WO2011033739A1 - Heat-curable resin composition - Google Patents

Heat-curable resin composition Download PDF

Info

Publication number
WO2011033739A1
WO2011033739A1 PCT/JP2010/005492 JP2010005492W WO2011033739A1 WO 2011033739 A1 WO2011033739 A1 WO 2011033739A1 JP 2010005492 W JP2010005492 W JP 2010005492W WO 2011033739 A1 WO2011033739 A1 WO 2011033739A1
Authority
WO
WIPO (PCT)
Prior art keywords
talc
manufactured
thermosetting resin
resin composition
silica
Prior art date
Application number
PCT/JP2010/005492
Other languages
French (fr)
Japanese (ja)
Inventor
小川 勇太
晋一朗 福田
邑田 勝人
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to CN201080039365.5A priority Critical patent/CN102482501B/en
Priority to KR1020127005605A priority patent/KR101380103B1/en
Publication of WO2011033739A1 publication Critical patent/WO2011033739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a thermosetting resin composition and a dry film.
  • thermosetting resin used for the insulating layer of the circuit board is set to the linear expansion coefficient (17 ppm / ° C. based on the copper foil) of other materials used for the circuit board.
  • linear expansion coefficient it is required to reduce the linear expansion coefficient in a wide temperature range from the glass transition temperature to room temperature by expanding the use of the semiconductor package substrate and improving the performance.
  • a cured product of a conventional thermosetting resin has a high linear expansion coefficient of about 45 to 65 ppm / ° C. in a region close to the glass transition temperature, and tends to increase the linear expansion coefficient.
  • the semi-additive method has become the mainstream for circuit formation, and the formation of conductor layers by plating has become essential, improving the adhesion strength of conductor plating layers. Is required.
  • the insulating layer of the circuit board is required to have mechanical strength (elongation) in order to alleviate problems caused by the difference in expansion that occurs.
  • the dry film used to form the insulating layer of the circuit board prevents damage caused by various mechanical and thermal shocks to the semiconductor package substrate during manufacturing. desired.
  • Patent Document 1 discloses a technique for reducing the linear expansion coefficient without using a large amount of an inorganic filler by using a layered silicate compound having an exchangeable metal cation between crystals.
  • this method has a problem that the elongation rate is lowered and the adhesion strength of the conductor plating layer is greatly reduced.
  • Patent Document 2 discloses a technique of reducing the linear expansion coefficient by filling a thermosetting resin composition with spherical silica. However, since this method contains a large amount of spherical silica, the dry film-like composition before curing becomes brittle and there is a risk that handling properties may be reduced.
  • the present invention can improve the handleability and adhesion (laminate) of the dry film, and can reduce the linear expansion coefficient of a cured product (insulating layer) produced using this dry film. It aims at providing the thermosetting resin composition which was excellent also in adhesiveness and conductor plating adhesiveness (conductor plating peel strength).
  • the inventors of the present invention include a layered silicate compound having an exchangeable metal cation between crystals in a thermosetting resin composition according to Patent Document 1.
  • the effect of reducing the coefficient of linear expansion compared to silica is large, but the mechanical strength (elongation rate) of the coating film and the adhesion strength of the conductor plating layer are not improved, but talc is used for the layered silicate compound.
  • talc is used for the layered silicate compound.
  • thermosetting resin composition with spherical silica according to Patent Document 2
  • the dry film-like composition before curing becomes brittle and the handling property is lowered, while the use of silica and talc is found to improve the handling property, and the present invention has been completed.
  • thermosetting resin composition comprising a thermosetting resin, a phenolic curing agent, amorphous silica and talc.
  • the thermosetting resin composition according to (1) wherein the total amount of the amorphous silica and talc is 35 to 70% by mass in the nonvolatile content of the composition.
  • (6) The dry film as described in (5), wherein the linear expansion coefficient of the cured product at a curing temperature of 25 to 150 ° C. is 17 to 30 ppm / ° C.
  • thermosetting resin composition of the present invention by using amorphous silica and talc in combination with the thermosetting resin, it is possible to improve dry film handling and adhesion (laminate), The linear expansion coefficient of the cured product (insulating layer) of the thermosetting resin composition can be reduced, and the elongation rate, adhesion, and conductor plating adhesion (conductor plating peel strength) can be excellent.
  • the resin composition of the present invention contains a thermosetting resin, a phenol-based curing agent, amorphous silica, and talc.
  • thermosetting resin is not particularly limited as long as it is capable of curing reaction with the thermosetting resin itself and the thermosetting resin and its curing agent by heating.
  • a compound having at least two or more epoxy groups in the molecule is more preferable.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, and heterocyclic ring Containing epoxy resin By hydrogenating all or part of the aromatics in these skeletons, it is possible to use those having improved transparency and reduced viscosity.
  • An episulfide resin in which the oxygen atom of the epoxy group is replaced with a sulfur atom can also be used.
  • thermosetting resin it is preferable to use a bisphenol S type epoxy resin or an epoxy resin having a naphthalene skeleton, from the viewpoint of reducing the linear expansion coefficient.
  • one type of thermosetting resin may be used, or two or more types of thermosetting resins may be used.
  • Examples of commercially available polyfunctional epoxy compounds include jER828, jER834, jER1001, and jER1004 manufactured by Mitsubishi Chemical Corporation, Epicron 840, Epicron 850, Epicron 1050, and Epicron 2055 manufactured by DIC Corporation, and Epototo YD-011 manufactured by Nippon Steel Chemical Co., Ltd. Epototo YD-013, Epototo YD-127, Epototo YD-128, D.C. E. R. 317, D.E. E. R. 331, D.D. E. R. 661, D.D. E. R.
  • Bisphenol A type epoxy resin such as 664 (all trade names); jERYL903 manufactured by Mitsubishi Chemical Corporation, Epicron 152, Epicron 165 manufactured by DIC Corporation, Epotot YDB-400, Epototo YDB-500 manufactured by Nippon Steel Chemical Co., Ltd., Dow D. made by Chemical Co. E. R. 542, Araldide 8011 manufactured by Ciba Japan, Sumiepoxy ESB-400, Sumiepoxy ESB-700 manufactured by Sumitomo Chemical Co., Ltd. E. R. 711, A.I. E. R. Brominated epoxy resins such as 714 (both trade names); jER152 and jER154 manufactured by Mitsubishi Chemical Corporation, and D.C. E. R.
  • ECN-235, A.I. E. R. Novolak type epoxy resins such as ECN-299 (both trade names); Epicron 830 manufactured by DIC, jER807 manufactured by Mitsubishi Chemical, Epototo YDF-170, Epototo YDF-175, Epototo YDF-, manufactured by Nippon Steel Chemical Co., Ltd. 2004, bisphenol F type epoxy resin such as Araldide XPY306 manufactured by Ciba Japan Co., Ltd. (all trade names); Epototo ST-2004, Epototo ST-2007, Epototo ST-3000 manufactured by Nippon Steel Chemical Co., Ltd.
  • glycidylamine type Poxy resin Hydantoin type epoxy resin such as Araldide CY-350 (trade name) manufactured by Ciba Japan; Celoxide 2021 manufactured by Daicel Chemical Industries, Araldide CY-175, Araldide CY-179 manufactured by Ciba Japan All are trade names) cycloaliphatic epoxy resins; YL-933 manufactured by Mitsubishi Chemical Corporation, T.W. manufactured by Dow Chemical Co., Ltd. E. N. Trihydroxyphenylmethane type epoxy resins such as EPPN-501 and EPPN-502 manufactured by Nippon Kayaku Co., Ltd. (all trade names); YL-6056, YL-6121, YX-4000 manufactured by Mitsubishi Chemical Co., Ltd.
  • Tetraphenylol ethane type epoxy resin Araldide PT810 made by Ciba Japan, Japan Heterocyclic epoxy resins such as TEPIC made by Kagaku Kogyo Co., Ltd. (both trade names); diglycidyl phthalate resins such as Bremer DGT made by NOF Corporation; ZX-1063 made by Nippon Steel Chemical Co., Ltd. Tetraglycidylxylenoylethane resin such as ESN-175, ESN-355, ESN-375 manufactured by Nippon Steel Chemical Co., Ltd., HP-4032, HP-5000, EXA-4700, EXA-4710 manufactured by DIC , EXA-7311, EXA-9900, etc.
  • epoxy resins can be used alone or in combination of two or more.
  • episulfide resin etc. which substituted the oxygen atom of the epoxy group of the said epoxy resin by the sulfur atom, etc. can be used.
  • the curing agent for the thermosetting resin used in the thermosetting resin composition of the present invention is a phenolic curing agent.
  • a phenolic curing agent containing a phenolic hydroxyl group as an epoxy resin curing agent, the linear expansion coefficient is reduced, and handling properties and laminating properties are excellent.
  • phenolic curing agents examples include phenol, o-cresol, p-cresol, bisphenol A, bisphenol F, bisphenol S, bisphenol, and naphthalenediol.
  • phenol novolak resins, o-cresol novolak resins, m-cresol novolak resins, and naphthalene skeleton-containing phenol resins, which are polycondensates of these phenols and aldehydes may be mentioned.
  • the triazine ring containing novolak resin which is a polycondensate of these phenols, aldehydes, and the compound which has a triazine ring is mentioned.
  • a phenolic curing agent having a softening point temperature of 120 ° C. or higher is preferably used.
  • the ring and ball method is generally used for the softening point temperature measurement. When it has the said value, reduction of the linear expansion coefficient in a wide temperature range can be aimed at by raising the glass transition temperature of hardened
  • phenolic curing agents examples include cresol-type novolac resins such as GPX-41 (trade name) manufactured by Gifu Seratec, and trisphenol methane types such as MEH-7500H (trade name) manufactured by Meiwa Kasei. Examples thereof include phenol resins and biphenyl aralkyl type phenol resins such as MEH-7851-4H manufactured by Meiwa Kasei Co., Ltd.
  • the blending amount is preferably 3: 1 to 0.75: 1 in terms of the number of moles of epoxy groups and the number of moles of phenolic hydroxyl groups. If the compounding ratio is out of the range of 3: 1 to 0.75: 1, there is a concern that the laminating property is lowered and the insulation reliability is lowered. More preferably, it is 2.5: 1 to 1: 1, and still more preferably 2.3: 1 to 1.1: 1.
  • thermosetting resin composition of the present invention can contain a curing agent for other thermosetting resins as required, together with a phenolic curing agent.
  • the thermosetting resin curing agent is not particularly limited, and examples thereof include amines, acid anhydrides, carboxyl group-containing compounds, and hydroxyl group-containing compounds.
  • thermosetting resin composition of this invention can contain a hardening accelerator as needed.
  • a curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N- Examples thereof include amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide, and phosphorus compounds such as triphenylpho
  • Examples of commercially available curing accelerators include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., U-CAT3503N, U-CAT3502T manufactured by San Apro, Inc. (All are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (both bicyclic amidine compounds and salts thereof), and the like. It is not particularly limited to these, and any thermosetting resin or any one that promotes the reaction between the thermosetting resin and its curing agent may be used alone or in admixture of two or more. Absent.
  • Amorphous silica used in the thermosetting resin composition of the present invention is amorphous silicon dioxide and can be identified by an X-ray diffractometer.
  • the amorphous silica used in the thermosetting resin composition of the present invention is fine particles having an average particle size of about 0.1 to 10 ⁇ m.
  • the amorphous silica is not particularly limited, and examples thereof include spherical silica, spherical porous silica, plate-like silica, layered silica, mesoporous silica, and hollow silica.
  • spherical silica is preferably used because it has good dispersibility in the resin and imparts toughness of the resin. In the present invention, those having a sphericity of 0.8 or more are defined as spherical silica.
  • the method for producing the amorphous silica particles is not particularly limited, and methods known to those skilled in the art can be applied.
  • it can be manufactured by burning silicon powder by a VMC (Vap-erized Metal Combustion) method.
  • VMC Vehicle-erized Metal Combustion
  • a chemical flame is formed by a burner in an oxygen-containing atmosphere, and an amount of metal dust that forms part of the target oxide particles is formed in the chemical flame so that a dust cloud is formed.
  • deflagration is caused to obtain oxide particles.
  • amorphous silicas can be used alone or in combination of two or more. Note that crystalline silica is not desirable because of the concern about the influence of the human body.
  • Talc used in the thermosetting resin composition of the present invention refers to fine particles obtained by pulverizing talc and means hydrous magnesium silicate (chemical formula: 3MgO.4SiO 2 .H 2 O).
  • Talc is a kind of layered silicate, and since it does not contain exchangeable metal ions between crystals, it is characterized by being chemically stable.
  • the talc is not particularly limited, but is preferably pulverized and classified so that the average particle size is 2 ⁇ m or less, more preferably, the maximum particle size is controlled to 10 ⁇ m or less.
  • the non-crystalline silica and talc can be improved in dispersibility to components in the thermosetting resin composition by performing a surface treatment.
  • Silane compounds, titanate compounds, and the like are known as compounds used for the surface treatment, and the surface treatment may be performed in advance before blending, or may be added when the composition is blended.
  • the amorphous silica and talc are preferably blended so that the total amount (total mass) of the amorphous silica and talc is 35 to 70% by mass in the nonvolatile component of the thermosetting resin composition.
  • the total amount is less than 35% by mass, the effect of reducing the linear expansion coefficient of the cured product (insulating layer) of the thermosetting resin composition is poor.
  • it exceeds 70 mass% the elongation rate of the hardened
  • the non-crystalline silica and talc preferably have a talc mass of 5 to 90% by mass with respect to the total amount (total mass) of non-crystalline silica and talc.
  • the blending ratio is less than 5% by mass, the effect of improving the handleability of the dry film is poor, and when it exceeds 90% by mass, the effect of reducing the linear expansion coefficient of the cured product (insulating layer) is saturated while the elongation of the cured product is increased. The detrimental effect of the reduction increases, and the balance between the two characteristics deteriorates.
  • a more preferable blending ratio is 10 to 70% by mass, and further preferably 15 to 60% by mass.
  • thermosetting resin composition of the present invention includes, for example, the above-described thermosetting resin as necessary.
  • a resin that can be polymerized with a phenolic curing agent may be contained.
  • Such a polymerizable resin is not particularly limited. For example, cyanate ester resin, phenoxy resin, benzoxazine resin, modified polyphenylene ether resin, thermosetting modified amide imide resin, epoxidized polybutadiene rubber, rubber modified An epoxy resin etc. are mentioned. These polymerizable resins can be blended alone or in combination of two or more.
  • thermosetting resin composition of the present invention may contain an organic solvent for the purpose of adjusting viscosity and imparting coating properties.
  • organic solvent include ketones such as methyl ethyl ketone, cyclohexanone, acetone and methyl isobutyl ketone, acetates such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and diethylene glycol monoethyl ether acetate, and aromatics such as petroleum naphtha. Examples thereof include hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These organic solvents may be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention if necessary, an antifoaming agent and / or a leveling agent such as silicone, fluorine and polymer, silane coupling agent such as imidazole, thiazole and triazole
  • an antifoaming agent and / or a leveling agent such as silicone, fluorine and polymer, silane coupling agent such as imidazole, thiazole and triazole
  • flame retardants such as phosphorus flame retardants and antimony flame retardants, antioxidants and rust inhibitors can be blended.
  • thermosetting resin composition of the present invention can form an insulating layer in the production of a multilayer substrate, and can be used industrially as a dry film such as flatness and film thickness uniformity.
  • the dry film of the present invention can be produced by a known method as follows. That is, a thermosetting resin composition varnish containing an organic solvent is applied to a support film as a support using a film coater, a film applicator, a bar coater, a die coater, etc., and is temporarily dried or temporarily cured. To form a dry film. And it is set as a 3 layer structure by laminating
  • the support film or protective film examples include films made of polyester such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the support film and the protective film may be subjected to an embossing treatment, a corona treatment, a release agent treatment or the like so that they can be selectively peeled off when used.
  • the thickness of the dry film of the present invention is not particularly limited, but is preferably 5 to 150 ⁇ m. If it is thinner than 5 ⁇ m, the flatness after lamination becomes poor, and if it is thicker than 150 ⁇ m, the drying property of the varnish coated on the support film is lowered, and the productivity of the dry film is lowered. More preferably, it is 10 to 100 ⁇ m, and particularly preferably 15 to 75 ⁇ m.
  • the cured product of this dry film has a linear expansion coefficient between 25 and 150 ° C. of about 0.5 to 2 times (8 to 40 ppm / ° C.), particularly 17 to 30 ppm / ° C. It is preferable that it is ° C. If the linear expansion coefficient exceeds 30ppm / ° C, the semiconductor package substrate may be warped or broken due to cracks due to the stress caused by the difference in expansion due to temperature changes between different materials due to thermal history in the mounting process and reliability test. Is likely to occur.
  • a dry film is laminated on the wiring substrate that becomes the core substrate.
  • a base material used for a wiring board Generally a glass epoxy board
  • the insulating film can be formed on the wiring board by peeling the support film and thermosetting.
  • the thermosetting conditions can be selected according to the type of resin component, etc., but are generally set in the range of 140 to 200 ° C. for 15 to 180 minutes, preferably 160 to 190 ° C. for 30 to 120 minutes.
  • a via hole or a through hole is formed by drilling the insulating layer in order to obtain electrical connection with the core substrate.
  • the drilling step can be generally performed by a known method such as a drill, a carbon dioxide laser, or a UV-YAG laser.
  • a conductor layer is formed by plating.
  • wet plating is performed, and first, the surface of the hardened insulating layer is roughened.
  • a sodium hydroxide aqueous solution of permanganate is preferably used.
  • a conductor layer is formed by electroless copper plating through electroless copper plating.
  • the semi-additive method of removing a resist after patterning with a resist previously and performing electroless plating is used.
  • ⁇ Example 1> As a multifunctional epoxy resin, 60 parts of bisphenol S type epoxy resin (DIC Corporation, EXA-1517, epoxy equivalent of about 237), as liquid epoxy, mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin (Shinichi) Using 40 parts of Sakai Chemical Co., Ltd., ZX-1059, epoxy equivalent of about 165), 13 parts of cresol novolac resin (Gifu Seratsuk, GPX-41, hydroxyl equivalent of about 120) as phenolic curing agent (phenol novolac resin ( 12 parts of Meiwa Kasei Co., Ltd., HF-1M, hydroxyl equivalent of about 106, softening point temperature 86 ° C., 144 parts of amorphous silica (manufactured by Admatechs, SO-E2), talc (manufactured by Nippon Talc, SG -2000) 26 parts, 1-benzyl-2-phenylimidazole as curing accelerator (
  • thermosetting resin composition varnish (total amount of silica and talc in the nonvolatile component, about 58%, amount of talc in the total amount of silica and talc, about 15%).
  • PET film polyethylene terephthalate film having a thickness of 38 ⁇ m using a bar coater, dried at 80 ° C. for 15 minutes, and dried for testing.
  • a film was prepared. The coating conditions of the bar coater were set so that the thickness of the thermosetting resin composition layer after drying was 25 ⁇ m.
  • Example 2 In the same manner as in Example 1, except for changing to 119 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 51 parts of talc (manufactured by Nippon Talc, SG-2000), A dry film was obtained in which the total amount of talc was about 58% and the amount of talc in the total amount of silica and talc was about 30%.
  • amorphous silica manufactured by Admatechs, SO-E2
  • talc manufactured by Nippon Talc, SG-2000
  • Example 3 In the same manner as in Example 1 except for changing to 68 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 102 parts of talc (manufactured by Nippon Talc, SG-2000), A dry film having a total talc amount of about 58% and a talc amount in the total amount of silica and talc of about 60% was obtained.
  • a polyfunctional epoxy resin 60 parts of a bisphenol S type epoxy resin (DIC, EXA-1517, epoxy equivalent of about 237) and as a liquid epoxy, a p-aminophenol type epoxy resin (Sumitomo Chemical Co., ELM-100, epoxy) The equivalent of about 106) is 40 parts, and the phenolic curing agent is cresol novolac resin (Gifu Seratsuk, GPX-41, hydroxyl equivalent: about 120), phenol novolac resin (Maywa Kasei, HF-1M, hydroxyl group) 15 parts by weight of about 106 equivalent, softening point temperature 86 ° C, 158 parts of amorphous silica (manufactured by Admatex, SO-E2), 31 parts of talc (manufactured by Nippon Talc, SG-2000), as a curing accelerator 0.5 part of 1-benzyl-2-phenylimidazole (manufactured by Shikoku Kas
  • a varnish was prepared (total amount of silica and talc in nonvolatile components, about 56%, amount of talc in total amount of silica and talc, about 17%).
  • the obtained varnish was uniformly applied onto a PET film having a thickness of 38 ⁇ m using a bar coater, and dried at 80 ° C. for 15 minutes to prepare a dry film for testing.
  • the coating conditions of the bar coater were set so that the thickness of the thermosetting resin composition layer after drying was 25 ⁇ m.
  • Example 5 It was changed to 158 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 34 parts of talc (manufactured by Nippon Talc, SG-2000), and phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., FX293AM40, High heat-resistant grade, nonvolatile component 40%) Except for blending 11%, the total amount of silica and talc in the nonvolatile component is about 58%, and the amount of talc in the total amount of silica and talc is about An 18% dry film was obtained.
  • amorphous silica manufactured by Admatechs, SO-E2
  • talc manufactured by Nippon Talc, SG-2000
  • phenoxy resin manufactured by Nippon Steel Chemical Co., Ltd., FX293AM40, High heat-resistant grade, nonvolatile component 40%
  • a polyfunctional epoxy resin 80 parts of a naphthalene type epoxy resin (manufactured by DIC, HP-4032, epoxy equivalent of about 140), as a liquid epoxy, a mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin (Nippon Steel) 20 parts of Chemical Co., Ltd., ZX-1059, epoxy equivalent of about 165), 20 parts of cresol novolac resin (Gift Seratku, GPX-41, hydroxyl equivalent of about 120), phenol novolac resin (Maywa) 18 parts by Kasei Co., Ltd., HF-1M, hydroxyl equivalent of about 106, softening point temperature of 86 ° C., 150 parts of amorphous silica (manufactured by Admatechs, SO-E2), talc (manufactured by Nippon Talc, SG- 2000) 50 parts, 1-benzyl-2-phenylimidazole (Shikoku Chemicals) as
  • the obtained varnish was uniformly coated on a PET film having a thickness of 38 ⁇ m using a bar coder, and dried at 80 ° C. for 15 minutes to prepare a test dry film.
  • the coating conditions of the bar coder were set so that the thickness of the thermosetting resin composition layer after drying was 25 ⁇ m.
  • Example 7 In the same manner as in Example 6 except that 225 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 75 parts of talc (manufactured by Nippon Talc, SG-2000) were used, A dry film was obtained in which the total amount of talc was about 68% and the amount of talc in the total amount of silica and talc was 25%.
  • amorphous silica manufactured by Admatechs, SO-E2
  • talc manufactured by Nippon Talc, SG-2000
  • ⁇ Comparative Example 1> The total amount of silica and talc in the non-volatile component was about 58%, except that the talc that is the layered silicate in Example 1 was not blended and the mass of the talc was replaced with amorphous silica. A dry film having a talc amount of 0% in the total amount of talc was obtained.
  • Table 1 shows the components constituting the thermosetting resin compositions of the above Examples and Comparative Examples and their blending amounts.
  • Elongation at break mechanical strength: The dry films obtained in Examples and Comparative Examples were laminated on the glossy surface of copper foil with a vacuum laminator (CVP-300, manufactured by Nichigo Morton), and then the PET film was peeled off and cured at 180 ° C. for 60 minutes to be cured. I got a thing. Copper foil is removed from the cured product, a test piece having a width of about 5 mm and a length of about 80 mm is cut, and the elongation at break is measured using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-100N). did. The measurement conditions were a sample width of about 10 mm, a fulcrum distance of about 40 mm, a pulling speed of 1.0 mm / min, and the elongation rate until breakage was the elongation at breakage point.
  • CVP-300 vacuum laminator
  • Laminating properties The dry films obtained in Examples and Comparative Examples were subjected to surface treatment (MEC, CZ-8101, etching amount: about 1.0 ⁇ m) on a copper-clad laminate (vacuum laminator (Nichigo Morton, CVP-)). 300), the PET film was peeled off and cured at 180 ° C. for 60 minutes to prepare an evaluation substrate.
  • Lamination conditions were a temperature of 100 ° C., a lamination pressure of 0.5 MPa, a vacuum time of 20 seconds, a step down of 1 second, and a pressurization time of 19 seconds, and the state of the cured product after curing was visually evaluated.
  • No problem in adhesion
  • Partially lifted or peeled cured product
  • Conductor plating peel strength The dry films obtained in Examples and Comparative Examples were subjected to surface treatment (MEC, CZ-8101, etching amount: about 1.0 ⁇ m) on a copper-clad laminate (vacuum laminator (Nichigo Morton, CVP-)). 300), the PET film was peeled off and cured at 180 ° C. for 60 minutes to prepare an evaluation substrate.
  • surface treatment MEC, CZ-8101, etching amount: about 1.0 ⁇ m
  • a copper-clad laminate vacuum laminator (Nichigo Morton, CVP-)
  • the evaluation substrate is immersed in a swelling solution (Atotech Japan Co., Ltd., a mixture of Swelling Dip Securigant P and an aqueous sodium hydroxide solution (400 g / L)) at 80 ° C. for 10 minutes, and then a roughening solution (Atotech Japan Co., Ltd.).
  • a swelling solution Atotech Japan Co., Ltd., a mixture of Swelling Dip Securigant P and an aqueous sodium hydroxide solution (400 g / L)
  • a roughening solution Atotech Japan Co., Ltd.
  • Manufactured by Concentrate Compact CP and sodium hydroxide aqueous solution (400 g / L) at 80 ° C. for 20 minutes, and finally reduced solution (Atotech Japan Co., Ltd., Reduction Solution Securigant P500 and sulfuric acid mixture) was immersed in the solution at 50 ° C. for 5 minutes, and roughened.
  • the obtained conductor plating layer is cut with a depth of about 10 mm ⁇ about 80 mm to reach the dry film layer, peeled off a little to secure a grip margin, and then gripped with a gripping jig.
  • AGS-100N manufactured by Shimadzu Corporation
  • the conductor plating peel strength was measured. The measurement conditions were room temperature, the pulling speed was 50 mm / min, and the average load when peeling 35 mm was measured.
  • Peel strength exceeding 4 N / cm
  • Peel strength of 2 N / cm to 4 N / cm
  • Comparative Example 4 which does not contain talc and is replaced with amorphous silica has a high linear expansion coefficient.

