WO2011032479A1 - 基于身份标识和位置分离架构的网络及其骨干网和网元 - Google Patents

基于身份标识和位置分离架构的网络及其骨干网和网元 Download PDF

Info

Publication number
WO2011032479A1
WO2011032479A1 PCT/CN2010/076848 CN2010076848W WO2011032479A1 WO 2011032479 A1 WO2011032479 A1 WO 2011032479A1 CN 2010076848 W CN2010076848 W CN 2010076848W WO 2011032479 A1 WO2011032479 A1 WO 2011032479A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network
rid
asn
aid
Prior art date
Application number
PCT/CN2010/076848
Other languages
English (en)
French (fr)
Inventor
吴强
黄兵
符涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012529110A priority Critical patent/JP5506934B2/ja
Priority to EP10816683.6A priority patent/EP2466985B1/en
Priority to US13/496,727 priority patent/US8804746B2/en
Priority to KR1020127009831A priority patent/KR101364402B1/ko
Publication of WO2011032479A1 publication Critical patent/WO2011032479A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5084Providing for device mobility

Definitions

  • the present invention relates to a network architecture in the field of communication technologies, and in particular, to a network based on identity identification and location separation architecture and its components.
  • IP Internet Protocol
  • IP provides a routing function for the Internet (Internet), which assigns logical addresses, ie IP addresses, to all nodes (including hosts and routers). Each port of each host is assigned an IP address.
  • the IP address includes the network prefix and the host part.
  • the IP addresses of all hosts on the same link usually have the same network prefix and different host parts. This allows IP to be routed based on the network prefix portion of the destination node's IP address, allowing the router to maintain a simple network prefix route without having to maintain a separate route for each host. In this case, since the network prefix route is used, when the node switches from one link to another without changing its IP address, the node cannot receive the data packet on the new link. Therefore, it is impossible to communicate with other nodes.
  • IP networks do not support terminal mobility.
  • IPV6 also abbreviated as ⁇
  • 3GPP Third Generation Partnership Project
  • GPRS General Packet Radio Service Technology
  • GTP General Packet Radio Service Technology
  • WCDMA Wideband Code Division Multiple Access
  • GGSN Gateway GPRS Support Node
  • CDMA Code Division Multiple Access In the
  • HA Home Agent
  • Both Mobile IPV4 and Mobile IPV6 are terminal-based mobility solutions featuring The terminal handles the mobility-related processes.
  • the main problem with Mobile MIPv4 is routing detour.
  • terminal A opens an account in X, and the corresponding HA is in X.
  • the communication peer B is at Y, even if A roams to Y, its data stream is still sent back from Y to X, and then to the opposite B.
  • the main improvement of Mobile MIPV6 over MIPV4 is to define the path optimization process, which can avoid path detours, but has the following problems:
  • the path optimization process of MIPV6 is an end-to-end process.
  • the terminal needs to support Mobile IPV6. In fact, there are fewer terminals supporting MIP V6, and fixed access terminals are generally not supported. The path optimization process of MIPV6 is difficult to implement.
  • LMA Local Mobility. Anchor
  • PGW Packet Data Network Gateway
  • the terminal When the terminal is powered on, it will anchor an LMA or PGW, GGSN, whether it is a Local exit, a dynamic LMA or other existing methods, and the subsequent terminal location changes.
  • the anchor position does not change unless the terminal is dropped and re-assigned online after the line is dropped.
  • the IP address in the TCP/IP protocol widely used in the existing Internet has a dual function, which serves as both the location identifier of the communication terminal host network interface of the network layer in the network topology and the identity of the transport layer host network interface.
  • the TCP/IP protocol was not designed at the beginning of the host. However, as host mobility becomes more prevalent, the semantic overload defects of such IP addresses are becoming increasingly apparent. When the IP address of the host changes, not only the route changes, but also the identity of the communication terminal host changes. This causes the routing load to become heavier and heavy, and the change of the host ID will cause the application and connection to be interrupted.
  • identity and location separation is to solve the semantic overload and path of IP addresses. Separate the dual functions of IP addresses by problems such as heavy load, and support for mobility, multiple townships, dynamic redistribution of IP addresses, mitigation of routing load, and mutual visits between different network areas in the next generation Internet. .
  • IP protocol does not support mobility.
  • the essential reason is that IP addresses contain dual attributes of identity and location.
  • Identity attribute of the IP address In the TCP/IP protocol stack, the IP address is used to identify the communication peer.
  • the IP address represents which network segment the user is on and is the basis of the route. In a fixed network, there is no problem in the location and identity attributes of the IP address. Because the location of the terminal does not change, the IP address does not change, and the identity attribute does not change.
  • the main host-based protocol is the Host Identity Protocol (HIP).
  • the existing main route-based protocol is the Location Identity Separation Protocol (LISP).
  • HIP is a host mobility association protocol. HIP separates an IP address into an end identifier and a location identifier.
  • the basic idea of HIP is to introduce a 3.5-layer Host Identity Layer (HIL) between the Layer 3 network layer and the Layer 4 transport layer, that is, the host identifier is introduced between the domain name space and the IP address space.
  • Host Identity, HI Host Identity space.
  • the host identification layer separates the originally tightly coupled transport layer from the network layer. The IP address no longer plays the role of the identity host. It is only responsible for the routing and forwarding of packets. That is, it is only used as a locator.
  • the host name is represented by the host identifier.
  • the host identification layer is logically located between the network layer and the transport layer.
  • the transport layer uses the transport layer identifier, and the host identifier layer completes the host identifier and IP address translation in the packet.
  • the network layer is shielded from the transport layer, and any changes in the network layer (for example, changes in the host's IP address during communication) do not affect the transport layer link unless the quality of service changes.
  • connection of the transport layer is established on the host identity, and the IP address can only be used for network layer routing, and is no longer used to identify the host identity.
  • the key idea of HIP is to disconnect the network layer and the transport layer. Tightly coupled, so that the connection between the application layer and the transport layer is not affected by changes in IP addresses. When the IP address changes in a connection, HI remains unchanged, thereby ensuring uninterrupted connectivity.
  • the IP address is only used for routing and addressing functions, and HI is used to identify the end host corresponding to a connection, instead of the IP address used in the connection socket.
  • HIP is a host protocol.
  • the main problem is: The premise of the deployment is that the terminals that need to participate in the communication support the HIP protocol synchronously, and need to make major changes to the terminal or even the upper layer application.
  • the network does not participate in the user's access management.
  • the location update phase in which both ends of the communication move simultaneously requires the network to participate in maintaining the communication link. Otherwise, packet loss will occur.
  • the HIP protocol cannot implement anonymous communication.
  • LISP reuses routing technology and has made some changes to the existing routing topology. Combined with the existing transport network, it optimizes the existing routing technology with minimal transformation.
  • the host uses an IP address (called an End Identifier (EID) in the LISP system) to track sockets, establish connections, send and receive packets.
  • EID End Identifier
  • Routers pass packets based on IP destination addresses (called Routing Locations (RLOCs) in LISP systems).
  • RLOCs Routing Locations
  • Tunnel routing is introduced in the LISP system, and LISP packets are encapsulated when the host packet is initiated and decapsulated before being finally delivered to the destination.
  • the IP address of the "outer header" in the LISP packet is RLOCs.
  • the ITR Traffic Ingress Router
  • the ITR encapsulates a new LISP header for each packet and strips the new headers in the egress channel.
  • the ITR performs an EID-to-RLOC lookup to determine the routing path to the ETR (Tunnel Exit Router), which uses the RLOC as its own address.
  • the proposal of LISP is not to solve the problem of mobility, but mainly solves the problem of network size, which is aimed at the problem that the routing table is too large. For mobility and multi-homing, it is a problem that is solved by the separation of identity locations. Now, There are no specific plans and implementation methods.
  • LISP is a network-based protocol that only affects the network part. More specifically, it only affects the existing backbone network (Internet backbone), and does not affect the access layer and user host of the existing network. It is completely transparent.
  • TCP/IP protocol supports the mobility of the terminal by means of a fixed anchor point, and fixes the anchor point. It brings the problem of packet path bypass, which increases the transmission delay and bandwidth waste.
  • the route optimization process of MIPV6 requires the host participating in the communication to support the MIPV6 protocol, which is difficult to deploy.
  • the IP address in the TCP/IP protocol has a dual function: it is used as the location identifier of the communication terminal host network interface in the network topology and as the identity identifier of the transport layer host network interface.
  • the current technology identity and location separation framework HIP, LISP, etc. are a brand new network framework designed to overcome this shortcoming of existing network technologies.
  • the host-based HIP protocol needs to make major changes to the terminal and upper-layer services, and the deployment is difficult.
  • the two ends of the communication move at the same time, and the location update phase requires the network to participate in maintaining the communication link. Otherwise, packet loss will occur.
  • mobility and multi-homedness are problems that are solved after the separation of identity locations. There is no specific solution or implementation method.
  • the measurability of the routing system is poor.
  • the important reason for the scalability of the routing system in the legacy (Legacy) IP network is the size of the routing table and the change of the network topology.
  • the main application scenario for the Legacy IP network is to set up a fixed access method.
  • the IP address includes the network prefix and the host part. All hosts on the same link usually have the same network prefix and different host parts.
  • Network prefix routing is used in the Legacy IP network. Changes in the network topology will affect the IP address allocation of the terminal host. Under this mechanism, the increasing host mobility requirements will increase the complexity of the network topology, resulting in an increase in routing table entries and an increased probability of routing table changes.
  • the technical problem to be solved by the present invention is to provide a network and an integral part in a network based on identity identification and location separation architecture to implement network-based identity identification and location separation.
  • Another technical problem to be solved by the present invention is to support the application scenario of the mobile terminal in the network of the architecture, and effectively solve the problem of the loop in the scenario.
  • Another technical problem to be solved by the present invention is to provide a network based on the identity and location separation architecture and its components.
  • the present invention provides a separation frame based on identity identification and location identification.
  • the network including the access network and the backbone network, does not overlap with the backbone network in the topology relationship, where:
  • the access network is located at an edge of the backbone network, and is configured to implement access of the network terminal.
  • the backbone network is configured to implement routing and forwarding of data packets between terminals accessed through the access network.
  • an access identifier (AID) is used as the identity of the terminal user, and a route identifier (RID) is used as the location identifier of the terminal.
  • the backbone network includes an access service node (ASN), and the ASN serves as a demarcation node between the access network and other parts of the backbone network.
  • ASN access service node
  • the network further includes an access service node (ASN), the ASN is located at a demarcation node of the backbone network and the access network, and has an interface with the backbone network and the access network.
  • ASN access service node
  • Each terminal user in the network is uniquely assigned an AID, which is used in the access network and remains unchanged during the movement of the terminal;
  • RID is a location identifier assigned to each terminal in the network, and is used in the backbone network.
  • the access network is configured to provide an access means for the terminal to the physical layer and the link layer, and maintain a physical access link between the terminal and the ASN.
  • the backbone network is divided into two planes: a generalized forwarding plane and a mapping forwarding plane, where the generalized forwarding plane and the mapping forwarding plane are respectively connected to the ASN, where:
  • the generalized forwarding plane is configured to perform routing and forwarding of data packets with the RID as the destination address according to the RID in the data packet;
  • the mapping forwarding plane is configured to save the access identifier and route identifier (AID-RID) mapping information of the terminal, and process registration and query of the terminal location.
  • AID-RID access identifier and route identifier
  • the mapping forwarding plane is further configured to route and forward data packets with the AID as the destination address.
  • the above network can also have the following characteristics:
  • the ASN is configured to provide an access service for the terminal, maintain the connection between the terminal and the network, allocate an RID to the terminal, register and register the RID of the terminal, and maintain the AID-RID mapping information, and implement the inter-terminal datagram. Routing and forwarding.
  • the network element in the generalized forwarding plane includes a general-purpose router configured to route and forward data packets in a RID format as a source address and a destination address.
  • the network element in the generalized forwarding plane further includes an interconnection service node (ISN), and the ISN has an interface with a general router, an ASN, and a mapping forwarding plane, and is configured to: query and maintain AID-RID mapping information of the network terminal. Encapsulate, route, and forward data packets between the network and the traditional IP network to implement interconnection and interworking between the network and the traditional IP network.
  • ISN interconnection service node
  • the backbone network further includes an authentication center, and the authentication center has a signaling interface with the ASN, and is configured to: record attribute information of the network user, complete access authentication and authorization for the terminal, or complete the terminal Access authentication, authorization, and accounting.
  • the mapping forwarding plane includes an identity location register (ILR), the ILR has a signaling interface with the ASN, and is configured to: accept a registration request and cancel a registration request, save, update, or delete a home user in the network.
  • ILR identity location register
  • the mapping forwarding plane further includes a packet forwarding function (PTF), the PTF has a data forwarding interface with the ASN, and is configured to: after receiving the data packet sent by the ASN, according to the data packet to be sent to The AID of the communication peer detects the RID corresponding to the AID, and uses the RID as the data. The destination address of the text, and the data packet is sent to the communication peer through the generalized forwarding plane.
  • PTF packet forwarding function
  • the ILR and the PTF are located on the same network element, and the network element is recorded as an ILR/PTF.
  • a signaling interface and a first data transceiving interface are provided between the ASN and the terminal, and the signaling interface between the ASN and the terminal is set to process flow processing of access management, handover, authentication, charging, and registration;
  • the source address is the AID of the terminal that sends the data packet
  • the destination address is the AID of the communication peer to which the data packet is sent.
  • the ASN has a signaling interface and a second data forwarding interface, and the signaling interface between the ASNs is set to switch the management of the handover management signaling, and transmit the RID update when the location between the communication peers changes.
  • the second data forwarding interface is configured to forward data between the ASNs during the handover, and the data packets of the second data forwarding interface are added with tunnel encapsulation on the data packets of the first data transceiver interface.
  • the generalized forwarding plane has a general-purpose router, and the external interface of the general-purpose router is a third data forwarding interface, and the data packet of the third data forwarding interface is newly encapsulated on the basis of the data packet of the first data transceiving interface.
  • Layer header the source address in the new Layer 3 header is the RID assigned to the terminal transmitting the data packet, and the destination address is the RID assigned to the communication peer to which the data packet is sent.
  • the signaling interface between the ASN and the ISN is set such that the ASN notifies the ISN of the new AID-RID mapping information of the network terminal.
  • the interface between the ASN and the mapping forwarding plane includes a signaling interface and a fourth data forwarding interface, and the signaling interface between the ASN and the mapping forwarding plane is set to query and maintain AID-RID mapping information;
  • the data packet of the forwarding interface is a new layer 3 header based on the data packet of the first data transceiver interface, where the source address is allocated for the terminal that sends the data packet.
  • RID the destination address is the routing address of the NE responsible for data packet forwarding in the mapping forwarding plane connected to the ASN.
  • the mapping between the ILRs in the mapping forwarding plane has a signaling interface, which is set to query and maintain AID-RID mapping information, and map routing information interaction in the forwarding plane.
  • the ISN has a data forwarding interface with the traditional IP network, and the data packet of the data forwarding interface has the same format as the data packet of the traditional IP network.
  • the present invention further provides a system including the foregoing identity-based identity and location separation architecture-based network, in addition to the network, including a terminal, where the terminal is a fixed terminal, a mobile terminal, and a nomadic terminal.
  • a terminal where the terminal is a fixed terminal, a mobile terminal, and a nomadic terminal.
  • the present invention further provides an access service node in a network based on an identity identification and a location identification separation architecture, where the access service node is configured to provide an access service and a maintenance terminal for the terminal.
  • the connection with the network, the routing identifier (RID) is assigned to the terminal, the RID of the terminal is registered and queried by the mapping forwarding plane, the access identifier and the route identifier (AID-RID) mapping information of the terminal are maintained, and the data packet is routed.
  • the ASN is further configured to cooperate with the authentication center to complete authentication of the terminal and charge the service, and cooperate with other ASNs to implement handover of the terminal across the ASN.
  • the foregoing access service node may also have the following features: including an access processing module, a registration module, and a mapping management module, where:
  • the access processing module is configured to: when the terminal requests access, cooperate with the terminal and the authentication center to complete authentication of the terminal, establish a connection with the terminal through the access network, allocate an RID to the terminal, and notify the registration and registration module to initiate the pairing. Registration of the terminal;
  • the registration and registration module is configured to: after receiving the notification of the registration of the terminal, initiate registration with the home domain identity register (ILR) of the terminal, carrying the current AID-RID mapping information of the terminal; After the notification of the cancellation registration of the terminal is notified, the terminal home domain ILR is notified to delete the information registered by the terminal, including the AID-RID mapping information of the terminal;
  • the mapping management module is configured to cache and maintain the AID-RID mapping information of the terminal after the terminal accesses, and query the corresponding RID according to the AID of the communication peer to the IRR of the mapping forwarding plane after receiving the query notification, and locally Maintain the queried AID-RID mapping information.
  • the access service node may also have the following features: the ASN further includes a connection maintenance module and a message forwarding module, where:
  • the connection maintenance module is configured to maintain a connection between the ASN and the terminal during the online connection after the terminal accesses, and maintain a connection between the ASN and the ASN accessed by the communication peer when the terminal communicates;
  • the packet forwarding module is configured to encapsulate the data packet sent by the terminal accessing the ASN on the RID of the terminal and the communication peer, route and forward the ASN to the communication peer, and send the access to the access terminal. After the data packet of the terminal of the ASN is decapsulated, it is sent to the terminal.
  • the foregoing access service node may further have the following features:
  • the packet forwarding module is further divided into a first forwarding unit and a second forwarding unit, where:
  • the first forwarding unit is configured to: after receiving the data packet sent by the terminal accessing the ASN, query the AID-RID mapping information in the local cache according to the AID of the communication peer as the destination address in the data packet. If the RID of the communication peer is found, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data packet is forwarded to the generalized forwarding plane; If the RID of the communication peer is not found, the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane, and the mapping management module is notified to query the RID of the communication peer;
  • the second forwarding unit is configured to: after receiving the data packet to be sent to the terminal accessing the ASN, strip the RID encapsulated in the data packet, and restore the data packet sent by the communication peer to the ASN. After the format, the connection to the terminal through the ASN is sent to the terminal.
  • the foregoing access service node may also have the following features:
  • the ASN further includes:
  • An offline processing module is configured to notify the connection maintenance module to release the connection between the terminal and the network after the terminal accessing the ASN is offline, notify the mapping management module to delete the AID-RID mapping information of the terminal, and notify the registration module The terminal cancels the registration.
  • the access service node may also have the following features:
  • the ASN further includes a handover control module, where the handover control module is divided into a cut-out control unit and a cut-in control unit, where:
  • the cut-out control unit is configured to: after receiving the handover request, determine, according to the destination of the handover, that the terminal is to be handed over to another ASN, which is called a hand-in ASN, and sends a handover request to the hand-in ASN, and the communication peer end of the terminal The information is sent to the hand-in ASN or the mapping forwarding plane. After receiving the handover response, the terminal is notified to access the hand-in ASN. The data packet sent to the terminal received during the handover is forwarded to the hand-in ASN. After the handover is completed, the mapping management module is notified to delete the information. AID-RID mapping information of the terminal;
