WO2011103753A1 - 实现锚点切换的wimax系统及其切换方法 - Google Patents

实现锚点切换的wimax系统及其切换方法 Download PDF

Info

Publication number
WO2011103753A1
WO2011103753A1 PCT/CN2010/078168 CN2010078168W WO2011103753A1 WO 2011103753 A1 WO2011103753 A1 WO 2011103753A1 CN 2010078168 W CN2010078168 W CN 2010078168W WO 2011103753 A1 WO2011103753 A1 WO 2011103753A1
Authority
WO
WIPO (PCT)
Prior art keywords
agw
target
ilcr
terminal
source
Prior art date
Application number
PCT/CN2010/078168
Other languages
English (en)
French (fr)
Inventor
霍玉臻
吴强
符涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011103753A1 publication Critical patent/WO2011103753A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Definitions

  • Wimax system for implementing anchor point switching and switching method thereof
  • the present invention relates to handover in the field of communication technologies, and in particular, to a global microwave interconnection access (Wimax) system for implementing anchor point switching and a handover method thereof.
  • Wimax global microwave interconnection access
  • IP Transmission Control Protocol/Internet Protocol
  • IP provides routing for the Internet, which assigns logic to all nodes, including hosts and routers.
  • the address which is the IP address, and each port of each host is assigned an IP address.
  • the IP address includes the network prefix and the host part.
  • the IP addresses of all hosts on the same link usually have the same network prefix and different host parts. This allows IP to be routed based on the network prefix portion of the destination node's IP address, allowing the router to save only a simple network prefix route without having to maintain a separate route for each host. In this case, since the network prefix route is used, when the node switches from one link to another without changing its IP address, the node cannot receive the data packet on the new link. Therefore, it is impossible to communicate with other nodes.
  • GTP GPRS Tunneling Protocol
  • LTE Long Term Evlution
  • the IP address has a dual function: the location identifier of the network interface of the communication terminal host as the network layer in the network topology, and the access identifier of the network interface of the transport layer host.
  • the IP address of the host changes, not only the route needs to change, but also the access identifier of the communication terminal host changes. This can result in a heavier routing load, and changes in host identification can cause disruptions to applications and connections.
  • the purpose of identification and location separation is to solve the problem of semantic overload and severe routing load of IP addresses, and to separate the dual functions of IP addresses to achieve dynamic redistribution of mobility, multiple townships, IP addresses, and mitigation of routes. Support for issues such as load and mutual visits between different network areas in the next generation Internet.
  • the existing identity identification and location separation framework Host Identity Protocol (HIP), Name Separation Network Protocol (LISP), etc. are a network framework constructed to overcome this deficiency of existing network technologies.
  • the host-based HIP protocol needs to make major changes to the terminal and upper-layer services, and the deployment is difficult. The two ends of the communication move simultaneously and the location update phase requires the network to participate in maintaining the communication link. Otherwise, packet loss will occur.
  • HIP Host Identity Protocol
  • IRP Name Separation Network Protocol
  • the two ends of the communication move simultaneously and the location update phase requires the network to participate in maintaining the communication link. Otherwise, packet loss will occur.
  • mobility and multi-homedness are problems that are solved after the separation of identity
  • Figure 1 shows the network architecture of the existing Wimax system.
  • the prior art Wimax system generally consists of three parts: a terminal, a Wimax Access Service Network (W-ASN) 11 and a Wimax connection.
  • W-ASN Wimax Access Service Network
  • W-CSN Wimax Connect Service Network
  • W-ASN is also used to manage the Institute of Electrical and Electronics Engineers (IEEE) 802.16 air interface to provide wireless access to WiMAX end users.
  • the W-ASN is composed of at least one base station (BS) and one access gateway (W-ASN Gateway, AGW), and may include a single AGW or multiple AGWs.
  • the W-ASN interworks with the mobile station (MS) (collectively referred to as the terminal) at the R1 reference point, interworks with the W-CSN at the R3 reference point, and communicates with another W-ASN at the R4 reference point.
  • the operator that manages the W-ASN is called a NAP (Network Access Provider).
  • W-CSN is a combination of network functions.
  • W-CSN can be composed of HA, AAA proxy or server (AAA Proxy/Server), billing server, interconnection gateway device and so on. Among them, the operator that manages the W-CSN is called the NSP.
  • the R1 interface is the interface between the terminal and the access gateway (also known as the reference point).
  • the R3 interface is an interface between the access gateway and the W-CSN. When roaming, the R3 interface is the interface between the access gateway and the visited W-CSN.
  • the R5 interface is the interface between the W-CSN and the home W-CSN when roaming.
  • R6 interface ⁇ The interface between the station and the access gateway.
  • the R8 interface is the interface between base stations.
  • the W-ASN anchored handover is anchored by the anchor access gateway including the anchor data channel function (DPF), and the terminal switches from the source base station to the target base station at the time of handover, and the source anchor access gateway is unchanged;
  • a data channel is established between the target access gateway serving the target base station and the source anchor access gateway, and the data packet of the terminal is forwarded through the channel;
  • DPF anchor data channel function
  • the W-CSN anchored handover is anchored by the home agent.
  • the terminal completes the W-ASN anchor handover, if the anchor access gateway needs to be changed, the source anchor access gateway or the target access gateway initiates W- After the handover is completed, the terminal accesses from the source anchor access gateway to the target access gateway, and the data channel between the source anchor access gateway and the target access gateway is deleted.
  • the anchor home agent does not change; at this time, the identity of the target access gateway also becomes the target anchor access gateway.
  • the handover in the existing WiMAX system requires the support of fixed anchor points to complete, and the introduction of the fixed anchor point brings about the problem of packet path bypass, which increases the transmission delay and bandwidth waste.
  • the technical problem to be solved by the present invention is to provide an anchor point switching method and system for a Wimax system to achieve no fixed anchor point switching.
  • the source access gateway sends a handover request to the target AGW;
  • the target AGW sends a handover response to the source AGW, and the handover is completed.
  • the source AGW releases the resources allocated to the terminal, and the data between the terminal and the communication peer is forwarded by the target AGW.
  • connection service network of the Wimax system includes an identity location core router (ILCR), each ILCR has a data interface with a generalized forwarding plane, and the generalized forwarding plane supports routing of data packets with a RID as a source address and a destination address. And forwarding;
  • ILCR identity location core router
  • the method further includes: selecting a target ILCR, and establishing the tunnel when the tunnel for forwarding the terminal data packet has not been established with the target ILCR; wherein, after the handover is completed, the The method further includes: releasing, by the source ILCR, a resource allocated to the terminal, and the data packet between the terminal and the communication peer is forwarded by the target AGW and the target ILCR.
  • selecting a target ILCR and establishing the tunnel when the tunnel for forwarding the terminal data packet has not been established with the target ILCR
  • the The method further includes: releasing, by the source ILCR, a resource allocated to the terminal, and the data packet between the terminal and the communication peer is forwarded by the target AGW and the target ILCR.
  • a data interface is provided between the AGW and the generalized forwarding plane in the Wimax access service network.
  • the generalized forwarding plane supports routing and forwarding of data packets with the RID as the source address and the destination address.
  • the AGW maintains the mapping information of the identity identifier and the location identifier (AID-RID) of all the communication peers of the accessed terminal, wherein, in the handover process, all the communication peers of the terminal that the AGW maintains the access terminal
  • AID-RID location identifier
  • the target AGW obtains the AID-RID mapping information of the communication peer from the data packet forwarded by the source AGW;
  • AID-RID mapping information of the communication peer from the home identity location register (ILR) or the source AGW of the communication peer; or
  • the source AGW actively sends the AID-RID mapping information of all communication peers of the terminal to the target AGW.
  • the method further includes: determining, according to the AID-RID mapping information, the local configuration information, or the domain name server (DNS) query of the communication peer, the gateway accessed by the communication peer, to the communication
  • DNS domain name server
  • the gateway accessed by the communication peer After receiving the RID update notification, the gateway accessed by the communication peer end updates the saved AID-RID mapping information of the terminal to the mapping information carried in the RID update notification.
  • the tunnel between the target AGW and the target ILCR is a dynamic tunnel of the terminal established by the tunnel establishment process after the target AGW selects the target ILCR;
  • the tunnel between the target AGW and the target ILCR is a static tunnel established after the two are powered on.
  • the two are powered on.
  • the source ILCR receives the data packet sent by the communication peer to the terminal and forwards the data packet to the source AGW.
  • the source AGW forwards the data packet to the target through a forwarding tunnel with the target AGW.
  • the AGW, the target AGW sends the data packet to the terminal through the data channel of the terminal.
  • the source AGW sends the identification information of the source ILCR to the target AGW, and when the selected target ILCR is different from the source ILCR, the identifier information of the source ILCR is resent to the target ILCR, and the target ILCR is established to the target ILCR. a forwarding tunnel of the source ILCR; or
  • the target AGW selects the target ILCR
  • the identifier information of the target ILCR is sent to the source AGW.
  • the target ILCR is different from the source ILCR
  • the identifier information of the target ILCR is resent to the source ILCR.
  • the ILCR establishes a forwarding tunnel to the target ILCR.
  • a timer is set, and the time is up. Release the forwarding tunnel with the source AGW, after which the source AGW releases the tunnel with the source ILCR; or,
  • the source AGW After receiving the handover response sent by the target AGW, the source AGW sets a timer; the timing expires, releasing the forwarding tunnel with the target AGW and the tunnel with the source ILCR.
  • a timer is set, or the source AGW receives a handover response sent by the target AGW, and then sets a timer, or after the target AGW sends a handover response to the source AGW,
  • the target ILCR sends a handover notification; the target ILCR sets a timer after receiving the handover notification of the target AGW, or,
  • the source AGW After receiving the switch response sent by the target AGW, the source AGW sends a handover notification to the source ILCR; the source ILCR sets a timer after receiving the handover notification of the source AGW;
  • the following resources allocated for the terminal are released by the network element that sets the timer: a forwarding tunnel between the source AGW and the target AGW, a tunnel between the source AGW and the source ILCR, and between the target ILCR and the source ILCR. tunnel.
  • a timer is set, and the time is up to release the forwarding tunnel with the source AGW;
  • the source AGW After receiving the handover response sent by the target AGW, the source AGW sets a timer; when the timing is up, the forwarding tunnel with the target AGW is released.
  • the target ILCR receives the downlink data packet sent by the communication peer to the terminal through the mapping forwarding plane or the generalized forwarding plane, and then passes the data packet through the tunnel between the target ILCR and the target AGW. Forwarding to the target AGW, the target AGW encapsulates the RID of the data packet, and then sends the data packet to the terminal through the data channel of the terminal.
  • the source AGW After receiving the data packet sent by the communication peer to the terminal, the source AGW passes the target AGW.
  • the forwarding tunnel forwards the data packet to the target AGW, and the target AGW sends the data packet to the terminal through a data channel between the terminal and the terminal.
  • the target AGW After receiving the downlink data packet sent by the communication peer to the terminal through the mapping forwarding plane or the general forwarding plane, the target AGW sends the data packet to the terminal through the data channel of the terminal.
  • the source AGW performs RID encapsulation on the received downlink data packet of the terminal; and sends an AGW switch to the target AGW at the source AGW.
  • the target AGW performs RID encapsulation on the downlink data packet of the terminal forwarded by the source AGW.
  • the data packet path sent by the terminal to the communication peers accessing different ILCRs is as follows:
  • the target AGW forwards the received data packet sent by the terminal to the source AGW before the target AGW establishes a dynamic tunnel with the target ILCR or before the target AGW selects the target ILCR with the target AGW to establish a static tunnel.
  • the source AGW performs RID encapsulation and forwarding on the data packet, and forwards the data packet to the mapping forwarding plane or the generalized forwarding plane through the source ILCR and/or the mapping forwarding plane, and then delivers the communication peer end through the mapping forwarding plane or the generalized forwarding plane.
  • the target AGW After the target AGW establishes a dynamic tunnel with the target ILCR or after the target AGW selects the target ILCR with the target AGW to establish a static tunnel, the target AGW performs RID encapsulation on the data packet sent by the terminal. Forwarding, the data packet is forwarded to the generalized forwarding plane through the target ILCR, or the source AGW and the source ILCR, or the target ILCR and the mapping forwarding plane, or the mapping forwarding plane, and then sent to the communication pair by the generalized forwarding plane. Enter the gateway.
  • the data packet path sent by the terminal to the communication peers accessing different AGWs is as follows:
  • the data packet sent by the terminal is forwarded to the source AGW, and the source AGW performs RID encapsulation, query, and forwarding to the mapping packet. Sending a plane or a generalized forwarding plane, and then sending the gateway to which the communication peer accesses;
  • the target AGW After receiving the handover request, the target AGW performs RID encapsulation and query on the data packet sent by the terminal, and then directly forwards the data packet to the mapping forwarding plane or the generalized forwarding plane; or first forwards to the source AGW, and then maps the forwarding plane or the generalized The forwarding plane is sent to the gateway accessed by the communication peer.
  • the target AGW selects the target ILCR in one of the following ways:
  • the target AGW interacts with the terminal to belong to the AAA server directly or by visiting the authentication and authorization accounting (AAA) server, acquires the ILCR information that the target AGW can connect, and selects an ILCR as the target ILCR;
  • AAA authentication and authorization accounting
  • An update of the RID wherein, in the process of implementing the RID update by initiating a tunnel establishment process to the target ILCR, the target AGW brings the AID and the new RID of the terminal to the target ILCR in the tunnel establishment process, and the target ILCR
  • the AID and the new RID of the terminal are brought to the terminal home AAA/ILR in the authentication process of the terminal AAA/ILR, and the terminal belongs to the RID in the AID-RID mapping information of the terminal to be saved by the AAA/ILR. Update to the new RID received.
  • the AGW includes:
  • Cutting out a control module configured to send a handover request to the target AGW after the handover of the Wimax Access Service Network (W-ASN) is completed;
  • W-ASN Wimax Access Service Network
  • a RID allocation module configured to allocate a new RID pointing to the AGW to the terminal after receiving the allocation notification, and save mapping information of the terminal AID and the new RID;
  • the RID registration module is configured to initiate a RID registration process after receiving the registration notification, and update the RID of the terminal saved by the terminal's home identity register (ILR);
  • the RID update module is configured to send an RID update notification to the gateway accessed by all communication peers of the terminal according to the connection information of the terminal and the communication peer after receiving the update notification, and carry the AID of the terminal and the new RID.
  • the connection service network includes an identity location core router (ILCR), and each of the ILCR and the generalized forwarding plane has a data interface; the generalized forwarding plane supports routing and forwarding of data packets with the RID as the source address and the destination address;
  • the ILCR includes a message forwarding module configured to route and forward data with a RID as a source address and a destination address;
  • the AGW further includes a tunnel establishment module, and the cut-in control module of the AGW is further configured to: after receiving the AGW handover request, select a target ILCR, and send a tunnel establishment notification to the tunnel establishment module; the tunnel establishment module is configured to After receiving the tunnel establishment notification, establish a dynamic tunnel with the target ILCR for the intercepted terminal; or The AGW further includes a tunnel establishment module, and the tunnel establishment module is configured to establish a static tunnel with the ILCR after power-on.
  • a data interface is provided between each AGW and the generalized forwarding plane.
  • the generalized forwarding plane supports routing and forwarding of data packets with the RID as the source address and the destination address.
  • the AGW further includes a mapping information maintenance module configured to save and maintain identity and location identification (AID-RID) mapping information of all communication peers of all the handed-in terminals;
  • AID-RID identity and location identification
  • the cut-in control module of the AGW is further configured to: receive the AID-RID mapping information sent by the source AGW, or all the communication peers of the hand-in terminal obtained by querying the communication peer end ILR or the source AGW, and notify the mapping information.
  • the maintenance module is saved and maintained;
  • the cut-out control module in the AGW is further configured to send the AID-RID mapping information of all the communication peers of the cut-out terminal to the target AGW actively or according to the query of the target AGW;
  • the AGW packet forwarding module is configured to determine the AID-RID mapping information of the communication peer according to the data message of the cut-in terminal, and notify the mapping information maintenance module to save and maintain.
  • the RID update module of the AGW is configured to: when the RID update process is initiated, determine the gateway accessed by the communication peer according to the AID-RID mapping information, the local configuration information, or the domain name server (DNS) query of the communication peer, The gateway accessed by the communication peer end sends an RID update notification, and carries mapping information of the terminal AID and the new RID.
  • DNS domain name server
  • the packet forwarding module in the AGW is further configured to: after receiving the downlink data packet sent to the cut-out terminal, forward the packet to the target AGW through the forwarding tunnel with the target AGW, and receive the downlink sent to the cut-in terminal.
  • the data message is sent to the terminal through the data channel with the terminal.
  • the ILCR further includes a tunnel establishment module configured to establish a forwarding tunnel with the source ILCR for the handed-in terminal, or establish a forwarding tunnel with the target ILCR for the cut-out terminal, and switch Release the forwarding tunnel after completion;
  • the packet forwarding module in the ILCR is configured to forward the data packet sent to the cut terminal to the source AGW first in the handover process, after the forwarding tunnel between the source and the target ILCR is established.
  • the data packet sent to the intercepted terminal is forwarded to the target AGW through the tunnel with the target AGW.
  • the cut-out control module in the AGW is further configured to send the identifier information of the source ILCR to the target AGW; the cut-in control module in the AGW is further configured to: when the selected target ILCR is different from the source ILCR, the source is The identifier information of the ILCR is sent to the target ILCR; the tunnel establishment module in the ILCR is configured to establish a forwarding tunnel to the source ILCR according to the identifier information of the received source ILCR; or
  • the cut-in control module of the AGW is further configured to: after sending a handover response to the source AGW, setting a timer, and timing the time to release the forwarding tunnel with the source AGW; the AGW cut-out control module is further configured to release the source ILCR Between the tunnels; or,
  • the AGW cut-in control module is further configured to send a handover response to the source AGW; the AGW cut-out control module is further configured to: after receiving the handover response sent by the target AGW, set a timer; the timing time arrives, and the release between the target and the target AGW Forward the tunnel and the tunnel to the source ILCR.
  • the cut-in control module of the AGW is further configured to: after sending a handover response to the source AGW, setting a timer, and timing the time to release the forwarding tunnel with the source AGW; the AGW cut-out control module is further configured to release the source ILCR The tunnel between the ILCR cut-out control module is also set to release the forwarding tunnel between the target and the ILCR, or The AGW cut-out control module is further configured to: after receiving the handover response sent by the target AGW, set a timer; the timing time arrives, release the forwarding tunnel with the target AGW, and the tunnel with the source ILCR; ILCR cut-out The control module is further configured to release the forwarding tunnel with the target ILCR, or,
  • the cut-in control module of the AGW is further configured to: after sending a handover response to the source AGW, send a handover notification to the target ILCR; the cut-in control module of the ILCR is further configured to: after receiving the handover notification sent by the target AGW, set a timer, After the timing is up, the forwarding tunnel with the source ILCR is released, the source ILCR cut-out control module releases the tunnel with the source AGW, and the cut-out control module of the source AGW releases the tunnel with the target AGW, or
  • the AGW cut-in control module is further configured to: after sending a handover response to the source AGW, setting a timer, timing the time to release the forwarding tunnel with the source AGW; or
  • the AGW cut-out control module is further configured to: after receiving the handover response sent by the target AGW, setting a timer; and timing the time to release the forwarding tunnel with the target AGW.
  • the cut-out control module in the AGW sends a handover request to the target AGW
  • the first notification is sent to the packet forwarding module in the AGW
  • the handover control module in the AGW sends a second notification to the packet forwarding module in the AGW when receiving the handover request from the source AGW;
  • the packet forwarding module in the AGW after receiving the first notification, performs RID encapsulation on the received downlink data packet of the cut-out terminal, and then forwards the packet to the target AGW, and receives the first notification. And then forwarded directly to the target AGW; before receiving the second notification, the downlink data packet of the hand-in terminal forwarded by the source AGW is directly sent to the terminal, and the second notification is received. After the RID encapsulation is performed, the data is sent to the terminal.
  • the downlink data packet of the hand-in terminal that is forwarded by the target ILCR is de-encapsulated by RID, and then sent to the terminal through the data channel of the terminal.
  • the connection service network includes an ILCR; the template forwarding module in the AGW is configured to forward the received uplink data packet of the terminal to the source ILCR, before receiving the first notification.
  • the template forwarding module in the AGW is configured to forward the received uplink data packet of the terminal to the source ILCR, before receiving the first notification.
  • Performing RID encapsulation on the uplink data packet if the uplink data packet sent by the received terminal is not established, if the tunnel between the AGW and the target ILCR is not established, the uplink data packet is forwarded to the source AGW, and is received. After the second notification, the uplink data packet is further encapsulated by the RID. If the tunnel between the AGW and the target ILCR is established, the uplink data packet is RID encapsulated and then forwarded to the target ILCR.
  • the AGW has a data interface to the generalized forwarding plane; the packet in the AGW forwards the generalized forwarding plane; and before receiving the second notification, directly forwards the received uplink data packet sent by the intercepted terminal to the After receiving the second notification, the source AGW performs RID encapsulation on the uplink data packet and forwards the packet to the generalized forwarding plane.
  • the cutting control module of the AGW is set to:
  • the interception terminal sent from the source AGW allows one of the ILCRs to access to select an ILCR as the target.
  • the allowed ILCR is sent to the source AGW by the AAA server to which the handover terminal belongs;
  • the target ILCR is selected according to the configuration information of the AGW.
  • the anchor point switching method of the Wimax system of the present invention and the Wimax system apply the mobile communication network with the identity identification and the location separation to the WiMAX network.
  • the target AGW or the target ILCR allocates a new RID to the cut-in terminal, according to the cut-in
  • the data packet of the terminal determines the connection information between the cut-in terminal and the communication peer, and notifies the gateway of the communication peer to update the terminal.
  • the AID-RID maps information, thereby achieving no fixed anchor point switching, reducing the path detour of the data packet, reducing the transmission delay and bandwidth waste, and also achieving the purpose of solving the dual identity of the IP address.
  • Figure 2 is a schematic diagram of the topology relationship between a network based on identity and location separation architecture and a Legecy IP network (traditional IP network).
  • Figure 3 is a schematic diagram of an existing WiMAX network architecture.
  • Figure 4a is a schematic diagram of the identity and location separation WiMAX network architecture.
  • FIG. 5 is a flow chart 1 of the terminal of the present invention with no fixed anchor point switching.
  • FIG. 6 is a flow chart 2 of the terminal of the present invention with no fixed anchor point switching.
  • FIG. 7 is a third flowchart of the terminal of the present invention with no fixed anchor point switching.
  • FIG. 9 is a flowchart 5 of the method for switching the terminal without fixed anchor point according to the present invention.
  • FIG. 10 is a flowchart 6 of the method for switching the terminal without fixed anchor point according to the present invention.
  • FIG. 11 is a flowchart 7 of the method for switching the terminal without fixed anchor point according to the present invention. Preferred embodiment of the invention
  • the method for switching the anchorless point of the Wimax system of the present invention and the main idea of the Wimax system is to apply the mobile communication network with the identity and location separation to the WiMAX network.
  • the target AGW or the target ILCR is the cut-in terminal.
  • the connection information between the handover terminal and the communication peer is determined according to the data packet cut into the terminal, and the gateway (AGW, ILCR or other gateway such as a border gateway) accessed by the communication peer is notified to update the terminal AID-RID mapping.
  • Information thereby achieving no fixed anchor point switching, reducing the path detour of the data packet, reducing the transmission The transmission delay and bandwidth are wasted, and the purpose of solving the dual identity of the IP address can also be achieved.
  • FIG 2 shows an architecture of the Subscriber Identifier & Locator Separation Network (SILSN).
  • the network topology of the SILSN architecture is divided into an access network 21 and a backbone network 22 that do not overlap in the topology relationship.
  • the access network is located at the edge of the backbone network and is responsible for accessing all terminals.
  • the backbone network is responsible for routing and forwarding data packets between terminals.
  • the terminal may be one or more of a mobile terminal, a fixed terminal, and a nomadic terminal, such as a mobile phone, a landline telephone, a computer, a server, and the like.
  • the access network is used to provide a Layer 2 (physical layer and link layer) access means for the terminal, and maintains a physical access link between the terminal and the ASN.
  • Possible Layer 2 access methods include: Cellular Mobile Network Technology (Global System for Mobile Communications (GSM) // Code Division Multiple Access (CDMA) / Time Division Synchronous Code Division Multiple Access (TD-SCDMA) / Wideband Code Division Multiple Access (WCDMA) I Wimax/LTE), Digital Subscriber Loop (DSL), Broadband Fiber Access or Wireless Fidelity (WiFi) access, etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • DSL Digital Subscriber Loop
  • WiFi Wireless Fidelity
  • the main network elements of the backbone network include:
  • An access service node (ASN: Access Service Node), which is configured to allocate a RID for the terminal, maintain the AID-RID mapping information of the terminal, register and register the RID of the terminal with the ILR, and implement routing and forwarding of the data packet, and the terminal Access to the backbone network via ASN.
  • ASN assigned RID When the address information of the ASN is included, and the RID is used as the destination address of the data packet, the data packet is routed to the ASN.
  • a general-purpose router (CR: Common Router) is configured to perform routing based on the RID in the data packet, and forward the data with the RID as the destination address.
  • the PTF Packet Transfer Function
  • the packet forwarding function node is set to route and forward data packets with the AID as the destination address.
  • An Interworking Service Node having an interface with a general router, an ASN, and an ILR, and configured to query and maintain AID-RID mapping information of the network terminal, encapsulating, routing, and forwarding between the network and the traditional IP network. Data ⁇ , to achieve the interconnection of two networks.
  • the above ILR, or ILR and PTF form the mapping forwarding plane of the backbone network, CR, or CR and ISN constitute the generalized forwarding plane of the backbone network.
  • Other network elements such as a certification center may also be included in the backbone network.
  • the SILSN architecture can exist and evolve in the form of one or more islands of a traditional IP network, or as an extension of a traditional IP network.
  • the topology relationship between the SILSN architecture and the traditional IP network is shown in Figure 3.
  • the backbone network 31 of the SILSN architecture is in the same plane as the traditional IP network 32, and communicates with the traditional IP network through the ISN33.
  • the SILSN architecture has the capability of independent networking, which can form a network that is developed independently from the traditional IP network. At this stage, the functional entity ISN will no longer exist.
  • the present invention applies the above SILSN architecture to a WiMAX system to achieve unfixed anchor point switching.
  • the target ASN on the side of the handover needs to assign a RID to the terminal, and initiate registration with the home ILR of the terminal;
  • the AID-RID mapping information of the terminal is deleted, and the AID-RID mapping information of all communication peers of the terminal is maintained.
  • the RID update notification needs to be sent to the gateway accessed by the communication peer.
  • the source ASN needs to forward the communication peer to the target ASN to send to the terminal. Message.
  • the network element that accesses the communication peer end of the terminal is simply referred to as the peer network element.
  • the peer network element For the convenience of description, when the function of a certain network element is expressed, the user terminal accessing the network element is called a terminal, and The user terminal that communicates with the user terminal of the network element is called a communication peer.
  • the source anchor access gateways in the original handover procedure are collectively referred to as source access gateways, and the target anchor access gateways are collectively referred to as target access gateways.
  • FIG 4a is a schematic illustration of a network architecture of a Wimax system employing the above-described identity location separation technique, with solid lines indicating the connections of the bearer planes and dashed lines indicating the connections of the control planes.
  • the Wimax network architecture includes an Access Service Network (W-ASN) 41 and a Connected Service Network (W-CSN) 42.
  • the connection service network has a data plane interface to the generalized forwarding plane, which is represented as a D interface.
  • the generalized forwarding plane may be a packet data network that supports routing and forwarding of data messages by RID, and other embodiments are the same.
  • an original network element such as an authentication and authorization accounting (AAA) proxy or a server (AAA Proxy/Server) is also provided, and an Identity Location Core Route (ILCR) and an identity location register are also set.
  • ILR authentication and authorization accounting
  • PTF packet forwarding function
  • ILR/PTF packet forwarding function
  • ILR/PTF ILR/PTF
  • ILR/PTF ILR/PTF
  • the W-ASN includes a base station and an access gateway, wherein the access gateway is based on a functional entity (such as an anchor DPF, an authenticator, etc.) of the access gateway in the Wimax architecture. Expanded the new features required to implement identity and location separation. In this system:
  • the Access Gateway is located in the WiMAX Access Service Network (W-ASN), which is configured to allocate RIDs to the terminals, register, delete, and query AID-RID mapping information to the ILR, and maintain the terminal and communication peer AID-RID mapping.
  • W-ASN WiMAX Access Service Network
  • the data packet encapsulates the RID and decapsulates the RID, and implements routing and forwarding of the data packet.
  • the gateway that the communication peer access is notified to update the terminal AID-RID mapping information.
