dispersion treatment. Completed the invention.
  • the conductive fine particle dispersion of the present invention is characterized by comprising conductive fine particles, a metal complex, and a dispersion medium.
  • the content of the metal complex is 2 to 45 parts by mass per 100 parts by mass of the conductive fine particles.
  • the content of the dispersion medium is 40 to 1000 parts by mass.
  • the conductive fine particle dispersion when a high refractive index characteristic is required in addition to the transparent conductive characteristic, contains high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide.
  • a metal complex comprising no metal complex and a dispersion medium, and having a moisture content of 3% by mass or less.
  • the content of conductive fine particles is 30 to 900 parts by mass per 100 parts by mass of high refractive index fine particles.
  • the content is 3 to 450 parts by mass and the content of the dispersion medium is 60 to 9000 parts by mass.
  • the conductive fine particle-containing photocurable composition of the present invention is characterized by comprising conductive fine particles, a metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium, preferably conductive fine particles.
  • the content of the metal complex is from 2 to 45 parts by mass per 100 parts by mass
  • the content of the dispersion medium is from 40 to 1000 parts by mass
  • the content of the active energy ray-curable compound is from 10 to 1000 parts by mass.
  • the content of the photopolymerization initiator is 0.1 to 20 parts by mass per 100 parts by mass of the active energy ray-curable compound.
  • the conductive fine particle-containing photocurable composition for forming a transparent conductive film that requires high refractive index characteristics includes high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide.
  • the conductive fine particle content is 30 to 900 parts by mass
  • the metal complex content is 3 to 450 parts by mass
  • the dispersion medium content is 60 to 70000 parts by mass per 100 parts by mass of the high refractive index fine particles.
  • the content of the active energy ray-curable compound is 14 to 10,000 parts by mass
  • the content of the photopolymerization initiator per 100 parts by mass of the active energy ray-curable compound is 0.1 to 20 parts by mass.
  • the conductive fine particle-containing cured film of the present invention is characterized by being obtained by applying or printing the above-mentioned conductive fine particle-containing photocurable composition on a substrate and curing, preferably,
  • the refractive index is 1.45 to 1.90
  • the light transmittance is 75% or more
  • the haze is 2.0% or less
  • the surface resistance value is 10 12 ⁇ / ⁇ or less.
  • a cured film containing conductive fine particles for forming a transparent conductive film which requires high refractive index characteristics, is obtained by applying the above-described photocurable composition containing conductive fine particles for forming a transparent conductive film on a substrate.
  • a transparent conductive film obtained by coating or printing and curing, preferably having a refractive index of 1.55 to 1.90 and a light transmittance of 85% or more, A transparent conductive film having a haze of 1.5% or less and a surface resistance value of 10 12 ⁇ / ⁇ or less.
  • a conductive fine particle dispersion excellent in storage stability of a dispersion is provided, and (2) a cured film having excellent transparency and an antistatic function is formed on the surface of a substrate.
  • a cured film containing conductive fine particles having an antistatic function is provided.
  • a transparent conductive film having excellent transparency, a high refractive index, and an antistatic function can be formed on the surface of a substrate, and metal equipment and coating used in the dispersion treatment process.
  • a dispersion having excellent storage stability used for the preparation of a film, (3) a display having the transparent conductive film, and (4) such a composition for forming a transparent conductive film is provided.
  • the conductive fine particle dispersion of the present invention contains conductive fine particles, a metal complex, and a dispersion medium.
  • the shape of the conductive fine particles used in the present invention is not particularly limited.
  • the conductive fine particles have a volume resistivity of 10 7 ⁇ ⁇ cm or less, preferably 10 3 ⁇ ⁇ cm or less.
  • the size of the conductive fine particles those having a primary particle diameter of usually 1 to 500 nm, preferably 10 to 100 nm can be used.
  • the conductive fine particle dispersion is composed of high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide. It contains a metal complex and a dispersion medium that are not included, and has a moisture content of 3% by mass or less.
  • the shape of the high refractive index fine particles and conductive fine particles used in the present invention is not particularly limited. As for the sizes of the high refractive index fine particles and the conductive fine particles, those having a primary particle diameter of usually 1 to 500 nm, preferably 10 to 100 nm can be used.
  • the type of conductive fine particles used in the present invention is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used.
  • metal oxides such as ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate, and antimony pentoxide, and metal hydroxides constituting these metal oxides can be used.
  • tin oxide one doped with an element such as phosphorus can also be used.
  • zinc oxide one doped with gallium or aluminum can also be used.
  • metal fine particles such as gold, silver, copper, platinum, and aluminum and organic conductive fine particles may be used. These conductive fine particles may be used alone or in combination of two or more.
  • the high refractive index fine particles blended in the conductive fine particle dispersion for applications requiring particularly high refractive index characteristics such as a transparent conductive film is used for controlling the refractive index of the formed transparent conductive film.
  • a metal oxide having a refractive index of 1.8 to 3.0 is preferably used.
  • the refractive index of each high refractive index fine particle is a value peculiar to material, and is described in various literatures. When a high refractive index fine particle having a refractive index of less than 1.8 is used, a film having a high refractive index cannot be obtained, and when a high refractive index fine particle having a refractive index exceeding 3.0 is used, Transparency tends to decrease.
  • the kind of high refractive index fine particles used in the present invention is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used.
  • known products such as commercially available products can be used.
  • These high refractive index fine particles may be used alone or in combination of two or more.
  • a metal complex is blended in the dispersion medium in addition to the above-mentioned conductive fine particles and particularly the high refractive index fine particles to be blended for applications requiring high refractive index characteristics.
  • This metal complex functions as a dispersant in the dispersion, a conductive fine particle dispersion having excellent storage stability of the dispersion can be obtained. Further, the metal complex hardly corrodes metal equipment and coating equipment used in the dispersion process.
  • the metal complex used in the present invention is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, preferably the color of the dispersion.
  • a metal complex containing an alkoxide reacts with the moisture contained in the solvent or moisture in the air over time, and the conductive fine particle-containing photocurable resin for forming the conductive fine particle dispersion and the transparent conductive film. There is a tendency to reduce the storage stability and film properties of the composition.
  • a metal complex that does not contain an alkoxide is used for a metal complex to be blended in a case where a particularly high refractive index characteristic such as a transparent conductive film is required.
  • a metal complex containing an alkoxide reacts with the moisture contained in the solvent or moisture in the air over time, and the conductive fine particle-containing photocurable resin for forming the conductive fine particle dispersion and the transparent conductive film.
  • the storage stability and film properties of the composition may be reduced.
  • another dispersant may be added as a dispersion aid.
  • the kind of the dispersion aid is not particularly limited, but as such a dispersion aid, a phosphate ester nonionic dispersant having a polyoxyethylene alkyl structure can be preferably exemplified.
  • Examples of the dispersion medium used in the present invention include alcohols such as water, methanol, ethanol, isopropanol, normal butanol, 2-butanol, and octanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2- Ketones such as pentanone; esters such as ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; benzene , Aromatic hydrocarbons such as toluene, xylene and ethylbenzene; amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-
  • ethanol isopropanol, normal butanol, 2-butanol, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, ethyl acetate, butyl acetate, toluene, xylene, and ethylbenzene are preferable, and methyl ethyl ketone Butanol, xylene, ethylbenzene, and toluene are more preferable.
  • the dispersion medium may be used alone or in combination of two or more.
  • the dispersion medium to be blended in the case of applications requiring particularly high refractive index characteristics such as a transparent conductive film, a conductive fine particle-containing photocurable composition for forming a conductive fine particle dispersion or a transparent conductive film.
  • the amount of water contained is 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less. .
  • the blending ratio of each component can be appropriately set according to the use of the conductive fine particle dispersion, but the metal complex content is preferably 2 to 100 parts by weight of the conductive fine particles. It is 45 parts by mass, more preferably 5 to 20 parts by mass, and the content of the dispersion medium is preferably 40 to 1000 parts by mass, more preferably 60 to 600 parts by mass.
  • the amount of the metal complex is less than the above lower limit value, the conductive fine particles are poorly dispersed.
  • the amount is more than the above upper limit value, the metal complex does not dissolve in the dispersion medium and precipitation may occur.
  • the amount of the dispersion medium is less than the above lower limit value, the dissolution of the metal complex and the dispersion of the conductive fine particles are insufficient, and when the amount is more than the above upper limit value, the concentration of the conductive fine particle dispersion is too thin. Become impractical.
  • the content of conductive fine particles is preferably 30 to 900 per 100 parts by mass of the high refractive index fine particles. Parts by mass, more preferably 40 to 500 parts by mass, the content of the metal complex is preferably 3 to 450 parts by mass, more preferably 7 to 200 parts by mass, and the content of the dispersion medium is preferably 60 to 9000 parts by mass. More preferably, it is 100 to 5000 parts by mass.
  • the amount of the conductive fine particles is less than the above lower limit value, the refractive index of the formed film increases, but the conductivity decreases.
  • the amount of conductive fine particles is higher than the above upper limit, the conductivity of the formed film increases, but the refractive index decreases. Further, when the amount of the metal complex is less than the above lower limit value, the dispersion of the high refractive index fine particles and the conductive fine particles becomes poor, and when more than the above upper limit value, the metal complex is not dissolved in the dispersion medium, Precipitation may occur.
  • the amount of the dispersion medium is less than the above lower limit value, the dissolution of the metal complex, the dispersion of the high refractive index fine particles and the conductive fine particles becomes insufficient, and when the amount is more than the above upper limit value, the high refractive index fine particles and The concentration of the conductive fine particles is too thin to be practical.
  • the conductive fine particle dispersion of the present invention can be obtained by adding conductive fine particles, metal complexes and dispersion media, and in particular, high refractive index fine particles to be blended in an arbitrary order for applications requiring high refractive index characteristics. Obtained by mixing. Usually, it is produced by dispersing conductive fine particles and high refractive index fine particles in a dispersion medium in which a metal complex is dissolved. It is even better to perform a pre-dispersion operation before performing the dispersion operation. In the pre-dispersion operation, the conductive fine particles and the high refractive index fine particles are gradually added to the dispersion medium in which the metal complex is dissolved while stirring with a disper or the like. Stir well until no longer confirmed.
  • a dispersion liquid composed of the high refractive index fine particles, the metal complex and the dispersion medium, and a dispersion liquid composed of the conductive fine particles, the metal complex and the dispersion medium are prepared in advance, These dispersions can also be mixed and produced.
  • the dispersion operation of the conductive fine particles and the high refractive index fine particles can be performed using a paint shaker, a ball mill, a sand mill, a sentry mill or the like.
  • it is preferable to use dispersed beads such as glass beads and zirconia beads.
  • the bead diameter is not particularly limited, but is usually about 0.05 to 1 mm, preferably 0.05 to 0.65 mm.
  • the thickness is more preferably 0.08 to 0.65 mm, and particularly preferably 0.08 to 0.5 mm.
  • the particle diameter of the conductive fine particles and the high refractive index fine particles is a median diameter, preferably 120 nm or less, more preferably 80 nm or less.
  • the median diameter is larger than that, the haze of the conductive fine particle-containing cured film obtained from the conductive fine particle-containing photocurable composition tends to increase.
  • conductive fine particles and high refractive index fine particles are stably dispersed over a long period of time, and since it does not contain acetylacetone or the like that corrodes metal, it can be stored in a metal container. Is possible.
  • the conductive fine particle dispersion of the present invention can be used in a protective film-forming composition, an antireflection film-forming composition, an adhesive, a sealing material, a binder material, etc., and in particular, a reflective film having an antistatic function. It can use suitably for the composition which forms a prevention film.
  • the photocurable composition containing conductive fine particles of the present invention contains conductive fine particles, a metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium, and the conductive fine particles, the metal complex, and the dispersion medium. Is as described above.
  • the photocurable composition containing conductive fine particles for forming a transparent conductive film of the present invention includes high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, metal complexes not containing alkoxide, active energy ray curing.
  • the high-refractive-index fine particles, the conductive fine particles, and the dispersion medium are as described above.
  • the conductive fine particle-containing photocurable composition of the present invention imparts scratch resistance, abrasion resistance, low curling properties, adhesion, transparency, refractive index, chemical resistance, and antistatic properties of the cured film. Therefore, fine particles other than the conductive fine particles can be used.
  • the type of fine particles is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used.
  • inorganic fine particles or organic fine particles such as zirconium oxide, titanium oxide, aluminum oxide, and silicon oxide can be used. These fine particles may be used alone or in combination of two or more.
  • Examples of the active energy ray-curable compound used in the present invention include radical polymerizable monomers and radical polymerizable oligomers.
  • Specific examples of the radical polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofluorine Furyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene Monofunctional (meth) acrylates such as glycol polypropylene glycol mono (meth) acrylate, polyethylene glycol poly
  • radical polymerizable oligomer examples include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, oligo (meth) acrylate, alkyd (meth) acrylate, polyol Examples thereof include prepolymers having at least one (meth) acryloyl group such as (meth) acrylate and silicone (meth) acrylate.
  • Particularly preferred radical polymerizable oligomers are (meth) acrylates of polyester, epoxy, and polyurethane.
  • an active energy ray hardening compound can be used individually by 1 type, or can also use 2 or more types together.
  • the photocurable composition containing conductive fine particles of the present invention contains a photopolymerization initiator (photosensitizer), the photocurable composition containing conductive fine particles is cured by irradiation with a small amount of active energy rays. be able to.
  • a photopolymerization initiator photosensitizer
  • a photoinitiator can be used individually by 1 type, or can also use 2 or more types together.
  • the blending ratio of each component can be appropriately set according to the use of the photocurable composition containing conductive fine particles, but the metal complex per 100 parts by mass of the conductive fine particles.
  • the content of is preferably 2 to 45 parts by mass, more preferably 5 to 20 parts by mass
  • the content of the dispersion medium is preferably 40 to 1000 parts by mass, more preferably 60 to 600 parts by mass
  • the active energy The content of the linear curable compound is preferably 10 to 1000 parts by mass, more preferably 25 to 150 parts by mass
  • the content of the photopolymerization initiator per 100 parts by mass of the active energy ray curable compound is preferably 0.00. 1 to 20 parts by mass, more preferably 1 to 15 parts by mass.
  • the conductive fine particles tend to be poorly dispersed, and when the amount is more than the above upper limit value, the metal complex does not dissolve in the dispersion medium and precipitates. May occur.
  • the amount of the dispersion medium is less than the above lower limit value, the metal complex tends to be dissolved and the dispersion of the conductive fine particles tends to be insufficient.
  • the concentration of the conductive fine particle dispersion is low. There exists a tendency for the addition effect of electroconductive fine particles to become inadequate and to become inadequate.
  • the amount of the active energy ray-curable compound When the amount of the active energy ray-curable compound is less than the above lower limit value, the refractive index of the cured film increases, but the transparency tends to decrease, and when it exceeds the above upper limit value, the refractive index of the cured film. Is not as high as desired.
  • the amount of the photopolymerization initiator when the amount of the photopolymerization initiator is less than the above lower limit value, the curing rate of the photocurable composition tends to decrease, and even if the amount exceeds the above upper limit value, an effect commensurate with it cannot be obtained. .
  • the content of conductive fine particles is preferably 30 to 900 parts by mass, more preferably 40 to 500 parts per 100 parts by mass of the high refractive index fine particles.
  • the content of the mass part and the metal complex is preferably 3 to 450 parts by mass, more preferably 7 to 200 parts by mass, and the content of the dispersion medium is preferably 60 to 70000 parts by mass, more preferably 100 to 50000 parts by mass.
  • the content of the active energy ray-curable compound is preferably 14 to 10,000 parts by mass, more preferably 35 to 2000 parts by mass, and the content of the photopolymerization initiator per 100 parts by mass of the active energy ray-curable compound Is preferably 0.1 to 20 parts by mass, more preferably 1 to 15 parts by mass.
  • this photocurable composition containing conductive fine particles for forming a transparent conductive film when the amount of conductive fine particles is less than the above lower limit value, the refractive index of the formed film increases, but the conductivity decreases. . Conversely, when the amount of conductive fine particles is higher than the above upper limit, the conductivity of the formed film increases, but the refractive index decreases.
  • the amount of the metal complex is less than the above lower limit value, the dispersion of the high refractive index fine particles and the conductive fine particles tends to be poor, and when the amount is more than the above upper limit value, the metal complex is dissolved in the dispersion medium. And precipitation may occur.
  • the amount of the dispersion medium is less than the above lower limit, dissolution of the metal complex, and dispersion of the high refractive index fine particles and conductive fine particles tend to be insufficient.
  • the concentration of the composition is too low to be practical.
  • the amount of the active energy ray-curable compound is less than the above lower limit value, the refractive index of the transparent conductive film increases, but the transparency tends to decrease. The refractive index is not as high as desired, and the antistatic function is insufficient.
  • the amount of the photopolymerization initiator is less than the above lower limit value, the curing rate of the photocurable composition tends to decrease, and even if the amount exceeds the above upper limit value, an effect commensurate with it cannot be obtained. .
  • the conductive fine particle-containing photocurable composition of the present invention may be blended with various conventional additives other than those described above within a range not impairing the purpose.
  • additives include a polymerization inhibitor, a curing catalyst, an antioxidant, a leveling agent, and a coupling agent.
  • the photocurable composition containing conductive fine particles of the present invention is a plastic (polycarbonate, polymethylmethacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetylcellulose resin, polyethylene terephthalate, ABS resin, AS resin, norbornene series. Resin, etc.), metal, wood, paper, glass, slate, etc. can be applied or printed on the surface of the substrate and cured to form a film.
  • plastic polycarbonate, polymethylmethacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetylcellulose resin, polyethylene terephthalate, ABS resin, AS resin, norbornene series. Resin, etc.
  • metal, wood, paper, glass, slate, etc. can be applied or printed on the surface of the substrate and cured to form a film.
  • a photocurable composition containing conductive fine particles in which high refractive index fine particles are blended it can be suitably used particularly for forming a transparent conductive film having a high refractive index.
  • coating or printing of the electroconductive fine particle containing photocurable composition to a base material can be performed by methods, such as roll coating, spin coating, and screen printing, according to a conventional method. If necessary, the dispersion medium (solvent) is evaporated by heating, the coating film is dried, and then irradiated with active energy rays (ultraviolet rays or electron beams).
  • active energy ray source an ultraviolet ray source such as a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, an excimer laser, or a dye laser, and an electron beam accelerator can be used.
  • the dose of the active energy ray when the ultraviolet rays 50 ⁇ 3000mJ / cm 2, when the electron beam is suitably in the range of 0.2 ⁇ 1000 ⁇ C / cm 2.
  • the active energy ray-curable compound is polymerized to form a film in which conductive fine particles are bonded with a resin.
  • the thickness of this film is preferably in the range of 0.1 to 10.0 ⁇ m.
  • the conductive fine particle-containing cured film of the present invention obtained by curing the conductive fine particle-containing photocurable composition prepared with the conductive fine particle dispersion of the present invention has conductive fine particles uniformly dispersed in the cured film.
  • the refractive index can be controlled, the transparency is high, and the haze is low.
  • the refractive index is 1.45 to 1.90
  • the light transmittance is 75% or more
  • the haze is 2. 0% or less and a surface resistance value of 10 12 ⁇ / ⁇ or less.
  • the transparent conductive film of the present invention obtained by curing a conductive fine particle-containing composition for forming a transparent conductive film, which requires high refractive index characteristics, has high refractive index fine particles and conductive fine particles that are transparent conductive.
  • the film is uniformly dispersed in the film, the refractive index can be controlled, and the refractive index is high, the transparency is high, the haze is low, specifically, the refractive index is 1.55 to 1.90.
  • the transmittance is 85% or more, the haze is 1.5% or less, and the surface resistance value is 10 12 ⁇ / ⁇ or less. It is.
  • the ratio of the amount of the high refractive index fine particles and conductive fine particles to the amount of the active energy ray-curable compound may be adjusted.
  • the transparent conductive film can be used for a conductive antireflection material, a display surface of a display, or the like.
  • Example 1 to 5 and Comparative Examples 1 and 2 The components used in Examples 1 to 5 and Comparative Examples 1 and 2 are as follows.
  • Example 1 All components were put into a container in an amount of 20 parts of zirconium acetylacetonate, 250 parts of methyl ethyl ketone and 400 parts of glass beads with respect to 100 parts of tin oxide, and kneaded with a paint shaker for 3 hours. After kneading, the glass beads were removed to obtain a dispersion. 43 parts of DPHA, 2 parts of IRGACURE 184 and 65 parts of methyl ethyl ketone were added to this dispersion to obtain a photocurable composition.
  • This photocurable composition was applied onto a 100 ⁇ m-thick PET film (A4100 manufactured by Toyobo Co., Ltd.) using a bar coater, the organic solvent was evaporated, and then 300 mJ / cm using a high-pressure mercury lamp under air.
  • a transparent conductive film having a thickness of 3 ⁇ m was produced by irradiating the light of No. 2 .
  • the film was prepared immediately after and 6 months after the photocurable composition.
  • Example 2 Add 100 parts of ATO to 10 parts of titanium acetylacetonate, 10 parts of BYK-142, 250 parts of 2-butanol and 400 parts of glass beads in a container and knead for 3 hours in a paint shaker. did. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 1.
  • Example 3 All components in 10 parts of ATO, 10 parts dibutyl-tin bisacetylacetonate, 250 parts 2-butanol and 400 parts glass beads were placed in a container and kneaded for 3 hours with a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 1.
  • Example 4 Put all ingredients in a container in an amount of 50 parts ITO, 10 parts dibutyl-tin bisacetylacetonate, 250 parts 2-butanol and 400 parts glass beads for 50 parts of ATO and knead for 3 hours in a paint shaker. did. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 1.
  • Example 5 Put all ingredients in a container in 60 parts of ITO, 40 parts of aluminum oxide, 25 parts of dibutyl-tin bisacetylacetonate, 250 parts of 2-butanol and 400 parts of glass beads, 3 hours in a paint shaker Kneaded. After kneading, the glass beads were removed to obtain a dispersion. 67 parts DPHA, 6.7 parts IRGACURE 184 and 170 parts 2-butanol were added to this dispersion to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 1.
  • Example 2 A transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 2 except that 20 parts of acetylacetone was added instead of 20 parts of titanium acetylacetonate.
  • ⁇ Evaluation method> Median diameter of inorganic fine particles The median diameter of inorganic fine particles dispersed in the dispersions and photocured compositions prepared in Examples and Comparative Examples was measured immediately using a Microtrac particle size distribution meter manufactured by Nikkiso Co., Ltd. After 3 months (40 ° C storage) and 6 months (40 ° C storage), the measurement was performed under the following conditions.
  • the conductive fine particle dispersion, the conductive fine particle-containing composition for forming a transparent conductive film, and the transparent conductive film will be specifically described with reference to Examples and Reference Examples for applications in which the high refractive index characteristics of the present invention are required. To do.
  • “parts” are all “parts by mass”.
  • Example 6 to 11 and Reference Examples 1 to 6 The components used in Examples 6 to 11 and Reference Examples 1 to 6 are as follows.
  • Example 6 Add 100 parts of zirconium oxide to 100 parts of tin oxide, 40 parts of zirconium acetylacetonate, 500 parts of 2-butanol and 800 parts of glass beads in a container and knead in a paint shaker for 7 hours. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 86 parts DPHA, 4.3 parts IRGACURE 184 and 130 parts 2-butanol to obtain a photocurable composition.
  • This photocurable composition was applied onto a 100 ⁇ m-thick PET film (A4100 manufactured by Toyobo Co., Ltd.) using a roll coater, the organic solvent was evaporated, and then 300 mJ / cm using a high-pressure mercury lamp under air.
  • a transparent conductive film having a thickness of 3 ⁇ m was produced by irradiating the light of No. 2 .
  • the film was prepared immediately after and 6 months after the photocurable composition.
  • Example 7 In 100 parts of titanium oxide, all components in containers in amounts of 43 parts ATO, 6 parts titanium acetylacetonate, 14.3 parts BYK-142, 500 parts 2-butanol and 800 parts glass beads. And kneaded for 7 hours in a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 143 parts DPHA, 7.2 parts IRGACURE 184 and 160 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 6.
  • Example 8 Add 100 parts of zirconium oxide to 233 parts of tin oxide, 33 parts of aluminum acetylacetonate, 880 parts of 2-butanol and 800 parts of glass beads in a container and mix for 7 hours in a paint shaker. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 143 parts DPHA, 7.2 parts IRGACURE 184 and 160 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 6.
  • Example 9 100 parts of titanium oxide, 100 parts of zinc oxide, 20 parts of zinc acetylacetonate, 500 parts of 2-butanol, and 800 parts of glass beads are placed in a container and mixed for 7 hours in a paint shaker. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 86 parts DPHA, 4.3 parts IRGACURE 184 and 130 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 6.
  • Example 10 A transparent conductive film having a thickness of 3 ⁇ m was prepared in the same manner as in Example 9 except that 20 parts of dibutyl-tin bisacetylacetonate was added instead of 20 parts of zinc acetylacetonate.
  • Example 11 A transparent conductive film having a thickness of 3 ⁇ m was produced in the same manner as in Example 9, except that 20 parts of indium acetylacetonate was added instead of 20 parts of zinc acetylacetonate.
  • Example 5 A transparent conductive film having a thickness of 3 ⁇ m was prepared in the same manner as in Example 6 except that 40 parts of tributoxy-zirconium monoacetylacetonate was added instead of 40 parts of zirconium acetylacetonate.