Abstract

Disclosed is a heat-curable resin composition of which the linear expansion coefficient can be reduced and the handling properties can be improved. The heat-curable resin composition is characterized by comprising a heat-curable resin, a phenolic curing agent, a non-crystalline silica and talc.

Description

熱硬化性樹脂組成物Thermosetting resin composition
 本発明は熱硬化性樹脂組成物及びドライフィルムに関する。 The present invention relates to a thermosetting resin composition and a dry film.
 近年、半導体パッケージ基板の高密度化、高速性能化に伴い、半導体チップと回路基板を接続するフリップチップバンプの狭クリアランス化が進んでいる。このように、狭クリアランス化が進むと、異材質間の温度変化による膨張量の違いにより起こる応力によって、半導体パッケージ基板に反りやクラックによる断線等の不具合が生じる問題がある。このような理由から、回路基板の絶縁層に用いられる熱硬化性樹脂の線膨張係数(熱膨張係数)を、回路基板に用いる他の材料の線膨張係数(銅箔基準で17ppm/℃)に近い数値まで低減することが求められている。また、さらに、線膨張係数に関しては、半導体パッケージ基板の用途拡大や性能の向上により、ガラス転移点温度前から常温までの幅広い温度域での線膨張係数を低減することが求められている。しかし、従来の熱硬化性樹脂の硬化物はガラス転移温度に近い領域での線膨張係数が45~65ppm/℃程度と高く、線膨張係数が高くなってしまう傾向があった。 In recent years, with the increase in the density and speed of semiconductor package substrates, the clearance of flip chip bumps connecting semiconductor chips and circuit boards has been narrowed. As described above, when the clearance becomes narrower, there is a problem in that the semiconductor package substrate has problems such as warpage and disconnection due to cracks due to the stress caused by the difference in expansion amount due to temperature change between different materials. For this reason, the linear expansion coefficient (thermal expansion coefficient) of the thermosetting resin used for the insulating layer of the circuit board is set to the linear expansion coefficient (17 ppm / ° C. based on the copper foil) of other materials used for the circuit board. There is a demand for reduction to a close numerical value. Furthermore, regarding the linear expansion coefficient, it is required to reduce the linear expansion coefficient in a wide temperature range from the glass transition temperature to room temperature by expanding the use of the semiconductor package substrate and improving the performance. However, a cured product of a conventional thermosetting resin has a high linear expansion coefficient of about 45 to 65 ppm / ° C. in a region close to the glass transition temperature, and tends to increase the linear expansion coefficient.
 また、半導体パッケージ基板の微細化、多層化に伴い、回路形成にセミアディティブ工法が主流となってきており、めっきによる導体層の形成が必須となってきており、導体めっき層の密着強度の向上が求められている。さらに、回路基板の絶縁層は、発生してしまう膨張量差による不具合を緩和するため、機械強度(伸び性)が求められている。 Also, with the miniaturization and multilayering of semiconductor package substrates, the semi-additive method has become the mainstream for circuit formation, and the formation of conductor layers by plating has become essential, improving the adhesion strength of conductor plating layers. Is required. In addition, the insulating layer of the circuit board is required to have mechanical strength (elongation) in order to alleviate problems caused by the difference in expansion that occurs.
 一方、回路基板の絶縁層形成に使用されるドライフィルムは、半導体パッケージ基板が製造時に受けるさまざまな機械的、熱的な衝撃による破壊を防ぐ為、ハンドリング性の向上や密着性(ラミネート性)も望まれる。 On the other hand, the dry film used to form the insulating layer of the circuit board prevents damage caused by various mechanical and thermal shocks to the semiconductor package substrate during manufacturing. desired.
 特許文献1は、結晶間に交換性金属カチオンを有する層状珪酸塩化合物を用いることで、大量の無機充填剤を配合することなく線膨張係数の低減する手法を開示している。しかし、この手法は、伸び率の低下、導体めっき層の密着強度の低下が大きいという問題がある。 Patent Document 1 discloses a technique for reducing the linear expansion coefficient without using a large amount of an inorganic filler by using a layered silicate compound having an exchangeable metal cation between crystals. However, this method has a problem that the elongation rate is lowered and the adhesion strength of the conductor plating layer is greatly reduced.
 特許文献2は、熱硬化性樹脂組成物に球状シリカを充填して、線膨張係数を下げる手法を開示している。しかし、この手法は球状シリカを多く含有することで、硬化前のドライフィルム状組成物がもろくなりハンドリング性低下のおそれがある。 Patent Document 2 discloses a technique of reducing the linear expansion coefficient by filling a thermosetting resin composition with spherical silica. However, since this method contains a large amount of spherical silica, the dry film-like composition before curing becomes brittle and there is a risk that handling properties may be reduced.
WO2005-056632号公報WO2005-056632 gazette 日本国特開2001-49220号公報Japanese Unexamined Patent Publication No. 2001-49220
 本発明は、ドライフィルムのハンドリング性の向上や密着性(ラミネート性)の向上を図れるとともに、このドライフィルムを用いて作製した硬化物(絶縁層)の線膨張係数の低減を図れ、伸び率、密着性、導体めっき密着性(導体めっきピール強度)も優れた熱硬化性樹脂組成物を提供することを目的とする。 The present invention can improve the handleability and adhesion (laminate) of the dry film, and can reduce the linear expansion coefficient of a cured product (insulating layer) produced using this dry film. It aims at providing the thermosetting resin composition which was excellent also in adhesiveness and conductor plating adhesiveness (conductor plating peel strength).
 本発明の発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、特許文献1に従って熱硬化性樹脂組成物に結晶間に交換性金属カチオンを有する層状珪酸塩化合物を含有させると、シリカと比べて線膨張係数を低減させる効果は大きいが、塗膜の機械強度(伸び率)及び導体めっき層の密着強度の向上につながらないのに対し、層状珪酸塩化合物にタルクを用いることで、線膨張係数の低減を達成するとともに、熱硬化性樹脂自体がもつ伸び性を損なうことなく導体めっき層の密着強度を向上させることができることを見出した。 As a result of intensive studies to solve the above problems, the inventors of the present invention include a layered silicate compound having an exchangeable metal cation between crystals in a thermosetting resin composition according to Patent Document 1. The effect of reducing the coefficient of linear expansion compared to silica is large, but the mechanical strength (elongation rate) of the coating film and the adhesion strength of the conductor plating layer are not improved, but talc is used for the layered silicate compound. Thus, it has been found that the adhesion strength of the conductor plating layer can be improved without impairing the extensibility of the thermosetting resin itself as well as reducing the linear expansion coefficient.
 また、特許文献2に従って熱硬化性樹脂組成物に球状シリカを充填して線膨張係数を下げるには、球状シリカを大量に充填する必要がある。それによって、硬化前のドライフィルム状組成物がもろくなり、ハンドリング性が低下するのに対し、シリカとタルクを併用することによりハンドリング性を向上させることを見出し、本発明を完成させるに至った。 Further, in order to lower the linear expansion coefficient by filling the thermosetting resin composition with spherical silica according to Patent Document 2, it is necessary to fill the spherical silica in a large amount. As a result, the dry film-like composition before curing becomes brittle and the handling property is lowered, while the use of silica and talc is found to improve the handling property, and the present invention has been completed.
 すなわち、本発明は、以下の構成を備えている。
(1)熱硬化性樹脂、フェノール系硬化剤、非結晶性シリカ及びタルクを含有することを特徴とする熱硬化性樹脂組成物。
(2)上記非結晶性シリカとタルクの総量が、組成物不揮発分量中35~70質量%であることを特徴とする(1)に記載の熱硬化性樹脂組成物。
(3)上記フェノール系硬化剤の軟化温度が120℃以上であることを特徴とする(1)に記載の熱硬化性樹脂組成物。
(4)上記非結晶性シリカとタルクとの総量中のタルクの量が、5~90質量%であることを特徴とする(1)に記載の熱硬化性樹脂組成物。
(5)(1)~(4)のいずれかに記載の熱硬化性樹脂組成物を用いて作製したドライフィルム。
(6)硬化温度25~150℃での硬化物の線膨張係数が17~30ppm/℃であることを特徴とする(5)に記載のドライフィルム。
That is, the present invention has the following configuration.
(1) A thermosetting resin composition comprising a thermosetting resin, a phenolic curing agent, amorphous silica and talc.
(2) The thermosetting resin composition according to (1), wherein the total amount of the amorphous silica and talc is 35 to 70% by mass in the nonvolatile content of the composition.
(3) The thermosetting resin composition according to (1), wherein the phenolic curing agent has a softening temperature of 120 ° C. or higher.
(4) The thermosetting resin composition according to (1), wherein the amount of talc in the total amount of the amorphous silica and talc is 5 to 90% by mass.
(5) A dry film produced using the thermosetting resin composition according to any one of (1) to (4).
(6) The dry film as described in (5), wherein the linear expansion coefficient of the cured product at a curing temperature of 25 to 150 ° C. is 17 to 30 ppm / ° C.
 本発明の熱硬化性樹脂組成物においては、熱硬化性樹脂に非結晶性シリカとタルクとを併用することにより、ドライフィルムのハンドリング性の向上や密着性(ラミネート性)の向上を図れるとともに、熱硬化性樹脂組成物の硬化物(絶縁層)の線膨張係数の低減を図れ、伸び率、密着性、導体めっき密着性(導体めっきピール強度)も優れたものとすることができる。 In the thermosetting resin composition of the present invention, by using amorphous silica and talc in combination with the thermosetting resin, it is possible to improve dry film handling and adhesion (laminate), The linear expansion coefficient of the cured product (insulating layer) of the thermosetting resin composition can be reduced, and the elongation rate, adhesion, and conductor plating adhesion (conductor plating peel strength) can be excellent.
 以下、本発明の実施の形態について詳細に説明する。
 本発明の樹脂組成物は、熱硬化性樹脂、フェノール系硬化剤、非結晶性シリカ及びタルクを含有する。
Hereinafter, embodiments of the present invention will be described in detail.
The resin composition of the present invention contains a thermosetting resin, a phenol-based curing agent, amorphous silica, and talc.
(熱硬化性樹脂)
 熱硬化性樹脂は、加熱により熱硬化性樹脂自体及び熱硬化性樹脂とその硬化剤と硬化反応を行うものであれば特に制限されるものではないが、なかでも、線状熱硬化性樹脂が好ましく、より好ましくは分子内に少なくとも2つ以上のエポキシ基を有する化合物が挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及び複素環含有エポキシ樹脂等が挙げられる。これら骨格中の芳香族の全部または一部を水素添加することで、透明性向上や低粘度化させたものを使用することができる。また、エポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。
(Thermosetting resin)
The thermosetting resin is not particularly limited as long as it is capable of curing reaction with the thermosetting resin itself and the thermosetting resin and its curing agent by heating. A compound having at least two or more epoxy groups in the molecule is more preferable. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol type epoxy resin, phenol aralkyl type epoxy resin, naphthalene type epoxy resin, and heterocyclic ring Containing epoxy resin. By hydrogenating all or part of the aromatics in these skeletons, it is possible to use those having improved transparency and reduced viscosity. An episulfide resin in which the oxygen atom of the epoxy group is replaced with a sulfur atom can also be used.
 本発明ではこれらの中でも線膨張係数を低減させる観点より、特にビスフェノールS型エポキシ樹脂又はナフタレン骨格を有するエポキシ樹脂を用いることが好ましい。なお、本発明では、1種類の熱硬化性樹脂が使用されてもよいし、2種以上の熱硬化性樹脂が使用されてもよい。 In the present invention, among these, it is preferable to use a bisphenol S type epoxy resin or an epoxy resin having a naphthalene skeleton, from the viewpoint of reducing the linear expansion coefficient. In the present invention, one type of thermosetting resin may be used, or two or more types of thermosetting resins may be used.
