WO2011032492A1 - 身份识别、跨网通信、业务移植方法及信息互通网络架构 - Google Patents

身份识别、跨网通信、业务移植方法及信息互通网络架构 Download PDF

Info

Publication number
WO2011032492A1
WO2011032492A1 PCT/CN2010/076932 CN2010076932W WO2011032492A1 WO 2011032492 A1 WO2011032492 A1 WO 2011032492A1 CN 2010076932 W CN2010076932 W CN 2010076932W WO 2011032492 A1 WO2011032492 A1 WO 2011032492A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
information
aid
format
Prior art date
Application number
PCT/CN2010/076932
Other languages
English (en)
French (fr)
Inventor
吴强
黄兵
符涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011032492A1 publication Critical patent/WO2011032492A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an identity recognition, an inter-network communication, an implementation method of service migration, and a network architecture for implementing information interworking.
  • the IP address in the TCP/IP (Transmission Control Protocol/Internet Protocol) protocol widely used by the Internet has a dual function, and serves as the location of the network terminal's communication terminal host network interface in the network topology.
  • the identity which is also the identity of the transport layer host network interface.
  • the TCP/IP protocol was not designed at the beginning of the host. However, as host mobility becomes more prevalent, the semantic overload defects of such IP addresses are becoming increasingly apparent.
  • the IP address of the host changes not only the route changes, but also the host identity of the communication terminal changes. This causes the routing load to become heavier and heavy, and the change of the host ID may cause the application and connection to be interrupted.
  • the purpose of identification and location separation is to solve the problem of semantic overload and severe routing load of IP addresses, and to separate the dual functions of IP addresses to achieve dynamic redistribution of mobility, multiple townships, IP addresses, and mitigation of routes. Support for issues such as load and mutual visits between different network areas in the next generation Internet.
  • the network router based implementation method is one of the solutions for identity identification and location separation.
  • the format of the host identifier is an IP V4 address
  • the upper layer application is compatible only with the identifier of the IPV4 format.
  • the IPV4 address space cannot meet the number of applications.
  • IPV4 addresses The number of extended addresses will inevitably change the encoding format of IPV4 addresses, affecting the compatibility of upper-layer applications and affecting the interconnection with traditional IPV4 networks.
  • Some implementation methods of other user identifiers are defined in the prior art, such as IPV6 address, user identification in HIP (Host Identity Protocol), etc. These implementation methods only consider the bit length of the identification. How to expand the number of address spaces, how to be compatible with existing IPV4 and IPV6 terminals, how to be compatible with upper-layer applications, IPV4 and IPV6 Specific functions such as porting of business applications need to be implemented by upgrading HOST (host) software or changing business applications.
  • the prior art implements interworking with IPV4/IPV6 terminals by supporting a dual protocol stack in a network or a terminal, and does not consider compatibility processing functions such as access to IPV4/IPV6 terminals and porting of IPV4/IPV6 services. .
  • the network-based identity location separation framework since the framework changes the logical meaning of the IP address layer in the terminal HOST, the original IP address layer is changed from the dual meaning of the location identifier and the identity identifier to only identify the user identity, Then have the logical meaning of the location identifier.
  • the identity location separation framework In the network-based identity location separation framework, how to be compatible with IPV4/IPV6 services, so that the IPV4/IPV6 services in the existing Legacy IP network (traditional IP network) can be smoothly transplanted without modification, enabling network-based
  • the identity location separation framework is interconnected with the Legacy IP network, and the prior art is not clear.
  • the present invention provides an implementation method for identity identification, which is applied to an identity identification and location separation architecture network, including: the architecture network assigns a unique identity (AID) to each accessed terminal, The AID is always unchanged during the movement of the terminal, where the AID includes first identification information, and the first identification information is used for identity identification of the terminal when the architecture network communicates with the traditional communication network, or Used to identify traditional network terminals that access the network in the architecture.
  • AID unique identity
  • the traditional communication network is a traditional IP network
  • the first identification information is public network IP address information in the traditional IP network.
  • the AID further includes second information, where the second information is a constant or a variable determined based on the architecture.
  • the second information is used as a prefix or a suffix of the AID.
  • the configuration of the AID is as follows: Saving the AID in an authentication center, and bringing the AID to an access service node (ASN) where the terminal is located when the terminal authenticates; when the terminal accesses the architecture network, the ASN will The first identification information is sent to the terminal, and the terminal configures the AID in a protocol stack.
  • ASN access service node
  • the configuration of the AID is used in the following manner: saving the AID in a subscriber identity module in the terminal; when the terminal accesses the architecture network, reading from the subscriber identity module The AID, and sending the AID to the ASN where the terminal is located in the access signaling.
  • the present invention provides an implementation method for inter-network communication, which is applied to an identity identification and location separation architecture network and a traditional communication network, including: the AID of the terminal in the architecture network includes first identification information, The first identification information is used for identity identification of the terminal when the architecture network communicates with the traditional communication network, or is used to identify a traditional network terminal that accesses the architecture network; the source ASN receives the source in the architecture network.
  • the routing identifier of the interconnection service node (ISN) in the traditional communication network is encapsulated in the data packet, and is forwarded to the ISN through the generalized forwarding plane; And forwarding the data packet to the destination terminal according to the first identification information in the AID of the destination terminal in the data packet.
  • the traditional communication network is a traditional IP network
  • the first identification information is public network IP address information in the traditional IP network.
  • the source ASN stores mapping information of the routing identifier of the ISN and the public network IP address segment; when the source ASN receives the data packet sent to the traditional communication network, according to the Mapping
  • the information encapsulates the route identifier of the ISN in the data packet.
  • the AID further includes second information, where the second information is a constant or a variable determined based on the architecture.
  • the second information is used as a prefix or a suffix of the AID.
  • the source terminal is an IPV4/IPV6 terminal
  • the source ASN receives the data packet sent by the source terminal, and uses the source address and the destination address in the IPV4/IPV6 format in the data packet.
  • the present invention further provides another method for implementing inter-network communication, which is applied to a traditional communication network and an identity identification and location separation architecture network, including: the AID of the terminal in the architecture network includes first identification information, where An identification information is used for identity identification of the terminal when the architecture network communicates with the traditional communication network, or for identifying a traditional network terminal accessing the architecture network; the ISN receives the source terminal in the traditional communication network When the data packet is sent to the network, the destination address in the data packet is used as the first identification information, and is converted into the AID of the destination terminal, encapsulated in the data packet, and the data is encapsulated in the data packet.
  • the packet is encapsulated with the route identifier of the ISN, and the mapping information of the AID and the route identifier (RID) is queried locally or to the identity location register according to the destination address, and the RID of the found destination terminal is encapsulated in the data packet. And forwarding, by the generalized forwarding plane, to the destination ASN; the destination ASN forwarding the data packet to the corresponding destination terminal according to the AID of the destination terminal.
  • the traditional communication network is a traditional IP network
  • the first identification information is public network IP address information in the traditional IP network.
  • the AID further includes second information, where the second information is a constant or a variable determined based on the architecture.
  • the second information is used as a prefix or a suffix of the AID.
  • the source address and the destination address in the IPV4/IPV6 format in the data packet are converted into the second information by adding the second information to Corresponding AID format, and querying the mapping information of the AID and the RID of the destination terminal according to the destination AID; if the destination terminal is an IPV4/IPV6 terminal, the destination ASN receives the data packet and performs decapsulation. Processing, and converting the destination address from an AID format to an IPV4 format or an IPV6 format by removing the second information.
  • the present invention provides a method for implementing a service migration, including: when an application service in a traditional communication network is migrated to the architecture network, two types of identity identifiers are allocated to the application server of the application service: a first identification information for interworking with the traditional communication network, and an identity identifier (AID) for interworking with the architecture network; the terminal in the architecture network uses the first identification information as a destination address
  • the application server sends a data packet, and the ASN where the terminal is located is sent to the ASN where the application server is located through the generalized forwarding plane after performing RID encapsulation on the data packet; When the data packet is described, the RID encapsulation is stripped and sent to the application server.
  • the traditional communication network is a traditional IP network
  • the first identification information is public network IP address information of the application server in the traditional IP network.
  • the AID includes the first information and the second information, where the second information is a constant or a variable determined according to the architecture, and the second information is used as a prefix or a suffix of the AID.
  • the terminal is an IPV4/IPV6 terminal
  • the ASN where the terminal is located converts the destination address in the data packet into a corresponding AID format by adding the second information, and queries the location according to the destination AID.
  • the present invention also provides another method for implementing a service migration, including: when an application service in a traditional communication network is migrated into the architecture network, assigning two types of identity identifiers to the application server of the application service: The first identification information when the traditional communication network communicates with the identity identifier (AID) for interworking with the architecture network; the terminal in the traditional communication network uses the first identification information as the destination address to After being applied, the ASN is sent to the application server by using the generalized forwarding plane.
  • the RID is stripped and sent to the application server.
  • the traditional communication network is a traditional IP network
  • the first identification information is public network IP address information of the application server in the traditional IP network.
  • the AID includes the first information and the second information, where the second information is a constant or a variable determined according to the architecture, and the second information is used as a prefix or a suffix of the AID.
  • the ISN converts the destination address in the data text into a corresponding AID format by adding the second information, and queries mapping information of the AID and the RID of the application server according to the destination AID;
  • the ASN where the application server is located converts the destination address from the AID format to the IPV4 format or the IPV6 format by removing the second information.
  • Another technical problem to be solved by the present invention is to provide a network architecture for implementing information interworking, and realize information intercommunication between networks.
  • the present invention provides a network architecture for implementing information interworking, including a first network and a second network.
  • At least a first node is provided in the first network, when the first node sends information to a second node of the second network or receives information from a second node of the second network, where the information is transmitted in the first network
  • the recipient identifier of the information and the sender identifier are present in a first format
  • the second network includes a second node, a first interworking node associated with the first network, and a second interworking node associated with the second node
  • the first interworking node is configured to: when accepting information sent by the first node of the first network to the second node of the second network, converting the recipient identifier of the information from the first format to the second format and forwarding the information To the second interworking node
  • the second interworking node is configured to: when accepting the information sent by the first node of the first network to the second node of the second network, when the second node is the recipient, the identifier exists in the second format And sending the information to the second node; when the second node is
  • the second interworking node is further configured to: when the second node sends information to the first node of the first network, where the sender identifier of the information exists in the first format, the sender identifier of the transition information is the second a format, sent to the first interworking node; when the second node sends information to the first node of the first network, and the sender identifier and the recipient identifier of the information exist in the second format, the information is sent to the first interworking node;
  • the first interworking node is further configured to: when accepting information sent by the second node to the first node of the first network, change the sender identifier of the information from the second format to the first format, and send the information to The first node.
  • the first interworking node is further configured to: convert to a recipient identifier of the second format by adding a constant or a variable before or after the recipient identifier of the first format.
  • the present invention further provides another network architecture for implementing information interworking, including a first network and a second network, where the first network is provided with at least a first node, and when the first node is connected to a second network. The node sends information or accepts information from the second node of the second network.
  • the second network includes a second node, a first interworking node associated with the first network, and a second interworking node associated with the second node;
  • the second interworking node is configured to: when the second node sends information to the first node of the first network, where the sender identifier of the information exists in the first format, the sender identifier of the transition information is in the second format, and is sent to the first An interworking node; when the second node sends information to the first node of the first network, where the sender identifier and the receiver identifier of the information exist in the second format, the information is sent to the first interworking node; the first interworking The node is configured to: when accepting the information sent by the second node to the first node of the first network, converting the sender identifier of the information from the second format to the first format, and transmitting the information to the first node of the first network .
  • the present invention provides a network, based on an identity identifier and a location identifier separation architecture, including an access network and a backbone network, where the access network and the backbone network do not overlap in a topological relationship, wherein:
  • the access network is located at an edge of the backbone network, and is configured to implement access of the network terminal.
  • the backbone network is configured to implement routing and forwarding of data packets between terminals accessed through the access network.
  • AID unique identity
  • the AID includes first identification information, and the first identification The information is used for identity identification of the terminal when the identity identification and location separation architecture network communicates with the traditional communication network, or is used to identify a traditional network terminal that accesses the identity identification and the location separation architecture network.
  • the present invention has at least the following beneficial effects: Under the framework of network-based identity identification and location separation, a specific implementation method for identity recognition is proposed, which stipulates that each network element is compatible with the application service, and meets the requirements of the number of coding spaces. , realized the interconnection with the traditional IPV4/IPV6 network, realized on IPV4/IPV6 The compatibility of the layer application defines the evolution transition mode of the upper layer application service of IPV4/IPV6, and the rich and diverse applications supporting the IPV4/IPV6 network can be smoothly transplanted into the network-based identity and location separation framework.
  • FIG. 1 is a schematic diagram of an architecture of a network-based identity and location separation architecture and a legacy IP network of the present invention
  • FIG. 2(a) and FIG. 2(b) are network-based identity and location of an embodiment of the present invention
  • FIG. 3 is a functional block diagram of an access service node according to an embodiment of the present invention
  • FIG. 4 is a functional block diagram of an interconnected service node according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of mutual access between IPV4 terminals in a network-based identity identification and location separation architecture according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the present invention
  • FIG. 8 is a schematic diagram of a network access identity and location separation architecture of an IPV4 terminal accessing a terminal of a Legacy IPV4 network;
  • FIG. 8 is a diagram of a terminal access network-based identity and location separation architecture of a Legacy IPV4 network according to an embodiment of the present invention;
  • FIG. 9 is an implementation of the identity-based identification and bit of the interworking proxy server in the embodiment of the present invention;
  • FIG. 10 is a schematic diagram of an intra-network DNS service in an identity-based location identification and separation architecture according to an application example of the present invention;
  • FIG. 11 is a legacy IP network IPV4 terminal access based on an application example of the present invention.
  • the proposed network-based identity and location separation framework separates the dual functions of the identity and location of IP addresses, enabling dynamic redistribution of mobility, multiple townships, and IP addresses, mitigating routing load, and next-generation Internet. Support for issues such as mutual visits between different network areas.
  • the core idea of the network-based identity and location separation framework is: There are two types of identification in the network: Access Identifier (AID) and Routing-Location Identifier (RID); Each user is assigned a unique AID that remains the same throughout the move.
  • AID Access Identifier
  • RID Routing-Location Identifier
  • the network is divided into an access network and a backbone network, and the access network is located at the edge of the backbone network and is responsible for accessing the network terminal.
  • the backbone network is responsible for routing and forwarding data packets of the terminal accessed by the access network.
  • the backbone network includes: a generalized forwarding plane and a mapping forwarding plane.
  • An Access Service Node (ASN) is located at the demarcation point between the backbone network and the access network, and interfaces with the access network and the backbone network. There is no overlap between the access network and the backbone network in the topology relationship.
  • each user terminal is uniquely assigned an AID, and the AID is used in the access network, and remains unchanged during the movement of the terminal; RID It is the location identifier assigned to the terminal and is used in the backbone network.
  • the backbone network in this architecture is divided into a mapping forwarding plane and a generalized forwarding plane.
  • the generalized forwarding plane is mainly used for routing and forwarding data packets with the RID as the destination address according to the RID in the data packet.
  • the data routing and forwarding behavior in the generalized forwarding plane is consistent with the Legacy IP network.
  • the main network elements of the generalized forwarding plane include CR (Common Router) and ISN (Interconnect Service Node).
  • the mapping forwarding plane is mainly used to store the identity location mapping information of the terminal (that is, the mapping information of the AID-RID). ), processing the registration and query of the terminal location, routing and forwarding the data with the AID as the destination address.
  • the primary network element of the mapping forwarding plane includes ILR/PTF (Identity Location Register/Packet Transfer Function).
  • the ASN is independent of the backbone network in the partitioning of the architecture.
  • the backbone network includes ASN.
  • Figure 2 (a) and Figure 2 (b) are just the differences in architecture. The functions that ASN actually performs are the same. Referring to FIG. 1, FIG. 2(a) and FIG. 2(b), in the network-based identity identification and location separation architecture of this embodiment, the main network elements and functional entities involved are as follows:
  • the accessed user terminal may be one or more of a mobile node, a fixed node, and a nomadic node.
  • Access network Provides Layer 2 (physical layer and link layer) access services for user terminals.
  • the access network can be a system such as a BSS (Base Station Subsystem), a RAN (Radio Access Network), an eNodeB (evolved Node ⁇ , an evolved Node B), or the like. (Digital Subscriber Line, Digital Subscriber Line), AP (Access Point, Wireless Access Point), etc.
  • ASN Maintains the connection between the terminal and the backbone network, assigns the RID to the terminal, processes the handover process, processes the registration process, and performs accounting/authentication, maintenance/inquiry of the AID-RID mapping relationship of the communication peer, encapsulation, routing, and transmission.