Abstract

Disclosed are: an electrically conductive microparticle dispersion having excellent storage stability; a photocurable composition containing electrically conductive microparticles, which enables the formation of a cured film having excellent transparency and an antistatic function on the surface of a base material; and a cured film containing electrically conductive microparticles, which is produced by curing the photocurable composition. It becomes possible particularly to provide a dispersion useful for the formation of a high-refractive-index transparent electrically conductive film, a composition and a transparent electrically conductive film. Specifically disclosed are: an electrically conductive microparticle dispersion comprising electrically conductive microparticles, a metal complex and a dispersion medium, and optionally containing high-refractive-index microparticles having a refractive index of 1.8 or higher; a photocurable composition containing electrically conductive microparticles, which comprises electrically conductive microparticles, a metal complex, an activity energy ray-curable compound and a photopolymerization initiator and a dispersion medium, and optionally contains high-refractive-index microparticles having a refractive index of 1.8 or higher; and a cured film containing electrically conductive microparticles, which is produced by curing the photocurable composition containing electrically conductive microparticles.

Description

導電性微粒子分散液、導電性微粒子含有光硬化性組成物、及び導電性微粒子含有硬化膜Conductive fine particle dispersion, conductive fine particle-containing photocurable composition, and conductive fine particle-containing cured film
 本発明は、保存安定性に優れた導電性微粒子分散液、導電性微粒子含有光硬化性組成物及び該組成物から得られる導電性微粒子含有硬化膜に関し、より詳しくは、プラスチック、金属、木材、紙、ガラス、スレート等の各種基材の表面に透明性に優れ、且つ、帯電防止機能を有する導電性微粒子含有硬化膜を形成し得る光硬化性組成物、該組成物から得られる透明性に優れ、且つ、帯電防止機能を有する硬化膜、及び、そのような光硬化性組成物の調製に用いられる保存安定性に優れた導電性微粒子分散液に関する。 The present invention relates to a conductive fine particle dispersion excellent in storage stability, a conductive fine particle-containing photocurable composition, and a conductive fine particle-containing cured film obtained from the composition, and more specifically, plastic, metal, wood, A photocurable composition that can form a conductive fine particle-containing cured film having excellent transparency and an antistatic function on the surface of various substrates such as paper, glass, and slate, and the transparency obtained from the composition The present invention relates to a cured film having an excellent antistatic function and a conductive fine particle dispersion having excellent storage stability used for preparing such a photocurable composition.
 近年、各種基材の表面の傷付き(擦傷)防止や汚染防止のための保護コーティング材や、印刷インクのバインダー材として、優れた塗工性を有し、且つ、各種基材の表面に硬度、耐擦傷性、耐摩耗性、低カール性、密着性、透明性、耐薬品性、塗膜面の外観等に優れた硬化膜を形成し得る硬化性組成物が要求されている。 In recent years, it has excellent coating properties as a protective coating material for preventing scratches (abrasion) on surfaces of various substrates and preventing contamination, and a binder material for printing inks, and the surface of various substrates has hardness. There is a need for a curable composition capable of forming a cured film excellent in scratch resistance, abrasion resistance, low curling properties, adhesion, transparency, chemical resistance, coating surface appearance, and the like.
 また、フラットパネルディスプレイ、タッチパネル、プラスチック光学部品等への用途においては、上記要求に加えて、透明性に優れ、且つ、帯電防止機能を有する透明導電膜等の硬化膜を形成し得る硬化性組成物が要求されている。 Moreover, in applications to flat panel displays, touch panels, plastic optical components, etc., in addition to the above requirements, a curable composition that can form a cured film such as a transparent conductive film that is excellent in transparency and has an antistatic function. Things are required.
 更に、液晶ディスプレイ、陰極管表示装置等の画像表示装置及び光学製品においては反射防止膜(硬化膜)が使用されている。この反射防止膜には、高い透明性及び低い反射率の特性に加え、耐擦傷性及び埃やゴミ等の異物の付着を防止する機能が要求されている。そのため、反射防止膜の高屈折率層には、高い透明性及び高い屈折率特性に加え、優れた耐擦傷性及び帯電防止特性が求められている。 Furthermore, antireflection films (cured films) are used in image display devices such as liquid crystal displays and cathode ray tube display devices and optical products. In addition to the characteristics of high transparency and low reflectance, the antireflection film is required to have a scratch resistance and a function of preventing adhesion of foreign matters such as dust and dirt. Therefore, the high refractive index layer of the antireflection film is required to have excellent scratch resistance and antistatic properties in addition to high transparency and high refractive index properties.
 そして、このような硬化膜に帯電防止機能を付与する手段としては、硬化性組成物中に界面活性剤、導電性ポリマー、又は主として金属酸化物からなる導電性微粒子等を添加する方法が知られており、特に永久帯電防止効果を有する膜を作製するという目的を考慮した場合には、導電性微粒子を添加する方法が一般的となっている。そのような導電性微粒子を添加する方法としては、樹脂溶液又は溶剤中にキレート剤を配合し、その配合物中に無機酸化物を分散させる方法がある(例えば、特許文献1及び2参照)。 As a means for imparting an antistatic function to such a cured film, a method of adding a surfactant, a conductive polymer, or conductive fine particles mainly composed of a metal oxide to the curable composition is known. In particular, in consideration of the purpose of producing a film having a permanent antistatic effect, a method of adding conductive fine particles is common. As a method for adding such conductive fine particles, there is a method in which a chelating agent is blended in a resin solution or a solvent, and an inorganic oxide is dispersed in the blend (for example, see Patent Documents 1 and 2).
特開2001-139,847号公報JP 2001-139,847 特開2001-139,889号公報Japanese Patent Laid-Open No. 2001-139,889
 上記の用途に用いられる導電性微粒子分散液及びその硬化性組成物については、導電性微粒子の粒子径が小さく、且つ、分散液が保存安定性に優れていることが求められている。上記の特許文献1及び2に記載されているキレート剤は金属とキレートを形成するので、分散処理過程で使用される金属製機器や塗布機材を腐食させるという問題がある。 For the conductive fine particle dispersion and the curable composition used for the above-mentioned applications, it is required that the conductive fine particles have a small particle diameter and that the dispersion is excellent in storage stability. Since the chelating agents described in Patent Documents 1 and 2 form chelates with metals, there is a problem of corroding metal equipment and coating equipment used in the dispersion treatment process.
 本発明は、上記の問題に鑑みてなされたものであり、(1)基材の表面に透明性に優れていると共に帯電防止機能を有する硬化膜を形成することができ、分散処理過程で使用される金属製機器や塗布機材を腐食させることのない導電性微粒子含有光硬化性組成物、(2)該導電性微粒子含有光硬化性組成物から得られる透明導電膜等の各種の硬化膜、(3)該導電性微粒子含有光硬化性組成物から得られる硬化膜を有するディスプレイ、及び(4)そのような導電性微粒子含有光硬化性組成物の調製に用いられる保存安定性に優れた導電性微粒子分散液を提供することを目的とする。 The present invention has been made in view of the above-described problems. (1) A cured film having excellent transparency and an antistatic function can be formed on the surface of a substrate and used in a dispersion treatment process. Conductive fine particle-containing photocurable composition that does not corrode metallic equipment and coating equipment to be used, (2) Various cured films such as a transparent conductive film obtained from the conductive fine particle-containing photocurable composition, (3) A display having a cured film obtained from the conductive fine particle-containing photocurable composition, and (4) a conductive having excellent storage stability used for the preparation of such a conductive fine particle-containing photocurable composition. It is an object to provide a fine particle dispersion.
 本発明者らは、上記の諸目的を達成するために鋭意検討した結果、分散媒中に導電性微粒子及び金属錯体を分散させることにより保存安定性に優れた導電性微粒子分散液が得られることを見出し、また、そのような導電性微粒子分散液を用いることにより分散処理過程で金属製機器や塗布機材を腐食させることのない導電性微粒子含有光硬化性組成物が得られることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned objects, the present inventors have obtained a conductive fine particle dispersion having excellent storage stability by dispersing conductive fine particles and a metal complex in a dispersion medium. In addition, the present inventors have found that by using such a conductive fine particle dispersion, a photocurable composition containing conductive fine particles can be obtained without corroding metal equipment or coating equipment in the course of dispersion treatment. Completed the invention.
 即ち、本発明の導電性微粒子分散液は、導電性微粒子、金属錯体及び分散媒からなることを特徴とし、好ましくは、導電性微粒子100質量部当り、金属錯体の含有量が2~45質量部であり、分散媒の含有量が40~1000質量部であることを特徴とする。 That is, the conductive fine particle dispersion of the present invention is characterized by comprising conductive fine particles, a metal complex, and a dispersion medium. Preferably, the content of the metal complex is 2 to 45 parts by mass per 100 parts by mass of the conductive fine particles. The content of the dispersion medium is 40 to 1000 parts by mass.
 また、本発明において、透明導電特性の他に高屈折率特性が求められる場合には、その導電性微粒子分散液は、屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体及び分散媒からなり、水分が3質量%以下であることを特徴とし、好ましくは、高屈折率微粒子100質量部当たり、導電性微粒子の含有量が30~900質量部、金属錯体の含有量が3~450質量部及び分散媒の含有量が60~9000質量部であることを特徴とする。 In the present invention, when a high refractive index characteristic is required in addition to the transparent conductive characteristic, the conductive fine particle dispersion contains high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide. A metal complex comprising no metal complex and a dispersion medium, and having a moisture content of 3% by mass or less. Preferably, the content of conductive fine particles is 30 to 900 parts by mass per 100 parts by mass of high refractive index fine particles. The content is 3 to 450 parts by mass and the content of the dispersion medium is 60 to 9000 parts by mass.
 そして、本発明の導電性微粒子含有光硬化性組成物は、導電性微粒子、金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒からなることを特徴とし、好ましくは、導電性微粒子100質量部当り、金属錯体の含有量が2~45質量部であり、分散媒の含有量が40~1000質量部であり、活性エネルギー線硬化性化合物の含有量が10~1000質量部であり、且つ活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量が0.1~20質量部であることを特徴とする。 The conductive fine particle-containing photocurable composition of the present invention is characterized by comprising conductive fine particles, a metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium, preferably conductive fine particles. The content of the metal complex is from 2 to 45 parts by mass per 100 parts by mass, the content of the dispersion medium is from 40 to 1000 parts by mass, and the content of the active energy ray-curable compound is from 10 to 1000 parts by mass. The content of the photopolymerization initiator is 0.1 to 20 parts by mass per 100 parts by mass of the active energy ray-curable compound.
 また、本発明において、高屈折率特性が求められる透明導電膜形成用の導電性微粒子含有光硬化性組成物は、屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒からなり、水分が3質量%以下であることを特徴とする透明導電膜形成用の導電性微粒子含有光硬化性組成物であり、好ましくは、高屈折率微粒子100質量部当たり、導電性微粒子の含有量が30~900質量部、金属錯体の含有量が3~450質量部、分散媒の含有量が60~70000質量部及び活性エネルギー線硬化性化合物の含有量が14~10000質量部であり、且つ該活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量が0.1~20質量部であることを特徴とする透明導電膜形成用の導電性微粒子含有光硬化性組成物である。 Further, in the present invention, the conductive fine particle-containing photocurable composition for forming a transparent conductive film that requires high refractive index characteristics includes high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide. A conductive fine particle-containing photocurable composition for forming a transparent conductive film, comprising a non-metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium, and having a moisture content of 3% by mass or less. Preferably, the conductive fine particle content is 30 to 900 parts by mass, the metal complex content is 3 to 450 parts by mass, and the dispersion medium content is 60 to 70000 parts by mass per 100 parts by mass of the high refractive index fine particles. And the content of the active energy ray-curable compound is 14 to 10,000 parts by mass, and the content of the photopolymerization initiator per 100 parts by mass of the active energy ray-curable compound is 0.1 to 20 parts by mass. A photocurable composition containing conductive fine particles for forming a transparent conductive film.
 更に、本発明の導電性微粒子含有硬化膜は、上記の導電性微粒子含有光硬化性組成物を基材上に塗布又は印刷し、硬化させて得られるものであることを特徴とし、好ましくは、屈折率が1.45~1.90であり、光透過率が75%以上であり、ヘイズが2.0%以下であり、且つ表面抵抗値が1012Ω/□以下であることを特徴とする。 Furthermore, the conductive fine particle-containing cured film of the present invention is characterized by being obtained by applying or printing the above-mentioned conductive fine particle-containing photocurable composition on a substrate and curing, preferably, The refractive index is 1.45 to 1.90, the light transmittance is 75% or more, the haze is 2.0% or less, and the surface resistance value is 10 12 Ω / □ or less. To do.
 また、本発明において、高屈折率特性が求められる透明導電膜形成用の導電性微粒子含有の硬化膜は、上記の透明導電膜形成用の導電性微粒子含有光硬化性組成物を基材上に塗布又は印刷し、硬化させて得られるものであることを特徴とする透明導電膜であり、好ましくは、屈折率が1.55~1.90であり、光透過率が85%以上であり、ヘイズが1.5%以下であり、且つ、表面抵抗値が1012Ω/□以下であることを特徴とする透明導電膜である。 In the present invention, a cured film containing conductive fine particles for forming a transparent conductive film, which requires high refractive index characteristics, is obtained by applying the above-described photocurable composition containing conductive fine particles for forming a transparent conductive film on a substrate. A transparent conductive film obtained by coating or printing and curing, preferably having a refractive index of 1.55 to 1.90 and a light transmittance of 85% or more, A transparent conductive film having a haze of 1.5% or less and a surface resistance value of 10 12 Ω / □ or less.
 本発明により、(1)分散液の保存安定性に優れた導電性微粒子分散液が提供され、(2)基材の表面に透明性に優れ、且つ、帯電防止機能を有する硬化膜を形成することができ、分散処理過程で使用される金属製機器や塗布機材を腐食させることのない導電性微粒子含有光硬化性組成物が提供され、更に(3)該組成物から得られる透明性に優れ、且つ、帯電防止機能を有する導電性微粒子含有硬化膜が提供される。 According to the present invention, (1) a conductive fine particle dispersion excellent in storage stability of a dispersion is provided, and (2) a cured film having excellent transparency and an antistatic function is formed on the surface of a substrate. And a photocurable composition containing conductive fine particles that does not corrode metal equipment and coating equipment used in the dispersion treatment process, and (3) excellent transparency obtained from the composition. Further, a cured film containing conductive fine particles having an antistatic function is provided.