 市販の多官能エポキシ化合物としては、例えば三菱化学社製のjER828、jER834、jER1001、jER1004、DIC社製のエピクロン840、エピクロン850、エピクロン1050、エピクロン2055、新日鐵化学社製のエポトートYD-011、エポトートYD-013、エポトートYD-127、エポトートYD-128、ダウケミカル社製のD.E.R.317、D.E.R.331、D.E.R.661、D.E.R.664、チバ・ジャパン社製のアラルダイド6071、アラルダイド6084、アラルダイドGY250、アラルダイドGY260、住友化学工業社製のスミエポキシESA-011、スミエポキシESA-014、スミエポキシELA-115、スミエポキシELA-128、旭化成工業社製のA.E.R.310、A.E.R.331、A.E.R.661、A.E.R.664等(何れも商品名)のビスフェノールA型エポキシ樹脂;三菱化学社製のjERYL903、DIC社製のエピクロン152、エピクロン165、新日鐵化学社製のエポトートYDB-400、エポトートYDB-500、ダウケミカル社製のD.E.R.542、チバ・ジャパン社製のアラルダイド8011、住友化学工業社製のスミエポキシESB-400、スミエポキシESB-700、旭化成工業社製のA.E.R.711、A.E.R.714等(何れも商品名)のブロム化エポキシ樹脂;三菱化学社製のjER152、jER154、ダウケミカル社製のD.E.R.431、D.E.R.438、DIC社製のエピクロンN-730、エピクロンN-770、エピクロンN-865、新日鐵化学社製のエポトートYDCN-701、エポトートYDCN-704、チバ・ジャパン社製のアラルダイドECN1235、アラルダイドECN1273、アラルダイドECN1299、アラルダイドXPY307、日本化薬社製のEPPN-201、EOCN-1025、EOCN-1020、EOCN-104S、RE-306、住友化学工業社製のスミエポキシESCN-195X、スミエポキシESCN-220、旭化成工業社製のA.E.R.ECN-235、A.E.R.ECN-299等(何れも商品名)のノボラック型エポキシ樹脂;DIC社製のエピクロン830、三菱化学社製のjER807、新日鐵化学社製のエポトートYDF-170、エポトートYDF-175、エポトートYDF-2004、チバ・ジャパン社製のアラルダイドXPY306等(何れも商品名)のビスフェノールF型エポキシ樹脂;新日鐵化学社製のエポトートST-2004、エポトートST-2007、エポトートST-3000等(何れも商品名)の水添ビスフェノールA型エポキシ樹脂;ジャパンエポキシレジン社製のjER604、新日鐵化学社製のエポトートYH-434、チバ・ジャパン社製のアラルダイドMY720、住友化学工業社製のスミエポキシELM-100等(何れも商品名)のグリシジルアミン型エポキシ樹脂;チバ・ジャパン社製のアラルダイドCY-350(商品名)等のヒダントイン型エポキシ樹脂;ダイセル化学工業社製のセロキサイド2021、チバ・ジャパン社製のアラルダイドCY-175、アラルダイドCY-179等(何れも商品名)の脂環式エポキシ樹脂;三菱化学社製のYL-933、ダウケミカル社製のT.E.N.、日本化薬社製のEPPN-501、EPPN-502等(何れも商品名)のトリヒドロキシフェニルメタン型エポキシ樹脂;三菱化学社製のYL-6056、YL-6121、YX-4000等(何れも商品名)のビキレノール型もしくはビフェノール型エポキシ樹脂又はそれらの混合物;日本化薬社製のEBPS-200、旭電化工業社製のEPX-30、DIC社製のEXA-1517等(何れも商品名)のビスフェノールS型エポキシ樹脂;三菱化学社製のjER157S(商品名)等のビスフェノールAノボラック型エポキシ樹脂;三菱化学社製のjERYL-931、チバ・ジャパン社製のアラルダイド163等(何れも商品名)のテトラフェニロールエタン型エポキシ樹脂;チバ・ジャパン社製のアラルダイドPT810、日産化学工業社製のTEPIC等(何れも商品名)の複素環式エポキシ樹脂;日油社製のブレンマーDGT(商品名)等のジグリシジルフタレート樹脂;新日鐵化学社製のZX-1063(商品名)等のテトラグリシジルキシレノイルエタン樹脂;新日鐵化学社製のESN-175、ESN-355、ESN-375、DIC社製のHP-4032、HP-5000、EXA-4700、EXA-4710、EXA-7311、EXA-9900等(何れも商品名)のナフタレン基含有エポキシ樹脂;三菱化学社製のYX-8800(商品名)等のアントラセン骨格を有するエポキシ樹脂;DIC社製のHP-7200、HP-7200H(商品名)等のジシクロペンタジエン骨格を有するエポキシ樹脂;日油社製のCP-50S、CP-50M等(何れも商品名)のグリシジルメタクリレート共重合系エポキシ樹脂;さらにシクロヘキシルマレイミドとグリシジルメタクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体(例えばダイセル化学工業社製のPB-3600(商品名)等)、CTBN変性エポキシ樹脂(例えば新日鐵化学社製のYR-102、YR-450等(何れも商品名))等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、単独で又は2種以上を組み合わせて使用することができる。また、上記エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂等も使用することができる。 Examples of commercially available polyfunctional epoxy compounds include jER828, jER834, jER1001, and jER1004 manufactured by Mitsubishi Chemical Corporation, Epicron 840, Epicron 850, Epicron 1050, and Epicron 2055 manufactured by DIC Corporation, and Epototo YD-011 manufactured by Nippon Steel Chemical Co., Ltd. Epototo YD-013, Epototo YD-127, Epototo YD-128, D.C. E. R. 317, D.E. E. R. 331, D.D. E. R. 661, D.D. E. R. 664, Aribadido 6071, Araldide 6084, Araldide GY250, Araldide GY260, manufactured by Ciba Japan, Sumiepoxy ESA-011, Sumepoe ESA-014, Sumiepoxy ELA-115, Sumiepoxy ELA-128, manufactured by Asahi Kasei Kogyo Co., Ltd. A. E. R. 310, A.I. E. R. 331, A.I. E. R. 661, A.I. E. R. Bisphenol A type epoxy resin such as 664 (all trade names); jERYL903 manufactured by Mitsubishi Chemical Corporation, Epicron 152, Epicron 165 manufactured by DIC Corporation, Epotot YDB-400, Epototo YDB-500 manufactured by Nippon Steel Chemical Co., Ltd., Dow D. made by Chemical Co. E. R. 542, Araldide 8011 manufactured by Ciba Japan, Sumiepoxy ESB-400, Sumiepoxy ESB-700 manufactured by Sumitomo Chemical Co., Ltd. E. R. 711, A.I. E. R. Brominated epoxy resins such as 714 (both trade names); jER152 and jER154 manufactured by Mitsubishi Chemical Corporation, and D.C. E. R. 431, D.D. E. R. 438, Epicron N-730, Epicron N-770, Epicron N-865, Nippon Steel Chemical Co., Ltd. Epototo YDCN-701, Epototo YDCN-704, Ciba Japan Co., Ltd. Araldide ECN1235, Araldide ECN1273 Araldide ECN1299, Araldide XPY307, Nippon Kayaku Co., Ltd. EPPN-201, EOCN-1025, EOCN-1020, EOCN-104S, RE-306, Sumitomo Chemical Co., Ltd. Sumiepoxy ESCN-195X, Sumiepoxy ESCN-220, Asahi Kasei A. E. R. ECN-235, A.I. E. R. Novolak type epoxy resins such as ECN-299 (both trade names); Epicron 830 manufactured by DIC, jER807 manufactured by Mitsubishi Chemical, Epototo YDF-170, Epototo YDF-175, Epototo YDF-, manufactured by Nippon Steel Chemical Co., Ltd. 2004, bisphenol F type epoxy resin such as Araldide XPY306 manufactured by Ciba Japan Co., Ltd. (all trade names); Epototo ST-2004, Epototo ST-2007, Epototo ST-3000 manufactured by Nippon Steel Chemical Co., Ltd. (all products) Hydrogenated bisphenol A type epoxy resin; jER604 manufactured by Japan Epoxy Resin Co., Ltd., Epototo YH-434 manufactured by Nippon Steel Chemical Co., Ltd., Araldide MY720 manufactured by Ciba Japan Co., Ltd., Sumiepoxy ELM-100 manufactured by Sumitomo Chemical Co., Ltd. Etc. (all are trade names) glycidylamine type Poxy resin; Hydantoin type epoxy resin such as Araldide CY-350 (trade name) manufactured by Ciba Japan; Celoxide 2021 manufactured by Daicel Chemical Industries, Araldide CY-175, Araldide CY-179 manufactured by Ciba Japan All are trade names) cycloaliphatic epoxy resins; YL-933 manufactured by Mitsubishi Chemical Corporation, T.W. manufactured by Dow Chemical Co., Ltd. E. N. Trihydroxyphenylmethane type epoxy resins such as EPPN-501 and EPPN-502 manufactured by Nippon Kayaku Co., Ltd. (all trade names); YL-6056, YL-6121, YX-4000 manufactured by Mitsubishi Chemical Co., Ltd. (Trade name) biquilenol type or biphenol type epoxy resin or a mixture thereof; EBPS-200 manufactured by Nippon Kayaku Co., Ltd., EPX-30 manufactured by Asahi Denka Kogyo Co., Ltd., EXA-1517 manufactured by DIC Co., Ltd. Bisphenol S type epoxy resin; bisphenol A novolac type epoxy resin such as jER157S (trade name) manufactured by Mitsubishi Chemical Corporation; jERYL-931 manufactured by Mitsubishi Chemical Corporation, Araldide 163 manufactured by Ciba Japan Co., Ltd. (all trade names) Tetraphenylol ethane type epoxy resin; Araldide PT810 made by Ciba Japan, Japan Heterocyclic epoxy resins such as TEPIC made by Kagaku Kogyo Co., Ltd. (both trade names); diglycidyl phthalate resins such as Bremer DGT made by NOF Corporation; ZX-1063 made by Nippon Steel Chemical Co., Ltd. Tetraglycidylxylenoylethane resin such as ESN-175, ESN-355, ESN-375 manufactured by Nippon Steel Chemical Co., Ltd., HP-4032, HP-5000, EXA-4700, EXA-4710 manufactured by DIC , EXA-7311, EXA-9900, etc. (both trade names) naphthalene group-containing epoxy resins; YX-8800 (trade name) manufactured by Mitsubishi Chemical Corporation, an epoxy resin having an anthracene skeleton; HP-7200 manufactured by DIC Corporation Epoxy resins having a dicyclopentadiene skeleton such as HP-7200H (trade name); CP-50S and CP-50 manufactured by NOF Corporation (All trade names) glycidyl methacrylate copolymer epoxy resin; cyclohexyl maleimide and glycidyl methacrylate copolymer epoxy resin; epoxy-modified polybutadiene rubber derivative (for example, PB-3600 (trade name) manufactured by Daicel Chemical Industries, Ltd.) ), CTBN-modified epoxy resins (for example, YR-102, YR-450 manufactured by Nippon Steel Chemical Co., Ltd. (both are trade names)), and the like, but are not limited thereto. These epoxy resins can be used alone or in combination of two or more. Moreover, episulfide resin etc. which substituted the oxygen atom of the epoxy group of the said epoxy resin by the sulfur atom, etc. can be used.
(硬化剤)
 本発明の熱硬化性樹脂組成物に用いられる熱硬化性樹脂の硬化剤は、フェノール系硬化剤である。特にエポキシ樹脂硬化剤としてフェノール性水酸基を含有するフェノール系硬化剤を用いることで、線膨張係数の低減やハンドリング性、ラミネート性に優れる。
(Curing agent)
The curing agent for the thermosetting resin used in the thermosetting resin composition of the present invention is a phenolic curing agent. In particular, by using a phenolic curing agent containing a phenolic hydroxyl group as an epoxy resin curing agent, the linear expansion coefficient is reduced, and handling properties and laminating properties are excellent.
 フェノール系硬化剤としては、フェノール、o-クレゾール、p-クレゾール、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノール、ナフタレンジオール等が挙げられる。また、これらのフェノール類とアルデヒド類との重縮合物であるフェノールノボラック樹脂、o-クレゾールノボラック樹脂、m-クレゾールノボラック樹脂、ナフタレン骨格含有フェノール系樹脂が挙げられる。また、これらのフェノール類とアルデヒド類とトリアジン環を有する化合物の重縮合物であるトリアジン環含有ノボラック樹脂が挙げられる。 Examples of phenolic curing agents include phenol, o-cresol, p-cresol, bisphenol A, bisphenol F, bisphenol S, bisphenol, and naphthalenediol. Further, phenol novolak resins, o-cresol novolak resins, m-cresol novolak resins, and naphthalene skeleton-containing phenol resins, which are polycondensates of these phenols and aldehydes, may be mentioned. Moreover, the triazine ring containing novolak resin which is a polycondensate of these phenols, aldehydes, and the compound which has a triazine ring is mentioned.
 本発明では、軟化点温度が120℃以上のフェノール系硬化剤が好ましく使用されている。軟化点温度測定には、一般的に環球法が用いられている。上記値を有する場合、硬化物のガラス転移温度を上昇させることにより広い温度域での線膨張係数の低減が図れる。 In the present invention, a phenolic curing agent having a softening point temperature of 120 ° C. or higher is preferably used. The ring and ball method is generally used for the softening point temperature measurement. When it has the said value, reduction of the linear expansion coefficient in a wide temperature range can be aimed at by raising the glass transition temperature of hardened | cured material.
 このような市販のフェノール系硬化剤としては、例えば岐阜セラツク社製のGPX-41(商品名)等のクレゾール型ノボラック樹脂、明和化成社製のMEH-7500H(商品名)等のトリスフェノールメタン型フェノール樹脂、明和化成社製のMEH-7851-4H等のビフェニルアラルキル型フェノール樹脂等が挙げられる。 Examples of such commercially available phenolic curing agents include cresol-type novolac resins such as GPX-41 (trade name) manufactured by Gifu Seratec, and trisphenol methane types such as MEH-7500H (trade name) manufactured by Meiwa Kasei. Examples thereof include phenol resins and biphenyl aralkyl type phenol resins such as MEH-7851-4H manufactured by Meiwa Kasei Co., Ltd.
 上記フェノール系硬化剤をエポキシ樹脂と組み合わせて使用する場合の配合量は、それぞれエポキシ基のモル数とフェノール性水酸基のモル数比で3:1~0.75:1となるのが好ましい。配合比が3:1~0.75:1の範囲から外れると、ラミネート性の低下や、絶縁信頼性低下の懸念がある。より好ましくは2.5:1~1:1であり、さらに好ましくは2.3:1~1.1:1である。 In the case where the above-mentioned phenolic curing agent is used in combination with an epoxy resin, the blending amount is preferably 3: 1 to 0.75: 1 in terms of the number of moles of epoxy groups and the number of moles of phenolic hydroxyl groups. If the compounding ratio is out of the range of 3: 1 to 0.75: 1, there is a concern that the laminating property is lowered and the insulation reliability is lowered. More preferably, it is 2.5: 1 to 1: 1, and still more preferably 2.3: 1 to 1.1: 1.
 本発明の熱硬化性樹脂組成物は、フェノール系硬化剤とともに、必要に応じてそれ以外の熱硬化性樹脂の硬化剤を含有することができる。この熱硬化性樹脂硬化剤は特に限定されず、アミン類、酸無水物、カルボキシル基含有化合物、水酸基含有化合物等を挙げることができる。 The thermosetting resin composition of the present invention can contain a curing agent for other thermosetting resins as required, together with a phenolic curing agent. The thermosetting resin curing agent is not particularly limited, and examples thereof include amines, acid anhydrides, carboxyl group-containing compounds, and hydroxyl group-containing compounds.
 (硬化促進剤)
 本発明の熱硬化性樹脂組成物は、必要に応じて硬化促進剤を含有することができる。そのような硬化促進剤としては、例えばイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。
(Curing accelerator)
The thermosetting resin composition of this invention can contain a hardening accelerator as needed. Examples of such a curing accelerator include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N- Examples thereof include amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide, and phosphorus compounds such as triphenylphosphine.
 市販の硬化促進剤としては、例えば四国化成工業社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ社製のU-CAT3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物及びその塩)等が挙げられる。特にこれらに限られるものではなく、熱硬化性樹脂、または熱硬化性樹脂とその硬化剤との反応を促進するものであればよく、単独で又は2種以上を混合して使用してもかまわない。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることができる。 Examples of commercially available curing accelerators include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., U-CAT3503N, U-CAT3502T manufactured by San Apro, Inc. (All are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (both bicyclic amidine compounds and salts thereof), and the like. It is not particularly limited to these, and any thermosetting resin or any one that promotes the reaction between the thermosetting resin and its curing agent may be used alone or in admixture of two or more. Absent. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-triazine / isocyanuric acid adduct, 2,4- S-triazine derivatives such as diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can be used.
(非結晶性シリカ)
 本発明の熱硬化性樹脂組成物に用いられる非結晶性シリカは、無定形の二酸化ケイ素で、X線回折装置により判別することができる。また、本発明の熱硬化性樹脂組成物に用いられる非結晶性シリカは、平均粒径0.1~10μm程度の微粒子である。上記非結晶性シリカとしては、特に限定されるものではないが、例えば球状シリカ、球状多孔質シリカ、板状シリカ、層状シリカ、メソポーラスシリカ、中空シリカ等が挙げられる。中でも、球状シリカは、樹脂中での分散性が良好であり、樹脂の強靭性を付与させるため好適に使用される。本発明では、真球度0.8以上のものを球状シリカと定義する。
(Amorphous silica)
