WO2011030839A1 - Electric disc brake - Google Patents

Electric disc brake Download PDF

Info

Publication number
WO2011030839A1
WO2011030839A1 PCT/JP2010/065563 JP2010065563W WO2011030839A1 WO 2011030839 A1 WO2011030839 A1 WO 2011030839A1 JP 2010065563 W JP2010065563 W JP 2010065563W WO 2011030839 A1 WO2011030839 A1 WO 2011030839A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing plates
disc brake
force sensor
axial
axial force
Prior art date
Application number
PCT/JP2010/065563
Other languages
French (fr)
Japanese (ja)
Inventor
孝 坂井
和博 関口
雅友 森
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2011030839A1 publication Critical patent/WO2011030839A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/12Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring axial thrust in a rotary shaft, e.g. of propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/005Force, torque, stress or strain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/48Rotating members in mutual engagement with parallel stationary axes, e.g. spur gears

Definitions

  • the present invention relates to an improvement of an electric disc brake that brakes an automobile by an electric actuator using an electric motor as a drive source. Specifically, in order to stably obtain a desired braking force, a low-cost structure can be used as an axial force sensor for measuring the thrust applied to a pair of pads by the electric actuator with high accuracy. It is intended to realize.
  • Electric disc brakes that use an electric motor as a drive source eliminate the need for piping compared to the hydraulic disc brakes that have been widely used in the past, making manufacturing easier and lowering costs. There are many advantages such as reduced brake load and less environmental load, and improved response due to the absence of brake fluid movement.
  • the output of the electric motor is input to a force-increasing mechanism, and this force-increasing mechanism converts the rotary motion of this electric motor into a linear motion while increasing the force, and a pair of pads is placed on both sides of the rotor.
  • Various types of structures that are strongly pressed have been proposed, for example, as described in Patent Documents 1 to 6.
  • the force increasing mechanism various mechanisms such as a feed screw mechanism, a cam mechanism, a link mechanism, and a combination thereof are known.
  • any mechanism even if there is a difference in degree, loss due to friction is unavoidable, and all the output of the electric motor is directly applied to the force (pressing force) that presses the pad against the rotor. Must not.
  • the energization amount to the electric motor is the same and the drive torque of the output shaft of the electric motor is the same, the energization amount is increased and decreased based on the hysteresis in the booster mechanism. In some cases, a difference occurs in the pressing force.
  • the degree of this difference and the degree of the loss change due to friction of each part and are not constant. Therefore, in order to obtain a desired braking force accurately and stably, it is not sufficient to control the amount of power supplied to the electric motor.
  • the pressing force is measured, and the electric power is measured based on the measured value. It is necessary to perform feedback control to control the amount of current supplied to the motor.
  • FIG. 27 shows the structure described in Patent Document 5 among them.
  • the rotary motion of the electric motor 1 is converted into a linear motion by the booster mechanism 2 and transmitted to the piston 3, and the outer and inner pads 5, 6 are connected to the wheel by the piston 3 and the caliper claw 4. At the same time, it is pressed against both side surfaces of the rotor 7 rotating together.
  • an axial force sensor 8 is provided between the piston 3 and the inner pad 6, and the axial force sensor 8 can measure the force pressing the inner pad 6 against the rotor 7.
  • an axial force sensor 8 In order to control the braking force with high accuracy, it is necessary to use an axial force sensor 8 with high accuracy and small hysteresis as described above. If an axial force sensor 8 having a large hysteresis is used, even if the pressing force value is the same, the difference between the increase process and the decrease process is not negligible. Accuracy deteriorates. In view of such circumstances, it is preferable to use a sensor incorporating a quartz crystal piezoelectric element as an axial force sensor incorporated in an electric disc brake. Since the quartz piezoelectric element has higher accuracy and lower hysteresis than the ceramic piezoelectric element, it is possible to control the pressing force of the electric disc brake while ensuring practical accuracy. As an axial force sensor using such a crystal piezoelectric element, for example, the one described in Non-Patent Document 1 can be used.
  • the problem (1) is to use a plurality of small piezoelectric elements instead of one large one as the quartz crystal element constituting the axial force sensor. It can be solved by doing.
  • the price of an annular crystal piezoelectric element having an outer diameter of about 2 to 4 cm and a radial width of about 4 to 6 mm which is incorporated in an electric disc brake subject to the present invention, is very expensive. It is.
  • the price of a small piece of a quartz crystal piezoelectric element having a diameter of about 4 to 6 mm is extremely low.
  • an axial force sensor having a structure in which small pieces of crystal piezoelectric elements are arranged in an annular shape and the small pieces are pressed between a pair of pressing surfaces, an axial force sensor with high accuracy and low hysteresis can be obtained. Obtained at low cost.
  • the axial force sensor 8a holds the crystal piezoelectric elements 11 in holding recesses 10 and 10 formed at a plurality of locations in the circumferential direction on one axial surface of a holding body 9 configured in an annular shape (annular shape).
  • the openings of the holding recesses 10 and 10 are closed by the cover plates 12 and 12.
  • a charge amplifier 13 is disposed on the inner diameter side of the holding body 9, and an input portion of the charge amplifier 13 and an output portion of each crystal piezoelectric element 11 are connected. Since the axial force sensor 8a described in Patent Document 7 uses a small piece that can be procured at a low cost as the crystal piezoelectric element 11, the cost of the axial force sensor 8a as a whole can be suppressed.
  • the axial force sensor 8a having the conventional structure described in Patent Document 7 as described above is designed to be held between the butting surfaces of the boring machine between the drive shaft and the tool carrying shaft. .
  • the problem (1) can be solved among the problems (1) to (3) described above.
  • the remaining problems (2) and (3) cannot be solved. That is, since the axial force sensor 8a having the conventional structure has the charge amplifier 13 disposed at the center portion, an electric disk brake such as a screw rod is formed at the center portion of the axial force sensor 8a to perform rotational motion. A member that increases force while converting to linear motion cannot be inserted.
  • Patent Document 8 As a publication describing the technology related to the present invention. This Patent Document 8 describes a structure that prevents damage such as cracking or chipping on the pressure receiving plate by chamfering the corners of the ceramic pressure receiving plate constituting the load sensor. . However, Patent Document 8 does not include a description suggesting that the problems (2) and (3) are solved.
  • the present invention was invented to realize an electric disc brake capable of ensuring low cost and excellent pad replacement workability and weather resistance in view of the circumstances as described above.
  • the electric disc brake of the present invention includes a rotor, a torque receiving member, a pair of pads on the outer side and the inner side, and an actuator, as in the case of conventionally known electric disc brakes.
  • the rotor rotates with the wheels.
  • the torque receiving member is supported by the vehicle body in a state adjacent to the rotor.
  • the support of the floating caliper type disc brake corresponds to the caliper of the opposed piston type disc brake.
  • the two pads have the rotor sandwiched from both sides in the axial direction (the axial direction is the axial direction of the rotor unless otherwise specified.
  • the torque receiving member is supported so as to be capable of axial displacement.
  • the actuator is for pressing both pads against both side surfaces of the rotor, and converts the electric motor and the rotational driving force of the electric motor into axial thrust and transmits it to the inner pad.
  • a force-increasing mechanism and an axial force sensor that measures the pressing force applied from the force-increasing mechanism to the inner pad are provided.
  • a caliper is provided in addition to the support that is the torque receiving member. This caliper has a caliper claw facing the outer side surface of the outer side pad at the outer side end, and presses the inner side pad toward the inner side surface of the rotor in a storage space provided inside the inner side portion.
  • the actuators are respectively provided and supported so as to be capable of axial displacement with respect to the support. The outer side pad of the two pads is pressed against the outer side surface of the rotor via the caliper by the actuator.
  • the axial force sensor is formed in an annular shape as a whole, and is rotationally driven by the electric motor and serves as an input portion of the force increasing mechanism. It is arranged around.
  • the axial force sensor includes a pair of pressing plates each configured in an annular shape and arranged in parallel to each other, a plurality of quartz piezoelectric elements sandwiched between the pressing plates, and both the pressing plates. And a lead wire for taking out electric charges generated when the quartz piezoelectric elements are pressed between the plates. And this lead wire is taken out to the outer diameter side of the said both press plates.
  • an outward flange-like flange is preferably fixed to the outer peripheral surface of the intermediate portion of the rotating shaft. Then, the thrust rolling bearing and the axial force sensor are sandwiched in this order from the side of the flange between the inner side surface of the flange and the inner side rear end surface of the storage space in which the actuator is stored.