 また、本発明により、(1)基材の表面に透明性に優れ且つ高屈折率、帯電防止機能を有する透明導電膜を形成することができ、分散処理過程で使用される金属製機器や塗布機材を腐食させることのない光硬化性透明導電膜形成用組成物、(2)該透明導電膜形成用組成物から得られる透明性に優れ、且つ、高屈折率及び帯電防止機能を有する透明導電膜、(3)該透明導電膜を有するディスプレイ、及び(4)そのような透明導電膜形成用組成物の調製に用いられる保存安定性に優れた分散液が提供される。 In addition, according to the present invention, (1) a transparent conductive film having excellent transparency, a high refractive index, and an antistatic function can be formed on the surface of a substrate, and metal equipment and coating used in the dispersion treatment process. A composition for forming a photocurable transparent conductive film that does not corrode equipment, and (2) a transparent conductive film that is excellent in transparency obtained from the composition for forming a transparent conductive film and that has a high refractive index and an antistatic function. A dispersion having excellent storage stability used for the preparation of a film, (3) a display having the transparent conductive film, and (4) such a composition for forming a transparent conductive film is provided.
 以下に本発明の実施の形態を具体的に説明する。
 本発明の導電性微粒子分散液は、導電性微粒子、金属錯体及び分散媒を含有している。本発明で用いる導電性微粒子の形状については特に限定されない。導電性微粒子の導電性としては体積抵抗率として107Ω・cm以下、好ましくは103Ω・cm以下である。また、導電性微粒子の大きさについては、一次粒子径で、通常、1~500nm、好ましくは10~100nmのものを使用することができる。
Embodiments of the present invention will be specifically described below.
The conductive fine particle dispersion of the present invention contains conductive fine particles, a metal complex, and a dispersion medium. The shape of the conductive fine particles used in the present invention is not particularly limited. The conductive fine particles have a volume resistivity of 10 7 Ω · cm or less, preferably 10 3 Ω · cm or less. Regarding the size of the conductive fine particles, those having a primary particle diameter of usually 1 to 500 nm, preferably 10 to 100 nm can be used.
 また、本発明において、透明導電膜等の特に高屈折率特性が求められる場合には、その導電性微粒子分散液は、屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体及び分散媒を含有しており、水分が3質量%以下である。本発明で用いる高屈折率微粒子及び導電性微粒子の形状については特に限定されない。また、高屈折率微粒子及び導電性微粒子の大きさについては、一次粒子径で、通常、1~500nm、好ましくは10~100nmのものを使用することができる。 In the present invention, when a particularly high refractive index characteristic such as a transparent conductive film is required, the conductive fine particle dispersion is composed of high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, and alkoxide. It contains a metal complex and a dispersion medium that are not included, and has a moisture content of 3% by mass or less. The shape of the high refractive index fine particles and conductive fine particles used in the present invention is not particularly limited. As for the sizes of the high refractive index fine particles and the conductive fine particles, those having a primary particle diameter of usually 1 to 500 nm, preferably 10 to 100 nm can be used.
 本発明で用いる導電性微粒子の種類については目的を達成できるものであれば特に限定されず、市販品等の公知のものを用いることができる。例えば、ITO、ATO、酸化錫、酸化亜鉛、酸化インジウム、アンチモン酸亜鉛、五酸化アンチモン等の金属酸化物やこれら金属酸化物を構成する金属の水酸化物を用いることができる。酸化錫についてはリンなどの元素をドープしたものを用いることもできる。酸化亜鉛についてはガリウムやアルミニウムをドープしたものを用いることもできる。また、金、銀、銅、白金、アルミニウムなどの金属微粒子及び有機導電性微粒子でもよい。これらの導電性微粒子は1種類のみを用いても2種類以上を併用してもよい。 The type of conductive fine particles used in the present invention is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used. For example, metal oxides such as ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate, and antimony pentoxide, and metal hydroxides constituting these metal oxides can be used. As the tin oxide, one doped with an element such as phosphorus can also be used. As for zinc oxide, one doped with gallium or aluminum can also be used. Further, metal fine particles such as gold, silver, copper, platinum, and aluminum and organic conductive fine particles may be used. These conductive fine particles may be used alone or in combination of two or more.
 また、本発明において、透明導電膜等の特に高屈折率特性が求められる用途の導電性微粒子分散液に配合される高屈折率微粒子は、形成される透明導電膜の屈折率を制御するために添加するものであり、屈折率が1.8~3.0の金属酸化物を用いることが好ましい。なお、個々の高屈折率微粒子の屈折率は材料固有の値であり、種々の文献に記載されている。屈折率が1.8未満の高屈折率微粒子を用いた場合には高屈折率の膜が得られず、また、屈折率が3.0を超える高屈折率微粒子を用いた場合には膜の透明性が低下する傾向がある。本発明で用いる高屈折率微粒子の種類については目的を達成できるものであれば特に限定されず、市販品等の公知のものを用いることができる。例えば、酸化ジルコニウム(n=2.2)、酸化チタン(n=2.76)及び酸化セリウム(n=2.2)等を用いることができる。これらの高屈折率微粒子は1種類のみを用いても2種類以上を併用してもよい。 Further, in the present invention, the high refractive index fine particles blended in the conductive fine particle dispersion for applications requiring particularly high refractive index characteristics such as a transparent conductive film is used for controlling the refractive index of the formed transparent conductive film. A metal oxide having a refractive index of 1.8 to 3.0 is preferably used. In addition, the refractive index of each high refractive index fine particle is a value peculiar to material, and is described in various literatures. When a high refractive index fine particle having a refractive index of less than 1.8 is used, a film having a high refractive index cannot be obtained, and when a high refractive index fine particle having a refractive index exceeding 3.0 is used, Transparency tends to decrease. The kind of high refractive index fine particles used in the present invention is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used. For example, zirconium oxide (n = 2.2), titanium oxide (n = 2.76), cerium oxide (n = 2.2), or the like can be used. These high refractive index fine particles may be used alone or in combination of two or more.
 本発明の導電性微粒子分散液おいては、上記の導電性微粒子及び特に高屈折率特性が求められる用途の場合に配合される高屈折率微粒子に加えて、分散媒中に金属錯体が配合される。この金属錯体は、分散液において分散剤として機能するので、分散液の保存安定性に優れた導電性微粒子分散液を得ることができる。また、金属錯体は分散過程で使用される金属製機器や塗布機材を腐食することは殆どない。 In the conductive fine particle dispersion of the present invention, a metal complex is blended in the dispersion medium in addition to the above-mentioned conductive fine particles and particularly the high refractive index fine particles to be blended for applications requiring high refractive index characteristics. The Since this metal complex functions as a dispersant in the dispersion, a conductive fine particle dispersion having excellent storage stability of the dispersion can be obtained. Further, the metal complex hardly corrodes metal equipment and coating equipment used in the dispersion process.
 本発明で用いる金属錯体としては、ジルコニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、バナジウム、アルミニウム、亜鉛、インジウム、錫及び白金からなる群から選ばれる金属、好ましくは分散液の色味が少ない点でジルコニウム、チタン、アルミニウム、亜鉛、インジウム及び錫からなる群から選ばれる金属と、β-ジケトンからなる群から選ばれる配位子、好ましくはピバロイルトリフルオルアセトン、アセチルアセトン、トリフルオルアセチルアセトン及びヘキサフルオルアセチルアセトンからなる群から選ばれる配位子、より好ましくはアルコキシドを含まない金属錯体を挙げることができる。アルコキシドを含む金属錯体を用いた場合には、アルコキシドが溶剤に含まれる水分又は空気中の水分と経時的に反応し、導電性微粒子分散液及び透明導電膜形成用の導電性微粒子含有光硬化性組成物の保存安定性及び膜特性を低下させる傾向がある。 The metal complex used in the present invention is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, preferably the color of the dispersion. Ligands selected from the group consisting of zirconium, titanium, aluminum, zinc, indium and tin and ligands selected from the group consisting of β-diketones, preferably pivaloyl trifluoroacetone, acetylacetone, trifluoro. A ligand selected from the group consisting of ruacetylacetone and hexafluoroacetylacetone, more preferably a metal complex containing no alkoxide. When a metal complex containing an alkoxide is used, the alkoxide reacts with the moisture contained in the solvent or moisture in the air over time, and the conductive fine particle-containing photocurable resin for forming the conductive fine particle dispersion and the transparent conductive film. There is a tendency to reduce the storage stability and film properties of the composition.
 本発明において、透明導電膜等の特に高屈折率特性が求められる用途の場合に配合される金属錯体については、アルコキシドを含まない金属錯体を用いる。アルコキシドを含む金属錯体を用いた場合には、アルコキシドが溶剤に含まれる水分又は空気中の水分と経時的に反応し、導電性微粒子分散液及び透明導電膜形成用の導電性微粒子含有光硬化性組成物の保存安定性及び膜特性を低下させる場合がある。 In the present invention, a metal complex that does not contain an alkoxide is used for a metal complex to be blended in a case where a particularly high refractive index characteristic such as a transparent conductive film is required. When a metal complex containing an alkoxide is used, the alkoxide reacts with the moisture contained in the solvent or moisture in the air over time, and the conductive fine particle-containing photocurable resin for forming the conductive fine particle dispersion and the transparent conductive film. The storage stability and film properties of the composition may be reduced.
 なお、分散液の保存安定性をより向上させる目的で、分散助剤として更に他の分散剤を添加してもよい。そのような分散助剤の種類は、特に限定されないが、そのような分散助剤として、好ましくは、ポリオキシエチレンアルキル構造を有するリン酸エステル系ノニオン型分散剤を挙げることができる。 In addition, for the purpose of further improving the storage stability of the dispersion, another dispersant may be added as a dispersion aid. The kind of the dispersion aid is not particularly limited, but as such a dispersion aid, a phosphate ester nonionic dispersant having a polyoxyethylene alkyl structure can be preferably exemplified.
 本発明で用いる分散媒としては、水、メタノール、エタノール、イソプロパノール、ノルマルブタノール、2-ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類等を挙げることができる。それらの中でも、エタノール、イソプロパノール、ノルマルブタノール、2-ブタノール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、酢酸エチル、酢酸ブチル、トルエン、キシレン、エチルベンゼンが好ましく、メチルエチルケトン、ブタノール、キシレン、エチルベンゼン、トルエンがより好ましい。本発明においては、分散媒として一種単独で用いることも、二種以上を併用することもできる。 Examples of the dispersion medium used in the present invention include alcohols such as water, methanol, ethanol, isopropanol, normal butanol, 2-butanol, and octanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2- Ketones such as pentanone; esters such as ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate; ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; benzene , Aromatic hydrocarbons such as toluene, xylene and ethylbenzene; amides such as dimethylformamide, N, N-dimethylacetoacetamide and N-methylpyrrolidone Etc. Among them, ethanol, isopropanol, normal butanol, 2-butanol, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, ethyl acetate, butyl acetate, toluene, xylene, and ethylbenzene are preferable, and methyl ethyl ketone Butanol, xylene, ethylbenzene, and toluene are more preferable. In the present invention, the dispersion medium may be used alone or in combination of two or more.
 本発明において、透明導電膜等の特に高屈折率特性が求められる用途の場合に配合される分散媒については、導電性微粒子分散液や透明導電膜形成用の導電性微粒子含有光硬化性組成物中に含有される微粒子の粒子径が経時的に大きくなるのを防止するために、含まれる水分量を3質量%以下、好ましくは1質量%以下、より好ましくは0.5質量%以下にする。 In the present invention, the dispersion medium to be blended in the case of applications requiring particularly high refractive index characteristics such as a transparent conductive film, a conductive fine particle-containing photocurable composition for forming a conductive fine particle dispersion or a transparent conductive film. In order to prevent the particle size of the fine particles contained therein from increasing with time, the amount of water contained is 3% by mass or less, preferably 1% by mass or less, more preferably 0.5% by mass or less. .
 本発明の導電性微粒子分散液においては、各成分の配合割合は導電性微粒子分散液の用途に応じて適宜設定できるが、導電性微粒子100質量部当り、金属錯体の含有量は好ましくは2~45質量部、より好ましくは5~20質量部であり、分散媒の含有量は好ましくは40~1000質量部、より好ましくは60~600質量部である。金属錯体の量が上記の下限値より少ない場合には導電性微粒子の分散不良となり、上記の上限値より多い場合には金属錯体が分散媒中に溶解せず、沈殿が生じることがある。また、分散媒の量が上記の下限値より少ない場合には金属錯体の溶解、導電性微粒子の分散が不十分となり、上記の上限値より多い場合には導電性微粒子分散液の濃度が薄すぎて実用的でなくなる。 In the conductive fine particle dispersion of the present invention, the blending ratio of each component can be appropriately set according to the use of the conductive fine particle dispersion, but the metal complex content is preferably 2 to 100 parts by weight of the conductive fine particles. It is 45 parts by mass, more preferably 5 to 20 parts by mass, and the content of the dispersion medium is preferably 40 to 1000 parts by mass, more preferably 60 to 600 parts by mass. When the amount of the metal complex is less than the above lower limit value, the conductive fine particles are poorly dispersed. When the amount is more than the above upper limit value, the metal complex does not dissolve in the dispersion medium and precipitation may occur. Further, when the amount of the dispersion medium is less than the above lower limit value, the dissolution of the metal complex and the dispersion of the conductive fine particles are insufficient, and when the amount is more than the above upper limit value, the concentration of the conductive fine particle dispersion is too thin. Become impractical.
 また、本発明において、透明導電膜等の特に高屈折率特性が求められる用途の導電性微粒子分散液においては、高屈折率微粒子100質量部当り、導電性微粒子の含有量は好ましくは30~900質量部、より好ましくは40~500質量部、金属錯体の含有量は好ましくは3~450質量部、より好ましくは7~200質量部であり、分散媒の含有量は好ましくは60~9000質量部、より好ましくは100~5000質量部である。導電性微粒子の量が上記の下限値より少ない場合には形成される膜の屈折率は高くなるが、導電性が低下する。逆に導電性微粒子の量が上記の上限値より高い場合には形成される膜の導電性は高くなるが屈折率は低下する。また、金属錯体の量が上記の下限値より少ない場合には高屈折率微粒子及び導電性微粒子の分散が不良となり、上記の上限値より多い場合には金属錯体が分散媒中に溶解せず、沈殿が生じることがある。また、分散媒の量が上記の下限値より少ない場合には金属錯体の溶解、高屈折率微粒子及び導電性微粒子の分散が不十分となり、上記の上限値より多い場合には高屈折率微粒子及び導電性微粒子の濃度が薄すぎて実用的でなくなる。 In the present invention, in the conductive fine particle dispersion for applications requiring particularly high refractive index characteristics such as a transparent conductive film, the content of conductive fine particles is preferably 30 to 900 per 100 parts by mass of the high refractive index fine particles. Parts by mass, more preferably 40 to 500 parts by mass, the content of the metal complex is preferably 3 to 450 parts by mass, more preferably 7 to 200 parts by mass, and the content of the dispersion medium is preferably 60 to 9000 parts by mass. More preferably, it is 100 to 5000 parts by mass. When the amount of the conductive fine particles is less than the above lower limit value, the refractive index of the formed film increases, but the conductivity decreases. Conversely, when the amount of conductive fine particles is higher than the above upper limit, the conductivity of the formed film increases, but the refractive index decreases. Further, when the amount of the metal complex is less than the above lower limit value, the dispersion of the high refractive index fine particles and the conductive fine particles becomes poor, and when more than the above upper limit value, the metal complex is not dissolved in the dispersion medium, Precipitation may occur. Further, when the amount of the dispersion medium is less than the above lower limit value, the dissolution of the metal complex, the dispersion of the high refractive index fine particles and the conductive fine particles becomes insufficient, and when the amount is more than the above upper limit value, the high refractive index fine particles and The concentration of the conductive fine particles is too thin to be practical.