  • the ASN When receiving the data packet sent by the terminal, the ASN searches for the corresponding RID locally according to the AID of the Correspondence Node (CN) in the packet: If the corresponding AID-RID mapping entry is found, then In the data packet, the AID is replaced by the RID, or the data packet is forwarded to the backbone network by encapsulating the RID; if the corresponding AID-RID mapping entry is not found, the ILR (Identity Location Register) is sent to the ILR (Identity Location Register) Issue a query process to obtain an AID-RID mapping table entry, and then replace the AID with the RID in the related data message, or forward the data packet by encapsulating the RID; or send a query to the ILR The data packet is forwarded to the backbone network for routing and forwarding.
  • CN Correspondence Node
  • the AID-RID mapping After receiving the AID-RID mapping relationship returned by the ILR, the AID-RID mapping is saved in the local cache.
  • the ASN receives the data packet sent by the network to the terminal, the ASN strips the outer layer. After the RID is encapsulated, it is sent to the terminal.
  • Certification Center responsible for recording user attributes in the network of this architecture, including user categories, authentication letters Information such as information and user service levels, generating user security information for authentication, integrity protection, and encryption, and authenticating and authorizing users when the user accesses.
  • the certification center supports the two-way rights between the network and users of this architecture.
  • the ILR and PTF can be two functional modules on the same entity, located in the mapping forwarding plane of the backbone network.
  • the ILR is responsible for maintaining/storing the AID-RID mapping relationship of the users in the network-based identity and location separation framework, implementing the registration function, and processing the location query process of the communication peer. Specifically, when the terminal (Mobile Node, MN for short) is powered on or the location changes, the registration process is initiated to the ILR through the ASN, so that the real-time AID-RID mapping relationship of the MN is saved in the ILR.
  • the PTF After receiving the data packet sent by the ASN, the PTF routes and forwards the PTF according to the destination AID. After the PTF node in the mapping forwarding plane finds the mapping relationship between the destination AID and the RID, it encapsulates the RID information in the data packet header and forwards it to the generalized forwarding plane to the communication peer.
  • ISN Interconnect Service Node: Used to query and maintain the AID-RID mapping information of the network terminal of the architecture, encapsulate, route, and forward data packets between the architecture network and the legacy IP network to implement the architecture. Interworking between the network and Legacy IP. When a handover occurs in the mobile terminal of the architecture, the ISN acts as a proxy anchor between the network of the architecture and the Legacy IP of the mobile terminal.
  • the ASN includes the following functional modules:
  • the access processing module 31 is configured to cooperate with the terminal and the authentication center to complete authentication of the terminal when the terminal requests access, and establish a connection with the terminal through the access network.
  • the terminal is assigned an RID, and the registration registration module is initiated to initiate registration of the terminal.
  • the registration module 32 is configured to, after receiving the notification of the registration of the terminal, initiate registration with the home domain ILR of the terminal, carrying the current AID-RID mapping information of the terminal; and receiving the cancellation registration of the terminal After the notification of the registration, the terminal home domain ILR is notified to delete the information registered by the terminal, including the AID-RID mapping information of the terminal.
  • the connection maintenance module 33 is configured to maintain the connection between the ASN and the terminal during the online connection after the terminal accesses, and maintain the connection between the ASN and the ASN accessed by the communication peer when the terminal communicates.
  • the mapping management module 34 is configured to cache and maintain the AID-RID mapping information of the terminal after the terminal accesses, and query the corresponding RID according to the AID of the communication peer to the IRR of the mapping forwarding plane after receiving the query notification. Maintain the queried AID-RID mapping information.
  • the offline processing module 35 is configured to notify the connection maintenance module to release the related connection between the terminal and the network after the terminal accessing the ASN is offline, and notify the mapping management module to delete the terminal.
  • the AID-RID mapping information, and the notification registration module acquires registration for the terminal.
  • the message forwarding module 36 is configured to encapsulate the data packet sent by the terminal accessing the ASN on the RID of the terminal and the communication peer, route and forward the ASN to the communication peer, and send to the access After the data packet of the terminal of the ASN is decapsulated, it is sent to the terminal.
  • the packet forwarding module 36 is further divided into a first forwarding unit and a second forwarding unit, where: the first forwarding unit is configured to: after receiving the data packet sent by the terminal accessing the local ASN, according to the data packet
  • the AID of the communication peer as the destination address queries the AID-RID mapping information in the local cache.
  • the RID of the communication peer is used as the destination address, and the RID of the terminal is used as the source address, and the data is encapsulated in the data.
  • the packet is encapsulated in the newly added Layer 3 header of the data packet, and then the encapsulated data packet is forwarded to the generalized forwarding plane. If the RID of the communication peer is not found, the data packet is sent. After tunnel encapsulation, it is forwarded to the mapping forwarding plane, and the mapping management module is notified to query the RID of the communication peer.
  • the second forwarding unit is configured to: after receiving the data packet to be sent to the terminal accessing the ASN, strip the RID encapsulated in the data packet, and restore the format of the data packet sent by the communication peer to the ASN. After that, the connection between the ASN and the terminal is sent to the terminal.
  • the switching control module 37 is divided into a cut-out control unit and a cut-in control unit, wherein: the cut-out control unit is configured to, after receiving the switching request, determine that the terminal is to switch to another ASN according to the destination of the handover (referred to as a hand-cut ASN) When the switch receives the response, the terminal is notified of the switch, and after receiving the response, the terminal is notified to access the cut-in ASN, and the data packet sent to the terminal received during the handover is forwarded to the cut-in ASN, and after the handover is completed, the mapping management module is notified to delete the terminal. AID-RID mapping information.
  • the cut-in control unit is configured to: after receiving the handover request, assign the RID to the terminal and save the AID-RID mapping information of the terminal, obtain the information of the communication peer end of the terminal from the cut-out ASN, and return a handover response, and notify the registration
  • the module initiates a registration process for the location update of the terminal.
  • the hand-in control unit may be further configured to notify the ASN of all the communication peers of the terminal or the AIS anchored by the terminal when the terminal communicates with the Legacy IP network terminal to update the AID-RID mapping information of the terminal.
  • the architecture network is compatible with IPV4/IPV6 terminals (referring to the terminals supporting the IPV4/IPV6 protocol stack in the existing Legacy IP network) and the AID needs to proxy IPV4/IPV6 terminals to implement network AID data packets when the AID is different from the IPV4/IPV6 address format.
  • IPV4/IPV6 data packet compatibility processing To this end, a format conversion module 38 needs to be added in the ASN, which is set to the IPV4/IPV6 address (which may be the source address, or source) of the network terminal of the architecture in the data packet sent by the IPV4/IPV6 terminal accessing the ASN.
  • the ISN includes the following functional modules: a connection maintenance module 41, which is configured to establish and maintain a connection between the network terminal of the architecture and the Legacy IP network terminal, and when the network terminal of the architecture switches, the terminal is in the present A proxy anchor between the fabric network and the Legacy IP to maintain a connection to the Legacy IP network.
  • a connection maintenance module 41 which is configured to establish and maintain a connection between the network terminal of the architecture and the Legacy IP network terminal, and when the network terminal of the architecture switches, the terminal is in the present A proxy anchor between the fabric network and the Legacy IP to maintain a connection to the Legacy IP network.
  • the mapping management module 42 is configured to extract and maintain the AID-RID mapping information of the network terminal in the data packet, and query the corresponding RID according to the AID of the terminal to be queried to the ILR of the mapping forwarding plane after receiving the query notification.
  • the queried AID-RID mapping information is maintained locally.
  • the packet forwarding module 43 is further divided into a first forwarding unit and a second forwarding unit, where: the first forwarding unit is configured to set the AID of the network terminal of the architecture according to the data packet sent by the legacy IP network (as the destination address or according to The destination address translation is obtained, and the AID-RID mapping information in the local cache is queried: if the RID corresponding to the network terminal AID of the architecture is found, the RID of the network terminal of the architecture is encapsulated in the data packet as the destination address (such as encapsulation).
  • the second forwarding unit strips the RID encapsulated in the data packet and sends it to the terminal or format conversion module of the Legacy IP network.
  • the ISL further includes a format conversion module 44 configured to set the IPV4/IPV6 address of the network terminal of the architecture included in the data packet sent by the Legacy IP network. Converted to the corresponding AID, and then forwarded to the first forwarding unit for forwarding; and converted the AID of the network terminal of the architecture in the data packet decapsulated by the second forwarding unit into an IPV4/IPV6 address format, and then sent to the Legacy IP The terminal of the network.
  • the main interfaces of this architecture include:
  • the S1/D1 interface is the interface (or reference point) between the terminal and the ASN. among them:
  • S1 is a signaling interface between the terminal and the ASN, and is mainly used for message flow processing of access management, handover, authentication, charging, and registration.
  • D1 is the data transceiving interface between the terminal and the ASN.
  • the format of the data packet of the D1 interface is:
  • the source AID is the AID of the terminal that sends the data packet, and is the source address of the data packet.
  • the destination AID is the AID of the communication peer to which the data packet is sent.
  • the source address and the destination address are encapsulated in the third layer. In the header.
  • the S2/D2 interface is the interface between the ASNs. among them:
  • S2 is mainly used for handover management of handover signaling, and transmits an RID update message when the location between the communication peers changes.
  • D2 is mainly used for data forwarding between ASNs during handover.
  • the format of the data packet on the D2 interface is: Before the ASN forwards data packets, the tunnel encapsulation is added to the data packets.
  • tunnel encapsulation methods such as L2TPv3, IP-in-IP, MPLS (LDP-based and RSVP-TE based), GRE, and IPsec.
  • the invention is not limited to any particular tunnel encapsulation.
  • S3 is the signaling interface between the ASN and the ISN.
  • the ASN During the communication between the network terminal of the architecture and the legacy IP network terminal, if the terminal of the network in the architecture switches, the ASN will notify the ISN of the new AID-RID mapping information of the network terminal through the S3 interface.
  • D3 is the external interface with the generalized forwarding plane.
  • the format of the data packet on the D3 interface is:
  • the data packet of the D3 interface is newly encapsulated with a Layer 3 header based on the data packet of the D1 interface.
  • the new Layer 3 header includes a source RID and a destination RID, where the source RID is allocated for the terminal that sends the data packet.
  • the RID, the destination RID is the RID assigned to the correspondent end to which the packet is sent.
  • this packaging method is not unique.
  • S4 is a signaling interface between the ASN and the mapping forwarding plane. It is mainly used to query and maintain AID-RID mapping information.
  • D4m is the data forwarding interface between the ASN and the mapping forwarding plane.
  • the format of the data packet on the D4m interface is:
  • the data packet of the D4m interface is also encapsulated with a Layer 3 header based on the data packet of the D1 interface.
  • the source address of the new Layer 3 header is the source RID
  • the destination address is RIDi, where the source RID is for sending data.
  • RIDi is the routing address of the ILR/PTF in the mapping forwarding plane connected to the ASN, and is obtained from the configuration data on the ASN.
  • S5 is a signaling interface between the ILRs in the mapping forwarding plane. It is used to query and maintain AID-RID mapping information and map routing information interaction in the forwarding plane.
  • the Di interface is the data forwarding interface between the architecture network and the Legacy IP network.
  • the data packet of the Di interface is the same as the data packet of the Legacy IP network, as follows: Layer 2 header source IPV4/IPV6 Destination IPV4/IPV6 data packet payload. . .
  • the network-based identity and location separation architecture will coexist with the Legacy IP network for a long time, and the architecture will initially exist and evolve in the form of one or more islands of the Legacy IP network.
  • Figure 2 (a) and Figure 2 (b) when the backbone part of the identity-based location separation architecture is in the same plane as the Legacy IP network, and the Legacy IP network and the network-based identity location separation architecture network communicate with each other. All data messages will be sent and received via the ISN.
  • IPV4/IPV6 terminal refers to the terminal that supports the existing IPV4/IPV6 protocol stack in the Legacy IP network.
  • the AID terminal refers to the terminal that has been upgraded to support the AID encoding requirement.
  • IPV4/IPV6 address layer in the IPV4/IPV6 protocol stack is extended to support AID-encoded addresses that extend the IPV4/IPV6 address bits.
  • the upper layer business application is also handled in the terminal.
  • ASN also needs to support the access management functions of AID terminals and IPV4/IPV6 terminals, and implement AID proxy function for IPV4/IPV6 terminals. It is responsible for proxying IPV4/IPV6 terminals to implement network-based identity and location separation framework AID data packets and IPV4/IPV6 data packet compatibility processing.
  • IPV4 terminal takes the case of the IPV4 terminal as an example to describe the implementation method of the identity recognition of the user terminal in the network of the architecture, that is, the AID coding mechanism.
  • the embodiments referred to herein are equally applicable to IPV6 terminals.
  • the requirement for AID coding can only meet the requirement of the number of coding spaces, that is, the maximum coding length of AID should meet the maximum number of nodes.
  • AID should also consider interoperability with IPV4 networks, consider compatibility with upper-layer applications, and enable a wide variety of applications of IPV4 networks to be smoothly ported to network-based identities and The position is separated in the frame.
  • the key considerations for the AID encoding mechanism in this architecture network include: 1) Most of the existing network applications are based on IPV4 applications. Therefore, the AID encoding mechanism should be compatible with the IPV4 address format to be compatible with upper-layer applications;
  • the terminal in this architecture needs to access the Legacy IPV4 network application and has interworking requirements with the Legacy IPV4 network. Therefore, the AID coding space and the IPV4 address space of the Legacy IP V4 network cannot be ambiguous, so as to be able to uniquely distinguish the access. Communication peer.
  • a specific identity recognition implementation method based on the architecture is proposed, and the AID format is determined as: an Expand Header (EH) + a suffix (suffix32).
  • the AID encoding format specifically includes the following two implementation schemes: Embodiment 1
  • the 32-bit suffix part ⁇ The IPV4 public network address is used, and the IP V4 public network address of the suffix part is allocated according to the address allocation specification of the Legacy IP network to implement interconnection with the legacy IP network.
  • the IPV4 terminal compatibility with the upper layer service is implemented.
  • the value of the extension header is a constant determined in the identity identifier and the location separation framework.
  • the extension header of the AID is removed and converted into a corresponding IP address, and the IP address is added as a constant of the extension header to be converted into a corresponding AID.
  • the setting rule of the extension header constant is a unique constant determined in the identity identifier and the location separation framework, so as to implement flexible conversion between the AID format and the IPV4 public network address.
  • the network device of the architecture can configure the data without querying the corresponding relationship, and the format conversion between the AID and the IPV4 public network address can be conveniently implemented without saving the correspondence table between the AID and the IPV4 address in the network. .
  • the AID encoding format can also use the IP V4 public network address plus a constant as a suffix.
  • the AID suffix suffix32 is a public network address
  • the Legacy IPV4 network is used.
  • the identity-based location separation architecture is a public network address node of the Legacy IPV4 network; and the IPV4 terminal based on the identity location separation architecture is used as a public network address node access network in the Legacy IPV4 network, and other nodes. Communication.
  • the network architecture based on the identity location separation architecture is an extension of the Legacy IPV4 network.
  • the AID On the interface (ISN) of the Legacy IPV4 network interconnection, the AID undergoes address translation and uses the public IPV4 address assigned to the architecture network. Interoperate with the Legacy IPV4 network.
  • the identity of the user In the Legacy IP network, the identity of the user is identified by the IPV4 address format.
  • the identity of the user is used in the AID format.
  • the communication between the network and the legacy IPV4 is used to uniquely identify the communication peer.
  • the implementation has the following characteristics: Since the 32-bit suffix 32 part of the AID is exactly the same as the IPV4 public network address, the number of requirements in the evolution process can be satisfied in the namespace; the expansion header Expand Header uses a constant method to ensure The network-based identity and location separation framework is an integral part of the Legacy IP. From the perspective of the Legacy IP network, the uniqueness of the IPV4 public network address in the network-based identity and location separation framework is guaranteed; Constantly, the format conversion can be very flexible, and the mutual access between the architecture network and the Legacy IP network can be realized.
  • Embodiment 2 After the legacy Legacy IP network evolves to a network based on the network-based identity and location separation framework, the value of the extended header EH is allocated by the identity identifier and the location separation framework as needed. After completing the historical task of the network evolution transition, the AID address scale is expanded to support more user scales. After the transition phase of the evolution, there is no requirement for interoperability with the Legacy IP network. The AID does not have to follow the address allocation specification of the Legacy IP network when using the public network address. Within the network-based identity and location separation framework, the AID can uniquely identify the communication peer. The extension header EH can be extended from a constant to a variable, and the identity and location separation framework can be used as needed. Allocation, greatly expands the available AID namespace.
  • the manner in which the AID code is allocated to the user terminal includes, but is not limited to, the following: (a) The network configuration mode saves the AID of the terminal in the authentication center HSS/AAA (Home Subscriber Server/Authentication Authorization Accounting, In the authentication and authorization accounting server/home subscriber server, the HSS/AAA brings the AID along with the user identification to the access gateway device ASN when the user authenticates.