Amorphous silica used in the thermosetting resin composition of the present invention is amorphous silicon dioxide and can be identified by an X-ray diffractometer. The amorphous silica used in the thermosetting resin composition of the present invention is fine particles having an average particle size of about 0.1 to 10 μm. The amorphous silica is not particularly limited, and examples thereof include spherical silica, spherical porous silica, plate-like silica, layered silica, mesoporous silica, and hollow silica. Among these, spherical silica is preferably used because it has good dispersibility in the resin and imparts toughness of the resin. In the present invention, those having a sphericity of 0.8 or more are defined as spherical silica.
 真球度は以下のように測定される。SEMで写真を撮り、その観察される粒子の面積と周囲長から、
      (真球度)={4π×(面積)÷(周囲長)2}
で算出される値である。具体的には画像処理装置を用いて100個の粒子について測定した平均値を採用する。
The sphericity is measured as follows. Taking a picture with SEM, from the area and circumference of the observed particles,
(Sphericity) = {4π × (area) ÷ (perimeter) 2}
Is a value calculated by. Specifically, an average value measured for 100 particles using an image processing apparatus is employed.
 非結晶性シリカ粒子の製造方法は、特に限定されるものではなく当業者に知られた方法を適用することができる。例えば、VMC(Vap-erized Metal Combustion)法により、シリコン粉末を燃焼して製造することができる。VMC法とは、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量を投入し、爆燃を起こさせて酸化物粒子を得る方法である。 The method for producing the amorphous silica particles is not particularly limited, and methods known to those skilled in the art can be applied. For example, it can be manufactured by burning silicon powder by a VMC (Vap-erized Metal Combustion) method. With the VMC method, a chemical flame is formed by a burner in an oxygen-containing atmosphere, and an amount of metal dust that forms part of the target oxide particles is formed in the chemical flame so that a dust cloud is formed. In this method, deflagration is caused to obtain oxide particles.
 これら非結晶性シリカは、単独又は2種類以上を組み合わせて使用することができる。なお、結晶性シリカは人体の影響が懸念されており望ましくない。 These amorphous silicas can be used alone or in combination of two or more. Note that crystalline silica is not desirable because of the concern about the influence of the human body.
 (タルク)
 本発明の熱硬化性樹脂組成物に用いられるタルクとは、滑石を粉砕した微粒子を指し、含水珪酸マグネシウム(化学式:3MgO・4SiO・HO)を意味する。タルクは層状珪酸塩の一種であるが、結晶間に交換性金属イオンを含まない為、化学的に安定していることを特徴とする。
(talc)
Talc used in the thermosetting resin composition of the present invention refers to fine particles obtained by pulverizing talc and means hydrous magnesium silicate (chemical formula: 3MgO.4SiO 2 .H 2 O). Talc is a kind of layered silicate, and since it does not contain exchangeable metal ions between crystals, it is characterized by being chemically stable.
 上記タルクとしては特に限定されることはないが、平均粒径が2μm以下に粉砕・分級することが好ましく、より好ましくは、かつ最大粒径10μm以下に管理されたものである。 The talc is not particularly limited, but is preferably pulverized and classified so that the average particle size is 2 μm or less, more preferably, the maximum particle size is controlled to 10 μm or less.
 上記非結晶性シリカ及びタルクは、表面処理を行うことにより熱硬化性樹脂組成物中の成分への分散性を向上させることも可能である。表面処理に用いられる化合物としては、シラン化合物、チタネート化合物等が知られており、配合前に予め表面処理を施してもよいし、組成物の配合時に添加することも可能である。 The non-crystalline silica and talc can be improved in dispersibility to components in the thermosetting resin composition by performing a surface treatment. Silane compounds, titanate compounds, and the like are known as compounds used for the surface treatment, and the surface treatment may be performed in advance before blending, or may be added when the composition is blended.
(非結晶性シリカ及びタルクの配合割合)
 上記非結晶性シリカ及びタルクは、非結晶性シリカとタルクの総量(合計質量)が、熱硬化性樹脂組成物の不揮発成分中35~70質量%で配合するのが好ましい。総量が、35質量%未満では熱硬化性樹脂組成物の硬化物(絶縁層)の線膨張係数を低減する効果が乏しい。一方、70質量%を超えると熱硬化性樹脂組成物の硬化物(絶縁層)の伸び率が低下し耐クラック性を低下させてしまう。より好ましくは55~70質量%である。
(Blend ratio of amorphous silica and talc)
The amorphous silica and talc are preferably blended so that the total amount (total mass) of the amorphous silica and talc is 35 to 70% by mass in the nonvolatile component of the thermosetting resin composition. When the total amount is less than 35% by mass, the effect of reducing the linear expansion coefficient of the cured product (insulating layer) of the thermosetting resin composition is poor. On the other hand, when it exceeds 70 mass%, the elongation rate of the hardened | cured material (insulating layer) of a thermosetting resin composition will fall, and crack resistance will fall. More preferably, it is 55 to 70% by mass.
 上記非結晶性シリカとタルクとは、非結晶性シリカとタルクの総量(合計質量)に対し、タルクの質量が5~90質量%の配合比率とすることが好ましい。配合比率が5質量%未満ではドライフィルムのハンドリング性を向上させる効果に乏しく、90質量%を超えると硬化物(絶縁層)の線膨張係数の低減効果は飽和するのに対し硬化物の伸び率低下の弊害が大きくなり、両特性のバランスを悪化させてしまう。より好ましい配合比率は、10~70質量%、さらに好ましくは15~60質量%である。 The non-crystalline silica and talc preferably have a talc mass of 5 to 90% by mass with respect to the total amount (total mass) of non-crystalline silica and talc. When the blending ratio is less than 5% by mass, the effect of improving the handleability of the dry film is poor, and when it exceeds 90% by mass, the effect of reducing the linear expansion coefficient of the cured product (insulating layer) is saturated while the elongation of the cured product is increased. The detrimental effect of the reduction increases, and the balance between the two characteristics deteriorates. A more preferable blending ratio is 10 to 70% by mass, and further preferably 15 to 60% by mass.
(他の配合成分)
 本発明の熱硬化性樹脂組成物には、必須成分である上記熱硬化性樹脂、フェノール系硬化剤、非結晶性シリカ及びタルクに加えて、必要に応じて、例えば、上記した熱硬化性樹脂、フェノール系硬化剤と重合可能な樹脂を含有してもよい。このような重合可能な樹脂としては、特に限定されるものではないが、例えばシアネートエステル樹脂、フェノキシ樹脂、ベンゾオキサジン樹脂、変性ポリフェニレンエーテル樹脂、熱硬化型変性アミドイミド樹脂、エポキシ化ポリブタジエンゴム、ゴム変性エポキシ樹脂等が挙げられる。これらの重合可能な樹脂は、単独又は2種類以上組み合わせて配合できる。
(Other ingredients)
In addition to the thermosetting resin, phenolic curing agent, amorphous silica and talc, which are essential components, the thermosetting resin composition of the present invention includes, for example, the above-described thermosetting resin as necessary. A resin that can be polymerized with a phenolic curing agent may be contained. Such a polymerizable resin is not particularly limited. For example, cyanate ester resin, phenoxy resin, benzoxazine resin, modified polyphenylene ether resin, thermosetting modified amide imide resin, epoxidized polybutadiene rubber, rubber modified An epoxy resin etc. are mentioned. These polymerizable resins can be blended alone or in combination of two or more.
 また、本発明の熱硬化性樹脂組成物には、粘度調整や塗工特性付与を目的として有機溶剤が含有されていてもよい。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン、アセトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の酢酸エステル類、石油ナフサ等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。これら有機溶剤は、単独又は2種類以上組み合わせて使用してもよい。 In addition, the thermosetting resin composition of the present invention may contain an organic solvent for the purpose of adjusting viscosity and imparting coating properties. Examples of the organic solvent include ketones such as methyl ethyl ketone, cyclohexanone, acetone and methyl isobutyl ketone, acetates such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and diethylene glycol monoethyl ether acetate, and aromatics such as petroleum naphtha. Examples thereof include hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. These organic solvents may be used alone or in combination of two or more.
 本発明の熱硬化性樹脂組成物には、必要に応じてシリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、リン系難燃剤、アンチモン系難燃剤等の難燃剤、酸化防止剤、防錆剤等のような公知の添加剤類を配合することができる。 In the thermosetting resin composition of the present invention, if necessary, an antifoaming agent and / or a leveling agent such as silicone, fluorine and polymer, silane coupling agent such as imidazole, thiazole and triazole Well-known additives such as flame retardants such as phosphorus flame retardants and antimony flame retardants, antioxidants and rust inhibitors can be blended.
(本発明のドライフィルム)
 本発明の熱硬化性樹脂組成物は、多層基板の製造において絶縁層を形成でき、平坦性や膜厚の均一性など工業的にはドライフィルムとして用いることができる。
(Dry film of the present invention)
The thermosetting resin composition of the present invention can form an insulating layer in the production of a multilayer substrate, and can be used industrially as a dry film such as flatness and film thickness uniformity.
 本発明のドライフィルムは、公知の方法により以下のように製造することができる。すなわち、有機溶剤を含有する熱硬化性樹脂組成物ワニスを、フィルムコーター、フィルムアプリケーター、バーコーター、ダイコーター等を用いて、支持体である支持フィルムに塗工し、仮乾燥又は仮硬化を行って、ドライフィルムを形成する。そして、必要に応じて樹脂組成物面に保護フィルムをラミネートすることで3層構造とする。 The dry film of the present invention can be produced by a known method as follows. That is, a thermosetting resin composition varnish containing an organic solvent is applied to a support film as a support using a film coater, a film applicator, a bar coater, a die coater, etc., and is temporarily dried or temporarily cured. To form a dry film. And it is set as a 3 layer structure by laminating | stacking a protective film on the resin composition surface as needed.
 上記支持フィルム又は保護フィルムは、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等のポリエステル等からなるフィルムを挙げることができる。支持フィルム、保護フィルムには、使用する際に選択的に剥離できるようエンボス処理、コロナ処理、離型剤処理等施しても良い。 Examples of the support film or protective film include films made of polyester such as polyethylene, polypropylene, and polyethylene terephthalate. The support film and the protective film may be subjected to an embossing treatment, a corona treatment, a release agent treatment or the like so that they can be selectively peeled off when used.
 本発明のドライフィルムの厚みは、特に制限されることはないが、5~150μmであることが好ましい。5μmより薄いとラミネート後の平坦性が乏しくなり、150μmより厚いと支持フィルムに塗工したワニスの乾燥性が低下し、ドライフィルムの生産性が低下する。より好ましくは10~100μmであり、特に好ましくは15~75μmである。 The thickness of the dry film of the present invention is not particularly limited, but is preferably 5 to 150 μm. If it is thinner than 5 μm, the flatness after lamination becomes poor, and if it is thicker than 150 μm, the drying property of the varnish coated on the support film is lowered, and the productivity of the dry film is lowered. More preferably, it is 10 to 100 μm, and particularly preferably 15 to 75 μm.
 本発明においては、このドライフィルムの硬化物の25~150℃間での線膨張係数が、銅の線膨張係数の0.5~2倍(8~40ppm/℃)程度、特に17~30ppm/℃であることが好ましい。線膨張係数が30ppm/℃を超えると、実装工程や信頼性試験における熱履歴により、異材質間の温度変化による膨張量の違いにより起こる応力によって、半導体パッケージ基板に反りやクラックによる断線等の不具合が生じやすくなる。 In the present invention, the cured product of this dry film has a linear expansion coefficient between 25 and 150 ° C. of about 0.5 to 2 times (8 to 40 ppm / ° C.), particularly 17 to 30 ppm / ° C. It is preferable that it is ° C. If the linear expansion coefficient exceeds 30ppm / ° C, the semiconductor package substrate may be warped or broken due to cracks due to the stress caused by the difference in expansion due to temperature changes between different materials due to thermal history in the mounting process and reliability test. Is likely to occur.
(プリント配線板)
 次に、上記のように製造されたドライフィルムを用いて、粗化、めっき工程を経て多層プリント配線板を製造する方法を説明する。
(Printed wiring board)
Next, a method for producing a multilayer printed wiring board through a roughening and plating process using the dry film produced as described above will be described.
 先ず、真空ラミネーターを用いて、コア基板となる配線基板にドライフィルムをラミネートする。配線基板に用いられる基材としては、特に制限はないが一般的にはガラスエポキシ基板、BT基板等が挙げられる。上記ドライフィルムがロール状で保護フィルムを施している場合には、保護フィルムを除去し、必要な寸法に裁断し、仮貼りを行うオートカットラミネーターを用いると生産性が向上するが、一般的に搬送ローラーが数多く設置されている為、優れたハンドリング性が求められる。 First, using a vacuum laminator, a dry film is laminated on the wiring substrate that becomes the core substrate. Although there is no restriction | limiting in particular as a base material used for a wiring board, Generally a glass epoxy board | substrate, BT board | substrate etc. are mentioned. If the dry film has a roll and a protective film, the protective film is removed, cut to the required dimensions, and an auto-cut laminator that temporarily attaches improves productivity. Since many transport rollers are installed, excellent handling is required.