 本発明の導電性微粒子分散液は、導電性微粒子、金属錯体及び分散媒、更には特に高屈折率特性が求められる用途の場合に配合される高屈折率微粒子を任意の順序で添加し、充分に混合することにより得られる。普通には、金属錯体を溶解した分散媒中に導電性微粒子や高屈折率微粒子を分散させて製造する。分散操作を行う前にはプレ分散操作を行うとなおよい。プレ分散操作は、金属錯体を溶解した分散媒中に、ディスパー等で撹拌しながら、導電性微粒子や高屈折率微粒子を徐々に加えていき、これら導電性微粒子や高屈折率微粒子の塊が目視で確認されなくなるまでよく撹拌すればよい。また、高屈折率微粒子が配合される場合には、高屈折率微粒子、金属錯体及び分散媒からなる分散液と、導電性微粒子、金属錯体及び分散媒からなる分散液とを予め調製し、次いでこれらの分散液を混合して製造することもできる。 The conductive fine particle dispersion of the present invention can be obtained by adding conductive fine particles, metal complexes and dispersion media, and in particular, high refractive index fine particles to be blended in an arbitrary order for applications requiring high refractive index characteristics. Obtained by mixing. Usually, it is produced by dispersing conductive fine particles and high refractive index fine particles in a dispersion medium in which a metal complex is dissolved. It is even better to perform a pre-dispersion operation before performing the dispersion operation. In the pre-dispersion operation, the conductive fine particles and the high refractive index fine particles are gradually added to the dispersion medium in which the metal complex is dissolved while stirring with a disper or the like. Stir well until no longer confirmed. Further, when the high refractive index fine particles are blended, a dispersion liquid composed of the high refractive index fine particles, the metal complex and the dispersion medium, and a dispersion liquid composed of the conductive fine particles, the metal complex and the dispersion medium are prepared in advance, These dispersions can also be mixed and produced.
 導電性微粒子や高屈折率微粒子の分散操作は、ペイントシェーカー、ボールミル、サンドミル、セントリミル等を用いて行うことができる。分散操作の際に、ガラスビーズ、ジルコニアビーズ等の分散ビーズを用いることが好ましい。ビーズ径は、特に限定されないが、通常0.05~1mm程度であり、好ましくは0.05~0.65mmである。高屈折率微粒子が配合される場合においては、より好ましくは0.08~0.65mmであり、特に好ましくは0.08~0.5mmである。 The dispersion operation of the conductive fine particles and the high refractive index fine particles can be performed using a paint shaker, a ball mill, a sand mill, a sentry mill or the like. In the dispersion operation, it is preferable to use dispersed beads such as glass beads and zirconia beads. The bead diameter is not particularly limited, but is usually about 0.05 to 1 mm, preferably 0.05 to 0.65 mm. When high refractive index fine particles are blended, the thickness is more preferably 0.08 to 0.65 mm, and particularly preferably 0.08 to 0.5 mm.
 本発明の導電性微粒子分散液においては、導電性微粒子や高屈折率微粒子の粒子径は、メジアン径で、好ましくは120nm以下、さらに好ましくは80nm以下である。メジアン径がそれ以上であると、導電性微粒子含有光硬化性組成物から得られる導電性微粒子含有硬化膜のヘイズが高くなる傾向がある。 In the conductive fine particle dispersion of the present invention, the particle diameter of the conductive fine particles and the high refractive index fine particles is a median diameter, preferably 120 nm or less, more preferably 80 nm or less. When the median diameter is larger than that, the haze of the conductive fine particle-containing cured film obtained from the conductive fine particle-containing photocurable composition tends to increase.
 本発明の導電性微粒子分散液は、導電性微粒子や高屈折率微粒子が長期にわたり安定に分散しており、また、金属を腐食させるアセチルアセトン等が含有されていないため、金属製の容器に保管が可能である。 In the conductive fine particle dispersion of the present invention, conductive fine particles and high refractive index fine particles are stably dispersed over a long period of time, and since it does not contain acetylacetone or the like that corrodes metal, it can be stored in a metal container. Is possible.
 本発明の導電性微粒子分散液は、保護膜形成用組成物、反射防止膜形成用組成物、接着剤、シーリング材、バインダー材等に含ませて用いることができ、特に帯電防止機能を有する反射防止膜を形成する組成物に好適に用いることができる。 The conductive fine particle dispersion of the present invention can be used in a protective film-forming composition, an antireflection film-forming composition, an adhesive, a sealing material, a binder material, etc., and in particular, a reflective film having an antistatic function. It can use suitably for the composition which forms a prevention film.
 本発明の導電性微粒子含有光硬化性組成物は、導電性微粒子、金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒を含有しており、導電性微粒子、金属錯体及び分散媒は上記した通りである。
 また、本発明の透明導電膜形成用の導電性微粒子含有光硬化性組成物は、屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒を含有しており、水分が3質量%以下であり、高屈折率微粒子、導電性微粒子及び分散媒は上記した通りである。
The photocurable composition containing conductive fine particles of the present invention contains conductive fine particles, a metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium, and the conductive fine particles, the metal complex, and the dispersion medium. Is as described above.
In addition, the photocurable composition containing conductive fine particles for forming a transparent conductive film of the present invention includes high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, metal complexes not containing alkoxide, active energy ray curing. The high-refractive-index fine particles, the conductive fine particles, and the dispersion medium are as described above.
 更に、本発明の導電性微粒子含有光硬化性組成物には、硬化膜の耐擦傷性、耐摩耗性、低カール性、密着性、透明性、屈折率、耐薬品性、帯電防止性を付与するために、上記導電性微粒子以外の微粒子を用いることができる。微粒子の種類については目的を達成できるものであれば特に限定されず、市販品等の公知のものを用いることができる。例えば、酸化ジルコニウム、酸化チタン、酸化アルミニウム及び酸化ケイ素等の無機微粒子や有機微粒子等を用いることができる。これらの微粒子は1種類のみを用いても2種類以上を併用してもよい。 Furthermore, the conductive fine particle-containing photocurable composition of the present invention imparts scratch resistance, abrasion resistance, low curling properties, adhesion, transparency, refractive index, chemical resistance, and antistatic properties of the cured film. Therefore, fine particles other than the conductive fine particles can be used. The type of fine particles is not particularly limited as long as the object can be achieved, and known products such as commercially available products can be used. For example, inorganic fine particles or organic fine particles such as zirconium oxide, titanium oxide, aluminum oxide, and silicon oxide can be used. These fine particles may be used alone or in combination of two or more.
 本発明で用いる活性エネルギー線硬化性化合物としては、ラジカル重合性モノマー、ラジカル重合性オリゴマー等を挙げることができる。
 ラジカル重合性モノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールポリテトラメチレングリコールモノ(メタ)アクリレート、グリシジル(メタ)アクリレート等の単官能(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、アリルジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、ポリエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールSジ(メタ)アクリレート、ビスフェノールSジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート等の二官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレン変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の三官能以上の(メタ)アクリレート;スチレン、ビニルトルエン、酢酸ビニル、N-ビニルピロリドン、アクリロニトリル、アリルアルコール等のラジカル重合性モノマーを挙げることができる。
Examples of the active energy ray-curable compound used in the present invention include radical polymerizable monomers and radical polymerizable oligomers.
Specific examples of the radical polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofluorine Furyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene Monofunctional (meth) acrylates such as glycol polypropylene glycol mono (meth) acrylate, polyethylene glycol polytetramethylene glycol mono (meth) acrylate, and glycidyl (meth) acrylate Relate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, allyl di (meth) acrylate, bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, polyethylene oxide modified bisphenol A di (meth) acrylate, ethylene oxide modified bisphenol S di (meth) acrylate, bisphenol S di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate Bifunctional (meth) acrylates such as rate; trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethylene modified trimethylolpropane tri (meth) ) Acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and other trifunctional or higher functional (meth) acrylates; styrene, vinyl toluene, vinyl acetate, N-vinyl pyrrolidone, acrylonitrile, allyl alcohol, etc. Mention may be made of radically polymerizable monomers.
 また、ラジカル重合性オリゴマーの具体例としては、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、オリゴ(メタ)アクリレート、アルキド(メタ)アクリレート、ポリオール(メタ)アクリレート、シリコーン(メタ)アクリレートなどの(メタ)アクリロイル基を少なくとも1個有するプレポリマーを挙げることができる。特に好ましいラジカル重合性オリゴマーは、ポリエステル、エポキシ、ポリウレタンの各(メタ)アクリレートである。本発明において活性エネルギー線硬化性化合物は一種単独で用いることも、二種以上を併用することもできる。 Specific examples of the radical polymerizable oligomer include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, oligo (meth) acrylate, alkyd (meth) acrylate, polyol Examples thereof include prepolymers having at least one (meth) acryloyl group such as (meth) acrylate and silicone (meth) acrylate. Particularly preferred radical polymerizable oligomers are (meth) acrylates of polyester, epoxy, and polyurethane. In this invention, an active energy ray hardening compound can be used individually by 1 type, or can also use 2 or more types together.
 本発明の導電性微粒子含有光硬化性組成物においては、光重合開始剤(光増感剤)を含有するので、少量の活性エネルギー線の照射で導電性微粒子含有光硬化性組成物を硬化させることができる。 Since the photocurable composition containing conductive fine particles of the present invention contains a photopolymerization initiator (photosensitizer), the photocurable composition containing conductive fine particles is cured by irradiation with a small amount of active energy rays. be able to.
 本発明で用いる光重合開始剤(光増感剤)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン、ベンジルジメチルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、p-クロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルサルファイド、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン-1を挙げることができる。光重合開始剤は一種単独で用いることも、二種以上を併用することもできる。 Examples of the photopolymerization initiator (photosensitizer) used in the present invention include 1-hydroxycyclohexyl phenyl ketone, benzophenone, benzyl dimethyl ketone, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, 4-benzoyl-4 2-methyldiphenyl sulfide, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1 Can be mentioned. A photoinitiator can be used individually by 1 type, or can also use 2 or more types together.
 本発明の導電性微粒子含有光硬化性組成物においては、各成分の配合割合は導電性微粒子含有光硬化性組成物の用途に応じて適宜設定できるが、導電性微粒子100質量部当り、金属錯体の含有量は好ましくは2~45質量部、より好ましくは5~20質量部であり、分散媒の含有量は好ましくは40~1000質量部、より好ましくは60~600質量部であり、活性エネルギー線硬化性化合物の含有量は好ましくは10~1000質量部、より好ましくは25~150質量部であり、且つ活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量は好ましくは0.1~20質量部、より好ましくは1~15質量部である。 In the photocurable composition containing conductive fine particles of the present invention, the blending ratio of each component can be appropriately set according to the use of the photocurable composition containing conductive fine particles, but the metal complex per 100 parts by mass of the conductive fine particles. The content of is preferably 2 to 45 parts by mass, more preferably 5 to 20 parts by mass, the content of the dispersion medium is preferably 40 to 1000 parts by mass, more preferably 60 to 600 parts by mass, and the active energy The content of the linear curable compound is preferably 10 to 1000 parts by mass, more preferably 25 to 150 parts by mass, and the content of the photopolymerization initiator per 100 parts by mass of the active energy ray curable compound is preferably 0.00. 1 to 20 parts by mass, more preferably 1 to 15 parts by mass.
 ここで、金属錯体の量が上記の下限値より少ない場合には導電性微粒子の分散不良となる傾向があり、上記の上限値より多い場合には金属錯体が分散媒中に溶解せず、沈殿が生じることがある。分散媒の量が上記の下限値より少ない場合には金属錯体の溶解、導電性微粒子の分散が不十分となる傾向があり、上記の上限値より多い場合には導電性微粒子分散液の濃度が薄すぎて導電性微粒子の添加効果が不十分となる傾向がある。活性エネルギー線硬化性化合物の量が上記の下限値より少ない場合には硬化膜の屈折率が高くなるが透明性が低下する傾向があり、上記の上限値より多い場合には硬化膜の屈折率が所望程度には高くならない。また、光重合開始剤の量が上記の下限値より少ない場合には光硬化性組成物の硬化速度が低下する傾向があり、上記の上限値よりも多くてもそれに見合った効果が得られない。 Here, when the amount of the metal complex is less than the above lower limit value, the conductive fine particles tend to be poorly dispersed, and when the amount is more than the above upper limit value, the metal complex does not dissolve in the dispersion medium and precipitates. May occur. When the amount of the dispersion medium is less than the above lower limit value, the metal complex tends to be dissolved and the dispersion of the conductive fine particles tends to be insufficient. When the amount of the dispersion medium is more than the above upper limit value, the concentration of the conductive fine particle dispersion is low. There exists a tendency for the addition effect of electroconductive fine particles to become inadequate and to become inadequate. When the amount of the active energy ray-curable compound is less than the above lower limit value, the refractive index of the cured film increases, but the transparency tends to decrease, and when it exceeds the above upper limit value, the refractive index of the cured film. Is not as high as desired. In addition, when the amount of the photopolymerization initiator is less than the above lower limit value, the curing rate of the photocurable composition tends to decrease, and even if the amount exceeds the above upper limit value, an effect commensurate with it cannot be obtained. .
 また、透明導電膜形成用の導電性微粒子含有光硬化性組成物においては、高屈折率微粒子100質量部当り、導電性微粒子の含有量は好ましくは30~900質量部、より好ましくは40~500質量部、金属錯体の含有量は好ましくは3~450質量部、より好ましくは7~200質量部であり、分散媒の含有量は好ましくは60~70000質量部、より好ましくは100~50000質量部であり、活性エネルギー線硬化性化合物の含有量は好ましくは14~10000質量部、より好ましくは35~2000質量部であり、且つ活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量は好ましくは0.1~20質量部、より好ましくは1~15質量部である。 In the photocurable composition containing conductive fine particles for forming a transparent conductive film, the content of conductive fine particles is preferably 30 to 900 parts by mass, more preferably 40 to 500 parts per 100 parts by mass of the high refractive index fine particles. The content of the mass part and the metal complex is preferably 3 to 450 parts by mass, more preferably 7 to 200 parts by mass, and the content of the dispersion medium is preferably 60 to 70000 parts by mass, more preferably 100 to 50000 parts by mass. The content of the active energy ray-curable compound is preferably 14 to 10,000 parts by mass, more preferably 35 to 2000 parts by mass, and the content of the photopolymerization initiator per 100 parts by mass of the active energy ray-curable compound Is preferably 0.1 to 20 parts by mass, more preferably 1 to 15 parts by mass.