  • the hand-in control unit is configured to: after receiving the handover request, assign the RID to the terminal and save the AID-RID mapping information of the terminal, obtain the information of the communication peer end of the terminal from the cut-out ASN, and return a handover response, and notify the registration.
  • the registration module initiates a registration process for the location update of the terminal; the handover control unit is further configured to notify the ASN of all communication peers of the terminal or the anchored ILR when the terminal communicates with the traditional IP network terminal to update the AID of the terminal -RID mapping information.
  • the foregoing access service node may also have the following features:
  • the ASN further includes:
  • a format conversion module configured to convert an IPV4/IPV6 address of the network terminal in the data message sent by the IPV4/IPV6 terminal accessing the ASN into a corresponding AID, and a data message to be sent to the IPV4/IPV6 terminal All AIDs in the translation are converted to IPV4/IPV6 addresses.
  • the present invention further provides an interconnection service node in a network based on an identity identification and a location identification separation architecture, where the interconnection service node is configured to query and maintain an access identifier of the network terminal and
  • the route identifier (AID-RID) maps information, encapsulates, routes, and forwards the data between the network and the traditional IP network, and implements the interworking function between the network and the traditional IP network.
  • the foregoing interconnection service node may also have the following features: including a connection maintenance module and a mapping management module, where:
  • the connection maintenance module is configured to establish and maintain a connection between the network terminal and the traditional IP network terminal, and when the network terminal is switched, act as a proxy anchor between the network and the traditional IP, and maintain the traditional IP address.
  • the connection between the networks is configured to establish and maintain a connection between the network terminal and the traditional IP network terminal, and when the network terminal is switched, act as a proxy anchor between the network and the traditional IP, and maintain the traditional IP address.
  • the mapping management module is configured to: extract and maintain the AID-RID mapping information of the network terminal in the data packet, and query the corresponding RID to the mapping forwarding plane according to the AID of the to-be-queried terminal after receiving the query notification, and locally Maintain the queried AID-RID mapping information.
  • the interconnected service node further includes a packet transfer a sending module, the " ⁇ " forwarding module is further divided into a first forwarding unit and a second forwarding unit, where: the first forwarding unit is configured to: according to the AID of the network terminal in the data packet sent by the traditional IP network, Querying the AID-RID mapping information in the local cache: If the RID corresponding to the AID of the network terminal is found, the RID of the network terminal is encapsulated in the data packet as the destination address, and then the encapsulated data packet is forwarded to the generalized If the RID corresponding to the AID of the network terminal is not found, the data packet is encapsulated and then forwarded to the mapping forwarding plane, and the mapping management module is notified to query the RID of the network terminal.
  • the second forwarding unit is configured to: after receiving the data packet sent by the network, strip the RID encapsulated in the data packet and send the packet to the terminal or format conversion module of the traditional IP network.
  • the foregoing interconnection service node may further have the following features:
  • the interconnection service node further includes a format conversion module configured to convert an IPV4/IPV6 address of the network terminal included in the data packet sent by the traditional IP network into a corresponding AID. And then forwarded to the first forwarding unit for forwarding; and the AID of the network terminal in the data packet decapsulated by the second forwarding unit is converted into an IPV4/IPV6 address format, and then sent to the terminal of the traditional IP network.
  • the present invention further provides a backbone network in a network based on an identity identification and a location identification separation architecture.
  • the backbone network is divided into two planes: a generalized forwarding plane and a mapping forwarding plane. among them:
  • the generalized forwarding plane is configured to perform routing and forwarding of data packets with the RID as the destination address according to the route identifier (RID) in the data packet;
  • the mapping forwarding plane is configured to save the access identifier and route identifier (AID-RID) mapping information of the terminal, and process registration and query of the terminal location.
  • AID-RID access identifier and route identifier
  • the backbone network further includes an access service node (ASN), and the ASN serves as a demarcation node of the generalized forwarding plane and the mapping forwarding plane and the access network.
  • ASN access service node
  • the mapping forwarding plane is further configured to route and forward data packets with an access identifier (AID) as a destination address.
  • AID access identifier
  • the above backbone network can also have the following characteristics:
  • the ASN is configured to provide an access service for the terminal, maintain the connection between the terminal and the network, allocate an RID to the terminal, register and register the RID of the terminal, and maintain the AID-RID mapping information, and implement the inter-terminal datagram. Routing and forwarding.
  • the network element in the generalized forwarding plane includes a general purpose router, which is set to be routed and forwarded to
  • the RID format is the data packet of the source address and the destination address.
  • the network element in the generalized forwarding plane further includes an interconnection service node (ISN), and the ISN has an interface with a general router, an ASN, and a mapping forwarding plane, and is configured to: query and maintain AID-RID mapping information of the network terminal. Encapsulate, route, and forward data packets between the network and the traditional IP network to implement interconnection and interworking between the network and the traditional IP network.
  • ISN interconnection service node
  • the backbone network further includes an authentication center, and the authentication center has a signaling interface with the ASN, and is configured to: record attribute information of the network user, complete access authentication and authorization for the terminal, or complete the terminal Access authentication, authorization, and accounting.
  • the mapping forwarding plane includes an identity location register (ILR), the ILR has a signaling interface with the ASN, and is configured to: accept a registration request and cancel a registration request, save, update, or delete a home user in the network.
  • ILR identity location register
  • the mapping forwarding plane further includes a packet forwarding function (PTF), the PTF has a data forwarding interface with the ASN, and is configured to: after receiving the data packet sent by the ASN, according to the data packet to be sent to The AID of the communication peer finds the RID corresponding to the AID, and uses the RID as the destination address of the data, and sends the data packet to the ASN accessed by the communication peer through the generalized forwarding plane.
  • PTF packet forwarding function
  • the above-mentioned backbone network may also have the following features:
  • the ILR and the PTF are located on the same network element, and the network element is recorded as ILR/PTF.
  • the present invention also provides a mapping forwarding plane in the above backbone network, where:
  • the mapping forwarding plane is configured to save the access identifier and route identifier (AID-RID) mapping information of the terminal, and process registration and query of the terminal location.
  • AID-RID access identifier and route identifier
  • the mapping forwarding plane includes an identity location register (ILR), the ILR has a signaling interface with the ASN, and is configured to: accept a registration request and cancel a registration request, save, update, or delete a home user in the network.
  • ILR identity location register
  • the mapping forwarding plane further includes a packet forwarding function (PTF), the PTF has a data forwarding interface with the ASN, and is configured to: after receiving the data packet sent by the ASN, according to the data packet to be sent to The AID of the communication peer finds the RID corresponding to the AID, and uses the RID as the destination address of the data, and sends the data packet to the ASN accessed by the communication peer through the generalized forwarding plane.
  • PTF packet forwarding function
  • the mapping forwarding plane may also have the following features: the ILR and the PTF are located on the same network element, and the network element is recorded as an ILR/PTF.
  • the application scenario of the mobile terminal is supported, which effectively solves the problem of the loop in the scenario.
  • the deployment of the above-mentioned architecture considers the requirements of compatible terminals and compatible upper-layer services. It only needs to upgrade the network-side devices and is compatible with the application scenarios that do not change the terminal.
  • the above architecture improves the scalability of the routing system: including routing table entries in the router, rate of change of the routing table, and aggregation time.
  • the privacy of the user is strengthened, and both parties to the communication only know the identity of the other party, but do not know the location of the other party.
  • the location of the other party can be known based on the IP address.
  • the backbone network device is not attacked. Because the identity identifier and the location identifier are two different namespaces, even if the user knows the location identifier of the backbone network device, it cannot be accessed, and the backbone network device is prevented from being attacked. In the above framework, common attack methods such as address spoofing are eliminated. Since the network of the architecture authenticates each user, source authentication is performed for each sent data packet, and network credit is used to ensure the authenticity of the user identity. Eliminate attacks such as address spoofing on the existing network.
  • FIG. 1(a) is a topological diagram of a network based on an identity location separation architecture according to an embodiment of the present invention
  • FIG. 1(b) is a topological diagram of a network based on an identity location separation architecture according to another embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a topological relationship between a network based on an identity location separation architecture and a Legacy IP network (traditional IP network) according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection relationship between nodes in a network based on an identity location separation architecture according to an embodiment of the present invention. ;
  • FIG. 4 is a functional block diagram of an access service node according to an embodiment of the present invention.
  • FIG. 5 is a functional block diagram of an interconnection service node according to an embodiment of the present invention.
  • the network topology of the identity-based location separation architecture (hereinafter referred to as the architecture) of this embodiment is as shown in FIG. 1(a).
  • the architecture divides the network into an access network 11 and a backbone network 12.
  • the access network is located at the edge of the backbone network and is configured to be responsible for access by all terminals.
  • the backbone network is configured to be responsible for routing and forwarding data packets between terminals accessed through the access network. There is no overlap between the access network and the backbone network in the topology relationship.
  • Access ID (AID: Access Identifier)
  • Route ID Routing Identifier
  • the AID is the user identity of the terminal, and is set to: identify the identity of the terminal user (also referred to as the user), and the network uniquely assigns an AID to each terminal user, which is used in the access network, and is always in the process of moving the terminal. It remains unchanged; RID is the location identifier assigned to the terminal and is used on the backbone network.
  • the terminal accessing the network may be one or more of a mobile terminal, a fixed terminal, and a nomadic terminal, such as a mobile phone, a fixed telephone, a computer, an application server, and the like.
  • the access network is used to provide the terminal with a layer 2 (physical layer and link layer) access means, and maintains a physical access link between the terminal and the ASN.
  • Possible Layer 2 access methods include: Cellular Mobile Network Technology (GSM/CDMA/TD-SCDMA/WCDMA/WiMAX/LTE), Digital Subscriber Line (DSL), Broadband Fiber Access or Wireless Fidelity (WiFi) access, etc. Wait.
  • the backbone network of the architecture is divided into two planes: a generalized forwarding plane 121 and a mapping forwarding plane 122, and an access service node (ASN: Access Service Node) 123 and an authentication center 124.
  • ASN Access Service Node
  • the ASN is located at a demarcation node of the generalized forwarding plane, the mapping forwarding plane, and the access network, and has an interface with the access network, the generalized forwarding plane, and the mapping forwarding plane.
  • the ASN is configured to provide access services for the terminal, maintain the connection between the terminal and the network, assign the RID to the terminal, register and register the RID of the terminal to the mapping forwarding plane, maintain the AID-RID mapping information, and implement routing of the data packet. Forward.
  • the generalized forwarding plane is mainly configured to select and forward data packets with the RID as the destination address according to the RID in the data packet, and the data routing and forwarding behavior in the generalized forwarding plane is consistent with the Legacy IP network.
  • the main network elements of the generalized forwarding plane include a general router (CR: Common Router) and an interconnected service node (ISN: Interconnect Service Node).
  • the mapping forwarding plane is mainly configured to save the identity location mapping information of the terminal (ie, the mapping information of the AID-RID), process the registration and query of the terminal location, and route and forward the data packet of the address with the AID as the destination.
  • the primary network element of the mapping forwarding plane includes the Identity Location Register/Packet Transfer Function (ILR/PTF: Identity Location Register/Packet Transfer Function).
  • the authentication center is configured to record attribute information such as user category, authentication information, and user service level of the network terminal user of the architecture, complete access authentication and authorization for the terminal, and also have a charging function.
  • the certificate authority supports mutual authentication between the terminal and the network, and generates user security information for authentication, integrity protection, and encryption.
  • the ASN 13 is independent of the backbone network 12 in the division of the architecture, and is located at the boundary node of the backbone network 12 and the access network 11, and has an interface with the access network 11 and the backbone network 12, as shown in FIG. 1 (b). ) as shown.
  • the functions actually performed are the same as in the present embodiment.
  • This architecture will coexist with the Legacy IP network for a long time.
  • This architecture can exist and evolve in the form of one or more islands of the Legacy IP network at the beginning, and can also be used as a supplement and extension part of the Legacy IP network.
  • the topology relationship between this architecture and the legacy (Legacy) IP network 21 is shown in Figure 2.
  • the backbone part of the architecture is in the same plane as the Legacy IP.
  • the interface between the architecture and the Legacy IP network complies with the specifications of the inter-network interface in the Legacy IP network. No special changes are made, so there is no need to make special requirements for the Legacy IP network different from the current operating mechanism. .
  • This architecture has the ability to be independently networked. After long-term development, the architecture can form a network that is developed independently from the Legacy IP network. At this stage, the network mainly consists of the access network, access service node, mapping forwarding plane and generalized forwarding plane shown in Figure 1 (a). The functional entity ISN will no longer exist.
  • FIG. 3 The reference model of this architecture is shown in Figure 3.
  • the figure shows the main network elements of the architecture network and the connection interfaces between the network elements.
  • An access service node (ASN) 31 is configured to provide an access service for the terminal, maintain the connection between the terminal and the network, allocate an RID to the terminal, register and register the RID of the terminal to the mapping forwarding plane, and maintain the AID-RID mapping of the terminal. Information, as well as routing and forwarding of data messages.
  • the ASN is also configured to cooperate with the authentication center to complete authentication of the terminal and charge the service, and cooperate with other ASNs to implement handover of the terminal across the ASN.
  • the ASN includes the following functional modules:
  • the access processing module 41 is configured to, when the terminal requests access, cooperate with the terminal and the authentication center to complete authentication of the terminal, establish a connection with the terminal through the access network, allocate an RID to the terminal, and notify the registration and registration module to initiate the pair. Registration of the terminal.
  • the registration module 42 is configured to, after receiving the notification of the registration of the terminal, initiate registration with the home domain ILR of the terminal, carrying the current AID-RID mapping information of the terminal; and receiving the cancellation registration of the terminal After the notification of the registration, the terminal home domain ILR is notified to delete the information registered by the terminal, including the AID-RID mapping information of the terminal.
  • the connection maintenance module 43 is configured to maintain the connection between the ASN and the terminal during the online connection after the terminal accesses, and maintain the ASN of the ASN and the communication peer access when the terminal communicates the connection between.
  • the mapping management module 44 is configured to cache the AID-RID mapping information of the terminal after the terminal accesses, and perform maintenance. After receiving the query notification, the AID of the communication peer end queries the corresponding RID of the mapping forwarding plane according to the AID of the communication peer end and is locally Maintain the queried AID-RID mapping information.
  • the offline processing module 45 is configured to notify the connection maintenance module to release the related connection between the terminal and the network after the terminal accessing the ASN is offline, notify the mapping management module to delete the AID-RID mapping information of the terminal, and notify the registration module. Unregister the terminal.
  • the message forwarding module 46 is configured to encapsulate the data packet sent by the terminal accessing the ASN on the RID of the terminal and the communication peer, route and forward the ASN to the communication peer, and send to the access After the data packet of the terminal of the ASN is decapsulated, it is sent to the terminal.
  • the ⁇ text forwarding module is further divided into a first forwarding unit and a second forwarding unit, where:
  • the first forwarding unit is configured to: after receiving the data packet sent by the terminal accessing the ASN, query the AID-RID mapping information in the local cache according to the AID of the communication peer as the destination address in the data.
  • the RID of the communication peer is found, and the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, and is encapsulated in the data packet (for example, the Layer 3 packet header added in the data packet can be encapsulated.
  • the encapsulated data packet is forwarded to the generalized forwarding plane; if the RID of the communication peer is not found, the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane, and the mapping management module is notified to query the RID of the communication peer. .
  • the second forwarding unit is configured to: after receiving the data packet to be sent to the terminal accessing the ASN, strip the RID encapsulated in the data packet, and restore the format of the data packet sent by the communication peer to the ASN. After that, the connection between the ASN and the terminal is sent to the terminal.
  • the switching control module 47 is divided into a cut-out control unit and a cut-in control unit, wherein:
  • the cut-out control unit is configured to, after receiving the handover request, determine that the terminal wants to switch to another ASN (referred to as a hand-in ASN) according to the destination of the handover, request a handover to the hand-in ASN, and notify the terminal to access after receiving the response.
  • the ASN is forwarded to the ASN, and the data packet sent to the terminal is forwarded to the hand-cut ASN.
  • the mapping management module is notified to delete the AID-RID mapping information of the terminal. It can also be configured to send the information of the communication peer end of the terminal to the hand-cut ASN or the mapping forwarding plane during the handover process.
  • the switch-in control unit is configured to: after receiving the handover request, assign the RID to the terminal and save the AID-RID mapping information of the terminal, obtain the information of the communication peer end of the terminal from the cut-out ASN, and return a handover response, and notify the registration module. Initiate a registration process for the location update of the terminal.
  • the hand-in control unit may be further configured to notify the ASN of all the communication peers of the terminal or the ISN anchored when the terminal communicates with the Legacy IP network terminal, and update the AID-RID mapping information of the terminal.
  • the architecture network is compatible with IPV4/IPV6 terminals (referring to the terminals supporting the IPV4/IPV6 protocol stack in the existing Legacy IP network).
  • IPV4/IPV6 terminals referring to the terminals supporting the IPV4/IPV6 protocol stack in the existing Legacy IP network.
  • the ASN needs to proxy IPV4/IPV6 terminals to implement network AID data packets and IPV4/IPV6 data packet compatibility processing.
  • it is necessary to add a format conversion module 48 in the ASN which is set to convert the source address, or source address and destination address of the access ASN, into a corresponding AID, and data to be sent to the IPV4/IPV6 terminal. All AIDs in the message are converted to IPV4/IPV6 addresses. An example of the conversion can be found below.
  • a general-purpose router which is located in the generalized forwarding plane of the backbone network, and is configured to: route and forward data packets with the source address and the destination address in the RID format.
  • the function of this general purpose router is no different from that of the prior art routers.
  • the identity location register and the packet forwarding function are located in the mapping forwarding plane of the backbone network. This embodiment is two functional modules on the same entity, but may also be located on different entities.
  • the ILR is an identity location register, which is configured to accept a registration request and a deregistration request, save, update or delete the AID-RID mapping information of the home user in the network of the architecture, and receive a query request for the location of the terminal, and the terminal in the request The RID corresponding to the AID is returned to the querying party.
  • the PTF is a packet forwarding function, which is configured to: after receiving the data message sent by the ASN, according to the AID of the communication peer to which the data is sent, the corresponding RID is found (if the ILR is checked, it can also be locally A mapping relationship is saved, and the RID is encapsulated in the packet header, and the data packet is sent to the ASN accessed by the communication peer through the generalized forwarding plane. If it is not the home PTF, the data is first routed to the home ILR/PTF, and the home ILR/PTF finds the corresponding RID according to the AID.
  • An interconnection service node which is configured to query and maintain AID-RID mapping information of the network terminal of the architecture, encapsulate, route, and forward data packets between the architecture network and the legacy IP network, and implement the architecture network and Legacy. Interoperability between IPs. As shown in Figure 5, the ISN includes the following functional modules:
  • the connection maintenance module 51 is configured to establish and maintain a connection between the network terminal of the architecture and the Legacy IP network terminal, and when the network terminal of the architecture is switched, act as a proxy anchor between the network of the architecture and the legacy IP of the terminal, and maintain The connection to the Legacy IP network.
  • the mapping management module 52 is configured to extract and maintain the AID-RID mapping information of the network terminal in the data packet, and query the corresponding RID according to the AID of the terminal to be queried to the ILR of the mapping forwarding plane after receiving the query notification.
  • the queried AID-RID mapping information is maintained locally.
  • the packet forwarding module 53 is further divided into a first forwarding unit and a second forwarding unit, where: the first forwarding unit is configured to: according to the AID of the network terminal of the architecture in the data packet sent by the Legacy IP network (as the destination address or According to the destination address translation, the AID-RID mapping information in the local cache is queried: if the RID corresponding to the network terminal AID of the architecture is found, the RID of the network terminal of the architecture is encapsulated in the data packet as the destination address (for example, Encapsulated in the newly added Layer 3 packet header), and then forwards the encapsulated data packet to the generalized forwarding plane; if the RID corresponding to the AID of the network terminal of the architecture is not found (if the data packet is the first packet or the default route) The data packet is encapsulated and forwarded to the mapping forwarding plane, and the mapping management module is notified to query the RID of the network terminal of the architecture.
  • the second forwarding unit is configured to: after receiving the data packet sent by the network of the architecture, strip the RID encapsulated in the data packet and send it to the terminal or format conversion module 54 of the Legacy IP network.
  • the ILR further includes a format conversion module 54 configured to set the IPV4/IPV6 address of the network terminal of the architecture included in the data packet sent by the Legacy IP network. Converting to the corresponding AID, and then forwarding it to the first forwarding unit; and converting the AID of the network terminal of the architecture in the data of the second forwarding unit into the IPV4/IPV6 address format, and then sending it to the Legacy IP The terminal of the network.
  • the main interfaces of this architecture include:
  • the S1/D1 interface is the interface (or reference point) between the terminal and the ASN. among them:
  • S1 is a signaling interface between the terminal and the ASN, and is mainly used for message flow processing of access management, handover, authentication, charging, and registration.
  • D1 is the data transceiving interface between the terminal and the ASN.
  • D1 The format of the data packet of the interface is:
  • the source AID is the AID of the terminal that sends the data packet, and is the source address of the data packet.
  • the destination AID is the AID of the communication peer to which the data packet is sent.
  • the source address and the destination address are encapsulated in three. In the layer header.
  • the S2/D2 interface is the interface between the ASNs. among them:
  • S2 is mainly used for the transfer of handover management signaling during handover, and transmits an RID update message when the location between the communication peers changes.
  • D2 is mainly used for data forwarding between ASNs during handover.
  • the format of the data packet on the D2 interface is:
  • the tunnel encapsulation is added to the data packets.
  • tunnel encapsulation methods such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, and IPsec.
  • the invention is not limited to any particular tunnel encapsulation.
  • S3 is the signaling interface between the ASN and the ISN.
  • the ASN During the communication between the network terminal of the architecture and the legacy IP network terminal, if the terminal of the network in the architecture switches, the ASN will notify the ISN of the new AID-RID mapping information of the network terminal through the S3 interface.
  • D3 is the external interface with the generalized forwarding plane.
  • the format of the data packet on the D3 interface is:
  • the data packet of the D3 interface is newly encapsulated with a Layer 3 header based on the data packet of the D1 interface.
  • the new Layer 3 header includes a source RID and a destination RID, where the source RID is allocated for the terminal that sends the data packet.
  • the RID, the destination RID is the RID assigned to the correspondent end to which the packet is sent.
  • this packaging method is not unique.
  • S4 is a signaling interface between the ASN and the mapping forwarding plane. It is mainly used to query and maintain AID-RID mapping information.
  • D4m is the data forwarding interface between the ASN and the mapping forwarding plane, and the data packet of the D4m interface.
  • the format is:
  • the data packet of the D4m interface is also encapsulated with a Layer 3 header on the basis of the data packet of the D1 interface.
  • the source address in the new Layer 3 header is the source RID
  • the destination address is RIDi, where the source RID. It is the RID assigned to the terminal that sends the data packet.
  • RIDi is the routing address of the ILR/PTF in the mapping forwarding plane connected to the ASN, and is obtained from the configuration data on the ASN.
  • S5 is a signaling interface between the ILRs in the mapping forwarding plane. It is mainly used to query and maintain AID-RID mapping information and to exchange routing information in the forwarding plane.
  • the Di interface is the data forwarding interface between the architecture network and the Legacy IP network.
  • the data packet of the Di interface is the same as the data packet of the Legacy IP network, as follows: The following describes the numbering mechanism and scope of AID and RID.
  • the AID uniquely identifies a user identity and uses the AID to identify the end user within the network of the architecture.
  • the factor of consideration for the AID encoding method may be one or more of the following factors:
  • the maximum code length should be sufficient to meet the maximum number of users.
  • the network architecture terminal based on the identity location separation architecture needs to access the traditional Legacy IP network application. It has interworking requirements with the traditional Legacy IP network. The AID coding space cannot be ambiguous with the IP address of the traditional Legacy IPV4 network. Distinguish access to the communication peer.
  • the home domain routing information is included, so that the visited domain identity location register (Visited ILR) can find the home domain mapping server (Home ILR) according to the AID; the ASN can route the first message or the default route data packet to the home according to the AID. Domain Packet Forwarding (Home PTF).
  • Visitd ILR visited domain identity location register
  • Home ILR home domain mapping server
  • Home PTF Domain Packet Forwarding
  • the AID encoding of the architecture network can follow the IP address encoding allocation scheme in the Legacy IP network.
  • the AID uses the public or private network address of IPV4 in the Legacy IP network.
  • the AID encoding of the architecture network follows the IPV4 address coding allocation scheme in the Legacy IP network.
  • the network can be used as an integral part of the Legacy IP network.
  • the AID uses the IPV4 address space of the public network, it directly communicates with the Legacy IPV4 network.
  • the AID uses the private IP address space, it needs to pass.
  • the network address translation (NAT) gateway translates into the public network IPV4 address space and the Legacy IP network.
  • the AID uses the IPV6 address in the Legacy network, and the AID encoding of the architecture network follows the IPV6 address coding allocation scheme in the Legacy IPV6 network, and can directly use the public IPV6 address or the private network through the NAT gateway.
  • the IPV6 address is translated into the public network IP V6 address space and the Legacy IP V6 network.
  • the AID may be set to a format corresponding to and associated with the IPV4/IPV6 public network address, so that the AID is directly converted by the specified conversion algorithm.
  • the IPV4/IPV6 public network address For the corresponding IPV4/IPV6 public network address, the IPV4/IPV6 public network address is directly converted into the corresponding AID by another specified conversion algorithm.
  • the AID encoding format is: Expand Header + Suffix (suffix). The suffix part uses the IPV4/IPV6 public network address.
  • the extended header value is a constant determined by the architecture network, so that the AID extension header is removed and converted into the corresponding IP address.
  • the IP address plus the constant as the extension header is converted to the corresponding AID.
  • the AID encoding format can use the IPV4/IPV6 public network address plus a constant as a suffix.
  • the RID number can use the IPV4/IPv6 address format commonly supported by routers in the existing Legacy IP network to indicate the ASN location where the current terminal is located.
  • the scope of the RID is in the generalized forwarding plane of the backbone network of the architecture.
  • the architecture is based on the principle of location identity separation.
  • the main influencing factors of the network topology in the generalized forwarding plane are the number and deployment modes of functional entities such as ASN and ISN.
  • the location change of the access terminal is not directly related to the network topology.
  • the route is based on an IP address, which is associated with the communication host.
  • the number is basic - correspondingly, the routing table size is positively related to the number of communication hosts.
  • the routing table size will increase exponentially.
  • the routing table is large and frequently changed, which will lead to an increase in route aggregation time.
  • the RID is used as the routing basis.
  • the ASN and the ISN can allocate the same RID to multiple access users.
  • the RID indicates the location of the ASN and the ISN.
  • the number of routing entries in the generalized forwarding plane is mainly related to The number of ASNs and ISNs is positively correlated, which reduces the correlation with the number of access users.
  • the RID of multiple access terminals is used to reduce the association between the size of the routing table and the number of access users, thereby improving the scalability of the routing system.
  • the normal operation of the network includes the following main processes: processing for user account numbering, processing for terminal boot access network, processing for terminal location update and registration, and processing for terminal communication. , terminal switching processing, terminal offline processing. The following is explained one by one:
  • the account is opened in the user's home authentication center and the home ILR.
  • the authentication center and the ILR will create a user record for the user, and record the attribute data of the user, including assigning the user. AID.
  • the AID is statically assigned to the user, and the AID of the user remains unchanged during the effective legal existence of the user.
  • the AID can be configured for the terminal in one of the following two ways: Different terminals can use different methods:
  • the first one is configured by the network, that is, the user's AID is stored in the authentication center, and the terminal identifier is sent to the authentication center, and the authentication center sends the AID together with the user identifier to the ASN, and the ASN saves the AID and Send it to the terminal.
  • the terminal is an IPV4/IPV6 terminal
  • the ASN needs to convert the AID to the corresponding IPV4/IPV6 address before sending it to the terminal.
  • Different types of network user identifiers are different, such as identification of international mobile users in cellular mobile networks.
  • IMSI recognizes NAI or user name Username for network access when accessing a fixed network such as ADSL.
  • the second method is configured by the terminal, that is, the AID is saved in the user identification module of the terminal (such as a SIM card, a UIM card, etc.), and the AID is sent to the ASN when the terminal accesses the network, and the ASN is saved.
  • the AID of the terminal refers to the terminal that supports the AID encoding requirement in the protocol stack) directly uses the AID in the source address of the transmitted data packet, and the source address in the data packet sent by the IPV4/IPV6 terminal corresponds to the AID of the terminal.
  • the IPV4/IPV6 address which is converted to the corresponding AID by the ASN.
  • the terminal After the terminal is powered on, the terminal initiates the process of accessing the network, including: the terminal requests access to the ASN through the access network; the ASN cooperates with the authentication center and the terminal to complete the authentication of the terminal; after the authentication is passed, the ASN establishes an access with the terminal. Start a connection.
  • the ASN also allocates an RID to the terminal, saves the AID-RID mapping information of the terminal in the local cache, and initiates a registration registration process to the home user domain ILR/PTF of the terminal user. After completing the registration, the ILR is completed. /PTF will save the mapping information of the current AID-RID 1 of the terminal.
  • the ASN When the terminal is in the online state, the ASN will save the connection relationship information of the connection, and the connection relationship information includes the AID of the terminal. Through the connection relationship, the ASN can send the data packet whose destination address is the AID to the terminal.
  • the connection established between the ASN and the terminal may be a point-to-point connection, and when the access network is a Global System for Mobile Communications (GSM) or WCDMA or Time Division Synchronous Code Division Multiple Access (TD-SCDMA) mobile system, the point is The point connection relationship is a GTP connection; the access network is in a CDMA mobile system and a fixed broadband access network, and the point-to-point connection relationship is a point-to-point protocol (PPP) connection.
  • GSM Global System for Mobile Communications
  • WCDMA Time Division Synchronous Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • PPP point-to-point protocol
  • a point-to-point connection uniquely corresponds to a terminal. The establishment
  • the process of accessing the network is the same as the process of accessing the network initiated after the power-on, except that the terminal switches to a new ASN or reconnects to the network after disconnection. It also needs to be certified. However, if the AID-RID mapping information of the terminal is also stored in the ASN, there is no need to re-allocate the RID and initiate the registration process.
  • the new ASN When the location of the terminal changes, moving from the coverage area of an ASN to a new ASN for access, the new ASN will assign a new RID to the terminal, and save the AID of the terminal and the new allocation in the local cache.
  • the mapping information of the RID and the registration process is initiated to the end user home domain ILR/PTF, and the home domain ILR/PTF updates the location information in the identity location mapping information of the terminal to the newly allocated RID.
  • the following describes the processing of the terminal-initiated communication.
  • the communication between the terminal MN and the terminal CN is taken as an example.
  • the terminal CN and the terminal MN are each other's communication peers, which are all AID terminals.
  • the AID and RID of the terminal MN are respectively recorded as AIDm and RIDm
  • the AID and RID of the communication peer CN are respectively recorded as AIDc and RIDc.
  • the ASN receives the data message sent by the terminal accessed by the ASN (assumed to be the terminal MN) as follows:
  • the source address is AIDm
  • the destination address is AIDc.
  • the terminal MN can obtain the AID of the peer by means of the domain name server, or by locally searching for the correspondence between the AID and the user name. ;
  • the ASN After receiving the data packet sent by the terminal MN (the format of the packet is the format defined by the D1 interface), the ASN queries the AID-RID mapping table in the local cache according to the AIDc in the data packet:
  • the ASN converts the data packet from the format defined by the D1 interface to the format defined by the D3 interface (ie, the RIDm corresponding to the AIDm is used as the source address, and the RIDc is used as the destination address, and is encapsulated in the new address.
  • the Layer 3 packet header is forwarded to the generalized forwarding plane, and the generalized forwarding plane sends the data packet to the ASN accessed by the communication peer;
  • the ASN converts the data packet from the format defined by the D1 interface to the format defined by the D4m interface (ie, the RIDm corresponding to the AIDm is used as the source).
  • the address is the destination address of the ILR route identifier RIDi in the mapping plane connected to the ASN, which is encapsulated in the newly added Layer 3 packet header, and then forwarded to the mapping forwarding plane, and sends the AIDc-RIDc mapping information to the mapping forwarding plane.
  • the query forwarding plane returns the mapping information of AIDc-RIDc to the ASN after receiving the query request, and the ASNc-RIDc mapping information is saved in the local cache after receiving the ASN; the mapping forwarding plane receives the data sent by the ASN. After the text is retrieved, the corresponding AIDc-RIDc mapping entry is found, and the data 4 ⁇ is changed from the D4m interface format to the D3 interface (ie, the RIDi in the newly added packet header is replaced by RIDc) and forwarded to the generalized forwarding plane. , the generalized forwarding plane is sent to the communication peer CN.
  • the generalized forwarding plane specifically performs the forwarding of data packets by the CR.
  • the ASN first sends the query request.
  • the visited domain ILR and the visited CN home domain ILR are not the same ILR, the visited domain ILR forwards the message between the ASN and the home domain ILR, and there is no direct connection between the visited domain ILR and the home domain ILR. , also need to relay ILR (Broke ILR) relay.
  • the ASN forwards the data packet to the adjacent PTF in the mapping forwarding plane, and the neighboring PTF routes the data packet to the home PTF.
  • the ASN may buffer the data packet during the query of the communication peer mapping, and after the home ILR returns to the communication peer mapping, the RID encapsulation is added to the data packet header and then sent through the generalized forwarding plane.
  • the ASN may only query the mapping forwarding plane for the mapping information of the AIDc-RIDc, and cache the received data packet. After the mapping information of the AIDc-RIDc is queried, the formatted data packet is converted into a format defined by the D3 interface and forwarded to the generalized forwarding plane.
  • the processing when the ASN receives the data message to be sent to the terminal accessing the ASN (assumed to be the terminal MN) includes:
  • the ASN When receiving the data packet sent by the network to the terminal MN, the ASN decapsulates the data packet, strips the header of the data packet, and changes the format of the data packet from the D3 interface to the D1 interface. The defined format is then sent to the terminal MN.
  • the ASN If the ASN receives the data packet sent by the communication peer to the terminal MN, the AID-RID mapping information of the communication peer is not saved in the local cache (for example, the first data packet sent by the communication peer to the terminal MN first), the ASN needs to Obtain the AID-RID mapping information of the peer in the data packet and cache it.
  • the processing logic after the ASN receives the data packet is the same, so it is already possible to know the sending process of the entire data packet.
  • the ASN may also encapsulate the received data packet to be sent to the communication peer in another manner: Replace the source address AIDm in the packet header with RIDm, the destination address. AIDc is replaced by RIDc, which encapsulates AIDm and AIDc into the payload of the data message.
  • RIDc encapsulates AIDm and AIDc into the payload of the data message.
  • the ASN receives the data packet to be sent to the terminal MN, it needs to take AIDm and AIDc from the payload of the data packet, and replace the source address RIDm in the packet header with AIDm, and replace the destination address RIDc with AIDc, which is restored to the format defined by the D1 interface, is then sent to the communication peer.
  • the communication between the IPV4/IPV6 terminals of the architecture network or the communication between the IPV4/IPV6 terminal and the AID terminal is basically the same as the above process, and the difference is the data sent by the IPV4/IPV6 terminal to the ASN.
  • the source and destination addresses in the text are IPV4/IPV6 addresses.
  • the ASN needs to convert these IPV4/IPV6 addresses to the corresponding AIDs for processing.
  • the ASN receives the data packets addressed to the IPV4/IPV6 terminals, the ASN needs to The AID in the data packet is converted to the corresponding IPV4/IPV6 address and then sent to the IPV4/IPV6 terminal.
  • the terminal MN and the terminal CN are still taken as an example to describe the handover process of the terminal.
  • the data forwarding path that the terminal MN and the terminal CN are communicating with is MN ⁇ ->ASNml ⁇ -->ASNc ⁇ ->CN
  • ASNml is the ASN accessed by the terminal MN
  • ASNc is the ASN accessed by the terminal CN
  • the terminal is
  • the AID of the MN is denoted as AIDm
  • the RID assigned by the ASNml to the terminal MN is denoted as RIDml.
  • the location of the terminal MN changes and moves to the service range of ASNm2.
  • the access network and/or the terminal will trigger the handover procedure, and the terminal MN is switched from ASN ml (called cut-out ASN) to ASN m2 ( Called into the ASN).
  • ASNml requests ASNm2 to switch.
  • ASNm2 allocates a new RID to the terminal MN, denotes RIDm2, saves the mapping information of AIDm and RIDm2, obtains the communication peer information saved by ASNml, and returns a response to ASNml.
  • RIDm2 allocates a new RID to the terminal MN, denotes RIDm2, saves the mapping information of AIDm and RIDm2, obtains the communication peer information saved by ASNml, and returns a response to ASNml.
  • ASNml forwards data to ASNm2 during handover.
  • the data forwarding path is MN ⁇ -- >ASNm2 ⁇ -> ASNml ⁇ --> ASNc ⁇ >CN; ASNc needs to obtain terminal MN new from ASNm2 or mapping forwarding plane.
  • mapping information AIDm-RIDm2 after the terminal MN accesses ASNm2, the data forwarding path becomes MN ⁇ ->ASNm2 ⁇ ->ASNc ⁇ ->CN. During the above handover process or after the handover is completed, the ASNm2 needs to report the AIDm-RIDm2 mapping information to the home domain ILR of the terminal MN; the home ILR/PTF updates the stored identity location mapping entry AIDm-RIDml to AIDm-RIDm2.
  • a notification message is sent to the accessed ASN.
  • the ASN deletes the connection between the terminal and the network (including the connection between the D1 interface and the D3 interface), and notifies the terminal user of the home domain ILR.
  • the registration of the terminal is cancelled, and the saved AID-RID mapping entry of the terminal is deleted after the home ILR receives.
  • the ASN detects the activity of the terminal for a long time (if more than a set time threshold)
  • the connection of the terminal may be deleted, and the user of the home domain ILR is notified to cancel the registration of the terminal, and the home ILR receives the connection. After deleting the saved AID-RID mapping entry for the terminal.
  • the network and the components in the network based on the identity and location separation architecture provided by the present invention implement the separation of the identity and the location of the network.
  • the architecture can support the application scenario of the mobile terminal, and effectively solve the scenario in the scenario.
  • the above-mentioned architecture is considered to be compatible with the terminal and compatible with the upper-layer services. It only needs to upgrade the network-side device and is compatible with the application scenario without changing the terminal.
  • the above architecture improves the scalability of the routing system: including the routing in the router. Table entry, rate of change of routing table, convergence time; In the above architecture, user privacy is strengthened, both parties of the communication only know the identity of the other party, but do not know the location of the other party, but in the traditional Internet, you can know according to the IP address.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于身份标识和位置分离架构的网络及网络中的各个组成部分,基于身份标识和位置标识分离架构的网络包括接入网和骨干网,所述接入网与骨干网在拓扑关系上没有重叠,其中:所述接入网位于所述骨干网的边缘,并设置为实现本网络终端的接入;所述骨干网设置为,实现通过所述接入网接入的终端间数据报文的路由和转发;在所述网络中采用接入标识(AID)作为终端的身份标识,采用路由标识(RID)作为终端的位置标识。本发明实现了基于网络的身份标识和位置的分离。