  • the ILCR is located in the W-CSN, and is configured to route and forward data packets with the RID format as the source address and the destination address, and the function is no different from the router in the prior art.
  • the ILR is configured to receive a registration and deregistration request of the access gateway to the ILR home subscriber terminal, maintain AID-RID mapping information of the home user terminal, and receive a query request for the terminal RID, and corresponding to the terminal AID in the request.
  • the RID is returned to the query requester, and this function functions the same as the ILR in the prior art.
  • the AGW is configured to allocate a new location identifier (RID) to the terminal when the terminal is handed in, and save mapping information of the terminal identity (AID) and the new RID, and determine the terminal according to the data packet of the terminal.
  • the connection information of the communication peer end and initiates an RID update process for updating the RID of the terminal to the gateway accessed by the terminal communication peer end; releasing the resource allocated to the terminal after the terminal is cut out; and cutting the data of the terminal
  • the packet is forwarded.
  • the AGW includes:
  • Cutting out a control module configured to send an AGW handover request to the target AGW after the W-ASN anchored handover is completed;
  • the cut-in control module is configured to: after receiving the AGW switching request, send an allocation notification to the location identifier (RID) allocation module, carry the hand-in terminal AID, and then send a registration notification to the RID registration module, and send an update notification to the RID update module, And returning an AGW handover response to the source AGW;
  • RID location identifier
  • a RID allocation module configured to allocate a new RID pointing to the AGW to the terminal after receiving the allocation notification, and save mapping information of the terminal AID and the new RID;
  • the packet forwarding module is configured to perform RID encapsulation, RID encapsulation, and forwarding on the data packet that is cut into the terminal, and forward the data packet to the target terminal after receiving the data packet to be sent to the cut-out terminal, and further set to cut according to the cut-in
  • the data packet of the terminal determines connection information between the terminal and the communication peer;
  • the RID update module is configured to send an RID update notification to the gateway accessed by the terminal communication peer according to the connection information of the terminal and the communication peer after receiving the update notification, and carry the AID of the terminal and the new RID.
  • the ILCR includes a message forwarding module configured to route and forward a data message with a RID as a source address and a destination address;
  • the AGW further includes a tunnel establishment module; the cut-in control module of the AGW is further configured to: after receiving the AGW handover request, select a target ILCR, and send a tunnel establishment notification to the tunnel establishment module; the tunnel establishment module is configured to receive After the tunnel establishment notification, establish a dynamic tunnel with the target ILCR for the cut-in terminal; or
  • the AGW further includes a tunnel establishment module, and the tunnel establishment module is configured to establish a static tunnel with the ILCR after power-on.
  • the AGW After the handover control module sends a handover response to the source AGW, the AGW sets a timer, and the timing is up to release the forwarding tunnel with the source AGW. Then, the cut-out control module of the source AGW releases the tunnel with the source ILCR. Or,
  • the cut-in control module of the AGW sends a handover response to the source AGW; after the switch-out control module of the AGW receives the handover response sent by the target AGW, sets a timer; the timing time arrives, releases the forwarding tunnel between the target AGW and the source ILCR. Tunnel.
  • the AGW After the handover control module sends a handover response to the source AGW, the AGW sets a timer, and the timing is up to release the forwarding tunnel with the source AGW. Then, the cut-out control module of the source AGW releases the tunnel with the source ILCR.
  • the source ILCR cut-out control module releases the forwarding tunnel with the target ILCR, or,
  • the AGW's hand-in control module sends a handover response to the source AGW;
  • the AGW's cut-out control module receives the handover response sent by the target AGW, sets a timer; the timing time arrives, releases the forwarding tunnel with the target AGW, and the source ILCR Inter-tunnel;
  • the source ILCR cut-out control module releases the forwarding tunnel with the target ILCR, or,
  • the handover control module of the AGW After the handover control module of the AGW sends a handover response to the source AGW, it sends a handover notification to the target ILCR. After receiving the handover notification sent by the target AGW, the intercept control module of the ILCR sets a timer, and the time is up, and the source ILCR is released. Between the forwarding tunnel, the source ILCR cut-out control module releases the tunnel with the source AGW, the source AGW's cut-out control module releases the tunnel with the target AGW, or
  • the cut-in control module of the AGW sends a handover response to the source AGW, and the cut-out control module of the AGW sends a handover response to the source ILCR after receiving the handover response sent by the target AGW; the switchover control module of the ILCR receives the handover of the target AGW transmission.
  • the timer is set, the timing is up, the forwarding tunnel with the target ILCR and the tunnel with the source AGW are released, and the cut-out control module of the source AGW releases the tunnel with the target AGW.
  • the AGW further includes a mapping information maintenance module configured to save and maintain all communication peer identity and location identification (AID-RID) mapping information of all hand-in terminals;
  • AID-RID all communication peer identity and location identification
  • the cut-in control module of the AGW is further configured to: receive the AID-RID mapping information that is sent by the source AGW, or that is obtained from the communication peer end ILR or the source AGW, and notify the mapping information maintenance module to perform the mapping.
  • the cut-out control module in the AGW is further configured to send the AID-RID mapping information of the cut-off terminal communication peer to the target AGW actively or according to the query of the target AGW.
  • the message forwarding module of the AGW is configured to determine AID-RID mapping information of the communication peer end according to the data packet cut into the terminal, and notify the mapping information maintenance module to save and maintain.
  • the RID update module of the AGW determines, when the RID update process is initiated, the gateway accessed by the communication peer according to the mapping information, the local configuration information or the DNS query of the communication peer AID-RID, and terminates the gateway to the communication pair.
  • the incoming gateway sends a RID update notification, carrying the terminal AID and the new one. Mapping information of the RID.
  • the packet forwarding module in the AGW After receiving the downlink data packet sent to the cut-out terminal, the packet forwarding module in the AGW forwards the downlink data packet to the target AGW through the forwarding tunnel with the target AGW, and receives the downlink data packet sent to the cut-in terminal. , is sent to the terminal through a data channel with the terminal.
  • the ILCR further includes a tunnel establishment module configured to establish a forwarding tunnel with the source ILCR for the handover terminal, or establish a forwarding tunnel with the target ILCR for the cut-out terminal, and release the forwarding tunnel after the handover is completed;
  • the packet forwarding module in the ILCR forwards the received data packet sent to the cut-out terminal to the source AGW in the handover process, and directly passes the forwarding tunnel after the forwarding tunnel between the source and the target ILCR is established. Forwarding to the target ILCR; forwarding the received data packet addressed to the hand-in terminal to the target AGW through a tunnel with the target AGW.
  • the cut-out control module of the AGW is further configured to send the identifier information of the source ILCR to the target.
  • the AGW's hand-in control module is further configured to send the identity information of the source ILCR to the target ILCR when the selected target ILCR is different from the source ILCR; the tunnel establishment module in the ILCR is set according to the received source The identification information of the ILCR is established to the forwarding tunnel of the source ILCR; or
  • the AGW's hand-in control module is further configured to send the identification information of the target ILCR to the source.
  • the cut-out control module of the AGW is further configured to: when the received target ILCR is different from the source ILCR, send the identifier information of the target ILCR to the source ILCR; the tunnel establishment module in the ILCR is set to receive according to The identity information of the target ILCR is established to the forwarding tunnel of the target ILCR.
  • the cut-out control module of the AGW When the cut-out control module of the AGW sends a handover request to the target AGW, the first notification is sent to the packet forwarding module in the AGW;
  • the AGW's hand-in control module receives the handover request from the source AGW to the AGW.
  • the message forwarding module sends a second notification;
  • the connection service network includes an ILCR; the packet forwarding module in the AGW forwards the received uplink data packet of the cut-out terminal to the source ILCR, and also sends the uplink datagram before receiving the first notification.
  • the RID encapsulation is performed on the received uplink data packet, if the tunnel with the target ILCR is not established, the uplink data packet is forwarded to the source AGW, and after receiving the second notification, The uplink data packet is RID-encapsulated. If a tunnel with the target ILCR is established, the uplink data packet is RID-encapsulated and then forwarded to the target ILCR.
  • the manner in which the hand-in control module selects the target ILCR is one of the following ways:
  • the hand-in control module interacts with the AAA server that is connected to the terminal to obtain the ILCR information that the target AGW can connect to, and selects an ILCR as the target ILCR;
  • the hand-in control module selects an ILCR as the target ILCR from the ILCR that the hand-in terminal is allowed to access from the source AGW, and the ILCR that is allowed to access is sent to the source AGW by the AAA server to which the hand-in terminal belongs.
  • Manner 3 The hand-in control module selects a target ILCR according to the configuration information of the AGW. Further,
  • FIG. 6, and FIG. 7 are flowcharts of switching in the WiMAX network system 1 of the present invention using the identity and location separation technologies, corresponding to the first to third embodiments.
  • the downlink data packet path After receiving the data packet sent by the communication peer to the terminal, the source ILCR forwards the data packet to the source AGW.
  • the source AGW strips the RID encapsulated in the data packet and restores the data sent by the communication peer.
  • the data packet After the format of the packet, the data packet is forwarded to the target AGW through the data channel between the source AGW and the target AGW, and the target access gateway sends the packet to the terminal through the terminal data channel.
  • the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane or the source ILCR, and the communication pair is queried to the ILR.
  • RID of the end; or buffering the data packet to the local after obtaining the RID of the communication peer, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then encapsulated.
  • the subsequent data message is forwarded to the source ILCR.
  • Step 502 When the target AGW is ready to initiate the AGW relocation, send an anchor DPF handover trigger message to the source AGW, where the step is optional.
  • Step 503 After the source AGW receives the target access gateway anchor DPF switch trigger message, or When the source AGW decides to initiate the AGW relocation, the source AGW sends an anchor DPF handover request message to the target AGW.
  • the path of the uplink and downlink data packets of the terminal is still as shown in D501 and D502. Only the target AGW encapsulates and decapsulates the data packets at this time.
  • Step 504 The target AGW allocates a new RID to the terminal, and saves and updates the terminal locally.
  • Step 505 The target AGW selects the target ILCR, and initiates a tunnel establishment process to the target ILCR.
  • the target ILCR may need to interact with the home AAA server to complete the authentication.
  • the downlink data packet path After receiving the data packet sent by the communication peer to the terminal, the source ILCR forwards the data packet to the source AGW, and the source AGW forwards the data packet to the target AGW through the data channel between the source AGW and the target AGW. After the target AGW strips the RID encapsulated in the data packet and restores the format of the data packet sent by the communication peer, the target access gateway sends the packet to the terminal through the terminal data channel.
  • the uplink data packet path the terminal sends the uplink data message to the target base station, the target base station forwards the data packet to the target AGW, the target AGW obtains the AID of the communication peer end, and queries the AID-RID mapping information in the local cache, for example, To the RID of the communication peer, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data packet is forwarded to the target ILCR. If the RID of the communication peer is not found, the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane or the target ILCR, and the ILR is queried to the communication peer. RID.
  • the data packet may be tunnel encapsulated and then forwarded to the source AGW.
  • the source AGW performs RID encapsulation and then sends the source to the communication peer through the source ILCR; or first caches locally, to obtain the communication peer. After the RID is encapsulated, the peer RID is encapsulated and sent to the communication peer via the target ILCR.
  • Step 506 After assigning a new RID, the target AGW initiates a RID registration process to the terminal home ILR, and brings the newly allocated RID to the ILR, and updates the terminal AID-RID mapping information on the ILR.
  • the home ILR receives the target AGW. After the RID registration request, verify the legality of the AID, and save the mapping information of the current AID-RID of the terminal;
  • This step may be performed in the ILCR to the home AAA authentication process in step 505: that is, the target AGW brings the AID and the new RID of the terminal to the target ILCR in the tunnel establishment process, and the target ILCR is reused to the terminal.
  • the AID and the new RID of the terminal are brought to the terminal AAA/ILR, and the terminal AAA/ILR updates the RID in the saved AID-RID mapping information of the terminal to the received The new RID.
  • the downlink data packet path after receiving the data packet sent by the communication peer to the terminal, the target ILCR forwards the data packet to the target AGW.
  • the target AGW strips the RID encapsulated in the data packet and restores the datagram sent by the communication peer.
  • the target access gateway sends the packet to the terminal through the terminal data channel.
  • Step 508 The target AGW sends an anchor DPF handover response to the source AGW, and completes the AGW handover.
  • Step 509 the target AGW sets a switching timer.
  • Step 510 The target AGW notifies the gateway accessed by the communication peer to update the terminal AID-RID mapping information.
  • Step 511 After the switching timing time set in step 509 is reached, the target AGW releases the data channel between the source AGW and the target AGW.
  • Step 513 The target AGW initiates a context reporting process to the target base station, and sends a new AGW to the target base station. This step is performed after step 508.
  • the switching timer set in step 509 can be set by the source AGW.
  • the source AGW needs to release the data channel between the source AGW and the target AGW after the timing time is up. .
  • step 510 can be triggered to execute at any time after step 504.
  • the uplink data packet is forwarded from the tunnel, such as D504 and D506.
  • the uplink data packet may also be forwarded from the tunnel between the target AGW and the source AGW, that is, the data packet is forwarded from the target AGW to the source AGW to the source ILCR.
  • step 505 when the target AGW selects the target ILCR, the following manners can be obtained: Mode 1: The target AGW interacts with the terminal home AAA server to obtain the ILCR information that the target AGW can connect to;
  • the interaction needs to be forwarded by visiting the AAA server.
  • the visited AAA server can also notify the target AGW of the ILCR information that allows the target AGW to connect during the forwarding process.
  • the home AAA server and the visited AAA server have notified the source AGW of the ILCR that the terminal is allowed to access.
  • the source AGW notifies the target AGW in step 503.
  • Target AGW you can select the appropriate ILCR according to the configuration, etc.
  • the above method may be used when the target AGW is required to select the target ILCR.
  • the target AGW locally queries the AID-RID mapping information of the communication peer according to the AID of the communication peer in the data packet, wherein the other terminal that is communicating with the communication peer through the target AGW may have locally stored communication. AID-RID mapping information of the peer end; 2. The target AGW obtains the AID-RID mapping information of the communication peer from the data packet forwarded by the source AGW.
  • the source AGW receives the data packet of the terminal forwarded by the target AGW, and the data packet carries the communication peer AID.
  • the source AGW sends the communication peer access identifier mapping AID-RID to the target AGW, and the target AGW obtains the communication pair.
  • the mapping relationship between the AID-RIDs is saved locally.
  • the target AGW After receiving the data forwarded by the source AGW, the target AGW determines the gateway accessed by the communication peer according to the communication AID-RID mapping information, the local configuration information, or the DNS query, and sends the RID to the gateway accessed by the communication peer.
  • the update notification carries the mapping information of the terminal AID and the new RID.
  • the gateway After receiving the RID update notification, the gateway accessing the communication end updates the saved AID-RID mapping information of the terminal to the mapping information carried in the notification.
  • the target AGW may also perform the processing of updating the communication peer end. At this time, there may be a gateway that updates the new communication peer access that does not need to be updated.
  • Figure 6 applies to data forwarding in the handover process using a forwarding tunnel between ILCRs, and by target
  • the ILCR initiates a scenario for establishing a forwarding tunnel between ILCRs. The specific steps are described as follows:
  • the identification information may be an address or a dedicated identifier.
  • Step 604 the same step 504;
  • Step 605 the target AGW selects the target ILCR, initiates a tunnel establishment process to the target ILCR, and notifies the source ILCR identification information to the target ILCR;
  • the target ILCR may need to interact with the home AAA server to complete the authentication.
  • the tunnel between the access gateway and the ILCR may be in various manners, such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, MIP, IPsec, etc., and the present invention is not limited to any A specific way of tunneling.
  • MIP Mobility Management Entity
  • the tunnel is created and maintained in the same way as the existing WiMAX network.
  • Step 606 The target ILCR initiates a process of establishing a forwarding tunnel to the source ILCR according to the identifier information of the source ILCR obtained in step 605, if the target ILCR is different from the source ILCR; otherwise, the step is not performed;
  • the tunnel between the ILCRs may be in various manners, such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, MIP, IPsec, etc., and the present invention is not limited to any specific one. Tunnel mode.
  • the uplink and downlink data of the terminal is as shown in D603 and D604.
  • the downlink data packet path After receiving the data packet sent by the communication peer to the terminal, the source ILCR forwards the packet to the target ILCR through the forwarding tunnel, and the target ILCR forwards the packet to the target AGW, and the target AGW strips the encapsulated data packet. After the RID is restored to the format of the data packet sent by the communication peer, the target access gateway sends the packet to the terminal through the terminal data channel.
  • the step 606 may be completed before the step 605, and the downlink data message needs to be in the target ILCR.
  • the cache is first cached, and is sent to the target AGW after the step 605 is completed.
  • the upstream data packet path is the same as D602, but the target AGW encapsulates and decapsulates the data packet.
  • Step 607 to step 608, the same steps 506 to 507; Thereafter, the uplink and downlink data of the terminal is as shown in D605 and D606.
  • the downlink data packet path is the same as D603. .
  • Step 609 to step 613 the same steps 508 to 512;
  • Step 614 Performing this step when the source ILCR is different from the target ILCR, and the source ILCR or the target ILCR initiates release of the data forwarding tunnel between the two;
  • the switching timer set in step 610 may be set by the source AGW, or may be set by the source ILCR, or may be set by the target AGW.
  • the source AGW needs to be in the timing time. The data channel and related information between the source AGW and the target AGW are released. The same applies to the third embodiment, specifically:
  • the source AGW After receiving the handover response sent by the target AGW, the source AGW sends a handover notification to the source ILCR; the source ILCR sets a timer after receiving the handover notification of the source AGW.
  • the following resources are allocated for the terminal by the network element that sets the timer: the forwarding tunnel between the source AGW and the target AGW, the tunnel between the source AGW and the source ILCR, and between the target ILCR and the target AGW. Downstream forwarding tunnel.
  • step 611 does not need to be executed after step 610, and may be triggered to execute at any time after step 604.
  • the uplink data packet is forwarded from the tunnel, such as D604 and D606.
  • the uplink data may be forwarded from the tunnel between the target AGW and the source AGW, that is, the data packet is forwarded from the target AGW to the source. AGW, then to the source ILCR; or forwarded from the forwarding tunnel between the target ILCR and the source ILCR.
  • Figure 7 is applicable to the scenario where the forwarding of data during the handover process uses the forwarding tunnel between the ILCRs, and the source ILCR initiates the establishment of the forwarding tunnel between the ILCRs.
  • the specific steps are as follows:
  • Step 701 the same step 601 ;
  • the terminal uplink and downlink data is as shown in D701 and D702, D701 and D702, and D601 and D602.
  • Step 702 When the target AGW is ready to initiate the AGW relocation, select the target ILCR, send an anchor DPF handover trigger message to the source AGW, and carry the target ILCR identification information in the message; where the identifier information may be an address or a special identifier. .
  • Step 703 After the source AGW receives the target access gateway anchor DPF handover trigger message, and agrees to perform anchor DPF handover, if it is determined according to the identifier information of the target ILCR, it is required to perform cross-ILCR handover (eg, source ILCR and target ILCR). Not the same), sending an ILCR handover request to the original ILCR, while carrying the target ILCR identification information; otherwise, steps 703 to 705 are not performed;
  • cross-ILCR handover eg, source ILCR and target ILCR
  • Step 704 The source ILCR initiates a process of establishing a forwarding tunnel to the target ILCR according to the identifier information of the target ILCR obtained in step 703.
  • the tunnel between the ILCRs may be in various manners, such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, MIP, IPsec, etc., and the present invention is not limited to any specific one. Tunnel mode.
  • Step 705 The source ILCR responds to the source AGW with an ILCR handover response.
  • the uplink and downlink data of the terminal is as shown in D703 and D704.
  • the downlink data packet path After receiving the data packet sent by the communication peer to the terminal, the source ILCR forwards the packet to the target ILCR through the forwarding tunnel. At this time, the downlink data packet needs to be cached on the target ILCR.
  • D705 same as D603.
  • the downlink data packet buffered on the target ILCR in D703 also needs to be forwarded to the target AGW.
  • Subsequent data message paths D707 and D708 are the same as D605 and D606.
  • the switching timer set in step 712 can be set by the source AGW, or can be set by the source ILCR, and can also be set by the target AGW.
  • the source AGW needs to be in the timing time. The data channel and related information between the source AGW and the target AGW are released.
  • the uplink data packet is forwarded from the tunnel, such as D706 and D708.
  • the uplink data may be forwarded from the tunnel between the target AGW and the source AGW, that is, the data packet is forwarded from the target AGW to the source AGW to the source ILCR; or from the target ILCR to the source ILCR. Forwarding tunnel forwarding.
  • the AGW change does not necessarily lead to the change of ILCR. Therefore, the source AGW needs to identify the information according to the target ILCR, or the target AGW needs to determine whether the ILCR changes according to the source ILCR identification information.
  • the source ILCR is integrated with the target ILCR. At this time, there is no tunnel between the source ILCR and the target ILCR, and there is no need to establish or delete a tunnel between the two.
  • the Wimax network architecture of the system using the above identity identification and location separation technology is still shown in Figure 4a, including the access service network (W-ASN) and the connection service network (W-CSN), W-ASN and W-CSN.
  • the function modules are also the same.
  • the connection service network also includes an Identity Location Core Router (ILCR).
  • ILCR Identity Location Core Router
  • Each ILCR has a data interface with a generalized forwarding plane that supports routing and forwarding of data messages by RID, but the AGCR in the W-ASN and the ILCR in the W-CSN.
  • Identity card The function related to the separation of position and position is different from that of the first embodiment.
  • the Identity Location Core Router is configured to assign a new location identifier (RID) to the terminal when the terminal is handed in, and save mapping information of the terminal identity (AID) and the new RID, registering and deregistering the terminal with the ILR.
  • RID query the ILR for the RID of the communication peer, determine the connection information of the terminal and the communication peer according to the data message cut into the terminal, and send the gateway (in the system architecture, refers to the ILCR) to the communication terminal of the handover terminal RID update notification; after the terminal cuts out, releases the resources allocated for the terminal; and forwards the data of the cut-in and cut-out terminal "3 ⁇ 4 text";
  • the AGW includes:
  • the cut-out control module is configured to send an AGW handover request to the target AGW after the W-ASN anchored handover is completed, and release the resources allocated for the cut-out terminal after the handover is completed;
  • the AGW switching request sent by the cut-out control module in the AGW to the target AGW is an anchor data channel function (DPF) switching request;
  • the AGW switching response sent by the hand-in control module in the AGW to the source AGW is an anchor DPF switch. response.
  • DPF anchor data channel function
  • a packet forwarding module is configured to forward and process data packets that are cut in or out. Further,
  • the ILCR includes:
  • the cut-in control module is configured to: after receiving the notification of the terminal cut-in, send an allocation notification to the RID distribution module and carry the AID of the cut-in terminal, and then send an update notification to the RID update module to carry the AID of the terminal and the allocation module New RID;
  • a RID allocation module configured to allocate a new RID pointing to the ILCR to the terminal after receiving the allocation notification, and save mapping information of the terminal AID and the new RID;
  • a packet forwarding module configured to forward and process data packets that are cut in or out
  • the AGW or ILCR also includes:
  • the RID registration module is configured to initiate a RID registration process after receiving the registration notification of the AGW or ILCR's hand-in control module, send a registration request to the handover terminal home identity register (ILR), and carry the AID and the new RID of the hand-in terminal .
  • ILR handover terminal home identity register
  • the ILCR further includes a mapping information maintenance module configured to save and maintain all communication peer identity and location identification (AID-RID) mapping information of all hand-in terminals;
  • AID-RID all communication peer identity and location identification
  • the communication peer AID-RID mapping information is obtained as follows:
  • the message forwarding module of the ILCR is further configured to: determine the AID-RID mapping information of the communication peer according to the data message cut into the terminal, and notify the mapping information maintenance module to save and maintain.
  • the RID update module of the ILCR determines, when the RID update process is initiated, the gateway accessed by the communication peer according to the mapping information, the local configuration information or the DNS query of the communication peer AID-RID, and accesses the gateway to the communication peer
  • the gateway sends a RID update notification, carrying mapping information of the terminal AID and the new RID.
  • the AGW further includes a tunnel establishment module, and the tunnel establishment module is configured to establish a static tunnel with the ILCR after power-on; the target ILCR learns that the terminal switches and acquires the terminal according to the notification of the target AGW or by checking the data packet. AID.
  • the RID registration module is located in the ILCR, and the intercept control module of the ILCR receives the new RID of the cut-in terminal returned by the RID allocation module. Sending a RID registration request to the home terminal ILR;
  • the packet forwarding module in the ILCR forwards the received data packet sent to the cut-out terminal to the packet forwarding module in the AGW after receiving the data packet sent to the cut-out terminal, and then passes the target AGW.
  • the forwarding tunnel is forwarded to the target AGW; after receiving the data packet sent to the hand-in terminal, the data packet is sent to the hand-in terminal through the data channel with the hand-in terminal.
  • the target AGW establishes a downlink forwarding tunnel with the target ILCR, and the source ILCR stops decapsulating according to the notification, corresponding to the transformation of the fourth and seventh embodiments
  • the tunnel establishment module in the AGW After receiving the tunnel establishment notification for the handover terminal, the tunnel establishment module in the AGW establishes or selects the first tunnel and the second tunnel between the target ILCR and the target terminal.
  • the packet forwarding module in the ILCR After receiving the data packet sent to the cut-out terminal, the packet forwarding module in the ILCR performs RID encapsulation on the data packet and forwards the data packet to the source AGW; receives the forwarding tunnel from the first tunnel or the mapping or generalized forwarding.
  • the cut-in terminal sent by the plane does not solve the RID-encapsulated data packet and then solves the RID seal. Loading, forwarding to the target AGW through the second tunnel;
  • the packet forwarding module in the AGW forwards the data packet to the target AGW. After receiving the data packet sent by the source AGW to the cut-in terminal, the packet is forwarded to the target through the first tunnel. After receiving the data message sent by the target ILCR to the hand-in terminal, the device sends the data message to the hand-in terminal through the data channel between the user and the hand-in terminal;
  • the cut-out control module in the ILCR After receiving the handover notification sent by the target ILCR or the source AGW, the cut-out control module in the ILCR notifies the packet forwarding module in the ILCR to stop unpacking the data packet of the cut-out terminal.
  • the target AGW establishes a downlink forwarding tunnel with the target ILCR, which is decapsulated by the source ILCR, corresponding to the fourth and seventh transformations of the embodiment
  • the packet forwarding module in the ILCR After receiving the data packet sent to the cut-out terminal, the packet forwarding module in the ILCR performs RID encapsulation on the data packet and forwards the data packet to the source AGW; and receives the data of the cut-in terminal sent from the first tunnel. After the packet is forwarded to the target AGW through the second tunnel, the data packet of the hand-in terminal sent from the mapping forwarding plane or the generalized forwarding plane is received, and then the RID encapsulation is performed, and the second tunnel is forwarded to the target AGW.
  • the packet forwarding module in the AGW forwards the data packet to the target AGW. After receiving the data packet sent by the source AGW to the cut-in terminal, the packet is forwarded to the target through the first tunnel. After receiving the data message sent by the target ILCR to the hand-in terminal, the device sends the data message to the hand-in terminal through the data channel with the hand-in terminal.
  • the handover control module of the AGW After the handover control module of the AGW sends the handover response to the source AGW, the timer is set, the timing is up, the forwarding tunnel between the source AGW and the target ILCR is released, and then the source AGW is cut out. The module releases the tunnel between the source ILCR; or,
  • the cut-in control module of the AGW sends a handover response to the source AGW; after the switch-out control module of the AGW receives the handover response sent by the target AGW, sets a timer; the timing time arrives, releases the forwarding tunnel between the target AGW and the source ILCR. Tunnel; after that, the cut of the target AGW The control module releases the first tunnel between the target ILCR, or,
  • the handover control module of the AGW After the handover control module of the AGW sends a handover response to the source AGW, it sends a handover notification to the target ILCR. After receiving the handover notification sent by the source AGW, the intercept control module of the ILCR sets a timer, and the time is up, and the target AGW is released. After the first tunnel between, the source ILCR cut-out control module releases the tunnel with the source AGW, and then the source AGW's cut-out control module releases the tunnel with the target AGW, or
  • the cut-in control module of the AGW sends a handover response to the source AGW, and after receiving the handover response sent by the target AGW, the cut-off control module of the source AGW sends a handover notification to the source ILCR; the cut-out control module of the ILCR receives the source After the switch notification sent by the AGW, the timer is set, the time is up, and the tunnel between the source and the AGW is released. The cut-out control module of the source AGW releases the tunnel with the target AGW, and then the cut-in control module of the target AGW is released. The first tunnel between the target ILCRs.