  • the thrust rolling bearing and the flange portion are provided with an inner side case provided in a portion including the inner side of the thrust rolling bearing, and an outer side than the flange portion. It is accommodated in a case unit including an outer side case that is provided in a portion including the side and is non-separated with the inner side case. Then, the thrust rolling bearing is elastically pressed against the inner side case where the axial force sensor is installed by an elastic member provided between the inner side surface of the outer side case and the outer side surface of the flange portion. .
  • both the pressing plates are made of metal. Then, one end face of both end faces in the axial direction of each crystal piezoelectric element is electrically connected to one pressing plate serving as a ground electrode, and the other end face is connected to the other through an insulating plate capable of supporting the pressing force. Butt against the pressing plate. Further, the other end faces of the crystal piezoelectric elements are made conductive by a conductor disposed between the insulating plate and the other end face of the crystal piezoelectric elements, and one end of the lead wire is connected to the conductor.
  • both the pressing plates are made of metal.
  • Each of the quartz piezoelectric elements is configured by sandwiching an electrode between a pair of quartz piezoelectric element pieces, and a plurality of these quartz piezoelectric elements are sandwiched between the pressing plates. Further, of the both end surfaces in the axial direction of each of the crystal piezoelectric element pieces, the surface opposite to the electrode is electrically connected to the pressing plates, each serving as a ground electrode, and the other end surface is connected via the electrode. Connect to one end of the lead wire.
  • both the pressing plates are made of metal.
  • an energization plate is provided between the side surfaces of the two pressing plates facing each other.
  • a plurality of each of the piezoelectric piezoelectric elements is provided between the both side surfaces in the axial direction of the energizing plate and the side surfaces of the both pressing plates. Then, one end face of both end faces in the axial direction of each crystal piezoelectric element is made conductive with the energizing plate, and the other end face is made electrically connected with any one of the pressing plates. Furthermore, the end portions of the lead wires are connected to both of the pressing plates and the energizing plate, respectively.
  • a plurality of holding recesses are provided on a surface of at least one of the pressing plates facing the counterpart pressing plate, and each of the quartz piezoelectric elements is provided in each holding recess.
  • the axial end of the element is fitted inside.
  • the opposing surfaces of the two pressing plates are flat surfaces.
  • an annular holding ring having holding holes formed at a plurality of locations in the circumferential direction is disposed between the two pressing plates. And the axial direction intermediate part of each said quartz crystal piezoelectric element is internally fitted in each of these holding holes.
  • one of the two pressing plates is a nut plate having a screw hole formed at the center, and the other pressing plate is formed with a circular through hole at the center. It shall be formed. Then, an outward flange-shaped flange portion is inserted into one axial end portion of the outer peripheral surface, a male screw portion is also inserted into the portion closer to the other end, and a cylindrical coupling screw provided is inserted into the through hole from the other axial end side. Further, the male screw portion and the screw hole are screwed together, and the flange portion is engaged with the inner peripheral edge portion of the side surface on the opposite side to the one pressing plate among the two axial side surfaces of the other pressing plate. Combine.
  • the present invention when the present invention is carried out, it is preferable to chamfer the corners of the crystal piezoelectric elements.
  • the entire portion present inside the chamfer is such that the both pressing plates sandwiching the crystal piezoelectric elements are thrust loads.
  • the dimension of each part is regulated so that it exists inside in the radial direction of the axial force sensor with respect to the outer peripheral edge of the receiving range.
  • an electric disc brake capable of ensuring excellent pad replacement workability and weather resistance at low cost.
  • cost reduction can be achieved by configuring the axial force sensor by sandwiching a plurality of crystal piezoelectric elements between a pair of pressing plates.
  • the procurement cost of the crystal piezoelectric element increases.
  • a single axial force sensor is configured by gathering a plurality of axial force sensors. A relatively small crystal piezoelectric element can be obtained at a much lower cost. For this reason, the cost of the electric disc brake incorporating this axial force sensor can be reduced.
  • the excellent pad replacement workability and weather resistance are such that the entire axial force sensor is formed in an annular shape, and a lead wire for taking out electric charges is taken out to the outer diameter side.
  • This can be achieved by arranging it around the rotation shaft that serves as the input unit.
  • this axial force sensor is arranged around this rotating shaft, and further, if necessary, supported inside a component component of a disc brake such as a caliper while being held in the case unit.
  • This axial force sensor can be prevented from falling, and the pad replacement workability can be improved.
  • the rotating shaft is present in a space inside a component member of a disc brake such as a caliper, which is separated from an external space in which foreign matter exists.
  • the structure of the axial force sensor if this axial force sensor is arranged around the rotating shaft, foreign matter such as muddy water can be prevented from adhering to the axial force sensor.
  • the weather resistance of the electric disc brake incorporating the axial force sensor can be improved.
  • FIG. 2 is a cross-sectional view taken along the line cc of FIG. 3 (A) and 3 (B) are cross-sectional views showing a unit in which the force-increasing mechanism and the axial force sensor are combined.
  • FIG. It is sectional drawing shown in the state assembled
  • FIG. 3 (B) is sectional drawing shown in the state before assembling.
  • FIG. 7A and 7B are perspective views showing an insulating plate with a conductor coated on one side
  • FIG. 7A shows a surface without a conductor coated with an insulating plate coated with a conductor on one side.
  • FIG. 7B shows a state where an insulating plate having a conductor coated on one side is viewed from the surface coated with the conductor.
  • the principal part disassembled perspective view of the axial force sensor which shows the 2nd example of embodiment of this invention.
  • the principal part perspective view of the axial force sensor which shows the 3rd example.
  • the exploded perspective view of an axial force sensor The perspective view which takes out and shows one crystal
  • FIGS. 25 (A) and (C) are diagrams showing four examples of crystal piezoelectric elements each having a chamfered corner
  • FIG. 24A shows an example thereof.
  • FIG. 24B is a perspective view and a side view showing another example
  • FIG. 24C is a perspective view and a side view showing another example
  • FIG. (D) is the perspective view and side view which show another example.
  • 25 (A), (B) and (C) are diagrams showing three examples of the state in which the conductor is attached to the disc-shaped crystal piezoelectric element
  • FIGS. 25 (A) and (C) are perspective views.
  • FIG. 25B is a side view.
  • FIGS. 26 (A), (B) and (C) are diagrams showing three examples of the state of attachment of a conductor to a quadrangular plate-like crystal piezoelectric element, and FIGS. 26 (A) and (C) are perspective views.
  • FIG. 26B is a side view. Sectional drawing which shows an example of a conventional structure. The end view which shows an example of the axial force sensor conventionally known.
  • FIG. 29 is an enlarged ff sectional view of FIG. 28.
  • FIGS. 1 to 7A and 7B show a first example of the embodiment of the present invention.
  • a floating caliper type disc brake is a target.
  • a measuring unit including a force-increasing mechanism 2a driven by an electric motor 1a and an axial force sensor 8b to which preload is applied is provided as a caliper 14.
  • a structure that supports the caliper 14 so as to be capable of axial displacement with respect to a support (not shown) corresponding to the torque receiving member described in the claims includes a floating caliper type widely known in the art including a hydraulic type. It is the same as a disc brake.
  • the function and the like for extending the force-increasing mechanism 2a and pressing the outer and inner pads 5a, 6a against both side surfaces of the rotor 7a including the structure shown in FIG. It is the same as a known electric disc brake.
  • the structure of the force-increasing mechanism 2a shown in FIG. 1 is basically the same as the conventional structure described in Patent Document 6.
  • the force-increasing mechanism 2a is not limited to the structure in which the feed screw mechanism 15 and the ball / ramp mechanism 16 are combined as shown in the figure, but includes a cam / roller mechanism, a feed screw mechanism, etc.
  • Various mechanical force-increasing mechanisms that convert force into force while increasing force can be used.
  • the base end of the drive spindle 19 is configured by constituting the force-increasing mechanism 2a and having the front half (outer side half) screwed into the screw hole 18 provided in the center of the drive side rotor 17.
  • the portion is spline-engaged with the central portion of the reduction large gear 21 constituting the reduction gear 20.
  • an outward flange-like flange portion 22 is formed at an axially intermediate portion of the drive spindle 19, and an inner side surface of the flange portion 22 is supported by a thrust rolling bearing 23.
  • the flange portion 22 and the thrust rolling bearing 23 are housed in a case unit 25 together with the axial force sensor 8b and an elastic member 24 that is elastically deformable in the axial direction, such as a wave plate spring, a compression coil spring, and rubber. is doing.
  • the case unit 25 is formed by combining an inner side case 26 and an outer side case 27.
  • the case unit 25 is formed by combining the inner and outer cases 26 and 27 in a non-separable manner so as to allow a slight relative displacement in the axial direction.