Description

基于身份标识和位置分离架构的网络及其骨干网和网元
技术领域
本发明涉及通信技术领域的网络架构, 尤其涉及一种基于身份标识和位 置分离架构的网络及其组成部分。
背景技术
在传统的传输控制协议(TCP ) /网际协议(IP ) 网络环境中, IP为因特 网 (Internet)提供了路由功能, 它给所有节点 (包括主机和路由器)都分配了 逻辑地址, 即 IP地址, 且每台主机的各个端口都分配一个 IP地址。 IP地址 包括网络前缀和主机部分, 同一条链路上的所有主机的 IP地址通常有相同的 网络前缀和不同的主机部分。 这使得 IP可以依据目的节点的 IP地址的网络 前缀部分来进行路由选择,从而使路由器秩序保存一条简单的网络前缀路由, 而不必为每台主机保存一条单独的路由。 在这种情况下, 由于釆用了网络前 缀路由, 因此当节点从一条链路切换到另一条链路而没有改变其 IP地址时, 该节点则不可能在新链路上接收到数据报文, 从而也就无法与其他节点进行 通信。
传统 IP网络不支持终端移动性, 现有技术提出了各种不同的解决方案, 主要有 Internet工程任务组 ( IETF: Internet Engineering Task Force ) 的移动 (Mobile) IPv4、 Mobile IPV6 和代理移动 (Proxy Mobile) IPV6 (也简写为 ΡΜΙΡνό ) , 第三代合作伙伴计划(3GPP )的通用分组无线服务技术(GPRS ) 隧道协议(GTP )方式等。 现有技术釆用固定锚点的方式支持终端的移动性, 比如宽带码分多址( WCDMA )中规定网关 GPRS支持节点( GGSN: Gateway GPRS Support Node )作为终端的移动锚点; 码分多址(CDMA ) 网络中釆用 Mobile IP协议, 把家乡代理(HA: Home Agent )作为锚点。 但固定锚点带 来了数据包路径迂回的问题, 加重了传输延时和带宽浪费。 随着 2G/3G/4G 等移无线分组技术的发展, 移动互联网用户数和流量逐渐增加, GGSN等网 关设备逐渐下移, 将使得路径迂回的问题更加严重。
Mobile IPV4和 Mobile IPV6均属于基于终端的移动性解决方案, 特点是 终端要处理与移动性有关的流程。
Mobile MIPv4的主要问题是路由迂回, 例如终端 A在 X地开户,对应的 HA在 X地。 通信对端 B在 Y地, 即使 A漫游到了 Y地, 其数据流依然要从 Y地发回到 X地, 然后再发到对端 B。
Mobile MIPV6相对于 MIPV4的主要改进是定义了路径优化过程, 可以 避免路径迂回, 但存在以下的问题:
1)首先 MIPV6 的路径优化过程是端到端的过程, 终端要支持 Mobile IPV6, 实际上支持 MIP V6的终端较少, 固定接入的终端普遍不支持。 使得 MIPV6的路径优化过程难以实施。
2)用户每次切换都要分配新的地址, 地址分配时间长, 导致切换时延大。 另外一类技术是基于网络的移动性解决方案,包括 Proxy Mobile IP、 3GPP 的 GPRS隧道协议 (GTP: GPRS Tunnelling Protocol)隧道等。
ΡΜΙΡνό和 GTP方式, 从路由的角度, 二者比较类似。 主要问题是:
1)存在区域移动锚点 (LMA: Local Mobility. Anchor)或者分组数据网网关 (PGW: Packet Data Network Gateway), GGSN, 这里会引入路由迂回, 在静 态 IP地址分配方式下, 其路由迂回的问题与 MIPV4—样。
2)终端开机在线, 就一定会锚定一个 LMA或者 PGW, GGSN, 无论是 本地( Local ) 出口 ( Breakout ) 、 动态制定 LMA或其他已有的方式均是如 此, 后续终端位置发生了变化, 其锚点位置不会变化, 除非终端掉线后再次 上线重新分配地址。
现有因特网广泛使用的 TCP/IP协议中 IP地址具有双重功能, 既作为网 络层的通信终端主机网络接口在网络拓朴中的位置标识, 又作为传输层主机 网络接口的身份标识。 TCP/IP协议设计之初并未考虑主机移动的情况。但是, 当主机移动越来越普遍时, 这种 IP地址的语义过载缺陷日益明显。 当主机的 IP地址发生变化时, 不仅路由要发生变化, 通信终端主机的身份标识也会发 生变化, 这样会导致路由负载越来越重, 而且主机标识的变化会导致应用和 连接的中断。
身份标识和位置分离问题提出的目的是为了解决 IP地址的语义过载和路 由负载严重等问题, 将 IP地址的双重功能进行分离, 实现对移动性、 多家乡 性、 IP地址动态重分配、 减轻路由负载及下一代互联网中不同网络区域之间 的互访等问题的支持。
IP协议不支持移动性,本质原因在于 IP地址包含了身份和位置双重属性。 IP地址的身份属性: 在 TCP/IP协议栈中, IP地址用来标识通信对端。
IP地址的位置属性: IP地址代表用户处于哪一个网段, 是路由的基础。 固定网络中, IP地址的位置和身份属性合一是没有问题的, 因为终端的 位置不变, IP地址就不会变化, 身份属性也不会变化。
而到了移动互联网, 终端位置的移动, 导致 IP地址必须变化, 否则没法 路由; 而 IP地址的变化会导致终端身份的变化, TCP/用户数据包协议( UDP ) 连接必须断掉重连, 这对于很多应用程序来说是不能接受的。 所以传统的 IP 协议对移动性的支持存在着根本性的问题。
现有技术中有关身份标识和位置分离的解决方案主要有两种, 一种^^ 于主机的实现, 另一种是基于路由器的实现, 每种实现中又有相关的多种技 术进行支持。 基于主机的现有的主要协议是主机标识协议 (Host Identity Protocol, HIP ) , 基于路由的现有主要协议是位置身份分离协议 (LISP)等。
HIP是一种主机移动性关联协议, HIP将 IP地址分离为端标识与位置标识。 HIP的基本思想是在第三层网络层和第四层传输层之间引入了 3.5层的主机 标识层( Host Identity Layer, HIL ) , 即在域名空间和 IP地址空间之间引入 了主机标识( Host Identity , HI ) 空间。 主机标识层将原来紧密耦合的传输层 和网络层分开, IP地址不再扮演标识主机的角色, 它只负责数据包的路由转 发, 即仅用作定位符, 主机名称由主机标识符来表示。 主机标识层在逻辑上 位于网络层与传输层之间, 传输层使用传输层标识符, 由主机标识符层完成 数据包中的主机标识符和 IP地址转换。 网络层对于传输层是屏蔽的, 网络层 的任何变化 (例如,在通信过程中主机 IP地址的变化)不会影响传输层链路, 除非服务质量发生变化。
这样, 传输层的连接建立在主机标识之上, IP地址只能被用于网络层路 由, 而不再用于标识主机身份。 HIP 的关键思想就是断开网络层和传输层的 紧密耦合, 使应用层和传输层的连接不受 IP地址变化的影响。 当 IP地址在 一个连接中变化时, HI保持不变, 由此保证了连接的不中断。 在支持 HIP的 主机中, IP地址只是用于路由和寻址功能, 而 HI则用来标识一个连接所对应 的终端主机, 代替连接套接字中所使用的 IP地址。
HIP是一种主机协议, 主要问题是: 部署的前提是需要参与通信的终端 都同步支持 HIP协议, 需要对终端甚至上层应用做较大改动。 网络不参与用 户的接入管理, 在通信两端同时移动的位置更新阶段需要网络参与维护通信 链路, 否则将发生报文丟失问题。 另外, HIP协议无法实现匿名通信。
LISP重用了路由技术, 对现有的路由拓朴结构有了一定的改变, 结合现 有的传送网, 利用最小的改造优化了现有的路由传送技术。
主机使用 IP 地址 (在 LISP 系统中称为端标识 (EID) ) 来跟踪套接字 (socket), 建立连接、 发送和接收数据包。
路由器基于 IP目的地址(在 LISP系统中称为路由位置 (RLOCs) )传递数 据包。
在 LISP系统中引入了隧道路由, 在发起主机包时封装 LISP数据包并且 在最终传递到目的地前对数据包进行解封装。在 LISP数据包中"外层报头"的 IP地址是 RLOCs。 在两个网络的主机之间进行端到端的包交换过程中, ITR (隧道入口路由器)为每个包封装一个新 LISP头,在出口通道路由剥去新头。 ITR执行 EID-to-RLOC查找以确定到 ETR (隧道出口路由器) 的路由路径, ETR以 RLOC作为自身的一个地址。
LISP的提出不是解决移动性的问题, 而主要解决的是网络规模的问题, 针对的是路由表过大的问题, 对于移动性和多穴性是由身份位置分离后附带 解决的问题, 现在还没有具体的方案和实现方法。
另外, LISP 为基于网络 (network-based)的协议, 只影响网络部分, 更确 切的是只影响现有骨干网络 (Internet backbone), 不影响现有网络的接入层和 用户主机, 对主机是完全透明的。
综上, 现有网络技术存在如下不足:
TCP/IP协议现有技术釆用固定锚点的方式支持终端的移动性, 固定锚点 带来了数据包路径迂回的问题, 加重了传输延时和带宽浪费。 MIPV6的路由 优化过程需要参与通信的主机支持 MIPV6协议, 部署困难。
TCP/IP协议中 IP地址具有双重功能:既作为网络层的通信终端主机网络 接口在网络拓朴中的位置标识, 又作为传输层主机网络接口的身份标识。 现 有技术身份标识和位置分离框架 HIP、 LISP等是为了克服现有网络技术的这 一不足而构建的一种全新的网络框架。 基于主机的 HIP协议等需要对终端及 上层业务做较大改动, 部署困难; 通信两端同时移动、 位置更新阶段需要网 络参与维护通信链路, 否则将发生报文丟失问题。 基于网络的 LISP协议, 对 于移动性和多穴性是身份位置分离后附带解决的问题, 现在还没有具体的方 案和实现方法。
路由系统的可测量性差, 引起传统(Legacy ) IP网络中路由系统可测量 性的重要原因是路由表的规模、 网络拓朴结构的变化。 Legacy IP网络最初设 计时考虑的主要应用场景是固定接入方式, 其 IP地址包括网络前缀和主机部 分, 同一条链路上的所有主机通常有相同的网路前缀和不同的主机部分。 Legacy IP网络中釆用了网络前缀路由, 网络拓朴结构的变化将影响终端主机 的 IP地址分配。 在这个机制下, 不断增加的主机移动性需求, 将增加网络拓 朴的复杂性, 从而导致路由表条目增加, 路由表变化概率增加。
发明内容
针对以上现有技术的缺陷, 本发明要解决的技术问题是提供一种基于身 份标识和位置分离架构的网络及网络中的各个组成部分, 以实现基于网络的 身份标识和位置分离。
本发明要解决的又一技术问题是在本架构网络中, 支持移动终端的应用 场景, 有效解决了该场景下的迂回路由问题。
本发明要解决的又一技术问题是提供一种基于身份标识和位置分离架构 的网络及其组成部分, 在该架构网络的部署中考虑兼容终端、 兼容上层业务 的需求, 仅需升级网络侧设备, 兼容不更改终端的应用场景。 为了解决上述问题, 本发明提供了一种基于身份标识和位置标识分离架 构的网络, 包括接入网和骨干网, 所述接入网与骨干网在拓朴关系上没有重 叠, 其中:
所述接入网位于所述骨干网的边缘, 并设置为实现本网络终端的接入; 所述骨干网设置为, 实现通过所述接入网接入的终端间数据报文的路由 和转发;
在所述网络中釆用接入标识 (AID)作为终端用户的身份标识,釆用路由标 识 (RID)作为终端的位置标识。
上述网络还可具有以下特点:
所述骨干网中包括接入服务节点 (ASN), 所述 ASN作为所述接入网和所 述骨干网中其他部分的分界节点。
上述网络还可具有以下特点:
所述网络还包括接入服务节点 (ASN), 所述 ASN位于所述骨干网和接入 网的分界节点, 具有与所述骨干网和接入网的接口。
上述网络还可具有以下特点:
为所述网络中的每个终端用户唯一分配一个 AID, 在接入网使用, 且在 终端的移动过程中始终保持不变; RID是为网络中每个终端分配的位置标识, 在骨干网使用。
上述网络还可具有以下特点:
所述接入网是设置为, 为终端提供到物理层和链路层的接入手段, 维护 终端与 ASN之间的物理接入链路。
上述网络还可具有以下特点:
所述骨干网组网时分为两个平面: 广义转发平面和映射转发平面, 所述 广义转发平面和映射转发平面分别与所述 ASN连接, 其中:
广义转发平面设置为,根据数据报文中的 RID进行选路和转发以 RID为 目的地址的数据报文;
所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。 上述网络还可具有以下特点:
所述映射转发平面还设置为,路由并转发以 AID为目的地址的数据报文。 上述网络还可具有以下特点:
所述 ASN设置为, 为终端提供接入服务、 维护终端与网络的连接, 为终 端分配 RID, 到映射转发平面登记注册和查询终端的 RID、 维护 AID-RID映 射信息, 以及实现终端间数据报文的路由和转发。
上述网络还可具有以下特点:
所述广义转发平面中的网元包括通用路由器, 其设置为路由并转发以 RID格式为源地址和目的地址的数据报文。
上述网络还可具有以下特点:
所述广义转发平面中的网元还包括互联服务节点 (ISN), 所述 ISN具有与 通用路由器、 ASN和映射转发平面的接口, 并设置为: 查询、 维护本网络终 端的 AID-RID映射信息,封装、路由和转发本网络与传统 IP网络之间往来的 数据报文, 实现本网络与传统 IP网络间的互联互通功能。
上述网络还可具有以下特点:
所述骨干网还包括认证中心, 所述认证中心具有与所述 ASN 的信令接 口, 并设置为: 记录本网络用户的属性信息, 完成对终端的接入认证和授权, 或者完成对终端的接入认证、 授权和计费。
上述网络还可具有以下特点:
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
上述网络还可具有以下特点:
所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的
ASN。
上述网络还可具有以下特点:
所述 ILR和 PTF位于同一网元上, 该网元记为 ILR/PTF。
上述网络还可具有以下特点:
所述 ASN与终端之间具有信令接口和第一数据收发接口, 所述 ASN与 终端之间的信令接口设置为, 接入管理、 切换、 认证、 计费和登记注册的信 息流程处理; 所述第一数据收发接口的数据报文中, 源地址为发送数据包的 终端的 AID , 目的地址为数据包发往的通信对端的 AID。
上述网络还可具有以下特点:
所述 ASN之间具有信令接口和第二数据转发接口, 所述 ASN之间的信 令接口设置为, 切换时切换管理信令的传递, 及在通信对端之间位置变化时 传递 RID更新消息; 所述第二数据转发接口设置为,切换时 ASN间的数据转 发, 第二数据转发接口的数据报文在第一数据收发接口的数据报文上增加了 隧道封装。
上述网络还可具有以下特点:
所述广义转发平面具有通用路由器, 该通用路由器对外的接口为第三数 据转发接口, 第三数据转发接口的数据报文是在第一数据收发接口的数据报 文的基础上新封装了一个三层报头, 该新的三层报头中的源地址是为发送数 据包的终端分配的 RID, 目的地址是为数据包发送到的通信对端分配的 RID。
上述网络还可具有以下特点:
所述 ASN与 ISN间的信令接口设置为, ASN将本网络终端新的 AID-RID 映射信息通知 ISN。
上述网络还可具有以下特点:
所述 ASN与映射转发平面间的接口包括信令接口和第四数据转发接口, 所述 ASN与映射转发平面间的信令接口设置为, 查询和维护 AID-RID映射 信息; 所述第四数据转发接口的数据报文是在第一数据收发接口的数据报文 的基础上新加了一个三层报头, 其中的源地址是为发送数据包的终端分配的 RID, 目的地址为与 ASN连接的映射转发平面中负责数据报文转发的网元的 路由地址。
上述网络还可具有以下特点:
所述映射转发平面内 ILR 间具有信令接口, 其设置为查询和维护 AID-RID映射信息, 以及映射转发平面内的路由信息交互。
上述网络还可具有以下特点:
所述 ISN与传统 IP网络间具有数据转发接口,该数据转发接口的数据报 文与传统 IP网络的数据报文的格式一样。
针对以上现有技术的缺陷, 本发明还提供了包括上述基于身份标识和位 置分离架构的网络的系统, 除该网络外, 还包括终端, 所述终端为固定终端、 移动终端和游牧终端中的一种或多种。 可以为现有的支持 IPV4或 IPV6协议 栈的终端, 也可以为协议栈支持 AID编码要求的终端。
针对以上现有技术的缺陷, 本发明还提供了一种基于身份标识和位置标 识分离架构的网络中的接入服务节点, 所述接入服务节点设置为, 为终端提 供接入服务、 维护终端与网络的连接, 为终端分配路由标识 (RID ) , 到映 射转发平面登记注册和查询终端的 RID, 维护终端的接入标识和路由标识 ( AID-RID )映射信息, 以及实现数据报文的路由和转发; 所述 ASN还设置 为, 与认证中心配合完成对终端的认证和对业务的计费, 以及与其他 ASN配 合实现终端跨 ASN的切换。
上述接入服务节点还可具有以下特点: 包括接入处理模块、 登记注册模 块和映射管理模块, 其中:
所述接入处理模块设置为, 在终端请求接入时, 与终端和认证中心配合 完成对终端的认证, 通过接入网建立与终端的连接, 为终端分配 RID, 以及 通知登记注册模块发起对该终端的登记注册;
所述登记注册模块设置为, 在收到对终端的登记注册的通知后, 向该终 端归属域身份位置寄存器(ILR )发起登记注册, 携带该终端当前的 AID-RID 映射信息; 以及在收到对终端的取消登记注册的通知后, 通知该终端归属域 ILR删除该终端登记注册的信息, 包括该终端的 AID-RID映射信息; 所述映射管理模块设置为, 在终端接入后緩存该终端的 AID-RID映射信 息并进行维护, 在收到查询通知后根据通信对端的 AID 向映射转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
上述接入服务节点还可具有以下特点:所述 ASN还包括连接维护模块和 报文转发模块, 其中:
所述连接维护模块设置为, 在终端接入后的在线期间, 维护本 ASN与该 终端的连接; 以及在该终端通信时, 维护本 ASN与通信对端接入的 ASN之 间的连接;
所述报文转发模块设置为,将接入本 ASN的终端发送的数据报文封装上 该终端和通信对端的 RID, 路由并转发到该通信对端接入的 ASN, 以及将要 发送到接入本 ASN的终端的数据报文解封装后, 发送给该终端。
上述接入服务节点还可具有以下特点: 所述报文转发模块又分为第一转 发单元和第二转发单元, 其中:
所述第一转发单元设置为, 在收到接入本 ASN 的终端发来的数据报文 后, 根据该数据报文中作为目的地址的通信对端的 AID 查询本地緩存中的 AID-RID映射信息, 如查到该通信对端的 RID, 将该通信对端的 RID作为目 的地址, 该终端的 RID作为源地址, 封装在该数据报文中, 然后将封装后的 数据报文转发到广义转发平面; 如没有查到通信对端的 RID, 将数据报文做 隧道封装后转发到映射转发平面,并通知映射管理模块查询通信对端的 RID;
所述第二转发单元设置为,在收到要发送到接入本 ASN的终端的数据报 文后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送到 ASN的数据报 文的格式后, 通过本 ASN与该终端的连接发往该终端。
上述接入服务节点还可具有以下特点: 所述 ASN还包括:
离线处理模块, 其设置为在接入本 ASN的终端离线后, 通知连接维护模 块释放该终端与网络的相关连接, 通知映射管理模块删除该终端的 AID-RID 映射信息, 以及通知登记注册模块对该终端取消登记注册。