  • the ILCR further includes a tunnel establishment module configured to establish a forwarding tunnel with the source ILCR for the handover terminal, or establish a forwarding tunnel with the target ILCR for the cut-out terminal, and release the forwarding tunnel after the handover is completed;
  • the packet forwarding module in the ILCR receives the data packet sent to the cut-out terminal before the forwarding tunnel between the source and the target ILCR is established, decapsulates and forwards the data packet to the source AGW, and receives the forwarding tunnel after the forwarding tunnel is established.
  • the data packet sent to the cut-out terminal is directly forwarded to the target ILCR through the forwarding tunnel;
  • the received data packet sent to the hand-in terminal is directly forwarded to the target before the forwarding tunnel between the source and the target ILCR is established.
  • AGW after the forwarding tunnel between the source and the target ILCR is established, the received data packet sent to the hand-in terminal is de-encoded, then forwarded or buffered, and then forwarded to the target AGW;
  • the packet forwarding module in the AGW forwards the data packet sent to the cut-out terminal to the
  • a timer is set. When the time is up, the forwarding tunnel with the source AGW is released, after which the cut-out control module of the source AGW releases the tunnel with the source ILCR; after that, the cut-out control module of the source ILCR releases the forwarding tunnel with the target ILCR. , or,
  • the AGW's hand-in control module sends a handover response to the source AGW; the AGW's cut-out control module receives the handover response sent by the target AGW, sets a timer; the timing time arrives, releases the forwarding tunnel with the target AGW, and the source ILCR Inter-tunnel; the source ILCR cut-out control module releases the forwarding tunnel with the target ILCR, or,
  • the cut-in control module of the AGW sends a handover response to the source AGW, and after receiving the handover response sent by the target AGW, the cut-off control module of the AGW sends a handover notification to the source ILCR; the cut-out control module of the ILCR receives the target AGW.
  • the timer is set, the timing is up, the forwarding tunnel with the target ILCR and the tunnel with the source AGW are released, and the cut-out control module of the source AGW releases the tunnel with the target AGW.
  • the hand-in control module in the AGW is further configured to send the identifier information of the target ILCR to the source AGW; the cut-out control module in the AGW is further configured to set the identifier information of the target ILCR different from the source ILCR sent by the target AGW. Sending to the source ILCR; the tunnel establishment module in the ILCR establishes a forwarding tunnel between the target terminal and the target ILCR according to the identification information of the target ILCR; or
  • the cut-out control module in the AGW is further configured to send the identifier information of the source ILCR to the target AGW; the hand-in control module in the AGW is further configured to set the identifier information of the source ILCR different from the target ILCR sent by the source AGW. Sending to the target ILCR; the tunnel establishment module in the ILCR establishes a forwarding tunnel with the source ILCR for the handover terminal according to the identification information of the source ILCR.
  • the packet forwarding module in the AGW forwards the data packet sent by the interception terminal to the source AGW if the data packet sent by the intercepted terminal data packet has not been established between the local AGW and the target ILCR, and is forwarded to the source AGW.
  • the data packet sent by the target AGW and sent to the terminal is forwarded to the mapping forwarding plane or the generalized forwarding plane after RID encapsulation.
  • the manner in which the hand-in control module in the AGW selects the target ILCR is one of the following modes:
  • the hand-in control module interacts with the AAA server that is connected to the terminal to obtain the ILCR information that the target AGW can connect to, and selects an ILCR as the target ILCR;
  • the hand-in control module selects an ILCR as the target ILCR from the ILCR that the hand-in terminal is allowed to access from the source AGW, and the ILCR that is allowed to access is sent to the source AGW by the AAA server to which the hand-in terminal belongs.
  • Manner 3 The hand-in control module selects a target ILCR according to the configuration information of the AGW. Further,
  • the RID registration module is located in the ILCR; after the handover control module in the ILCR sends an allocation notification to the RID allocation module and acquires a new RID allocated for the handover terminal, sends a registration notification to the RID registration module and carries the AID of the handover terminal. And a new RID; or
  • the RID registration module is located in the AGW; the hand-in control module in the ILCR sends an allocation notification to the RID allocation module and acquires a new RID allocated for the handover terminal, and then sends the new RID to the target AGW; After receiving the new RID sent by the target ILCR for the handover terminal, the handover control module sends a registration notification to the RID registration module and carries the AID and the new RID of the handover terminal.
  • FIG. 9, and FIG. 10 are flowcharts of switching of the WiMAX network system 2 using the identity identification and location separation technology of the present invention.
  • Figure 8 is applicable to the forwarding of data during the handover process using the forwarding tunnel between the access gateways.
  • the specific steps are as follows: Step 801, the same step 501;
  • the downlink data packet path the source ILCR receives the data packet sent by the communication peer to the terminal, strips the RID encapsulated in the data packet, restores the format of the data packet sent by the communication peer, and forwards the data to the source.
  • the AGW, the source AGW forwards the data packet to the target AGW through the data channel between the source AGW and the target AGW, and the target access gateway sends the packet to the terminal through the terminal data channel.
  • Step 803 After the source AGW receives the target access gateway anchor DPF handover trigger message, and agrees to perform the anchor DPF handover, the source AGW sends an anchor DPF handover request message to the target AGW.
  • Step 804 The target AGW selects the target ILCR, and initiates a forwarding tunnel establishment process to the target ILCR, where the tunnel is specifically for forwarding downlink data from the source ILCR.
  • Step 805 The target AGW initiates a tunnel establishment process to the target ILCR.
  • the target ILCR may need to interact with the home AAA server to complete the authentication.
  • the tunnel between the access gateway and the ILCR may be in various manners, such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, MIP, IPsec, etc., and the present invention is not limited to any A specific way of tunneling.
  • MIP Mobility Management Entity
  • the tunnel is created and maintained in the same way as the existing WiMAX network.
  • 805a is a step in 805.
  • the uplink and downlink data packet paths of the terminal are as shown in D803 and D804.
  • the downlink data packet path after receiving the data packet sent by the communication peer to the terminal, the source ILCR strips the RID encapsulated in the data packet, and restores the format of the data packet sent by the communication peer to the format.
  • the source AGW forwards the data packet to the target AGW through the data channel between the source AGW and the target AGW.
  • the target AGW then sends the data to the target ILCR through the downlink forwarding tunnel.
  • the target ILCR passes the data through the tunnel between the target AGW and the target ILCR. Forwarded to the target AGW, the target AGW sends the message to the terminal through the terminal data channel.
  • the uplink data packet path the terminal sends the uplink data message to the target base station, the target base station forwards the data packet to the target AGW, the target AGW forwards the packet to the target ILCR, and the target ILCR obtains the AID of the communication peer, and queries the local cache.
  • the AID-RID mapping information if the RID of the communication peer is found, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data packet is forwarded.
  • the mapping forwarding plane or the generalized forwarding plane To the mapping forwarding plane or the generalized forwarding plane; if the RID of the communication peer is not found, the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane, and the IRR is queried to the RID of the communication peer; or the data packet is buffered to the present. After the RID of the communication peer is obtained, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data packet is forwarded to the mapping forwarding plane. Or a generalized forwarding plane.
  • Step 806 After allocating a new RID, the target ILCR initiates a RID registration process to the terminal home ILR, and brings the newly allocated RID to the ILR, and updates the terminal AID-RID mapping information on the ILR.
  • Step 807 the home ILR receives the target AGW. After the RID registration request, verify the legality of the AID, and save the mapping information of the current AID-RID of the terminal;
  • This step can be performed in the ILCR to the home AAA authentication process in step 805. Thereafter, the terminal uplink and downlink data is as shown in D805 and D806.
  • the uplink data is the path of the text: the same as D804.
  • Step 809 The target AGW initiates a handover notification to the target ILCR, and notifies the target ILCR that the handover is completed.
  • Step 810 the target ILCR sets a switching timer
  • Step 811 The target ILCR uses the ILCR to update the communication peer to notify the communication peer to access the ILCR update terminal AID-RID mapping information;
  • Step 812 The target ILCR sends a handover confirmation message to the target AGW.
  • Step 813 after the timing time set in step 810 is reached, the target ILCR releases the downlink forwarding tunnel with the target AGW;
  • Step 814 The target AGW releases the data channel between the source AGW and the source AGW.
  • Step 815 the source AGW releases the tunnel with the source ILCR;
  • Step 816 The target AGW initiates a context reporting process to the target base station, and sends a new AGW to the target base station. This step is performed after step 808.
  • the source ILCR does not know whether the target ILCR exists and when the tunnel between the target and the target AGW is successfully established. Therefore, the source ILCR sends a data message to the terminal to the received communication peer. RID decapsulation is always performed, and the target ILCR will not be decapsulated at this time, such as D803.
  • the forwarding tunnel between the target AGW and the target ILCR may not be established and used, and the direct AGW and the source AGW directly use the tunnel to perform data forwarding, such as D801.
  • the ILCR strips the RID encapsulated in the data packet and restores the format of the data packet sent by the communication peer
  • the data is forwarded to the target AGW through the tunnel between the target AGW and the target ILCR, and the target AGW passes the packet again.
  • the terminal data channel is sent to the terminal.
  • the switching timer set in step 810 may be set by the source ILCR, or may be set by the source AGW, or may be set by the target AGW. In this case, in the subsequent tunnel release step, the timer is required to be set.
  • the network element first releases the data channel and related information between other network elements after the time is up. The same applies to the tenth embodiment.
  • a timer is set, or the source AGW receives a handover response sent by the target AGW, and then sets a timer, or after the target AGW sends a handover response to the source AGW,
  • the target ILCR sends a handover notification; the target ILCR sets a timer after receiving the handover notification of the target AGW, or,
  • the source AGW After receiving the handover response sent by the target AGW, the source AGW sends a handover notification to the source ILCR; the source ILCR sets a timer after receiving the handover notification of the target AGW.
  • step 811 does not need to be executed after step 810, and may be triggered to execute at any time after step 805a.
  • the uplink data packet is forwarded from the tunnel, such as D804 and D806.
  • the uplink data packet may also be forwarded from the tunnel between the target AGW and the source AGW, that is, the data packet is forwarded from the target AGW to the source AGW to the source ILCR.
  • the manner in which the target ILCR obtains the RID of the communication peer is substantially the same as the manner in which the access gateway obtains the communication peer RID in the system, and only needs to change the performer to the target ILCR, and in the third and fourth modes, the target ILCR is obtained from the source ILCR.
  • Other embodiments of System 2 can also use the same method to obtain the RID of the communication peer.
  • the ILCR access gateway updates the communication peer in the same way as in the system one, and only needs to replace the access gateway in the method with ILCR.
  • Figure 9 is applicable to the scenario in which the data is forwarded during the handover process using the forwarding tunnel between the ILCRs, and the target ILCR initiates the tunnel establishment between the ILCRs.
  • the specific steps are as follows:
  • Step 904 the same step 605;
  • Step 905 The target ILCR initiates a process of establishing a forwarding tunnel to the source ILCR according to the identifier information of the source ILCR obtained in step 904, if the target ILCR is different from the source ILCR.
  • the tunnel between the ILCRs may be in various manners, such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, MIP, IPsec, etc., and the present invention is not limited to any specific one. Tunnel mode.
  • the uplink and downlink data of the terminal is as shown in D903 and D904.
  • D903 the downlink data packet path: after receiving the data packet sent by the communication peer to the terminal, the source ILCR forwards the packet to the target ILCR through the forwarding tunnel, and the target ILCR strips the RID encapsulated in the data packet and restores the packet to the communication peer. After the format of the data packet is forwarded to the target AGW, the target AGW sends the packet to the terminal through the terminal data channel.
  • step 905 may be completed before the step 904, and the downlink data message needs to be in the target ILCR.
  • the cache is first cached, and is sent to the target AGW after the completion of step 904. At this time, the uplink data packet path is the same as D902.
  • Step 906 to step 912 the same steps 806 to 812;
  • D905 and D906 are the same as D805 and D806.
  • Step 913 after the timing time set in step 910 is reached, the target ILCR releases the forwarding tunnel with the source ILCR;
  • the switching timer set in step 910 may be set by the source ILCR, or may be set by the source AGW, or may be set by the target AGW. In this case, in the subsequent tunnel release step, the timer is required to be set.
  • the network element first releases the data channel and related information between other network elements after the time is up.
  • a timer is set, or the source AGW receives a handover response sent by the target AGW, and then sets a timer, or after the target AGW sends a handover response to the source AGW,
  • the target ILCR sends a handover notification; the target ILCR sets a timer after receiving the handover notification of the target AGW, or,
  • the source AGW After receiving the handover response sent by the target AGW, the source AGW sends a handover notification to the source ILCR; the source ILCR sets a timer after receiving the handover notification of the target AGW.
  • the following resources are allocated for the terminal by the network element that sets the timer: the forwarding tunnel between the source AGW and the target AGW, the tunnel between the source AGW and the source ILCR, and A tunnel between the target ILCR and the source ILCR.
  • step 911 does not need to be executed after step 910, and may be triggered to execute at any time after step 904a.
  • the uplink data packet is forwarded from the tunnel, such as D904 and D906.
  • the uplink data may also be forwarded from the tunnel between the target ILCR and the source ILCR.
  • Figure 10 applies to data forwarding in the handover process using a forwarding tunnel between ILCRs, and by source
  • the ILCR initiates a scenario for establishing an inter-ILCR forwarding tunnel. The specific steps are described as follows:
  • Step 1001 the same step 901 ;
  • Step 1002 to step 1005 the same steps 702 to 705; if the source AGW determines that the inter-ILCR needs to be switched according to the identification information of the target ILCR, sends an ILCR handover request to the original ILCR, and carries the target ILCR identification information; otherwise, step 1003 is not performed. 1005.
  • the uplink and downlink data packet paths of the terminal are as shown in D 1003 and D1004.
  • the source ILCR strips the RID encapsulated in the data packet, restores the format of the data packet sent by the communication peer, and forwards the packet to the target ILCR through the forwarding tunnel.
  • the data message needs to be cached first on the target ILCR.
  • Step 1006 The source AGW sends an anchor DPF handover request message to the target AGW.
  • Step 1007 The target AGW initiates a tunnel establishment process to the target ILCR.
  • Step 1007a the same as step 904a. Thereafter, the uplink and downlink data of the terminal is as shown in D 1005 and D1006.
  • D 1005 same as D903.
  • the downlink data packet buffered on the target ILCR in D 1003 needs to be forwarded to the target AGW at this time.
  • Step 1008 to step 1018 the same steps 906 to 916;
  • D1007 and D1008 are the same as D905 and D906.
  • step 1013 does not need to be executed after step 1012, and may be triggered to be executed at any time after step 1007a.
  • the uplink data packet is forwarded from the tunnel, such as D1006 and D1008.
  • the uplink data may also be forwarded from the tunnel between the target ILCR and the source ILCR.
  • the AGW change does not necessarily lead to the change of ILCR. Therefore, the source AGW needs to identify the information according to the target ILCR, or the target AGW needs to determine whether the ILCR changes according to the source ILCR identification information.
  • the source ILCR is integrated with the target ILCR. At this time, there is no tunnel between the source ILCR and the target ILCR, and there is no need to establish or delete a tunnel between the two.
  • the target ILCR is the same, the ILCR can also decide whether to allocate a new RID to the terminal according to the policy. When assigning a new RID to the terminal, the flowchart of this patent can be used.
  • the seventh embodiment is similar to the fourth embodiment shown in FIG. 8 and is also applicable to the scenario in which the data is forwarded during the handover process using the forwarding tunnel between the access gateways.
  • the difference from the flow of the fourth embodiment lies in the following points. :
  • step 805a the newly assigned RID of the target ILCR needs to be brought in the tunnel establishment process.
  • Target AGW the newly assigned RID of the target ILCR needs to be brought in the tunnel establishment process.
  • Step 806 ′ after receiving the newly allocated RID, the target AGW initiates a RID registration process to the terminal home ILR, and brings the newly allocated RID to the ILR to update the terminal AID-RID mapping information on the ILR.
  • Step 906 ′ after receiving the newly allocated RID, the target AGW initiates a RID registration process to the terminal home ILR, and brings the newly allocated RID to the ILR, and updates the terminal AID-RID mapping information on the ILR.
  • the ninth embodiment is similar to the fifth embodiment shown in FIG. 9 , and is also applicable to a scenario in which a forwarding tunnel between ILCRs is used for data forwarding in a handover process, and an inter-ILCR forwarding tunnel is established by a source ILCR.
  • the differences are in the following points:
  • step 1007a the newly assigned RID of the target ILCR needs to be brought to the target AGW in the tunnel establishment process.
  • the AGW change does not necessarily lead to the change of ILCR. Therefore, the source AGW needs to identify the information according to the target ILCR, or the target AGW needs to determine whether the ILCR changes according to the source ILCR identification information.
  • the source ILCR is integrated with the target ILCR. At this time, there is no tunnel between the source ILCR and the target ILCR, and there is no need to establish or delete a tunnel between the two.
  • the target ILCR is the same, the ILCR can also decide whether to allocate a new RID to the terminal according to the policy. When assigning a new RID to the terminal, the flowchart of this patent can be used.
  • FIG. 5 to FIG. 10 are all illustrated by the existence of a dynamic tunnel between the access gateway and the ILCR.
  • the foregoing embodiments may also be applied to a scenario in which a static tunnel is formed between the access gateway and the ILCR.
  • a dynamic tunnel between the target AGW and the target ILCR is not required, and a tunnel between the two is required. It has been created successfully when both are powered on, and the other steps are the same.
  • the tunnel between the two can be used to notify the target ILCR that there is a terminal handover and the AID of the terminal is sent to the target ILCR, or the target ILCR learns that there is a terminal handover and acquires the terminal by checking the data packet. AID.
  • FIG. 4b is a schematic diagram of the network architecture of another Wimax system employing the above-described identity location separation technique, in which the solid line indicates the connection of the bearer plane and the dashed line indicates the connection of the control plane.
  • the Wimax network architecture includes an Access Service Network 41 (W-ASN) and a Connected Service Network (W-CSN) 42.
  • the W-ASN has a data plane interface with the generalized forwarding plane, which is represented as a D1 interface.
  • the W-CSN and the generalized forwarding plane can also have a data plane interface, which is represented as a D2 interface.
  • the generalized forwarding plane may be a packet data network that supports RID routing and forwarding of data messages.
  • the W-CSN has an original network element in the Wimax architecture such as an AAA proxy or server (AAA Proxy/Server), an accounting server, and an interconnection gateway device, and an identity location register (ILR)/packet forwarding function (PTF) is also set.
  • the ILR/PTF in each W-CSN constitutes a mapping forwarding plane.
  • the HA and / or W-CR (Core Router) in the W-CSN can be reserved or transferred to the AGW.
  • the W-ASN includes a base station and an AGW, and the AGW expands the new functions required to implement the SILSN based on the functional entities (including the DPF functional entities) of the AGW in the Wimax architecture.
  • the ILCR does not exist in the WiMAX network
  • the AGW functions as an external data channel endpoint, which is configured to allocate a RID for the terminal, register and deregister the RID of the terminal with the ILR, query the ILR for the RID of the communication peer, and maintain the terminal and its communication.
  • the AGW is configured to allocate a new location identifier (RID) to the terminal when the terminal is handed in, and save mapping information of the terminal identity (AID) and the new RID, according to the data packet of the terminal. Determining the connection information between the terminal and the communication peer, and initiating an RID update procedure for updating the RID of the terminal to the gateway accessed by the terminal communication peer; releasing the resource allocated to the terminal after the terminal is cut out; and cutting and cutting The data packet of the outbound terminal is forwarded.
  • RID new location identifier
  • AID mapping information of the terminal identity
  • control module is set, which is configured to send an AGW handover request to the target AGW after the W-ASN anchored handover is completed;
  • the cut-in control module is configured to: after receiving the AGW switching request, send an allocation notification to the location identifier (RID) allocation module, carry the hand-in terminal AID, and then send a registration notification to the RID registration module, and send an update notification to the RID update module, And returning an AGW handover response to the source AGW;
  • RID location identifier
  • a RID allocation module configured to allocate a new RID pointing to the AGW to the terminal after receiving the allocation notification, and save mapping information of the terminal AID and the new RID;
  • the RID registration module is configured to initiate a RID registration process after receiving the registration notification, and update the RID of the terminal saved by the terminal home identity register (ILR);
  • the packet forwarding module is configured to perform RID encapsulation, RID encapsulation, and forwarding on the data packet that is cut into the terminal, and forward the data packet to the target terminal after receiving the data packet to be sent to the cut-out terminal, and further set to cut according to the cut-in
  • the data packet of the terminal determines connection information between the terminal and the communication peer;
  • the RID update module is configured to send an RID update notification to the gateway accessed by the terminal communication peer according to the connection information of the terminal and the communication peer after receiving the update notification, and carry the AID of the terminal and the new RID.
  • a timer is set, and the time is up to release the forwarding tunnel with the source AGW;
  • the cut-in control module of the AGW sends a handover response to the source AGW. After receiving the handover response sent by the target AGW, the AGW's cut-out control module sets a timer; when the time is up, the forwarding tunnel with the target AGW is released.
  • the AGW further includes a mapping information maintenance module configured to save and maintain all communication peer identity and location identification (AID-RID) mapping information of all hand-in terminals;
  • AID-RID all communication peer identity and location identification
  • the cutting control module of the AGW is further configured to: the receiving source AGW actively sends, or, from The AID-RID mapping information of all the communication peers of the cut-in terminal obtained by the communication peer to the ILR or the source AGW is notified, and the mapping information maintenance module is notified to save and maintain; the cut-out control module in the AGW is also set to be maintained.
  • the AID-RID mapping information of all communication peers of the cut-out terminal is sent to the target AGW actively or according to the query of the target AGW.
  • the RID update module of the AGW determines, when the RID update process is initiated, the gateway accessed by the communication peer according to the mapping information, the local configuration information or the DNS query of the communication peer AID-RID, and terminates the gateway to the communication pair.
  • the incoming gateway sends an RID update notification, carrying the mapping information of the terminal AID and the new RID.
  • the packet forwarding module in the AGW After receiving the downlink data packet sent to the cut-out terminal, the packet forwarding module in the AGW forwards the downlink data packet to the target AGW through the forwarding tunnel with the target AGW, and receives the downlink data packet sent to the cut-in terminal. , is sent to the terminal through a data channel with the terminal.
  • the cut-out control module When the cut-out control module sends a handover request to the target AGW, the first control is sent to the packet forwarding module in the local AGW;
  • the handover control module When the handover control module receives the handover request from the source AGW, the handover control module sends a second notification to the packet forwarding module in the local AGW.
  • the AGW has a data interface to the generalized forwarding plane; the packet forwarding module in the AGW forwards the received uplink data packet of the terminal to the mapping forwarding plane or the generalized forwarding plane after receiving the RID encapsulation; Before the second notification, the received uplink sent by the cut-in terminal will be received. The data packet is directly forwarded to the source AGW. After receiving the second notification, the data packet is RID encapsulated and then forwarded to the mapping forwarding plane or the generalized forwarding plane.
  • the AGW handover request sent by the cut-out control module to the target AGW is an anchor data channel function (DPF) handover request; and the AGW handover response sent by the handover control module to the source AGW is an anchor DPF handover response.
  • DPF anchor data channel function
  • the tenth embodiment shown in FIG. 11 is based on the implementation of the foregoing system three, and is applicable to the scenario in which the forwarding of data in the handover process uses the forwarding tunnel between the access gateways, and the specific steps are as follows:
  • Step 1101 the same step 501 ;
  • the uplink and downlink data packet paths of the terminal are as shown in D1101 and D1102.
  • the downlink data packet path after receiving the data packet sent by the communication peer to the terminal, the source AGW strips the RID encapsulated in the data packet and restores the format of the data packet sent by the communication peer.
  • the data channel between the AGW and the target AGW forwards the data packet to the target AGW, and the target access gateway sends the packet to the terminal through the terminal data channel.
  • the uplink data packet path the terminal sends the uplink data message to the target base station, and the target base station forwards the data packet to the target AGW, and the target AGW forwards the data packet to the source AGW through the data channel between the source AGW and the target AGW.
  • the source AGW obtains the AID of the communication peer, and queries the AID-RID mapping information in the local cache. If the RID of the communication peer is found, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, and is encapsulated in the In the data packet, the encapsulated data packet is forwarded to the target generalized forwarding plane.
  • the data packet is tunnel encapsulated and then forwarded to the mapping forwarding plane, and the ILR is queried to the communication peer. RID. Or the data packet is cached locally. After the RID of the communication peer is obtained, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data is encapsulated. The message is forwarded to the mapping forwarding plane or the generalized forwarding plane.
  • the uplink and downlink data packet paths of the terminal are as shown in D1103 and D1104.
  • the source AGW receives the data packet sent by the communication peer to the terminal. After the data packet is forwarded to the target AGW through the data channel between the source AGW and the target AGW, the target AGW strips the RID encapsulated in the data packet and restores the format of the data packet sent by the communication peer.
  • the access gateway sends the message to the terminal through the terminal data channel.
  • the uplink data packet path the terminal sends the uplink data message to the target base station, the target base station forwards the data packet to the target AGW, the target AGW obtains the AID of the communication peer, and queries the AID-RID mapping information in the local cache, for example, To the RID of the communication peer, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data packet is forwarded to the mapping forwarding plane or the generalized forwarding plane. If the RID of the communication peer is not found, the data packet is encapsulated and forwarded to the mapping forwarding plane, and the RID of the communication peer is queried to the ILR.
  • the data packet is cached locally.
  • the RID of the communication peer is obtained, the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, encapsulated in the data packet, and then the encapsulated data is encapsulated.
  • the message is forwarded to the mapping forwarding plane or the generalized forwarding plane.
  • Step 1105 to step 1110 the same steps 506 to 511;
  • D1105 downlink data packet path: After receiving the data packet sent by the communication peer to the terminal, the target AGW strips the RID encapsulated in the data packet and restores the format of the data packet sent by the communication peer. The ingress gateway sends the message to the terminal through the terminal data channel.
  • the uplink data is the path of the text. Same as D1104.
  • step 1109 there may be a data message forwarded by the source AGW, which is caused by not updating the terminal AID-RID mapping information of the gateway accessed by the communication peer.
  • the downlink data packet path at this time is the same as D1103.
  • Step 1111 the same step 513;
  • the switching timer set in step 1108 can be set by the source AGW.
  • the data channel and related information between the source AGW and the target AGW are required to be released by the source AGW after the timing time. .
  • step 1109 does not need to be executed after step 1108, and may be triggered to execute at any time after step 1105.
  • the uplink data packet is directly forwarded from the target AGW, such as D1104 and D1106.
  • the uplink data packet can also be obtained from the destination.
  • the tunnel forwarding between the label AGW and the source AGW, that is, the data packet is forwarded from the target AGW to the source AGW.
  • the manner in which the target AGW obtains the RID of the communication peer is the same as the manner in which the communication peer RID is obtained in the system.
  • the method for the access gateway to update the communication peer is the same as the method for updating the communication peer in the system.
  • the terminal RID registration is performed by the access gateway or the ILCR on the target side, and optionally, the access gateway or the ILCR on the source side can interact with the target side network element. After obtaining the RID assigned by the target side network element to the terminal, the terminal RID registration is performed to the ILR.
  • the invention realizes the mobile '1 ⁇ Life switching management under the network-based identity identification and location separation framework, and proposes a simplified handover management process in combination with the characteristics of the mobile communication network, and proposes an optimized user data management method in the handover management process,
  • the communication peer table needs to be reserved in the access gateway, the ILCR, or the identity location register ILR.
  • the signaling interaction and device processing load of the communication peer table need not be established, saved, and maintained, and the processing load of the network data packet forwarding is reduced. .
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the invention provides a global microwave interconnection access Wimax system and a handover method thereof for implementing anchor point switching, and applies a mobile communication network with identity identification and location separation to a WiMAX network, and when the terminal performs mobile switching, the target AGW or the target ILCR is cut-in.
  • the terminal After the terminal allocates a new RID, the terminal determines the connection information between the handover terminal and the communication peer according to the data packet that is cut into the terminal, and notifies the gateway accessed by the communication peer to update the terminal AID-RID mapping information, thereby implementing the switch without the fixed anchor point. It reduces the path detour of the data packet, reduces the transmission delay and bandwidth waste, and can also achieve the purpose of solving the dual identity of the IP address.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种实现锚点切换的全球微波互联接入(Wimax)系统及其切换方法,该切换方法包括:终端完成Wimax接入业务网络锚定的切换后,源接入网关(AGW)向目标AGW发送切换请求;该目标AGW收到切换请求后,为该终端分配指向该目标AGW的新的位置标识(RID),目标AGW根据该终端的数据报文确定该终端和通信对端的连接信息,并向该终端的通信对端的接入网关发起更新该终端RID的RID更新流程;以及该目标AGW向该源AGW发送切换响应,完成切换,该源AGW释放为该终端分配的资源,该终端和通信对端间的数据报文经该目标AGW转发。本发明的技术方案可实现无固定锚点地切换。