 この透明導電膜形成用の導電性微粒子含有光硬化性組成物において、導電性微粒子の量が上記の下限値より少ない場合には形成される膜の屈折率は高くなるが、導電性が低下する。逆に導電性微粒子の量が上記の上限値より高い場合には形成される膜の導電性は高くなるが屈折率は低下する。金属錯体の量が上記の下限値より少ない場合には高屈折率微粒子及び導電性微粒子の分散が不良となる傾向があり、上記の上限値より多い場合には金属錯体が分散媒中に溶解せず、沈殿が生じることがある。分散媒の量が上記の下限値より少ない場合には金属錯体の溶解、高屈折率微粒子及び導電性微粒子の分散が不十分となる傾向があり、上記の上限値より多い場合には光硬化性組成物の濃度が薄すぎて実用的でなくなる。活性エネルギー線硬化性化合物の量が上記の下限値より少ない場合には透明導電膜の屈折率が高くなるが透明性が低下する傾向があり、上記の上限値より多い場合には透明導電膜の屈折率が所望程度には高くならず、帯電防止機能も不十分となる。また、光重合開始剤の量が上記の下限値より少ない場合には光硬化性組成物の硬化速度が低下する傾向があり、上記の上限値よりも多くてもそれに見合った効果が得られない。 In this photocurable composition containing conductive fine particles for forming a transparent conductive film, when the amount of conductive fine particles is less than the above lower limit value, the refractive index of the formed film increases, but the conductivity decreases. . Conversely, when the amount of conductive fine particles is higher than the above upper limit, the conductivity of the formed film increases, but the refractive index decreases. When the amount of the metal complex is less than the above lower limit value, the dispersion of the high refractive index fine particles and the conductive fine particles tends to be poor, and when the amount is more than the above upper limit value, the metal complex is dissolved in the dispersion medium. And precipitation may occur. If the amount of the dispersion medium is less than the above lower limit, dissolution of the metal complex, and dispersion of the high refractive index fine particles and conductive fine particles tend to be insufficient. The concentration of the composition is too low to be practical. When the amount of the active energy ray-curable compound is less than the above lower limit value, the refractive index of the transparent conductive film increases, but the transparency tends to decrease. The refractive index is not as high as desired, and the antistatic function is insufficient. In addition, when the amount of the photopolymerization initiator is less than the above lower limit value, the curing rate of the photocurable composition tends to decrease, and even if the amount exceeds the above upper limit value, an effect commensurate with it cannot be obtained. .
 更に、本発明の導電性微粒子含有光硬化性組成物には、その目的を損なわない範囲内で、上記以外の慣用の各種添加剤を配合してもよい。このような添加剤として、重合禁止剤、硬化触媒、酸化防止剤、レベリング剤、カップリング剤等を挙げることができる。 Furthermore, the conductive fine particle-containing photocurable composition of the present invention may be blended with various conventional additives other than those described above within a range not impairing the purpose. Examples of such additives include a polymerization inhibitor, a curing catalyst, an antioxidant, a leveling agent, and a coupling agent.
 本発明の導電性微粒子含有光硬化性組成物は、プラスチック(ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ポリエチレンテレフタレート、ABS樹脂、AS樹脂、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等の各種基材の表面に塗布又は印刷し、硬化させて膜を形成することができ、例えば、プラスチック光学部品、タッチパネル、フィルム型液晶素子、プラスチック容器、建築内装材としての床材、壁材、人工大理石等の傷付き(擦傷)防止や汚染防止のための保護コーティング材;フィルム型液晶素子、タッチパネル、プラスチック光学部品等の反射防止膜;各種基材の接着剤、シーリング材;印刷インクのバインダー材等に用いられ、特に帯電防止機能を有する反射防止膜を形成する組成物に好適に用いることができる。また、高屈折率微粒子が配合された導電性微粒子含有光硬化性組成物の場合には、特に高屈折率の透明導電膜の形成に好適に用いることができる。 The photocurable composition containing conductive fine particles of the present invention is a plastic (polycarbonate, polymethylmethacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetylcellulose resin, polyethylene terephthalate, ABS resin, AS resin, norbornene series. Resin, etc.), metal, wood, paper, glass, slate, etc. can be applied or printed on the surface of the substrate and cured to form a film. For example, plastic optical parts, touch panels, film-type liquid crystal elements, Protective coating material to prevent scratches and scratches on plastic containers, flooring materials as building interior materials, wall materials, artificial marble, etc .; anti-reflection coatings for film-type liquid crystal elements, touch panels, plastic optical components, etc .; Adhesives and sealing materials for various substrates; printing Used binder materials such links, can be suitably used particularly composition for forming an antireflection film having an antistatic function. In addition, in the case of a photocurable composition containing conductive fine particles in which high refractive index fine particles are blended, it can be suitably used particularly for forming a transparent conductive film having a high refractive index.
 基材への導電性微粒子含有光硬化性組成物の塗布又は印刷は、常法に従って、例えば、ロールコート、スピンコート、スクリーン印刷などの手法で行うことができる。必要により加熱して分散媒(溶媒)を蒸発させ、塗膜を乾燥させ、次いで、活性エネルギー線(紫外線又は電子線)を照射する。活性エネルギー線源としては、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、エキシマレーザー、色素レーザーなどの紫外線源、ならびに電子線加速装置を使用することができる。活性エネルギー線の照射量は、紫外線の場合には50~3000mJ/cm2、電子線の場合には0.2~1000μC/cm2の範囲内が適当である。この活性エネルギー線の照射により、上記活性エネルギー線硬化性化合物が重合し、導電性微粒子が樹脂で結合された膜が形成される。この膜の膜厚は一般的に0.1~10.0μmの範囲内であることが好ましい。 Application | coating or printing of the electroconductive fine particle containing photocurable composition to a base material can be performed by methods, such as roll coating, spin coating, and screen printing, according to a conventional method. If necessary, the dispersion medium (solvent) is evaporated by heating, the coating film is dried, and then irradiated with active energy rays (ultraviolet rays or electron beams). As the active energy ray source, an ultraviolet ray source such as a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, an excimer laser, or a dye laser, and an electron beam accelerator can be used. The dose of the active energy ray, when the ultraviolet rays 50 ~ 3000mJ / cm 2, when the electron beam is suitably in the range of 0.2 ~ 1000μC / cm 2. By irradiation with this active energy ray, the active energy ray-curable compound is polymerized to form a film in which conductive fine particles are bonded with a resin. In general, the thickness of this film is preferably in the range of 0.1 to 10.0 μm.
 本発明の導電性微粒子分散液で調製した導電性微粒子含有光硬化性組成物を硬化させて得られる本発明の導電性微粒子含有硬化膜は、導電性微粒子が硬化膜内で均一に分散していて、屈折率の制御が可能で、透明性が高く、ヘイズが低く、具体的には屈折率が1.45~1.90であり、光透過率が75%以上であり、ヘイズが2.0%以下であり、且つ表面抵抗値が1012Ω/□以下である。 The conductive fine particle-containing cured film of the present invention obtained by curing the conductive fine particle-containing photocurable composition prepared with the conductive fine particle dispersion of the present invention has conductive fine particles uniformly dispersed in the cured film. Thus, the refractive index can be controlled, the transparency is high, and the haze is low. Specifically, the refractive index is 1.45 to 1.90, the light transmittance is 75% or more, and the haze is 2. 0% or less and a surface resistance value of 10 12 Ω / □ or less.
 また、本発明において、高屈折率特性が求められる透明導電膜形成用の導電性微粒子含有組成物を硬化させて得られる本発明の透明導電膜は、高屈折率微粒子及び導電性微粒子が透明導電膜内で均一に分散していて、屈折率の制御が可能でしかも屈折率が高く、透明性が高く、ヘイズが低く、具体的には屈折率が1.55~1.90であり、光透過率が85%以上であり、ヘイズが1.5%以下、且つ表面抵抗値が1012Ω/□以下である。である。屈折率を制御するためには高屈折率微粒子及び導電性微粒子の量と活性エネルギー線硬化性化合物の量との比率を調整すればよい。透明導電膜は、導電性反射防止材やディスプレイの表示面等に用いることができる。 Further, in the present invention, the transparent conductive film of the present invention obtained by curing a conductive fine particle-containing composition for forming a transparent conductive film, which requires high refractive index characteristics, has high refractive index fine particles and conductive fine particles that are transparent conductive. The film is uniformly dispersed in the film, the refractive index can be controlled, and the refractive index is high, the transparency is high, the haze is low, specifically, the refractive index is 1.55 to 1.90. The transmittance is 85% or more, the haze is 1.5% or less, and the surface resistance value is 10 12 Ω / □ or less. It is. In order to control the refractive index, the ratio of the amount of the high refractive index fine particles and conductive fine particles to the amount of the active energy ray-curable compound may be adjusted. The transparent conductive film can be used for a conductive antireflection material, a display surface of a display, or the like.
 以下に、実施例及び比較例により本発明を具体的に説明する。なお、実施例及び比較例において「部」は全て「質量部」である。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In Examples and Comparative Examples, “parts” are all “parts by mass”.
[実施例1~5及び比較例1~2]
 実施例1~5及び比較例1~2で使用した成分は以下の通りである。
[Examples 1 to 5 and Comparative Examples 1 and 2]
The components used in Examples 1 to 5 and Comparative Examples 1 and 2 are as follows.
<導電性微粒子>
 ATO(屈折率2.0、体積抵抗率10Ω・cm、一次粒子径0.05μm)
 ITO(屈折率2.0、体積抵抗率0.02Ω・cm、一次粒子径0.04μm)
 酸化錫(屈折率2.0、体積抵抗率100Ω・cm、一次粒子径0.06μm)
 酸化亜鉛(屈折率1.95、体積抵抗率100Ω・cm、一次粒子径0.06μm)
<Conductive fine particles>
ATO (refractive index 2.0, volume resistivity 10Ω · cm, primary particle diameter 0.05μm)
ITO (refractive index 2.0, volume resistivity 0.02Ω · cm, primary particle diameter 0.04μm)
Tin oxide (refractive index 2.0, volume resistivity 100Ω · cm, primary particle size 0.06μm)
Zinc oxide (refractive index 1.95, volume resistivity 100Ω · cm, primary particle size 0.06μm)
<無機微粒子>
 酸化アルミニウム(屈折率1.76、一次粒子径0.04μm)
<Inorganic fine particles>
Aluminum oxide (refractive index 1.76, primary particle size 0.04 μm)
<金属錯体>
 ジルコニウムアセチルアセトナート〔Zr(C5H7O2)4
 チタンアセチルアセトナート〔Ti(C5H7O2)4
 亜鉛アセチルアセトナート〔Zn(C5H7O2)2
 ジブチル-錫ビスアセチルアセトナート〔(C4H9)2Sn(C5H7O2)2
<Metal complex>
Zirconium acetylacetonate (Zr (C 5 H 7 O 2 ) 4 )
Titanium acetylacetonate (Ti (C 5 H 7 O 2 ) 4 )
Zinc acetylacetonate (Zn (C 5 H 7 O 2 ) 2 )
Dibutyl-tin bisacetylacetonate ((C 4 H 9 ) 2 Sn (C 5 H 7 O 2 ) 2 )
<分散助剤>
 ビックケミージャパン(株)製、BYK-142
<Dispersing aid>
BYK-142, manufactured by Big Chemie Japan
<活性エネルギー線硬化性化合物>
 日本化薬(株)製、KAYARAD DPHA
<Active energy ray-curable compound>
Nippon Kayaku Co., Ltd., KAYARAD DPHA
<光重合開始剤>
 チバ・スペシャリティ・ケミカルズ(株)製、IRGACURE 184
<Photopolymerization initiator>
IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.
<キレート剤>
 ダイセル化学工業(株)製、アセチルアセトン
<Chelating agent>
Daicel Chemical Industries, Ltd., Acetylacetone
[実施例1]
 酸化錫100部に対し、20部のジルコニウムアセチルアセトナート、250部のメチルエチルケトン及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に43部のDPHA、2部のIRGACURE 184及び65部のメチルエチルケトンを加えて光硬化性組成物を得た。バーコーターを用いてこの光硬化性組成物を膜厚100μmのPETフィルム(東洋紡(株)製 A4100)上に塗布し、有機溶媒を蒸発させた後、空気下で高圧水銀灯を用いて300mJ/cm2の光を照射し、厚み3μmの透明導電膜を作製した。膜の作製は光硬化性組成物直後及び6ヵ月後に行った。
[Example 1]
All components were put into a container in an amount of 20 parts of zirconium acetylacetonate, 250 parts of methyl ethyl ketone and 400 parts of glass beads with respect to 100 parts of tin oxide, and kneaded with a paint shaker for 3 hours. After kneading, the glass beads were removed to obtain a dispersion. 43 parts of DPHA, 2 parts of IRGACURE 184 and 65 parts of methyl ethyl ketone were added to this dispersion to obtain a photocurable composition. This photocurable composition was applied onto a 100 μm-thick PET film (A4100 manufactured by Toyobo Co., Ltd.) using a bar coater, the organic solvent was evaporated, and then 300 mJ / cm using a high-pressure mercury lamp under air. A transparent conductive film having a thickness of 3 μm was produced by irradiating the light of No. 2 . The film was prepared immediately after and 6 months after the photocurable composition.
[実施例2]
 ATO100部に対し、10部のチタンアセチルアセトナート、10部のBYK-142、250部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に43部のDPHA、2部のIRGACURE 184及び65部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例1と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 2]
Add 100 parts of ATO to 10 parts of titanium acetylacetonate, 10 parts of BYK-142, 250 parts of 2-butanol and 400 parts of glass beads in a container and knead for 3 hours in a paint shaker. did. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 1.
[実施例3]
 ATO100部に対し、10部のジブチル-錫ビスアセチルアセトナート、250部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に43部のDPHA、2部のIRGACURE 184及び65部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例1と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 3]
All components in 10 parts of ATO, 10 parts dibutyl-tin bisacetylacetonate, 250 parts 2-butanol and 400 parts glass beads were placed in a container and kneaded for 3 hours with a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 1.
[実施例4]
 ATO50部に対し50部のITO、10部のジブチル-錫ビスアセチルアセトナート、250部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に43部のDPHA、2部のIRGACURE 184及び65部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例1と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 4]
Put all ingredients in a container in an amount of 50 parts ITO, 10 parts dibutyl-tin bisacetylacetonate, 250 parts 2-butanol and 400 parts glass beads for 50 parts of ATO and knead for 3 hours in a paint shaker. did. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2 parts IRGACURE 184 and 65 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 1.
[実施例5]
 ITO60部に対し、40部の酸化アルミニウム、25部のジブチル-錫ビスアセチルアセトナート、250部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に67部のDPHA、6.7部のIRGACURE 184及び170部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例1と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 5]
Put all ingredients in a container in 60 parts of ITO, 40 parts of aluminum oxide, 25 parts of dibutyl-tin bisacetylacetonate, 250 parts of 2-butanol and 400 parts of glass beads, 3 hours in a paint shaker Kneaded. After kneading, the glass beads were removed to obtain a dispersion. 67 parts DPHA, 6.7 parts IRGACURE 184 and 170 parts 2-butanol were added to this dispersion to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 1.
[比較例1]
 酸化錫100部に対し、20部のBYK-142、250部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで3時間練合した。練合中に分散液が増粘した。
[Comparative Example 1]
All components were put into a container in an amount of 20 parts BYK-142, 250 parts 2-butanol and 400 parts glass beads to 100 parts of tin oxide, and kneaded for 3 hours in a paint shaker. The dispersion thickened during kneading.
[比較例2]
 20部のチタンアセチルアセトナートの代わりに20部のアセチルアセトンを添加した以外は実施例2と同様の処理により、厚み3μmの透明導電膜を作製した。
[Comparative Example 2]
A transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 2 except that 20 parts of acetylacetone was added instead of 20 parts of titanium acetylacetonate.
<評価方法>
(1)無機微粒子のメジアン径
 実施例及び比較例で作製した分散液及び光硬化組成物に分散している無
機微粒子のメジアン径を、日機装(株)製 Microtrac粒度分布計を用いて、作製直後、3ヶ月後(40℃保管)、6ヶ月後(40℃保管)に、以下の条件で測定した。
<Evaluation method>
(1) Median diameter of inorganic fine particles The median diameter of inorganic fine particles dispersed in the dispersions and photocured compositions prepared in Examples and Comparative Examples was measured immediately using a Microtrac particle size distribution meter manufactured by Nikkiso Co., Ltd. After 3 months (40 ° C storage) and 6 months (40 ° C storage), the measurement was performed under the following conditions.
(2)透明導電膜の透過率、ヘイズ
 実施例及び比較例で得た透明導電膜について、透過率及びヘイズを日本電色工業(株)製NDH 5000で測定した。測定値は基材を含んだ値である。
(2) Transmittance and Haze of Transparent Conductive Film About the transparent conductive film obtained in Examples and Comparative Examples, the transmittance and haze were measured with NDH 5000 manufactured by Nippon Denshoku Industries Co., Ltd. The measured value is a value including the base material.