上述接入服务节点还可具有以下特点: 所述 ASN还包括切换控制模块, 该切换控制模块分为切出控制单元和切入控制单元, 其中: 所述切出控制单元设置为, 在收到切换请求后, 根据切换的目的地确定 终端要切换到另一 ASN, 称为切入 ASN时, 向切入 ASN发切换请求, 将该 终端的通信对端的信息发送到切入 ASN或映射转发平面,收到切换响应后通 知该终端接入切入 ASN, 切换期间收到的发往该终端的数据报文转发到切入 ASN, 切换完成后通知映射管理模块删除该终端的 AID-RID映射信息;
所述切入控制单元设置为, 在收到切换请求后, 为终端分配 RID并保存 该终端的 AID-RID映射信息, 从切出 ASN获取该终端的通信对端的信息并 返回切换响应,并通知登记注册模块发起对该终端位置更新的登记注册流程; 切入控制单元还设置为,通知该终端所有通信对端接入的 ASN或该终端与传 统 IP网络终端通信时锚定的 ILR更新该终端的 AID-RID映射信息。
上述接入服务节点还可具有以下特点: 所述 ASN还包括:
格式转换模块,其设置为将接入本 ASN的 IPV4/IPV6终端发送的数据报 文中本网络终端的 IPV4/IPV6 地址转换为对应的 AID, 以及将要发送到该 IPV4/IPV6终端的数据报文中的所有 AID转换为 IPV4/IPV6地址。
针对以上现有技术的缺陷, 本发明还提供了一种基于身份标识和位置标 识分离架构的网络中的互联服务节点, 所述互联服务节点设置为, 查询、 维 护本网络终端的接入标识和路由标识 (AID-RID ) 映射信息, 封装、 路由和 转发本网络与传统 IP网络之间往来的数据 文, 实现本网络与传统 IP网络 间的互联互通功能。
上述互联服务节点还可具有以下特点: 包括连接维护模块和映射管理模 块, 其中:
所述连接维护模块设置为, 建立和维护本网络终端与传统 IP网络终端间 的连接, 在本网络终端发生切换时, 作为该终端在本网络与传统 IP间的代理 锚点, 保持与传统 IP网络之间的连接。
所述映射管理模块设置为, 提取数据报文中本网络终端的 AID-RID映射 信息并进行维护, 以及在收到查询通知后根据待查询终端的 AID向映射转发 平面查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
上述互联服务节点还可具有以下特点: 所述互联服务节点还包括报文转 发模块, 该 "^文转发模块又分为第一转发单元和第二转发单元, 其中: 所述第一转发单元设置为,根据传统 IP网络发来的数据报文中本网络终 端的 AID , 查询本地緩存中的 AID-RID映射信息: 如查到本网络终端 AID对 应的 RID, 将本网络终端的 RID作为目的地址封装在该数据报文中, 然后将 封装后的数据报文转发到广义转发平面; 如没有查到本网络终端 AID对应的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块 查询本网络终端的 RID;
所述第二转发单元设置为, 在收到本网络发来的数据报文后, 剥去数据 报文中封装的 RID, 发送到传统 IP网络的终端或格式转换模块。
上述互联服务节点还可具有以下特点: 所述互联服务节点还包括格式转 换模块, 其设置为将传统 IP 网络发来的数据报文中包含的本网络终端的 IPV4/IPV6地址转换为对应的 AID, 再交给第一转发单元转发; 以及将第二 转发单元解封装后的数据报文中的本网络终端的 AID转换为 IPV4/IPV6地址 格式后, 再发送到传统 IP网络的终端。
针对以上现有技术的缺陷, 本发明又提供了一种基于身份标识和位置标 识分离架构的网络中的骨干网, 所述骨干网组网时分为两个平面: 广义转发 平面和映射转发平面, 其中:
广义转发平面设置为, 根据数据报文中的路由标识 (RID )进行选路和 转发以 RID为目的地址的数据报文;
所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。
上述骨干网还可具有以下特点:
所述骨干网中还包括接入服务节点 (ASN), 所述 ASN作为所述广义转发 平面和映射转发平面与所述接入网的分界节点。
上述骨干网还可具有以下特点:
所述映射转发平面还设置为, 路由并转发以接入标识 (AID )为目的地 址的数据报文。
上述骨干网还可具有以下特点: 所述 ASN设置为, 为终端提供接入服务、 维护终端与网络的连接, 为终 端分配 RID, 到映射转发平面登记注册和查询终端的 RID、 维护 AID-RID映 射信息, 以及实现终端间数据报文的路由和转发。
上述骨干网还可具有以下特点:
所述广义转发平面中的网元包括通用路由器, 其设置为路由并转发以
RID格式为源地址和目的地址的数据报文。
上述骨干网还可具有以下特点:
所述广义转发平面中的网元还包括互联服务节点 (ISN), 所述 ISN具有与 通用路由器、 ASN和映射转发平面的接口, 并设置为: 查询、 维护本网络终 端的 AID-RID映射信息,封装、路由和转发本网络与传统 IP网络之间往来的 数据报文, 实现本网络与传统 IP网络间的互联互通功能。
上述骨干网还可具有以下特点:
所述骨干网还包括认证中心, 所述认证中心具有与所述 ASN 的信令接 口, 并设置为: 记录本网络用户的属性信息, 完成对终端的接入认证和授权, 或者完成对终端的接入认证、 授权和计费。
上述骨干网还可具有以下特点:
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
上述骨干网还可具有以下特点:
所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的 ASN。
上述骨干网还可具有以下特点: 所述 ILR和 PTF位于同一网元上, 该网 元记为 ILR/PTF。 针对以上现有技术的缺陷, 本发明还提供了一种在上述骨干网中的映射 转发平面, 其中:
所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。
上述映射转发平面还可具有以下特点:
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
上述映射转发平面还可具有以下特点:
所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的 ASN。
上述映射转发平面还可具有以下特点:所述 ILR和 PTF位于同一网元上 , 该网元记为 ILR/PTF。
上述架构中, 支持移动终端的应用场景, 有效解决了该场景下的迂回路 由问题。
上述架构的部署考虑了兼容终端、 兼容上层业务的需求, 仅需升级网络 侧设备, 兼容不更改终端的应用场景。
上述架构提高了路由系统的可测量性: 包括路由器中的路由表条目, 路 由表变化的速率, 汇聚时间。
上述架构中, 用户私密性有所加强, 通信双方均只知道对方的身份, 但 不知道对方的位置, 而在传统互联网中, 可以根据 IP地址知道对方位置。
上述架构中, 骨干网设备不会受到攻击, 由于身份标识、 位置标识是两 个不同的命名空间, 即使用户知道了骨干网设备的位置标识, 也无法访问, 避免了骨干网设备受到攻击。 上述构架中, 杜绝了地址欺骗等常用攻击手段, 由于本架构网络对每个 用户均进行身份验证, 对每个发出的数据包均进行源身份验证, 由网络信用 来保证用户身份的真实性, 杜绝了现网存在的地址欺骗等攻击手段。
附图概述
图 l(a )是本发明实施例基于身份位置分离架构的网络的拓朴示意图; 图 l(b )是本发明另一实施例基于身份位置分离架构的网络的拓朴示意 图;
图 2是本发明实施例基于身份位置分离架构的网络与 Legacy IP网络(传 统 IP网络) 的拓朴关系的示意图;
图 3是本发明实施例基于身份位置分离架构的网络中节点间连接关系的 示意图。 ;
图 4是本发明实施例接入服务节点的功能模块图;
图 5是本发明实施例互联服务节点的功能模块图。
本发明的较佳实施方式
下面将结合附图及实施例对本发明的技术方案进行更详细的说明。
本实施例的基于身份位置分离架构 (以下简称本架构) 的网络拓朴如图 1(a)所示, 本架构将网络划分为接入网 11和骨干网 12。 接入网位于骨干网的 边缘, 其设置为负责所有终端的接入。 骨干网设置为, 负责通过接入网接入 的终端间数据报文的路由和转发。 接入网与骨干网在拓朴关系上没有重叠。
本架构的网络中有两种标识类型: 接入标识( AID: Access Identifier )和 路由标识(RID: Routing Identifier ) 。 其中, AID是终端的用户身份识别, 并设置为: 标识终端用户 (也简称为用户) 的身份, 网络为每个终端用户唯 一分配一个 AID, 在接入网使用, 在终端的移动过程中始终保持不变; RID 是为终端分配的位置标识, 在骨干网使用。
本架构中, 接入网络的终端可以是移动终端、 固定终端和游牧终端中的 一种或多种, 如手机、 固定电话、 电脑和应用服务器等等。 本架构中, 接入网用于为终端提供到二层(物理层和链路层)接入手段, 维护终端与 ASN之间的物理接入链路。 可能的二层接入手段包括: 蜂窝移动 网技术( GSM/CDMA/ TD-SCDMA/WCDMA/ WiMAX/LTE )、 数字用户线路 ( DSL ) 、 宽带光纤接入或无线保真(WiFi )接入等等。
本架构的骨干网 12组网时分为两个平面:广义转发平面 121和映射转发 平面 122, 还包括接入服务节点 (ASN: Access Service Node) 123和认证中心 124。
ASN位于广义转发平面、 映射转发平面和接入网的分界节点, 具有与接 入网、 广义转发平面和映射转发平面的接口。 ASN设置为, 为终端提供接入 服务、 维护终端与网络的连接, 为终端分配 RID, 到映射转发平面登记注册 和查询终端的 RID, 维护 AID-RID映射信息, 以及实现数据报文的路由和转 发。
广义转发平面主要设置为, 根据数据报文中的 RID 进行选路和转发以 RID为目的地址的数据报文, 广义转发平面内的数据路由转发行为与 Legacy IP 网络一致。 如图所示, 广义转发平面的主要网元包括通用路由器(CR: Common Router )和互联月良务节点 ( ISN: Interconnect Service Node )
映射转发平面主要设置为, 保存终端的身份位置映射信息 (即 AID-RID 的映射信息) , 处理对终端位置的登记注册和查询, 路由并转发以 AID为目 的地址的数据报文。 如图所示, 映射转发平面的主要网元包括身份位置寄存 器 /分组转发功能 ( ILR/PTF: Identity Location Register/Packet Transfer Function ) 。
认证中心设置为, 记录本架构网络终端用户的属性信息如用户类别、 认 证信息和用户服务等级等, 完成对终端的接入认证和授权, 还可具有计费功 能。 认证中心支持终端与网络间的双向认证, 可产生用于认证、 完整性保护 和加密的用户安全信息。
在另一实施例中, ASN13在架构的划分中独立于骨干网 12, 位于骨干网 12和接入网 11的分界节点,具有与接入网 11和骨干网 12的接口,如图 1(b) 所示。 其实际完成的功能与本实施例是一样的。 本架构将长期与 Legacy IP网络并存, 本架构初期可以 Legacy IP网络的 一个或多个孤岛形式存在和发展,也可以作为 Legacy IP网络的补充和扩展部 分。 本架构与传统(Legacy ) IP网络 21的拓朴关系如图 2所示, 本架构的 骨干网部分与 Legacy IP处于同一平面。 通过 ISN22与 Legacy IP网络互通, 本架构与 Legacy IP网络之间的接口遵从 Legacy IP网络中网间接口的规范, 未做特别改动,因此不需要对 Legacy IP网络做不同于现行运作机制的特殊要 求。
本架构具备独立组网的能力。经过长期发展,本架构可以形成脱离 Legacy IP网络独自发展的网络, 在该阶段, 网络主要由图 1 ( a ) 中所示接入网、 接 入服务节点、 映射转发平面和广义转发平面构成, 其中功能实体 ISN将不再 存在。
本架构参考模型如图 3所示, 图中给出了本架构网络的主要网元及各网 元之间的连接接口, 其中:
接入服务节点 (ASN)31 ,其设置为为终端提供接入服务、维护终端与网络 的连接, 为终端分配 RID, 到映射转发平面登记注册和查询终端的 RID, 维 护终端的 AID-RID映射信息, 以及实现数据报文的路由和转发。 ASN还设置 为, 与认证中心配合完成对终端的认证和对业务的计费, 以及与其他 ASN配 合实现终端跨 ASN的切换。
本实施例中, 如图 4所示, ASN包括以下功能模块:
接入处理模块 41 , 其设置为在终端请求接入时, 与终端和认证中心配合 完成对终端的认证, 通过接入网建立与终端的连接, 为终端分配 RID, 以及 通知登记注册模块发起对该终端的登记注册。
登记注册模块 42, 其设置为在收到对终端的登记注册的通知后, 向该终 端归属域 ILR发起登记注册, 携带该终端当前的 AID-RID映射信息; 以及在 收到对终端的取消登记注册的通知后, 通知该终端归属域 ILR删除该终端登 记注册的信息 , 包括该终端的 AID-RID映射信息。
连接维护模块 43 , 其设置为在终端接入后的在线期间, 维护本 ASN与 该终端的连接; 以及在该终端通信时, 维护本 ASN与通信对端接入的 ASN 之间的连接。
映射管理模块 44,其设置为在终端接入后緩存该终端的 AID-RID映射信 息并进行维护, 在收到查询通知后根据通信对端的 AID 向映射转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
离线处理模块 45, 其设置为在接入本 ASN的终端离线后, 通知连接维 护模块释放该终端与网络的相关连接, 通知映射管理模块删除该终端的 AID-RID映射信息, 以及通知登记注册模块对该终端取消登记注册。
报文转发模块 46, 其设置为将接入本 ASN的终端发送的数据报文封装 上该终端和通信对端的 RID, 路由并转发到该通信对端接入的 ASN, 以及将 要发送到接入本 ASN的终端的数据报文解封装后, 发送给该终端。
^^文转发模块又分为第一转发单元和第二转发单元, 其中:
第一转发单元设置为, 在收到接入本 ASN的终端发来的数据报文后, 根 据该数据 4艮文中作为目的地址的通信对端的 AID查询本地緩存中的 AID-RID 映射信息, 如查到该通信对端的 RID , 将该通信对端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报文中 (如可以封装在该数据报文 新加的三层报文头中) , 然后将封装后的数据报文转发到广义转发平面; 如 没有查到通信对端的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块查询通信对端的 RID。
第二转发单元设置为, 在收到要发送到接入本 ASN 的终端的数据报文 后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送到 ASN的数据报文 的格式后, 通过本 ASN与该终端的连接发往该终端。
切换控制模块 47, 分为切出控制单元和切入控制单元, 其中:
切出控制单元设置为, 在收到切换请求后, 根据切换的目的地确定终端 要切换到另一 ASN (称为切入 ASN ) 时, 向切入 ASN请求切换, 收到响应 后通知该终端接入切入 ASN, 切换期间收到的发往该终端的数据报文转发到 切入 ASN,在切换完成后通知映射管理模块删除该终端的 AID-RID映射信息。 还可以设置为,在切换过程中将该终端的通信对端的信息发送到切入 ASN或 映射转发平面。 切入控制单元设置为, 在收到切换请求后, 为终端分配 RID并保存该终 端的 AID-RID映射信息, 从切出 ASN获取该终端的通信对端的信息并返回 切换响应, 并通知登记注册模块发起对该终端位置更新的登记注册流程。 切 入控制单元还可设置为, 通知该终端所有通信对端接入的 ASN或该终端与 Legacy IP网络终端通信时锚定的 ISN, 更新该终端的 AID-RID映射信息。
本架构网络兼容 IPV4/IPV6终端(指现有 Legacy IP网络中支持 IPV4/IPV6 协议栈的终端) 且 AID 与 IPV4/IPV6 地址格式不同时, ASN 需要代理 IPV4/IPV6终端实现网络 AID数据报文与 IPV4/IPV6数据报文的兼容性处理。 为此, 在 ASN中需要增加一个格式转换模块 48, 其设置为将接入本 ASN的 源地址, 或源地址和目的地址) 转换为对应的 AID , 以及将要发送到该 IPV4/IPV6终端的数据报文中的所有 AID转换为 IPV4/IPV6地址。 转换的示 例可参照下文。
通用路由器(CR ) , 其位于骨干网的广义转发平面中, 并设置为: 路由 并转发以 RID格式为源地址和目的地址的数据报文。 该通用路由器的功能作 用与现有技术中的路由器没有区别。
身份位置寄存器和分组转发功能( ILR/PTF )位于骨干网的映射转发平面 中, 本实施例为同一实体上的两个功能模块, 但也可以位于不同实体上。
ILR是身份位置寄存器, 其设置为接受登记注册请求和取消登记注册请 求, 保存、 更新或删除本架构网络中归属用户的 AID-RID映射信息, 以及接 收对终端位置的查询请求, 将请求中终端的 AID对应的 RID返回给查询方。
PTF是分组转发功能, 其设置为在收到 ASN送达的数据报文后, 根据数 据才艮文要发送到的通信对端的 AID查到对应的 RID后(如到 ILR查, 也可以 在本地保存一份映射关系等) , 在报文头部封装该 RID, 将该数据报文通过 广义转发平面发送到该通信对端接入的 ASN。 如果不是归属 PTF, 先要将数 据才艮文路由到归属 ILR/PTF , 由归属 ILR/PTF根据 AID查到对应的 RID。
互联服务节点 (ISN), 其设置为查询、 维护本架构网络终端的 AID-RID映 射信息,封装、路由和转发本架构网络与 Legacy IP网络之间往来的数据报文, 实现本架构网络与 Legacy IP间的互联互通功能。 如图 5所示, ISN包括以下功能模块:
连接维护模块 51 , 其设置为建立和维护本架构网络终端与 Legacy IP网 络终端间的连接, 在本架构网络终端发生切换时, 作为该终端在本架构网络 与 Legacy IP间的代理锚点, 保持与 Legacy IP网络之间的连接。
映射管理模块 52, 其设置为提取数据报文中本架构网络终端的 AID-RID 映射信息并进行维护, 以及在收到查询通知后根据待查询终端的 AID向映射 转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
报文转发模块 53 , 又分为第一转发单元和第二转发单元, 其中: 第一转发单元设置为,根据 Legacy IP网络发来的数据报文中本架构网络 终端的 AID (作为目的地址或根据该目的地址转换得到) , 查询本地緩存中 的 AID-RID映射信息: 如查到本架构网络终端 AID对应的 RID, 将本架构网 络终端的 RID作为目的地址封装在该数据报文中 (如封装在新加的三层报文 头中) , 然后将封装后的数据报文转发到广义转发平面; 如没有查到本架构 网络终端 AID对应的 RID (如该数据报文为首包或默认路由的数据报文) , 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块查询本 架构网络终端的 RID。
第二转发单元设置为, 在收到本架构网络发来的数据报文后, 剥去数据 报文中封装的 RID, 发送到 Legacy IP网络的终端或格式转换模块 54。