Description

实现锚点切换的 Wimax系统及其切换方法
技术领域
本发明涉及通信技术领域的切换, 尤其涉及一种实现锚点切换的全球微 波互联接入 ( Wimax ) 系统及其切换方法。
背景技术
在传统的传输控制协议 /网络协议 ( Transmission Control Protocol/Internet Protocol, TCP/IP ) 网络环境中, IP为因特网 (Internet)提供了路由功能, 它给 所有节点(包括主机和路由器)都分配了逻辑地址, 即 IP地址, 且每台主机 的各个端口都分配一个 IP地址。 IP地址包括网络前缀和主机部分, 同一条链 路上的所有主机的 IP地址通常有相同的网络前缀和不同的主机部分。 这使得 IP可以依据目的节点的 IP地址的网络前缀部分来进行路由选择,从而使路由 器只需保存一条简单的网络前缀路由, 而不必为每台主机保存一条单独的路 由。 在这种情况下, 由于釆用了网络前缀路由, 因此当节点从一条链路切换 到另一条链路而没有改变其 IP地址时, 该节点则不可能在新链路上接收到数 据报文, 从而也就无法与其他节点进行通信。
现有应用 TCP/IP协议的网络技术存在如下不足:
釆用固定锚点的方式支持终端的移动性, 如, 长期演进(Long Term Evlution , LTE )网络中釆用 GPRS隧道协议( GPRS Tunnelling Protocol , GTP ) ,
GW)作为终端的移动锚点; Wimax网络中釆用 Mobile IP协议, 把家乡代理 ( Home Agent, HA )作为锚点。 固定锚点的引入带来了数据包路径迂回的问 题, 加重了传输延时和带宽浪费。 而 MIPV6的路由优化过程需要参与通信的 主机支持 MIPV6协议, 部署困难。
IP地址具有双重功能: 既作为网络层的通信终端主机网络接口在网络拓 朴中的位置标识, 又作为传输层主机网络接口的接入标识。 当主机的 IP地址 发生变化时, 不仅路由要发生变化, 通信终端主机的接入标识也会发生变化, 这样会导致路由负载越来越重, 而且主机标识的变化会导致应用和连接的中 断。
身份标识和位置分离问题提出的目的是为了解决 IP地址的语义过载和路 由负载严重等问题, 将 IP地址的双重功能进行分离, 实现对移动性、 多家乡 性、 IP地址动态重分配、 减轻路由负载及下一代互联网中不同网络区域之间 的互访等问题的支持。现有的身份标识和位置分离框架主机标识协议(HIP )、 名址分离网络协议(LISP )等是为了克服现有网络技术的这一不足而构建的 一种网络框架。 基于主机的 HIP协议等需要对终端及上层业务做较大改动, 部署困难; 通信两端同时移动、 位置更新阶段需要网络参与维护通信链路, 否则将发生报文丟失问题。基于网络的 LISP协议, 对于移动性和多穴性是身 份位置分离后附带解决的问题, 现在还没有具体的方案和实现方法。
图 1是现有 Wimax系统的网络架构, 如图所示, 现有技术的 Wimax系 统一般由三部分组成: 终端、 Wimax接入业务网络(Wimax Access Service Network, 简称 W-ASN ) 11和 Wimax连接业务网络 ( Wimax Connect Service Network, 简称 W-CSN ) 12。
W-ASN主要执行如下的功能: 完成 WiMAX终端的二层(L2 )连接、 传 递认证授权计费 ( Authentication、 Authorization and Accounting , AAA )消息 到 H-CSN (归属 CSN ) 、 网络服务运营商 (Network Service Provider, NSP ) 的网络选择与发现、 为 WiMAX终端的三层(L3 )连接提供中继、 无线资源 管理、 W-ASN与 W-CSN之间隧道维护。 在移动的场景下, W-ASN还需要 支持如下的功能: W-CSN锚定的移动性管理( W-CSN Anchored MM ) 、 寻 呼和空闲模式( Idle Mode )操作;
W-ASN还用于管理美国电气和电子工程师协会( IEEE )802.16空中接口, 为 WiMAX终端用户提供无线接入。 W-ASN至少由一个基站( Base Station, BS )和一个接入网关( W-ASN Gateway, AGW )组成, 可以包含单个 AGW 或多个 AGW。 W-ASN在 R1参考点与移动台 ( Mobile Station, MS ) (文中 统称为终端)互通, 在 R3参考点与 W-CSN互通, 在 R4参考点与另一个 W-ASN 互通。 其中, 管理 W-ASN 的运营商称为 NAP ( Network Access Provider, 网络接入运营商) 。 W-CSN是一套网络功能的组合, W-CSN可以由 HA、 AAA代理或服务 器 ( AAA Proxy/Server ) 、 计费服务器、 互连网关设备等组成。 其中, 管理 W-CSN的运营商称为 NSP。
W-CSN主要提供如下的功能: 终端用户会话连接、 终端的 IP地址分配、 Internet接入、 AAA代理或服务器、 终端用户的策略及许可控制、 W-ASN与 W-CSN之间的隧道维护、 终端用户计费和结算、 W-CSN间的漫游、 W-CSN 间的移动性管理和 WiMAX业务。
其中:
R1接口是终端与接入网关之间的接口 (又称为参考点) 。
R2接口是终端与 W-CSN之间的逻辑接口。
R3接口是接入网关与 W-CSN之间的接口,在漫游时, R3接口是接入网 关与拜访 W-CSN之间的接口。
R4接口是接入网关之间的接口。
R5接口是漫游时拜访 W-CSN与归属 W-CSN之间的接口。
R6接口 ^^站与接入网关之间的接口。
R8接口是基站之间的接口。
现有 WiMAX系统中存在两种类型的切换: W-ASN锚定的切换和 W-CSN 锚定的切换; 其中,
W-ASN锚定的切换以包含锚定数据通道功能(DPF )的锚定接入网关为 锚点, 切换时终端从源基站切换到目标基站, 源锚定接入网关不变; 当目标 基站不是源锚定接入网关直接服务的对象时, 为目标基站服务的目标接入网 关和源锚定接入网关之间建立数据通道,通过该通道来转发终端的数据报文;
W-CSN锚定的切换以家乡代理为锚点, 当终端完成 W-ASN锚定的切换 后, 若锚定接入网关需要发生改变, 源锚定接入网关或目标接入网关发起 W-CSN锚定的切换, 切换完成后, 终端从源锚定接入网关接入变为从目标接 入网关接入, 源锚定接入网关与目标接入网关之间的数据通道会被删除, 而 锚点家乡代理并不发生变化; 此时, 目标接入网关的身份也转变为目标锚定 接入网关。 综上所述, 现有 WiMAX系统中的切换, 均需要固定锚点的支持来完成, 固定锚点的引入带来了数据包路径迂回的问题,加重了传输延时和带宽浪费。 将身份标识和位置分离技术应用到 WiMAX网络, 理论上可以支持 WiMAX 传统终端进行无固定锚点的移动性, 解决数据包路径迂回的问题, 而且还可 以达到解决 IP地址双重身份的目的,但是如何基于 WiMAX系统来实现无固 定锚点切换, 目前还没有相关的解决方案。
发明内容
本发明要解决的技术问题是提供一种 Wimax 系统的锚点切换方法和系 统, 以实现无固定锚点切换。
为解决以上技术问题, 本发明提供了一种 Wimax系统的锚点切换方法, 包括:
终端完成 Wimax接入业务网络锚定的切换后, 源接入网关 (AGW)向目标 AGW发送切换请求;
该目标 AGW收到切换请求后, 为该终端分配指向该目标 AGW的新的 位置标识RID), 目标 AGW根据该终端的数据报文确定该终端和通信对端的 连接信息,并向该终端的通信对端接入的网关发起更新该终端 RID的 RID更 新流程; 以及
该目标 AGW向该源 AGW发送切换响应, 完成切换,该源 AGW释放为 该终端分配的资源, 该终端和通信对端间的数据 文经该目标 AGW转发。
优选地 ,
所述 Wimax系统的连接业务网络包括身份位置核心路由器 (ILCR), 各个 ILCR具有与广义转发平面之间的数据接口, 所述广义转发平面支持以 RID 为源地址和目的地址的数据报文的路由和转发;
其中,该目标 AGW收到切换请求后,所述方法还包括: 选择目标 ILCR, 在与该目标 ILCR 间还未建立该终端数据报文转发的隧道时建立该隧道; 其 中, 切换完成后, 所述方法还包括: 源 ILCR释放为该终端分配的资源, 该 终端和通信对端之间的数据报文经该目标 AGW和该目标 ILCR转发。 优选地 ,
各 Wimax接入业务网络中的 AGW与广义转发平面之间具有数据接口, 该广义转发平面支持以 RID为源地址和目的地址的数据报文的路由和转发。
优选地 ,
在所述 Wimax系统中, AGW维护接入的终端的所有通信对端的身份标 识和位置标识 (AID-RID)的映射信息, 其中, 切换过程中, 在 AGW维护接入 的终端的所有通信对端的 AID-RID映射信息的步骤中, 目标 AGW通过以下 方式获取通信对端的 AID-RID映射信息:
目标 AGW根据数据报文中通信对端的 AID 在本地查询通信对端的 AID-RID映射信息; 或,
目标 AGW从源 AGW转发的数据报文中, 获取通信对端的 AID-RID映 射信息; 或,
从通信对端的归属身份位置寄存器(ILR )或源 AGW查询到通信对端的 AID-RID映射信息; 或,
源 AGW将该终端的所有通信对端的 AID-RID映射信息主动发送给所述 目标 AGW。
优选地 ,
该目标 AGW发起 RID更新流程时, 所述方法还包括: 根据通信对端的 AID-RID映射信息、 本地配置信息或域名服务器(DNS )查询确定所述通信 对端接入的网关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终 端 AID和新的 RID的映射信息; 以及
所述通信对端接入的网关收到 RID 更新通知后, 将保存的该终端的 AID-RID映射信息更新为该 RID更新通知中携带的所述映射信息。
优选地 ,
该目标 AGW和目标 ILCR之间的隧道是该目标 AGW选择目标 ILCR后 , 通过隧道建立流程建立的该终端的动态隧道; 或者
该目标 AGW和目标 ILCR之间的隧道为两者上电后建立的静态隧道。 优选地 ,
在该切换过程中, 源 ILCR收到通信对端发送给该终端的数据报文后转 发给该源 AGW, 该源 AGW通过与该目标 AGW之间的转发隧道将该数据报 文转发到该目标 AGW,该目标 AGW再通过与该终端的数据通道将该数据报 文发送给该终端。
优选地 ,
在该切换过程中:
在该源 ILCR与目标 ILCR不同时,在所述两个 ILCR之间建立转发隧道, 该转发隧道在切换完成后释放;
在该两个 ILCR之间的转发隧道建立之前,源 ILCR收到通信对端发给该 终端的数据报文后转发给该源 AGW , 该源 AGW转发到该目标 AGW , 该目 标 AGW再通过与该终端间的数据通道将该数据报文发送给该终端; 以及 在该两个 ILCR之间的转发隧道建立之后,源 ILCR收到通信对端发给该 终端的数据报文后直接通过该转发隧道转发到该目标 ILCR, 该目标 ILCR转 发或緩存后再转发到该目标 AGW,该目标 AGW再通过与该终端间的数据通 道将该数据报文发送给该终端。
优选地 ,
所述两个 ILCR之间建立转发隧道的方式为:
在该切换过程中:
该源 AGW将源 ILCR的标识信息发送到该目标 AGW , 该目标 AGW在 选择的目标 ILCR与该源 ILCR不同时, 将该源 ILCR的标识信息再发送到该 目标 ILCR, 该目标 ILCR建立到该源 ILCR的转发隧道; 或者
该目标 AGW选择目标 ILCR后, 将该目标 ILCR的标识信息发给该源 AGW, 该源 AGW在该目标 ILCR与源 ILCR不同时, 将该目标 ILCR的标识 信息再发送到该源 ILCR, 该源 ILCR建立到该目标 ILCR的转发隧道。
优选地 ,
该目标 AGW向源 AGW发送切换响应后, 设置定时器, 定时时间到, 释放与源 AGW之间的转发隧道,之后,源 AGW释放与源 ILCR之间的隧道; 或,
源 AGW接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道。
优选地 ,
该目标 AGW向该源 AGW发送所述切换响应后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器, 或, 该目标 AGW向源 AGW发送切换响应后, 向目标 ILCR发送切换通知; 该目标 ILCR收到目标 AGW的切换通知后设置定时器, 或,
该源 AGW收到该目标 AGW发送的切换响应后设置定时器后,向源 ILCR 发送切换通知; 该源 ILCR收到源 AGW的切换通知后设置定时器; 以及
定时时间到, 由设置定时器的网元开始释放以下为该终端分配的资源: 源 AGW与目标 AGW之间的转发隧道、 源 AGW与源 ILCR之间的隧道以及 目标 ILCR与源 ILCR之间的隧道。
优选地,
该目标 AGW向源 AGW发送切换响应后, 设置定时器, 定时时间到, 释放与源 AGW之间的转发隧道; 或,
源 AGW接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道。
优选地,
在该切换过程中, 该目标 ILCR收到通信对端通过映射转发平面或广义 转发平面发送给该终端的下行数据报文后,通过该目标 ILCR与目标 AGW之 间的该隧道将该数据报文转发给该目标 AGW,该目标 AGW对该数据报文解 RID封装后, 再通过与该终端的数据通道将该数据报文发送给该终端。
优选地,
在该切换过程中:
源 AGW收到通信对端发送给该终端的数据报文后,通过与该目标 AGW 之间的转发隧道将该数据报文转发到该目标 AGW,该目标 AGW再通过与该 终端之间的数据通道将该数据报文发送给该终端;
该目标 AGW收到通信对端通过映射转发平面或广义转发平面发送给该 终端的下行数据报文后, 通过与该终端的数据通道将该数据报文发送给该终 端。
优选地 ,
在该切换过程中, 在该源 AGW向该目标 AGW发送切换请求之前, 由 该源 AGW对收到的该终端的下行数据报文进行解 RID封装; 在该源 AGW 向该目标 AGW发送 AGW切换请求之后,由该目标 AGW对该源 AGW转发 来的该终端的下行数据报文进行解 RID封装。
优选地 ,
在完成 Wimax接入业务网络锚定的切换后,该终端发送到接入不同 ILCR 的通信对端的数据报文路径如下:
在该目标 AGW与目标 ILCR建立动态隧道之前或该目标 AGW选择了与 该目标 AGW建立有静态隧道的目标 ILCR之前,该目标 AGW将收到的该终 端发送的该数据报文转发给该源 AGW, 该源 AGW对该数据报文进行 RID 封装和转发, 通过该源 ILCR和 /或映射转发平面转发到映射转发平面或广义 转发平面, 再经映射转发平面或广义转发平面送达该通信对端接入的网关; 在该目标 AGW与目标 ILCR建立动态隧道之后或该目标 AGW选择了与 该目标 AGW建立有静态隧道的目标 ILCR之后,该目标 AGW对该终端发送 的数据报文进行 RID封装和转发,该数据报文通过该目标 ILCR,或该源 AGW 和源 ILCR, 或该目标 ILCR和映射转发平面, 或映射转发平面转发到广义转 发平面, 再经广义转发平面送达该通信对端接入的网关。
优选地 ,
在完成 Wimax接入业务网络锚定的切换后,该终端发送到接入不同 AGW 的通信对端的数据报文路径如下:
该源 AGW发送切换请求之前, 将收到的该终端发送的该数据报文转发 给该源 AGW,该源 AGW对该数据报文进行 RID封装、查询并转发到映射转 发平面或广义转发平面, 再送达该通信对端接入的网关;
该目标 AGW收到切换请求之后, 对该终端发送的数据报文进行 RID封 装和查询后, 直接转发到映射转发平面或广义转发平面; 或者先转发到该源 AGW, 再经映射转发平面或广义转发平面送达该通信对端接入的网关。
优选地 ,
该目标 AGW选择目标 ILCR的方式为以下方式中的一种:
该目标 AGW直接或通过拜访认证授权计费 (AAA )服务器与该终端归 属 AAA服务器交互, 获取该目标 AGW可以连接的 ILCR的信息, 并从中选 择一个 ILCR作为目标 ILCR;
该终端初始入网时, 终端归属 AAA服务器将该终端允许接入的 ILCR直 接或通过拜访 AAA服务器通知给该源 AGW, 源 AGW在该切换过程中将该 终端允许接入的 ILCR通知给该目标 AGW, 目标 AGW从中选择一个 ILCR 作为目标 ILCR;
目标 AGW根据自身的配置信息选择目标 ILCR。
优选地,
ILR与 AAA服务器合设, 表示为 AAA/ILR , 该 AAA/ILR保存有归属终 端的 AID-RID映射信息; 该目标 AGW在为该终端分配新的 RID后 , 通过向 目标 ILCR发起隧道建立流程实现 RID的更新, 其中, 在通过向目标 ILCR 发起隧道建立流程实现 RID的更新的处理中, 该目标 AGW在隧道建立流程 中将该终端的 AID和新的 RID带到该目标 ILCR,该目标 ILCR再利用到该终 端归属 AAA/ILR的认证流程中将该终端的 AID和新的 RID带到该终端归属 AAA/ILR , 该终端归属 AAA/ILR将保存的该终端的 AID-RID映射信息中的 RID更新为收到的该新的 RID。
为解决以上技术问题, 本发明还提供一种可实现无固定锚点切换的 Wimax系统, 包括接入业务网络和连接业务网络, 接入业务网络中包括基站 和接入网关 (AGW), 其中:
所述 AGW设置为, 在终端切入时, 为该终端分配新的位置标识 (RID)并 保存该终端身份标识 (AID)与该新的 RID的映射信息,根据该终端的数据报文 确定该终端和通信对端的连接信息, 并向该终端的所有通信对端接入的网关 发起更新该终端 RID的 RID更新流程; 在终端切出后, 释放对该终端分配的 资源; 以及对切入、 切出的终端的数据报文进行转发处理。
优选地, 所述 AGW包括:
切出控制模块, 其设置为在 Wimax接入业务网络(W-ASN )锚定的切换 完成后, 向目标 AGW发送切换请求;
切入控制模块, 其设置为在收到切换请求后, 向位置标识 (RID)分配模块 发送分配通知,携带切入的终端 AID,之后, 向 RID注册模块发送注册通知, 向 RID更新模块发送更新通知, 并向源 AGW返回切换响应;
RID 分配模块, 其设置为在收到分配通知后为该终端分配指向本 AGW 的新的 RID, 保存该终端 AID与该新的 RID的映射信息;
RID注册模块, 其设置为在收到注册通知后发起 RID注册流程, 更新该 终端的归属身份位置寄存器 (ILR)保存的该终端的 RID;
报文转发模块,其设置为对切入的终端的数据报文进行 RID封装、解 RID 封装和转发, 及在收到要发送到切出的终端的数据报文后向目标侧转发, 根 据切入的终端的数据报文确定该终端与通信对端的连接信息; 以及
RID更新模块, 其设置为在收到更新通知后根据终端与通信对端的连接 信息向该终端所有通信对端接入的网关发送 RID 更新通知, 携带该终端的 AID及新的 RID。
优选地,
所述连接业务网络中包括身份位置核心路由器 (ILCR),各 ILCR与广义转 发平面之间具有数据接口; 所述广义转发平面支持以 RID为源地址和目的地 址的数据报文的路由和转发; 所述 ILCR 包括报文转发模块, 其设置为路由 和转发以 RID为源地址和目的地址的数据 ^艮文;
所述 AGW还包括隧道建立模块; 所述 AGW的切入控制模块还设置为, 在收到 AGW切换请求后选择目标 ILCR, 向该隧道建立模块发送隧道建立通 知; 所述隧道建立模块设置为, 在收到隧道建立通知后, 为切入的终端建立 与该目标 ILCR间的动态隧道; 或者 所述 AGW还包括隧道建立模块, 所述隧道建立模块设置为在上电后建 立与 ILCR间的静态隧道。
优选地 ,
各 AGW与广义转发平面之间具有数据接口,该广义转发平面支持以 RID 为源地址和目的地址的数据报文的路由和转发。
优选地 ,
所述 AGW还包括映射信息维护模块, 其设置为保存及维护所有切入的 终端的所有通信对端的身份标识和位置标识 (AID-RID)映射信息;
该 AGW的切入控制模块还设置为, 接收源 AGW主动发送的, 或, 从 通信对端归属 ILR或源 AGW查询得到的该切入的终端的所有通信对端的 AID-RID映射信息,并通知映射信息维护模块进行保存及维护; 所述 AGW中 的切出控制模块还设置为, 将维护的切出的终端的所有通信对端的 AID-RID 映射信息主动或根据目标 AGW的查询发送到目标 AGW;
和 /或, AGW 的报文转发模块, 其设置为根据切入的终端的数据报文确 定通信对端的 AID-RID映射信息, 并通知所述映射信息维护模块进行保存及 维护。
优选地 ,
所述 AGW的 RID更新模块, 其设置为在发起 RID更新流程时, 根据通 信对端的 AID-RID映射信息、 本地配置信息或域名服务器(DNS )查询确定 所述通信对端接入的网关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
优选地 ,
所述 AGW中的报文转发模块还设置为, 收到发给切出终端的下行数据 报文后, 通过与目标 AGW之间的转发隧道转发到该目标 AGW, 收到发给切 入终端的下行数据报文时, 通过与该终端的数据通道发送给该终端。
优选地 ,
所述 ILCR还包括隧道建立模块, 其设置为为切入的终端建立与源 ILCR 间的转发隧道, 或为切出的终端建立与目标 ILCR 间的转发隧道, 并在切换 完成后释放该转发隧道;
所述 ILCR 中的报文转发模块是设置为, 在切换过程中, 对收到的发给 切出的终端的数据报文先转发给源 AGW, 在源、 目标 ILCR间的转发隧道建 立后则直接通过该转发隧道转发到该目标 ILCR;对收到的发给切入的终端的 数据报文, 通过与目标 AGW间的隧道转发给该目标 AGW。
优选地 ,
所述 AGW中的切出控制模块还设置为,将源 ILCR的标识信息发送到目 标 AGW; 所述 AGW中的切入控制模块还设置为, 在选择的目标 ILCR与该 源 ILCR不同时, 将源 ILCR的标识信息发送到目标 ILCR; 所述 ILCR中的 隧道建立模块设置为,根据收到的源 ILCR的标识信息建立到该源 ILCR的转 发隧道; 或者
所述 AGW中的切入控制模块还设置为,将目标 ILCR的标识信息发给源 AGW;所述 AGW中的切出控制模块还设置为,将收到的目标 ILCR与源 ILCR 不同时, 将该目标 ILCR的标识信息发送到源 ILCR; 所述 ILCR中的隧道建 立模块设置为,根据收到的目标 ILCR的标识信息建立到该目标 ILCR的转发 隧道。
优选地 ,
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; AGW的切出控制 模块还设置为, 释放与源 ILCR之间的隧道; 或,
AGW的切入控制模块还设置为, 向源 AGW发送切换响应; AGW的切 出控制模块还设置为, 接收目标 AGW发送的切换响应后, 设置定时器; 定 时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道。
优选地 ,
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; AGW的切出控制 模块还设置为,释放与源 ILCR之间的隧道; ILCR的切出控制模块还设置为, 释放与目标 ILCR之间的转发隧道, 或, AGW的切出控制模块还设置为,接收目标 AGW发送的切换响应后,设 置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道, 以及与源 ILCR 之间的隧道; ILCR的切出控制模块还设置为, 释放与目标 ILCR之间的转 发隧道, 或,
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 向目 标 ILCR发送切换通知;该 ILCR的切入控制模块还设置为 ,在收到目标 AGW 发送的切换通知后, 设置定时器, 定时时间到, 释放与源 ILCR之间的转发 隧道, 源 ILCR切出控制模块释放与源 AGW之间的隧道, 源 AGW的切出控 制模块释放与目标 AGW之间的隧道, 或,
该 AGW的切出控制模块还设置为, 收到该目标 AGW发送的切换响应 后, 向源 ILCR发送切换通知; 该 ILCR的切出控制模块还设置为, 在收到目 标 AGW发送的切换通知后, 设置定时器, 定时时间到, 释放与目标 ILCR之 间的转发隧道以及与源 AGW之间的隧道, 源 AGW的切出控制模块释放与 目标 AGW之间的隧道。
优选地,
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; 或,
; AGW的切出控制模块还设置为, 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道。
优选地,
所述 AGW中的切出控制模块向目标 AGW发送切换请求时, 向本 AGW 中的报文转发模块发送第一通知;
所述 AGW中的切入控制模块收到源 AGW发来切换请求时, 向本 AGW 中的报文转发模块发送第二通知;
所述 AGW中的报文转发模块在收到所述第一通知之前, 对收到的切出 的终端的下行数据报文进行解 RID封装后再转发到目标 AGW, 收到所述第 一通知之后则直接转发到目标 AGW; 在收到所述第二通知之前, 对源 AGW 转发来的切入的终端的下行数据报文直接发送到终端, 收到所述第二通知之 后在进行解 RID封装后再发送到终端; 对目标 ILCR转发来的切入的终端的 下行数据报文均进行解 RID封装,再通过与该终端的数据通道发送给该终端。
优选地 ,
所述连接业务网络中包括 ILCR;所述 AGW中的^艮文转发模块是设置为, 将收到的切出的终端的上行数据报文转发到源 ILCR,在收到所述第一通知之 前对该上行数据报文进行 RID封装; 对收到的切入的终端发送的上行数据报 文, 如该 AGW与目标 ILCR间的隧道未建立, 将该上行数据报文转发到源 AGW, 在收到所述第二通知之后还对该上行数据报文进行 RID封装, 如该 AGW与目标 ILCR间的隧道已建立,对该上行数据报文进行 RID封装后转发 到该目标 ILCR。
优选地 ,
所述 AGW具有到广义转发平面的数据接口; 所述 AGW中的报文转发 广义转发平面; 在收到所述第二通知之前, 将收到的切入的终端发送的上行 数据报文直接转发到源 AGW,在收到所述第二通知之后,对该上行数据报文 进行 RID封装后转发到广义转发平面。
优选地, 所述 AGW的切入控制模块是设置为:
与切入终端归属的 AAA服务器交互,获取本目标 AGW可以连接的 ILCR 的信息, 从中选择一个 ILCR作为目标 ILCR; 或
从源 AGW发来的切入终端允许接入的 ILCR中选择一个 ILCR作为目标
ILCR,所述允许接入的 ILCR是该切入终端归属的 AAA服务器发送到源 AGW 的; 或
根据本 AGW的配置信息选择目标 ILCR。
本发明 Wimax系统的锚点切换方法和 Wimax系统将身份标识和位置分 离的移动通信网络应用到 WiMAX网络, 当终端发生移动切换时, 目标 AGW 或目标 ILCR为切入终端分配新的 RID后, 根据切入终端的数据报文确定切 入终端与通信对端的连接信息, 并通知通信对端接入的网关更新终端 AID-RID映射信息,从而实现无固定锚点的切换, 减少了数据包的路径迂回, 降低了传输延时和带宽浪费, 而且还可以达到解决 IP地址双重身份的目的。 附图概述