  • the inner side case 26 is provided with a cylindrical fixed side peripheral wall portion 30 from the outer peripheral edge of the annular bottom plate portion 29 having a circular through hole 28 in the center portion toward the outer side.
  • An extraction hole 32 for exposing an end portion of the connector 31 for extracting the measurement signal of the axial force sensor 8b is formed at one position in the circumferential direction of the proximal half wall portion (inner wall portion) of the fixed side peripheral wall portion 30. is doing.
  • the engagement holes 33 that are long in the axial direction are arranged at a plurality of circumferential positions (for example, two to three positions at equal intervals in the circumferential direction) of the first half portion (outer portion) of the fixed-side peripheral wall portion 30. , 33 are formed.
  • the structure for exposing the end portion of the connector 31 may be a notch that opens at the front end edge (outer side end edge) of the fixed peripheral wall portion 30 instead of the extraction hole 32.
  • the phase in the circumferential direction between the notch and each of the engagement holes 33 and 33 is shifted (a notch is provided between the engagement holes 33 and 33 adjacent to each other in the circumferential direction).
  • the outer side case 27 is provided with a cylindrical displacement side peripheral wall portion 36 from the outer peripheral edge of the annular bottom plate portion 35 having a circular through hole 34 in the center portion toward the inner side.
  • a tongue piece projecting toward the inner side is formed at a portion aligned with the engagement holes 33 and 33 at a plurality of positions in the circumferential direction of the distal end edge (inner side end edge) of the displacement side peripheral wall portion 36.
  • the tongue pieces are bent radially inward of the case unit 25 to form engagement pieces 37, 37.
  • the engagement pieces 37 and 37 are engaged with the engagement holes 33 and 33 so as to be axially displaceable.
  • the axial dimension of the case unit 25 can be expanded and contracted within a range in which the engagement pieces 37 and 37 can be displaced in the engagement holes 33 and 33.
  • the outer circumferential surface of the displacement side peripheral wall portion 36 is radially outward.
  • the locking pieces 38 and 38 are formed so as to protrude in a protruding state.
  • Each of the locking pieces 38, 38 is formed by bending a part of a metal plate constituting the displacement side peripheral wall portion 36 of the outer side case 27 outward in the radial direction of the outer side case 27.
  • the flange portion 22 provided at the intermediate portion of the drive spindle 19, the axial force sensor 8b, the thrust rolling bearing 23, and the elastic member 24 are incorporated.
  • the axial force sensor 8b is inserted into the inner case 26, and then the drive spindle 19, the thrust rolling bearing 23, and the elastic member 24 are connected to the inner case 26. Insert into.
  • the distal end portion (inner side end portion) of the displacement side peripheral wall portion 36 of the outer side case 27 is externally fitted to the front end portion (outer side end portion) of the fixed side peripheral wall portion 30 of the inner side case 26, and
  • the engagement pieces 37, 37 and the engagement holes 33, 33 are engaged with each other. In this state, as shown in FIG.
  • the member or each part 19, 22, 8b, 23, 24 is incorporated (subassembled) into the case unit 25, and the axial force measuring unit 40 is assembled. Can be obtained. In this state, the axial force sensor 8b is not necessarily given a sufficient preload to ensure measurement accuracy.
  • the axial force measuring unit 40 as described above is assembled to the inner end of the cylinder space 41 provided in the inner side portion of the caliper 14.
  • the inner diameter of the rear end portion of the cylinder space 41 is substantially the same as the outer diameter of the fixed peripheral wall portion 30 of the inner case 26, and the inner case 26 is rattled to the rear end portion of the cylinder space 41. It can be held without any loss.
  • a concave groove 42 that opens to the inner diameter side and the outer side of the cylinder space 41 is formed in a portion of the rear end portion that is aligned with the end portion of the connector 31. To prevent interference.
  • the locking recess 39 is formed in a portion of the cylinder space 41 near the back end of the intermediate portion, except for the recessed groove 42 portion, over substantially the entire circumference.
  • the outer side end of the locking recess 39 is a stepped surface 43 that exists in a direction perpendicular to the central axis of the cylinder space 41.
  • the case unit 25 is pushed into the cylinder space 41 while the elastic member 24 is compressed in the axial direction.
  • the locking pieces 38 and 38 are elastically deformed radially inward of the case unit 25 and pass through the outer side or the intermediate portion of the cylinder space 41.
  • the inner side case 26 is fitted into the inner end of the cylinder space 41, and the outer side case 27 is moved until the locking pieces 38 and 38 are positioned on the inner diameter side of the locking recess 39.
  • each of the locking pieces 38, 38 elastically protrudes from the outer peripheral surface of the displacement side peripheral wall portion 36 and enters the locking recess 39.
  • the operation of assembling the axial force measurement unit 40 can be performed in a large space outside the cylinder space 41.
  • the operation of assembling the axial force measurement unit 40 in the cylinder space 41 is simply performed by the connector 31 and the concave groove 42. Can be easily performed by simply pushing the axial force measuring unit 40 into the cylinder space 41.
  • the operation of assembling the drive-side rotor 17 constituting the ball / ramp mechanism 16 on the outer side of the axial force measuring unit 40 is performed by a portion protruding from the inner-side end surface of the caliper 14 at the inner-side end portion of the drive spindle 19. By rotating the drive side rotor 17 to the outer side portion of the drive spindle 19, the drive side rotor 17 can be easily engaged.
  • the operation of assembling other members can be easily performed by inserting the cylinder space 41 into the cylinder space 41 from the outer side opening.
  • an appropriate preload is applied to the axial force sensor 8b, and the axial force applied to the axial force sensor 8b along with braking is reduced.
  • the relationship with the measurement signal of the axial force sensor 8b can be made almost linear. For this reason, even if the configuration of the arithmetic unit for processing the measurement signal is simplified, the axial force can be obtained with sufficient accuracy.
  • the overall structure of the electric disc brake of this example is as described above.
  • the axial force sensor 8b constituting the axial force measuring unit 40 is configured as shown in FIGS. 4 to 7 (A) and (B). It is composed. That is, the axial force sensor 8b is arranged around an inner portion of the drive spindle 19 that is a rotating shaft that serves as an input portion of the force-increasing mechanism 2a by forming an annular shape as a whole. .
  • the axial force sensor 8b includes a pair of pressing plates 47a and 47b, a plurality of crystal piezoelectric elements 48 and 48, an insulating plate 49, and a lead wire 50.
  • the pressing plates 47a and 47b are each formed in an annular shape, arranged in parallel with each other and concentrically with each other.
  • Each of the quartz crystal piezoelectric elements 48 and 48 is formed in a columnar shape, covers both ends in the axial direction, and is sandwiched between the pressing plates 47a and 47b.
  • the insulating plate 49 has one end surface in the axial direction of each of the quartz crystal piezoelectric elements 48 and 48 (the upper surface in FIGS. 4 to 6) and one of the pressing plates 47a and 47b (above FIGS. 4 to 5). It is made of a synthetic resin or ceramic thin plate having excellent compression resistance.
  • the radial intermediate portion of the surface facing the one end surface in the axial direction of each of the quartz crystal piezoelectric elements 48, 48 has an annular shape as shown in FIG.
  • the conductor 51 is attached over the entire circumference.
  • One end of the lead wire 50 is electrically connected to the conductor 51.
  • both the pressing plates 47a and 47b are made of metal such as a steel plate and a stainless steel plate that can ensure sufficient rigidity.
  • these pressing plates 47a and 47b one (upper side in FIGS. 4 to 5) has a flat surface on both upper and lower surfaces except for a portion where through holes 55 and 55 described later are formed.
  • a plurality of recesses 53, 53 are formed on the surface facing the one pressing plate 47a in the circumferential direction, etc. Formed at intervals.
  • each of the quartz crystal piezoelectric elements 48, 48 is abutted against the back end face (bottom face) of each of the recesses 53, 53, and this one end face serves as a ground electrode.
  • the other pressing plate 47b is electrically connected.
  • a cylindrical portion 57 is formed on the inner peripheral edge of the other pressing plate 47b so as to protrude toward the one pressing plate 47a.
  • the outer diameter of the cylindrical portion 57 is slightly smaller than the inner diameter of the one pressing plate 47a.
  • each of the recesses 53 and 53 is a circular shape having an inner diameter slightly larger than the outer diameter of each of the crystal piezoelectric elements 48 and 48.
  • the half (the lower half of FIGS. 4 to 6) is held in the recesses 53, 53 by being loosely fitted inside.
  • a plurality of the pressing plates 47b and the one pressing plate 47a (shown in the figure) in a state where the crystal piezoelectric elements 48, 48 are held in the recesses 53, 53 of the other pressing plate 47b.