  • HSS/AAA Home Subscriber Server/Authentication Authorization Accounting
  • the HSS/AAA brings the AID along with the user identification to the access gateway device ASN when the user authenticates.
  • the user identification is: International Mobile Subscriber Identity (IMSI) in the cellular mobile network, and Network Access Identification (NAI) or Username (Username) when accessing the fixed network such as ADSL.
  • IMSI International Mobile Subscriber Identity
  • NAI Network Access Identification
  • Username Username
  • the ASN For the IPV4 terminal, when the terminal accesses the network, the ASN sends the suffix32 part of the AID to the terminal as the IPV4 address of the terminal, and the terminal configures the corresponding IPV4 address in the protocol stack. For the AID terminal, the ASN sends the AID to the terminal, and the terminal configures the AID.
  • Terminal configuration mode For IPV4 terminals, the AID is initially stored in the user identification module of the terminal (such as SIM card, UIM card, etc.), and the terminal configures the corresponding IP V4 address in the protocol stack.
  • the AID information is read from the SIM/UIM card, and the AID is sent to the ASN in the access signaling, and the ASN saves the AID of the terminal.
  • the AID terminal the AID is saved in the SIM/UIM card, and the AID is configured by the terminal.
  • the RID number can use the IPV4/IPv6 address format commonly supported by routers in the existing Legacy IP network to indicate the location of the ASN where the current terminal is located.
  • the scope of the RID is in the generalized forwarding plane of the backbone network of the architecture.
  • the ASN When registering or switching, the ASN assigns the RID to the terminal according to the established policy, and the RID assigned by the ASN should refer to To the ASN. According to business needs, the ASN can assign one or more dedicated RIDs to one terminal, and can also assign the same RID to multiple terminals.
  • the architecture is based on the principle of location identity separation.
  • the main influencing factors of the network topology in the generalized forwarding plane are the number and deployment modes of functional entities such as ASN and ISN.
  • the location change of the access terminal is not directly related to the network topology.
  • the routing table size is positively related to the number of communication hosts. Especially in the IPV4/IPV6 dual protocol stack scenario, the routing table size will increase exponentially. Frequent changes in the size of the routing table will lead to an increase in route aggregation time.
  • the RID is used as the routing basis.
  • the ASN and the ISN can allocate the same RID to multiple access users.
  • the RID indicates the location of the ASN and the ISN.
  • the number of routing entries in the generalized forwarding plane is mainly related to The number of ASNs and ISNs is positively correlated, which reduces the correlation with the number of access users.
  • the RID of multiple access terminals is used to reduce the association between the size of the routing table and the number of access users, thereby improving the scalability of the routing system.
  • the source address and destination address of the data packets sent and received by the IPV4 terminal are in the IPV4 format.
  • the source AID and destination AID carried are the extended header + IPV4 address format, and the ASN converts the source AID and the destination AID into IPV4 addresses identifiable by the IPV4 terminal; In the case of a data message, the ASN converts the source address in the IPV4 format to the corresponding AID.
  • the method mainly includes the following steps: Step 101: The source IPV4 terminal sends a data message, and the source address and the destination address are both IP V4 public network addresses. Format; Step 102: After the source ASN adds the IPV4 public network address format of the source address and the destination address to the extension header, the source AID and the destination AID address format are formed; and the data packet is encapsulated, and the RID information is encapsulated in the datagram.
  • the source ASN After the text is forwarded to the backbone network for forwarding; specifically, the source ASN obtains the source RID and the RID information of the peer end based on the source AID address and the destination AID address locally or from the mapping forwarding plane of the backbone network, and the source RID is The RID information of the peer end is encapsulated in the outer layer of the AID address and forwarded to the generalized forwarding plane of the backbone network for forwarding; the generalized forwarding plane forwards the data packet to the destination ASN according to the RID information of the peer end encapsulated in the data packet; Step 103, destination ASN When the backbone network receives the data packet sent to the destination IPV4 terminal, the data packet is decapsulated, and the outer source/end RID is removed.
  • the source AID, the destination AID is the extension header + IPV4 public network address format
  • the destination ASN strips the source AID and the destination header of the destination AID, and the part that retains the IPV4 public network address format is filled in the corresponding source address and destination address field. Give the destination IPV4 terminal.
  • the method mainly includes the following steps:
  • the source terminal is an AID terminal and the destination terminal is an IP V4 terminal
  • the data sent by the source terminal is used.
  • the source address and the destination address in the packet are in the AID-encoded format. Therefore, the source ASN does not need to be translated.
  • the RID of the peer end is encapsulated in the data packet header and sent to the backbone network for routing and forwarding. For the specific forwarding process of the data packet by the backbone network, refer to the foregoing embodiment.
  • the source AID and the destination AID carried are the extended header + IP V4 public network address format, and the destination ASN strips the extended headers of the source AID and the destination AID.
  • the part that retains the IPV4 public network address format is filled in the corresponding source address and destination address field and sent to the destination IPV4 terminal.
  • the source IPV4 terminal sends a data packet, and the source address and the destination address are both in the IPV4 public network address format, and the source ASN sends the IPV4 public network address of the source address and the destination address.
  • the format After the format is added to the extension header, it becomes the source AID and destination AID address format; the RID encapsulation processing of the data packet is performed to forward to the generalized forwarding plane of the backbone network; and at the destination ASN, the destination terminal itself can support the AID encoding.
  • the destination ASN can directly send the data packet to the destination AID terminal according to the source/destination address of the AID encoding format after performing RID decapsulation on the data packet received from the general forwarding plane.
  • the method includes the following steps: Step 201: The source IPV4 terminal in the network of the architecture sends a data packet to the destination IPV4 terminal in the Legacy IP network, and the source address and the destination address are both in the IPV4 public network address format. 202.
  • the source ASN receives the data packet sent by the source IPV4 terminal in the network of the architecture, the source terminal IPV4 adds the extension header to the source AID address format, and the destination address retains the IPV4 public network address format.
  • the ASN stores the mapping information of the IP address segment (which may be a unique IP address or an IP address interval) and the routing identifier RID of the ISN.
  • the ASN queries the RID corresponding to the IP address through the destination IPV4 public network address, and locally or according to the source AID. After the source RID is queried by the ILR, the data is encapsulated, and the source RID and the route identifier RID of the ISN are encapsulated in the data packet, and then sent to the backbone network for forwarding processing.
  • Step 301 When the IPV4 terminal in the Legacy IP network accesses the IPV4 terminal of the architecture network, all data of the source IPV4 terminal in the Legacy IP network will be transmitted and received via the ISN, as shown in FIG.
  • the process includes the following steps: Step 301: When the source IPV4 terminal in the Legacy IP network sends a data packet to the destination IPV4 terminal in the local network through the source ISN, the source address and the destination address are both in the IPV4 public network address format.
  • the destination IPV4 public network address is an exclusive IP V4 public network address segment in the network-based identity location separation architecture.
  • step 302 the source ISN converts the destination IPV4 public network address increase extension header constant into the destination AID address format in the data packet.
  • the ISN In order to replace the destination IP address of the IPV4 in the data packet, and query the corresponding destination RID locally with the destination AID, or initiate a location query process to the backbone network to find the corresponding RID; and, the ISN is the source IPV4 public network.
  • the address is assigned an RID (which is pre-assigned by the ISN based on a fixed IP address segment) that points to the ISN.
  • the ISN encapsulates the two RID information in the data packet and sends it to the backbone network for forwarding. Specifically, the source ISN searches the RID information of the peer end to the ILR in the mapping forwarding plane of the backbone network in the foregoing manner, and then the RID of the peer end.
  • the information and the RID routing address of the ISN are encapsulated in the outer layer of the AID address and forwarded to the generalized forwarding plane of the backbone network.
  • the generalized forwarding plane forwards the data packet to the destination ASN according to the RID information of the peer end encapsulated in the data packet.
  • Step 303 After the destination ASN performs RID decapsulation on the data packet received by the backbone network, the source address of the data packet is in IPV4 format and the destination address is in AID format, that is, the extension header + IPV4 public network address.
  • the destination ASN strips the extended header part of the destination AID, and the reserved IPV4 public network address part is filled in the destination address field and sent to the destination IPV4 terminal.
  • the destination ASN when the destination ASN receives the data packet from the destination IPV4 terminal, the destination ASN encapsulates the RID routing address assigned to the source IPV4 public network address in the data packet and sends it to the generalized forwarding plane in the backbone network.
  • the forwarding plane forwards the data packet to the ISN corresponding to the RID routing address according to the RID routing address.
  • Step 401 The source AID terminal in the network of the architecture passes the source ASN to the destination IPV4 terminal in the traditional network. Send the data message, the source address in the data message is AID encoding format, destination address
  • the address of the public network address of the IP address is as follows: Step 402: When the source ASN receives the data packet sent by the source AID terminal, according to the IP address segment (which may be a unique IP address or an IP address interval) saved in the ASN, and the route identifier RID of the ISN. The mapping information is used to find the RID corresponding to the public IP address of the destination IPV4.
  • the source RID corresponding to the source ID is encapsulated in the data packet and sent to the backbone network for routing and forwarding.
  • the source address carried in the data packet is in the AID format, and the destination address is the IPV4 public network address, and the destination ISN expands the source AID.
  • the header part is stripped, and the IPV4 public network address is reserved in the corresponding source address, and the destination IPV4 public network address is filled in the destination address field and sent to the destination IPV4 terminal.
  • the network architecture based on the identity location separation architecture is used as an integral part of the IPV4 network, and the IPV4 public network address is used to interconnect with the IPV4 network.
  • an interworking proxy server may be introduced between the IP V4 network and the network architecture based on the identity location separation architecture, and the user identification AID inside the network architecture based on the identity location separation architecture is translated.
  • AID address is used to identify the communication peer in a network architecture based on the identity separation architecture.
  • the internal AID address is stripped and extended at the interworking proxy server.
  • the header constant, only the corresponding IPV4 public network address part, is replaced with the public IPV4 address, so that it can be used normally on the external public network.
  • Interworking The proxy server can be built into the interconnected service node ISN.
  • the main application business model is in the form of a client-server (C/S) mode.
  • the server is on the public network and uses the public IP address.
  • the client is on the private network or the public network.
  • the private network address needs to be translated to the network address through NAT (Network Address Translation).
  • Public network address The mutual access address between the client and the server is the IP V4 public network address.
  • the application service server When the Internet application service is migrated to the network-based location and identity separation architecture during the coexistence of the architecture network and the Legacy IP network, the application service server has two types of identity: IPV4 public network address for Internet interworking, and for The location of the network and the identity separation architecture interoperate with AID identification.
  • IPV4 public network address
  • the 32-bit suffix suffix32 of the AID is the public network address of the IPV4 format of the server, and the bit length and value of the extended header EH are determined by the constants determined in the identity-based location separation architecture.
  • the destination address filled in the data packet is the public network IPV4 address of the application service server; the data packet is delivered to the network-based network.
  • the ISN completes the packet format conversion and converts the public IPV4 address to the AID.
  • Application Example 1 This application example describes the intra-network DNS service based on the identity and location separation architecture. As shown in FIG. 10, the terminal UE1, the DNS server, and the application server are located in a network architecture based on the identity location separation architecture. For a typical application scenario, the DNS server in this embodiment supports the AID encoding format and is an AID terminal.
  • the terminal UE1 and the application server are IPV4 terminals.
  • the process is as follows: Step 401: The UE1 queries the DNS server for a DNS request requesting an address of the application server.
  • the UE1 (IPV4 terminal) and the DNS server (AID terminal) can be performed in the manner of the foregoing embodiment. Interaction, no more details here.
  • Step 402 The DNS server determines, according to the information in the DNS query request, whether the AID format is compatible: if the DNS query request is compatible with the AID format address, the DNS server sends a DNS query response to return the AID address format of the application server; if the DNS query request is only compatible with the IPV4 Format address, DNS domain name resolution server sends DNS query response back to the application server's IPV4 Public address format.
  • the specific implementation of this step may refer to the situation in which the existing DNS server determines whether to reply to the IPV4 or the IPV6 address according to the query request, as specified by the DNS protocol.
  • the UE1 in this example is an IPV4 terminal, and the DNS server returns the IPV4 public network address of the application server.
  • Step 403 UE1 sends a data packet to the application server. Since UE1 is an IPV4 terminal, the data packet of the interface between the ASN1 and the terminal UE1 can only be in the IPV4 format, and the source address is the public network IPV4 address of the terminal UE1 (referred to as IPV4-U). ), the destination address is the IPV4 address of the application server public network (referred to as IPV4-A).
  • IPV4-U public network IPV4 address of the terminal UE1
  • IPV4-A IPV4 address of the application server public network
  • Step 404 ASN1 adds the source address and the destination address to the extended header EH constant, and converts the IPV4 public network address into the AID format.
  • ASN1 sends a mapping query flow to the mapping forwarding plane based on the AID of the application server (ie, EH constant + IPV4-A, denoted as AID-A), and obtains the mapping relationship between AID-A and RID-A (the AID2 is the RID assigned by the application server). After that, the data packet is encapsulated and sent to ASN2.
  • the data message sent by ASN1 is:
  • Step 405 After receiving the data packet, the ASN2 strips the RID encapsulation, and converts the inner packet headers AID-U and AID-A into corresponding IPV4-U and IPV4-A, and sends them to the application server.
  • the format of the data message is as follows:
  • Step 406 After receiving the data packet, the application server can perform corresponding service processing.
  • This application example describes the inter-network service of the DNS service in the network architecture based on the identity location separation architecture.
  • the DNS server is located in the network architecture based on identity and location separation, and the terminal UE1 is located. Legacy IP network.
  • the DNS server in this embodiment supports an AID encoding format, which is an AID terminal.
  • the terminal UE1 and the application server are IPV4 terminals.
  • the process is as follows: Step 501: UE1 queries a DNS server for a DNS request requesting an address of an application server.
  • Step 502 The DNS server performs domain name resolution, and sends a DNS query response to return an IPV4 public network address format of the application server.
  • Step 503 The UE1 sends a data packet to the application server. Since the UE1 is an IPV4 terminal, the data packet of the interface between the ASN1 and the UE1 can only be in the IPV4 format.
  • the format is as follows:
  • Step 504 The ISN receives the data packet from the Legacy IP network, and adds the destination address to the EH constant, and converts the IPV4-A public network address into the AID-A format.
  • the ISN sends a mapping query process to the mapping forwarding plane by AID-A to obtain the mapping relationship between the AID-A and the RID-A of the application server.
  • the RID-I address is assigned to the UE1, and the address route points to the ISN.
  • the ISN encapsulates the data packet and sends it to the ASN.
  • the data packet sent is Source purpose
  • Step 505 After receiving the data packet, the ASN strips the RID encapsulation. Convert the AID-A of the inner packet header to the corresponding IPV4-A, convert the source AID-U to IPV4-U, and send it to the application server.
  • the format of the data packet sent is as follows:
  • Step 506 After receiving the data packet, the application server can perform corresponding service processing.
  • the embodiment of the present invention further provides a network architecture for implementing information interworking, including: a first network, where the first network is configured with at least a first node, and when the first node is configured with a second network The node sends information or receives information from the second node of the second network.
  • the identifier of the recipient of the information and the identifier of the sender exists in a first format.
  • the second network includes The first node, the first interworking node associated with the first network, and the second interworking node associated with the second node, when receiving the first network first node sending information to the second network second node, the first interworking The first format of the receiver of the node transition information is the second format and forwarded to the second interworking node; wherein, when the second node acts as the acceptor and the identifier exists in the second format, the second interworking node sends the information to the first Two nodes; when the second node acts as the acceptor and its identity exists in the first format, the second interworking node changes The identifier of the second format of the recipient is the first format, and the information is sent to the second node.
  • the first interworking node converts to the recipient identifier of the second format by adding a constant or a variable before or after the first format identifier of the recipient.
  • Another embodiment of the present invention further provides a network architecture for implementing information interworking, including: a first network, at least a first node is configured in the first network, and a second node is in a second network.
  • the node sends information or receives information from the second node of the second network.
  • the identifier of the recipient of the information and the identifier of the sender exists in a first format.
  • the second network includes a second node, a first interworking node associated with the first network, and a second interworking node associated with the second node, when the second node sends information to the first node of the first network, when the second node acts as a sender,
  • the sender and the receiver identifier of the information exist in the first format
  • the sender identifier of the second interworking node transition information is in the second format
  • the sender identifier of the converted second format is converted to the first through the first interworking node.
  • a format sender identifier thereby transmitting information to the first node of the first network; when the second node acts as the sender, and the sender of the information exists in the second format, Identifying the sender interworking node transition second format into the first format, and send a message to the second node.
  • the network architecture of the above embodiment can be used in combination.
  • the first node of the first network sends information to the second node of the second network
  • the first node sends the information to the first interworking node, where The interworking node sends the information to the second interworking node, and the second interworking node sends the information to the second node; correspondingly, when the second node of the second network sends information to the first node of the first network,
  • the two nodes send the information to the second interworking node, and the second interworking node sends the information to the first interworking node, and the first interworking node sends the information to the first node.