附图说明用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的实施例一起用于解释本发明, 并不构成对本发明的限制。
图 1是基于身份标识和位置分离架构的网络拓朴示意图。
图 2是基于身份标识和位置分离架构的网络与 Legecy IP网络(传统 IP 网络) 的拓朴关系的示意图。
图 3是现有 WiMAX网络架构示意图。
图 4a是身份标识和位置分离 WiMAX网络架构示意图一。
图 4b是身份标识和位置分离 WiMAX网络架构示意图二。
图 5是本发明终端无固定锚点切换流程图一。
图 6是本发明终端无固定锚点切换流程图二。
图 7是本发明终端无固定锚点切换流程图三。
图 8是本发明终端无固定锚点切换流程图四。
图 9是本发明终端无固定锚点切换流程图五。
图 10是本发明终端无固定锚点切换流程图六。
图 11是本发明终端无固定锚点切换流程图七。 本发明的较佳实施方式
本发明 Wimax系统的无固定锚点的切换方法和 Wimax系统的主要思想 是, 将身份标识与位置分离的移动通信网络应用到 WiMAX网络, 当终端发 生移动切换时, 目标 AGW或目标 ILCR为切入终端分配新的 RID后, 根据 切入终端的数据报文确定切入终端与通信对端的连接信息, 并通知通信对端 接入的网关 ( AGW、 ILCR或其他的网关如边界网关 ) 更新终端 AID-RID映 射信息, 从而实现无固定锚点的切换, 减少了数据包的路径迂回, 降低了传 输延时和带宽浪费, 而且还可以达到解决 IP地址双重身份的目的。
图 2 所示是一种身份标识和位置分离 (SILSN: Subscriber Identifier & Locator Separation Network )架构, 该 SILSN架构的网络拓朴划分为拓朴关系 上没有重叠的接入网 21和骨干网 22 , 接入网位于骨干网的边缘, 负责所有 终端的接入, 骨干网负责接入的终端间数据报文的路由和转发。
SILSN架构的网络中有两种标识类型:接入标识( AID: Access Identifier ) 和路由标识(RID: Routing Identifier ) 。 其中, AID是终端的用户身份标识, 网络为每个终端用户分配一个 AID , 在终端移动过程中始终保持不变; RID 是网络为终端分配的位置标识, 在骨干网使用。 应说明的是, 身份标识和位 置标识在不同的 SILSN架构可以有不同的名称, 但实质是一样的。 用户签约 成为本架构网络用户后, 可以在该用户归属认证中心及归属 ILR中进行开户 放号操作, 认证中心及 ILR记录该用户的属性数据, 包括为该用户分配的 AID。 完成开户放号的处理后, AID被静态分配给该用户, 在该用户有效合 法存续期间, 该用户的 AID不变。
SILSN架构中, 终端可以是移动终端、 固定终端和游牧终端中的一种或 多种, 如手机、 固定电话、 电脑和服务器等等。
SILSN架构中, 接入网用于为终端提供二层(物理层和链路层)接入手 段, 维护终端与 ASN之间的物理接入链路。 可能的二层接入手段包括: 蜂窝 移动网技术(全球移动通讯系统(GSM ) //码分多址(CDMA ) /时分同步码 分多址(TD-SCDMA ) /宽带码分多址(WCDMA ) I Wimax/LTE ) 、 数字用 户环路(DSL ) 、 宽带光纤接入或无线保真(WiFi )接入等等。
SILSN架构中, 接入服务节点设置为为终端提供接入服务、 维护终端与 网络的连接, 为终端分配 RID , 维护 AID-RID映射信息, 到映射转发平面登 记注册和查询终端的 RID , 以及实现数据报文的路由和转发等功能。
SILSN架构中, 骨干网的主要网元包括:
接入服务节点 (ASN: Access Service Node) , 其设置为为终端分配 RID , 维护终端的 AID-RID映射信息, 到 ILR登记注册和查询终端的 RID , 以及实 现数据报文的路由和转发, 终端须经过 ASN接入骨干网。 ASN分配的 RID 包含该 ASN的地址信息,将该 RID作为数据报文的目的地址时,该数据报文 将被路由到该 ASN。
通用路由器(CR: Common Router ) , 其设置为根据数据报文中的 RID 进行选路, 转发以 RID为目的地址的数据 ^艮文。
身份位置寄存器( ILR: Identity Location Register ) , ILR设置为保存终端 的身份标识和位置标识映射信息, 文中也写为 AID-RID映射信息, 处理对终 端位置的注册、 注销和查询;
可选地, 骨干网还可以包括:
分组转发功能(PTF: Packet Transfer Function ) , 也称为分组转发功能 节点, 其设置为路由和转发以 AID为目的地址的数据报文。
互联服务节点 (ISN), 其具有与通用路由器、 ASN和 ILR的接口, 并设置 为查询、 维护本网络终端的 AID-RID映射信息, 封装、 路由和转发本网络与 传统 IP网络之间往来的数据 ^艮文, 实现两个网络的互联互通。
上述 ILR, 或 ILR和 PTF构成了骨干网的映射转发平面, CR, 或 CR和 ISN构成了骨干网的广义转发平面。 骨干网中还可以包括认证中心等其他网 元。
SILSN架构初期可以传统 IP网络的一个或多个孤岛形式存在和发展, 或 作为传统 IP网络的扩展部分。 SILSN架构与传统 IP网络的拓朴关系如图 3 所示, SILSN架构的骨干网 31部分与传统 IP网络 32处于同一平面,通过 ISN33 与传统 IP网络互通。 SILSN架构具备独立组网的能力, 可以形成脱离传统 IP 网络独自发展的网络, 在该阶段, 功能实体 ISN将不再存在。
本发明将上述 SILSN架构应用于 WiMAX系统,来实现无固定锚点切换。 根据背景技术记载的 SILSN 架构及其工作原理可以了解, 终端移动发生跨 ASN的切换时, 切入一侧的目标 ASN要为终端分配 RID, 向该终端归属 ILR 发起注册; 切出一侧的源 ASN要删除该终端的 AID-RID映射信息, 并维护 该终端所有通信对端的 AID-RID映射信息。 为了使通信对端发送给该终端的 报文能够迅速路由到目标 ASN,需要向通信对端接入的网关发送 RID更新通 知。 在切换过程中, 源 ASN需要向目标 ASN转发通信对端发送给该终端的 报文。
下文主要针对为实现无固定锚点切换而在原有系统上进行的改进加以描 述, 包括相关的功能和流程。 文中, 将终端的通信对端接入的网元简称为对 端网元; 为了表述方便, 在表述某个网元的功能时, 将接入到该网元的用户 终端称为终端, 与接入该网元的用户终端通信的用户终端称为通信对端。 此 夕卜, 因为本发明实现的是无固定锚点切换, 故将原切换流程中的源锚定接入 网关统称为源接入网关, 目标锚定接入网关统称为目标接入网关。
下面结合附图和具体实施例对本发明所述技术方案作进一步的详细描 述, 以使本领域的技术人员可以更好地理解本发明并能予以实施, 但所举实 施例不作为对本发明的限定。
为了表述方便, 在表述某个网元的功能时, 将接入到该网元的用户终端 称为终端, 与接入该网元的用户终端通信的称为通信对端。
系统一
图 4a是应用上述身份位置分离技术的一种 Wimax系统的网络架构的示 意图, 图中实线表示承载面的连接, 虚线表示控制面的连接。 该 Wimax网络 架构包括接入业务网络 (W-ASN)41和连接业务网络 (W-CSN)42。 连接业务网 络具有到广义转发平面的数据面接口, 表示为 D接口。 广义转发平面可以是 支持按 RID路由和转发数据报文的分组数据网络, 其他实施例同。
在 W-CSN中,具有认证授权计费 (AAA)代理或服务器 (AAA Proxy/Server) 等原有网元, 还设置了身份位置核心路由器(Identity Location Core Route, 简 称 ILCR ) 、 身份位置寄存器(ILR )和分组转发功能 (PTF), ILR和 PTF可以 合设,表示为 ILR/PTF,各 W-CSN中的 ILR/PTF构成了映射转发平面。其中, ILCR集合了 HA和 /或 W-CR(Wimax核心路由器)的功能, 并具有实现身份标 识和位置分离所需的新功能。
W-ASN中包括基站和接入网关, 其中的接入网关在 Wimax架构中的接 入网关所具有的功能实体(如锚定数据通道功能( Anchor DPF )、 鉴权器等) 的基础上, 扩展了实现身份标识和位置分离所需的新功能。 本系统中:
接入网关 (AGW)位于 WiMAX接入业务网络(W-ASN ) 中, 其设置为为 终端分配 RID, 向 ILR注册、 删除、 查询 AID-RID映射信息, 维护终端和通 信对端 AID-RID映射信息, 数据报文封装 RID及解封装 RID, 实现数据报文 的路由和转发, 终端 RID发生变化后, 通知通信对端接入的网关更新终端 AID-RID映射信息。
所述 ILCR位于 W-CSN中,其设置为路由并转发以 RID格式为源地址和 目的地址的数据报文, 该功能作用与现有技术中的路由器没有区别。
所述 ILR设置为接收所述接入网关对本 ILR归属用户终端的注册和注销 请求, 维护归属用户终端的 AID-RID映射信息, 以及接收对终端 RID的查询 请求, 将请求中该终端 AID对应的 RID返回给查询请求方, 该功能作用与现 有技术中的 ILR的功能相同。
与切换相关的, (以下不特别指出的,对应于实施例一至三) :
所述 AGW设置为在终端切入时, 为该终端分配新的位置标识 (RID)并保 存该终端身份标识 (AID)与该新的 RID的映射信息,根据该终端的数据报文确 定该终端和通信对端的连接信息, 并向该终端通信对端接入的网关发起更新 该终端 RID的 RID更新流程; 在终端切出后, 释放对该终端分配的资源; 以 及对切入、 切出终端的数据报文进行转发处理;
具体地,
所述 AGW包括:
切出控制模块,其设置为在 W-ASN锚定的切换完成后, 向目标 AGW发 送 AGW切换请求;
切入控制模块, 其设置为在收到 AGW切换请求后, 向位置标识 (RID)分 配模块发送分配通知, 携带切入终端 AID, 之后, 向 RID注册模块发送注册 通知, 向 RID更新模块发送更新通知, 并向源 AGW返回 AGW切换响应;
RID 分配模块, 其设置为在收到分配通知后为该终端分配指向本 AGW 的新的 RID, 保存该终端 AID与该新的 RID的映射信息;
RID注册模块, 其设置为在收到注册通知后发起 RID注册流程, 更新该 终端归属身份位置寄存器 (ILR)保存的该终端的 RID;
报文转发模块, 其设置为对切入终端的数据报文进行 RID封装、 解 RID 封装和转发, 及在收到要发送到切出终端的数据报文后向目标侧转发, 还设 置为根据切入终端的数据报文确定该终端与通信对端的连接信息;
RID更新模块, 其设置为在收到更新通知后根据终端与通信对端的连接 信息向该终端通信对端接入的网关发送 RID更新通知,携带该终端的 AID及 新的 RID。
进一步地,
所述 ILCR包括报文转发模块, 其设置为路由和转发以 RID为源地址和 目的地址的数据报文;
所述 AGW还包括隧道建立模块; 所述 AGW的切入控制模块还设置为 在收到 AGW切换请求后选择目标 ILCR, 向该隧道建立模块发送隧道建立通 知; 所述隧道建立模块设置为在收到隧道建立通知后, 为切入终端建立与该 目标 ILCR间的动态隧道; 或者
所述 AGW还包括隧道建立模块, 所述隧道建立模块设置为在上电后建 立与 ILCR间的静态隧道。
进一步地, (对应实施例一)
该 AGW的切入控制模块向源 AGW发送切换响应后, 设置定时器, 定 时时间到, 释放与源 AGW之间的转发隧道, 之后, 源 AGW的切出控制模 块释放与源 ILCR之间的隧道; 或,
AGW的切入控制模块向源 AGW发送切换响应; AGW的切出控制模块 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道。
进一步地, (对应实施例二、 三)
该 AGW的切入控制模块向源 AGW发送切换响应后, 设置定时器, 定 时时间到, 释放与源 AGW之间的转发隧道, 之后, 源 AGW的切出控制模 块释放与源 ILCR之间的隧道; 之后, 源 ILCR的切出控制模块释放与目标 ILCR之间的转发隧道, 或, AGW的切入控制模块向源 AGW发送切换响应; AGW的切出控制模块 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道, 以及与源 ILCR之间的隧道; 源 ILCR的切出控制模 块释放与目标 ILCR之间的转发隧道, 或,
该 AGW的切入控制模块向源 AGW发送切换响应后,向目标 ILCR发送 切换通知; 该 ILCR的切入控制模块在收到目标 AGW发送的切换通知后 ,设 置定时器, 定时时间到, 释放与源 ILCR之间的转发隧道, 源 ILCR切出控制 模块释放与源 AGW之间的隧道, 源 AGW的切出控制模块释放与目标 AGW 之间的隧道, 或,
该 AGW的切入控制模块向源 AGW发送切换响应, AGW的切出控制模 块接收目标 AGW发送的切换响应后, 向源 ILCR发送切换通知; 该 ILCR的 切出控制模块在收到目标 AGW发送的切换通知后, 设置定时器, 定时时间 到, 释放与目标 ILCR之间的转发隧道以及与源 AGW之间的隧道, 源 AGW 的切出控制模块释放与目标 AGW之间的隧道。
进一步地,
所述 AGW还包括映射信息维护模块, 其设置为保存及维护所有切入终 端的所有通信对端身份标识和位置标识 (AID-RID)映射信息;
该 AGW的切入控制模块还设置为, 接收源 AGW主动发送的, 或, 从 通信对端归属 ILR或源 AGW查询得到的该切入终端通信对端的 AID-RID映 射信息,并通知映射信息维护模块进行保存及维护; 所述 AGW中的切出控制 模块还设置为, 将维护的切出终端通信对端的 AID-RID映射信息主动或根据 目标 AGW的查询发送到目标 AGW,
和 /或, AGW 的报文转发模块设置为, 根据切入终端的数据报文确定通 信对端的 AID-RID映射信息,并通知所述映射信息维护模块进行保存及维护。
进一步地,
所述 AGW的 RID更新模块, 在发起 RID更新流程时, 根据通信对端 AID-RID的映射信息、本地配置信息或 DNS查询确定所述通信对端接入的网 关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
进一步地, (对应实施例一)
所述 AGW中的报文转发模块收到发给切出终端的下行数据报文后, 通 过与目标 AGW之间的转发隧道转发到该目标 AGW,收到发给切入终端的下 行数据报文时, 通过与该终端的数据通道发送给该终端。
进一步地, (对应实施例二、 三)
所述 ILCR还包括隧道建立模块,其设置为为切入终端建立与源 ILCR间 的转发隧道, 或为切出终端建立与目标 ILCR 间的转发隧道, 并在切换完成 后释放该转发隧道;
所述 ILCR 中的报文转发模块在切换过程中, 对收到的发给切出终端的 数据报文先转发给源 AGW, 在源、 目标 ILCR间的转发隧道建立后则直接通 过该转发隧道转发到该目标 ILCR; 对收到的发给切入终端的数据报文, 通过 与目标 AGW间的隧道转发给该目标 AGW。
进一步地,
所述 AGW的切出控制模块还设置为将源 ILCR的标识信息发送到目标
AGW;所述 AGW的切入控制模块还设置为在选择的目标 ILCR与该源 ILCR 不同时, 将源 ILCR的标识信息发送到目标 ILCR; 所述 ILCR中的隧道建立 模块设置为根据收到的源 ILCR的标识信息建立到该源 ILCR的转发隧道;或 者
所述 AGW 的切入控制模块还设置为将目标 ILCR 的标识信息发给源
AGW; 所述 AGW的切出控制模块还设置为将收到的目标 ILCR与源 ILCR 不同时, 将该目标 ILCR的标识信息发送到源 ILCR; 所述 ILCR中的隧道建 立模块设置为根据收到的目标 ILCR的标识信息建立到该目标 ILCR的转发隧 道。
进一步地,
所述 AGW的切出控制模块向目标 AGW发送切换请求时,向本 AGW中 的报文转发模块发送第一通知;
所述 AGW的切入控制模块收到源 AGW发来切换请求时,向本 AGW中 的报文转发模块发送第二通知;
所述 AGW中的报文转发模块在收到所述第一通知之前, 对收到的切出 终端的下行数据报文进行解 RID封装后再转发到目标 AGW, 收到所述第一 通知之后则直接转发到目标 AGW; 在收到所述第二通知之前, 对源 AGW转 发来的切入终端的下行数据报文直接发送到终端, 收到所述第二通知之后在 进行解 RID封装后再发送到终端; 对目标 ILCR转发来的切入终端的下行数 据报文均进行解 RID封装, 再通过与该终端的数据通道发送给该终端。
进一步地,
所述连接业务网络中包括 ILCR; 所述 AGW中的报文转发模块将收到的 切出终端的上行数据报文转发到源 ILCR,在收到所述第一通知之前还对该上 行数据报文进行 RID封装; 对收到的切入终端发送的上行数据报文, 如与目 标 ILCR间的隧道未建立, 将该上行数据报文转发到源 AGW, 在收到所述第 二通知之后还对该上行数据报文进行 RID封装, 如与目标 ILCR间的隧道已 建立, 对该上行数据 文进行 RID封装后转发到该目标 ILCR。
进一步地, 所述切入控制模块选择目标 ILCR的方式为以下方式中的一 种:
方式一、所述切入控制模块与切入终端归属的 AAA服务器交互,获取本 目标 AGW可以连接的 ILCR的信息, 从中选择一个 ILCR作为目标 ILCR;
方式二、所述切入控制模块从源 AGW发来的切入终端允许接入的 ILCR 中选择一个 ILCR作为目标 ILCR, 所述允许接入的 ILCR是该切入终端归属 的 AAA服务器发送到源 AGW的;
方式三、 所述切入控制模块根据本 AGW的配置信息选择目标 ILCR。 进一步地,
所述切出控制模块向目标 AGW发送的 AGW切换请求为锚定数据通道 功能 (DPF)切换请求; 所述切入控制模块向源 AGW发送的 AGW切换响应为 锚定 DPF切换响应。
下面将结合附图及实施例对本发明系统一的技术方案进行更详细的说 明。
图 5、 图 6、 图 7是本发明应用身份标识和位置分离技术的 WiMAX网络 系统一中的切换流程图, 对应于实施例一至三。
实施例一
图 5适用于切换过程中数据转发使用接入网关之间的转发隧道的场景, 其具体步骤描述如下: 步骤 501 , 当处于连接态的终端移动后, 终端使用现有技术完成 W-ASN 锚定的切换。 W-ASN锚定的切换完成后, 终端从源基站接入切换为从目标基 站接入, 且源 AGW与目标 AGW之间建立了数据通道;
此后, 终端上下行数据报文路径如 D501、 D502所示。
D501 , 下行数据报文路径: 源 ILCR收到通信对端发给终端的数据报文 后, 转发给源 AGW, 源 AGW剥去该数据报文中封装的 RID, 恢复为通信对 端发送的数据报文的格式后, 通过源 AGW与目标 AGW之间的数据通道将 数据报文转发给目标 AGW,目标接入网关再将该报文通过与终端数据通道发 往该终端。
D502, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基站 将数据报文转发给目标 AGW, 目标 AGW通过源 AGW与目标 AGW之间的 数据通道将数据报文转发给源 AGW, 源 AGW获取通信对端的 AID, 并查询 本地緩存中的 AID-RID映射信息, 如查到通信对端的 RID , 则将该通信对端 的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报文中, 然 后将封装后的数据报文转发到源 ILCR; 如没有查到通信对端的 RID, 将数据 报文做隧道封装后转发到映射转发平面或源 ILCR,并向 ILR查询通信对端的 RID; 或者将数据报文緩存到本地, 待获得通信对端的 RID后, 再将该通信 对端的 RID作为目的地址,该终端的 RID作为源地址,封装在该数据报文中, 然后将封装后的数据报文转发到源 ILCR。
步骤 502, 当目标 AGW准备发起 AGW重定位时, 向源 AGW发送锚定 DPF切换触发消息, 此步骤可选;
步骤 503 , 源 AGW收到目标接入网关锚定 DPF切换触发消息后, 或者 源 AGW决定发起 AGW重定位时, 源 AGW向目标 AGW发送锚定 DPF切 换请求消息;
此后, 终端上下行数据报文路径仍然如 D501、 D502所示。 只是此时由 目标 AGW对数据报文进行封装和解封装。
步骤 504, 目标 AGW为该终端分配新的 RID, 并在本地保存更新该终端
AID-RID映射信息;
步骤 505 , 目标 AGW选择目标 ILCR, 并向目标 ILCR发起隧道建立流 程;
在隧道建立过程中, 目标 ILCR可能需要与归属 AAA服务器进行交互完 成认证。
其中接入网关与 ILCR之间的隧道可以有多种方式, 如第二层隧道协议 第三版(L2TPv3 ) 、 IP-in-IP、 多协议标签交换( MPLS (基于标签分发协议 ( LDP-based ) 和基于流量工程扩展的资源预留协议( RSVP-TE based ) ) 、 通用路由封装(GRE ) 、 移动 IP ( MIP )和因特网协议安全性(IPsec )等, 本发明不局限于任何一种特定的隧道方式。 当釆用 MIP, 隧道的创建、 维护 与现有 WiMAX网络相同。 此后, 终端上下行数据报文路径如 D503、 D504 所示。
D503 , 下行数据报文路径: 源 ILCR收到通信对端发给终端数据报文后, 转发给源 AGW, 源 AGW通过源 AGW与目标 AGW之间的数据通道将数据 报文转发给目标 AGW, 目标 AGW剥去该数据报文中封装的 RID, 恢复为通 信对端发送的数据报文的格式后, 目标接入网关在将该报文通过与终端数据 通道发往该终端。
D504, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基站 将数据报文转发给目标 AGW, 目标 AGW获取通信对端的 AID, 并查询本地 緩存中的 AID-RID映射信息,如查到通信对端的 RID ,则将该通信对端的 RID 作为目的地址, 该终端的 RID作为源地址, 封装在该数据 文中, 然后将封 装后的数据报文转发到目标 ILCR。 如没有查到通信对端的 RID, 将数据报文 做隧道封装后转发到映射转发平面或目标 ILCR, 并向 ILR查询通信对端的 RID。如没有查到通信对端的 RID,也可以将数据报文做隧道封装后转发到源 AGW, 由源 AGW进行 RID封装后经源 ILCR发给通信对端; 或者先本地緩 存,待获得通信对端的 RID后再封装对端 RID后经目标 ILCR发给通信对端。
步骤 506 , 目标 AGW在分配新的 RID后 , 向终端归属 ILR发起 RID注 册流程, 将新分配的 RID带给 ILR, 更新 ILR上终端 AID-RID映射信息; 步骤 507 , 归属 ILR收到目标 AGW的 RID注册请求后, 验证 AID的合 法性, 并保存终端当前 AID-RID的映射信息;
本步骤可以在步骤 505中 ILCR到归属 AAA认证流程中执行: 即, 该目 标 AGW在隧道建立流程中将该终端的 AID和新的 RID带到该目标 ILCR, 该目标 ILCR再利用到该终端归属 AAA/ILR的认证流程中将该终端的 AID和 新的 RID带到该终端归属 AAA/ILR , 该终端归属 AAA/ILR将保存的该终端 的 AID-RID映射信息中的 RID更新为收到的该新的 RID。
此后, 终端上下行数据^艮文路径如 D505、 D506所示。
D505, 下行数据报文路径: 目标 ILCR收到通信对端发给终端数据报文 后, 转发给目标 AGW, 目标 AGW剥去该数据报文中封装的 RID, 恢复为通 信对端发送的数据报文的格式后, 目标接入网关在将该报文通过与终端数据 通道发往该终端。
D506, 上行数据报文路径: 同 D504。
此时, 可能还会存在由源 ILCR转发的数据报文, 这是由于还未通知通 信对端接入的网关未更新终端 AID-RID映射信息导致的, 这时的下行数据报 文路径同 D503。
步骤 508 , 目标 AGW向源 AGW发送锚定 DPF切换响应, 完成 AGW的 切换;
步骤 509, 目标 AGW设置切换定时器;
步骤 510, 目标 AGW通知通信对端接入的网关更新终端 AID-RID映射 信息;
步骤 511 ,步骤 509中设置的切换定时时间到后,目标 AGW释放源 AGW 与目标 AGW间的数据通道; 步骤 512 , 源 AGW释放与源 ILCR间的隧道, 同时释放保存的用户上下 文、 该终端的所有通信对端的 AID-RID映射信息;
步骤 513 , 目标 AGW向目标基站发起上下文报告流程, 将新的 AGW发 给目标基站, 此步骤在步骤 508后即可执行;
本实施例中, 步骤 509中设置的切换定时器, 可以由源 AGW设置, 此 时,步骤 511中,则需要由源 AGW在定时时间到后释放源 AGW与目标 AGW 间的数据通道及相关信息。
本实施例中, 步骤 510可以在步骤 504后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D504、 D506。 可选的, 此时上行数据报文也可以从目 标 AGW与源 AGW之间的隧道转发, 即数据报文从目标 AGW转发到源 AGW, 再到源 ILCR。
步骤 505中, 目标 AGW选择目标 ILCR时, 可以釆取下列方式: 方式一、 目标 AGW与终端归属 AAA服务器交互, 获取本目标 AGW可 以连接的 ILCR的信息;
漫游情况下, 该交互需要通过拜访 AAA服务器转发, 拜访 AAA服务器 也可以将其允许目标 AGW连接的 ILCR信息在转发过程中通知目标 AGW。
方式二、 终端初始入网时, 归属 AAA服务器、 拜访 AAA服务器已经将 该终端允许接入的 ILCR通知给源 AGW, 当进行上述切换时, 由源 AGW在 步骤 503中将该信息通知给目标 AGW, 目标 AGW, 可以根据配置等方式选 择合适的 ILCR;
方式三、 目标接入网关根据自身的配置信息选择。
本发明其他实施例中 ,需要目标 AGW选择目标 ILCR时均可釆用上述方 式。
本实施例中, 目标 AGW可以通过以下方式获取通信对端的映射信息:
1、 目标 AGW根据数据报文中通信对端的 AID在本地查询通信对端的 AID-RID映射信息, 其中, 通过目标 AGW接入的正在与通信对端通信的其 它终端, 可能在本地已保存有通信对端的 AID-RID映射信息; 2、 目标 AGW从源 AGW转发的数据报文中, 获取通信对端的 AID-RID 映射信息;
3、 从通信对端归属地 ILR查询到通信对端的 AID-RID映射信息并保存 在本地;
4、 从源 AGW查询得到通信对端的 AID-RID映射信息并保存在本地;
5、 源 AGW收到来目标 AGW转发的终端的数据报文, 数据报文中携带 了通信对端 AID ,源 AGW将通信对端接入标识映射 AID-RID发往目标 AGW , 目标 AGW获得通信对端 AID-RID的映射关系后保存在本地;
系统一的其他实施例也可釆用上述方法来获得通信对端的映射信息。 在系统一的切换流程中接入网关更新通信对端的方法为:
目标 AGW在收到源 AGW转发的数据后, 根据通信对端 AID-RID映射 信息、 本地配置信息或 DNS查询等确定通信对端接入的网关, 向所述通信对 端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