  • they are connected by three screws 54).
  • through holes 55, 55 are formed in the one pressing plate 47a
  • screw holes 56, 56 are formed in the other pressing plate 47b, respectively.
  • Each of the through holes 55, 55 has a rear half (a half near the other pressing plate 47b) as a small-diameter part having an inner diameter sufficient to insert the flange part of each screw 54, and the opening-side half (the other half)
  • the half portion opposite to the pressing plate 47b) is a large-diameter portion having an inner diameter and a depth sufficient to loosely accommodate the head of each screw 54.
  • the flanges of the screws 54 are inserted into the through holes 55 and 55 and screwed into the screw holes 56 and 56 so that the pressing plates 47a and 47b are slightly displaced in the axial direction.
  • the heads of the screws 54 are connected in a state where the screw plates 54a, 47b are sandwiched between the quartz piezoelectric elements 48, 48 and the insulating plate 49. It sinks into the large diameter part of each through-hole 55 and 55, and does not protrude from the axial direction side surface of said one press board 47a. Therefore, the screws 54 are not stretched in a state where the assembled axial force sensor 8b is sandwiched between the bottom plate portion 29 of the inner case 26 and the thrust rolling bearing 23 (see FIG. 1). As a result, the axial force applied between the bottom plate portion 29 and the thrust rolling bearing 23 is effectively applied to the crystal piezoelectric elements 48 and 48 existing between the pressing plates 47a and 47b (the axial force). Is added to each of these quartz piezoelectric elements 48, 48).
  • each of the quartz piezoelectric elements 48 and 48 constituting the axial force sensor 8b in the axial direction is connected to the lead wire 50 through the conductor 51, and the other end surface is the other end surface. Is grounded through the pressing plate 47b. Accordingly, by inputting the other end of the lead wire 50 to an amplifier (not shown), the total charge generated in each of the crystal piezoelectric elements 48, 48 is converted into a voltage value by this amplifier, and based on this voltage value The axial force is obtained.
  • the cylindrical portion 57 provided on the side of the other pressing plate 47b is fitted with a gap on the inner diameter side of the one pressing plate 47a.
  • the pad replacement operation is excellent at low cost.
  • Motorized disc brakes that can ensure high performance and weather resistance.
  • cost reduction can be achieved by configuring the axial force sensor 8b by sandwiching the crystal piezoelectric elements 48, 48 between the pressing plates 47a, 47b.
  • the crystal piezoelectric elements 48, 48 each having a cylindrical shape (small outer diameter and axial dimensions) are extremely inexpensive and can be procured at a low cost.
  • the cost of the axial force sensor 8b as a whole can be sufficiently reduced as compared with the case of using a very expensive single annular crystal piezoelectric element. For this reason, cost reduction of the electric disc brake incorporating this axial force sensor 8b can be achieved.
  • the excellent pad replacement workability and weather resistance are such that the axial force sensor 8b is formed in an annular shape as a whole, and the lead wire 50 for taking out electric charges is disposed on the outer diameter side of the axial force sensor 8b.
  • the axial force sensor 8b can be taken out and disposed around the drive spindle 19, which serves as an input portion of the force-increasing mechanism 2a. That is, in the case of this example, the axial force sensor 8b is disposed around the drive spindle 19, so that the axial force sensor 8b is dropped when the outer and inner pads 5a and 6a are replaced. This can be prevented and the pad workability can be improved.
  • the drive spindle 19 is present in a cylinder space 41 inside the caliper 14 that is separated from an external space in which foreign matter exists. Accordingly, the axial force sensor 8b disposed around the drive spindle 19 is also present in the cylinder space 41, so that foreign matter such as muddy water can be prevented from adhering to the axial force sensor 8b. The failure of the axial force sensor 8b can be suppressed. That is, the weather resistance of the electric disc brake incorporating this axial force sensor 8b can be improved.
  • FIG. 8 shows a second example of the embodiment of the present invention.
  • the structure of the entire electric disc brake is as shown in FIGS. 1 to 3 as in the case of the first example of the embodiment described above.
  • the opposing surfaces of the pair of pressing plates 47a and 47c are flat surfaces (except for the cylindrical portion 57 portion provided on the pressing plate 47c side).
  • a plurality of quartz piezoelectric elements 48 are sandwiched between the pressing plates 47a and 47c while being positioned by the holding ring 58.
  • the holding ring 58 is an annular shape having an inner diameter slightly larger than the outer diameter of the cylindrical portion 57, and holding holes 59, 59 are formed at a plurality of locations in the circumferential direction.
  • the inner diameters of the holding holes 59, 59 are slightly larger than the outer diameters of the quartz crystal elements 48, and the quartz piezoelectric elements 48 are loosened inside the holding holes 59, 59, and It can be held in a state of positioning. Since the configuration and operation of the other parts are the same as those in the first example of the above embodiment, overlapping illustrations and descriptions are omitted.
  • each crystal piezoelectric element 48a, 48a has a prismatic shape (cubic shape).
  • prismatic crystal piezoelectric elements 48a, 48a flat crystal plates obtained by slicing large artificial crystals are cut into a grid pattern. These series of operations (slicing ⁇ cutting) are easy, and the waste (crystal shavings) generated by these series of operations is extremely small. For this reason, the cost of each crystal piezoelectric element 48a, 48a can be reduced by facilitating the processing operation of each crystal piezoelectric element 48a, 48a and improving the yield.
  • a cylindrical portion 57 (see FIGS. 4, 5 and 8) is provided on the pressing plate 47d provided with the concave portions 53 and 53 for holding one end portions in the axial direction of the crystal piezoelectric elements 48a and 48a. Is not provided. Since the configuration and operation of other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  • [Fourth Example of Embodiment] 11 to 13 show a fourth example of the embodiment of the present invention.
  • electrodes are covered on two adjacent surfaces among the six surfaces respectively provided on the plurality of quartz crystal piezoelectric elements 48a and 48a each having a prismatic shape (cubic shape). is doing. However, these electrodes coated on both sides are separated from each other. The electrode on one surface is abutted against the bottom surface of the recesses 53 formed in the pressing plate 47d, and the electrode is grounded through the pressing plate 47d. On the other hand, the electrode on the other side is connected to an amplifier (not shown) via the lead wire 50.
  • the electrode on the other surface is positioned on the radially outer side of both pressing plates 47a and 47d, and a conductor 51a is wound around each of the quartz piezoelectric elements 48a and 48a. While making the other electrode conductive, the end of the lead wire 50 is connected to the conductor 51a.
  • the conductor 51a and the pressing plate 47d are insulated from each other. Since the configuration and operation of the other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  • each crystal piezoelectric element 48b, 48b is constituted by sandwiching an electrode 61 between a pair of crystal piezoelectric element pieces 60, 60, respectively.
  • a plurality of such crystal piezoelectric elements 48b and 48b are sandwiched between a pair of pressing plates 47b and 47d.
  • the face opposite to the electrode 61 is electrically connected to the pressing plates 47b, 47d, each serving as a ground electrode, and the other end face. Is connected to one end of the lead wire 50 through the electrode 61. Since the configuration and operation of the other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  • FIGS. 16 to 19 show a sixth example of the embodiment of the present invention.
  • one of the pair of pressing plates 47e and 47f is a nut plate having a screw hole 62 formed at the center.
  • the other pressing plate 47f is formed with a circular through hole 63 in the center.
  • the pressing plates 47e and 47f are coupled to each other by a cylindrical coupling screw 64.
  • the coupling screw 64 is provided with an outward flange-like flange 65 at one end in the axial direction of the outer peripheral surface and a male thread 66 at the other end.
  • a conductor 51 see FIGS.
  • the holding ring 58a holding the quartz crystal elements 48 and 48 and the insulating plate 49 are sandwiched between the pressing plates 47e and 47f.
  • the coupling screw 64 is inserted into the through hole 63 of the other pressing plate 47f from the other end side in the axial direction. Further, the male screw portion 66 of the coupling screw 64 and the screw hole 62 of the one pressing plate 47e are screwed together, and the flange portion 65 is connected to the one of the two axial side surfaces of the other pressing plate 47f. Is engaged with the inner peripheral edge of the side surface opposite to the pressing plate 47e.
  • the connecting screw 64 is tightened with a predetermined torque to connect the pressing plates 47e and 47f without separation, and an appropriate preload is applied to the crystal piezoelectric elements 48 and 48, respectively.
  • the flange portion 65 is provided in an annular recess 68 formed in a portion closer to the inner diameter of the side surface on the opposite side of the one pressing plate 47e among both axial side surfaces of the other pressing plate 47f. It is stored so that the flange 65 does not protrude from the axial side surface of the other pressing plate 47f.