 ドライフィルムを配線基板にラミネートした後、支持フィルムを剥離し、熱硬化することにより配線基板に絶縁層を形成することができる。熱硬化の条件は樹脂成分の種類などに応じて選択できるが、一般的には140~200℃で15~180分、好ましくは160~190℃で30~120分の範囲で設定される。 After laminating the dry film to the wiring board, the insulating film can be formed on the wiring board by peeling the support film and thermosetting. The thermosetting conditions can be selected according to the type of resin component, etc., but are generally set in the range of 140 to 200 ° C. for 15 to 180 minutes, preferably 160 to 190 ° C. for 30 to 120 minutes.
 絶縁層形成後、コア基板との電気的接続を得る為に、絶縁層に穴あけを行ってビアホール又はスルーホールを形成する。穴あけ工程は、一般的にドリル、炭酸ガスレーザー、UV-YAGレーザー等の公知の方法で行うことができる。 After forming the insulating layer, a via hole or a through hole is formed by drilling the insulating layer in order to obtain electrical connection with the core substrate. The drilling step can be generally performed by a known method such as a drill, a carbon dioxide laser, or a UV-YAG laser.
 次いで、めっきにより導体層を形成する。一般的には湿式めっきが行われており、先ず、硬化済みの絶縁層表面の粗化処理を行う。粗化液には、過マンガン酸塩の水酸化ナトリウム水溶液が好ましく用いられる。次いで、無電解銅めっきを経て電気硫酸銅めっきにより導体層形成を行う。また、微細な回路を形成する場合は、予めレジストでパターニングを行って無電解めっきを施した後、レジストを除去するセミアディティブ法が用いられる。 Next, a conductor layer is formed by plating. In general, wet plating is performed, and first, the surface of the hardened insulating layer is roughened. As the roughening solution, a sodium hydroxide aqueous solution of permanganate is preferably used. Subsequently, a conductor layer is formed by electroless copper plating through electroless copper plating. Moreover, when forming a fine circuit, the semi-additive method of removing a resist after patterning with a resist previously and performing electroless plating is used.
 以下、本発明を実施例により具体的に説明するが、本発明がこれら実施例に限定されるものではない。尚、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.
<実施例1>
 多官能エポキシ樹脂として、ビスフェノールS型エポキシ樹脂(DIC社製、EXA-1517、エポキシ当量約237)60部、液状エポキシとして、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合エポキシ樹脂(新日鐵化学社製、ZX-1059、エポキシ当量約165)40部を用い、フェノール系硬化剤として、クレゾールノボラック樹脂(岐阜セラツク社製、GPX-41、水酸基当量約120)13部、フェノールノボラック樹脂(明和化成社製、HF-1M、水酸基当量約106、軟化点温度86℃)12部を用い、非結晶性シリカ(アドマテックス社製、SO-E2)144部、タルク(日本タルク社製、SG-2000)26部、硬化促進剤として1-ベンジル-2-フェニルイミダゾール(四国化成工業社製、1B2PZ)0.5部、有機溶剤(ジエチレングリコールモノメチルエーテルアセテート、慣用名カルビトールアセテート)20部、添加剤(ビックケミー社製、BYK-352、レベリング剤)1.5部を配合し、ビーズミルで均一に分散して、熱硬化性樹脂組成物ワニスを作製した(不揮発成分中のシリカ及びタルク合計量、約58%、シリカ及びタルク合計量中のタルク量、約15%)。
 次に、得られたワニスを、厚み38μmのポリエチレンテレフタレートフィルム(以下、「PETフィルム」と略称)上に、バーコーターを用いて均一に塗布し、80℃で15分乾燥し、試験用のドライフィルムを作製した。なお、膜厚は、乾燥後の熱硬化性樹脂組成物層の厚みが25μmとなるようバーコーターの塗工条件を設定した。
<Example 1>
As a multifunctional epoxy resin, 60 parts of bisphenol S type epoxy resin (DIC Corporation, EXA-1517, epoxy equivalent of about 237), as liquid epoxy, mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin (Shinichi) Using 40 parts of Sakai Chemical Co., Ltd., ZX-1059, epoxy equivalent of about 165), 13 parts of cresol novolac resin (Gifu Seratsuk, GPX-41, hydroxyl equivalent of about 120) as phenolic curing agent (phenol novolac resin ( 12 parts of Meiwa Kasei Co., Ltd., HF-1M, hydroxyl equivalent of about 106, softening point temperature 86 ° C., 144 parts of amorphous silica (manufactured by Admatechs, SO-E2), talc (manufactured by Nippon Talc, SG -2000) 26 parts, 1-benzyl-2-phenylimidazole as curing accelerator ( Contains 1 part Kokusei Kogyo Co., Ltd. 1B2PZ, 20 parts organic solvent (diethylene glycol monomethyl ether acetate, commonly used carbitol acetate), 1.5 parts additive (BYC-352, BYK-352, leveling agent) Then, it was uniformly dispersed by a bead mill to prepare a thermosetting resin composition varnish (total amount of silica and talc in the nonvolatile component, about 58%, amount of talc in the total amount of silica and talc, about 15%).
Next, the obtained varnish was uniformly coated on a polyethylene terephthalate film (hereinafter abbreviated as “PET film”) having a thickness of 38 μm using a bar coater, dried at 80 ° C. for 15 minutes, and dried for testing. A film was prepared. The coating conditions of the bar coater were set so that the thickness of the thermosetting resin composition layer after drying was 25 μm.
<実施例2>
 非結晶性シリカ(アドマテックス社製、SO-E2)119部、タルク(日本タルク社製、SG-2000)51部に変更したこと以外は実施例1と同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が約30%のドライフィルムを得た。
<Example 2>
In the same manner as in Example 1, except for changing to 119 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 51 parts of talc (manufactured by Nippon Talc, SG-2000), A dry film was obtained in which the total amount of talc was about 58% and the amount of talc in the total amount of silica and talc was about 30%.
<実施例3>
 非結晶性シリカ(アドマテックス社製、SO-E2)68部、タルク(日本タルク社製、SG-2000)102部に変更したこと以外は実施例1と同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が約60%のドライフィルムを得た。
<Example 3>
In the same manner as in Example 1 except for changing to 68 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 102 parts of talc (manufactured by Nippon Talc, SG-2000), A dry film having a total talc amount of about 58% and a talc amount in the total amount of silica and talc of about 60% was obtained.
<実施例4>
 多官能エポキシ樹脂として、ビスフェノールS型エポキシ樹脂(DIC社製、EXA-1517、エポキシ当量約237)60部、液状エポキシとして、p-アミノフェノール型エポキシ樹脂(住友化学社製、ELM-100、エポキシ当量約106)40部を用い、フェノール系硬化剤として、クレゾールノボラック樹脂(岐阜セラツク社製、GPX-41、水酸基当量約120)18部、フェノールノボラック樹脂(明和化成社製、HF-1M、水酸基当量約106、軟化点温度86℃)15部を用い、非結晶性シリカ(アドマテックス社製、SO-E2)158部、タルク(日本タルク社製、SG-2000)31部、硬化促進剤として1-ベンジル-2-フェニルイミダゾール(四国化成工業社製、1B2PZ)0.5部、有機溶剤(ジエチレングリコールモノメチルエーテルアセテート、慣用名カルビトールアセテート)20部、添加剤(ビックケミー社製、BYK-352、レベリング剤)1.5部を配合し、ビーズミルで均一に分散して、熱硬化性樹脂組成物ワニスを作製した(不揮発成分中のシリカ及びタルク合計量、約56%、シリカ及びタルク合計量中のタルク量、約17%)。次に、得られたワニスを、厚み38μmのPETフィルム上に、バーコーターを用いて均一に塗布し、80℃で15分乾燥し、試験用のドライフィルムを作製した。なお、膜厚は、乾燥後の熱硬化性樹脂組成物層の厚みが25μmとなるようバーコーターの塗工条件を設定した。
<Example 4>
As a polyfunctional epoxy resin, 60 parts of a bisphenol S type epoxy resin (DIC, EXA-1517, epoxy equivalent of about 237) and as a liquid epoxy, a p-aminophenol type epoxy resin (Sumitomo Chemical Co., ELM-100, epoxy) The equivalent of about 106) is 40 parts, and the phenolic curing agent is cresol novolac resin (Gifu Seratsuk, GPX-41, hydroxyl equivalent: about 120), phenol novolac resin (Maywa Kasei, HF-1M, hydroxyl group) 15 parts by weight of about 106 equivalent, softening point temperature 86 ° C, 158 parts of amorphous silica (manufactured by Admatex, SO-E2), 31 parts of talc (manufactured by Nippon Talc, SG-2000), as a curing accelerator 0.5 part of 1-benzyl-2-phenylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., 1B2PZ), organic solvent 20 parts of diethylene glycol monomethyl ether acetate, common name carbitol acetate) and 1.5 parts of additive (BYK-352, leveling agent, manufactured by BYK Chemie Co., Ltd.) are blended and dispersed uniformly with a bead mill to form a thermosetting resin composition. A varnish was prepared (total amount of silica and talc in nonvolatile components, about 56%, amount of talc in total amount of silica and talc, about 17%). Next, the obtained varnish was uniformly applied onto a PET film having a thickness of 38 μm using a bar coater, and dried at 80 ° C. for 15 minutes to prepare a dry film for testing. The coating conditions of the bar coater were set so that the thickness of the thermosetting resin composition layer after drying was 25 μm.
<実施例5>
 非結晶性シリカ(アドマテックス社製、SO-E2)158部、タルク(日本タルク社製、SG-2000)34部に変更し、高分子樹脂としてフェノキシ樹脂(新日鐵化学社製、FX293AM40、高耐熱性グレード、不揮発成分40%)11%配合すること以外は実施例4と同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が約18%のドライフィルムを得た。
<Example 5>
It was changed to 158 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 34 parts of talc (manufactured by Nippon Talc, SG-2000), and phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., FX293AM40, High heat-resistant grade, nonvolatile component 40%) Except for blending 11%, the total amount of silica and talc in the nonvolatile component is about 58%, and the amount of talc in the total amount of silica and talc is about An 18% dry film was obtained.
<実施例6>
 多官能エポキシ樹脂として、ナフタレン型エポキシ樹脂(DIC社製、HP-4032、エポキシ当量約140)80部、液状エポキシとして、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合エポキシ樹脂(新日鐵化学社製、ZX-1059、エポキシ当量約165)20部を用い、フェノール系硬化剤として、クレゾールノボラック樹脂(岐阜セラツク社製、GPX-41、水酸基当量約120)20部、フェノールノボラック樹脂(明和化成社製、HF-1M、水酸基当量約106、軟化点温度86℃)18部を用い、非結晶性シリカ(アドマテックス社製、SO-E2)150部、タルク(日本タルク社製、SG-2000)50部、硬化促進剤として1-ベンジル-2-フェニルイミダゾール(四国化成工業社製、1B2PZ)0.5部、有機溶剤(ジエチレングリコールモノメチルエーテルアセテート、慣用名カルビトールアセテート)20部、添加剤(ビックケミー社製、BYK-352、レベリング剤)1.5部を配合し、ビーズミルで均一に分散して、熱硬化性樹脂組成物ワニスを作製した(不揮発成分中のシリカ及びタルク合計量、約59%、シリカ及びタルク合計量中のタルク量、約25%)。次に、得られたワニスを、厚み38μmのPETフィルム上に、バーコーダーを用いて均一に塗布し、80℃で15分乾燥し、試験用のドライフィルムを作製した。なお、膜厚は、乾燥後の熱硬化性樹脂組成物層の厚みが25μmとなるようバーコーダーの塗工条件を設定した。
<Example 6>
As a polyfunctional epoxy resin, 80 parts of a naphthalene type epoxy resin (manufactured by DIC, HP-4032, epoxy equivalent of about 140), as a liquid epoxy, a mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin (Nippon Steel) 20 parts of Chemical Co., Ltd., ZX-1059, epoxy equivalent of about 165), 20 parts of cresol novolac resin (Gift Seratku, GPX-41, hydroxyl equivalent of about 120), phenol novolac resin (Maywa) 18 parts by Kasei Co., Ltd., HF-1M, hydroxyl equivalent of about 106, softening point temperature of 86 ° C., 150 parts of amorphous silica (manufactured by Admatechs, SO-E2), talc (manufactured by Nippon Talc, SG- 2000) 50 parts, 1-benzyl-2-phenylimidazole (Shikoku Chemicals) as a curing accelerator 1 part B1PZ (trade name), 20 parts organic solvent (diethylene glycol monomethyl ether acetate, commonly used carbitol acetate), 1.5 parts additive (BYC-352, BYK-352, leveling agent) A thermosetting resin composition varnish was prepared by uniformly dispersing with a bead mill (total amount of silica and talc in nonvolatile components, about 59%, amount of talc in total amount of silica and talc, about 25%). Next, the obtained varnish was uniformly coated on a PET film having a thickness of 38 μm using a bar coder, and dried at 80 ° C. for 15 minutes to prepare a test dry film. The coating conditions of the bar coder were set so that the thickness of the thermosetting resin composition layer after drying was 25 μm.
<実施例7>
 非結晶性シリカ(アドマテックス社製、SO-E2)225部、タルク(日本タルク社製、SG-2000)75部に変更したこと以外は実施例6と同様にして、不揮発成分中のシリカ及びタルク合計量が約68%、シリカ及びタルク合計量中のタルク量が25%のドライフィルムを得た。
<Example 7>
In the same manner as in Example 6 except that 225 parts of amorphous silica (manufactured by Admatechs, SO-E2) and 75 parts of talc (manufactured by Nippon Talc, SG-2000) were used, A dry film was obtained in which the total amount of talc was about 68% and the amount of talc in the total amount of silica and talc was 25%.
<比較例1>
 実施例1における層状珪酸塩であるタルクを配合せず、タルク分の質量を非結晶性シリカに置き換えたこと以外は同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が0%のドライフィルムを得た。
<Comparative Example 1>
The total amount of silica and talc in the non-volatile component was about 58%, except that the talc that is the layered silicate in Example 1 was not blended and the mass of the talc was replaced with amorphous silica. A dry film having a talc amount of 0% in the total amount of talc was obtained.
<比較例2>
 実施例1におけるフェノール系硬化剤であるクレゾールノボラック樹脂(岐阜セラツク社製、GPX-41、水酸基当量約120)を配合せず、水酸基数で同数分のフェノールノボラック樹脂(明和化成社製、HF-1M、水酸基当量約106、軟化点温度86℃)に置き換えたこと以外は同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が15%のドライフィルムを得た。
<Comparative Example 2>
A cresol novolak resin (GPF-41, manufactured by Gifu Seratsk Co., Ltd., hydroxyl equivalent: about 120), which is a phenolic curing agent in Example 1, was not blended, and a phenol novolak resin (manufactured by Meiwa Kasei Co., Ltd., HF-) having the same number of hydroxyl groups. The total amount of silica and talc in the non-volatile component is about 58%, and the amount of talc in the total amount of silica and talc is 15%. A dry film was obtained.