如本架构网络釆用的 AID与 IPV4/IPV6地址格式不同, ILR还包括一格 式转换模块 54, 其设置为将 Legacy IP网络发来的数据报文中包含的本架构 网络终端的 IPV4/IPV6地址转换为对应的 AID , 再交给第一转发单元转发; 以及将第二转发单元解封装后的数据 "^文中的本架构网络终端的 AID转换为 IPV4/IPV6地址格式后, 再发送到 Legacy IP网络的终端。
如图 3所示, 本架构主要的接口包括:
* S1/D1接口是终端与 ASN之间的接口 (或称参考点) 。 其中:
S1是终端与 ASN之间的信令接口, 主要用于接入管理、 切换、 认证、 计费和登记注册的消息流程处理。
D1是终端与 ASN之间数据收发接口。 对于兼容本架构网络的终端, D1 接口的数据报文的格式为:
Figure imgf000023_0001
其中, 源 AID是发送数据包的终端的 AID, 作为数据报文的源地址; 目 的 AID是数据包发往的通信对端的 AID, 作为数据报文的目的地址, 源地址 和目的地址封装在三层报头中。
• S2/D2接口是 ASN之间的接口。 其中:
S2主要用于切换时切换管理信令的传递, 在通信对端之间位置变化时传 递 RID更新消息。
D2主要用于切换时 ASN间的数据转发。 D2接口的数据报文的格式为:
Figure imgf000023_0002
ASN在转发数据报文之前, 在数据报文上增加了隧道封装, 隧道封装方 式有很多,如 L2TPv3、 IP-in-IP, MPLS(LDP-based和 RSVP-TE based)、 GRE 和 IPsec等, 本发明不局限于任何一种特定的隧道封装方式。
S3是 ASN与 ISN间的信令接口。本架构网络终端与 Legacy IP网络终端 的通信过程中, 如本架构网络的终端发生切换, ASN将通过 S3接口将本架 构网络终端新的 AID-RID映射信息通知 ISN。
D3是与广义转发平面对外的接口, D3接口的数据报文的格式为:
Figure imgf000023_0003
D3接口的数据报文是在 D1接口的数据报文的基础上新封装了一个三层 报头, 该新的三层报头中包括源 RID和目的 RID, 其中源 RID是为发送数据 包的终端分配的 RID, 目的 RID是为数据包发送到的通信对端分配的 RID。 不过这种封装方式并不是唯一的。
S4是 ASN与映射转发平面间的信令接口,主要用于查询和维护 AID-RID 映射信息。
D4m是 ASN与映射转发平面间的数据转发接口, D4m接口的数据报文 的格式为:
Figure imgf000024_0001
D4m接口的数据报文也是在 D1接口的数据报文的基础上新封装了一个 三层 4艮头,新的三层 ^艮头中的源地址为源 RID, 目的地址为 RIDi,其中源 RID 是为发送数据包的终端分配的 RID, RIDi是与 ASN连接的映射转发平面中 ILR/PTF的路由地址, 由 ASN上的配置数据得到。
S5是映射转发平面内 ILR间的信令接口,主要用于查询和维护 AID-RID 映射信息, 以及映射转发平面内的路由信息交互。
Di接口是本架构网络与 Legacy IP网络间的数据转发接口, Di接口的数 据报文与 Legacy IP网络的数据报文的格式一样, 如下:
Figure imgf000024_0002
下面介绍一下 AID和 RID的编号机制和作用域。
本架构网络中, AID唯一标识一个用户身份,在本架构网络内部釆用 AID 识别终端用户。
AID的编码方式考虑的因素可以是以下因素中的一种或多种:
· 最大编码长度应能满足最大用户个数的需要。
• 基于身份位置分离架构的网络架构终端需要访问传统 Legacy IP网络 的应用,与传统 Legacy IP网络存在互通要求, AID的编码空间与传统 Legacy IPV4网络的 IP V4地址空间不能有二义性, 以唯一区别访问的通信对端。
• 满足运营管理要求: 携带国家、 地区和运营商信息。
· 包含归属域路由信息, 以便拜访域身份位置寄存器(Visited ILR )可 以根据 AID查找到归属域映射服务器(Home ILR ) ; ASN能够根据 AID将 首报文或缺省路由的数据报文路由到归属域分组转发功能(Home PTF ) 。
本架构网络的 AID编码可以遵循 Legacy IP网络中的 IP地址编码分配方 案。在一个应用示例中, AID釆用 Legacy IP网络中 IPV4的公网或私网地址。 本架构网络的 AID编码遵循 Legacy IP网络中的 IPV4地址编码分配方案 , 在 这种情况下, 本架构网络可以作为 Legacy IP网络中的一个组成部分, 当 AID 釆用公网 IPV4地址空间时, 直接与 Legacy IPV4网络互通, 当 AID釆用私网 IP地址空间时, 需要通过网络地址转换(NAT ) 网关转化成公网 IPV4地址 空间与 Legacy IP网络互通。 在另一应用示例中, AID釆用 Legacy网络中的 IPV6地址 , 本架构网络的 AID编码遵循 Legacy IPV6网络中的 IPV6地址编 码分配方案,可以直接釆用公网 IPV6地址或通过 NAT网关将私网 IPV6地址 转化成公网 IP V6地址空间与 Legacy IP V6网络互通。
在 AID格式与 IPV4/IPV6地址的格式不同时,为了方便转换,可以将 AID 设置为一种和 IPV4/IPV6公网地址——对应并相互关联的格式, 使得通过指 定的转换算法将 AID直接转换为对应的 IPV4/IPV6公网地址, 通过另一指定 的转换算法将 IPV4/IPV6公网地址直接转换为对应的 AID。 在又一个应用示 例中, AID的编码格式为: 扩展头( Expand Header ) +后缀( suffix ) 。 后缀 部分釆用 IPV4/IPV6公网地址, 在 Legacy IP网络与本架构网络并存期间, 扩 展头取值是本架构网络确定的常量, 这样将 AID的扩展头去除即转换成对应 的 IP地址, 将 IP地址加上作为扩展头的常量即转换为对应的 AID。 作为该 示例的变例, AID的编码格式可以釆用 IPV4/IPV6公网地址加上一个作为后 缀的常量的格式。 当然, 在某个网元中保存 AID和 IPV4/IPV6公网地址的映 射信息供 ASN、 ILR等需要转换的网元查询也是可以的。
本架构网络中, RID编号可以釆用现有 Legacy IP网中路由器普遍支持的 IPV4/IPv6地址格式, 标示当前终端所在的 ASN位置。 RID的作用域在本架 构网络骨干网的广义转发平面。 登记或切换时, 由 ASN按既定策略为终端分配 RID, ASN分配的 RID应指 向该 ASN。根据业务需要, ASN可以为一个终端分配专用的一个或多个 RID, 也可为多个终端分配相同的 RID。
本架构基于位置身份分离的技术原理, 广义转发平面中的网络拓朴主要 的影响因素是 ASN、 ISN等功能实体的数量和部署方式, 接入终端的位置变 化与网络拓朴没有直接关系, 消除了终端主机移动性对路由系统可测量性的 影响。 在 Legacy IP网络中, 路由依据为 IP地址, 这个 IP地址与通信主机的 数量基本——对应,路由表规模与通信主机的数量正相关。特别是 IPV4/IPV6 双协议栈场景下, 路由表规模将成倍数增长。 路由表规模大, 变化频繁, 将 导致路由汇聚时间增长。本架构广义转发平面中以 RID做为路由依据, ASN、 ISN可以为多个接入用户分配同一个 RID, RID指示 ASN、 ISN的位置, 从 这个层面说, 广义转发平面中路由条目数量主要与 ASN、 ISN的数量正相关, 降低了与接入用户数量的关联性。 通过解决移动性问题降低网络拓朴的复杂 性, 通过多个接入终端共享 RID的方式降低路由表规模与接入用户数量的关 联性, 从而提高路由系统的可测量性。
下文将对网络具体运作方式进行说明, 本架构网络正常运作包括如下主 要的处理: 为用户开户放号的处理, 终端开机接入网络的处理, 终端位置更 新和登记注册的处理, 终端通信的处理, 终端切换的处理, 终端离线的处理。 以下逐一进行说明:
( 1 )为用户开户放号的处理
用户签约成为本架构网络用户后, 在该用户归属认证中心及归属 ILR中 进行开户放号操作, 认证中心及 ILR将为该用户创建一条用户记录, 记录该 用户的属性数据, 包括为该用户分配的 AID。
完成上述开户放号的处理后, AID被静态分配给该用户, 在该用户有效 合法存续期间, 该用户的 AID不变。
用户使用终端在本架构网络进行通信时, 为该终端配置 AID的方式可以 釆用以下两种方式中的一种, 对不同终端可以釆用不同的方式:
第一种是由网络配置的方式, 即将用户的 AID保存在认证中心中, 终端 认证时将用户标识符发送到认证中心, 认证中心将 AID与用户标识符一起发 送到 ASN, ASN保存该 AID并将其发给该终端。该终端为 IPV4/IPV6终端时, ASN需要将该 AID转换为相应的 IPV4/IPV6地址后再发给该终端。
不同制式的网络用户标识符不同, 如蜂窝移动网中为国际移动用户识别
IMSI,在 ADSL等固定网接入时则为网络接入识别 NAI或者用户名 Username。
第二种是由终端配置的方式, 即将 AID保存在终端的用户识别模块中 (如 SIM卡、 UIM卡等) , 终端接入网络时将 AID发送到 ASN, ASN保存 终端的 AID。 AID终端 (指协议栈支持 AID编码要求的终端)在发送的数据 报文中的源地址直接釆用该 AID, IPV4/IPV6 终端发送的数据报文中的源地 址釆用与该终端的 AID对应的 IPV4/IPV6地址, 由 ASN将其转换为对应的 AID。
( 2 )终端接入网络的处理
终端在开机后将发起接入网络的流程, 包括: 终端通过接入网向 ASN请 求接入; ASN和认证中心、终端配合完成对该终端的认证;认证通过后, ASN 与该终端之间建立起一个连接。 在接入过程中, ASN还要为该终端分配一个 RID, 在本地緩存中保存该终端的 AID-RID映射信息, 并向该终端用户归属 域 ILR/PTF发起登记注册流程, 完成注册后, ILR/PTF将保存该终端当前的 AID- RID 1的映射信息。
在终端处于在线状态时, ASN将保存该连接的连接关系信息, 该连接关 系信息中包括该终端的 AID ,通过该连接关系, ASN可以将目的地址为该 AID 的数据报文发送到该终端。 在一个示例中, ASN与终端建立的连接可以是点 到点连接, 接入网为全球移动通信系统(GSM )或 WCDMA或时分同步码分 多址(TD-SCDMA )移动制式时, 该点到点连接关系为 GTP连接; 接入网在 CDMA移动制式和固定宽带接入网络中, 该点到点连接关系为点到点协议 ( PPP )连接。 在 ASN内部 , 一个点到点连接唯一对应一个终端 , 这些连接 关系的建立和维护, 利用现有的网络机制就可以满足本发明的要求。
除了开机外, 终端切换到一个新的 ASN, 或者在断开连接后重新恢复与 网络的连接等场景下, 接入网络的流程与上述开机后发起的接入网络的流程 ^^本相同的, 也需要经过认证。但如果 ASN中还保存有该终端的 AID-RID 映射信息, 则无需重新分配 RID和发起登记注册流程。
( 3 )终端位置更新的处理
当终端的位置发生了变化, 从一个 ASN的覆盖区移动到一个新的 ASN 进行接入, 该新的 ASN将为该终端分配新的 RID, 在本地緩存中保存该终端 的 AID与该新分配的 RID的映射信息,并将向该终端用户归属域 ILR/PTF发 起登记注册流程, 归属域 ILR/PTF将该终端的身份位置映射信息中的位置信 息更新为该新分配的 RID。 ( 4 )终端通信的处理
下面将介绍终端发起通信的处理, 为了使表述更为清楚, 以终端 MN和 终端 CN的通信为例进行说明, 终端 CN和终端 MN互为对方的通信对端, 均为 AID终端。 将终端 MN的 AID和 RID分别记为 AIDm和 RIDm, 将通信 对端 CN的 AID和 RID分别记为 AIDc和 RIDc。
ASN收到在本 ASN接入的终端(假定为终端 MN )发送的数据报文时的 处理如下:
终端 MN向通信对端发送的数据^艮文中, 源地址为 AIDm, 目的地址为 AIDc , 终端 MN可以通过域名服务器解析, 或在本地查找 AID与用户名之 间的对应关系等方式获得对端的 AID;
ASN收到终端 MN发来的数据报文(报文格式为 D1接口定义的格式) 后, 根据数据报文中的 AIDc查询本地緩存中的 AID-RID映射表:
如查到对应的 AIDc-RIDc映射条目, ASN将数据报文由 D1接口定义的 格式转变为 D3接口定义的格式(即将 AIDm对应的 RIDm作为源地址, 将 RIDc作为目的地址, 均封装在新加的三层报文头)后转发到广义转发平面, 广义转发平面将该数据报文发送到通信对端接入的 ASN;
如没有查到对应的 AIDc-RIDc 映射条目 (如是首报文或默认路由的报 文), ASN将数据报文由 D1接口定义的格式转变为 D4m接口定义的格式(即 将 AIDm对应的 RIDm作为源地址 ,将与该 ASN连接的映射平面中 ILR的路 由标识 RIDi作为目的地址, 均封装在新加的三层报文头)后转发到映射转发 平面, 并向映射转发平面发送 AIDc-RIDc映射信息的查询请求; 映射转发平 面收到该查询请求后, 向 ASN返回 AIDc-RIDc的映射信息, ASN收到后将 AIDc-RIDc的映射信息保存在本地緩存中; 映射转发平面收到 ASN发出的数 据才艮文后,查到对应的 AIDc-RIDc映射条目,将数据 4艮文由 D4m接口格式变 为 D3接口(即将新加的报文头中的 RIDi替换为 RIDc )后并转发到广义转发 平面, 由广义转发平面送达通信对端 CN。
在上述流程中, 广义转发平面具体是由 CR来完成数据报文的转发。 而 在没有查到对应的 AIDc-RIDc映射条目的情况下, ASN是先将查询请求发送 到与其连接的拜访域 ILR, 拜访域 ILR和终端 CN归属域 ILR不是同一 ILR 时, 由拜访域 ILR在 ASN和归属域 ILR之间转发消息,拜访域 ILR和归属域 ILR之间没有直接连接时, 还需要通过中继 ILR ( Broke ILR ) 中继。 对于数 据报文, ASN将数据报文转发到映射转发平面中相邻 PTF, 相邻 PTF将数据 报文路由到归属 PTF。 可选的, 对于数据报文, ASN可以緩存查询通信对端 映射期间的数据报文, 待归属 ILR返回通讯对端映射后, 在数据报文头部增 加 RID的封装后通过广义转发平面发出。
在另一实施例中, ASN在没有查到对应的 AIDc-RIDc映射条目的情况下, 也可以只向映射转发平面查询 AIDc-RIDc的映射信息, 而对收到的数据报文 进行緩存, 在查询到 AIDc-RIDc的映射信息后, 再将緩存的数据报文由 D1 接口定义的格式转变为 D3接口定义的格式, 转发到广义转发平面。
ASN收到要发送到接入本 ASN的终端(假定为终端 MN )的数据报文时 的处理包括:
ASN收到网络发往终端 MN的数据报文时,对数据报文进行解封装处理, 剥去该数据报文新加的报文头,将数据报文由 D3接口定义的格式变为 D1接 口定义的格式, 然后将该数据报文发往终端 MN。
如果 ASN收到通信对端发送给终端 MN的数据报文时本地緩存中还没有 保存通信对端的 AID-RID映射信息(如通信对端首先向终端 MN发送的首个 数据报文), ASN需要获取数据报文中对端的 AID-RID映射信息并进行緩存。
上文只对终端 MN接入的 ASN进行的处理进行了说明, 终端 CN接入
ASN收到数据报文后的处理逻辑是一样, 因此已经可以了解整个数据报文的 发送过程。
对本发明的又一实施例来说, ASN也可以釆用另一种方式对收到的要发 送到通信对端的数据报文进行封装: 将报文头中的源地址 AIDm替换为 RIDm , 目的地址 AIDc替换为 RIDc , 将 AIDm和 AIDc封装到数据报文的净 荷中。 相应地, ASN收到要发送到终端 MN的数据报文时, 需要从数据报文 的净荷中取出 AIDm和 AIDc, 并将报文头中的源地址 RIDm替换为 AIDm, 目的地址 RIDc替换为 AIDc, 即恢复为 D1接口定义的格式, 然后发给通信 对端。 AID格式与 IP地址格式不同时, 本架构网络的 IPV4/IPV6终端之间的通 信或者 IPV4/IPV6终端与 AID终端的通信与以上流程是基本相同的, 区别在 于 IPV4/IPV6 终端发送到 ASN 的数据 文中的源地址和目的地址是 IPV4/IPV6地址, ASN需要先将这些 IPV4/IPV6地址转换为对应的 AID再进 行处理; 而 ASN收到发往 IPV4/IPV6终端的数据报文时, 需要先将数据报文 中的 AID转换为对应的 IPV4/IPV6地址后再发送给该 IPV4/IPV6终端。
( 5 )终端切换的处理
仍以终端 MN与终端 CN为例来说明终端的切换处理。 终端 MN与终端 CN 正在进行通信的数据转发路径为 MN< -- >ASNml <-->ASNc< -- >CN , ASNml为终端 MN接入的 ASN, ASNc为终端 CN接入的 ASN, 将终端 MN 的 AID记为 AIDm, 将 ASNml为终端 MN分配的 RID记为 RIDml。
在通信过程中, 终端 MN的位置发生了变化, 移动到 ASNm2的服务范 围,接入网和 /或终端将触发切换流程,将终端 MN从 ASN ml(称为切出 ASN ) 切换到 ASN m2 (称为切入 ASN ) 。
在切换过程中, ASNml向 ASNm2请求切换, ASNm2要为终端 MN分 配新的 RID, 记为 RIDm2, 保存 AIDm和 RIDm2的映射信息, 获取 ASNml 保存的通信对端信息, 以及向 ASNml 返回响应; 为了保持业务的连续性, ASNml在切换期间向 ASNm2转发数据,数据转发路径为 MN< -- >ASNm2 <-> ASNml <--> ASNc<~>CN; ASNc需从 ASNm2或映射转发平面获取终端 MN 新的映射信息 AIDm-RIDm2 , 终端 MN接入 ASNm2后 , 数据转发路径变为 MN< - >ASNm2〈- >ASNc < -- >CN。在上述切换过程中或切换完成后, ASNm2 需向终端 MN的归属域 ILR上报 AIDm-RIDm2映射信息; 归属 ILR/PTF将存 储的身份位置映射条目 AIDm-RIDml更新为 AIDm-RIDm2。
( 6 )终端离线的处理
终端关机或离线时, 向所接入的 ASN发出通知消息, ASN收到该通知 消息后, 删除该终端与网络的连接(包括 D1接口和 D3接口的连接) , 并通 知该终端用户归属域 ILR取消对该终端的登记注册, 归属 ILR收到后删除保 存的该终端的 AID-RID映射条目。 ASN如果长时间 (如超过某个设定时间阔值)检测不到终端的活动时也 可以删除该终端的连接, 并通知该终端用户归属域 ILR取消对该终端的登记 注册, 归属 ILR收到后删除保存的该终端的 AID-RID映射条目。
工业实用性
本发明提供的基于身份标识和位置分离架构的网络及网络中的各个组成 部分, 实现了基于网络的身份标识和位置的分离, 上述架构可支持移动终端 的应用场景, 有效解决了该场景下的迂回路由问题; 上述架构的部署考虑了 兼容终端、 兼容上层业务的需求, 仅需升级网络侧设备, 兼容不更改终端的 应用场景; 上述架构提高了路由系统的可测量性: 包括路由器中的路由表条 目, 路由表变化的速率, 汇聚时间; 上述架构中, 用户私密性有所加强, 通 信双方均只知道对方的身份, 但不知道对方的位置, 而在传统互联网中, 可 以根据 IP地址知道对方位置; 上述架构中, 骨干网设备不会受到攻击, 由于 身份标识、 位置标识是两个不同的命名空间, 即使用户知道了骨干网设备的 位置标识, 也无法访问, 避免了骨干网设备受到攻击。 上述构架中, 杜绝了 地址欺骗等常用攻击手段, 由于本架构网络对每个用户均进行身份验证, 对 每个发出的数据包均进行源身份验证,由网络信用来保证用户身份的真实性, 杜绝了现网存在的地址欺骗等攻击手段。