  • the first network may be a traditional communication network
  • the second network may be an identity identifier and a location separation architecture network.
  • the first interworking node is an ISN
  • the second interworking node is ASN
  • the embodiment of the present invention further provides a network, based on an identity identifier and a location identifier separation architecture, including an access network and a backbone network, where the access network and the backbone network do not overlap in a topological relationship, where: An access network is located at an edge of the backbone network, and is configured to implement access of the network terminal.
  • the backbone network is configured to implement routing and forwarding of data packets between terminals accessed through the access network.
  • the network assigns a unique identity (AID) to each of the accessed terminals, and the AID remains unchanged during the movement of the terminal; the AID includes first identification information, and the first identification information is used by the network.
  • the present invention proposes a specific implementation method for identity recognition based on identity and location separation framework and a network architecture for implementing information interworking. By using the AID encoding format of the extension header + suffix, the suffix uses IPV4/IPV6.
  • the public network address format implements the interconnection between the architecture network and the legacy IP network while satisfying the number of coding spaces.
  • the identity of the user is identified by the IPV4/IPV6 address format.
  • the AID format is used; the IPV4/IPV6 address is used to uniquely identify the communication peer between the network and the Legacy IP network; during the coexistence of the architecture network and the Legacy IP network, the extension header is based on the identity identifier.
  • the constants defined in the location separation framework ensure that the network-based identity and location separation framework is an integral part of the Legacy IP. From the perspective of the Legacy IP network, IPV4/ is occupied in the network-based identity and location separation framework.
  • the value of the extension header is allocated by the identity and location separation framework as needed to achieve the expansion of the AID address scale and support more user sizes.
  • the ASN When accessing the Legacy IP network, the ASN is responsible for stripping the internal AID address to the extended header constant and converting it to the IP address format supported by the Legacy IP network.
  • the ISN is responsible for adding the extended header constant to the public network IPV4/IPV6 address and converting it to the AID encoding format.
  • the ASN is also responsible for implementing the address translation function for the legacy terminal supporting only the IPV4/IPV6 address format, and converting the AID address to the terminal when receiving the data message addressed to the terminal.
  • Compatible IPV4/IPV6 address format When the terminal sends a data message, the ASN converts the IPV4/IPV6 address to the corresponding AID.
  • the ISN When the architecture network communicates with the Legacy IP network, the ISN is responsible for the AID conversion processing of the data packets of the terminal in the Legacy IP network.
  • the IPV4/IPV6 format of the data packet is received.
  • the destination address is added to the extended header to be converted into the corresponding AID, and the corresponding RID is queried, encapsulated in the data packet, and forwarded through the backbone network; when receiving the data packet addressed to the IPV4/IPV6 terminal, the data packet is received.
  • the RID decapsulation process converts the source address/destination address of the decapsulated data packet into an IP address format supported by the Legacy IP network. After evolving to a network based on this architecture, since there is no need for intercommunication with the Legacy IP network, the AID does not have to follow the address allocation specification of the Legacy IP network when using the public network address. Within the framework, the AID can uniquely identify the communication peer.
  • the extension header value is assigned by the identity and location separation framework as needed, greatly expanding the available AID namespace.
  • the present invention provides an identity recognition, an inter-network communication, a service migration method, and an information interworking network architecture. Under the framework of network-based identity identification and location separation, a specific identity recognition implementation method is proposed, and each network is specified. When the device is compatible with the application service, it meets the requirements of the number of coding spaces, and realizes the interconnection with the traditional IPV4/IPV6 network, realizes the compatibility with the upper layer application of IPV4/IPV6, and clarifies the upper layer application service of IPV4/IPV6.
  • the evolutionary transition mode supporting a wide variety of applications of the IPV4/IPV6 network can be smoothly ported to the network-based identity and location separation framework.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

身份识别、 跨网通信、 业务移植方法及信息互通网络架构
技术领域 本发明涉及通信技术领域, 尤其涉及一种身份识别、 跨网通信、 业务移 植的实现方法及实现信息互通的网络架构。
背景技术
现有因特网广泛使用的 TCP/IP ( Transmission Control Protocol/Internet Protocol, 传输控制协议 /互联网络协议)协议中 IP地址具有双重功能, 既作 为网络层的通信终端主机网络接口在网络拓朴中的位置标识, 又作为传输层 主机网络接口的身份标识。 TCP/IP协议设计之初并未考虑主机移动的情况。 但是, 当主机移动越来越普遍时, 这种 IP地址的语义过载缺陷日益明显。 当 主机的 IP地址发生变化时, 不仅路由要发生变化, 通信终端主机标识也发生 变化, 这样会导致路由负载越来越重, 而且主机标识的变化会导致应用和连 接的中断。 身份标识和位置分离问题提出的目的是为了解决 IP地址的语义过载和 路由负载严重等问题, 将 IP地址的双重功能进行分离, 实现对移动性、 多家 乡性、 IP地址动态重分配、 减轻路由负载及下一代互联网中不同网络区域之 间的互访等问题的支持。 现有技术中, 基于网络路由器的实现方法是有关身份标识和位置分离的 解决方案之一。 现有的解决方案中, 主机标识的格式是 IP V4地址, 上层应 用程序兼容的也只能是 IPV4格式的身份标识。随着 IP应用的普及发展, IPV4 地址空间已经不能满足应用的数量需求, 扩展地址数量势必改变 IPV4地址 的编码格式, 影响到对上层应用程序的兼容性, 影响到与传统 IPV4 网络的 互联互通。 现有技术中定义了一些其它用户身份标识的实现方法, 例如 IPV6 地址, HIP ( Host Identity Protocol , 主机标识协议)中的用户身份识别等, 这 些实现方法通过增加身份识别的位长, 仅考虑了如何扩展名址空间的数量, 涉及到如何兼容现有的 IPV4和 IPV6终端、如何兼容上层应用、 IPV4和 IPV6 业务应用的移植等具体功能, 均需要通过升级 HOST (主机)软件或者更改 业务应用程序的方式来实现。 现有技术是通过在网络或者终端支持双协议栈 的方式, 实现与 IPV4/IPV6终端的互通, 而没有考虑对 IPV4/IPV6终端的接 入、 IPV4/IPV6业务的移植等方面的兼容性处理功能。 在引入基于网络的身份位置分离框架时, 由于该框架改动了终端 HOST 中 IP地址层的逻辑含义, 原有的 IP地址层由位置标识和身份标识的双重含 义, 变化为仅标识用户身份, 不再具有位置标识的逻辑含义。 在基于网络的 身份位置分离框架中, 如何兼容 IPV4/IPV6的业务, 使得现有 Legacy IP网 络(传统 IP网络)中的 IPV4/IPV6业务不做改动就能够平滑的移植过来, 能 够实现基于网络的身份位置分离框架与 Legacy IP网络互联互通, 现有技术 没有明确。
发明内容 本发明要解决的一个技术问题是提供一种身份识别的实现方法, 在满足 编码空间的数量要求的同时, 能够与现有传统 IP网络互联互通。 为解决上述问题, 本发明提供了一种身份识别的实现方法, 应用于身份 标识和位置分离架构网络, 包括: 所述架构网络为每个接入的终端分配唯一 的身份标识(AID ) , 该 AID在所述终端的移动过程中始终保持不变, 其中, 所述 AID中包含第一识别信息,所述第一识别信息用于所述架构网络与 传统通信网互通时终端的身份识别, 或用于标识接入所述架构网络中的传统 网络终端。 优选地, 所述传统通信网为传统 IP网络, 所述第一识别信息为所述传统 IP网络中的公网 IP地址信息。 优选地, 所述 AID中还包括第二信息, 所述第二信息为基于所述架构所 确定的常量或变量。 优选地, 所述第二信息作为所述 AID的前缀或后缀。 优选地, 所述 AID的配置釆用如下方式: 将所述 AID保存在认证中心中, 在终端鉴权时将所述 AID带给所述终 端所在的接入服务节点 (ASN ) ; 当所述终端接入所述架构网络中时,所述 ASN将所述第一识别信息发送 给所述终端, 所述终端在协议栈中配置所述 AID。 优选地, 所述 AID的配置釆用如下方式: 将所述 AID保存在所述终端中的用户识别模块中; 所述终端接入所述架构网络中时,从所述用户识别模块中读取所述 AID, 并在接入信令中将所述 AID发送给所述终端所在的 ASN。
本发明要解决的另一技术问题是提供一种跨网通信的方法, 实现身份标 识和位置分离框架与传统 IP网络互联互通。 为解决上述问题, 本发明提供了一种跨网通信的实现方法, 应用于身份 标识和位置分离架构网络与传统通信网络, 包括: 所述架构网络中的终端的 AID中包含第一识别信息,所述第一识别信息 用于所述架构网络与传统通信网互通时终端的身份识别, 或用于标识接入所 述架构网络中的传统网络终端; 源 ASN接收到所述架构网络中的源终端发往传统通信网络的数据报文 时, 在所述数据报文中封装所述传统通信网络中的互联服务节点 (ISN ) 的 路由标识, 通过广义转发平面转发给所述 ISN; 所述 ISN根据所述数据报文中目的终端的 AID中的第一识别信息将所述 数据报文转发给目的终端。 优选地, 所述传统通信网为传统 IP网络, 所述第一识别信息为所述传统 IP网络中的公网 IP地址信息。 优选地, 所述源 ASN中保存有所述 ISN的路由标识与所述公网 IP地址 段的映射信息; 所述源 ASN接收到发往所述传统通信网络的数据报文时,根据所述映射 信息在所述数据报文中封装所述 ISN的路由标识。 优选地, 所述 AID中还包括第二信息, 所述第二信息为基于所述架构所 确定的常量或变量。 优选地, 所述第二信息作为所述 AID的前缀或后缀。 优选地 ,若所述源终端为 IPV4/IPV6终端,则所述源 ASN收到所述源终 端发出的数据报文时, 将所述数据报文中的 IPV4/IPV6格式的源地址和目的 地址通过增加所述第二信息转换为对应的 AID格式; 所述 ISN收到所述数据 文后, 进行解封装处理, 并通过去除所述第二 信息将所述目的地址从 AID格式转换为 IPV4格式或 IPV6格式。 本发明还提供了另一种跨网通信的实现方法, 应用于传统通信网络与身 份标识和位置分离架构网络, 包括: 所述架构网络中的终端的 AID中包含第一识别信息,所述第一识别信息 用于所述架构网络与所述传统通信网互通时终端的身份识别, 或用于标识接 入所述架构网络中的传统网络终端; ISN接收到所述传统通信网络中的源终端发往所述架构网络的数据报文 时, 将所述数据报文中的目的地址作为第一识别信息, 转换为目的终端的 AID, 封装在所述数据报文中, 以及, 在所述数据报文中封装指向该 ISN的 路由标识, 根据目的地址在本地或向身份位置寄存器查询 AID 和路由标识 ( RID ) 的映射信息, 并将查到的目的终端的 RID封装在所述数据报文中, 通过广义转发平面转发给目的 ASN; 所述目的 ASN根据目的终端的 AID将所述数据报文转发给相应的目的 终端。 优选地, 所述传统通信网为传统 IP网络, 所述第一识别信息为所述传统 IP网络中的公网 IP地址信息。 优选地, 所述 AID中还包括第二信息, 所述第二信息为基于所述架构所 确定的常量或变量。 优选地, 所述第二信息作为所述 AID的前缀或后缀。 优选地, 所述 ISN收到所述源终端发往所述架构网络的数据 文时, 将 所述数据报文中的 IPV4/IPV6格式的源地址和目的地址通过增加所述第二信 息转换为对应的 AID格式,并根据目的 AID查询所述目的终端的 AID和 RID 的映射信息; 若所述目的终端为 IPV4/IPV6终端,则所述目的 ASN收到所述数据报文 后, 进行解封装处理, 并通过去除所述第二信息将所述目的地址从 AID格式 转换为 IPV4格式或 IPV6格式。