<比較例3>
 実施例1における非結晶性シリカを配合せず、非結晶性シリカ分の質量をタルクに置き換えたこと以外は同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が100%のドライフィルムを得た。
<Comparative Example 3>
The total amount of silica and talc in the non-volatile component was about 58% in the same manner except that the amorphous silica in Example 1 was not blended and the mass of the amorphous silica was replaced with talc. A dry film having a talc content of 100% was obtained.
<比較例4>
 実施例6における層状珪酸塩であるタルクを配合せず、タルク分の質量を非結晶性シリカに置き換えたこと以外は同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が0%のドライフィルムを得た。
<Comparative Example 4>
The total amount of silica and talc in the non-volatile component was about 58%, except that the talc that is the layered silicate in Example 6 was not blended and the mass of the talc was replaced with amorphous silica. A dry film having a talc amount of 0% in the total amount of talc was obtained.
<比較例5>
  実施例6における層状珪酸塩であるタルクの代わりに、結晶間に交換性金属カチオンを有する層状珪酸塩化合物である合成ヘクトライト(コープケミカル社製、ルーセンタイトSTN)でタルク分の質量分を置き換えたこと以外は同様にして、不揮発成分中のシリカ及びタルク合計量が約58%、シリカ及びタルク合計量中のタルク量が0%のドライフィルムを得た。
<Comparative Example 5>
Instead of talc, which is the layered silicate in Example 6, the mass content of talc was replaced with synthetic hectorite (Lucentite STN, manufactured by Corp Chemical Co.), which is a layered silicate compound having an exchangeable metal cation between crystals. In the same manner as above, a dry film in which the total amount of silica and talc in the non-volatile component was about 58% and the amount of talc in the total amount of silica and talc was 0% was obtained.
 上記実施例及び比較例の熱硬化性樹脂組成物を構成する各成分及びその配合量を表1に示す。 Table 1 shows the components constituting the thermosetting resin compositions of the above Examples and Comparative Examples and their blending amounts.
Figure JPOXMLDOC01-appb-T000001
[備考]
*1:EXA-1517(ビスフェノールS型エポキシ樹脂;DIC社製)
*2:HP-4032(ナフタレン型エポキシ樹脂;DIC社製)
*3:ZX-1059(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物;新日鐵化学社製)
*4:ELM-100(アミノフェノール型エポキシ樹脂;住友化学社製)
*5:GPX-41(クレゾールノボラック樹脂;岐阜セラツク社製)
*6:HF-1M(フェノールノボラック樹脂;明和化成社製)
*7:FX-293AM40(フェノキシ樹脂;新日鐵化学社製)
*8:SO-E2(球状シリカ微粒子;アドマテック社製)
*9:SG-2000(タルク;日本タルク社製)
*10:ルーセンタイトSTN(合成ヘクトタイト;コープケミカル社製)
*11:ジエチレングリコールモノメチルエーテルアセテート(神港有機化学工業社製)
*12:1B2PZ(1-ベンジル-2-フェニルイミダゾール;四国化成工業社製)
*13:BYK-352(消泡・レベリング剤;ビックケミージャパン社製)
Figure JPOXMLDOC01-appb-T000001
[Remarks]
* 1: EXA-1517 (bisphenol S type epoxy resin; manufactured by DIC)
* 2: HP-4032 (Naphthalene type epoxy resin; manufactured by DIC)
* 3: ZX-1059 (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin; manufactured by Nippon Steel Chemical Co., Ltd.)
* 4: ELM-100 (aminophenol type epoxy resin; manufactured by Sumitomo Chemical Co., Ltd.)
* 5: GPX-41 (Cresol novolac resin; manufactured by Gifu Seratsk)
* 6: HF-1M (phenol novolac resin; manufactured by Meiwa Kasei Co., Ltd.)
* 7: FX-293AM40 (phenoxy resin; manufactured by Nippon Steel Chemical Co., Ltd.)
* 8: SO-E2 (spherical silica fine particles; manufactured by Admatech)
* 9: SG-2000 (talc; manufactured by Nihon Talc)
* 10: Lucentite STN (synthetic hectite; manufactured by Corp Chemical)
* 11: Diethylene glycol monomethyl ether acetate (manufactured by Shinko Organic Chemical Industries)
* 12: 1B2PZ (1-benzyl-2-phenylimidazole; manufactured by Shikoku Chemicals)
* 13: BYK-352 (antifoam / leveling agent; manufactured by Big Chemie Japan)
 実施例及び比較例で得られたドライフィルムを用いて以下の評価試験を行った。評価結果を表2に示す。
(評価項目及び評価方法)
線膨張係数:
 実施例及び比較例で得られたドライフィルムを銅箔の光沢面へ真空ラミネーター(ニチゴーモートン社製、CVP-300)にてラミネートした後PETフィルムを剥離し、180℃で60分硬化させて硬化物を得た。その硬化物から銅箔を除去し、幅約3mm、長さ約15mmの試験片に切断し、熱機械的分析装置(セイコーインスツルメンツ社製、TMA-6000)を用いて、線膨張係数を測定した。昇温速度は、5℃/分とした。線膨張係数(α1)を25~150℃の温度範囲で求めた。
The following evaluation tests were performed using the dry films obtained in Examples and Comparative Examples. The evaluation results are shown in Table 2.
(Evaluation items and evaluation methods)
Linear expansion coefficient:
The dry films obtained in Examples and Comparative Examples were laminated on the glossy surface of copper foil with a vacuum laminator (CVP-300, manufactured by Nichigo Morton), and then the PET film was peeled off and cured at 180 ° C. for 60 minutes to be cured. I got a thing. The copper foil was removed from the cured product, cut into a test piece having a width of about 3 mm and a length of about 15 mm, and the linear expansion coefficient was measured using a thermomechanical analyzer (manufactured by Seiko Instruments Inc., TMA-6000). . The heating rate was 5 ° C./min. The linear expansion coefficient (α1) was determined in the temperature range of 25 to 150 ° C.
破断点伸び率(機械強度):
 実施例及び比較例で得られたドライフィルムを銅箔の光沢面へ真空ラミネーター(ニチゴーモートン社製、CVP-300)にてラミネートした後PETフィルムを剥離し、180℃で60分硬化させて硬化物を得た。その硬化物から銅箔を除去し、幅約5mm、長さ約80mmの試験片を切断し、引っ張り試験機(島津製作所社製、オートグラフAGS-100N)を用いて、破断点伸び率を測定した。測定条件は、サンプル幅約10mm、支点間距離約40mm、引っ張り速度は1.0mm/minとし、破断までの伸び率を破断点伸び率とした。
Elongation at break (mechanical strength):
The dry films obtained in Examples and Comparative Examples were laminated on the glossy surface of copper foil with a vacuum laminator (CVP-300, manufactured by Nichigo Morton), and then the PET film was peeled off and cured at 180 ° C. for 60 minutes to be cured. I got a thing. Copper foil is removed from the cured product, a test piece having a width of about 5 mm and a length of about 80 mm is cut, and the elongation at break is measured using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-100N). did. The measurement conditions were a sample width of about 10 mm, a fulcrum distance of about 40 mm, a pulling speed of 1.0 mm / min, and the elongation rate until breakage was the elongation at breakage point.
ハンドリング性:
 実施例及び比較例で得られたドライフィルムを、約50mm×約200mmに切断し、円筒型マンドレル試験機(BYKガードナー社、No.5710)を用いて評価した。組成物を塗布した面を外側に配置し、芯棒を中心に屈曲させクラック発生の有無を評価した。芯棒の直径は2~16mm、間隔は2mmとした。
 ○;Φ6mm以下
 △;Φ8mm~Φ12mm
 ×;Φ16mm以上
Handling characteristics:
The dry films obtained in Examples and Comparative Examples were cut into about 50 mm × about 200 mm and evaluated using a cylindrical mandrel tester (BYK Gardner, No. 5710). The surface to which the composition was applied was placed on the outside, bent around the core bar, and evaluated for the occurrence of cracks. The diameter of the core rod was 2 to 16 mm, and the interval was 2 mm.
○: Φ6mm or less △; Φ8mm to Φ12mm
×: Φ16mm or more
ラミネート性:
 実施例及び比較例で得られたドライフィルムを、予め表面処理(メック社製、CZ-8101、エッチング量約1.0μm)を行った銅張積層板に真空ラミネーター(ニチゴーモートン社製、CVP-300)を用いてラミネートした後PETフィルムを剥離し、180℃で60分硬化させて評価基板を作製した。ラミネート条件は、温度100℃、ラミネート圧0.5MPa、真空時間20秒、ステップダウン1秒、加圧時間19秒とし、硬化後の硬化物の状態を目視で評価した。
 ○;接着性に問題ないもの
 △;部分的に硬化物の浮きや剥がれが見られるもの
 ×;全く接着できなかったもの
Laminating properties:
The dry films obtained in Examples and Comparative Examples were subjected to surface treatment (MEC, CZ-8101, etching amount: about 1.0 μm) on a copper-clad laminate (vacuum laminator (Nichigo Morton, CVP-)). 300), the PET film was peeled off and cured at 180 ° C. for 60 minutes to prepare an evaluation substrate. Lamination conditions were a temperature of 100 ° C., a lamination pressure of 0.5 MPa, a vacuum time of 20 seconds, a step down of 1 second, and a pressurization time of 19 seconds, and the state of the cured product after curing was visually evaluated.
○: No problem in adhesion △: Partially lifted or peeled cured product ×: No adhesion at all
導体めっきピール強度:
 実施例及び比較例で得られたドライフィルムを、予め表面処理(メック社製、CZ-8101、エッチング量約1.0μm)を行った銅張積層板に真空ラミネーター(ニチゴーモートン社製、CVP-300)を用いてラミネートした後PETフィルムを剥離し、180℃で60分硬化させて評価基板を作製した。
Conductor plating peel strength:
The dry films obtained in Examples and Comparative Examples were subjected to surface treatment (MEC, CZ-8101, etching amount: about 1.0 μm) on a copper-clad laminate (vacuum laminator (Nichigo Morton, CVP-)). 300), the PET film was peeled off and cured at 180 ° C. for 60 minutes to prepare an evaluation substrate.
 評価基板を、膨潤液(アトテックジャパン社製、スウェリングディップセキュリガントPと水酸化ナトリウム水溶液(400g/L)の混合液)に80℃で10分間浸漬し、次に粗化液(アトテックジャパン社製、コンセントレートコンパクトCPと水酸化ナトリウム水溶液(400g/L)の混合液)に80℃で20分浸漬し、最後に還元液(アトテックジャパン社製、リダクションソリューションセキュリガントP500と硫酸の混合液)に50℃で5分浸漬し、粗化処理を行った。その後、無電解めっき用のクリーナー液、触媒液、還元液に浸漬し、次に無電解めっきに浸漬した後、100℃にて30間アニール処理を行った後に、硫酸銅電気めっきを行い、最後に180℃で60分間アニール処理を行って導体めっき層を形成した。このときの導体厚みをマイクロメーターで測定したところ25μm±5μmであった。 The evaluation substrate is immersed in a swelling solution (Atotech Japan Co., Ltd., a mixture of Swelling Dip Securigant P and an aqueous sodium hydroxide solution (400 g / L)) at 80 ° C. for 10 minutes, and then a roughening solution (Atotech Japan Co., Ltd.). Manufactured by Concentrate Compact CP and sodium hydroxide aqueous solution (400 g / L) at 80 ° C. for 20 minutes, and finally reduced solution (Atotech Japan Co., Ltd., Reduction Solution Securigant P500 and sulfuric acid mixture) Was immersed in the solution at 50 ° C. for 5 minutes, and roughened. Then, after immersing in cleaner solution, catalyst solution, reducing solution for electroless plating, and then immersing in electroless plating, after annealing at 100 ° C. for 30 hours, copper sulfate electroplating was performed. Annealing treatment was performed at 180 ° C. for 60 minutes to form a conductor plating layer. The conductor thickness at this time was measured with a micrometer and found to be 25 μm ± 5 μm.
 得られた導体めっき層に約10mm×約80mmの寸法でドライフィルム層に到達する深さで切り込みをいれ、端部を少々剥がして掴みしろを確保した後に掴み用治具で掴み、引っ張り試験機(島津製作所社製、オートグラフAGS-100N)を用いて、導体めっきピール強度を測定した。測定条件は、室温下、引っ張り速度は50mm/minとし、35mm引き剥がした時の平均荷重を測定した。
 ○;ピール強度が4N/cmを超えるもの
 △;ピール強度が2N/cm~4N/cmのもの
 ×;ピール強度が2N/cm未満のもの
The obtained conductor plating layer is cut with a depth of about 10 mm × about 80 mm to reach the dry film layer, peeled off a little to secure a grip margin, and then gripped with a gripping jig. Using an autograph AGS-100N (manufactured by Shimadzu Corporation), the conductor plating peel strength was measured. The measurement conditions were room temperature, the pulling speed was 50 mm / min, and the average load when peeling 35 mm was measured.
○: Peel strength exceeding 4 N / cm Δ: Peel strength of 2 N / cm to 4 N / cm ×: Peel strength of less than 2 N / cm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例及び比較例から明らかなように、非結晶性シリカとタルクを併用した実施例は、何れも25~150℃の線膨張係数(α1)とハンドリング性を両立し、破断点伸び率、ラミネート性、導体めっきピール強度を良好に維持することができる。これに対し、タルクを含有しない比較例1、タルク量が本発明の配合量より少ない比較例2は、線膨張係数が高く、ハンドリング性も十分ではない。非結晶性シリカを含まない比較例3は、線膨張係数を低くできるが、破断点伸び率が低く、ラミネート性が悪い。タルクを含有せず、これを非結晶性シリカに置き換えた比較例4は、線膨張係数が高い。タルクに代わり同じ層状珪酸塩である合成ヘクトライトを配合した比較例5は、同樹脂組成で層状珪酸塩を含有しない比較例4より線膨張係数が低いが、破断点伸び率、導体めっきピール強度が劣る。 As is clear from the above examples and comparative examples, the examples in which amorphous silica and talc are used in combination both have a linear expansion coefficient (α1) of 25 to 150 ° C. and handling properties, and the elongation at break. In addition, the laminate property and the conductor plating peel strength can be maintained well. On the other hand, Comparative Example 1 that does not contain talc and Comparative Example 2 in which the amount of talc is less than the blending amount of the present invention have a high linear expansion coefficient, and handling properties are not sufficient. Comparative Example 3 containing no amorphous silica can reduce the linear expansion coefficient, but has a low elongation at break and poor laminating properties. Comparative Example 4 which does not contain talc and is replaced with amorphous silica has a high linear expansion coefficient. Comparative Example 5 containing synthetic hectorite, which is the same layered silicate instead of talc, has a lower linear expansion coefficient than Comparative Example 4 having the same resin composition but no layered silicate, but the elongation at break and the peel strength of the conductor plating Is inferior.