Claims

权 利 要 求 书
1、一种基于身份标识和位置标识分离架构的网络,包括接入网和骨干网 , 所述接入网与骨干网在拓朴关系上没有重叠, 其中:
所述接入网位于所述骨干网的边缘, 并设置为实现本网络终端的接入; 所述骨干网设置为, 实现通过所述接入网接入的终端间数据报文的路由 和转发;
在所述网络中釆用接入标识 (AID)作为终端用户的身份标识,釆用路由标 识 (RID)作为终端的位置标识。
2、 如权利要求 1所述的网络, 其中:
所述骨干网中包括接入服务节点 (ASN), 所述 ASN作为所述接入网和所 述骨干网中其他部分的分界节点。
3、 如权利要求 1所述的网络,
所述网络还包括接入服务节点 (ASN), 所述 ASN位于所述骨干网和接入 网的分界节点, 具有与所述骨干网和接入网的接口。
4、 如权利要求 1或 2或 3所述的网络, 其中:
为所述网络中的每个终端用户唯一分配一个 AID, 在接入网使用, 且在 终端的移动过程中始终保持不变; RID是为网络中每个终端分配的位置标识, 在骨干网使用。
5、 如权利要求 1或 2或 3所述的网络, 其中:
所述接入网是设置为, 为终端提供到物理层和链路层的接入手段, 维护 终端与 ASN之间的物理接入链路。
6、 如权利要求 1或 2或 3所述的网络, 其中:
所述骨干网组网时分为两个平面: 广义转发平面和映射转发平面, 所述 广义转发平面和映射转发平面分别与所述 ASN连接, 其中:
广义转发平面设置为,根据数据报文中的 RID进行选路和转发以 RID为 目的地址的数据报文; 所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。
7、 如权利要求 6所述的网络, 其中:
所述映射转发平面还设置为,路由并转发以 AID为目的地址的数据报文。
8、 如权利要求 6所述的网络, 其中:
所述 ASN设置为, 为终端提供接入服务、 维护终端与网络的连接, 为终 端分配 RID, 到映射转发平面登记注册和查询终端的 RID、 维护 AID-RID映 射信息, 以及实现终端间数据报文的路由和转发。
9、 如权利要求 6或 7或 8所述的网络, 其中:
所述广义转发平面中的网元包括通用路由器, 其设置为路由并转发以
RID格式为源地址和目的地址的数据报文。
10、 如权利要求 9所述的网络, 其中:
所述广义转发平面中的网元还包括互联服务节点 (ISN), 所述 ISN具有与 通用路由器、 ASN和映射转发平面的接口, 并设置为: 查询、 维护本网络终 端的 AID-RID映射信息,封装、路由和转发本网络与传统 IP网络之间往来的 数据报文, 实现本网络与传统 IP网络间的互联互通功能。
11、 如权利要求 1或 2或 3所述的网络, 其中:
所述骨干网还包括认证中心, 所述认证中心具有与所述 ASN 的信令接 口, 并设置为: 记录本网络用户的属性信息, 完成对终端的接入认证和授权, 或者完成对终端的接入认证、 授权和计费。
12、 如权利要求 6所述的网络, 其中:
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
13、 如权利要求 12所述的网络, 其中:
所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的 ASN。
14、 如权利要求 13所述的网络, 其中, 所述 ILR和 PTF位于同一网元 上, 该网元记为 ILR/PTF。
15、 如权利要求 8所述的网络, 其中:
所述 ASN与终端之间具有信令接口和第一数据收发接口, 所述 ASN与 终端之间的信令接口设置为, 接入管理、 切换、 认证、 计费和登记注册的信 息流程处理; 所述第一数据收发接口的数据报文中, 源地址为发送数据包的 终端的 AID , 目的地址为数据包发往的通信对端的 AID。
16、 如权利要求 15所述的网络, 其中:
所述 ASN之间具有信令接口和第二数据转发接口, 所述 ASN之间的信 令接口设置为, 切换时切换管理信令的传递, 及在通信对端之间位置变化时 传递 RID更新消息; 所述第二数据转发接口设置为,切换时 ASN间的数据转 发, 第二数据转发接口的数据报文在第一数据收发接口的数据报文上增加了 隧道封装。
17、 如权利要求 15所述的网络, 其中:
所述广义转发平面具有通用路由器, 该通用路由器对外的接口为第三数 据转发接口, 第三数据转发接口的数据报文是在第一数据收发接口的数据报 文的基础上新封装了一个三层报头, 该新的三层报头中的源地址是为发送数 据包的终端分配的 RID, 目的地址是为数据包发送到的通信对端分配的 RID。
18、 如权利要求 10所述的网络, 其中:
所述 ASN与 ISN间的信令接口设置为, ASN将本网络终端新的 AID-RID 映射信息通知 ISN。
19、 如权利要求 11所述的网络, 其中:
所述 ASN与映射转发平面间的接口包括信令接口和第四数据转发接口, 所述 ASN与映射转发平面间的信令接口设置为, 查询和维护 AID-RID映射 信息; 所述第四数据转发接口的数据报文是在第一数据收发接口的数据报文 的基础上新加了一个三层报头, 其中的源地址是为发送数据包的终端分配的
RID, 目的地址为与 ASN连接的映射转发平面中负责数据报文转发的网元的 路由地址。
20、 如权利要求 12所述的网络, 其中:
所述映射转发平面内 ILR 间具有信令接口, 其设置为查询和维护 AID-RID映射信息, 以及映射转发平面内的路由信息交互。
21、 如权利要求 10所述的网络, 其中:
所述 ISN与传统 IP网络间具有数据转发接口,该数据转发接口的数据报 文与传统 IP网络的数据报文的格式一样。
22、 一种基于身份标识和位置标识分离架构的系统, 包括终端和如权利 要求 1 至 21 中任一权利要求所述的基于身份标识和位置标识分离架构的网 络。
23、 如权利要求 22所述的系统, 其中, 所述终端为固定终端、 移动终端 和游牧终端中的一种或多种。
24、如权利要求 22或 23所述的系统,其中,所述终端为现有的支持 IPV4 或 IPV6协议栈的终端, 或者, 所述终端为协议栈支持接入标识 (AID)编码要 求的终端。
25、 一种如权利要求 1所述基于身份标识和位置标识分离架构的网络中 的接入服务节点(ASN ) , 所述接入服务节点设置为, 为终端提供接入服务、 维护终端与网络的连接, 为终端分配路由标识 (RID ) , 到映射转发平面登 记注册和查询终端的 RID, 维护终端的接入标识和路由标识(AID-RID ) 映 射信息, 以及实现数据报文的路由和转发; 所述 ASN还设置为, 与认证中心 配合完成对终端的认证和对业务的计费, 以及与其他 ASN配合实现终端跨 ASN的切换。
26、 如权利要求 25所述的接入服务节点, 包括接入处理模块、 登记注册 模块和映射管理模块, 其中:
所述接入处理模块设置为, 在终端请求接入时, 与终端和认证中心配合 完成对终端的认证, 通过接入网建立与终端的连接, 为终端分配 RID, 以及 通知登记注册模块发起对该终端的登记注册;
所述登记注册模块设置为, 在收到对终端的登记注册的通知后, 向该终 端归属域身份位置寄存器(ILR )发起登记注册, 携带该终端当前的 AID-RID 映射信息; 以及在收到对终端的取消登记注册的通知后, 通知该终端归属域 ILR删除该终端登记注册的信息, 包括该终端的 AID-RID映射信息;
所述映射管理模块设置为, 在终端接入后緩存该终端的 AID-RID映射信 息并进行维护, 在收到查询通知后根据通信对端的 AID 向映射转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
27、 如权利要求 25或 26所述的接入服务节点, 所述 ASN还包括连接维 护模块和^艮文转发模块, 其中:
所述连接维护模块设置为, 在终端接入后的在线期间, 维护本 ASN与该 终端的连接; 以及在该终端通信时, 维护本 ASN与通信对端接入的 ASN之 间的连接;
所述报文转发模块设置为,将接入本 ASN的终端发送的数据报文封装上 该终端和通信对端的 RID, 路由并转发到该通信对端接入的 ASN, 以及将要 发送到接入本 ASN的终端的数据报文解封装后, 发送给该终端。
28、 如权利要求 27所述的接入服务节点, 其中, 所述报文转发模块又分 为第一转发单元和第二转发单元, 其中:
所述第一转发单元设置为, 在收到接入本 ASN 的终端发来的数据报文 后, 根据该数据报文中作为目的地址的通信对端的 AID 查询本地緩存中的 AID-RID映射信息, 如查到该通信对端的 RID, 将该通信对端的 RID作为目 的地址, 该终端的 RID作为源地址, 封装在该数据报文中, 然后将封装后的 数据报文转发到广义转发平面; 如没有查到通信对端的 RID, 将数据报文做 隧道封装后转发到映射转发平面,并通知映射管理模块查询通信对端的 RID; 所述第二转发单元设置为,在收到要发送到接入本 ASN的终端的数据报 文后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送到 ASN的数据报 文的格式后, 通过本 ASN与该终端的连接发往该终端。
29、 如权利要求 25所述的接入服务节点, 所述 ASN还包括: 离线处理模块, 其设置为在接入本 ASN的终端离线后, 通知连接维护模 块释放该终端与网络的相关连接, 通知映射管理模块删除该终端的 AID-RID 映射信息, 以及通知登记注册模块对该终端取消登记注册。
30、 如权利要求 25或 26或 28所述的接入服务节点, 所述 ASN还包括 切换控制模块, 该切换控制模块分为切出控制单元和切入控制单元, 其中: 所述切出控制单元设置为, 在收到切换请求后, 根据切换的目的地确定 终端要切换到另一 ASN, 称为切入 ASN时, 向切入 ASN发切换请求, 将该 终端的通信对端的信息发送到切入 ASN或映射转发平面,收到切换响应后通 知该终端接入切入 ASN, 切换期间收到的发往该终端的数据报文转发到切入 ASN, 切换完成后通知映射管理模块删除该终端的 AID-RID映射信息;
所述切入控制单元设置为, 在收到切换请求后, 为终端分配 RID并保存 该终端的 AID-RID映射信息, 从切出 ASN获取该终端的通信对端的信息并 返回切换响应,并通知登记注册模块发起对该终端位置更新的登记注册流程; 切入控制单元还设置为,通知该终端所有通信对端接入的 ASN或该终端与传 统 IP网络终端通信时锚定的 ILR更新该终端的 AID-RID映射信息。
31、 如权利要求 25或 26或 28所述的接入服务节点, 所述 ASN还包括: 格式转换模块,其设置为将接入本 ASN的 IPV4/IPV6终端发送的数据报 文中本网络终端的 IPV4/IPV6 地址转换为对应的 AID, 以及将要发送到该 IPV4/IPV6终端的数据报文中的所有 AID转换为 IPV4/IPV6地址。
32、 一种如权利要求 1所述基于身份标识和位置标识分离架构的网络中 的互联服务节点, 所述互联服务节点设置为, 查询、 维护本网络终端的接入 标识和路由标识(AID-RID ) 映射信息, 封装、 路由和转发本网络与传统 IP 网络之间往来的数据 4艮文, 实现本网络与传统 IP网络间的互联互通功能。
33、如权利要求 32所述的互联服务节点, 包括连接维护模块和映射管理 模块, 其中:
所述连接维护模块设置为, 建立和维护本网络终端与传统 IP网络终端间 的连接, 在本网络终端发生切换时, 作为该终端在本网络与传统 IP间的代理 锚点, 保持与传统 IP网络之间的连接;
所述映射管理模块设置为, 提取数据报文中本网络终端的 AID-RID映射 信息并进行维护, 以及在收到查询通知后根据待查询终端的 AID向映射转发 平面查询对应的 RID并在本地维护查询到的 AID-RID映射信息。
34、 如权利要求 32或 33所述的互联服务节点, 所述互联服务节点还包 括>¾文转发模块, 该 >¾文转发模块又分为第一转发单元和第二转发单元, 其 中:
所述第一转发单元设置为,根据传统 IP网络发来的数据报文中本网络终 端的 AID , 查询本地緩存中的 AID-RID映射信息: 如查到本网络终端 AID对 应的 RID, 将本网络终端的 RID作为目的地址封装在该数据报文中, 然后将 封装后的数据报文转发到广义转发平面; 如没有查到本网络终端 AID对应的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块 查询本网络终端的 RID;
所述第二转发单元设置为, 在收到本网络发来的数据报文后, 剥去数据 报文中封装的 RID, 发送到传统 IP网络的终端或格式转换模块。
35、如权利要求 34所述的互联服务节点, 所述互联服务节点还包括格式 转换模块, 其设置为将传统 IP 网络发来的数据报文中包含的本网络终端的 IPV4/IPV6地址转换为对应的 AID, 再交给第一转发单元转发; 以及将第二 转发单元解封装后的数据报文中的本网络终端的 AID转换为 IPV4/IPV6地址 格式后, 再发送到传统 IP网络的终端。
36、 一种如权利要求 1所述基于身份标识和位置标识分离架构的网络中 的骨干网, 所述骨干网组网时分为两个平面: 广义转发平面和映射转发平面, 其中:
广义转发平面设置为, 根据数据报文中的路由标识 (RID )进行选路和 转发以 RID为目的地址的数据 ^艮文;
所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。
37、 如权利要求 36 所述的骨干网, 所述骨干网中还包括接入服务节点 (ASN) , 所述 ASN作为所述广义转发平面和映射转发平面与所述接入网的分 界节点。
38、 如权利要求 36或 37所述的骨干网, 其中:
所述映射转发平面还设置为, 路由并转发以接入标识 (AID )为目的地 址的数据报文。
39、 如权利要求 37所述的骨干网, 其中:
所述 ASN设置为, 为终端提供接入服务、 维护终端与网络的连接, 为终 端分配 RID, 到映射转发平面登记注册和查询终端的 RID、 维护 AID-RID映 射信息, 以及实现终端间数据报文的路由和转发。
40、 如权利要求 36或 37所述的骨干网, 其中:
所述广义转发平面中的网元包括通用路由器, 其设置为路由并转发以 RID格式为源地址和目的地址的数据报文。
41、 如权利要求 40所述的骨干网, 其中:
所述广义转发平面中的网元还包括互联服务节点 (ISN), 所述 ISN具有与 通用路由器、 ASN和映射转发平面的接口, 并设置为: 查询、 维护本网络终 端的 AID-RID映射信息,封装、路由和转发本网络与传统 IP网络之间往来的 数据报文, 实现本网络与传统 IP网络间的互联互通功能。
42、 如权利要求 36所述的骨干网,
所述骨干网还包括认证中心, 所述认证中心具有与所述 ASN 的信令接 口, 并设置为: 记录本网络用户的属性信息, 完成对终端的接入认证和授权, 或者完成对终端的接入认证、 授权和计费。
43、 如权利要求 36所述的骨干网, 其中:
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
44、 如权利要求 37所述的骨干网, 其中: 所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的 ASN。
45、 如权利要求 44所述的骨干网, 其中, 所述 ILR和 PTF位于同一网 元上, 该网元记为 ILR/PTF。
46、 一种如权利要求 38所述的骨干网中的映射转发平面,
所述映射转发平面设置为, 保存终端的接入标识和路由标识 (AID-RID) 映射信息, 处理对终端位置的登记注册和查询。
47、 如权利要求 46所述的映射转发平面,
所述映射转发平面包括身份位置寄存器 (ILR),所述 ILR具有与所述 ASN 的信令接口, 并设置为: 接受登记注册请求和取消登记注册请求, 保存、 更 新或删除本网络中归属用户的 AID-RID映射信息, 以及接收对终端位置的查 询请求, 将请求中终端的 AID对应的 RID返回给查询方。
48、 如权利要求 47所述的映射转发平面,
所述映射转发平面还包括分组转发功能 (PTF),所述 PTF具有与所述 ASN 的数据转发接口, 并设置为: 在收到 ASN送达的数据报文后, 根据数据报文 要发送到的通信对端的 AID查到该 AID对应的 RID ,用该 RID作为该数据才艮 文的目的地址, 将该数据报文通过广义转发平面发送到该通信对端接入的 ASN。
49、 如权利要求 48所述的映射转发平面, 其中, 所述 ILR和 PTF位于 同一网元上, 该网元记为 ILR/PTF。
PCT/CN2010/076848 2009-09-17 2010-09-13 基于身份标识和位置分离架构的网络及其骨干网和网元 WO2011032479A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012529110A JP5506934B2 (ja) 2009-09-17 2010-09-13 Id/ロケータ分離アーキテクチャに基づくネットワーク並びにバックボーンネットワーク及びネットワーク構成要素
EP10816683.6A EP2466985B1 (en) 2009-09-17 2010-09-13 Network based on identity identifier and location separation
US13/496,727 US8804746B2 (en) 2009-09-17 2010-09-13 Network based on identity identifier and location separation architecture backbone network, and network element thereof
KR1020127009831A KR101364402B1 (ko) 2009-09-17 2010-09-13 신분 아이디 및 위치 아이디 분리 구조를 기반으로 하는 네트워크와 그 백본 네트워크 및 네트워크 요소