本发明要解决的又一技术问题是提供一种身份标识和位置分离框架下业 务移植的方法, 能够兼容现有 Legacy IP网络中的应用业务, 实现现有传统 Legacy IP网络中应用业务的移植。 为解决上述问题, 本发明提供了一种业务移植的实现方法, 包括: 当传统通信网络中的应用业务移植到所述架构网络中时, 为所述应用业 务的应用服务器分配两类身份标识: 用于与所述传统通信网络互通时的第一 识别信息, 及用于与所述架构网络互通的身份标识(AID ) ; 所述架构网络中的终端以所述第一识别信息为目的地址向所述应用服务 器发送数据报文, 所述终端所在的 ASN在对所述数据报文进行 RID封装后 通过广义转发平面发送给所述应用服务器所在的 ASN; 所述应用服务器所在的 ASN收到所述数据报文时, 剥离 RID封装后, 发给所述应用服务器。 优选地, 所述传统通信网为传统 IP网络, 所述第一识别信息为所述应用 服务器在所述传统 IP网络中的公网 IP地址信息。 优选地, 所述 AID包含所述第一信息和第二信息, 所述第二信息为基于 所述架构所确定的常量或变量, 所述第二信息作为所述 AID的前缀或后缀。 优选地, 当所述终端为 IPV4/IPV6终端时,所述终端所在的 ASN通过增 加所述第二信息将所述数据报文中的目的地址转换为对应的 AID格式,并根 据目的 AID查询所述应用服务器的 AID和 RID的映射信息; 当所述应用服务器为 IPV4/IPV6 终端时, 所述应用服务器所在的 ASN 通过去除所述第二信息将所述目的地址从 AID格式转换为 IPV4格式或 IPV6 格式。 本发明还提供了另一种业务移植的实现方法, 包括: 当传统通信网络中的应用业务移植到所述架构网络中时, 为所述应用业 务的应用服务器分配两类身份标识: 用于与所述传统通信网络互通时的第一 识别信息, 及用于与所述架构网络互通的身份标识(AID ) ; 所述传统通信网络中的终端以所述第一识别信息为目的地址向所述应用 后通过广义转发平面发送给所述应用服务器所在的 ASN; 所述应用服务器所在的 ASN收到所述数据报文时, 剥离 RID封装后, 发给所述应用服务器。 优选地, 所述传统通信网为传统 IP网络, 所述第一识别信息为所述应用 服务器在所述传统 IP网络中的公网 IP地址信息。 优选地, 所述 AID包含所述第一信息和第二信息, 所述第二信息为基于 所述架构所确定的常量或变量, 所述第二信息作为所述 AID的前缀或后缀。 优选地, 所述 ISN通过增加所述第二信息将所述数据 文中的目的地址 转换为对应的 AID格式,并根据目的 AID查询所述应用服务器的 AID和 RID 的映射信息; 当所述应用服务器为 IPV4/IPV6 终端时, 所述应用服务器所在的 ASN 通过去除所述第二信息将所述目的地址从 AID格式转换为 IPV4格式或 IPV6 格式。
本发明要解决的又一技术问题是提供一种实现信息互通的网络架构, 实 现网络间的信息互通。 为解决上述问题, 本发明提供了一种实现信息互通的网络架构, 包括第 一网络和第二网络, 所述第一网络下至少设有第一节点, 当所述第一节点向第二网络的第二 节点发送信息或自第二网络的第二节点接受信息, 所述信息在第一网络传输 时, 信息的接受方标识及发送方标识以第一格式存在; 所述第二网络包括有第二节点、 与第一网络关联的第一互通节点及与第 二节点关联的第二互通节点; 所述第一互通节点设置成: 当接受第一网络的第一节点向第二网络的第 二节点发送的信息时, 将信息的接受方标识从第一格式转变为第二格式并将 该信息转发至第二互通节点; 第二互通节点设置成: 当接受第一网络的第一节点向第二网络的第二节 点发送的信息时, 当第二节点作为接受方, 其标识以第二格式存在时, 发送 该信息至第二节点; 当第二节点作为接受方, 其标识以第一格式存在时, 将 该信息的接受方标识从第二格式转变为第一格式,并发送该信息至第二节点。 优选地, 所述第二互通节点还设置成: 当第二节点向第一网络的第一节 点发送信息, 该信息的发送方标识以第一格式存在时, 转变信息的发送方标 识为第二格式, 发送给第一互通节点; 当第二节点向第一网络的第一节点发 送信息, 该信息的发送方标识及接受方标识以第二格式存在时, 发送该信息 给第一互通节点; 所述第一互通节点还设置成: 当接受第二节点向第一网络的第一节点发 送的信息时, 将该信息的发送方标识从第二格式转变为第一格式, 并发送该 信息至第一节点。 优选地, 所述第一互通节点还设置成: 通过在第一格式的接受方标识前 面或后面添加常量或变量, 以转变为第二格式的接受方标识。 本发明还提供了另一种实现信息互通的网络架构, 包括第一网络和第二 网络, 所述第一网络下至少设有第一节点, 当所述第一节点向第二网络的第二 节点发送信息或自第二网络的第二节点接受信息, 所述信息在第一网络传输 时, 信息的接受方标识及发送方标识以第一格式存在; 所述第二网络包括有第二节点、 与第一网络关联的第一互通节点及与第 二节点关联的第二互通节点;
所述第二互通节点设置成: 当第二节点向第一网络第一节点发送信息, 该信息的发送方标识以第一格式存在时,转变信息的发送方标识为第二格式, 发送给第一互通节点; 当第二节点向第一网络的第一节点发送信息, 该信息 的发送方标识及接受方标识以第二格式存在时,发送该信息给第一互通节点; 所述第一互通节点设置成: 当接受第二节点向第一网络的第一节点发送 的信息时, 将该信息的发送方标识从第二格式转变为第一格式, 并发送信息 至第一网络的第一节点。 本发明要解决的又一技术问题是提供一种网络, 在满足编码空间的数量 要求的同时, 能够与现有传统 IP网络互联互通。 为解决上述问题, 本发明提供了一种网络, 基于身份标识和位置标识分 离架构, 包括接入网和骨干网,所述接入网与骨干网在拓朴关系上没有重叠, 其中:
所述接入网位于所述骨干网的边缘, 并设置成实现本网络终端的接入; 所述骨干网设置成实现通过所述接入网接入的终端间数据报文的路由和 转发;
在所述网络为每个接入的终端分配唯一的身份标识( AID ) , 该 AID在 所述终端的移动过程中始终保持不变; 所述 AID中包含第一识别信息, 所述 第一识别信息用于所述身份标识和位置分离架构网络与传统通信网互通时终 端的身份识别, 或用于标识接入所述身份标识和位置分离架构网络中的传统 网络终端。
本发明至少具有如下有益效果: 在基于网络的身份标识和位置分离框架下, 提出了具体的身份识别的实 现方法, 规定了各网元兼容应用业务时所作处理, 在满足编码空间数量要求 的同时, 实现了与传统 IPV4/IPV6网络的互联互通, 实现了对 IPV4/IPV6上 层应用程序的兼容性, 明确了 IPV4/IPV6上层应用业务的演进过渡方式, 支 持 IPV4/IPV6网络丰富多样的应用程序能够较为平滑的移植到基于网络的身 份标识和位置分离框架中。
附图概述 图 1是本发明的基于网络的身份标识和位置分离架构与 Legacy IP网络 的架构示意图; 图 2 ( a )和图 2 ( b )是本发明实施例的基于网络的身份标识和位置分离 架构与 Legacy IP网络共存期间的网络拓朴示意图; 图 3是本发明实施例接入服务节点的功能模块图; 图 4是本发明实施例互联服务节点的功能模块图; 图 5是本发明实施例基于身份位置分离架构的网络中节点间连接关系的 示意图; 图 6是本发明实施例的基于网络的身份标识和位置分离架构内的 IPV4 终端之间相互访问的示意图; 图 7是本发明实施例的基于网络的身份标识和位置分离架构内的 IPV4 终端访问 Legacy IPV4网络的终端时的示意图; 图 8是本发明实施例的 Legacy IPV4网络的终端访问基于网络的身份标 识和位置分离架构内的 IPV4终端时的示意图; 图 9是本发明实施例中互通代理服务器实现基于身份标识和位置分离架 构的网络与 IPV4网络互联互通的示意图; 图 10是本发明应用实例的基于身份位置标识和分离架构中网内 DNS业 务的示意图; 图 11是本发明应用实例的 Legacy IP网络 IPV4终端访问基于身份位置 分离架构内的网间 DNS业务的示意图。 本发明的较佳实施方式 下面将结合附图及实施例对本发明的技术方案进行更详细的说明。 基于网络的身份标识和位置分离框架的提出,是将 IP地址的标识身份和 位置的双重功能进行分离, 实现对移动性、 多家乡性、 IP地址动态重分配、 减轻路由负载及下一代互联网中不同网络区域之间的互访等问题的支持。 基于网络的身份标识和位置分离框架的核心思想是: 网络中有两种标识 类型: 身份标识 ( Access Identifier , 简称 AID ) 和路由位置标识 ( Routing-Location Identifier, 简称 RID ) ; 为网络中的每个用户分配唯一的 AID , 该 AID在移动过程中始终保持不变。 基于网络的身份标识和位置分离框架的拓朴示意图如图 1所示。 在该框 架下, 网络划分为接入网和骨干网, 接入网位于骨干网的边缘, 负责本网络 终端的接入。 骨干网负责通过接入网接入的终端的数据报文的路由和转发, 在优选实施例中, 骨干网包括: 广义转发平面和映射转发平面。 接入服务节 点 (Access Service Node, 简称 ASN )位于骨干网和接入网的分界点, 与接 入网、 骨干网接口。 接入网与骨干网在拓朴关系上没有重叠。 其中, 在基于身份标识和位置分离架构 (以下也称作本架构) 网络中, 为每个用户终端唯一分配一个 AID, AID在接入网使用, 在终端的移动过程 中始终保持不变; RID是为终端分配的位置标识, 在骨干网使用。 如图 2 ( a )和图 2 ( b )所示, 优选实施例中, 本架构中的骨干网分为映 射转发平面和广义转发平面。 广义转发平面主要用于根据数据报文中的 RID进行选路和转发以 RID为 目的地址的数据报文, 广义转发平面内的数据路由转发行为与 Legacy IP网 络一致。 广义转发平面的主要网元包括 CR ( Common Router, 通用路由器) 和 ISN ( Interconnect Service Node, 互联月良务节点) 映射转发平面主要用于保存终端的身份位置映射信息(即 AID-RID的映 射信息), 处理对终端位置的登记注册和查询, 路由并转发以 AID为目的地 址的数据^艮文。 映射转发平面的主要网元包括 ILR/PTF ( Identity Location Register/Packet Transfer Function , 身份位置寄存器 /分组转发功能) 。 在图 2 ( a ) 中, ASN在架构的划分中独立于骨干网。 在图 2 ( b ) 中, 骨干网包括 ASN。 图 2 ( a )和图 2 ( b )只是架构划分的不同, ASN实际完 成的功能是一样的。 参见图 1、 图 2 ( a )和图 2 ( b ) , 本实施例的基于网络的身份标识和位 置分离架构中, 涉及的主要网元和功能实体如下:
用户终端: 本架构中, 接入的用户终端可以是移动节点、 固定节点及游 牧节点中的一种或多种。 接入网: 为用户终端提供二层 (物理层和链路层)接入服务。 接入网可 以^^站系统,如 BSS ( Base Station Subsystem,基站子系统), RAN ( Radio Access Network, 无线接入网) , eNodeB ( evolved Node Β , 演进的节点 B ) 等,也可以是 xDSL( Digital Subscriber Line,数字用户线)、 AP( Access Point, 无线访问接入点)等。
ASN: 维护终端与骨干网的连接关系, 为终端分配 RID, 处理切换流程, 处理登记注册流程, 计费 /鉴权, 维护 /查询通讯对端的 AID-RID映射关系, 封装、 路由并转发送达终端或终端发出的数据报文。
ASN 收到终端发来的数据报文时, 根据报文中的通信对端 ( Correspondent Node, 简称 CN )的 AID在本地查找其对应的 RID: 如果查 到对应的 AID-RID映射条目, 则在数据报文中以 RID替换 AID的方式、 或 者以封装 RID 的方式将数据报文转发到骨干网; 如果没有查到对应的 AID-RID映射条目, 则向 ILR ( Identity Location Register, 身份位置寄存器) 发出查询流程, 以获取 AID-RID映射表条目, 然后在相关数据报文中以 RID 替换 AID的方式、 或者以封装 RID的方式将数据报文转发出去; 或是在向 ILR发出查询的同时将数据报文转发到骨干网进行路由转发, 在收到 ILR返 回的 AID-RID映射关系后, 在本地緩存保存 AID-RID映射; ASN在收到网络发往终端的数据报文时,剥离外层的 RID封装后,发给 终端。
CR: 路由并转发以 RID格式为源地址 /目的地址的数据报文。 认证中心: 负责记录本架构网络中的用户属性, 包括用户类别、 鉴权信 息和用户服务等级等信息, 产生用于鉴权、 完整性保护和加密的用户安全信 息, 在用户接入时对用户进行合法性认证和授权。 认证中心支持本架构网络 与用户间的双向婆权。
ILR/PTF: ILR和 PTF可以为同一实体上的两个功能模块, 位于骨干网 的映射转发平面中。
ILR 负责维护 /保存基于网络的身份标识和位置分离框架中用户的 AID-RID映射关系, 实现登记注册功能, 处理通信对端的位置查询流程。 具 体地, 当终端 (Mobile Node, 简称 MN )开机或者发生位置变化时, 将通过 所在的 ASN向 ILR发起注册过程 ,这样 ILR中就保存了 MN的实时 AID-RID 的映射关系。
PTF在收到 ASN送达的数据报文后,由 PTF根据目的 AID路由并转发。 映射转发平面内 PTF节点向 ILR查到目的 AID-RID的映射关系后, 在数据 报文头部封装 RID信息并转发到广义转发平面内路由到通信对端。
ISN ( Interconnect Service Node, 互联服务节点): 用于查询、 维护本架 构网络终端的 AID-RID映射信息,封装、路由和转发本架构网络与 Legacy IP 网络之间往来的数据报文, 实现本架构网络与 Legacy IP间的互联互通功能。 在本架构移动终端发生切换时, ISN作为该移动终端在本架构网络与 Legacy IP间的代理锚点。
如图 3所示, ASN包括以下功能模块: 接入处理模块 31 , 其设置成在终端请求接入时, 与终端和认证中心配合 完成对终端的认证, 通过接入网建立与终端的连接, 为终端分配 RID, 以及 通知登记注册模块发起对该终端的登记注册。 登记注册模块 32, 其设置成在收到对终端的登记注册的通知后, 向该终 端归属域 ILR发起登记注册,携带该终端当前的 AID-RID映射信息; 以及在 收到对终端的取消登记注册的通知后, 通知该终端归属域 ILR删除该终端登 记注册的信息, 包括该终端的 AID-RID映射信息。 连接维护模块 33 , 其设置成在终端接入后的在线期间, 维护本 ASN与 该终端的连接; 以及在该终端通信时, 维护本 ASN与通信对端接入的 ASN 之间的连接。 映射管理模块 34, 其设置成在终端接入后緩存该终端的 AID-RID映射 信息并进行维护,在收到查询通知后根据通信对端的 AID向映射转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。 离线处理模块 35, 其设置成在接入本 ASN的终端离线后, 通知连接维 护模块释放该终端与网络的相关连接, 通知映射管理模块删除该终端的
AID-RID映射信息, 以及通知登记注册模块对该终端取登记注册。 报文转发模块 36, 其设置成将接入本 ASN的终端发送的数据报文封装 上该终端和通信对端的 RID, 路由并转发到该通信对端接入的 ASN, 以及将 要发送到接入本 ASN的终端的数据报文解封装后, 发送给该终端。 报文转发模块 36又分为第一转发单元和第二转发单元, 其中: 第一转发单元其设置成在收到接入本 ASN的终端发来的数据报文后,根 据该数据报文中作为目的地址的通信对端的 AID查询本地緩存中的 AID-RID 映射信息, 如查到该通信对端的 RID, 将该通信对端的 RID作为目的地址, 该终端的 RID作为源地址, 封装在该数据报文中(如可以封装在该数据报文 新加的三层报文头中) , 然后将封装后的数据报文转发到广义转发平面; 如 没有查到通信对端的 RID, 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块查询通信对端的 RID。 第二转发单元其设置成在收到要发送到接入本 ASN 的终端的数据报文 后,剥去该数据报文中封装的 RID,恢复为通信对端发送到 ASN的数据报文 的格式后, 通过本 ASN与该终端的连接发往该终端。 切换控制模块 37, 分为切出控制单元和切入控制单元, 其中: 切出控制单元设置成在收到切换请求后, 根据切换的目的地确定终端要 切换到另一 ASN (称为切入 ASN ) 时, 向切入 ASN请求切换, 收到响应后 通知该终端接入切入 ASN,切换期间收到的发往该终端的数据报文转发到切 入 ASN, 在切换完成后通知映射管理模块删除该终端的 AID-RID映射信息。 还可以在切换过程中将该终端的通信对端的信息发送到切入 ASN或映射转 发平面。 切入控制单元, 其设置成在收到切换请求后, 为终端分配 RID并保存该 终端的 AID-RID映射信息, 从切出 ASN获取该终端的通信对端的信息并返 回切换响应, 并通知登记注册模块发起对该终端位置更新的登记注册流程。 切入控制单元还可设置成通知该终端所有通信对端接入的 ASN或该终端与 Legacy IP网络终端通信时锚定的 ISN更新该终端的 AID-RID映射信息。 本架构网络兼容 IPV4/IPV6 终端 (指现有 Legacy IP 网络中支持 IPV4/IPV6协议栈的终端 )且 AID与 IPV4/IPV6地址格式不同时, ASN需要 代理 IPV4/IPV6终端实现网络 AID数据报文与 IPV4/IPV6数据报文的兼容性 处理。 为此, 在 ASN中需要增加一个格式转换模块 38, 其设置成将接入本 ASN的 IPV4/IPV6终端发送的数据报文中本架构网络终端的 IPV4/IPV6地址 (可以是源地址, 或源地址和目的地址)转换为对应的 AID , 以及将要发送 到该 IPV4/IPV6终端的数据报文中的所有 AID转换为 IPV4/IPV6地址。 如图 4所示, ISN包括以下功能模块: 连接维护模块 41 , 其设置成建立和维护本架构网络终端与 Legacy IP网 络终端间的连接, 在本架构网络终端发生切换时, 作为该终端在本架构网络 与 Legacy IP间的代理锚点, 保持与 Legacy IP网络之间的连接。 映射管理模块 42,其设置成提取数据报文中本架构网络终端的 AID-RID 映射信息并进行维护,以及在收到查询通知后根据待查询终端的 AID向映射 转发平面的 ILR查询对应的 RID并在本地维护查询到的 AID-RID映射信息。 报文转发模块 43 , 又分为第一转发单元和第二转发单元, 其中: 第一转发单元设置成根据 Legacy IP网络发来的数据报文中本架构网络 终端的 AID (作为目的地址或根据该目的地址转换得到) , 查询本地緩存中 的 AID-RID映射信息: 如查到本架构网络终端 AID对应的 RID, 将本架构 网络终端的 RID作为目的地址封装在该数据报文中(如封装在新加的三层报 文头中) , 然后将封装后的数据报文转发到广义转发平面; 如没有查到本架 构网络终端 AID对应的 RID(如该数据报文为首包或默认路由的数据报文), 将数据报文做隧道封装后转发到映射转发平面, 并通知映射管理模块查询本 架构网络终端的 RID。 第二转发单元在收到本架构网络发来的数据报文后, 剥去数据报文中封 装的 RID, 发送到 Legacy IP网络的终端或格式转换模块。 如本架构网络釆用的 AID与 IPV4/IPV6地址格式不同, ISL还包括一格 式转换模块 44, 其设置成将 Legacy IP网络发来的数据报文中包含的本架构 网络终端的 IPV4/IPV6地址转换为对应的 AID , 再交给第一转发单元转发; 以及将第二转发单元解封装后的数据报文中的本架构网络终端的 AID 转换 为 IPV4/IPV6地址格式后, 再发送到 Legacy IP网络的终端。 如图 5所示, 本架构主要的接口包括:
• S1/D1接口是终端与 ASN之间的接口 (或称参考点) 。 其中:
S1是终端与 ASN之间的信令接口, 主要用于接入管理、 切换、 认证、 计费和登记注册的消息流程处理。
D1是终端与 ASN之间数据收发接口。 对于兼容本架构网络的终端, D1 接口的数据报文的格式为:
Figure imgf000017_0001
其中源 AID是发送数据包的终端的 AID, 作为数据报文的源地址; 目的 AID是数据包发往的通信对端的 AID, 作为数据报文的目的地址, 源地址和 目的地址封装在三层报头中。
• S2/D2接口是 ASN之间的接口。 其中:
S2主要用于切换时切换管理信令的传递,在通信对端之间位置变化时传 递 RID更新消息。
D2主要用于切换时 ASN间的数据转发。 D2接口的数据报文的格式为:
Figure imgf000017_0002
ASN在转发数据报文之前, 在数据报文上增加了隧道封装, 隧道封装方 式有很多,如 L2TPv3、 IP-in-IP, MPLS (LDP-based和 RSVP-TE based)、 GRE 和 IPsec等, 本发明不局限于任何一种特定的隧道封装方式。
S3是 ASN与 ISN间的信令接口。本架构网络终端与 Legacy IP网络终端 的通信过程中, 如本架构网络的终端发生切换, ASN将通过 S3接口将本架 构网络终端新的 AID-RID映射信息通知 ISN。
D3是与广义转发平面对外的接口, D3接口的数据报文的格式为:
Figure imgf000018_0001
D3接口的数据报文是在 D1接口的数据报文的基础上新封装了一个三层 报头,该新的三层报头中包括源 RID和目的 RID,其中源 RID是为发送数据 包的终端分配的 RID , 目的 RID是为数据包发送到的通信对端分配的 RID。 不过这种封装方式并不是唯一的。
S4是 ASN与映射转发平面间的信令接口,主要用于查询和维护 AID-RID 映射信息。
D4m是 ASN与映射转发平面间的数据转发接口, D4m接口的数据报文 的格式为:
Figure imgf000018_0002
D4m接口的数据报文也是在 D1接口的数据报文的基础上新封装了一个 三层报头, 新的三层报头中的源地址为源 RID, 目的地址为 RIDi, 其中源 RID是为发送数据包的终端分配的 RID, RIDi是与 ASN连接的映射转发平 面中 ILR/PTF的路由地址, 由 ASN上的配置数据得到。
S5是映射转发平面内 ILR间的信令接口 ,主要用于查询和维护 AID-RID 映射信息, 以及映射转发平面内的路由信息交互。
Di接口是本架构网络与 Legacy IP网络间的数据转发接口, Di接口的数 据报文与 Legacy IP网络的数据报文的格式一样, 如下: 二层报头 源 IPV4/IPV6 目的 IPV4/IPV6 数据报文净荷。 。 。
该基于网络的身份标识和位置分离架构将长期与 Legacy IP网络并存, 该架构初期将以 Legacy IP网络的一个或多个孤岛形式存在和发展。 如图 2 ( a )和图 2 ( b )所示, 在基于身份位置分离架构的骨干网部分与 Legacy IP 网络处于同一平面, Legacy IP网络与基于网络的身份位置分离架构的网络进 行互访时, 所有数据报文将经由 ISN收发。
考虑网络演进的渐进性特点, 本架构中的终端有两种主要类型:
IPV4/IPV6终端,指 Legacy IP网络中支持现有 IPV4/IPV6协议栈的终端; AID终端, 指终端的协议栈经过升级支持 AID编码要求的终端, 在原有
IPV4/IPV6协议栈中的 IPV4/IPV6地址层,扩展为可以支持扩展了 IPV4/IPV6 地址位长的 AID编码地址。 同时对上层的业务应用在终端也进行了兼容性处 理。 而 ASN还需支持 AID终端和 IPV4/IPV6终端的接入管理功能, 并为 IPV4/IPV6终端实现 AID代理功能, 负责代理 IPV4/IPV6终端实现基于网络 的身份标识和位置分离框架 AID数据报文与 IPV4/IPV6数据报文的兼容性处 理。
以下以 IPV4终端的情况为例, 对本架构网络内用户终端身份识别的实 现方法, 即 AID编码机制加以说明。 本文中所涉及的实施方案同样也适用于 IPV6终端。 从基于网络的身份标识和位置分离框架的自身考虑,对 AID编码的需求 仅是能够满足编码空间的数量要求即可,即 AID最大编码长度应能满足最大 节点个数需求。 但 AID在满足编码空间数量要求的同时, 还要考虑与 IPV4 网络的互联互通, 考虑对上层应用程序的兼容性, 使 IPV4 网络丰富多样的 应用程序能够较为平滑的移植到基于网络的身份标识和位置分离框架中。 因此, 本架构网络中 AID的编码机制所需要考虑的重点包括: 1 )现网应用程序大部分是基于 IPV4的应用, 因此, AID编码机制应兼 容 IPV4地址格式, 以兼容上层应用程序;
2 )本架构中的终端需要访问 Legacy IPV4网络的应用, 与 Legacy IPV4 网络存在互通要求, 因此, AID的编码空间与 Legacy IP V4网络的 IPV4地址 空间不能有二义性, 以能够唯一区别访问的通信对端。 基于上述因素的考量, 本实施例中提出一种基于本架构的具体的身份识 别的实现方法, 将 AID格式确定为: 扩展头 ( Expand Header, 简称 EH ) + 后缀(suffix32 ) 。 根据本架构网络与 Legacy IPV4网络的不断的演进过程, AID的编码格 式具体包括如下两种实施方案: 实施方案一 在 Legacy IP 网络与基于网络的身份标识和位置分离框架并存期间, 32bit后缀部分釆用 IPV4公网地址, 其中, 后缀部分的 IP V4公网地址的分 配遵循 Legacy IP网络的地址分配规范 ,以实现与 Legacy IP网络的互联互通; 对于 IPV4终端, 实现对上层业务的兼容性。 扩展头的取值为身份标识和位置分离框架内确定的常量, 这样, 将 AID 的扩展头去除即转换成对应的 IP地址, 将 IP地址加上作为扩展头的常量即 转换为对应的 AID。 本实施方案中, 该扩展头常量的设置规则为身份标识和位置分离框架内 确定的唯一常量, 以实现 AID格式与 IPV4公网地址之间的灵活转换。 在本 发明一优选实施例中, 本架构网络设备通过配置数据, 无需查询对应关系, 网络中无需保存 AID与 IPV4地址间的对应表, 就能够方便地实现 AID与 IPV4公网地址间的格式转换。 作为该示例的变例, AID的编码格式还可以釆用 IP V4公网地址加上一 个作为后缀的常量的格式。 当然, 在某个网元中保存 AID和 IPV4公网地址 的映射信息供 ASN、 ISN等需要转换的网元查询也是可以的。 本实施例中, 当 AID后缀 suffix32为公网地址时 , 从 Legacy IPV4网络 来看:基于身份位置分离架构是作为 Legacy IPV4网络的一个公网地址节点; 而基于身份位置分离架构下的 IPV4终端,是作为 Legacy IPV4网络中的一个 公网地址节点接入网络, 与其它节点通信。 基于身份位置分离架构的网络架 构作为 Legacy IPV4网络的扩展组成部分, 在与 Legacy IPV4网络互联互通 的接口 (ISN )上, AID 经过地址变换后, 釆用专为本架构网络分配的公网 IPV4地址与 Legacy IPV4网络实现互联互通。 在 Legacy IP网络中, 标识用户身份釆用 IPV4地址格式; 在本架构网络 中, 标识用户身份釆用 AID格式; 在本架构网络与 Legacy IPV4间互通釆用 IPV4地址唯一标识通信对端。 该实施方案具有如下特点: 由于 AID的 32bit后缀 suffix32部分釆用与 IPV4公网地址完全相同的方 式, 在命名空间上能够满足演进过程中的数量需求; 扩展头 Expand Header釆用常量的方式, 保证了基于网络的身份标识和 位置分离框架作为 Legacy IP的一个组成部分, 从 Legacy IP网络的角度, 保 证了基于网络的身份标识和位置分离框架中占用 IPV4公网地址的唯一性; 且扩展头釆用常量的方式, 能够很灵活的进行格式转换, 实现本架构网 络与 Legacy IP网络间的互访。
实施方案二 在传统 Legacy IP网络演进到以基于网络的身份标识和位置分离框架为 主的网络后, 扩展头 EH取值由身份标识和位置分离框架根据需要分配。 在 完成网络演进过渡的历史任务后, 以实现 AID地址规模的扩展, 支持更多的 用户规模。 在演进过渡阶段结束后, 由于没有与 Legacy IP网络互通互访的需求, AID釆用公网地址时不必遵循 Legacy IP网络的地址分配占用规范。 在基于 网络的身份标识和位置分离框架内部, 釆用 AID能够唯一标识通信对端, 扩 展头 EH取值可以从常量扩展为变量, 由身份标识和位置分离框架根据需要 分配, 极大扩展了可供使用的 AID命名空间。
在上述两个实施方案中,为用户终端分配 AID编码的方式包括但不限于 下述方式: ( a ) 网络配置方式 将终端的 AID 保存在认证中心 HSS/AAA ( Home Subscriber Server/ Authentication Authorization Accounting , 认证授权计费服务器 /归属用 户服务器) 中, HSS/AAA在用户鉴权时将 AID与用户识别一起带到接入网 关设备 ASN。 对于不同制式的网络, 该用户识别分别为: 蜂窝移动网中为国 际移动用户识别(IMSI ) , 在 ADSL等固定网接入时为网络接入识别(NAI ) 或者用户名 ( Username ) 。 对于 IPV4终端, 在终端接入网络时, ASN将 AID的 suffix32部分作为 终端的 IPV4地址发给终端, 终端在协议栈中配置对应的 IPV4地址。 对于 AID终端, ASN将 AID发给终端, 由终端配置 AID。 ( b ) 终端配置方式: 对于 IPV4终端,初始将 AID保存在终端的用户识别模块中 (如 SIM卡、 UIM卡等) , 终端在协议栈中配置对应的 IP V4地址。 终端接入网络时, 从 SIM/UIM卡中读取 AID信息, 在接入信令中将 AID发送到 ASN , ASN保存 终端的 AID。 对于 AID终端, 将 AID保存在 SIM/UIM卡中, 由终端配置 AID。
本架构网络中, RID编号可以釆用现有 Legacy IP网中路由器普遍支持 的 IPV4/IPv6地址格式, 标示当前终端所在的 ASN位置。 RID的作用域在本 架构网络骨干网的广义转发平面。
登记或切换时, 由 ASN按既定策略为终端分配 RID, ASN分配的 RID应指 向该 ASN。根据业务需要, ASN可以为一个终端分配专用的一个或多个 RID, 也可为多个终端分配相同的 RID。 本架构基于位置身份分离的技术原理, 广义转发平面中的网络拓朴主要 的影响因素是 ASN、 ISN等功能实体的数量和部署方式, 接入终端的位置变 化与网络拓朴没有直接关系, 消除了终端主机移动性对路由系统可测量性的 影响。 在 Legacy IP网络中 , 路由依据为 IP地址, 这个 IP地址与通信主机的 数量基本——对应,路由表规模与通信主机的数量正相关。特别是 IPV4/IPV6 双协议栈场景下, 路由表规模将成倍数增长。 路由表规模大变化频繁将导致 路由汇聚时间增长。本架构广义转发平面中以 RID做为路由依据, ASN、 ISN 可以为多个接入用户分配同一个 RID, RID指示 ASN、 ISN的位置, 从这个 层面说, 广义转发平面中路由条目数量主要与 ASN、 ISN的数量正相关, 降 低了与接入用户数量的关联性。通过解决移动性问题降低网络拓朴的复杂性, 通过多个接入终端共享 RID 的方式降低路由表规模与接入用户数量的关联 性, 从而提高路由系统的可测量性。
下面将结合附图及具体实施例分别对本架构内的终端之间进行通信、 以 及与 Legacy IP网络进行跨网通信时如何使用上述 AID编码进行数据报文的 寻址和转发的操作过程作进一步详细说明。
IPV4终端收发的数据报文的源地址、 目的地址为 IPV4格式。 接收到发 往 IPV4终端的数据报文时, 携带的源 AID、 目的 AID为扩展头 +IPV4地址 格式, ASN将源 AID和目的 AID转化为 IPV4终端可识别的 IPV4地址; 在 接收到 IPV4终端发出数据报文时, ASN将 IPV4格式的源地址转变为对应的 AID。 其中, 源 ASN收到的源 IPV4 终端发出的数据报文主要有两类: 发往 Legacy IP网络的数据报文,和发往基于网络的身份和位置分离架构的数据报 文。 ASN可以通过本地緩存中配置的路由表项区别两类数据报文, 例如, 将 IP地址段 20.10.*.*; 30.*.*.*分配给本架构, 则这两个地址段的数据报文就是 本架构的, 其它地址段的就是 Legacy IP网络的。 一、 当本架构内的 IPV4终端之间相互访问时, 如图 6所示, 主要包括 以下步骤: 步骤 101 , 源 IPV4 终端发出数据 文, 携带的源地址和目的地址均为 IP V4公网地址格式; 步骤 102 , 源 ASN将源地址和目的地址的 IPV4公网地址格式增加扩展 头后, 变为源 AID和目的 AID地址格式; 并对数据报文做封装处理, 将 RID 信息封装在数据报文中后发往骨干网进行转发; 具体的, 源 ASN基于源 AID地址和目的 AID地址在本地、 或者自骨干 网的映射转发平面查询获得以源 RID以及对端的 RID信息, 并将源 RID与 对端的 RID信息封装在 AID地址外层,转发至骨干网的广义转发平面进行转 发; 广义转发平面根据数据报文中封装的对端的 RID信息将数据报文转发至 目的 ASN; 步骤 103 , 目的 ASN自骨干网收到发往目的 IPV4终端的数据报文时, 对数据报文进行解封装处理, 剥离外层的源 /对端的 RID, 其中, 携带的源 AID, 目的 AID为扩展头 + IPV4公网地址格式, 目的 ASN将源 AID、 目的 AID的扩展头部分剥离, 保留 IPV4公网地址格式的部分填写在对应的源地 址、 目的地址字段中发给目的 IPV4终端。
二、 当本架构内的 IPV4终端与 AID终端之间相互访问时(未图示) , 主要包括以下步骤: 当源终端为 AID终端, 而目的终端为 IP V4终端时, 则源终端发出的数 据报文中的源地址和目的地址为 AID编码格式, 因此, 源 ASN不需进行转 换,只需在数据报文头部封装对端的 RID后发往骨干网进行路由转发。其中, 骨干网对数据报文的具体转发流程可参照上述实施例。 而在目的 ASN处, ASN针对数据报文进行 RID解封装处理后, 携带的 源 AID、 目的 AID为扩展头 + IP V4公网地址格式, 目的 ASN将源 AID、 目 的 AID的扩展头部分剥离, 保留 IPV4公网地址格式的部分填写在对应的源 地址、 目的地址字段中发给目的 IPV4终端。 当源终端为 IPV4终端, 目的终端为 AID终端时, 源 IPV4终端发出数据 报文, 携带的源地址和目的地址均为 IPV4公网地址格式, 源 ASN将源地址 和目的地址的 IPV4公网地址格式增加扩展头后, 变为源 AID和目的 AID地 址格式;并对数据报文做 RID封装处理,向骨干网的广义转发平面进行转发; 而在目的 ASN处, 由于目的终端本身能够支持 AID编码格式, 则目的 ASN可在针对自广义转发平面收到的数据报文进行 RID解封装后,直接按照 AID编码格式的源 /目的地址将数据报文发送给目的 AID终端。
三、 本架构网络的 IPV4终端访问 Legacy IP网络的 IPV4终端时, 如图
7所示, 主要包括以下步骤: 步骤 201 ,本架构网络下的源 IPV4终端向 Legacy IP网络下的目的 IPV4 终端发送数据报文, 携带的源地址和目的地址均为 IPV4公网地址格式; 步骤 202 , 源 ASN接收到本架构网络下的源 IPV4终端发出的数据报文 时, 将源终端 IPV4公网地址格式增加扩展头后, 变为源 AID地址格式, 目 的地址保留 IPV4公网地址格式。 ASN中保存了 IP地址段(可以是唯一 IP 地址或 IP地址区间)与 ISN的路由标识 RID的映射信息, ASN通过目的 IPV4 公网地址查询该 IP地址对应的 RID, 并根据源 AID在本地或向 ILR查询源 RID后, 对数据 ^艮文做封装处理, 将源 RID以及 ISN的路由标识 RID封装 在数据报文中后, 发往骨干网进行转发处理; 步骤 203 , 目的 ISN针对自骨干网收到的数据报文进行 RID解封装后, 数据艮文的源地址为 AID , 目的地址为 IPV4公网地址, 目的 ISN将源 AID 的扩展头部分剥离, 保留 IPV4公网地址格式的部分填写在对应的源地址中, 并根据目的 IPV4公网地址, 将数据报文发给目的 IPV4终端。