Claims (5)

  1.  熱硬化性樹脂、フェノール系硬化剤、非結晶性シリカ及びタルクを含有することを特徴とする熱硬化性樹脂組成物。 A thermosetting resin composition comprising a thermosetting resin, a phenolic curing agent, amorphous silica, and talc.
  2.  前記非結晶性シリカとタルクの総量が、組成物不揮発分量中35~70質量%であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the total amount of the amorphous silica and talc is 35 to 70% by mass in the nonvolatile content of the composition.
  3.  前記フェノール系硬化剤の軟化点温度が120℃以上であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, wherein the phenolic curing agent has a softening point temperature of 120 ° C or higher.
  4.  請求項1から請求項3の何れか1項に記載の熱硬化性樹脂組成物を用いて作製したドライフィルム。 A dry film produced using the thermosetting resin composition according to any one of claims 1 to 3.
  5.  硬化温度25~150℃での硬化物の線膨張係数が、17~30ppm/℃であることを特徴とする請求項4に記載のドライフィルム。 The dry film according to claim 4, wherein the linear expansion coefficient of the cured product at a curing temperature of 25 to 150 ° C is 17 to 30 ppm / ° C.
PCT/JP2010/005492 2009-09-15 2010-09-07 Heat-curable resin composition WO2011033739A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080039365.5A CN102482501B (en) 2009-09-15 2010-09-07 Hot curing resin composition
KR1020127005605A KR101380103B1 (en) 2009-09-15 2010-09-07 Heat-curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213626A JP5588646B2 (en) 2009-09-15 2009-09-15 Thermosetting resin composition and dry film
JP2009-213626 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011033739A1 true WO2011033739A1 (en) 2011-03-24