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910171975.X 2009-09-17
CN200910171975 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011032479A1 true WO2011032479A1 (zh) 2011-03-24

Family

ID=43758101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076848 WO2011032479A1 (zh) 2009-09-17 2010-09-13 基于身份标识和位置分离架构的网络及其骨干网和网元

Country Status (6)

Country Link
US (1) US8804746B2 (zh)
EP (1) EP2466985B1 (zh)
JP (1) JP5506934B2 (zh)
KR (1) KR101364402B1 (zh)
CN (1) CN102025702B (zh)
WO (1) WO2011032479A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740268A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 分组数据网络网关及终端移动性管理的系统
CN102740270A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 一种移动性管理、及为终端创建上下文和建立通道的方法
JP2013066104A (ja) * 2011-09-20 2013-04-11 National Institute Of Information & Communication Technology ホスト装置
CN103209131A (zh) * 2012-01-11 2013-07-17 中兴通讯股份有限公司 地址查询、报文发送方法、信息登记服务器及交换路由器
KR101387228B1 (ko) 2012-05-31 2014-04-25 삼성에스디에스 주식회사 멀티 호밍 통신 방법 및 멀티 호밍 통신이 가능한 디바이스
EP2782372A1 (en) * 2011-11-15 2014-09-24 ZTE Corporation Method, network element and ue achieving identifier and location separation and interface identifier allocation
US11297068B2 (en) 2018-12-18 2022-04-05 At&T Intellectual Property I, L.P. Anchoring client devices for network service access control

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056258B (zh) * 2009-10-30 2015-08-12 中兴通讯股份有限公司 一种实现终端切换的方法及系统
US20120259998A1 (en) * 2011-04-11 2012-10-11 Matthew Kaufman System and method for translating network addresses
US9380402B2 (en) * 2011-04-25 2016-06-28 Korea University Research and Business Machines Apparatus and method for controlling a backbone network for a sensor network
CN102185769B (zh) * 2011-04-29 2014-08-20 北京交通大学 基于一体化身份域和位置域分离的路由方法及系统
CN102857905B (zh) * 2011-06-28 2017-07-21 中兴通讯股份有限公司 建立直接隧道的实现方法、网元及系统
CN102957752A (zh) * 2011-08-19 2013-03-06 中兴通讯股份有限公司 一种身份标识和网关地址的分配方法及系统
CN103001935B (zh) * 2011-09-16 2017-06-30 南京中兴新软件有限责任公司 Ils网络的ue在ims网络中的认证方法和系统
CN103096461B (zh) * 2011-10-31 2017-05-24 中兴通讯股份有限公司 一种获取用户位置信息的系统和方法
CN103108299B (zh) * 2011-11-10 2017-06-27 南京中兴软件有限责任公司 数据通信方法、接入服务路由器、身份位置寄存器及系统
CN103118409A (zh) * 2011-11-16 2013-05-22 中兴通讯股份有限公司 一种报文传输方法及系统及接入服务路由器及寄存器
CN102711152A (zh) * 2012-05-17 2012-10-03 北京邮电大学 一种路由优化方法及系统
CN103222249B (zh) * 2012-11-15 2016-01-13 华为技术有限公司 认证方法、装置和系统
CN104023360B (zh) * 2013-03-01 2018-06-19 中兴通讯股份有限公司 基于身份和位置分离网络的服务质量控制方法与系统
US9647923B2 (en) * 2013-04-09 2017-05-09 Cisco Technology, Inc. Network device mobility
GB2516338B (en) 2013-04-19 2015-06-10 Entuity Ltd Identification of paths in a network of mixed routing/switching devices
WO2014170457A1 (en) 2013-04-19 2014-10-23 Entuity Limited Identifying an egress port of a device
GB2527273B (en) 2014-04-11 2016-08-03 Entuity Ltd Executing a loop computer program to identify a path in a network
GB2513188B (en) * 2013-04-19 2015-11-25 Entuity Ltd Identification of the paths taken through a network of interconnected devices
US9531598B2 (en) 2013-04-19 2016-12-27 Entuity Limited Querying a traffic forwarding table
US9641462B2 (en) * 2013-04-23 2017-05-02 Cisco Technology, Inc. Accelerating network convergence for layer 3 roams in a next generation network closet campus
US9225638B2 (en) 2013-05-09 2015-12-29 Vmware, Inc. Method and system for service switching using service tags
KR102129481B1 (ko) * 2013-06-27 2020-07-02 에스케이텔레콤 주식회사 컨텐츠 전송 시스템에서 데이터 처리를 위한 장치 및 이를 위한 방법
CN104579969B (zh) * 2013-10-29 2019-04-23 中兴通讯股份有限公司 报文发送方法及装置
CN104703165B (zh) * 2013-12-10 2019-08-27 南京中兴新软件有限责任公司 一种处理无线接入的方法、转发设备及网络控制器
US9894031B2 (en) * 2014-08-27 2018-02-13 Cisco Technology, Inc. Source-aware technique for facilitating LISP host mobility
US10257095B2 (en) 2014-09-30 2019-04-09 Nicira, Inc. Dynamically adjusting load balancing
US9935827B2 (en) 2014-09-30 2018-04-03 Nicira, Inc. Method and apparatus for distributing load among a plurality of service nodes
US10225137B2 (en) 2014-09-30 2019-03-05 Nicira, Inc. Service node selection by an inline service switch
US10609091B2 (en) 2015-04-03 2020-03-31 Nicira, Inc. Method, apparatus, and system for implementing a content switch
CN104780237B (zh) * 2015-04-29 2018-05-11 新华三技术有限公司 一种地址请求方法和装置
US10349333B2 (en) * 2016-05-06 2019-07-09 Futurewei Technologies, Inc. Predictive routing for mobility
CN106792657B (zh) * 2017-01-03 2019-09-17 电信科学技术研究院 一种支持身份与位置解耦的网络标识方法及装置
CN106878973B (zh) * 2017-01-03 2019-08-30 电信科学技术研究院 一种网络标识映射方法及装置
US11038716B2 (en) * 2017-01-24 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Using location identifier separation protocol to implement a distributed gateway architecture for 3GPP mobility
US10797966B2 (en) 2017-10-29 2020-10-06 Nicira, Inc. Service operation chaining
US11012420B2 (en) 2017-11-15 2021-05-18 Nicira, Inc. Third-party service chaining using packet encapsulation in a flow-based forwarding element
US10797910B2 (en) 2018-01-26 2020-10-06 Nicira, Inc. Specifying and utilizing paths through a network
CN114172869A (zh) 2018-02-12 2022-03-11 华为技术有限公司 管理媒体传输通路的方法、系统以及相关设备
US10805192B2 (en) 2018-03-27 2020-10-13 Nicira, Inc. Detecting failure of layer 2 service using broadcast messages
US10944673B2 (en) 2018-09-02 2021-03-09 Vmware, Inc. Redirection of data messages at logical network gateway
US11595250B2 (en) 2018-09-02 2023-02-28 Vmware, Inc. Service insertion at logical network gateway
CN111131350B (zh) * 2018-10-31 2022-07-22 中国移动通信有限公司研究院 一种端到端的连接建立方法及控制器
CN109547470B (zh) * 2018-12-20 2020-10-27 北京交通大学 保护网络空间安全的电子隔离墙方法、装置及系统
US10929171B2 (en) 2019-02-22 2021-02-23 Vmware, Inc. Distributed forwarding for performing service chain operations
US11283717B2 (en) 2019-10-30 2022-03-22 Vmware, Inc. Distributed fault tolerant service chain
US11140218B2 (en) 2019-10-30 2021-10-05 Vmware, Inc. Distributed service chain across multiple clouds
US11223494B2 (en) 2020-01-13 2022-01-11 Vmware, Inc. Service insertion for multicast traffic at boundary
US11153406B2 (en) 2020-01-20 2021-10-19 Vmware, Inc. Method of network performance visualization of service function chains
US11659061B2 (en) 2020-01-20 2023-05-23 Vmware, Inc. Method of adjusting service function chains to improve network performance
US11743172B2 (en) 2020-04-06 2023-08-29 Vmware, Inc. Using multiple transport mechanisms to provide services at the edge of a network
CN114143257B (zh) * 2020-09-03 2023-04-28 华为技术有限公司 一种生成表项的方法、发送报文的方法、设备及系统
US11611625B2 (en) 2020-12-15 2023-03-21 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
US11734043B2 (en) 2020-12-15 2023-08-22 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
CN114726819A (zh) * 2020-12-21 2022-07-08 中兴通讯股份有限公司 位置信息转换方法、网关、控制器、终端、设备及介质
CN112752300B (zh) * 2020-12-29 2022-09-20 锐捷网络股份有限公司 本地分流的实现方法及装置
CN113285894B (zh) * 2021-04-26 2022-07-29 之江实验室 基于可编程交换机的身份标识网络移动性控制方法及系统
CN116647834B (zh) * 2023-07-27 2023-11-14 南京航空航天大学 一种面向低时延、高可靠业务的移动网络通信方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1401173A (zh) * 2000-12-18 2003-03-05 诺基亚公司 移动通信系统中的基于ip的话音通信
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
US7130629B1 (en) * 2000-03-08 2006-10-31 Cisco Technology, Inc. Enabling services for multiple sessions using a single mobile node

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459700B1 (en) * 1997-06-23 2002-10-01 Compaq Computer Corporation Multiple segment network device configured for a stacked arrangement
JP4078755B2 (ja) * 1999-06-02 2008-04-23 株式会社日立製作所 帯域監視方法
US7363039B2 (en) * 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US8489147B2 (en) * 2006-04-11 2013-07-16 Sony Corporation Simplified access to messaging services
US7613135B2 (en) * 2006-10-13 2009-11-03 At&T Intellectual Property I, L.P. System and method for routing packet traffic
US20100009678A1 (en) * 2006-12-12 2010-01-14 Santiago Munoz Munoz Recovery procedures between subscriber registers in a telecommunication network
CN101035375A (zh) * 2007-02-02 2007-09-12 华为技术有限公司 一种自适应通信系统、终端、方法及接入点
CN101304363B (zh) * 2007-05-12 2011-12-07 华为技术有限公司 一种会话连接的管理方法及装置、系统
WO2009008464A1 (ja) * 2007-07-12 2009-01-15 Sharp Kabushiki Kaisha 移動ノード、アクセスゲートウェイ、位置管理装置および移動パケット通信システム
CN101136866B (zh) * 2007-10-15 2011-03-02 北京交通大学 一体化网络网通层服务质量保证结构和运行方法
CN101459698B (zh) * 2007-12-14 2012-11-14 中国人民解放军信息工程大学 域内和域间的网络互连方法及其系统
US8578054B2 (en) * 2008-03-07 2013-11-05 Cisco Technology, Inc. Computing disjoint paths for reactive routing mesh networks
US8498647B2 (en) * 2008-08-28 2013-07-30 Qualcomm Incorporated Distributed downlink coordinated multi-point (CoMP) framework

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130629B1 (en) * 2000-03-08 2006-10-31 Cisco Technology, Inc. Enabling services for multiple sessions using a single mobile node
CN1401173A (zh) * 2000-12-18 2003-03-05 诺基亚公司 移动通信系统中的基于ip的话音通信
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466985A4 *
TAN, JIN ET AL.: "Cache consistency strategy based on GPRS networks", JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS, vol. 26, no. 4, 30 April 2005 (2005-04-30), XP008153993 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740268A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 分组数据网络网关及终端移动性管理的系统
CN102740270A (zh) * 2011-04-07 2012-10-17 中兴通讯股份有限公司 一种移动性管理、及为终端创建上下文和建立通道的方法
CN102740270B (zh) * 2011-04-07 2017-06-16 南京中兴软件有限责任公司 一种移动性管理、及为终端创建上下文和建立通道的方法
US9894554B2 (en) 2011-04-07 2018-02-13 Zte Corporation Packet data network gateway and terminal mobility management system
JP2013066104A (ja) * 2011-09-20 2013-04-11 National Institute Of Information & Communication Technology ホスト装置
EP2782372A1 (en) * 2011-11-15 2014-09-24 ZTE Corporation Method, network element and ue achieving identifier and location separation and interface identifier allocation
EP2782372A4 (en) * 2011-11-15 2015-07-01 Zte Corp METHOD, NETWORK ELEMENT, AND USER EQUIPMENT FOR REALIZING IDENTIFIER AND LOCATION SEPARATION AND INTERFACE IDENTIFIER ASSIGNMENT
US9480091B2 (en) 2011-11-15 2016-10-25 Zte Corporation Method, network element and UE achieving identifier and location separation and interface identifier allocation
CN103209131A (zh) * 2012-01-11 2013-07-17 中兴通讯股份有限公司 地址查询、报文发送方法、信息登记服务器及交换路由器
KR101387228B1 (ko) 2012-05-31 2014-04-25 삼성에스디에스 주식회사 멀티 호밍 통신 방법 및 멀티 호밍 통신이 가능한 디바이스
US11297068B2 (en) 2018-12-18 2022-04-05 At&T Intellectual Property I, L.P. Anchoring client devices for network service access control

Also Published As

Publication number Publication date
KR101364402B1 (ko) 2014-02-17
US8804746B2 (en) 2014-08-12
CN102025702A (zh) 2011-04-20
EP2466985B1 (en) 2020-02-19
KR20120103570A (ko) 2012-09-19
JP2013504961A (ja) 2013-02-07
EP2466985A1 (en) 2012-06-20
CN102025702B (zh) 2014-11-05
EP2466985A4 (en) 2014-07-30
US20120176936A1 (en) 2012-07-12
JP5506934B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2011032479A1 (zh) 基于身份标识和位置分离架构的网络及其骨干网和网元
US8804682B2 (en) Apparatus for management of local IP access in a segmented mobile communication system
US9622072B2 (en) Communication method, method for forwarding data message during the communication process and communication node thereof
US8520615B2 (en) Breakout gateway for mobile data traffic
EP0917318B1 (en) Point-to-point protocol encapsulation in ethernet frame
EP2477428B1 (en) Method for anonymous communication, method for registration, method and system for transmitting and receiving information
KR100879985B1 (ko) 비손실 모바일 ip 패킷 전달 방법 및 그 시스템
EP0912017A2 (en) In sequence delivery of messages
WO2011050678A1 (zh) 一种基于控制面与媒体面分离的网络架构实现的通信网络
US10091160B2 (en) Wireless access gateway
WO2011032492A1 (zh) 身份识别、跨网通信、业务移植方法及信息互通网络架构
WO2011085618A1 (zh) 一种终端切换的方法及相应的通信网络
WO2011153777A1 (zh) 移动通信控制方法、系统、映射转发服务器及接入路由器
WO2011044807A1 (zh) 一种匿名通信的注册、通信方法及数据报文的收发系统
CN102056236B (zh) 基于Wimax网络架构实现的通信网络及终端接入方法
Jung et al. Mobile-oriented future internet (MOFI): Architecture and protocols
WO2011088606A1 (zh) 实现无固定锚点切换的wimax系统及其切换方法
WO2011103707A1 (zh) 实现锚点切换的全球微波互联接入(wimax)系统及其切换方法
WO2011088607A1 (zh) 实现无固定锚点切换的wimax系统及其切换方法
US9021104B2 (en) System and method for mobility management in a wireless communications system
WO2014000175A1 (zh) 会话路由方法、设备及系统
Jung et al. Mobile-Optimized Future Internet (MOFI): Architecture and Protocols
WO2011103753A1 (zh) 实现锚点切换的wimax系统及其切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529110

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13496727

Country of ref document: US

Ref document number: 2010816683

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127009831

Country of ref document: KR

Kind code of ref document: A