四、 Legacy IP网络中的 IPV4终端访问本架构网络的 IPV4终端时 , Legacy IP网络中的源 IPV4终端的所有数据 4艮文将经由 ISN收发, 如图 8所示, 其 过程主要包括以下步骤: 步骤 301 , Legacy IP网络中的源 IPV4终端经源 ISN向本架构网络下的 目的 IPV4终端发送数据报文时,携带的源地址和目的地址均为 IPV4公网地 址格式, 其中目的 IPV4公网地址为基于网络的身份位置分离架构中独占的 IP V4公网地址段; 步骤 302,源 ISN将数据报文中的目的 IPV4公网地址增加扩展头常量转 换为目的 AID地址格式, 以替换数据报文中的目的 IPV4公网地址, 并以目 的 AID在本地查询对应的目的 RID , 或者向骨干网发起位置查询流程, 以查 到对应的 RID; 并且, ISN为源 IPV4公网地址分配一个 RID (该 RID由 ISN 根据固定 IP地址段预先分配), 该 RID路由地址指向该 ISN。 ISN在数据报 文中封装两个 RID信息后发往骨干网进行转发处理; 具体的, 源 ISN按照前述方式向骨干网的映射转发平面中的 ILR查到对 端的 RID信息后, 将对端的 RID信息以及 ISN的 RID路由地址封装在 AID 地址外层, 并转发至骨干网的广义转发平面转发; 广义转发平面根据数据报 文中封装的对端的 RID信息将数据报文转发至目的 ASN; 步骤 303 , 目的 ASN对自骨干网收到的数据报文进行 RID解封装后,数 据报文携带的源地址为 IPV4格式、目的地址为 AID格式,即为扩展头 + IPV4 公网地址。 目的 ASN将目的 AID的扩展头部分剥离,保留 IPV4公网地址部 分填写在目的地址字段中发给目的 IPV4终端。 在后续流程中, 目的 ASN接收到目的 IPV4终端回应的数据报文时, 将 上述为源 IPV4公网地址分配的 RID路由地址封装在数据报文中, 发往骨干 网中的广义转发平面; 广义转发平面根据该 RID路由地址将数据报文转发至 该 RID路由地址对应的 ISN。
五、本架构下的 AID终端访问 Legacy IP网络下的 IPV4终端时 ,主要包 括以下步骤(未图示) : 步骤 401 , 本架构网络下的源 AID终端经源 ASN向传统网络下的目的 IPV4终端发送数据艮文, 数据艮文中的源地址为 AID编码格式, 目的地址 为 IP V4公网地址; 步骤 402 , 源 ASN接收到源 AID终端发出的数据报文时, 根据 ASN中 保存的 IP地址段 (可以是唯一 IP地址或 IP地址区间 )与 ISN的路由标识 RID的映射信息, 查找到目的 IPV4公网地址对应的 RID; 并将该 RID路由 标识与源 AID对应的源 RID—起封装在数据报文中发往骨干网进行路由转 发。 其中, ASN查找源 AID对应的源 RID , 以及骨干网对数据 4艮文的具体转 发流程可参照前述实施例。 步骤 403 ,目的 ISN对自骨干网收到的数据报文进行 RID解封装处理后, 数据报文中携带的源地址为 AID格式、 目的地址为 IPV4公网地址, 则目的 ISN将源 AID的扩展头部分剥离, 保留 IPV4公网地址部分填写在对应的源 地址, 将目的 IPV4公网地址填写在目的地址字段中发给目的 IPV4终端。
上述实施案例中, 基于身份位置分离架构的网络架构是作为 IPV4 网络 的一个组成部分, 釆用 IPV4公网地址实现与 IPV4网络的互联互通。 在本发明优选实施例中, 如图 9所示, 可在 IP V4网络与基于身份位置 分离架构的网络架构之间引入互通代理服务器, 将基于身份位置分离架构的 网络架构内部的用户识别 AID翻译成合法网络 IPV4地址, 实现二者之间的 互联互通。 简单的说,就是在一个基于身份位置分离架构的网络架构中使用 AID地 址标识通信对端, 而当内部节点要与外部 IPV4 网络进行通讯时, 就在互通 代理服务器处, 将内部 AID地址剥离扩展头常量、 只保留对应的 IPV4公网 地址部分, 替换成公用 IPV4地址, 从而在外部公网上能够正常使用。 互通 代理服务器可内置在互联服务节点 ISN中。
下面结合基于身份标识和位置分离架构的网内 DNS ( Domain Name
System, 域名服务系统)业务, 以及网间 DNS业务的两个应用实例对本发明 的业务移植的实现方法的具体实施作进一步阐述。 传统 Internet网络中, 主要的应用业务模式为客户端-服务器( C/S )模式 的形式。 服务器端处于公网, 釆用公网 IP地址; 客户端处于私网或公网, 当 客户端处于私网时, 需要通过 NAT ( Network Address Translation , 网络地址 转换) 等方式将私网地址转换为公网地址。 客户端与服务器的互访地址为 IP V4公网地址。 在本架构网络与 Legacy IP网络并存期间, Internet应用业务移植到基于 网络的位置和身份分离架构中时, 应用业务服务器有两类身份识别: 用于 Internet互通的 IPV4公网地址, 以及用于基于网络的位置和身份分离架构互 通的 AID识别。其中,对于从 Internet移植的应用业务服务器,其 AID的 32bit 后缀 suffix32的取值为该服务器 IPV4格式的公网地址,扩展头 EH的位长及 取值由基于身份位置分离架构内确定的常量。 从传统 Legacy IP网络访问移植到基于网络的位置和身份分离架构中的 应用业务服务器时, 数据报文中填写的目的地址为该应用业务服务器的公网 IPV4地址;数据报文送达基于网络的位置和身份分离架构边界时, 由 ISN完 成报文格式的转换, 将公网 IPV4地址转换为 AID。 应用实例一 本应用实例描述了基于身份标识和位置分离架构的网内 DNS业务,如图 10所示, 终端 UE1 , DNS服务器, 应用服务器位于基于身份位置分离架构 的网络架构中。 为典型化应用场景, 本实施例中的 DNS服务器支持 AID编 码格式, 为 AID终端。 终端 UE1及应用服务器为 IPV4终端。 参见图 10, 其流程如下: 步骤 401 , UE1向 DNS服务器 DNS查询请求,请求应用服务器的地址; 其中, UE1 ( IPV4终端)与 DNS服务器 ( AID终端)之间可按照前述 实施例中的方式进行交互, 此处不再赘述。 步骤 402 , DNS服务器根据 DNS查询请求中的信息判断是否兼容 AID 格式: 如果 DNS查询请求中兼容 AID格式地址, DNS服务器发送 DNS查 询响应返回应用服务器的 AID地址格式; 如果 DNS查询请求中只兼容 IPV4 格式地址, DNS域名解析服务器发送 DNS查询响应返回应用服务器的 IPV4 公网地址格式。 该步骤的具体实现可参考现有 DNS服务器根据查询请求判断回复 IPV4 还是 IPV6地址的情形, 由 DNS协议规定。 本实例中的 UE1为 IPV4终端,于是 DNS服务器返回应用服务器的 IPV4 公网地址。 步骤 403 , UE1向应用服务器发出数据报文, 由于 UE1为 IPV4终端, ASN1与终端 UE1之间接口的数据报文只能是 IPV4格式,源地址为终端 UE1 公网 IPV4地址(记作 IPV4-U ) , 目的地址为应用服务器公网 IPV4地址(记 作 IPV4-A ) , 数据报文格式如下表所示:
Figure imgf000029_0001
步骤 404, ASN1将源地址、 目的地址增加扩展头 EH常量, 由 IPV4公 网地址转化为 AID格式。
ASN1以应用服务器的 AID (即 EH常量 +IPV4-A, 记作 AID-A )向映射 转发平面发出映射查询流程, 获得 AID-A与 RID-A ( ASN2为应用服务器分 配的 RID )的映射关系后, 封装数据报文, 发往 ASN2。 ASN1发出的数据报 文为:
Figure imgf000029_0002
步骤 405, ASN2收到送达的数据报文后, 剥离 RID封装, 并将内层报 文头 AID-U和 AID-A转换为对应的 IPV4-U和 IPV4-A, 发往应用服务器, 发出的数据报文格式如下:
Figure imgf000029_0003
步骤 406, 应用服务器收到数据报文后, 即可进行相应的业务处理。
应用实例二 本应用实例描述了基于身份位置分离架构的网络架构中 DNS 业务的网 间业务, 如图 11所示, DNS服务器, 应用服务器位于基于身份标识和位置 分离的网络架构中, 终端 UE1位于 Legacy IP网络中。 为典型化应用场景, 本实施例中的 DNS服务器支持 AID编码格式, 为 AID终端。 终端 UE1及应 用服务器为 IPV4终端。 参见图 11 , 其流程如下: 步骤 501 , UE1向 DNS服务器 DNS查询请求,请求应用服务器的地址; 步骤 502, DNS服务器进行域名解析,发送 DNS查询响应返回应用服务 器的 IPV4公网地址格式; 步骤 503 , UE1向应用服务器发出数据报文, 由于 UE1为 IPV4终端, ASN1与终端 UE1之间接口的数据报文只能是 IPV4格式, 格式如下:
Figure imgf000030_0001
步骤 504, ISN收到来自 Legacy IP网络的数据报文, 将目的地址增加 EH常量, 由 IPV4-A公网地址转化为 AID-A格式。
ISN 以 AID-A 向映射转发平面发出映射查询流程, 获得应用服务器的 AID-A与 RID-A的映射关系; 并为 UE1分配 RID-I地址, 该地址路由指向 ISN。
ISN封装数据报文, 发往 ASN, 发出的数据报文为 源 目的 源 目的
二层报头 RID-I RID-A AID-U AID-A 数据报文净荷。 。 。 步骤 505, ASN收到送达的数据报文后, 剥离 RID封装。 将内层报文头 目的 AID-A转换为对应的 IPV4-A,将源 AID-U转换为 IPV4-U,发往应用服 务器, 发出的数据报文格式如下:
Figure imgf000031_0001
步骤 506, 应用服务器收到数据报文后, 即可进行相应的业务处理。
此外, 本发明实施例中还提供了一种实现信息互通的网络架构, 包括: 第一网络, 所述第一网络下至少设有第一节点, 当所述第一节点向第二 网络第二节点发送信息或自第二网络第二节点接受信息, 所述信息在第一网 络传输时, 信息的接受方及发送方的标识以第一格式存在; 第二网络, 所述第二网络包括有第二节点、 与第一网络关联的第一互通 节点及与第二节点关联的第二互通节点, 当接受第一网络第一节点向第二网 络第二节点发送信息时, 所述第一互通节点转变信息的接受方的第一格式为 第二格式并转发至第二互通节点; 其中, 当第二节点作为接受方, 其标识以第二格式存在时, 第二互通节点发送 该信息至第二节点; 当第二节点作为接受方, 其标识以第一格式存在时, 第二互通节点转变 该接受方第二格式的标识为第一格式, 并发送信息至第二节点。 其中, 第一互通节点通过在接受方第一格式标识前或后面添加常量或变 量, 以转变为第二格式的接受方标识。
本发明另一实施例中又提供了一种实现信息互通的网络架构, 包括: 第一网络, 所述第一网络下至少设有第一节点, 当所述第一节点向第二 网络第二节点发送信息或自第二网络第二节点接受信息, 所述信息在第一网 络传输时, 信息的接受方及发送方的标识以第一格式存在; 第二网络, 所述第二网络包括有第二节点、 与第一网络关联的第一互通 节点及与第二节点关联的第二互通节点, 当第二节点向第一网络第一节点发 送信息时, 当第二节点作为发送方, 其信息的发送方及接受方标识以第一格式存在 时, 第二互通节点转变信息的发送方标识为第二格式, 并经由第一互通节点 将转变后的第二格式的发送方标识转变为第一格式的发送方标识, 从而发送 信息至第一网络的第一节点; 当第二节点作为发送方, 其信息的发送方以第二格式存在时, 第一互通 节点转变该发送方第二格式的标识为第一格式, 并发送信息至第二节点。 上述实施例的网络架构可以结合使用。 当所述第一网络的第一节点向第 二网络的第二节点发送信息时, 第一节点将信息发送至第一互通节点, 第一 互通节点将该信息发送至第二互通节点, 第二互通节点再将该信息发送至第 二节点;相应地, 当第二网络的第二节点向第一网络的第一节点发送信息时, 第二节点将信息发送至第二互通节点, 第二互通节点将该信息发送至第一互 通节点, 第一互通节点再将该信息发送至第一节点。 上述实施例中, 所述第一网络可以是传统通信网络, 所述第二网络可以 是身份标识和位置分离架构网络, 相应地, 所述第一互通节点为 ISN, 所述 第二互通节点为 ASN。 另外, 本发明实施例还提供了一种网络, 基于身份标识和位置标识分离 架构, 包括接入网和骨干网, 所述接入网与骨干网在拓朴关系上没有重叠, 其中: 所述接入网位于所述骨干网的边缘, 并设置成实现本网络终端的接入; 所述骨干网设置成实现通过所述接入网接入的终端间数据报文的路由和 转发; 在所述网络为每个接入的终端分配唯一的身份标识( AID ) , 该 AID在 所述终端的移动过程中始终保持不变; 所述 AID中包含第一识别信息, 所述 第一识别信息用于所述身份标识和位置分离架构网络与传统通信网互通时终 端的身份识别, 或用于标识接入所述身份标识和位置分离架构网络中的传统 网络终端。 综上所述, 本发明提出了在基于身份标识和位置分离框架下身份识别的 具体实现方法及实现信息互通的网络架构, 通过釆用扩展头 +后缀的 AID编 码格式, 后缀釆用 IPV4/IPV6公网地址格式, 在满足编码空间数量要求的同 时, 实现了本架构网络与 Legacy IP网络之间的互联互通; 在 Legacy IP网络中, 标识用户身份釆用 IPV4/IPV6地址格式; 在本架 构网络中, 标识用户身份釆用 AID格式; 在本架构网络与 Legacy IP网络间 互通釆用 IPV4/IPV6地址唯一标识通信对端; 在本架构网络与 Legacy IP网络并存期间, 扩展头釆用基于身份标识和 位置分离框架内确定的常量, 保证了基于网络的身份标识和位置分离框架作 为 Legacy IP的一个组成部分, 从 Legacy IP网络的角度, 保证了基于网络的 身份标识和位置分离框架中占用 IPV4/IP V6公网地址的唯一性; 演进过渡阶段结束以后, 即 Legacy IP网络演进到以本架构为主的网络 后, 扩展头的取值由身份标识和位置分离框架根据需要分配, 以实现 AID地 址规模的扩展, 支持更多的用户规模。
此外, 通过本发明提供的上述实施方案, 在本架构网络与 Legacy IP网 络并存期间, 实现了本架构网络内部的终端之间、 以及本架构网络与 Legacy IP网络的终端的互访: 本架构网络与 Legacy IP网络互访时, ASN负责将内 部 AID地址剥离扩展头常量,转换为 Legacy IP网络支持的 IP地址格式; ISN 负责将公网 IPV4/IPV6地址增加扩展头常量, 转换为 AID编码格式。 此外, 在本架构网络与 Legacy IP网络并存期间, ASN还负责对仅支持 IPV4/IPV6 地址格式的传统终端实现地址转换功能, 在接收到发往终端的数 据报文时将 AID地址转换为终端可兼容的 IPV4/IPV6地址格式; 而当终端发 出数据报文时, ASN将 IPV4/IPV6地址转换为对应的 AID。 在本架构网络与 Legacy IP网络互通时, ISN负责 Legacy IP网络内的终 端的数据报文的 AID转换处理, 收到 IPV4/IPV6终端发出的数据报文时, 将 数据报文中 IPV4/IPV6格式的目的地址增加扩展头转换为对应的 AID, 并查 询对应的 RID,封装在数据报文中,通过骨干网转发;在接收到发往 IPV4/IPV6 终端的数据报文时, 对数据报文进行 RID解封装处理, 将解封装后的数据报 文的源地址 /目的地址转换为 Legacy IP网络支持的 IP地址格式。 在演进到以本架构为主的网络后, 由于没有与 Legacy IP网络互通互访 的需求, AID釆用公网地址时不必遵循 Legacy IP网络的地址分配占用规范。 在本架构内部, 釆用 AID能够唯一标识通信对端, 扩展头取值由身份标识和 位置分离框架根据需要分配, 极大扩展了可供使用的 AID命名空间。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 尽管本发明结合特定实施例进行了描述, 但是对于本领域的技术人员来 说, 可以在不背离本发明的精神或范围的情况下进行修改和变化。 这样的修 改和变化被视作在本发明的范围和附加的权利要求书范围之内。
工业实用性 本发明提供一种身份识别、 跨网通信、 业务移植方法及信息互通网络架 构, 在基于网络的身份标识和位置分离框架下, 提出了具体的身份识别的实 现方法, 规定了各网元兼容应用业务时所作处理, 在满足编码空间数量要求 的同时, 实现了与传统 IPV4/IPV6网络的互联互通, 实现了对 IPV4/IPV6上 层应用程序的兼容性, 明确了 IPV4/IPV6上层应用业务的演进过渡方式, 支 持 IPV4/IPV6网络丰富多样的应用程序能够较为平滑的移植到基于网络的身 份标识和位置分离框架中。

Claims

权 利 要 求 书
1、一种身份识别的实现方法,应用于身份标识和位置分离架构网络, 包 括: 所述身份标识和位置分离架构网络为每个接入的终端分配唯一的身份标 识(AID ) , 该 AID在所述终端的移动过程中始终保持不变; 其中, 所述 AID中包含第一识别信息, 所述第一识别信息用于所述身份 标识和位置分离架构网络与传统通信网互通时终端的身份识别, 或用于标识 接入所述身份标识和位置分离架构网络中的传统网络终端。
2、 如权利要求 1所述的方法, 其中: 所述传统通信网为传统 IP网络, 所述第一识别信息为所述传统 IP网络 中的公网 IP地址信息。
3、 如权利要求 1或 2所述的方法, 其中: 所述 AID中还包括第二信息,所述第二信息为基于身份标识和位置分离 架构所确定的常量或变量。
4、 如权利要求 3所述的方法, 其中: 所述第二信息为所述 AID的前缀或后缀。
5、 如权利要求 1或 2所述的方法, 其中: 在所述身份标识和位置分离架构网络为每个接入的终端分配唯一的 AID 的步骤中, 釆用如下方式配置所述 AID: 将所述 AID保存在认证中心中, 在终端鉴权时将所述 AID带给所述终 端所在的接入服务节点 (ASN ) ; 当所述终端接入所述身份标识和位置分离 架构网络中时,所述 ASN将所述第一识别信息发送给所述终端,所述终端在 协议栈中配置所述 AID; 或者, 将所述 AID保存在所述终端中的用户识别模块中;所述终端接入所述身 份标识和位置分离架构网络中时, 从所述用户识别模块中读取所述 AID, 并 在接入信令中将所述 AID发送给所述终端所在的 ASN。
6、一种跨网通信的实现方法,应用于身份标识和位置分离架构网络与传 统通信网络, 包括: 所述身份标识和位置分离架构网络中的终端的 AID 中包含第一识别信 息, 所述第一识别信息用于所述身份标识和位置分离架构网络与传统通信网 互通时终端的身份识别, 或用于标识接入所述身份标识和位置分离架构网络 中的传统网络终端; 源 ASN接收到所述身份标识和位置分离架构网络中的源终端发往传统 通信网络的数据报文时, 在所述数据报文中封装所述传统通信网络中的互联 服务节点(ISN )的路由标识, 通过广义转发平面转发给所述 ISN; 所述 ISN 根据所述数据报文中目的终端的 AID 中的第一识别信息将所述数据报文转 发给目的终端; 和 /或