(3)表面抵抗値
 実施例及び比較例で得た透明導電膜について、三菱化学株式会社製のハイレスタIP MCP-HT260で測定した。
(3) Surface resistance value About the transparent conductive film obtained by the Example and the comparative example, it measured by Hiresta IP MCP-HT260 by Mitsubishi Chemical Corporation.
(4)屈折率
 実施例及び比較例で得た透明導電膜について、(株)アタゴ製アッべ屈折計DRM4(20℃)で測定した。
(4) Refractive index About the transparent conductive film obtained by the Example and the comparative example, it measured by Abago KK Abbe refractometer DRM4 (20 degreeC).
(5)金属製容器の腐食
 実施例及び比較例で作製した分散液をステンレス容器(SUS304;Fe-Cr-Ni系ステンレス鋼製)に入れ、1ヶ月間静置した後のステンレス容器の腐食の状態を目視にて評価した。
(5) Corrosion of metal containers Corrosion of stainless steel containers after placing the dispersions prepared in Examples and Comparative Examples in stainless steel containers (SUS304; made of Fe-Cr-Ni stainless steel) for 1 month The state was evaluated visually.
 上記の各々の測定の結果、評価の結果を各々の組成物の組成と共に第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 
The results of the above measurements and the results of the evaluation are shown in Table 1 together with the composition of each composition.
Figure JPOXMLDOC01-appb-T000001
 第1表に示すデータから明らかなように、金属錯体を含有した場合(実施例1~5)では、分散助剤の有無に関わらず、優れた保存安定性を有する分散液が得られ、金属製容器に保管した場合でも金属製容器に腐食は確認されなかった。さらに、実施例1~5で得られた分散液を用いた光硬化性組成物を塗布して得られた透明導電膜は屈折率が1.45~1.90、透過率が75%以上、ヘイズ2.0%以下、表面抵抗値が1012Ω/□以下という、帯電防止機能、高透明性を有し且つ導電性に優れていた。金属錯体を添加しなかった場合(比較例1)には、分散が困難で均一な分散液を得ることができなかった。また、アセチルアセトンを添加して分散させた分散液(比較例2)を金属製容器に保存した場合に、容器の腐食が顕著に認められた。 As is apparent from the data shown in Table 1, when a metal complex was contained (Examples 1 to 5), a dispersion having excellent storage stability was obtained regardless of the presence or absence of a dispersion aid. No corrosion was observed on the metal container even when stored in the container. Furthermore, the transparent conductive film obtained by applying the photocurable composition using the dispersion obtained in Examples 1 to 5 has a refractive index of 1.45 to 1.90, a transmittance of 75% or more, The haze was 2.0% or less, the surface resistance value was 10 12 Ω / □ or less, the antistatic function, high transparency, and excellent conductivity. When the metal complex was not added (Comparative Example 1), it was difficult to disperse and a uniform dispersion could not be obtained. Moreover, when the dispersion liquid (Comparative Example 2) in which acetylacetone was added and dispersed was stored in a metal container, the corrosion of the container was noticeable.
 以下に、実施例及び参考例により、本発明の高屈折率特性が求められる用途の導電性微粒子分散液、透明導電膜形成用の導電性微粒子含有組成物、及び透明導電膜を具体的に説明する。なお、実施例及び参考例において「部」は全て「質量部」である。 Hereinafter, the conductive fine particle dispersion, the conductive fine particle-containing composition for forming a transparent conductive film, and the transparent conductive film will be specifically described with reference to Examples and Reference Examples for applications in which the high refractive index characteristics of the present invention are required. To do. In Examples and Reference Examples, “parts” are all “parts by mass”.
[実施例6~11及び参考例1~6]
 実施例6~11及び参考例1~6で使用した成分は以下の通りである。
[Examples 6 to 11 and Reference Examples 1 to 6]
The components used in Examples 6 to 11 and Reference Examples 1 to 6 are as follows.
<高屈折率微粒子>
 酸化ジルコニウム(屈折率2.2、一次粒子径0.02μm)
 酸化チタン(屈折率2.76、一次粒子径0.02μm)
<High refractive index fine particles>
Zirconium oxide (refractive index 2.2, primary particle size 0.02μm)
Titanium oxide (refractive index 2.76, primary particle diameter 0.02μm)
<導電性微粒子>
 ATO(屈折率2.0、体積抵抗率10Ω・cm、一次粒子径0.06μm)
 酸化錫(屈折率2.0、体積抵抗率100Ω・cm、一次粒子径0.06μm)
 酸化亜鉛(屈折率1.95、体積抵抗率100Ω・cm、一次粒子径0.06μm)
<Conductive fine particles>
ATO (refractive index 2.0, volume resistivity 10Ω · cm, primary particle size 0.06μm)
Tin oxide (refractive index 2.0, volume resistivity 100Ω · cm, primary particle size 0.06μm)
Zinc oxide (refractive index 1.95, volume resistivity 100Ω · cm, primary particle size 0.06μm)
<金属錯体>
 ジルコニウムアセチルアセトナート〔Zr(C5H7O2)4
 チタンアセチルアセトナート〔Ti(C5H7O2)4
 アルミニウムアセチルアセトナート〔Al(C5H7O2)3
 亜鉛アセチルアセトナート〔Zn(C5H7O2)2
 インジウムアセチルアセトナート〔In(C5H7O2)3
 ジブチル-錫ビスアセチルアセトナート〔(C4H9)2Sn(C5H7O2)2
 トリブトキシ-ジルコニウムモノアセチルアセトナート〔(C4H9O)3Zr(C5H7O2)〕
<Metal complex>
Zirconium acetylacetonate (Zr (C 5 H 7 O 2 ) 4 )
Titanium acetylacetonate (Ti (C 5 H 7 O 2 ) 4 )
Aluminum acetylacetonate (Al (C 5 H 7 O 2 ) 3 )
Zinc acetylacetonate (Zn (C 5 H 7 O 2 ) 2 )
Indium acetylacetonate (In (C 5 H 7 O 2 ) 3 )
Dibutyl-tin bisacetylacetonate [(C 4 H 9 ) 2 Sn (C 5 H 7 O 2 ) 2 ]
Tributoxy-zirconium monoacetylacetonate ((C 4 H 9 O) 3 Zr (C 5 H 7 O 2 ))
<分散助剤>
 ビックケミージャパン(株)製、BYK-142
<Dispersing aid>
BYK-142, manufactured by Big Chemie Japan
<活性エネルギー線硬化性化合物>
 日本化薬(株)製、KAYARAD DPHA
<Active energy ray-curable compound>
Nippon Kayaku Co., Ltd., KAYARAD DPHA
<光重合開始剤>
 チバ・スペシャリティ・ケミカルズ(株)製、IRGACURE 184
<Photopolymerization initiator>
IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.
<キレート剤>
 ダイセル化学工業(株)製、アセチルアセトン
<Chelating agent>
Daicel Chemical Industries, Ltd., Acetylacetone
[実施例6]
 酸化ジルコニウム100部に対し、100部の酸化錫、40部のジルコニウムアセチルアセトナート、500部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に86部のDPHA、4.3部のIRGACURE 184及び130部の2-ブタノールを加えて光硬化性組成物を得た。ロールコーターを用いてこの光硬化性組成物を膜厚100μmのPETフィルム(東洋紡(株)製A4100)上に塗布し、有機溶媒を蒸発させた後、空気下で高圧水銀灯を用いて300mJ/cm2の光を照射し、厚み3μmの透明導電膜を作製した。膜の作製は光硬化性組成物直後及び6ヵ月後に行った。
[Example 6]
Add 100 parts of zirconium oxide to 100 parts of tin oxide, 40 parts of zirconium acetylacetonate, 500 parts of 2-butanol and 800 parts of glass beads in a container and knead in a paint shaker for 7 hours. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 86 parts DPHA, 4.3 parts IRGACURE 184 and 130 parts 2-butanol to obtain a photocurable composition. This photocurable composition was applied onto a 100 μm-thick PET film (A4100 manufactured by Toyobo Co., Ltd.) using a roll coater, the organic solvent was evaporated, and then 300 mJ / cm using a high-pressure mercury lamp under air. A transparent conductive film having a thickness of 3 μm was produced by irradiating the light of No. 2 . The film was prepared immediately after and 6 months after the photocurable composition.
[実施例7]
 酸化チタン100部に対し、43部のATO、6部のチタンアセチルアセトナート、14.3部のBYK-142、500部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に143部のDPHA、7.2部のIRGACURE 184及び160部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例6と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 7]
In 100 parts of titanium oxide, all components in containers in amounts of 43 parts ATO, 6 parts titanium acetylacetonate, 14.3 parts BYK-142, 500 parts 2-butanol and 800 parts glass beads. And kneaded for 7 hours in a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 143 parts DPHA, 7.2 parts IRGACURE 184 and 160 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
[実施例8]
 酸化ジルコニウム100部に対し、233部の酸化錫、33部のアルミニウムアセチルアセトナート、880部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に143部のDPHA、7.2部のIRGACURE 184及び160部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例6と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 8]
Add 100 parts of zirconium oxide to 233 parts of tin oxide, 33 parts of aluminum acetylacetonate, 880 parts of 2-butanol and 800 parts of glass beads in a container and mix for 7 hours in a paint shaker. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 143 parts DPHA, 7.2 parts IRGACURE 184 and 160 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
[実施例9]
 酸化チタン100部に対し、100部の酸化亜鉛、20部の亜鉛アセチルアセトナート、500部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に86部のDPHA、4.3部のIRGACURE 184及び130部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例6と同様の方法により、厚み3μmの透明導電膜を作製した。
[Example 9]
100 parts of titanium oxide, 100 parts of zinc oxide, 20 parts of zinc acetylacetonate, 500 parts of 2-butanol, and 800 parts of glass beads are placed in a container and mixed for 7 hours in a paint shaker. Combined. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion was added 86 parts DPHA, 4.3 parts IRGACURE 184 and 130 parts 2-butanol to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
[実施例10]
 20部の亜鉛アセチルアセトナートの代わりに20部のジブチル-錫ビスアセチルアセトナートを添加した以外は実施例9と同様の処理により、厚み3μmの透明導電膜を作製した。
[Example 10]
A transparent conductive film having a thickness of 3 μm was prepared in the same manner as in Example 9 except that 20 parts of dibutyl-tin bisacetylacetonate was added instead of 20 parts of zinc acetylacetonate.
[実施例11]
 20部の亜鉛アセチルアセトナートの代わりに20部のインジウムアセチルアセトナートを添加した以外は実施例9と同様の処理により、厚み3μmの透明導電膜を作製した。
[Example 11]
A transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 9, except that 20 parts of indium acetylacetonate was added instead of 20 parts of zinc acetylacetonate.
[参考例1]
 酸化ジルコニウム100部に対し、100部の酸化錫、20部のBYK-142、600部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合中に分散液が増粘した。
[Reference Example 1]
Add 100 parts of zirconium oxide to 100 parts of tin oxide, 20 parts of BYK-142, 600 parts of 2-butanol and 800 parts of glass beads in a container and knead for 7 hours in a paint shaker. did. The dispersion thickened during kneading.
[参考例2]
 6部のチタンアセチルアセトナートの代わりに6部のアセチルアセトンを添加した以外は実施例7と同様の処理により、厚み3μmの透明導電膜を作製した。
[Reference Example 2]
A transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 7 except that 6 parts of acetylacetone was added instead of 6 parts of titanium acetylacetonate.
[参考例3]
 100部の酸化錫、10部のチタンアセチルアセトナート、600部の2-ブタノール及び800部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に150部のDPHA、5部のIRGACURE 184及び100部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例6と同様の方法により、厚み3μmの透明導電膜を作製した。
[Reference Example 3]
All components were placed in a container in amounts of 100 parts tin oxide, 10 parts titanium acetylacetonate, 600 parts 2-butanol and 800 parts glass beads and kneaded for 7 hours in a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. 150 parts of DPHA, 5 parts of IRGACURE 184 and 100 parts of 2-butanol were added to this dispersion to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
[参考例4]
 100部の酸化ジルコニウム、10部のジルコニウムアセチルアセトナート、270部の2-ブタノール及び400部のガラスビーズとなる量で全成分を容器に入れ、ペイントシェーカーで7時間練合した。練合後、ガラスビーズを取り除いて分散液を得た。この分散液に43部のDPHA、2.2部のIRGACURE 184及び60部の2-ブタノールを加えて光硬化性組成物を得た。その後、実施例6と同様の方法により、厚み3μmの透明導電膜を作製した。
[Reference Example 4]
All ingredients were placed in a container in amounts of 100 parts zirconium oxide, 10 parts zirconium acetylacetonate, 270 parts 2-butanol and 400 parts glass beads and kneaded for 7 hours in a paint shaker. After kneading, the glass beads were removed to obtain a dispersion. To this dispersion, 43 parts DPHA, 2.2 parts IRGACURE 184 and 60 parts 2-butanol were added to obtain a photocurable composition. Thereafter, a transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
[参考例5]
40部のジルコニウムアセチルアセトナートの代わりに40部のトリブトキシ-ジルコニウムモノアセチルアセトナートを添加した以外は実施例6と同様の処理により、厚み3μmの透明導電膜を作製した。
[Reference Example 5]
A transparent conductive film having a thickness of 3 μm was prepared in the same manner as in Example 6 except that 40 parts of tributoxy-zirconium monoacetylacetonate was added instead of 40 parts of zirconium acetylacetonate.
[参考例6]
40部のジルコニウムアセチルアセトナートの代わりに40部のトリブトキシ-ジルコニウムモノアセチルアセトナートを添加し、500部の2-ブタノールの代わりに90部の水と410部の2-ブタノールを添加した以外は実施例6と同様の処理により、厚み3μmの透明導電膜を作製した。
[Reference Example 6]
Implemented except that 40 parts of tributoxy-zirconium monoacetylacetonate were added instead of 40 parts of zirconium acetylacetonate, and 90 parts of water and 410 parts of 2-butanol were added instead of 500 parts of 2-butanol. A transparent conductive film having a thickness of 3 μm was produced in the same manner as in Example 6.
<評価方法>
 また、無機微粒子及び高屈折率微粒子のメジアン径、透明導電膜の透過率、ヘイズ、表面抵抗値、屈折率及び、金属製容器の腐食は実施例1~6と同様に行った。
<Evaluation method>
The median diameter of the inorganic fine particles and high refractive index fine particles, the transmittance of the transparent conductive film, the haze, the surface resistance value, the refractive index, and the corrosion of the metal container were performed in the same manner as in Examples 1 to 6.
 上記の各々の測定の結果、評価の結果を各々の組成物の組成と共に表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
The results of the above measurements and the results of the evaluation are shown in Table 2 together with the composition of each composition.
Figure JPOXMLDOC01-appb-T000002
 表2に示すデータから明らかなように、金属錯体を含有した場合(実施例6~11)では、分散助剤の有無に関わらず、優れた保存安定性を有する分散液が得られ、金属製容器に保管した場合でも金属製容器に腐食は確認されなかった。さらに、実施例6~11で得られた分散液を用いた光硬化性組成物を塗布して得られた透明導電膜は屈折率が1.55~1.90、透過率が85%以上、ヘイズ1.5%以下、表面抵抗値が1012Ω/□以下という、高屈折率、高透明性を有し且つ導電性に優れていた。金属錯体を添加しなかった場合(参考例1)には、分散が困難で均一な分散液を得ることができなかった。また、アセチルアセトンを添加して分散させた分散液(参考例2)を金属製容器に保存した場合に、容器の腐食が顕著に認められた。高屈折率微粒子を添加しなかった場合(参考例3)は高屈折率、高透明性及び導電性をすべて満足する膜を得ることができなかった。導電性微粒子を添加しなかった場合(参考例4)には膜の導電性は認められなかった。金属錯体としてアルコキシドが含まれる場合(参考例5及び6)には経時的に粒子径が大きくなり、膜特性も大きく変化した。また、水が多く含まれる場合(参考例6)には顕著に粒子径の増大が認められた。 As is apparent from the data shown in Table 2, when a metal complex was contained (Examples 6 to 11), a dispersion having excellent storage stability was obtained regardless of the presence or absence of a dispersion aid. Even when stored in a container, no corrosion was observed in the metal container. Furthermore, the transparent conductive film obtained by applying the photocurable composition using the dispersion obtained in Examples 6 to 11 has a refractive index of 1.55 to 1.90, a transmittance of 85% or more, The haze was 1.5% or less, the surface resistance value was 10 12 Ω / □ or less, high refractive index, high transparency, and excellent conductivity. When the metal complex was not added (Reference Example 1), it was difficult to disperse and a uniform dispersion could not be obtained. Moreover, when the dispersion liquid (reference example 2) which added and disperse | distributed acetylacetone was preserve | saved at metal containers, the corrosion of the container was recognized notably. When the high refractive index fine particles were not added (Reference Example 3), a film satisfying all of the high refractive index, high transparency and conductivity could not be obtained. When the conductive fine particles were not added (Reference Example 4), the conductivity of the film was not recognized. When an alkoxide was included as a metal complex (Reference Examples 5 and 6), the particle size increased with time, and the film characteristics changed significantly. Further, when a large amount of water was contained (Reference Example 6), a marked increase in the particle size was observed.