Family

ID=43758354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005492 WO2011033739A1 (en) 2009-09-15 2010-09-07 Heat-curable resin composition

Country Status (4)

Country Link
JP (1) JP5588646B2 (en)
KR (1) KR101380103B1 (en)
CN (1) CN102482501B (en)
WO (1) WO2011033739A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468954B2 (en) * 2010-03-26 2014-04-09 パナソニック株式会社 Liquid epoxy resin composition and semiconductor device
JP2013082873A (en) * 2011-09-28 2013-05-09 Sekisui Chem Co Ltd B-stage film and multilayer board
EP2812390B1 (en) * 2012-02-10 2016-04-06 3M Innovative Properties Company Anticorrosion coatings
JP6742796B2 (en) 2015-07-21 2020-08-19 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP6808985B2 (en) * 2016-06-09 2021-01-06 住友ベークライト株式会社 Resin film, resin film with carrier, printed wiring board and semiconductor device
JP7085857B2 (en) * 2017-03-01 2022-06-17 ナミックス株式会社 Resin composition, protective film for chip resistors, and chip resistors
JP2023082224A (en) * 2020-04-14 2023-06-14 太陽ホールディングス株式会社 Curable resin composition, dry film, cured object, wiring board and electronic part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280427A (en) * 1988-09-14 1990-03-20 Asahi Denka Kogyo Kk Curable epoxy resin composition
JP2001049220A (en) * 1999-08-05 2001-02-20 Nippon Steel Chem Co Ltd Composition for film-type adhesive
WO2005056632A1 (en) * 2003-12-08 2005-06-23 Sekisui Chemical Co., Ltd. Thermosetting resin composition, resin sheet and resin sheet for insulated substrate
WO2008087890A1 (en) * 2007-01-15 2008-07-24 Taiyo Ink Mfg. Co., Ltd. Thermosetting resin composition
WO2008126411A1 (en) * 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for manufacturing multilayer printed wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134303A (en) * 2006-04-28 2011-07-27 日立化成工业株式会社 Resin composition, prepreging, laminating, and wiring board
JP5024205B2 (en) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280427A (en) * 1988-09-14 1990-03-20 Asahi Denka Kogyo Kk Curable epoxy resin composition
JP2001049220A (en) * 1999-08-05 2001-02-20 Nippon Steel Chem Co Ltd Composition for film-type adhesive
WO2005056632A1 (en) * 2003-12-08 2005-06-23 Sekisui Chemical Co., Ltd. Thermosetting resin composition, resin sheet and resin sheet for insulated substrate
WO2008087890A1 (en) * 2007-01-15 2008-07-24 Taiyo Ink Mfg. Co., Ltd. Thermosetting resin composition
WO2008126411A1 (en) * 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for manufacturing multilayer printed wiring board

Also Published As

Publication number Publication date
JP5588646B2 (en) 2014-09-10
KR20120052380A (en) 2012-05-23
CN102482501B (en) 2015-08-05
JP2011063653A (en) 2011-03-31
CN102482501A (en) 2012-05-30
KR101380103B1 (en) 2014-03-31

Similar Documents

Publication Publication Date Title
JP6937701B2 (en) Dry film and printed wiring board
US7989561B2 (en) Composition of liquid, solid and semisolid epoxy resins
JP5588646B2 (en) Thermosetting resin composition and dry film
JP2008037957A (en) Thermosetting resin composition, b-stage resin film and multilayer build-up substrate
JP2007224242A (en) Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
JP2017003967A (en) Alkali developable resin composition, dry film, cured article and printed wiring board
JP2016079384A (en) Dry film, cured product, and printed wiring board
JP2006290997A (en) Thermosetting resin composition, adhesive sheet using the composition and adhesive sheet with copper foil
TWI775993B (en) Curable resin composition, dry film, cured product, and printed wiring board
WO2015016360A1 (en) Photosensitive-resin composition
JP5193925B2 (en) Thermosetting resin composition and cured product thereof
JP5164092B2 (en) Thermosetting composition and cured product thereof
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
JP2006257153A (en) Resin composition for copper foil with resin and method for producing the same
JP2003277591A (en) Epoxy resin composition, prepreg and laminate
JPWO2016088744A1 (en) Resin sheet and printed wiring board
JP7133955B2 (en) Thermosetting resin composition, dry film, cured product, and electronic component
JP2022161968A (en) Resin material and multilayer printed wiring board
JP5662858B2 (en) B-stage film and multilayer substrate
JP5098432B2 (en) Metal foil with adhesive layer, metal-clad laminate and printed wiring board using the same
CN105802129B (en) Porefilling heat curing resin composition, solidfied material and the printed circuit board of printed circuit board
JP7168443B2 (en) Curable resin composition, dry film, cured product, wiring board and electronic component
CN111378253B (en) Resin filling material
JP5268233B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
WO2024014435A1 (en) Curable resin composition, curable film, and laminated film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039365.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816854

Country of ref document: EP

Kind code of ref document: A1