通信对端接入的网关收到 RID更新通知后, 将保存的该终端的 AID-RID 映射信息更新为该通知中携带的所述映射信息。
目标 AGW收到来自终端的上行数据后, 也可以进行上述更新通信对端 的处理, 此时可能会出现更新了不需要更新的新的通信对端接入的网关。
实施例二
图 6适用于切换过程中数据转发使用 ILCR之间的转发隧道, 且由目标
ILCR发起 ILCR间的转发隧道建立的场景, 其具体步骤描述如下:
步骤 601、 602, 同步骤 501、 502;
D601、 D602, 同 D501、 D502。
步骤 603 , 源 AGW收到目标接入网关锚定 DPF切换触发消息后, 或者 源 AGW决定发起 AGW重定位时, 源 AGW向目标 AGW发送锚定 DPF切 换请求消息, 消息中需要携带源 ILCR的标识信息;
其中标识信息可以是地址, 也可以是专用标识。 此后, 终端上下行数据 报文路径仍然如 D601、 D602所示。 只是此时由目标 AGW对数据报文进行 封装和解封装。
步骤 604, 同步骤 504;
步骤 605 , 目标 AGW选择目标 ILCR, 向目标 ILCR发起隧道建立流程, 同时将源 ILCR标识信息通知给目标 ILCR;
在隧道建立过程中, 目标 ILCR可能需要与归属 AAA服务器进行交互完 成认证。 其中接入网关与 ILCR之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP, MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本 发明不局限于任何一种特定的隧道方式。 当釆用 MIP, 隧道的创建、 维护与 现有 WiMAX网络相同。
步骤 606 , 目标 ILCR根据在步骤 605中获得的源 ILCR的标识信息, 若 目标 ILCR与源 ILCR不相同, 则向源 ILCR发起转发隧道的建立流程; 否则 不执行此步骤;
其中 ILCR 之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP、 MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本发明不局 限于任何一种特定的隧道方式。
此后, 终端上下行数据^艮文路径如 D603、 D604所示。
D603 , 下行数据报文路径: 源 ILCR收到通信对端发给终端数据报文后, 通过转发隧道转发给目标 ILCR, 目标 ILCR再转发给目标 AGW, 目标 AGW 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式后, 目标接入网关在将该报文通过与终端数据通道发往该终端。
D604, 同 D504。
若步骤 606与步骤 605并行执行,即目标 ILCR在建立与目标 AGW之间 的隧道过程中同时建立 ILCR之间的隧道, 步骤 606可能在步骤 605 之前完 成, 此时下行数据报文需要在目标 ILCR上先緩存, 待步骤 605完成后再下 发给目标 AGW。而此时的上行数据报文路径同 D602,只是此时由目标 AGW 对数据报文进行封装和解封装。
步骤 607至步骤 608, 同步骤 506至步骤 507; 此后, 终端上下行数据^艮文路径如 D605、 D606所示。
D605、 D606, 同 D505、 D506。
此时, 可能还会存在由源 ILCR转发的数据报文, 这是由于还未通知通 信对端接入的网关未更新终端 AID-RID映射信息导致的, 这时的下行数据报 文路径同 D603。
步骤 609至步骤 613 , 同步骤 508至步骤 512;
步骤 614 , 当源 ILCR与目标 ILCR不相同时执行此步骤, 源 ILCR或目 标 ILCR发起两者间数据转发隧道的释放;
步骤 615, 同步骤 513;
本实施例中, 步骤 610中设置的切换定时器, 可以由源 AGW设置, 也 可以由源 ILCR设置, 还可以由目标 AGW设置, 此时, 步骤 612中, 则需要 由源 AGW在定时时间到后释放源 AGW与目标 AGW间的数据通道及相关信 息。 同样适用于实施例三, 具体为:
该目标 AGW向该源 AGW发送所述切换响应后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器, 或, 该目标 AGW向源 AGW发送切换响应后, 向目标 ILCR发送切换通知; 该目标 ILCR收到目标 AGW的切换通知后设置定时器, 或,
该源 AGW收到该目标 AGW发送的切换响应后,向源 ILCR发送切换通 知; 该源 ILCR收到源 AGW的切换通知后设置定时器,
定时时间到, 由设置定时器的网元开始释放以下为该终端分配的资源: 源 AGW与目标 AGW之间的转发隧道、 源 AGW与源 ILCR之间的隧道以及 目标 ILCR与目标 AGW之间的下行转发隧道。
本实施例中, 步骤 611不需要一定在步骤 610后执行, 可以在步骤 604 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D604、 D606。 可选的, 此时上行数据^艮文也可以从目 标 AGW与源 AGW之间的隧道转发, 即数据报文从目标 AGW转发到源 AGW, 再到源 ILCR; 或者从目标 ILCR与源 ILCR间的转发隧道转发。
实施例三
图 7适用于切换过程中数据的转发使用 ILCR之间的转发隧道, 且由源 ILCR发起 ILCR间的转发隧道建立的场景, 其具体步骤描述如下:
步 701 , 同步骤 601 ;
此后, 终端上下行数据 ^艮文路径如 D701、 D702所示, D701、 D702, 同 D601、 D602。
步骤 702, 当目标 AGW准备发起 AGW重定位时, 选择目标 ILCR, 向 源 AGW发送锚定 DPF切换触发消息, 并在消息中携带目标 ILCR标识信息; 其中标识信息可以是地址, 也可以是专用标识。
步骤 703 , 源 AGW收到目标接入网关锚定 DPF切换触发消息后, 而且 同意进行锚定 DPF切换时, 若根据目标 ILCR的标识信息判断出需要进行跨 ILCR的切换(如源 ILCR与目标 ILCR不相同), 向原 ILCR发送 ILCR切换 请求, 同时携带目标 ILCR标识信息; 否则不执行步骤 703至 705;
步骤 704 , 源 ILCR根据在步骤 703中获得的目标 ILCR的标识信息, 向 目标 ILCR发起转发隧道的建立流程;
其中 ILCR 之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP、 MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本发明不局 限于任何一种特定的隧道方式。
步骤 705 , 源 ILCR向源 AGW回应 ILCR切换响应;
此后, 终端上下行数据^艮文路径如 D703、 D704所示。
D703 , 下行数据报文路径: 源 ILCR收到通信对端发给终端数据报文后, 通过转发隧道转发给目标 ILCR, 此时下行数据报文需要在目标 ILCR上先緩 存。
D704, 同 D702。 只是此时由目标 AGW对数据 4艮文进行封装和解封装。 步骤 706至步骤 708, 同步骤 503至 505; 此后, 终端上下行数据^艮文路径如 D705、 D706所示。
D705 , 同 D603。 在 D703中緩存在目标 ILCR上的下行数据报文此时也 需要转发给目标 AGW。
D706, 同 D604。
后续步骤 709至步骤 717, 同步骤 607至步骤 615;
后续数据报文路径 D707、 D708同 D605、 D606。
本实施例中, 步骤 712中设置的切换定时器, 可以由源 AGW设置, 也 可以由源 ILCR设置, 还可以由目标 AGW设置, 此时, 步骤 714中, 则需要 由源 AGW在定时时间到后释放源 AGW与目标 AGW间的数据通道及相关信 息。
本实施例中, 步骤 713不需要一定在步骤 712后执行, 可以在步骤 707 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D706、 D708。 可选的, 此时上行数据^艮文也可以从目 标 AGW与源 AGW之间的隧道转发, 即数据报文从目标 AGW转发到源 AGW, 再到源 ILCR; 或者从目标 ILCR与源 ILCR间的转发隧道转发。
系统一中的切换流程中, AGW变化, 不一定会导致 ILCR的变化, 因此 源 AGW需要根据目标 ILCR标识信息, 或者目标 AGW需要根据源 ILCR标 识信息, 判断是否发生了 ILCR的变化, 当 ILCR未发生变化时, 源 ILCR与 目标 ILCR合一,此时不存在源 ILCR与目标 ILCR之间的隧道,不需要建立、 删除两者间的隧道。
系统二
本系统应用上述身份标识和位置分离技术的 Wimax 网络架构仍如图 4a 所示, 包括接入业务网络 (W-ASN)和连接业务网络 (W-CSN) , W-ASN 和 W-CSN包含的功能模块也是相同的。连接业务网络中也包括身份位置核心路 由器 (ILCR), 各 ILCR与支持按 RID路由和转发数据报文的广义转发平面之 间具有数据接口, 但 W-ASN中的 AGW和 W-CSN中的 ILCR与实现身份标 识和位置分离相关的功能与实施例一不同。
本系统中: AGW设置为实现终端的 Wimax接入业务网络 (W-ASN)锚定 的切换, 及为切入终端选择目标 ILCR, 在与该目标 ILCR间未建立切入终端 数据报文转发的隧道时还建立该隧道,通过该隧道转发切入终端的数据报文。
身份位置核心路由器 (ILCR)设置为在终端切入时, 为该终端分配新的位 置标识 (RID)并保存该终端身份标识 (AID)与该新的 RID的映射信息, 向 ILR 注册和注销终端的 RID, 向 ILR查询通信对端的 RID, 根据切入终端的数据 报文确定该终端和通信对端的连接信息, 并向该切入终端通信对端接入的网 关 (在本系统架构下, 指 ILCR )发送 RID更新通知; 在终端切出后, 释放 为该终端分配的资源; 及对切入、 切出终端的数据"¾文进行转发处理;
作为本系统的一个变化, 还可以将向 ILR注册、 注销终端的 RID的功能 改由 AGW来完成。
与切换相关地, (如无特别说明,对应实施例四至九)
所述 AGW包括:
切出控制模块,其设置为在 W-ASN锚定的切换完成后, 向目标 AGW发 送 AGW切换请求, 切换完成后, 释放为切出终端分配的资源;
切入控制模块, 其设置为在收到 AGW切换请求后, 选择目标 ILCR, 在 目标 ILCR与源 ILCR不同时通知目标 ILCR有终端切入并携带切入终端的 AID,以及在与该目标 ILCR间未建立该切入终端数据报文转发的隧道时建立 该隧道, 还设置为向该源 AGW发送 AGW切换响应;
所述 AGW中的切出控制模块向目标 AGW发送的 AGW切换请求为锚定 数据通道功能 (DPF)切换请求; 所述 AGW中的切入控制模块向源 AGW发送 的 AGW切换响应为锚定 DPF切换响应。
报文转发模块, 其设置为对切入、 切出终端的数据报文进行转发处理。 进一步地,
所述 ILCR包括:
切出控制模块, 其设置为终端切出后, 释放为该终端分配的资源; 切入控制模块, 其设置为在收到有终端切入的通知后, 向 RID分配模块 发送分配通知并携带切入终端的 AID, 之后, 向 RID更新模块发送更新通知 携带该终端的 AID及分配模块分配的新的 RID;
RID 分配模块, 其设置为在收到分配通知后为该终端分配指向本 ILCR 的新的 RID, 保存该终端 AID与该新的 RID的映射信息;
报文转发模块, 其设置为对切入、 切出终端的数据报文进行转发处理;
RID更新模块, 其设置为在收到切入控制模块的更新通知后根据终端与 通信对端的连接信息向该终端通信对端接入的网关发送 RID更新通知, 携带 该终端的 AID及新的 RID;
所述 AGW或 ILCR还包括:
RID注册模块,其设置为在收到 AGW或 ILCR的切入控制模块的注册通 知后发起 RID注册流程,向切入终端归属身份位置寄存器 (ILR)发送注册请求 并携带该切入终端的 AID和新的 RID。
进一步地,
所述 ILCR还包括映射信息维护模块, 其设置为保存及维护所有切入终 端的所有通信对端身份标识和位置标识 (AID-RID)映射信息;
通信对端 AID-RID映射信息是这样获得的:
该 ILCR的切入控制模块还设置为接收源 ILCR主动发送的, 或, 从通信 对端归属 ILR或源 ILCR查询得到的该切入终端通信对端的 AID-RID映射信 息, 并通知映射信息维护模块进行保存及维护; 所述 ILCR 中的切出控制模 块还设置为将维护的切出终端通信对端的 AID-RID映射信息主动或根据目标 ILCR的查询发送到目标 ILCR;
和 /或, ILCR 的报文转发模块还设置为, 根据切入终端的数据报文确定 通信对端的 AID-RID映射信息, 并通知所述映射信息维护模块进行保存及维 护。
进一步地, 该 ILCR 的 RID 更新模块, 在发起 RID 更新流程时, 根据通信对端 AID-RID的映射信息、本地配置信息或 DNS查询确定所述通信对端接入的网 关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
进一步地,
所述 AGW还包括隧道建立模块; 所述 AGW的切入控制模块在选择目 标 ILCR后, 还向该隧道建立模块发送隧道建立通知; 所述隧道建立模块设 置为在收到隧道建立通知后, 通过隧道建立流程为切入终端建立与该目标 ILCR间的动态隧道; 或者
所述 AGW还包括隧道建立模块, 所述隧道建立模块设置为在上电后建 立与 ILCR间的静态隧道; 目标 ILCR根据目标 AGW的通知或通过检查数据 报文获知有终端切换并获取该终端的 AID。
进一步地, (对应实施例四、 五、 六, 无需建立下行专用转发隧道) 所述 RID注册模块位于 ILCR中, 所述 ILCR的切入控制模块收到 RID 分配模块返回的切入终端新的 RID后,向该切入终端归属 ILR发送 RID注册 请求;
所述 ILCR 中的报文转发模块将收到的发给切出终端的数据报文转发给 所述 AGW中的报文转发模块收到发给切出终端的数据报文后, 通过与 目标 AGW之间的转发隧道转发到该目标 AGW;收到发给切入终端的数据报 文后, 通过与该切入终端之间的数据通道发送到该切入终端。
进一步地, (目标 AGW与目标 ILCR建立下行转发隧道, 源 ILCR根据 通知停止解封装, 对应实施例四、 七的变换)
所述 AGW中的隧道建立模块在收到针对切入终端的隧道建立通知后, 与该目标 ILCR之间为切入终端建立或选择第一隧道和第二隧道;
所述 ILCR 中的报文转发模块收到发给切出终端的数据报文后, 对该数 据报文进行解 RID封装并转发给源 AGW; 收到从第一隧道或映射转发平面 或广义转发平面发来的切入终端还未解 RID封装的数据报文后进行解 RID封 装, 通过第二隧道转发给目标 AGW;
所述 AGW中的报文转发模块收到发给切出终端的数据报文后转发到该 目标 AGW; 收到源 AGW发给切入终端的数据报文后, 通过所述第一隧道转 发到目标 ILCR; 收到目标 ILCR发给切入终端的数据报文后, 通过与该切入 终端之间的数据通道发送到该切入终端;
所述 ILCR中的切出控制模块收到目标 ILCR或源 AGW发送的切换通知 后, 通知所述 ILCR 中的报文转发模块停止对切出终端的数据报文进行解封 装。
进一步地, (目标 AGW与目标 ILCR建立下行转发隧道,一直由源 ILCR 进行解封装, 对应实施例四、 七变换)
所述 AGW中的隧道建立模块在收到针对切入终端的隧道建立通知后, 与该目标 ILCR之间为切入终端建立或选择第一隧道和第二隧道;
所述 ILCR 中的报文转发模块收到发给切出终端的数据报文后, 对该数 据报文进行解 RID封装并转发给源 AGW; 收到从第一隧道发来的切入终端 的数据报文后通过第二隧道转发给目标 AGW;收到从映射转发平面或广义转 发平面发来的切入终端的数据报文后进行解 RID封装, 通过第二隧道转发给 目标 AGW;
所述 AGW中的报文转发模块收到发给切出终端的数据报文后转发到该 目标 AGW; 收到源 AGW发给切入终端的数据报文后, 通过所述第一隧道转 发到目标 ILCR; 收到目标 ILCR发给切入终端的数据报文后, 通过与该切入 终端之间的数据通道发送到该切入终端。
进一步地, (对应实施例四、 七)
该 AGW的切入控制模块向源 AGW发送切换响应后, 设置定时器, 定 时时间到,释放与源 AGW之间的转发隧道以及与目标 ILCR之间的第一隧道, 之后, 源 AGW的切出控制模块释放与源 ILCR之间的隧道; 或,
AGW的切入控制模块向源 AGW发送切换响应; AGW的切出控制模块 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道; 之后, 目标 AGW的切出 控制模块释放与目标 ILCR之间的第一隧道, 或,
该 AGW的切入控制模块向源 AGW发送切换响应后,向目标 ILCR发送 切换通知; 该 ILCR的切入控制模块在收到源 AGW发送的切换通知后,设置 定时器, 定时时间到, 释放与目标 AGW之间的第一隧道, 之后, 源 ILCR切 出控制模块释放与源 AGW之间的隧道, 之后, 源 AGW的切出控制模块释 放与目标 AGW之间的隧道 , 或 ,
该 AGW的切入控制模块向源 AGW发送切换响应,该源 AGW的切出控 制模块收到该目标 AGW发送的切换响应后, 向源 ILCR发送切换通知; 该 ILCR的切出控制模块在收到源 AGW发送的切换通知后, 设置定时器, 定时 时间到, 释放与源 AGW之间的隧道, 源 AGW的切出控制模块释放与目标 AGW之间的隧道, 之后, 目标 AGW的切入控制模块释放与目标 ILCR之间 的第一隧道。
进一步地, (对应实施例五、 六、 八、 九)
所述 ILCR还包括隧道建立模块,其设置为为切入终端建立与源 ILCR间 的转发隧道, 或为切出终端建立与目标 ILCR 间的转发隧道, 并在切换完成 后释放该转发隧道;
所述 ILCR中的报文转发模块在源、 目标 ILCR间的转发隧道建立前将收 到发给切出终端的数据报文,解封装后转发给源 AGW,在所述转发隧道建立 后将收到发给切出终端的数据报文, 直接通过该转发隧道转发到该目标 ILCR; 在源、 目标 ILCR间的转发隧道建立前将收到的发给切入终端的数据 报文直接转发给该目标 AGW; 在源、 目标 ILCR间的转发隧道建立后, 将收 到的发给切入终端的数据报文进行解 RID封装后再转发或緩存后再转发给该 目标 AGW;
所述 AGW中的报文转发模块收到发给切出终端的数据报文后转发到该
Figure imgf000039_0001
进一步地, (对应实施例五、 六、 八、 九)
该 AGW的切入控制模块向源 AGW发送切换响应后, 设置定时器, 时时间到, 释放与源 AGW之间的转发隧道, 之后, 源 AGW的切出控制模 块释放与源 ILCR之间的隧道; 之后, 源 ILCR的切出控制模块释放与目标 ILCR之间的转发隧道, 或,
AGW的切入控制模块向源 AGW发送切换响应; AGW的切出控制模块 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道, 以及与源 ILCR之间的隧道; 源 ILCR的切出控制模 块释放与目标 ILCR之间的转发隧道, 或,
该 AGW的切入控制模块向源 AGW发送切换响应后,向目标 ILCR发送 切换通知; 该 ILCR的切入控制模块在收到目标 AGW发送的切换通知后 ,设 置定时器, 定时时间到, 释放与源 ILCR之间的转发隧道, 源 ILCR切出控制 模块释放与源 AGW之间的隧道, 源 AGW的切出控制模块释放与目标 AGW 之间的隧道, 或,
该 AGW的切入控制模块向源 AGW发送切换响应,该 AGW的切出控制 模块收到该目标 AGW发送的切换响应后,向源 ILCR发送切换通知;该 ILCR 的切出控制模块在收到目标 AGW发送的切换通知后, 设置定时器, 定时时 间到,释放与目标 ILCR之间的转发隧道以及与源 AGW之间的隧道,源 AGW 的切出控制模块释放与目标 AGW之间的隧道。
进一步地,
所述 AGW中的切入控制模块还设置为将目标 ILCR的标识信息发送到源 AGW;所述 AGW中的切出控制模块还设置为将目标 AGW发来的与源 ILCR 不同的目标 ILCR的标识信息发送到源 ILCR; 所述 ILCR中的隧道建立模块 根据目标 ILCR的标识信息为切出终端建立与目标 ILCR之间的转发隧道;或 者
所述 AGW中的切出控制模块还设置为将源 ILCR的标识信息发送到目标 AGW; 所述 AGW中的切入控制模块还设置为将源 AGW发来的不同于目标 ILCR的源 ILCR的标识信息发送到目标 ILCR;所述 ILCR中的隧道建立模块 根据源 ILCR的标识信息为切入终端建立与源 ILCR间的转发隧道。
进一步地, 所述 AGW中的报文转发模块将收到的切入终端发送的数据报文转发给 源 AGW; 将目标 AGW发来的切出终端发送的数据报文转发给源 ILCR; 且, 所述 ILCR中的 4艮文转发模块将源 AGW发来的切出终端发送的数据报文进行 RID封装并转发到映射转发平面或广义转发平面; 或者
所述 AGW中的报文转发模块对收到的切入终端发送的数据报文, 如还 未在本 AGW与目标 ILCR间建立该切入终端数据报文转发的隧道,转发给源 AGW, 否则转发到目标 ILCR; 对目标 AGW发来的切出终端发送的数据报 文, 转发给源 ILCR; 且, 所述 ILCR中的报文转发模块对源 AGW发来的切 出终端发送的数据报文和对目标 AGW发来的切入终端发送的数据报文, 进 行 RID封装后转发到映射转发平面或广义转发平面。
进一步地,
所述 AGW中的切入控制模块选择目标 ILCR的方式为以下方式中的一 种:
方式一、所述切入控制模块与切入终端归属的 AAA服务器交互,获取本 目标 AGW可以连接的 ILCR的信息, 从中选择一个 ILCR作为目标 ILCR;
方式二、所述切入控制模块从源 AGW发来的切入终端允许接入的 ILCR 中选择一个 ILCR作为目标 ILCR, 所述允许接入的 ILCR是该切入终端归属 的 AAA服务器发送到源 AGW的;
方式三、 所述切入控制模块根据本 AGW的配置信息选择目标 ILCR。 进一步地,
所述 RID注册模块位于 ILCR中; 所述 ILCR中的切入控制模块向 RID 分配模块发送分配通知并获取为切入终端分配的新的 RID后, 向 RID注册模 块发送注册通知并携带该切入终端的 AID和新的 RID; 或者
所述 RID注册模块位于 AGW中; 所述 ILCR中的切入控制模块向 RID 分配模块发送分配通知并获取为切入终端分配的新的 RID后 , 将该新的 RID 发送到目标 AGW; 所述 AGW中的切入控制模块收到目标 ILCR发送的为切 入终端分配的新的 RID后, 向 RID注册模块发送注册通知并携带该切入终端 的 AID和新的 RID。 以下图 8、图 9、图 10是本发明应用身份标识和位置分离技术的 WiMAX 网络系统二的切换流程图。
实施例四
图 8 适用于切换过程中数据的转发使用接入网关之间的转发隧道的场 景, 其具体步骤描述如下: 步骤 801 , 同步骤 501 ;
D801 , 下行数据报文路径: 源 ILCR收到通信对端发给终端数据报文, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式后, 转发给源 AGW, 源 AGW通过源 AGW与目标 AGW之间的数据通道将数据 报文转发给目标 AGW,目标接入网关在将该报文通过与终端数据通道发往该 终端。
D802, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基站 将数据报文转发给目标 AGW, 目标 AGW通过源 AGW与目标 AGW之间的 数据通道将数据报文转发给源 AGW, 源 AGW再转发给源 ILCR, 源 ILCR 获取通信对端的 AID , 并查询本地緩存中的 AID-RID映射信息, 如查到通信 对端的 RID, 则将该通信对端的 RID作为目的地址, 该终端的 RID作为源地 址, 封装在该数据报文中, 然后将封装后的数据报文转发到映射转发平面或 广义转发平面; 如没有查到通信对端的 RID, 将数据报文做隧道封装后转发 到映射转发平面, 并向 ILR查询通信对端的 RID; 或者将数据报文緩存到本 地, 待获得通信对端的 RID后, 再将该通信对端的 RID作为目的地址, 该终 端的 RID作为源地址, 封装在该数据报文中, 然后将封装后的数据报文转发 到映射转发平面或广义转发平面。
步骤 802, 当目标 AGW准备发起 AGW重定位时, 向源 AGW发送锚定 DPF切换触发消息, 此步骤可选;
步骤 803 , 源 AGW收到目标接入网关锚定 DPF切换触发消息后, 而且 同意进行锚定 DPF切换时, 源 AGW向目标 AGW发送锚定 DPF切换请求消 息; 步骤 804, 目标 AGW选择目标 ILCR, 向目标 ILCR发起转发隧道建立 流程, 此隧道是专为转发来自源 ILCR的下行数据;
其中接入网关与 ILCR之间的隧道可以有多种方式,如 L2TPv3、 IP-in-IP、 MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本发明不局 限于任何一种特定的隧道方式。
步骤 805 , 目标 AGW向目标 ILCR发起隧道建立流程;
在隧道建立过程中, 目标 ILCR可能需要与归属 AAA服务器进行交互完 成认证。 其中接入网关与 ILCR之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP、 MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本 发明不局限于任何一种特定的隧道方式。 当釆用 MIP, 隧道的创建、 维护与 现有 WiMAX网络相同。
步骤 805a, 目标 ILCR为该终端分配新的 RID, 并在本地保存更新该终 端 AID-RID映射信息;
需要说明的是 805a是 805中的一个步骤。
此后, 终端上下行数据报文路径如 D803、 D804所示。
D803 , 下行数据报文路径: 源 ILCR收到通信对端发给终端的数据报文 后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式, 转发给源 AGW, 源 AGW通过源 AGW与目标 AGW之间的数据通道将数据 报文转发给目标 AGW, 目标 AGW再通过下行转发隧道发给目标 ILCR, 目 标 ILCR将数据通过目标 AGW与目标 ILCR间的隧道转发给目标 AGW, 目 标 AGW在将该报文通过与终端数据通道发往该终端。
D804, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基站 将数据报文转发给目标 AGW, 目标 AGW再转发给目标 ILCR, 目标 ILCR 获取通信对端的 AID , 并查询本地緩存中的 AID-RID映射信息, 如查到通信 对端的 RID, 则将该通信对端的 RID作为目的地址, 该终端的 RID作为源地 址, 封装在该数据报文中, 然后将封装后的数据报文转发到映射转发平面或 广义转发平面; 如没有查到通信对端的 RID, 将数据报文做隧道封装后转发 到映射转发平面, 并向 ILR查询通信对端的 RID; 或者将数据报文緩存到本 地, 待获得通信对端的 RID后, 再将该通信对端的 RID作为目的地址, 该终 端的 RID作为源地址, 封装在该数据报文中, 然后将封装后的数据报文转发 到映射转发平面或广义转发平面。