Claims (32)

  1.  導電性微粒子、金属錯体及び分散媒からなることを特徴とする導電性微粒子分散液。 Conductive fine particle dispersion comprising conductive fine particles, a metal complex and a dispersion medium.
  2.  前記金属錯体がアルコキシドを含まないことを特徴とする請求項1に記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein the metal complex does not contain an alkoxide.
  3.  導電性微粒子100質量部当り、金属錯体の含有量が2~45質量部であり、分散媒の含有量が40~1000質量部であることを特徴とする請求項1又は2に記載の導電性微粒子分散液。 3. The conductive material according to claim 1, wherein the content of the metal complex is 2 to 45 parts by mass and the content of the dispersion medium is 40 to 1000 parts by mass per 100 parts by mass of the conductive fine particles. Fine particle dispersion.
  4.  導電性微粒子がITO、ATO、酸化錫、酸化亜鉛、酸化インジウム、アンチモン酸亜鉛及び五酸化アンチモンよりなる群から選ばれる少なくとも1種類の金属酸化物であることを特徴とする請求項1~3のいずれかに記載の分散液。 The conductive fine particles are at least one metal oxide selected from the group consisting of ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate, and antimony pentoxide. A dispersion according to any one of the above.
  5.  金属錯体が、ジルコニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、バナジウム、アルミニウム、亜鉛、インジウム、錫及び白金からなる群から選ばれる金属と、β-ジケトンからなる群から選ばれる配位子とからなることを特徴とする請求項1~4のいずれかに記載の導電性微粒子分散液。 The metal complex is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, and a compound selected from the group consisting of β-diketones. The conductive fine particle dispersion according to any one of claims 1 to 4, which comprises a ligand.
  6.  金属錯体が、ジルコニウム、チタン、アルミニウム、亜鉛、インジウム及び錫からなる群から選ばれる金属と、ピバロイルトリフルオルアセトン、アセチルアセトン、トリフルオルアセチルアセトン及びヘキサフルオルアセチルアセトンからなる群から選ばれる配位子とからなることを特徴とする請求項1~5のいずれかに記載の導電性微粒子分散液。 A metal complex selected from the group consisting of zirconium, titanium, aluminum, zinc, indium and tin, and a ligand selected from the group consisting of pivaloyltrifluoroacetone, acetylacetone, trifluoroacetylacetone and hexafluoroacetylacetone The conductive fine particle dispersion according to any one of claims 1 to 5, which comprises:
  7.  導電性微粒子、金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒からなることを特徴とする導電性微粒子含有光硬化性組成物。 Conductive fine particle-containing photocurable composition comprising conductive fine particles, a metal complex, an active energy ray-curable compound, a photopolymerization initiator, and a dispersion medium.
  8.  前記金属錯体がアルコキシドを含まないことを特徴とする請求項7に記載の導電性微粒子含有光硬化性組成物。 The photocurable composition containing conductive fine particles according to claim 7, wherein the metal complex does not contain an alkoxide.
  9.  導電性微粒子100質量部当り、金属錯体の含有量が2~45質量部であり、分散媒の含有量が40~1000質量部であり、活性エネルギー線硬化性化合物の含有量が10~1000質量部であり、且つ活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量が0.1~20質量部であることを特徴とする請求項7又は8に記載の導電性微粒子含有光硬化性組成物。 The content of the metal complex is 2 to 45 parts by mass, the content of the dispersion medium is 40 to 1000 parts by mass, and the content of the active energy ray-curable compound is 10 to 1000 parts by mass per 100 parts by mass of the conductive fine particles. The conductive fine particle-containing light according to claim 7 or 8, wherein the content of the photopolymerization initiator is 0.1 to 20 parts by mass per 100 parts by mass of the active energy ray-curable compound. Curable composition.
  10.  導電性微粒子が、ITO、ATO、酸化錫、酸化亜鉛、酸化インジウム、アンチモン酸亜鉛及び五酸化アンチモンよりなる群から選ばれる少なくとも1種類の金属酸化物であることを特徴とする請求項7~9のいずれかに記載の導電性微粒子含有光硬化性組成物。 The conductive fine particles are at least one metal oxide selected from the group consisting of ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate, and antimony pentoxide. The photocurable composition containing conductive fine particles according to any one of the above.
  11.  金属錯体が、ジルコニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、バナジウム、アルミニウム、亜鉛、インジウム、錫及び白金からなる群から選ばれる金属と、β-ジケトンからなる群から選ばれる配位子とからなることを特徴とする請求項7~10のいずれかに記載の導電性微粒子含有光硬化性組成物。 The metal complex is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, and a compound selected from the group consisting of β-diketones. The photocurable composition containing conductive fine particles according to any one of claims 7 to 10, wherein the photocurable composition comprises a ligand.
  12.  金属錯体が、ジルコニウム、チタン、アルミニウム、亜鉛、インジウム及び錫からなる群から選ばれる金属と、ピバロイルトリフルオルアセトン、アセチルアセトン、トリフルオルアセチルアセトン及びヘキサフルオルアセチルアセトンからなる群から選ばれる配位子とからなることを特徴とする請求項7~11のいずれかに記載の導電性微粒子含有光硬化性組成物。 A metal complex selected from the group consisting of zirconium, titanium, aluminum, zinc, indium and tin, and a ligand selected from the group consisting of pivaloyltrifluoroacetone, acetylacetone, trifluoroacetylacetone and hexafluoroacetylacetone The photocurable composition containing conductive fine particles according to any one of claims 7 to 11, wherein
  13.  請求項7~12のいずれかに記載の導電性微粒子含有光硬化性組成物を基材上に塗布又は印刷し、硬化させて得られるものであることを特徴とする導電性微粒子含有硬化膜。 A conductive fine particle-containing cured film obtained by coating or printing the conductive fine particle-containing photocurable composition according to any one of claims 7 to 12 on a substrate and curing the composition.
  14.  屈折率が1.45~1.90であり、光透過率が75%以上であり、ヘイズが2.0%以下であり、且つ表面抵抗値が1012Ω/□以下であることを特徴とする請求項13に記載の導電性微粒子含有硬化膜。 The refractive index is 1.45 to 1.90, the light transmittance is 75% or more, the haze is 2.0% or less, and the surface resistance value is 10 12 Ω / □ or less. The conductive fine particle-containing cured film according to claim 13.
  15.  透明樹脂基材に請求項13又は14記載の透明導電膜を有することを特徴とする導電性反射防止材。 A conductive antireflection material comprising the transparent conductive film according to claim 13 or 14 on a transparent resin substrate.
  16.  表示面に請求項13又は14に記載の導電性微粒子含有硬化膜を有することを特徴とするディスプレイ。 A display having the conductive fine particle-containing cured film according to claim 13 or 14 on a display surface.
  17.  屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体及び分散媒からなり、水分が3質量%以下であることを特徴とする導電性微粒子分散液。 A conductive fine particle dispersion liquid comprising high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, a metal complex not containing an alkoxide, and a dispersion medium, and having a water content of 3% by mass or less.
  18.  高屈折率微粒子100質量部当たり、導電性微粒子の含有量が30~900質量部、金属錯体の含有量が3~450質量部及び分散媒の含有量が60~9000質量部であることを特徴とする請求項17に記載の導電性微粒子分散液。 The conductive fine particle content is 30 to 900 parts by mass, the metal complex content is 3 to 450 parts by mass, and the dispersion medium content is 60 to 9000 parts by mass per 100 parts by mass of the high refractive index fine particles. The conductive fine particle dispersion according to claim 17.
  19.  高屈折率微粒子が、酸化ジルコニウム、酸化チタン及び酸化セリウムよりなる群から選ばれる少なくとも1種類の金属酸化物であることを特徴とする請求項17又は18に記載の導電性微粒子分散液。 The conductive fine particle dispersion according to claim 17 or 18, wherein the high refractive index fine particles are at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide and cerium oxide.
  20.  導電性微粒子が、ITO、ATO、酸化錫、酸化亜鉛、酸化インジウム、アンチモン酸亜鉛及び五酸化アンチモンよりなる群から選ばれる少なくとも1種類の金属酸化物であることを特徴とする請求項17~19のいずれかに記載の導電性微粒子分散液。 The conductive fine particles are at least one metal oxide selected from the group consisting of ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate and antimony pentoxide. The conductive fine particle dispersion according to any one of the above.
  21.  金属錯体が、ジルコニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、バナジウム、アルミニウム、亜鉛、インジウム、錫及び白金からなる群から選ばれる金属と、β-ジケトンからなる群から選ばれる配位子とからなることを特徴とする請求項17~20のいずれかに記載の導電性微粒子分散液。 The metal complex is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, and a compound selected from the group consisting of β-diketones. The conductive fine particle dispersion according to any one of claims 17 to 20, which comprises a ligand.
  22.  金属錯体が、ジルコニウム、チタン、アルミニウム、亜鉛、インジウム及び錫からなる群から選ばれる金属と、ピバロイルトリフルオルアセトン、アセチルアセトン、トリフルオルアセチルアセトン及びヘキサフルオルアセチルアセトンからなる群から選ばれる配位子とからなることを特徴とする請求項17~21のいずれかに記載の導電性微粒子分散液。 A metal complex selected from the group consisting of zirconium, titanium, aluminum, zinc, indium and tin, and a ligand selected from the group consisting of pivaloyltrifluoroacetone, acetylacetone, trifluoroacetylacetone and hexafluoroacetylacetone The conductive fine particle dispersion according to any one of claims 17 to 21, which comprises:
  23.  屈折率が1.8以上の高屈折率微粒子、導電性微粒子、アルコキシドを含まない金属錯体、活性エネルギー線硬化性化合物、光重合開始剤及び分散媒からなり、水分が3質量%以下であることを特徴とする透明導電膜形成用の導電性微粒子含有光硬化性組成物。 It consists of high refractive index fine particles having a refractive index of 1.8 or more, conductive fine particles, a metal complex not containing an alkoxide, an active energy ray-curable compound, a photopolymerization initiator and a dispersion medium, and moisture is 3% by mass or less. A photocurable composition containing conductive fine particles for forming a transparent conductive film.
  24.  高屈折率微粒子100質量部当たり、導電性微粒子の含有量が30~900質量部、金属錯体の含有量が3~450質量部、分散媒の含有量が60~70000質量部及び活性エネルギー線硬化性化合物の含有量が14~10000質量部であり、且つ該活性エネルギー線硬化性化合物100質量部当り光重合開始剤の含有量が0.1~20質量部であることを特徴とする請求項23に記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物。 Active energy ray curing with a conductive fine particle content of 30 to 900 parts by weight, a metal complex content of 3 to 450 parts by weight, and a dispersion medium content of 60 to 70000 parts by weight per 100 parts by weight of high refractive index fine particles The content of the active compound is 14 to 10,000 parts by mass, and the content of the photopolymerization initiator is 0.1 to 20 parts by mass per 100 parts by mass of the active energy ray-curable compound. 24. A photocurable composition containing conductive fine particles for forming a transparent conductive film according to 23.
  25.  高屈折率微粒子が、酸化ジルコニウム、酸化チタン及び酸化セリウムよりなる群から選ばれる少なくとも1種類の金属酸化物であることを特徴とする請求項23又は24に記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物。 The conductive material for forming a transparent conductive film according to claim 23 or 24, wherein the high refractive index fine particles are at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide and cerium oxide. A photocurable composition containing fine particles.
  26.  導電性微粒子が、ITO、ATO、酸化錫、酸化亜鉛、酸化インジウム、アンチモン酸亜鉛、五酸化アンチモンよりなる群から選ばれる少なくとも1種類以上の金属酸化物であることを特徴とする請求項23~25のいずれかに記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物。 The conductive fine particles are at least one metal oxide selected from the group consisting of ITO, ATO, tin oxide, zinc oxide, indium oxide, zinc antimonate, and antimony pentoxide. 25. A photocurable composition containing conductive fine particles for forming a transparent conductive film according to any one of 25.
  27.  金属錯体が、ジルコニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、バナジウム、アルミニウム、亜鉛、インジウム、錫及び白金からなる群から選ばれる金属と、β-ジケトンからなる群から選ばれる配位子とからなることを特徴とする請求項23~26のいずれかに記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物。 The metal complex is a metal selected from the group consisting of zirconium, titanium, chromium, manganese, iron, cobalt, nickel, copper, vanadium, aluminum, zinc, indium, tin and platinum, and a compound selected from the group consisting of β-diketones. The photocurable composition containing conductive fine particles for forming a transparent conductive film according to any one of claims 23 to 26, comprising a ligand.
  28.  金属錯体が、ジルコニウム、チタン、アルミニウム、亜鉛、インジウム及び錫からなる群から選ばれる金属と、ピバロイルトリフルオルアセトン、アセチルアセトン、トリフルオルアセチルアセトン及びヘキサフルオルアセチルアセトンからなる群から選ばれる配位子とからなることを特徴とする請求項23~27のいずれかに記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物。 A metal complex selected from the group consisting of zirconium, titanium, aluminum, zinc, indium and tin, and a ligand selected from the group consisting of pivaloyltrifluoroacetone, acetylacetone, trifluoroacetylacetone and hexafluoroacetylacetone The photocurable composition containing conductive fine particles for forming a transparent conductive film according to any one of claims 23 to 27, comprising:
  29.  請求項23~28のいずれかに記載の透明導電膜形成用の導電性微粒子含有光硬化性組成物を基材上に塗布又は印刷し、硬化させて得られるものであることを特徴とする透明導電膜。 29. A transparent film obtained by coating or printing a conductive fine particle-containing photocurable composition for forming a transparent conductive film according to any one of claims 23 to 28 on a substrate and curing the composition. Conductive film.
  30.  屈折率が1.55~1.90であり、光透過率が85%以上であり、ヘイズが1.5%以下であり、且つ表面抵抗値が1012Ω/□以下であることを特徴とする請求項29に記載の透明導電膜。 The refractive index is 1.55 to 1.90, the light transmittance is 85% or more, the haze is 1.5% or less, and the surface resistance value is 10 12 Ω / □ or less. The transparent conductive film according to claim 29.
  31.  透明樹脂基材に請求項29又は30記載の透明導電膜を有することを特徴とする導電性反射防止材。 A conductive antireflection material comprising the transparent conductive film according to claim 29 or 30 on a transparent resin substrate.
  32.  表示面に請求項29又は30記載の透明導電膜を有することを特徴とするディスプレイ。 A display comprising the transparent conductive film according to claim 29 or 30 on a display surface.
PCT/JP2010/065919 2009-09-18 2010-09-15 Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and cured film containing electrically conductive microparticles WO2011034079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080036039.9A CN102473475B (en) 2009-09-18 2010-09-15 Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and article
KR1020127009864A KR101752221B1 (en) 2009-09-18 2010-09-15 Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and cured film containing electrically conductive microparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-217991 2009-09-18
JP2009217991A JP4995878B2 (en) 2009-09-18 2009-09-18 Transparent conductive film forming dispersion, transparent conductive film forming photocurable composition, and transparent conductive film