ISN接收到所述传统通信网络中的源终端发往所述身份标识和位置分离 架构网络的数据报文时, 将所述数据报文中的目的地址作为第一识别信息, 转换为目的终端的 AID, 封装在所述数据报文中, 以及, 在所述数据报文中 封装指向该 ISN的路由标识,根据目的终端的 AID在本地或向身份位置寄存 器查询 AID和路由标识(RID )的映射信息, 并将查到的目的终端的 RID封 装在所述数据报文中, 通过广义转发平面转发给目的 ASN; 所述目的 ASN
7、 如权利要求 6所述的方法, 其中: 所述传统通信网为传统 IP网络, 所述第一识别信息为所述传统 IP网络 中的公网 IP地址信息。
8、 如权利要求 7所述的方法, 所述方法还包括: 所述源 ASN中保存有所述 ISN的路由标识与所述公网 IP地址段的映射 信息; 在源 ASN在所述数据报文中封装所述传统通信网络中的 ISN的路由标 识的步骤中,所述源 ASN根据所述映射信息在所述数据报文中封装所述 ISN 的路由标识。
9、 如权利要求 6~8中任意一项所述的方法, 其中: 所述 AID中还包括第二信息,所述第二信息为基于身份标识和位置分离 架构所确定的常量或变量。
10、 如权利要求 9所述的方法, 其中: 所述第二信息为所述 AID的前缀或后缀。
11、 如权利要求 10所述的方法, 所述方法还包括: 若所述源终端为 IPV4终端, 则所述源 ASN收到所述源终端发出的数据 报文时, 将所述数据报文中的 IPV4格式的源地址和目的地址通过增加所述 第二信息转换为对应的 AID格式; 若所述源终端为 IPV6终端, 则所述源 ASN收到所述源终端发出的数据 报文时, 将所述数据报文中的 IPV6格式的源地址和目的地址通过增加所述 第二信息转换为对应的 AID格式; 所述 ISN收到所述数据 文后, 进行解封装处理, 并通过去除所述第二 信息将所述目的地址从 AID格式转换为 IPV4格式或 IPV6格式。
12、 如权利要求 10所述的方法, 其中: 所述 ISN收到所述源终端发往所述身份标识和位置分离架构网络的数据 才艮文时,将所述数据 文中的 IPV4或 IPV6格式的源地址和目的地址通过增 加所述第二信息转换为对应的 AID格式; 所述方法还包括: 若所述目的终端为 IPV4终端, 则所述目的 ASN收到所述数据报文后, 进行解封装处理,并通过去除所述第二信息将所述目的地址从 AID格式转换 为 IPV4格式; 若所述目的终端为 IPV6终端, 则所述目的 ASN收到所述数据 文后, 进行解封装处理,并通过去除所述第二信息将所述目的地址从 AID格式转换 为 IPV6格式。
13、 一种业务移植的实现方法, 包括: 当传统通信网络中的应用业务移植到所述身份标识和位置分离架构网络 中时, 为所述应用业务的应用服务器分配两类身份标识: 用于与所述传统通 信网络互通时的第一识别信息, 及用于与所述身份标识和位置分离架构网络 互通的身份标识 (AID ) ; 所述身份标识和位置分离架构网络中的终端以所述第一识别信息为目的 地址向所述应用服务器发送数据报文,所述终端所在的 ASN在对所述数据报 述应用服务器所在的 ASN收到所述数据报文时, 剥离 RID封装后, 发给所 述应用服务器; 和 /或 所述传统通信网络中的终端以所述第一识别信息为目的地址向所述应用 后通过广义转发平面发送给所述应用服务器所在的 ASN; 所述应用服务器所 在的 ASN收到所述数据报文时, 剥离 RID封装后, 发给所述应用服务器。
14、 如权利要求 13所述的方法, 其中: 所述传统通信网为传统 IP网络,所述第一识别信息为所述应用服务器在 所述传统 IP网络中的公网 IP地址信息。
15、 如权利要求 14所述的方法, 其中: 所述 AID包含所述第一信息和第二信息,所述第二信息为基于身份标识 和位置分离架构所确定的常量或变量,所述第二信息作为所述 AID的前缀或 后缀。
16、 如权利要求 15所述的方法, 其中: 所述身份标识和位置分离架构网络中的终端以所述第一识别信息为目的 地址向所述应用服务器发送数据报文之后, 所述方法还包括: 当所述终端为 IPV4或 IPV6终端时,所述终端所在的 ASN通过增加所述第二信息将所述数 据 ^艮文中的目的地址转换为对应的 AID格式, 并根据目的 AID查询所述应 用服务器的 AID和 RID的映射信息; 所述应用服务器所在的 ASN收到所述数据报文时, 剥离 RID封装后, 所述方法还包括: 当所述应用服务器为 IPV4终端时, 所述应用服务器所在的 ASN通过去 除所述第二信息将所述目的地址从 AID格式转换为 IPV4格式; 当所述应用服务器为 IPV6终端时, 所述应用服务器所在的 ASN通过去 除所述第二信息将所述目的地址从 AID格式转换为 IPV6格式。
17、 如权利要求 15所述的方法, 其中: 所述传统通信网络中的终端以所述第一识别信息为目的地址向所述应用 服务器发送数据报文之后, 所述方法还包括: 所述 ISN通过增加所述第二信 息将所述数据报文中的目的地址转换为对应的 AID格式, 并根据目的 AID 查询所述应用服务器的 AID和 RID的映射信息; 所述应用服务器所在的 ASN收到所述数据报文时, 剥离 RID封装后, 所述方法还包括: 当所述应用服务器为 IPV4终端时, 所述应用服务器所在的 ASN通过去 除所述第二信息将所述目的地址从 AID格式转换为 IPV4格式; 当所述应用服务器为 IPV6终端时, 所述应用服务器所在的 ASN通过去 除所述第二信息将所述目的地址从 AID格式转换为 IPV6格式。
18、 一种实现信息互通的网络架构, 包括第一网络和第二网络, 所述第一网络下至少设有第一节点, 当所述第一节点向第二网络的第二 节点发送信息或自第二网络的第二节点接受信息, 所述信息在第一网络传输 时, 信息的接受方标识及发送方标识以第一格式存在; 所述第二网络包括有第二节点、 与第一网络关联的第一互通节点及与第 二节点关联的第二互通节点; 所述第一互通节点设置成: 当接受第一网络的第一节点向第二网络的第 二节点发送的信息时, 将信息的接受方标识从第一格式转变为第二格式并将 该信息转发至第二互通节点; 第二互通节点设置成: 当接受第一网络的第一节点向第二网络的第二节 点发送的信息时, 当第二节点作为接受方, 其标识以第二格式存在时, 发送 该信息至第二节点; 当第二节点作为接受方, 其标识以第一格式存在时, 将 该信息的接受方标识从第二格式转变为第一格式,并发送该信息至第二节点。
19、 如权利要求 18所述的网络架构, 其中: 所述第二互通节点还设置成: 当第二节点向第一网络的第一节点发送信 息, 该信息的发送方标识以第一格式存在时, 转变信息的发送方标识为第二 格式, 发送给第一互通节点; 当第二节点向第一网络的第一节点发送信息, 该信息的发送方标识及接受方标识以第二格式存在时, 发送该信息给第一互 通节点; 所述第一互通节点还设置成: 当接受第二节点向第一网络的第一节点发 送的信息时, 将该信息的发送方标识从第二格式转变为第一格式, 并发送该 信息至第一节点。
20、 如权利要求 18所述的网络架构, 其中: 第一互通节点还设置成: 通过在第一格式的接受方标识前面或后面添加 常量或变量, 以转变为第二格式的接受方标识。
21、 一种网络, 基于身份标识和位置标识分离架构, 包括接入网和骨干 网, 所述接入网与骨干网在拓朴关系上没有重叠, 其中: 所述接入网位于所述骨干网的边缘, 并设置成实现本网络终端的接入; 所述骨干网设置成实现通过所述接入网接入的终端间数据报文的路由和 转发; 在所述网络为每个接入的终端分配唯一的身份标识( AID ) , 该 AID在 所述终端的移动过程中始终保持不变; 所述 AID中包含第一识别信息, 所述 第一识别信息用于所述身份标识和位置分离架构网络与传统通信网互通时终 端的身份识别, 或用于标识接入所述身份标识和位置分离架构网络中的传统 网络终端。
PCT/CN2010/076932 2009-09-17 2010-09-15 身份识别、跨网通信、业务移植方法及信息互通网络架构 WO2011032492A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910171975.X 2009-09-17
CN200910171975 2009-09-17
CN200910205556.3A CN102026166B (zh) 2009-09-17 2009-10-16 身份识别、跨网通信、业务移植方法及信息互通网络架构
CN200910205556.3 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011032492A1 true WO2011032492A1 (zh) 2011-03-24

Family

ID=43758109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076932 WO2011032492A1 (zh) 2009-09-17 2010-09-15 身份识别、跨网通信、业务移植方法及信息互通网络架构

Country Status (2)

Country Link
CN (1) CN102026166B (zh)
WO (1) WO2011032492A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130128A1 (zh) * 2011-04-01 2012-10-04 中兴通讯股份有限公司 一种实现网络标识转换的方法、装置及系统
CN105592447A (zh) * 2014-10-22 2016-05-18 中兴通讯股份有限公司 一种分配移动终端的身份标识的方法和装置
CN111399463A (zh) * 2019-12-24 2020-07-10 上海可鲁系统软件有限公司 工业网络数据单向隔离方法及装置
CN112134744A (zh) * 2020-10-23 2020-12-25 上海途鸽数据科技有限公司 一种分布式管理系统中节点的管理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938885A (zh) * 2011-08-16 2013-02-20 中兴通讯股份有限公司 身份位置分离与传统网络互联互通方法、ilr和asr
CN102957756B (zh) * 2011-08-23 2017-10-17 中兴通讯股份有限公司 数据报文的处理方法及接入服务路由器
CN103036758B (zh) * 2011-10-10 2017-02-15 中兴通讯股份有限公司 一种标识网与传统网络互联互通的方法、asr及isr
CN103051541B (zh) * 2011-10-14 2017-04-05 中兴通讯股份有限公司 一种标识网内的报文转发方法、asr及isr
CN103051527A (zh) * 2011-10-17 2013-04-17 中兴通讯股份有限公司 学习aid与rid的对应关系的方法、asr及isr
WO2013139018A1 (zh) * 2012-03-22 2013-09-26 中兴通讯股份有限公司 身份位置分离网络中用户身份标识的分配方法及装置
CN106708553B (zh) * 2016-06-20 2018-11-09 腾讯科技(深圳)有限公司 标识生成方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020039184A (ko) * 2000-11-20 2002-05-25 윤종용 네트워크 시스템과 그 네트워크 시스템의 제어 방법
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101127663A (zh) * 2007-09-13 2008-02-20 北京交通大学 一种移动自组织网络接入一体化网络的系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020039184A (ko) * 2000-11-20 2002-05-25 윤종용 네트워크 시스템과 그 네트워크 시스템의 제어 방법
CN1801764A (zh) * 2006-01-23 2006-07-12 北京交通大学 一种基于身份与位置分离的互联网接入方法
CN101127663A (zh) * 2007-09-13 2008-02-20 北京交通大学 一种移动自组织网络接入一体化网络的系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG PING: "Research on the Scalable Routing Architecture Based on Splitting and Mapping of Identity and Locator", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, INFORMATION SCIENCE AND TECHNOLOGY, 15 October 2009 (2009-10-15), pages 1139-3 *
YANG SHUIGEN ET AL.: "Route Optimization Mechanism Based on Identifier/Locator Split for Nested Mobile Network", ACTA ELECTRONICA SINICA, vol. 36, no. 7, July 2008 (2008-07-01), pages 1261 - 1267 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130128A1 (zh) * 2011-04-01 2012-10-04 中兴通讯股份有限公司 一种实现网络标识转换的方法、装置及系统
CN102739502A (zh) * 2011-04-01 2012-10-17 中兴通讯股份有限公司 一种实现网络标识转换的方法、装置及系统
CN102739502B (zh) * 2011-04-01 2016-08-31 南京中兴软件有限责任公司 一种实现网络标识转换的方法、装置及系统
CN105592447A (zh) * 2014-10-22 2016-05-18 中兴通讯股份有限公司 一种分配移动终端的身份标识的方法和装置
CN111399463A (zh) * 2019-12-24 2020-07-10 上海可鲁系统软件有限公司 工业网络数据单向隔离方法及装置
CN111399463B (zh) * 2019-12-24 2023-10-20 上海可鲁系统软件有限公司 工业网络数据单向隔离方法及装置
CN112134744A (zh) * 2020-10-23 2020-12-25 上海途鸽数据科技有限公司 一种分布式管理系统中节点的管理方法
CN112134744B (zh) * 2020-10-23 2023-04-18 上海途鸽数据科技有限公司 一种分布式管理系统中节点的管理方法

Also Published As

Publication number Publication date
CN102026166A (zh) 2011-04-20
CN102026166B (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2011032492A1 (zh) 身份识别、跨网通信、业务移植方法及信息互通网络架构
US9622072B2 (en) Communication method, method for forwarding data message during the communication process and communication node thereof
EP2466985B1 (en) Network based on identity identifier and location separation
WO2013071819A1 (zh) 实现身份位置分离、分配接口标识的方法及网元和ue
WO2011124132A1 (zh) 数据通信系统及方法
WO2011041967A1 (zh) 匿名通信的方法、注册方法、信息收发方法及系统
WO2011044819A1 (zh) 信息获取及通知、数据报文转发和切换的方法及接入节点
WO2013026306A1 (zh) 一种身份标识和网关地址的分配方法及系统
WO2012106935A1 (zh) 数据通信网络配置方法、网关网元及数据通信系统
WO2011032462A1 (zh) 一种数据传输、接收的方法及系统及路由器
WO2011131084A1 (zh) 数据通信系统及方法
WO2011032447A1 (zh) 新网与互联网互通的实现方法、系统及通信端
WO2011032455A1 (zh) 切换管理及切换时用户数据管理的方法、系统和agr
KR101901341B1 (ko) 사용자 장치의 이동성을 지원하는 네트워크 접속 방법 및 장치
WO2011057556A1 (zh) 一种减少ip地址需求的方法和移动网络系统
EP2466815B1 (en) Method and system for initiating forwarding of communicaiton, information and data message and for routing configuration
EP2477372B1 (en) Method and system for obtaining terminal identifier
WO2011044807A1 (zh) 一种匿名通信的注册、通信方法及数据报文的收发系统
KR20140117987A (ko) 이동 통신 네트워크 및 이를 이용한 통신 방법
WO2011050679A1 (zh) 基于Wimax网络架构实现的通信网络及终端接入方法
WO2011120276A1 (zh) 一种终端实现连接建立的方法及系统
WO2012088828A1 (zh) 表维护方法、系统和接入网关路由器
Jung et al. Mobile-oriented future internet (MOFI): Architecture and protocols
WO2011124121A1 (zh) 网间数据通讯系统及方法
WO2011041972A1 (zh) 一种数据报文主动推送的实现方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816696

Country of ref document: EP

Kind code of ref document: A1