  • the quartz crystal piezoelectric elements 48 can be evenly pressed as the coupling screw 64 is tightened. As a result, not only can the performance of the obtained axial force sensor 8c be improved, but also it is possible to prevent damage to the quartz crystal element 48 due to excessive compressive stress being applied to some of the quartz crystal elements 48 during assembly work. .
  • the basic structure and operation of the axial force sensor 8c are the same as those of the second example of the embodiment shown in FIG.
  • the insulating plate 49 is provided between the mutually opposing side surfaces of the pair of pressing plates 47e and 47f.
  • the insulating plate 49 has a conductor 51 (see FIGS. 7A and 7B) attached to both sides in the axial direction over the entire circumference, thereby forming a current-carrying plate described in the claims.
  • a plurality of the quartz crystal piezoelectric elements 48 and 48 are provided between the both side surfaces in the axial direction of the insulating plate 49 and the side surfaces of the pressing plates 47e and 47f, respectively. .
  • the output of the axial force sensor 8d can be increased by an amount corresponding to the increase in the number of the quartz piezoelectric elements 48, 48.
  • the structure and operation of the other parts are the same as in the sixth example of the embodiment described above.
  • each crystal piezoelectric element When carrying out the electric disk brake of the present invention, it is preferable to chamfer the corners of each crystal piezoelectric element.
  • the reason for this is to prevent the occurrence of damage such as cracks or chips at the corners of the piezoelectric elements. That is, the sharp corners are not only easily chipped by colliding with other articles before assembly, but also may cause excessive stress during use.
  • the mechanism for generating this stress is as follows.
  • Quartz piezoelectric elements with damaged corners have a slightly different relationship between the applied thrust load and the amount of charge generated, but they are not the desired relationship (design value). Can get worse. Further, in a remarkable case, there is a possibility that the whole quartz piezoelectric element is cracked and the measurement of the thrust load itself becomes impossible.
  • the crystal piezoelectric element 48c shown in FIG. 24A has a disc shape as a whole, and has an outer peripheral surface and both end surfaces in the axial direction.
  • the crystal piezoelectric element 48d shown in (B) has a disc shape as a whole, and is formed by chamfering 69b, 69b having a partially conical surface shape (taper surface shape) on a continuous portion between the outer peripheral surface and both end surfaces in the axial direction.
  • the crystal piezoelectric element 48e shown in (C) has a square plate shape as a whole, and chamfers 69c and 69c each having a quarter-arc-shaped cross section are formed on a continuous portion between the outer peripheral surface and both end surfaces in the axial direction. It is a thing.
  • the quartz crystal piezoelectric element 48f shown in FIG. 4D has a rectangular plate shape as a whole, and is formed by chamfering 69d and 69d having a partially conical surface at the continuous portion between the outer peripheral surface and both end surfaces in the axial direction.
  • the four types of quartz crystal piezoelectric elements 48c to 48f shown in (A) to (D) of FIG. 24 can hardly cause damage such as cracks and chips at the corners, regardless of the shape. That is, since the corner portion is not sharp, even if this corner portion collides with another article before assembly, the corner portion is not easily chipped.
  • quartz piezoelectric elements 48c to 48f are also attached to desired portions in accordance with their usage conditions.
  • electrodes can be attached to the central portion of one surface in the axial direction.
  • an electrode can be attached to the entire middle of the outer peripheral surface in the axial direction.
  • an electrode can be attached to a portion extending from one axial surface to the outer peripheral surface.
  • a range in which the pressing plate sandwiching the crystal piezoelectric elements 48c to 48f receives a thrust load is It is preferable to regulate in relation to the positions where the chamfers 69a to 69d are provided. That is, of the two axial end surfaces of the crystal piezoelectric elements 48c to 48f, the entire portion (the central flat surface portion) existing inside the chamfer sandwiches the crystal piezoelectric elements 48c to 48f.
  • the dimensions of each part so that the pressing plates 47e and 47f are present inside the radial direction of the axial force sensors 8c and 8d from the outer peripheral edge in the range where the thrust load is received. To regulate.
  • each of the piezoelectric piezoelectric elements 48c to 48f is sandwiched between a pair of pressing plates 47e and 47f with the same structure as that shown in FIGS.
  • the height is ⁇ (see FIG. 18) on the outer surface opposite to the surface sandwiching the quartz crystal elements 48c to 48f.
  • the annular convex portions 70 and 70 are formed.
  • the outer diameter d of both the annular convex portions 70, 70 is made sufficiently smaller than the outer diameter D of the quartz crystal piezoelectric elements 48c to 48f (see FIG. 18) (the circumscribed circle of each of the quartz piezoelectric elements 48c to 48f).
  • the central flat surface portion of both end surfaces in the axial direction of each of the quartz crystal piezoelectric elements 48c to 48f is present inside the circle having a diameter d.
  • the chamfers 69a, 69b, 69c, and the chamfers 69a, 69b, 69c, and the chamfers 69a, 69b, 69c, and 69d have a range where the pressing plates sandwiching the crystal piezoelectric elements 48c to 48f receive a thrust load. The stress generated in the 69d portion can be further reduced.

Abstract

Disclosed is an electric disc brake that is low-cost and furthermore capable of maintaining superior resistance to weather. All of a shaft force sensor (8b) for measuring braking force is formed in the shape of a ring. The shaft force sensor (8b) is disposed around a rotating shaft that is rotationally driven by an electric motor and acts as the input unit of a force-increasing mechanism. The aforementioned shaft force sensor (8b) is equipped with one pair of pressing plates (47a, 47b) that are each formed in a ring shape and are disposed mutually parallel, a plurality of piezoelectric crystal elements (48, 48) that are sandwiched between both pressing plates (47a, 47b), and a lead wire (50) for extracting an electric charge generated with the pressing of each piezoelectric crystal element (48, 48) between both pressing plates (47a, 47b). Additionally, the lead wire (50) is pulled out to the outer diameter side of both aforementioned pressing plates (47a, 47b).

Description

電動式ディスクブレーキElectric disc brake
 この発明は、電動モータを駆動源とした電動式アクチュエータにより自動車の制動を行う、電動式ディスクブレーキの改良に関する。具体的には、所望の制動力を安定して得るべく、前記電動式アクチュエータにより一対のパッドに加えられる推力を高精度で測定する為の軸力センサとして、低コストのものを使用できる構造の実現を図るものである。 The present invention relates to an improvement of an electric disc brake that brakes an automobile by an electric actuator using an electric motor as a drive source. Specifically, in order to stably obtain a desired braking force, a low-cost structure can be used as an axial force sensor for measuring the thrust applied to a pair of pads by the electric actuator with high accuracy. It is intended to realize.
 電動モータを駆動源とする電動式ディスクブレーキは、従来から広く実施されている油圧式のディスクブレーキに比べて、配管が不要になり、製造の容易化、低コスト化を図れるだけでなく、用済のブレーキ液が生じず環境負荷が少ない、ブレーキ液の移動がない分応答性の向上を図れる等、多くの利点がある為、研究が進められている。この様な電動式ディスクブレーキとして、電動モータの出力を増力機構に入力し、この増力機構により、この電動モータの回転運動を増力しつつ直線運動に変換し、一対のパッドをロータの両側面に強く押し付ける構造のものが、例えば特許文献1~6に記載される等により、従来から各種提案されている。 Electric disc brakes that use an electric motor as a drive source eliminate the need for piping compared to the hydraulic disc brakes that have been widely used in the past, making manufacturing easier and lowering costs. There are many advantages such as reduced brake load and less environmental load, and improved response due to the absence of brake fluid movement. As such an electric disc brake, the output of the electric motor is input to a force-increasing mechanism, and this force-increasing mechanism converts the rotary motion of this electric motor into a linear motion while increasing the force, and a pair of pads is placed on both sides of the rotor. Various types of structures that are strongly pressed have been proposed, for example, as described in Patent Documents 1 to 6.