步骤 806 , 目标 ILCR在分配新的 RID后, 向终端归属 ILR发起 RID注 册流程, 将新分配的 RID带给 ILR, 更新 ILR上终端 AID-RID映射信息; 步骤 807 , 归属 ILR收到目标 AGW的 RID注册请求后, 验证 AID的合 法性, 并保存终端当前 AID-RID的映射信息;
本步骤可以在步骤 805中 ILCR到归属 AAA认证流程中执行。 此后, 终 端上下行数据^艮文路径如 D805、 D806所示。
D805, 下行数据报文路径: 目标 ILCR收到通信对端发给终端数据报文 后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式 后转发给目标 AGW, 目标 AGW将该报文通过与终端数据通道发往该终端。
D806, 上行数据才艮文路径: 同 D804。
此时, 可能还会存在由源 ILCR转发的数据报文, 这是由于还未通知通 信对端接入的 ILCR未更新终端 AID-RID映射信息导致的, 这时的下行数据 才艮文路径同 D803。
步骤 808 , 目标 AGW向源 AGW发送锚定 DPF切换响应, 完成 AGW的 切换;
步骤 809 , 目标 AGW向目标 ILCR发起切换通知, 通知目标 ILCR切换 完成;
步骤 810, 目标 ILCR设置切换定时器;
步骤 811 , 目标 ILCR使用 ILCR更新通信对端的方法通知通信对端接入 的 ILCR更新终端 AID-RID映射信息;
步骤 812 , 目标 ILCR给目标 AGW回应切换确认消息;
步骤 813 ,步骤 810中设置的定时时间到后,目标 ILCR释放与目标 AGW 间的下行转发隧道;
步骤 814 , 目标 AGW释放与源 AGW间的数据通道; 步骤 815, 源 AGW释放与源 ILCR间的隧道;
步骤 816, 目标 AGW向目标基站发起上下文报告流程, 将新的 AGW发 给目标基站, 此步骤在步骤 808后即可执行。
在本实施例中, 源 ILCR并不知道是否存在目标 ILCR, 以及其与目标 AGW之间的隧道何时成功建立, 因此, 源 ILCR对于收到的通信对端发给终 端的数据报文, 会始终进行 RID解封装, 此时目标 ILCR将不再解封装, 如 D803。 可选的, 此时也可以不用建立、 使用目标 AGW与目标 ILCR之间的 转发隧道,直接使用目标 AGW与源 AGW直接的隧道进行数据转发,如 D801。 可选的, 当目标 AGW与目标 ILCR之间的隧道建立成功后, 目标 AGW可以 通过源 AGW通知源 ILCR停止下行报文的解封装,此后下行数据报文路径为: 源 ILCR收到通信对端发给终端的数据报文后, 转发给源 AGW, 源 AGW通 过源 AGW与目标 AGW之间的数据通道将数据报文转发给目标 AGW, 目标 AGW再通过专用下行转发隧道发给目标 ILCR, 目标 ILCR剥去该数据报文 中封装的 RID, 恢复为通信对端发送的数据报文的格式后, 将数据通过目标 AGW与目标 ILCR间的隧道转发给目标 AGW, 目标 AGW再将该报文通过 与终端数据通道发往该终端。
本实施例中, 步骤 810中设置的切换定时器, 可以由源 ILCR设置, 也 可以由源 AGW设置, 还可以由目标 AGW设置, 此时, 后续的隧道释放步 骤中, 需要由设置定时器的网元在定时时间到后首先释放与其他网元间的数 据通道及相关信息, 同样适用于实施例十, 具体为:
该目标 AGW向该源 AGW发送所述切换响应后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器, 或, 该目标 AGW向源 AGW发送切换响应后, 向目标 ILCR发送切换通知; 该目标 ILCR收到目标 AGW的切换通知后设置定时器, 或,
该源 AGW收到该目标 AGW发送的切换响应后,向源 ILCR发送切换通 知; 该源 ILCR收到目标 AGW的切换通知后设置定时器,
定时时间到, 由设置定时器的网元开始释放以下为该终端分配的资源: 源 AGW与目标 AGW之间的转发隧道、 源 AGW与源 ILCR之间的隧道以及 目标 ILCR与目标 AGW之间的下行转发隧道。
本实施例中, 步骤 811不需要一定在步骤 810后执行, 可以在步骤 805a 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D804、 D806。 可选的, 此时上行数据报文也可以从目 标 AGW与源 AGW之间的隧道转发, 即数据报文从目标 AGW转发到源 AGW, 再到源 ILCR。
本实施例中, 目标 ILCR获取通信对端的 RID的方式与系统一中接入网 关获取通信对端 RID的方式大体相同, 只需要将执行者变为目标 ILCR, 而 在方式三、 四中, 目标 ILCR是从源 ILCR获得相关信息的。 系统二的其他实 施例也可釆用相同方法来获得通信对端的 RID。
在系统二的切换流程中 ILCR接入网关更新通信对端的方法与系统一中 的方法大体相同, 只需将方法中的接入网关替换为 ILCR。
实施例五
图 9适用于切换过程中数据的转发使用 ILCR之间的转发隧道, 且由目 标 ILCR发起 ILCR间转发隧道建立的场景, 其具体步骤描述如下:
步骤 901至 903 , 同步骤 601至 603;
D901、 D902, 同 D801、 D802;
步骤 904, 同步骤 605;
步骤 905 , 目标 ILCR根据在步骤 904中获得的源 ILCR的标识信息, 若 目标 ILCR与源 ILCR不相同, 向源 ILCR发起转发隧道的建立流程;
其中 ILCR 之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP、 MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本发明不局 限于任何一种特定的隧道方式。
步骤 904a, 同步骤 805a;
此后, 终端上下行数据^艮文路径如 D903、 D904所示。 D903 , 下行数据报文路径: 源 ILCR收到通信对端发给终端数据报文后, 通过转发隧道转发给目标 ILCR, 目标 ILCR剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式后, 再转发给目标 AGW, 目标 AGW 将该报文通过与终端数据通道发往该终端。
D904, 同 D804。
若步骤 905与步骤 904并行执行,即目标 ILCR在建立与目标 AGW之间 的隧道过程中同时建立 ILCR之间的隧道, 步骤 905可能在步骤 904之前完 成, 此时下行数据报文需要在目标 ILCR上先緩存, 待步骤 904完成后再下 发给目标 AGW。 而此时的上行数据报文路径同 D902。
步骤 906至步骤 912, 同步骤 806至步骤 812;
D905、 D906同 D805、 D806。
步骤 913 , 步骤 910中设置的定时时间到后, 目标 ILCR释放与源 ILCR 间的转发隧道;
步骤 914 , 源 ILCR释放与源 AGW之间的数据通道;
步骤 915, 源 AGW释放与目标 AGW间的数据通道;
本实施例中, 步骤 910中设置的切换定时器, 可以由源 ILCR设置, 也 可以由源 AGW设置, 还可以由目标 AGW设置, 此时, 后续的隧道释放步 骤中, 需要由设置定时器的网元在定时时间到后首先释放与其他网元间的数 据通道及相关信息, 以下同样适用于实施例六、 八、 九, 具体为:
该目标 AGW向该源 AGW发送所述切换响应后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器, 或, 该目标 AGW向源 AGW发送切换响应后, 向目标 ILCR发送切换通知; 该目标 ILCR收到目标 AGW的切换通知后设置定时器, 或,
该源 AGW收到该目标 AGW发送的切换响应后,向源 ILCR发送切换通 知; 该源 ILCR收到目标 AGW的切换通知后设置定时器,
定时时间到, 由设置定时器的网元开始释放以下为该终端分配的资源: 源 AGW与目标 AGW之间的转发隧道、 源 AGW与源 ILCR之间的隧道以及 目标 ILCR与源 ILCR之间的隧道。
本实施例中, 步骤 911不需要一定在步骤 910后执行, 可以在步骤 904a 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D904、 D906。 可选的, 此时上行数据^艮文也可以从目 标 ILCR与源 ILCR之间的隧道转发。
实施例六
图 10 适用于切换过程中数据转发使用 ILCR之间的转发隧道, 且由源
ILCR发起 ILCR间转发隧道建立的场景, 其具体步骤描述如下:
步骤 1001 , 同步骤 901 ;
D1001、 D1002, 同 D901、 D902。
步骤 1002至步骤 1005, 同步骤 702至 705; 源 AGW若根据目标 ILCR 的标识信息判断出需要进行跨 ILCR的切换,向原 ILCR发送 ILCR切换请求, 同时携带目标 ILCR标识信息; 否则不执行步骤 1003-1005。
此后, 终端上下行数据报文路径如 D 1003、 D1004所示。
D1003 ,下行数据报文路径。源 ILCR收到通信对端发给终端数据报文后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式, 通 过转发隧道转发给目标 ILCR,此时下行数据报文需要在目标 ILCR上先緩存。
D1004, 同 D1002。
步骤 1006 , 源 AGW向目标 AGW发送锚定 DPF切换请求消息; 步骤 1007 , 目标 AGW向目标 ILCR发起隧道建立流程;
在隧道建立过程中, 目标 ILCR可能需要与归属 AAA服务器进行交互完 成认证。 其中接入网关与 ILCR之间的隧道可以有多种方式, 如 L2TPv3、 IP-in-IP, MPLS(LDP-based和 RSVP-TE based)、 GRE、 MIP和 IPsec等, 本 发明不局限于任何一种特定的隧道方式。 当釆用 MIP, 隧道的创建、 维护与 现有 WiMAX网络相同。
步骤 1007a, 同步骤 904a。 此后, 终端上下行数据^艮文路径如 D 1005、 D1006所示。
D 1005 , 同 D903。 在 D 1003中緩存在目标 ILCR上的下行数据报文此时 也需要转发给目标 AGW。
D1006, 同 D904。
步骤 1008至步骤 1018, 同步骤 906至步骤 916;
D1007、 D1008同 D905、 D906。
本实施例中, 步骤 1012中设置的切换定时器, 可以由源 ILCR设置, 也 可以由源 AGW设置, 还可以由目标 AGW设置, 此时, 后续的隧道释放步 骤中, 需要由设置定时器的网元在定时时间到后首先释放与其他网元间的数 据通道及相关信息。
本实施例中 ,步骤 1013不需要一定在步骤 1012后执行,可以在步骤 1007a 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW与目标 ILCR间的隧道建立后,上行数据报 文即从该隧道转发, 如 D1006、 D1008。 可选的, 此时上行数据 4艮文也可以从 目标 ILCR与源 ILCR之间的隧道转发。
系统二中的切换流程中, AGW变化, 不一定会导致 ILCR的变化, 因此 源 AGW需要根据目标 ILCR标识信息, 或者目标 AGW需要根据源 ILCR标 识信息, 判断是否发生了 ILCR的变化, 当 ILCR未发生变化时, 源 ILCR与 目标 ILCR合一,此时不存在源 ILCR与目标 ILCR之间的隧道,不需要建立、 删除两者间的隧道。 当目标 ILCR相同时, ILCR也可以根据策略决定是否为 终端分配新的 RID , 当为终端分配新的 RID时, 可釆用本专利的流程图。
实施例七
实施例七与在图 8所示的实施例四相似, 亦适用于切换过程中数据的转 发使用接入网关之间的转发隧道的场景, 与实施例四的流程的差异之处在于 以下几点:
在步骤 805a后, 需要将目标 ILCR新分配的 RID在隧道建立流程中带给 目标 AGW。
步骤 806' ,目标 AGW在收到新分配的 RID后 ,向终端归属 ILR发起 RID 注册流程, 将新分配的 RID带给 ILR, 更新 ILR上终端 AID-RID映射信息。
实施例八
实施例八与在图 9所示的实施例五相似, 亦适用于切换过程中数据的转 发使用 ILCR之间的转发隧道, 且由目标 ILCR发起 ILCR间转发隧道建立的 场景, 与实施例五的流程的差异之处在于以下几点: 在步骤 905a后, 需要将目标 ILCR新分配的 RID在隧道建立流程中带给 目标 AGW;
步骤 906' ,目标 AGW在收到新分配的 RID后,向终端归属 ILR发起 RID 注册流程, 将新分配的 RID带给 ILR, 更新 ILR上终端 AID-RID映射信息。
实施例九
实施例九与在图 9所示的实施例五相似, 亦适用于切换过程中数据转发 使用 ILCR之间的转发隧道,且由源 ILCR发起 ILCR间转发隧道建立的场景, 实施例九的流程的差异之处在于以下几点:
步骤 1007a后, 需要将目标 ILCR新分配的 RID在隧道建立流程中带给 目标 AGW。
步骤 1008' , 目标 AGW在收到新分配的 RID后, 向终端归属 ILR发起 RID注册流程, 将新分配的 RID带给 ILR, 更新 ILR上终端 AID-RID映射信 息。
系统三中的切换流程中, AGW变化, 不一定会导致 ILCR的变化, 因此 源 AGW需要根据目标 ILCR标识信息, 或者目标 AGW需要根据源 ILCR标 识信息, 判断是否发生了 ILCR的变化, 当 ILCR未发生变化时, 源 ILCR与 目标 ILCR合一,此时不存在源 ILCR与目标 ILCR之间的隧道,不需要建立、 删除两者间的隧道。 当目标 ILCR相同时, ILCR也可以根据策略决定是否为 终端分配新的 RID , 当为终端分配新的 RID时, 可釆用本专利的流程图。
图 5-图 10的实施例均以接入网关与 ILCR之间存在动态隧道为例来阐述 切换流程, 上述各实施例也可以适用于接入网关与 ILCR 间为静态隧道的场 景, 此时在切换过程中, 目标 AGW与目标 ILCR间不再需要建立动态隧道, 两者之间的隧道, 在两者上电时已经创建成功, 其他步骤相同。 目标 AGW 选择了目标 ILCR后,可以利用两者之间的隧道通知目标 ILCR有终端切换并 将该终端的 AID发送给目标 ILCR,或目标 ILCR通过检查数据报文获知有终 端切换并获取该终端的 AID。
系统三
图 4b是应用上述身份位置分离技术的另一种 Wimax系统的网络架构的 示意图, 图中实线表示承载面的连接, 虚线表示控制面的连接。 该 Wimax网 络架构包括接入业务网络 41(W-ASN)和连接业务网络 (W-CSN)42。 W-ASN与 广义转发平面之间具有数据面接口, 表示为 D1接口。 W-CSN与广义转发平 面之间也可以具有数据面接口, 表示为 D2接口。 广义转发平面可以是支持 RID路由和转发数据报文的分组数据网络。
W-CSN中具有 AAA代理或服务器( AAA Proxy/Server ) 、 计费服务器、 互连网关设备等 Wimax架构中的原有网元, 还设置了身份位置寄存器(ILR ) /分组转发功能 (PTF) , 各 W-CSN中的 ILR/PTF构成了映射转发平面。
W-CSN中 HA和 /或 W-CR (核心路由器)可以保留, 也可以将其功能也转 移到 AGW来实现。 W-ASN中包括基站和 AGW, 其中的 AGW在 Wimax架 构中的 AGW所具有的功能实体(包含 DPF功能实体) 的基础上, 扩展了实 现 SILSN所需的新功能。
本实施例中, WiMAX网络中不存在 ILCR, AGW作为对外的数据通道 端点, 其设置为为终端分配 RID, 向 ILR注册和注销终端的 RID, 向 ILR查 询通信对端的 RID, 维护终端及其通信对端的 AID-RID映射信息, 对数据报 文进行 RID封装和解封装,以及根据 RID实现数据报文的路由和转发等功能。
与切换相关的,
所述 AGW设置为在终端切入时, 为该终端分配新的位置标识 (RID)并保 存该终端身份标识 (AID)与该新的 RID的映射信息,根据该终端的数据报文确 定该终端和通信对端的连接信息, 并向该终端通信对端接入的网关发起更新 该终端 RID的 RID更新流程; 在终端切出后, 释放对该终端分配的资源; 以 及对切入、 切出终端的数据报文进行转发处理。
进一步地, 切出控制模块, 其设置为在 W-ASN锚定的切换完成后, 向 目标 AGW发送 AGW切换请求;
切入控制模块, 其设置为在收到 AGW切换请求后, 向位置标识 (RID)分 配模块发送分配通知, 携带切入终端 AID, 之后, 向 RID注册模块发送注册 通知, 向 RID更新模块发送更新通知, 并向源 AGW返回 AGW切换响应;
RID 分配模块, 其设置为在收到分配通知后为该终端分配指向本 AGW 的新的 RID, 保存该终端 AID与该新的 RID的映射信息;
RID注册模块, 其设置为在收到注册通知后发起 RID注册流程, 更新该 终端归属身份位置寄存器 (ILR)保存的该终端的 RID;
报文转发模块, 其设置为对切入终端的数据报文进行 RID封装、 解 RID 封装和转发, 及在收到要发送到切出终端的数据报文后向目标侧转发, 还设 置为根据切入终端的数据报文确定该终端与通信对端的连接信息;
RID更新模块, 其设置为在收到更新通知后根据终端与通信对端的连接 信息向该终端通信对端接入的网关发送 RID更新通知,携带该终端的 AID及 新的 RID。
进一步地,
该 AGW的切入控制模块向源 AGW发送切换响应后, 设置定时器, 定 时时间到, 释放与源 AGW之间的转发隧道; 或,
AGW的切入控制模块向源 AGW发送切换响应; AGW的切出控制模块 接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道。
进一步地,
所述 AGW还包括映射信息维护模块, 其设置为保存及维护所有切入终 端的所有通信对端身份标识和位置标识 (AID-RID)映射信息;
该 AGW的切入控制模块还设置为, 接收源 AGW主动发送的, 或, 从 通信对端归属 ILR 或源 AGW 查询得到的该切入终端所有通信对端的 AID-RID映射信息,并通知映射信息维护模块进行保存及维护; 所述 AGW中 的切出控制模块还设置为, 将维护的切出终端所有通信对端的 AID-RID映射 信息主动或根据目标 AGW的查询发送到目标 AGW。
进一步地,
所述 AGW的 RID更新模块, 在发起 RID更新流程时, 根据通信对端 AID-RID的映射信息、本地配置信息或 DNS查询确定所述通信对端接入的网 关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
进一步地,
所述 AGW中的报文转发模块收到发给切出终端的下行数据报文后, 通 过与目标 AGW之间的转发隧道转发到该目标 AGW,收到发给切入终端的下 行数据报文时, 通过与该终端的数据通道发送给该终端。
进一步地,
所述切出控制模块向目标 AGW发送切换请求时, 向本 AGW中的报文 转发模块发送第一通知;
所述切入控制模块收到源 AGW发来切换请求时, 向本 AGW中的报文 转发模块发送第二通知;
所述 AGW中的报文转发模块在收到所述第一通知之前, 对收到的切出 终端的下行数据报文进行解 RID封装后再转发到目标 AGW, 收到所述第一 通知之后则直接转发到目标 AGW; 在收到所述第二通知之前, 对源 AGW转 发来的切入终端的下行数据报文直接发送到终端, 收到所述第二通知之后在 进行解 RID封装后再发送到终端; 对目标 ILCR转发来的切入终端的下行数 据报文均进行解 RID封装, 再通过与该终端的数据通道发送给该终端。
进一步地,
所述 AGW具有到广义转发平面的数据接口; 所述 AGW中的报文转发 模块将收到的切出终端的上行数据报文进行 RID封装后转发到映射转发平面 或广义转发平面; 在收到所述第二通知之前, 将收到的切入终端发送的上行 数据报文直接转发到源 AGW,在收到所述第二通知之后,对该上行数据报文 进行 RID封装后转发到映射转发平面或广义转发平面。
进一步地,
所述切出控制模块向目标 AGW发送的 AGW切换请求为锚定数据通道 功能 (DPF)切换请求; 所述切入控制模块向源 AGW发送的 AGW切换响应为 锚定 DPF切换响应。
实施例十
图 11所示的实施例十基于以上系统三实现,适用于切换过程中数据的转 发使用接入网关之间的转发隧道的场景, 其具体步骤描述如下:
步骤 1101 , 同步骤 501 ;
此后, 终端上下行数据报文路径如 D1101、 D1102所示。
D1101 ,下行数据报文路径:源 AGW收到通信对端发给终端数据报文后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式后, 通过源 AGW与目标 AGW之间的数据通道将数据报文转发给目标 AGW, 目 标接入网关在将该报文通过与终端数据通道发往该终端。
D1102, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基 站将数据报文转发给目标 AGW, 目标 AGW通过源 AGW与目标 AGW之间 的数据通道将数据报文转发给源 AGW, 源 AGW获取通信对端的 AID, 并查 询本地緩存中的 AID-RID映射信息, 如查到通信对端的 RID , 则将该通信对 端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报文中, 然后将封装后的数据报文转发到目标广义转发平面; 如没有查到通信对端的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并向 ILR查询通信对 端的 RID。 或者将数据报文緩存到本地, 待获得通信对端的 RID后, 再将该 通信对端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报 文中, 然后将封装后的数据报文转发到映射转发平面或广义转发平面。
步骤 1102至步骤 1104, 同步骤 502至步骤 504;
此后, 终端上下行数据报文路径如 D1103、 D1104所示。
D1103 , 下行数据报文路径: 源 AGW收到通信对端发给终端的数据报文 后 ,通过源 AGW与目标 AGW之间的数据通道将数据报文转发给目标 AGW, 目标 AGW剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文 的格式后, 目标接入网关在将该报文通过与终端数据通道发往该终端。
D1104, 上行数据报文路径: 终端发送上行数据文给目标基站, 目标基 站将数据报文转发给目标 AGW, 目标 AGW获取通信对端的 AID, 并查询本 地緩存中的 AID-RID映射信息, 如查到通信对端的 RID, 则将该通信对端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报文中, 然后 将封装后的数据报文转发到映射转发平面或广义转发平面; 如没有查到通信 对端的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并向 ILR查询 通信对端的 RID。 或者将数据报文緩存到本地, 待获得通信对端的 RID后, 再将该通信对端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该 数据报文中,然后将封装后的数据报文转发到映射转发平面或广义转发平面。
步骤 1105至步骤 1110, 同步骤 506至步骤 511 ;
D1105, 下行数据报文路径: 目标 AGW收到通信对端发给终端数据报文 后, 剥去该数据报文中封装的 RID, 恢复为通信对端发送的数据报文的格式 后, 目标接入网关在将该报文通过与终端数据通道发往该终端。
D1106, 上行数据才艮文路径。 同 D1104。
在步骤 1109前, 可能还会存在由源 AGW转发的数据报文, 这是由于还 未通知通信对端接入的网关更新终端 AID-RID映射信息导致的。 这时的下行 数据报文路径同 D1103。
步骤 1111 , 同步骤 513;
本实施例中, 步骤 1108中设置的切换定时器, 可以由源 AGW设置, 此 时,步骤 1110中,则需要由源 AGW在定时时间到后释放源 AGW与目标 AGW 间的数据通道及相关信息。
本实施例中,步骤 1109不需要一定在步骤 1108后执行,可以在步骤 1105 后的任意时刻被触发执行。
在本实施例中, 当目标 AGW收到切换请求后, 上行数据报文即直接从 目标 AGW转发, 如 D1104、 D1106。 可选的, 此时上行数据报文也可以从目 标 AGW与源 AGW之间的隧道转发, 即数据报文从目标 AGW转发到源 AGW。
本实施例中, 目标 AGW获取通信对端的 RID的方式同系统一中获取通 信对端 RID的方式。
本实施例中, 接入网关更新通信对端的方法同系统一中更新通信对端的 方法。
本发明的所有实施例中, 都是由有目标侧的接入网关或 ILCR向终端归 属 ILR进行终端 RID注册, 可选的 , 可以由源侧的接入网关或 ILCR在与目 标侧网元交互中获得目标侧网元为终端分配的 RID后, 向 ILR进行终端 RID 注册。
本发明实现了基于网络的身份标识和位置分离框架下的移动' 1·生切换管 理, 结合移动通讯网络特点提出了简化的切换管理流程, 提出了切换管理流 程中优化的用户数据管理方法, 不需要在接入网关、 ILCR或者身份位置寄存 器 ILR中保留通讯对端表, 不需要建立、 保存和维护通信对端表的信令交互 及设备处理负荷, 降低了网元数据报文转发的处理负荷。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或者将它们 分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集 成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。
为简化描述, 以上所述不仅适用于 WiMAX网络, 也可以适用于其他移 动通信网络。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。
工业实用性 本发明提供的实现锚点切换的全球微波互联接入 Wimax系统及其切换方 法, 将身份标识和位置分离的移动通信网络应用到 WiMAX网络, 当终端发 生移动切换时, 目标 AGW或目标 ILCR为切入终端分配新的 RID后, 根据 切入终端的数据报文确定切入终端与通信对端的连接信息, 并通知通信对端 接入的网关更新终端 AID-RID映射信息, 从而实现无固定锚点的切换, 减少 了数据包的路径迂回, 降低了传输延时和带宽浪费, 而且还可以达到解决 IP 地址双重身份的目的。