Publications (1)

Publication Number Publication Date
WO2011034079A1 true WO2011034079A1 (en) 2011-03-24

Family

ID=43758680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065919 WO2011034079A1 (en) 2009-09-18 2010-09-15 Electrically conductive microparticle dispersion, photocurable composition containing electrically conductive microparticles, and cured film containing electrically conductive microparticles

Country Status (5)

Country Link
JP (1) JP4995878B2 (en)
KR (1) KR101752221B1 (en)
CN (1) CN102473475B (en)
TW (1) TWI529225B (en)
WO (1) WO2011034079A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027084A (en) * 2014-07-04 2016-02-18 富士フイルム株式会社 Curable composition, method for producing cured film, cured film, touch panel, and display device
JP2016027154A (en) * 2014-07-04 2016-02-18 富士フイルム株式会社 Curable composition, method for producing cured film, cured film, touch panel, and display device
US20220251397A1 (en) * 2014-09-26 2022-08-11 The Boeing Company Compositions and coatings with non-chrome corrosion inhibitor particles

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908287B2 (en) * 2012-01-24 2016-04-26 日立マクセル株式会社 Composition for forming transparent conductive film and transparent conductive film
CN103360854A (en) * 2012-03-28 2013-10-23 厦门纳诺泰克科技有限公司 High-transparency low-radiation energy-saving combined material for glass and preparation method thereof
FR2993999B1 (en) * 2012-07-27 2014-09-12 Nanomade Concept METHOD FOR MANUFACTURING A TRANSPARENT TOUCH SURFACE AND TOUCH SURFACE OBTAINED BY SUCH A METHOD
WO2015056445A1 (en) * 2013-10-16 2015-04-23 日立化成株式会社 Laminate containig conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel
US9587132B2 (en) * 2014-03-20 2017-03-07 E I Du Pont De Nemours And Company Thermoformable polymer thick film transparent conductor and its use in capacitive switch circuits
JP6436487B2 (en) * 2014-12-29 2018-12-12 小林 博 Manufacturing method for manufacturing transparent conductive film
WO2019049609A1 (en) * 2017-09-05 2019-03-14 富士フイルム株式会社 Curable composition, cured product, and lens unit
CN113861729B (en) * 2021-10-14 2022-12-09 新纶新能源材料(常州)有限公司 High-corrosion-resistance environment-friendly coating and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308118A (en) * 1997-05-08 1998-11-17 Tdk Corp Conductive paste, ceramic structure using the same and manufacture of the structure
JP2001139847A (en) * 1999-11-12 2001-05-22 Dainippon Toryo Co Ltd Active energy ray-curable coating composition
JP2008010236A (en) * 2006-06-28 2008-01-17 Kyocera Corp Transparent conductive film and forming method therefor, photoelectric transfer device, and photovoltaic generator device
WO2008068915A1 (en) * 2006-12-01 2008-06-12 Dai Nippon Toryo Co., Ltd. Zirconium oxide particle dispersion liquid, zirconium oxide particle-containing photohardening composition, and hardened film
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
JP2009135098A (en) * 2007-10-31 2009-06-18 Sumitomo Metal Mining Co Ltd Coating liquid for translucent conductive film formation, and translucent conductive film
JP2009224071A (en) * 2008-03-13 2009-10-01 Hitachi Maxell Ltd Ink for transparent conductive film formation and transparent conductive film
JP2009230938A (en) * 2008-03-19 2009-10-08 Dainippon Toryo Co Ltd Dispersion solution, composition for formation of transparent conductive film, the transparent conductive film, and display
WO2009131104A1 (en) * 2008-04-21 2009-10-29 大日本塗料株式会社 Composition for transparent film formation and layered transparent film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519012C (en) * 2003-09-12 2009-07-29 独立行政法人产业技术综合研究所 Metal nano particle dispersion liquid capable of being sprayed in fine particle form and being applied in laminated state
JP4620634B2 (en) * 2006-06-06 2011-01-26 株式会社パワーシステム Electrode member for non-aqueous electronic parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308118A (en) * 1997-05-08 1998-11-17 Tdk Corp Conductive paste, ceramic structure using the same and manufacture of the structure
JP2001139847A (en) * 1999-11-12 2001-05-22 Dainippon Toryo Co Ltd Active energy ray-curable coating composition
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
JP2008010236A (en) * 2006-06-28 2008-01-17 Kyocera Corp Transparent conductive film and forming method therefor, photoelectric transfer device, and photovoltaic generator device
WO2008068915A1 (en) * 2006-12-01 2008-06-12 Dai Nippon Toryo Co., Ltd. Zirconium oxide particle dispersion liquid, zirconium oxide particle-containing photohardening composition, and hardened film
JP2009135098A (en) * 2007-10-31 2009-06-18 Sumitomo Metal Mining Co Ltd Coating liquid for translucent conductive film formation, and translucent conductive film
JP2009224071A (en) * 2008-03-13 2009-10-01 Hitachi Maxell Ltd Ink for transparent conductive film formation and transparent conductive film
JP2009230938A (en) * 2008-03-19 2009-10-08 Dainippon Toryo Co Ltd Dispersion solution, composition for formation of transparent conductive film, the transparent conductive film, and display
WO2009131104A1 (en) * 2008-04-21 2009-10-29 大日本塗料株式会社 Composition for transparent film formation and layered transparent film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027084A (en) * 2014-07-04 2016-02-18 富士フイルム株式会社 Curable composition, method for producing cured film, cured film, touch panel, and display device
JP2016027154A (en) * 2014-07-04 2016-02-18 富士フイルム株式会社 Curable composition, method for producing cured film, cured film, touch panel, and display device
US20220251397A1 (en) * 2014-09-26 2022-08-11 The Boeing Company Compositions and coatings with non-chrome corrosion inhibitor particles

Also Published As

Publication number Publication date
JP4995878B2 (en) 2012-08-08
KR20120087921A (en) 2012-08-07
JP2011065966A (en) 2011-03-31
TW201124490A (en) 2011-07-16
TWI529225B (en) 2016-04-11
KR101752221B1 (en) 2017-06-29
CN102473475A (en) 2012-05-23
CN102473475B (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5077950B2 (en) Dispersion, transparent conductive film forming composition, transparent conductive film and display
JP4995878B2 (en) Transparent conductive film forming dispersion, transparent conductive film forming photocurable composition, and transparent conductive film
JP4817254B2 (en) Zirconium oxide particle dispersion, photocurable composition containing zirconium oxide particles, and cured film
JP5598892B2 (en) Laminated transparent film
JP5060781B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JP6019056B2 (en) SUBSTRATE WITH LAMINATED COATING AND COATING COMPOSITION FOR FORMING PRIMER LAYER FOR FORMING THE LAMINATED COATING
JP5564535B2 (en) Composition for forming transparent conductive film, transparent conductive film and antireflection film
JP5837292B2 (en) Composition for forming transparent conductive film, transparent conductive film, and antireflection film
JP5419064B2 (en) Laminated transparent film
JP4958142B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JP4958144B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JP5957034B2 (en) Method for forming transparent conductive film
JP4373998B2 (en) Composition for forming transparent conductive film, transparent conductive film and display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036039.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127009864

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10817192

Country of ref document: EP

Kind code of ref document: A1