 前記増力機構としては、送りねじ機構、カム機構、リンク機構、これらを組み合わせたもの等、各種機構が知られている。何れの機構の場合も、程度の差があるにしても、摩擦に伴う損失が避けられず、前記電動モータの出力がそのまま全部、前記ロータに対して前記パッドを押圧する力(押圧力)にはならない。又、前記増力機構内部でのヒステリシスに基づき、前記電動モータへの通電量が同じで、この電動モータの出力軸の駆動トルクが同じであったとしても、この通電量を増大させる場合と減少させる場合とで、前記押圧力に差を生じる。しかも、この差の程度及び前記損失の程度は、各部の摩擦により変化し、一定しない。従って、所望の制動力を、精度良く、しかも安定して得る為には、前記電動モータへの通電量を制御するだけでは足りず、前記押圧力を測定し、この測定値に基づいて前記電動モータへの通電量を制御する、フィードバック制御を行う必要がある。 As the force increasing mechanism, various mechanisms such as a feed screw mechanism, a cam mechanism, a link mechanism, and a combination thereof are known. In any mechanism, even if there is a difference in degree, loss due to friction is unavoidable, and all the output of the electric motor is directly applied to the force (pressing force) that presses the pad against the rotor. Must not. Further, even if the energization amount to the electric motor is the same and the drive torque of the output shaft of the electric motor is the same, the energization amount is increased and decreased based on the hysteresis in the booster mechanism. In some cases, a difference occurs in the pressing force. Moreover, the degree of this difference and the degree of the loss change due to friction of each part and are not constant. Therefore, in order to obtain a desired braking force accurately and stably, it is not sufficient to control the amount of power supplied to the electric motor. The pressing force is measured, and the electric power is measured based on the measured value. It is necessary to perform feedback control to control the amount of current supplied to the motor.
 この為従来から、前記特許文献1~5等に記載されている様に、前記押圧力が加わる部分に軸力センサを設け、この軸力センサにより、前記押圧力を測定する様にしている。図27は、このうちの特許文献5に記載された構造を示している。この従来構造の場合には、電動モータ1の回転運動を増力機構2により直線運動に変換してピストン3に伝え、このピストン3とキャリパ爪4とによりアウタ、インナ両パッド5、6を、車輪と共に回転するロータ7の両側面に押し付ける様にしている。又、前記ピストン3と前記インナパッド6との間に軸力センサ8を設け、この軸力センサ8によって、このインナパッド6を前記ロータ7に押圧する力を測定自在としている。 For this reason, conventionally, as described in Patent Documents 1 to 5, etc., an axial force sensor is provided at a portion to which the pressing force is applied, and the pressing force is measured by the axial force sensor. FIG. 27 shows the structure described in Patent Document 5 among them. In the case of this conventional structure, the rotary motion of the electric motor 1 is converted into a linear motion by the booster mechanism 2 and transmitted to the piston 3, and the outer and inner pads 5, 6 are connected to the wheel by the piston 3 and the caliper claw 4. At the same time, it is pressed against both side surfaces of the rotor 7 rotating together. Further, an axial force sensor 8 is provided between the piston 3 and the inner pad 6, and the axial force sensor 8 can measure the force pressing the inner pad 6 against the rotor 7.
 制動力の制御を精度良く行う為には、上述の様な軸力センサ8として、高精度でしかもヒステリシスの小さなものを使用する必要がある。この軸力センサ8としてヒステリシスの大きなものを使用すると、押圧力の値が同じであっても、その増大過程と減少過程とで、測定値に無視できない程の差を生じて、制動力制御の精度が悪化する。この様な事情に鑑みて、電動式ディスクブレーキに組み込む軸力センサとして、水晶圧電素子を組み込んだものを使用する事が好ましい。水晶圧電素子は、セラミック圧電素子に比べて高精度でヒステリシスが小さいので、電動式ディスクブレーキの押圧力制御を、実用的な精度を確保しつつ行える。この様な水晶圧電素子を使用した軸力センサとしては、例えば非特許文献1に記載されたものが使用可能である。 In order to control the braking force with high accuracy, it is necessary to use an axial force sensor 8 with high accuracy and small hysteresis as described above. If an axial force sensor 8 having a large hysteresis is used, even if the pressing force value is the same, the difference between the increase process and the decrease process is not negligible. Accuracy deteriorates. In view of such circumstances, it is preferable to use a sensor incorporating a quartz crystal piezoelectric element as an axial force sensor incorporated in an electric disc brake. Since the quartz piezoelectric element has higher accuracy and lower hysteresis than the ceramic piezoelectric element, it is possible to control the pressing force of the electric disc brake while ensuring practical accuracy. As an axial force sensor using such a crystal piezoelectric element, for example, the one described in Non-Patent Document 1 can be used.
 但し、図27に示す様な構造で、前記軸力センサ8として水晶圧電素子を組み込んだものを使用すると、次の(1) ~(3) の様な問題を生じる。
(1) 水晶圧電素子として、形状が大きくて高価なものを使用する必要があり、前記軸力センサ8の製造コスト、延いてはこの軸力センサ8を組み込んだ電動式ディスクブレーキのコストが嵩む。
(2) 前記軸力センサ8を、前記ピストン3と前記インナパッド6との間に、軸方向に関して直列に配置している為、ライニングの磨耗等によりこのインナパッド6及び前記アウタパッド5を交換する際に、前記軸力センサ8が前記ピストン3から外れる可能性があり、これら両パッド5、6の交換作業に注意を要する。
(3) 前記軸力センサ8が外部空間に露出しているので、十分な耐候性を持たせる為に、この軸力センサ8を構成するケースやそのシール構造を工夫する必要があり、その面からもコストが嵩む。
However, if a structure having a structure as shown in FIG. 27 and incorporating a crystal piezoelectric element as the axial force sensor 8 is used, the following problems (1) to (3) occur.
(1) It is necessary to use a crystal piezoelectric element having a large shape and an expensive element, which increases the manufacturing cost of the axial force sensor 8, and further increases the cost of an electric disc brake incorporating the axial force sensor 8. .
(2) Since the axial force sensor 8 is disposed in series between the piston 3 and the inner pad 6 in the axial direction, the inner pad 6 and the outer pad 5 are exchanged due to lining wear or the like. At this time, the axial force sensor 8 may be detached from the piston 3, and care must be taken in replacing the pads 5 and 6.
(3) Since the axial force sensor 8 is exposed to the external space, it is necessary to devise the case constituting the axial force sensor 8 and its seal structure in order to provide sufficient weather resistance. Cost increases.
 上述した(1) ~(3) の様な問題のうち、(1) の問題は、軸力センサを構成する水晶圧電素子として、1個の大きなものに代えて、小さな複数個のものを使用する事により解決できる。例えば、本発明の対象となる電動式ディスクブレーキに組み込む、外径が2~4cm程度で径方向の幅が4~6mm程度であり、全体が円環状の水晶圧電素子の価格は、非常に高価である。これに対して、直径が4~6mm程度である水晶圧電素子の小片の価格は、極めて安価である。従って、水晶圧電素子の小片を円環状に並べ、これら各小片を一対の押圧面同士の間で押圧する様な構造を有する軸力センサを構成すれば、高精度且つ低ヒステリシスの軸力センサを低コストで得られる。 Among the problems (1) to (3) above, the problem (1) is to use a plurality of small piezoelectric elements instead of one large one as the quartz crystal element constituting the axial force sensor. It can be solved by doing. For example, the price of an annular crystal piezoelectric element having an outer diameter of about 2 to 4 cm and a radial width of about 4 to 6 mm, which is incorporated in an electric disc brake subject to the present invention, is very expensive. It is. On the other hand, the price of a small piece of a quartz crystal piezoelectric element having a diameter of about 4 to 6 mm is extremely low. Therefore, if an axial force sensor having a structure in which small pieces of crystal piezoelectric elements are arranged in an annular shape and the small pieces are pressed between a pair of pressing surfaces, an axial force sensor with high accuracy and low hysteresis can be obtained. Obtained at low cost.
 この様な軸力センサとして、特許文献7に記載された、図28~29に示す様なものが知られている。この軸力センサ8aは、環状(円輪状)に構成された保持体9の軸方向片面の円周方向複数個所に形成した保持凹部10、10に、それぞれ水晶圧電素子11を保持し、これら各保持凹部10、10の開口部を、蓋板12、12により塞いでいる。前記保持体9の内径側には、電荷増幅器13を配置し、この電荷増幅器13の入力部と前記各水晶圧電素子11の出力部とを接続している。この様な特許文献7に記載された軸力センサ8aは、前記水晶圧電素子11として、低コストで調達できる小片を使用するので、軸力センサ8a全体としてのコストを抑えられる。 As such an axial force sensor, the one shown in FIGS. 28 to 29 described in Patent Document 7 is known. The axial force sensor 8a holds the crystal piezoelectric elements 11 in holding recesses 10 and 10 formed at a plurality of locations in the circumferential direction on one axial surface of a holding body 9 configured in an annular shape (annular shape). The openings of the holding recesses 10 and 10 are closed by the cover plates 12 and 12. A charge amplifier 13 is disposed on the inner diameter side of the holding body 9, and an input portion of the charge amplifier 13 and an output portion of each crystal piezoelectric element 11 are connected. Since the axial force sensor 8a described in Patent Document 7 uses a small piece that can be procured at a low cost as the crystal piezoelectric element 11, the cost of the axial force sensor 8a as a whole can be suppressed.