Claims

权 利 要 求 书
1、 一种全球微波互联接入( Wimax )系统的锚点切换方法, 该方法包括: 终端完成 Wimax接入业务网络锚定的切换后, 源接入网关 (AGW)向目标 AGW发送切换请求;
该目标 AGW收到切换请求后, 为该终端分配指向该目标 AGW的新的 位置标识RID), 目标 AGW根据该终端的数据报文确定该终端和通信对端的 连接信息,并向该终端的通信对端接入的网关发起更新该终端 RID的 RID更 新流程; 以及
该目标 AGW向该源 AGW发送切换响应, 完成切换,该源 AGW释放为 该终端分配的资源, 该终端和通信对端间的数据 文经该目标 AGW转发。
2、 如权利要求 1所述的切换方法, 其中:
所述 Wimax系统的连接业务网络包括身份位置核心路由器 (ILCR), 各个 ILCR具有与广义转发平面之间的数据接口, 所述广义转发平面支持以 RID 为源地址和目的地址的数据报文的路由和转发;
其中,该目标 AGW收到切换请求后,所述方法还包括: 选择目标 ILCR, 在与该目标 ILCR 间还未建立该终端数据报文转发的隧道时建立该隧道; 其 中, 切换完成后, 所述方法还包括: 源 ILCR释放为该终端分配的资源, 该 终端和通信对端之间的数据报文经该目标 AGW和该目标 ILCR转发。
3、 如权利要求 1所述的切换方法, 其中:
各 Wimax接入业务网络中的 AGW与广义转发平面之间具有数据接口, 该广义转发平面支持以 RID为源地址和目的地址的数据报文的路由和转发。
4、 如权利要求 1或 2或 3所述的切换方法, 所述方法还包括:
在所述 Wimax系统中, AGW维护接入的终端的所有通信对端的身份标 识和位置标识 (AID-RID)的映射信息, 其中, 切换过程中, 在 AGW维护接入 的终端的所有通信对端的 AID-RID映射信息的步骤中, 目标 AGW通过以下 方式获取通信对端的 AID-RID映射信息:
目标 AGW根据数据报文中通信对端的 AID 在本地查询通信对端的 AID-RID映射信息; 或,
目标 AGW从源 AGW转发的数据报文中, 获取通信对端的 AID-RID映 射信息; 或,
从通信对端的归属身份位置寄存器(ILR )或源 AGW查询到通信对端的 AID-RID映射信息; 或,
源 AGW将该终端的所有通信对端的 AID-RID映射信息主动发送给所述 目标 AGW。
5、 如权利要求 1或 2或 3所述的切换方法, 其中,
该目标 AGW发起 RID更新流程时, 所述方法还包括: 根据通信对端的 AID-RID映射信息、 本地配置信息或域名服务器(DNS )查询确定所述通信 对端接入的网关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终 端 AID和新的 RID的映射信息; 以及
所述通信对端接入的网关收到 RID 更新通知后, 将保存的该终端的 AID-RID映射信息更新为该 RID更新通知中携带的所述映射信息。
6、 如权利要求 2所述的切换方法, 其中:
该目标 AGW和目标 ILCR之间的隧道是该目标 AGW选择目标 ILCR后 , 通过隧道建立流程建立的该终端的动态隧道; 或者
该目标 AGW和目标 ILCR之间的隧道为两者上电后建立的静态隧道。
7、 如权利要求 2所述的切换方法, 所述方法还包括:
在该切换过程中, 源 ILCR收到通信对端发送给该终端的数据报文后转 发给该源 AGW, 该源 AGW通过与该目标 AGW之间的转发隧道将该数据报 文转发到该目标 AGW,该目标 AGW再通过与该终端的数据通道将该数据报 文发送给该终端。
8、 如权利要求 2所述的切换方法, 所述方法还包括:
在该切换过程中:
在该源 ILCR与目标 ILCR不同时,在所述两个 ILCR之间建立转发隧道, 该转发隧道在切换完成后释放; 在该两个 ILCR之间的转发隧道建立之前,源 ILCR收到通信对端发给该 终端的数据报文后转发给该源 AGW , 该源 AGW转发到该目标 AGW , 该目 标 AGW再通过与该终端间的数据通道将该数据报文发送给该终端; 以及 在该两个 ILCR之间的转发隧道建立之后,源 ILCR收到通信对端发给该 终端的数据报文后直接通过该转发隧道转发到该目标 ILCR, 该目标 ILCR转 发或緩存后再转发到该目标 AGW,该目标 AGW再通过与该终端间的数据通 道将该数据报文发送给该终端。
9、 如权利要求 8所述的切换方法, 其中, 所述两个 ILCR之间建立转发 隧道的方式为:
在该切换过程中:
该源 AGW将源 ILCR的标识信息发送到该目标 AGW, 该目标 AGW在 选择的目标 ILCR与该源 ILCR不同时, 将该源 ILCR的标识信息再发送到该 目标 ILCR, 该目标 ILCR建立到该源 ILCR的转发隧道; 或者
该目标 AGW选择目标 ILCR后, 将该目标 ILCR的标识信息发给该源 AGW, 该源 AGW在该目标 ILCR与源 ILCR不同时, 将该目标 ILCR的标识 信息再发送到该源 ILCR, 该源 ILCR建立到该目标 ILCR的转发隧道。
10、 如权利要求 1或 2所述的切换方法, 所述方法还包括:
该目标 AGW向源 AGW发送切换响应后, 设置定时器, 定时时间到, 释放与源 AGW之间的转发隧道,之后,源 AGW释放与源 ILCR之间的隧道; 或,
源 AGW接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道。
11、 如权利要求 1或 2所述的切换方法, 所述方法还包括:
该目标 AGW向该源 AGW发送所述切换响应后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器, 或, 该目标 AGW向源 AGW发送切换响应后, 向目标 ILCR发送切换通知; 该目标 ILCR收到目标 AGW的切换通知后设置定时器, 或, 该源 AGW收到该目标 AGW发送的切换响应后设置定时器后,向源 ILCR 发送切换通知; 该源 ILCR收到源 AGW的切换通知后设置定时器; 以及
定时时间到, 由设置定时器的网元开始释放以下为该终端分配的资源: 源 AGW与目标 AGW之间的转发隧道、 源 AGW与源 ILCR之间的隧道以及 目标 ILCR与源 ILCR之间的隧道。
12、 如权利要求 1或 3所述的切换方法, 所述方法还包括:
该目标 AGW向源 AGW发送切换响应后, 设置定时器, 定时时间到, 释放与源 AGW之间的转发隧道; 或,
源 AGW接收目标 AGW发送的切换响应后, 设置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道。
13、 如权利要求 8或 9所述的切换方法, 所述方法还包括:
在该切换过程中, 该目标 ILCR收到通信对端通过映射转发平面或广义 转发平面发送给该终端的下行数据报文后,通过该目标 ILCR与目标 AGW之 间的该隧道将该数据报文转发给该目标 AGW,该目标 AGW对该数据报文解 RID封装后, 再通过与该终端的数据通道将该数据报文发送给该终端。
14、 如权利要求 3所述的切换方法, 所述方法还包括:
在该切换过程中:
源 AGW收到通信对端发送给该终端的数据报文后,通过与该目标 AGW 之间的转发隧道将该数据报文转发到该目标 AGW,该目标 AGW再通过与该 终端之间的数据通道将该数据报文发送给该终端;
该目标 AGW收到通信对端通过映射转发平面或广义转发平面发送给该 终端的下行数据报文后, 通过与该终端的数据通道将该数据报文发送给该终 端。
15、 如权利要求 8、 9或 12所述的切换方法, 所述方法还包括: 在该切换过程中, 在该源 AGW向该目标 AGW发送切换请求之前, 由 该源 AGW对收到的该终端的下行数据报文进行解 RID封装; 在该源 AGW 向该目标 AGW发送 AGW切换请求之后, 由该目标 AGW对该源 AGW转发 来的该终端的下行数据报文进行解 RID封装。
16、 如权利要求 2所述的切换方法, 所述方法还包括:
在完成 Wimax接入业务网络锚定的切换后,该终端发送到接入不同 ILCR 的通信对端的数据报文路径如下:
在该目标 AGW与目标 ILCR建立动态隧道之前或该目标 AGW选择了与 该目标 AGW建立有静态隧道的目标 ILCR之前,该目标 AGW将收到的该终 端发送的该数据报文转发给该源 AGW, 该源 AGW对该数据报文进行 RID 封装和转发, 通过该源 ILCR和 /或映射转发平面转发到映射转发平面或广义 转发平面, 再经映射转发平面或广义转发平面送达该通信对端接入的网关; 在该目标 AGW与目标 ILCR建立动态隧道之后或该目标 AGW选择了与 该目标 AGW建立有静态隧道的目标 ILCR之后,该目标 AGW对该终端发送 的数据报文进行 RID封装和转发,该数据报文通过该目标 ILCR,或该源 AGW 和源 ILCR, 或该目标 ILCR和映射转发平面, 或映射转发平面转发到广义转 发平面, 再经广义转发平面送达该通信对端接入的网关。
17、 如权利要求 3所述的切换方法, 所述方法还包括:
在完成 Wimax接入业务网络锚定的切换后,该终端发送到接入不同 AGW 的通信对端的数据报文路径如下:
该源 AGW发送切换请求之前, 将收到的该终端发送的该数据报文转发 给该源 AGW,该源 AGW对该数据报文进行 RID封装、查询并转发到映射转 发平面或广义转发平面, 再送达该通信对端接入的网关;
该目标 AGW收到切换请求之后, 对该终端发送的数据报文进行 RID封 装和查询后, 直接转发到映射转发平面或广义转发平面; 或者先转发到该源 AGW, 再经映射转发平面或广义转发平面送达该通信对端接入的网关。
18、 如权利要求 2所述的切换方法, 其中, 该目标 AGW选择目标 ILCR 的方式为以下方式中的一种:
该目标 AGW直接或通过拜访认证授权计费 ( AAA )服务器与该终端归 属 AAA服务器交互, 获取该目标 AGW可以连接的 ILCR的信息, 并从中选 择一个 ILCR作为目标 ILCR;
该终端初始入网时, 终端归属 AAA服务器将该终端允许接入的 ILCR直 接或通过拜访 AAA服务器通知给该源 AGW, 源 AGW在该切换过程中将该 终端允许接入的 ILCR通知给该目标 AGW, 目标 AGW从中选择一个 ILCR 作为目标 ILCR;
目标 AGW根据自身的配置信息选择目标 ILCR。
19、 如权利要求 2所述的切换方法, 其中:
ILR与 AAA服务器合设, 表示为 AAA/ILR , 该 AAA/ILR保存有归属终 端的 AID-RID映射信息; 该目标 AGW在为该终端分配新的 RID后 , 通过向 目标 ILCR发起隧道建立流程实现 RID的更新, 其中, 在通过向目标 ILCR 发起隧道建立流程实现 RID的更新的处理中, 该目标 AGW在隧道建立流程 中将该终端的 AID和新的 RID带到该目标 ILCR,该目标 ILCR再利用到该终 端归属 AAA/ILR的认证流程中将该终端的 AID和新的 RID带到该终端归属 AAA/ILR , 该终端归属 AAA/ILR将保存的该终端的 AID-RID映射信息中的 RID更新为收到的该新的 RID。
20、 一种可实现锚点切换的全球微波互联接入(Wimax ) 系统, 其包括 接入业务网络和连接业务网络,接入业务网络中包括基站和接入网关 (AGW), 其中:
所述 AGW设置为, 在终端切入时, 为该终端分配新的位置标识 (RID)并 保存该终端身份标识 (AID)与该新的 RID的映射信息,根据该终端的数据报文 确定该终端和通信对端的连接信息, 并向该终端的所有通信对端接入的网关 发起更新该终端 RID的 RID更新流程; 在终端切出后, 释放对该终端分配的 资源; 以及对切入、 切出的终端的数据报文进行转发处理。
21、 如权利要求 20所述的 Wimax系统, 其中, 所述 AGW包括: 切出控制模块, 其设置为在 Wimax接入业务网络(W-ASN )锚定的切换 完成后, 向目标 AGW发送切换请求;
切入控制模块, 其设置为在收到切换请求后, 向位置标识 (RID)分配模块 发送分配通知,携带切入的终端 AID,之后, 向 RID注册模块发送注册通知, 向 RID更新模块发送更新通知, 并向源 AGW返回切换响应;
RID 分配模块, 其设置为在收到分配通知后为该终端分配指向本 AGW 的新的 RID, 保存该终端 AID与该新的 RID的映射信息;
RID注册模块, 其设置为在收到注册通知后发起 RID注册流程, 更新该 终端的归属身份位置寄存器 (ILR)保存的该终端的 RID;
报文转发模块,其设置为对切入的终端的数据报文进行 RID封装、解 RID 封装和转发, 及在收到要发送到切出的终端的数据报文后向目标侧转发, 根 据切入的终端的数据报文确定该终端与通信对端的连接信息; 以及
RID更新模块, 其设置为在收到更新通知后根据终端与通信对端的连接 信息向该终端所有通信对端接入的网关发送 RID 更新通知, 携带该终端的 AID及新的 RID。
22、 如权利要求 21所述的 Wimax系统, 其中:
所述连接业务网络中包括身份位置核心路由器 (ILCR),各 ILCR与广义转 发平面之间具有数据接口; 所述广义转发平面支持以 RID为源地址和目的地 址的数据报文的路由和转发; 所述 ILCR 包括报文转发模块, 其设置为路由 和转发以 RID为源地址和目的地址的数据 ^艮文;
所述 AGW还包括隧道建立模块; 所述 AGW的切入控制模块还设置为, 在收到 AGW切换请求后选择目标 ILCR, 向该隧道建立模块发送隧道建立通 知; 所述隧道建立模块设置为, 在收到隧道建立通知后, 为切入的终端建立 与该目标 ILCR间的动态隧道; 或者
所述 AGW还包括隧道建立模块, 所述隧道建立模块设置为在上电后建 立与 ILCR间的静态隧道。
23、 如权利要求 22所述的 Wimax系统, 其中:
各 AGW与广义转发平面之间具有数据接口,该广义转发平面支持以 RID 为源地址和目的地址的数据报文的路由和转发。
24、 如权利要求 21至 23任一权利要求所述的 Wimax系统, 其中, 所述 AGW还包括映射信息维护模块, 其设置为保存及维护所有切入的 终端的所有通信对端的身份标识和位置标识 (AID-RID)映射信息;
该 AGW的切入控制模块还设置为, 接收源 AGW主动发送的, 或, 从 通信对端归属 ILR或源 AGW查询得到的该切入的终端的所有通信对端的 AID-RID映射信息,并通知映射信息维护模块进行保存及维护; 所述 AGW中 的切出控制模块还设置为, 将维护的切出的终端的所有通信对端的 AID-RID 映射信息主动或根据目标 AGW的查询发送到目标 AGW;
和 /或, AGW 的报文转发模块还设置为, 根据切入的终端的数据报文确 定通信对端的 AID-RID映射信息, 并通知所述映射信息维护模块进行保存及 维护。
25、 如权利要求 21至 23任一权利要求所述的 Wimax系统, 其中: 所述 AGW的 RID更新模块是设置为, 在发起 RID更新流程时, 根据通 信对端的 AID-RID映射信息、 本地配置信息或域名服务器(DNS )查询确定 所述通信对端接入的网关, 向所述通信对端接入的网关发送 RID更新通知, 携带该终端 AID和新的 RID的映射信息。
26、 如权利要求 21至 23任一权利要求所述的 Wimax系统, 其中: 所述 AGW中的报文转发模块还设置为, 收到发给切出终端的下行数据 报文后, 通过与目标 AGW之间的转发隧道转发到该目标 AGW, 收到发给切 入终端的下行数据报文时, 通过与该终端的数据通道发送给该终端。
27、 如权利要求 22所述的 Wimax系统, 其中:
所述 ILCR还包括隧道建立模块, 其设置为为切入的终端建立与源 ILCR 间的转发隧道, 或为切出的终端建立与目标 ILCR 间的转发隧道, 并在切换 完成后释放该转发隧道;
所述 ILCR 中的报文转发模块是设置为, 在切换过程中, 对收到的发给 切出的终端的数据报文先转发给源 AGW, 在源、 目标 ILCR间的转发隧道建 立后则直接通过该转发隧道转发到该目标 ILCR;对收到的发给切入的终端的 数据报文, 通过与目标 AGW间的隧道转发给该目标 AGW。
28、 如权利要求 27所述的 Wimax系统, 其中:
所述 AGW中的切出控制模块还设置为,将源 ILCR的标识信息发送到目 标 AGW; 所述 AGW中的切入控制模块还设置为, 在选择的目标 ILCR与该 源 ILCR不同时, 将源 ILCR的标识信息发送到目标 ILCR; 所述 ILCR中的 隧道建立模块设置为,根据收到的源 ILCR的标识信息建立到该源 ILCR的转 发隧道; 或者
所述 AGW中的切入控制模块还设置为,将目标 ILCR的标识信息发给源 AGW;所述 AGW中的切出控制模块还设置为,将收到的目标 ILCR与源 ILCR 不同时, 将该目标 ILCR的标识信息发送到源 ILCR; 所述 ILCR中的隧道建 立模块设置为,根据收到的目标 ILCR的标识信息建立到该目标 ILCR的转发 隧道。
29、 如权利要求 22所述的 Wimax系统, 其中:
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; AGW的切出控制 模块还设置为, 释放与源 ILCR之间的隧道; 或,
AGW的切入控制模块还设置为, 向源 AGW发送切换响应; AGW的切 出控制模块还设置为, 接收目标 AGW发送的切换响应后, 设置定时器; 定 时时间到, 释放与目标 AGW之间的转发隧道以及与源 ILCR之间的隧道。
30、 如权利要求 27所述的 Wimax系统, 其中:
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; AGW的切出控制 模块还设置为,释放与源 ILCR之间的隧道; ILCR的切出控制模块还设置为, 释放与目标 ILCR之间的转发隧道, 或,
AGW的切出控制模块还设置为,接收目标 AGW发送的切换响应后,设 置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道, 以及与源 ILCR 之间的隧道; ILCR的切出控制模块还设置为, 释放与目标 ILCR之间的转 发隧道, 或,
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 向目 标 ILCR发送切换通知;该 ILCR的切入控制模块还设置为,在收到目标 AGW 发送的切换通知后, 设置定时器, 定时时间到, 释放与源 ILCR之间的转发 隧道, 源 ILCR切出控制模块释放与源 AGW之间的隧道, 源 AGW的切出控 制模块释放与目标 AGW之间的隧道, 或,
该 AGW的切出控制模块还设置为, 收到该目标 AGW发送的切换响应 后, 向源 ILCR发送切换通知; 该 ILCR的切出控制模块还设置为, 在收到目 标 AGW发送的切换通知后, 设置定时器, 定时时间到, 释放与目标 ILCR之 间的转发隧道以及与源 AGW之间的隧道, 源 AGW的切出控制模块释放与 目标 AGW之间的隧道。
31、 如权利要求 23述的 Wimax系统, 其中:
该 AGW的切入控制模块还设置为, 向源 AGW发送切换响应后, 设置 定时器, 定时时间到, 释放与源 AGW之间的转发隧道; 或,
AGW的切出控制模块还设置为,接收目标 AGW发送的切换响应后,设 置定时器; 定时时间到, 释放与目标 AGW之间的转发隧道。
32、 如权利要求 21至 23任一权利要求所述的 Wimax系统, 其中: 所述 AGW中的切出控制模块向目标 AGW发送切换请求时, 向本 AGW 中的报文转发模块发送第一通知;
所述 AGW中的切入控制模块收到源 AGW发来切换请求时, 向本 AGW 中的报文转发模块发送第二通知;
所述 AGW中的报文转发模块在收到所述第一通知之前, 对收到的切出 的终端的下行数据报文进行解 RID封装后再转发到目标 AGW, 收到所述第 一通知之后则直接转发到目标 AGW; 在收到所述第二通知之前, 对源 AGW 转发来的切入的终端的下行数据报文直接发送到终端, 收到所述第二通知之 后在进行解 RID封装后再发送到终端; 对目标 ILCR转发来的切入的终端的 下行数据报文均进行解 RID封装,再通过与该终端的数据通道发送给该终端。
33、 如权利要求 32所述的 Wimax系统, 其中:
所述连接业务网络中包括 ILCR;所述 AGW中的^艮文转发模块是设置为, 将收到的切出的终端的上行数据报文转发到源 ILCR,在收到所述第一通知之 前对该上行数据报文进行 RID封装; 对收到的切入的终端发送的上行数据报 文, 如该 AGW与目标 ILCR间的隧道未建立, 将该上行数据报文转发到源 AGW, 在收到所述第二通知之后还对该上行数据报文进行 RID封装, 如该 AGW与目标 ILCR间的隧道已建立,对该上行数据报文进行 RID封装后转发 到该目标 ILCR。
34、 如权利要求 32所述的 Wimax系统, 其中:
所述 AGW具有到广义转发平面的数据接口; 所述 AGW中的报文转发 广义转发平面; 在收到所述第二通知之前, 将收到的切入的终端发送的上行 数据报文直接转发到源 AGW,在收到所述第二通知之后,对该上行数据报文 进行 RID封装后转发到广义转发平面。
35、 如权利要求 22所述的 Wimax系统, 其中, 所述 AGW的切入控制 模块是设置为:
与切入终端归属的 AAA服务器交互,获取本目标 AGW可以连接的 ILCR 的信息, 从中选择一个 ILCR作为目标 ILCR; 或
从源 AGW发来的切入终端允许接入的 ILCR中选择一个 ILCR作为目标 ILCR,所述允许接入的 ILCR是该切入终端归属的 AAA服务器发送到源 AGW 的; 或
根据本 AGW的配置信息选择目标 ILCR。
PCT/CN2010/078168 2010-02-25 2010-10-27 实现锚点切换的wimax系统及其切换方法 WO2011103753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010122921.7 2010-02-25
CN201010122921.7A CN102170674B (zh) 2010-02-25 2010-02-25 实现无固定锚点切换的Wimax系统及其切换方法

Publications (1)

Publication Number Publication Date
WO2011103753A1 true WO2011103753A1 (zh) 2011-09-01

Family

ID=44491614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078168 WO2011103753A1 (zh) 2010-02-25 2010-10-27 实现锚点切换的wimax系统及其切换方法

Country Status (2)

Country Link
CN (1) CN102170674B (zh)
WO (1) WO2011103753A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043727A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 一种演进网络中目标优选三层快速切换的实现方法
WO2008017267A1 (fr) * 2006-07-31 2008-02-14 Huawei Technologies Co., Ltd. Procédé, système et dispositif pour traiter un transfert intercellulaire de couche trois
CN101232698A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 缩短切换时延的方法、系统和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043727A (zh) * 2006-03-24 2007-09-26 华为技术有限公司 一种演进网络中目标优选三层快速切换的实现方法
WO2008017267A1 (fr) * 2006-07-31 2008-02-14 Huawei Technologies Co., Ltd. Procédé, système et dispositif pour traiter un transfert intercellulaire de couche trois
CN101232698A (zh) * 2007-01-23 2008-07-30 华为技术有限公司 缩短切换时延的方法、系统和终端

Also Published As

Publication number Publication date
CN102170674B (zh) 2015-04-01
CN102170674A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
US8804746B2 (en) Network based on identity identifier and location separation architecture backbone network, and network element thereof
US10750418B2 (en) SDN based connectionless architecture with dual connectivity and carrier aggregation
CN109156040B (zh) 一种通信控制的方法及相关网元
US11871273B2 (en) Systems and methods for user plane handling
US9853937B1 (en) Internal packet steering within a wireless access gateway
US9622143B1 (en) Access point name mappings for a layer two wireless access network
WO2011050678A1 (zh) 一种基于控制面与媒体面分离的网络架构实现的通信网络
US20170347251A1 (en) Signaling method in mobile communication core network and system thereof
CN105874830A (zh) 一种移动性管理的方法、装置及系统
EP3043597B1 (en) Service processing methods and network controller
KR20220131309A (ko) 통신 방법 및 장치
WO2011085618A1 (zh) 一种终端切换的方法及相应的通信网络
WO2011032455A1 (zh) 切换管理及切换时用户数据管理的方法、系统和agr
WO2011050724A1 (zh) 基于wcdma核心网实现移动通信的系统及终端接入方法
WO2007131404A1 (fr) Méthode et dispositif de transfert rapide
KR20150001251A (ko) 무선 통신 시스템에서 데이터 트래픽 분산을 위한 방법 및 장치
CN110140416B (zh) 用户设备上下文管理方法、装置和设备
CN102056236B (zh) 基于Wimax网络架构实现的通信网络及终端接入方法
WO2011088606A1 (zh) 实现无固定锚点切换的wimax系统及其切换方法
WO2011103707A1 (zh) 实现锚点切换的全球微波互联接入(wimax)系统及其切换方法
WO2011079710A1 (zh) 一种可实现无固定锚点切换的Wimax系统及其切换方法
WO2011088607A1 (zh) 实现无固定锚点切换的wimax系统及其切换方法
WO2011103753A1 (zh) 实现锚点切换的wimax系统及其切换方法
WO2023143270A1 (zh) 一种通信方法及装置
WO2013000289A1 (zh) 直连隧道的移动性管理方法、网元及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846376

Country of ref document: EP

Kind code of ref document: A1