 但し、上述の様な特許文献7に記載された従来構造の軸力センサ8aは、中ぐり盤の、駆動軸と工具担持軸との突合せ面同士の間に挟持する事を考慮したものである。この様な特許文献7に記載された軸力センサ8aを電動式ディスクブレーキのブレーキ力測定に利用する場合、前述した(1) ~(3) の問題のうち、(1) の問題は解決できるが、残りの(2)(3)の問題を解決する事はできない。即ち、前記従来構造の軸力センサ8aは、中央部に電荷増幅器13を配置している為、この軸力センサ8aの中心部に、ねじ杆等、電動式ディスクブレーキを構成して回転運動を直線運動に変換しつつ増力する部材を挿通する事ができない。この為、電動式ディスクブレーキに適用する場合に於ける設置位置が限られて、前記(2)(3)の問題を解決できない。
 尚、本発明に関連する技術を記載した刊行物として、特許文献8が存在する。この特許文献8には、荷重センサを構成するセラミック製の受圧板の角部に面取りを施す事により、この受圧板に割れや欠け等の損傷が発生するのを防止する構造が記載されている。但し、前記特許文献8にも、前記(2)(3)の問題を解決する事を示唆する記述は存在しない。
However, the axial force sensor 8a having the conventional structure described in Patent Document 7 as described above is designed to be held between the butting surfaces of the boring machine between the drive shaft and the tool carrying shaft. . When such an axial force sensor 8a described in Patent Document 7 is used for measuring the braking force of an electric disc brake, the problem (1) can be solved among the problems (1) to (3) described above. However, the remaining problems (2) and (3) cannot be solved. That is, since the axial force sensor 8a having the conventional structure has the charge amplifier 13 disposed at the center portion, an electric disk brake such as a screw rod is formed at the center portion of the axial force sensor 8a to perform rotational motion. A member that increases force while converting to linear motion cannot be inserted. For this reason, the installation position in application to an electric disc brake is limited, and the problems (2) and (3) cannot be solved.
Note that there is Patent Document 8 as a publication describing the technology related to the present invention. This Patent Document 8 describes a structure that prevents damage such as cracking or chipping on the pressure receiving plate by chamfering the corners of the ceramic pressure receiving plate constituting the load sensor. . However, Patent Document 8 does not include a description suggesting that the problems (2) and (3) are solved.
日本国特開平8-244580号公報Japanese Laid-Open Patent Publication No. 8-244580 日本国特開平11-147458号公報Japanese Patent Laid-Open No. 11-147458 日本国特開2000-213575号公報Japanese Unexamined Patent Publication No. 2000-213575 日本国特開2004-60867号公報Japanese Unexamined Patent Publication No. 2004-60867 日本国特開2006-232259号公報Japanese Unexamined Patent Publication No. 2006-232259 日本国特開2004-169729号公報Japanese Unexamined Patent Publication No. 2004-169729 日本国特開平4-231829号公報Japanese Laid-Open Patent Publication No. 4-231829 日本国特開2003-139629号公報Japanese Unexamined Patent Publication No. 2003-139629
 本発明は、上述の様な事情に鑑みて、低コストで、しかも優れたパッド交換作業性と耐候性とを確保できる電動式ディスクブレーキを実現すべく発明したものである。 The present invention was invented to realize an electric disc brake capable of ensuring low cost and excellent pad replacement workability and weather resistance in view of the circumstances as described above.
 本発明の電動式ディスクブレーキは、従来から知られている電動式ディスクブレーキと同様に、ロータと、トルク受部材と、アウタ側とインナ側との一対のパッドと、アクチュエータを備える。
 このうちのロータは、車輪と共に回転する。
 又、前記トルク受部材は、前記ロータに隣接する状態で車体に支持される。このトルク受部材としては、フローティングキャリパ型ディスクブレーキのサポートが、対向ピストン型ディスクブレーキのキャリパが、それぞれ対応する。
 又、前記両パッドは、このロータを軸方向(軸方向とは、特に断らない限り、ロータの軸方向を言う。本明細書、及び、請求の範囲全体で同じ。)両側から挟む状態で、軸方向の変位を可能に前記トルク受部材に支持されている。
 更に、前記アクチュエータは、前記両パッドを前記ロータの両側面に押圧する為のもので、電動モータと、この電動モータの回転駆動力を軸方向の推力に変換して前記インナ側パッドに伝達する増力機構と、この増力機構からこのインナ側パッドに加えられる押し付け力を測定する軸力センサとを備えたものである。
 尚、フローティングキャリパ型ディスクブレーキの場合には、前記トルク受部材であるサポートに加えてキャリパを備える。このキャリパは、アウタ側端部に前記アウタ側パッドのアウタ側面に対向するキャリパ爪を、インナ側部分の内部に設けた収納空間内に前記インナ側パッドを前記ロータのインナ側面に向け押圧する為の前記アクチュエータを、それぞれ設け、前記サポートに対し軸方向の変位を可能に支持される。前記両パッドのうちのアウタ側パッドは前記アクチュエータにより、前記キャリパを介して、前記ロータのアウタ側面に押圧される。
The electric disc brake of the present invention includes a rotor, a torque receiving member, a pair of pads on the outer side and the inner side, and an actuator, as in the case of conventionally known electric disc brakes.
Of these, the rotor rotates with the wheels.
The torque receiving member is supported by the vehicle body in a state adjacent to the rotor. As the torque receiving member, the support of the floating caliper type disc brake corresponds to the caliper of the opposed piston type disc brake.
In addition, the two pads have the rotor sandwiched from both sides in the axial direction (the axial direction is the axial direction of the rotor unless otherwise specified. The same applies throughout the present specification and claims) The torque receiving member is supported so as to be capable of axial displacement.
Furthermore, the actuator is for pressing both pads against both side surfaces of the rotor, and converts the electric motor and the rotational driving force of the electric motor into axial thrust and transmits it to the inner pad. A force-increasing mechanism and an axial force sensor that measures the pressing force applied from the force-increasing mechanism to the inner pad are provided.
In the case of a floating caliper disc brake, a caliper is provided in addition to the support that is the torque receiving member. This caliper has a caliper claw facing the outer side surface of the outer side pad at the outer side end, and presses the inner side pad toward the inner side surface of the rotor in a storage space provided inside the inner side portion. The actuators are respectively provided and supported so as to be capable of axial displacement with respect to the support. The outer side pad of the two pads is pressed against the outer side surface of the rotor via the caliper by the actuator.
 特に、本発明の電動式ディスクブレーキに於いては、前記軸力センサは、全体を円環状に構成されたもので、前記電動モータにより回転駆動されて前記増力機構の入力部となる回転軸の周囲に配置されている。
 且つ、前記軸力センサは、それぞれが円環状に構成されて互いに平行に配置された一対の押圧板と、これら両押圧板同士の間に挟持された複数個の水晶圧電素子と、これら両押圧板同士の間でこれら各水晶圧電素子が押圧される事に伴って発生する電荷を取り出す為のリード線とを備える。
 そして、このリード線を、前記両押圧板の外径側に取り出している。
In particular, in the electric disc brake of the present invention, the axial force sensor is formed in an annular shape as a whole, and is rotationally driven by the electric motor and serves as an input portion of the force increasing mechanism. It is arranged around.
The axial force sensor includes a pair of pressing plates each configured in an annular shape and arranged in parallel to each other, a plurality of quartz piezoelectric elements sandwiched between the pressing plates, and both the pressing plates. And a lead wire for taking out electric charges generated when the quartz piezoelectric elements are pressed between the plates.
And this lead wire is taken out to the outer diameter side of the said both press plates.
 上述の様な本発明の電動式ディスクブレーキを実施する場合に好ましくは、前記回転軸の中間部外周面に外向フランジ状の鍔部を固設する。そして、この鍔部のインナ側面と前記アクチュエータを収納した収納空間のインナ側奥端面との間に、この鍔部の側から順番に、スラスト転がり軸受と前記軸力センサとを挟持する。 When implementing the electric disc brake of the present invention as described above, an outward flange-like flange is preferably fixed to the outer peripheral surface of the intermediate portion of the rotating shaft. Then, the thrust rolling bearing and the axial force sensor are sandwiched in this order from the side of the flange between the inner side surface of the flange and the inner side rear end surface of the storage space in which the actuator is stored.
 さらに、この様な発明を実施する場合に好ましくは、前記スラスト転がり軸受と鍔部とを、このスラスト転がり軸受よりもインナ側を含む部分に設けられたインナ側ケースと、前記鍔部よりもアウタ側を含む部分に設けられてこのインナ側ケースに対して非分離に組み合わされたアウタ側ケースとを備えたケースユニット内に収納する。そして、このアウタ側ケースのインナ側面と前記鍔部のアウタ側面との間に設けた弾性部材により前記スラスト転がり軸受を、前記軸力センサを設置した前記インナ側ケースの側に弾性的に押圧する。 Further, when carrying out such an invention, it is preferable that the thrust rolling bearing and the flange portion are provided with an inner side case provided in a portion including the inner side of the thrust rolling bearing, and an outer side than the flange portion. It is accommodated in a case unit including an outer side case that is provided in a portion including the side and is non-separated with the inner side case. Then, the thrust rolling bearing is elastically pressed against the inner side case where the axial force sensor is installed by an elastic member provided between the inner side surface of the outer side case and the outer side surface of the flange portion. .
 又、本発明を実施する場合に、前記両押圧板を金属製とする。そして、前記各水晶圧電素子の軸方向両端面のうちの一方の端面を接地電極となる一方の押圧板に導通させ、同じく他方の端面を前記押し付け力を支承可能な絶縁板を介して他方の押圧板に突き当てる。更に、前記各水晶圧電素子の他方の端面同士を、これら絶縁板と各水晶圧電素子の他方の端面との間に配置した導体により導通させて、前記リード線の一端をこの導体に接続する。 Further, when the present invention is carried out, both the pressing plates are made of metal. Then, one end face of both end faces in the axial direction of each crystal piezoelectric element is electrically connected to one pressing plate serving as a ground electrode, and the other end face is connected to the other through an insulating plate capable of supporting the pressing force. Butt against the pressing plate. Further, the other end faces of the crystal piezoelectric elements are made conductive by a conductor disposed between the insulating plate and the other end face of the crystal piezoelectric elements, and one end of the lead wire is connected to the conductor.
 或は、前記両押圧板を金属製とする。又、前記各水晶圧電素子をそれぞれ、一対の水晶圧電素子片同士の間に電極を挟持する事により構成し、これら各水晶圧電素子を複数組、前記両押圧板同士の間に挟持する。更に、これら各水晶圧電素子片の軸方向両端面のうちで前記電極と反対側の面を、それぞれが接地電極となる前記両押圧板に導通させ、同じく他方の端面は、前記電極を介して前記リード線の一端に接続する。 Alternatively, both the pressing plates are made of metal. Each of the quartz piezoelectric elements is configured by sandwiching an electrode between a pair of quartz piezoelectric element pieces, and a plurality of these quartz piezoelectric elements are sandwiched between the pressing plates. Further, of the both end surfaces in the axial direction of each of the crystal piezoelectric element pieces, the surface opposite to the electrode is electrically connected to the pressing plates, each serving as a ground electrode, and the other end surface is connected via the electrode. Connect to one end of the lead wire.
 或は、前記両押圧板を金属製とする。又、これら両押圧板の互いに対向する側面同士の間に、通電板を設ける。又、この通電板の軸方向両側面と前記両押圧板の側面との間部分に、これら両間部分毎にそれぞれ複数個ずつの前記各水晶圧電素子を設ける。そして、これら各水晶圧電素子の軸方向両端面のうちの一方の端面を、前記通電板に導通させ、同じく他方の端面を、前記両押圧板のうちの何れかの押圧板に導通させる。更に、これら両押圧板と前記通電板とに、それぞれリード線の端部を接続する。 Alternatively, both the pressing plates are made of metal. In addition, an energization plate is provided between the side surfaces of the two pressing plates facing each other. Further, a plurality of each of the piezoelectric piezoelectric elements is provided between the both side surfaces in the axial direction of the energizing plate and the side surfaces of the both pressing plates. Then, one end face of both end faces in the axial direction of each crystal piezoelectric element is made conductive with the energizing plate, and the other end face is made electrically connected with any one of the pressing plates. Furthermore, the end portions of the lead wires are connected to both of the pressing plates and the energizing plate, respectively.
 又、本発明を実施する場合に、前記両押圧板のうちの少なくとも一方の押圧板のうちで、相手押圧板に対向する面に複数の保持凹部を設け、これら各保持凹部に前記各水晶圧電素子の軸方向端部を内嵌する。
 或は、前記両押圧板の互いに対向する面を平坦面とする。又、これら両押圧板同士の間に、円周方向複数個所に保持孔を形成した円環状の保持環を配置する。そして、これら各保持孔に、前記各水晶圧電素子の軸方向中間部を内嵌しする。
In carrying out the present invention, a plurality of holding recesses are provided on a surface of at least one of the pressing plates facing the counterpart pressing plate, and each of the quartz piezoelectric elements is provided in each holding recess. The axial end of the element is fitted inside.
Alternatively, the opposing surfaces of the two pressing plates are flat surfaces. Further, an annular holding ring having holding holes formed at a plurality of locations in the circumferential direction is disposed between the two pressing plates. And the axial direction intermediate part of each said quartz crystal piezoelectric element is internally fitted in each of these holding holes.
 又、本発明を実施する場合に、前記両押圧板のうちの一方の押圧板を、中心部にねじ孔を形成したナットプレートとし、同じく他方の押圧板を、中心部に円形の通孔を形成したものとする。そして、外周面の軸方向一端部に外向フランジ状の鍔部を、同じく他端寄り部分に雄ねじ部を、それぞれ設けた円筒状の結合ねじを前記通孔に、軸方向他端側から挿通し、更にこの雄ねじ部と前記ねじ孔とを螺合させると共に、前記鍔部を、前記他方の押圧板の軸方向両側面のうちで前記一方の押圧板と反対側の側面の内周縁部に係合させる。
 更に、本発明を実施する場合に好ましくは、前記各水晶圧電素子の角部に面取りを施す。
 そして、この場合に、より好ましくは、前記各水晶圧電素子の軸方向両端面のうちで、前記面取りの内側に存在する部分全体が、これら各水晶圧電素子を挟持する前記両押圧板がスラスト荷重を受ける範囲の外周縁よりも、前記軸力センサの径方向に関して内側に存在する様に、各部の寸法を規制する。
Further, when carrying out the present invention, one of the two pressing plates is a nut plate having a screw hole formed at the center, and the other pressing plate is formed with a circular through hole at the center. It shall be formed. Then, an outward flange-shaped flange portion is inserted into one axial end portion of the outer peripheral surface, a male screw portion is also inserted into the portion closer to the other end, and a cylindrical coupling screw provided is inserted into the through hole from the other axial end side. Further, the male screw portion and the screw hole are screwed together, and the flange portion is engaged with the inner peripheral edge portion of the side surface on the opposite side to the one pressing plate among the two axial side surfaces of the other pressing plate. Combine.
Further, when the present invention is carried out, it is preferable to chamfer the corners of the crystal piezoelectric elements.
In this case, more preferably, of the axially opposite end faces of each of the crystal piezoelectric elements, the entire portion present inside the chamfer is such that the both pressing plates sandwiching the crystal piezoelectric elements are thrust loads. The dimension of each part is regulated so that it exists inside in the radial direction of the axial force sensor with respect to the outer peripheral edge of the receiving range.
 上述の様に構成する本発明によれば、低コストで、しかも優れたパッド交換作業性及び耐候性を確保できる電動式ディスクブレーキを実現できる。
 先ず、低コスト化は、軸力センサを、一対の押圧板同士の間に複数個の水晶圧電素子を挟持して構成する事により図れる。前述した様に、軸力センサを、比較的大きな、単一の水晶圧電素子により造る場合、当該水晶圧電素子の調達コストが嵩むが、複数集まる事で1個の軸力センサを構成する様な、比較的小型の水晶圧電素子は、遥かに低コストで得られる。この為、この軸力センサを組み込んだ電動式ディスクブレーキの低コスト化を図れる。
According to the present invention configured as described above, it is possible to realize an electric disc brake capable of ensuring excellent pad replacement workability and weather resistance at low cost.
First, cost reduction can be achieved by configuring the axial force sensor by sandwiching a plurality of crystal piezoelectric elements between a pair of pressing plates. As described above, when an axial force sensor is made of a relatively large single crystal piezoelectric element, the procurement cost of the crystal piezoelectric element increases. However, a single axial force sensor is configured by gathering a plurality of axial force sensors. A relatively small crystal piezoelectric element can be obtained at a much lower cost. For this reason, the cost of the electric disc brake incorporating this axial force sensor can be reduced.
 又、優れたパッド交換作業性と耐候性とは、前記軸力センサを全体を円環状に構成すると共に電荷取り出し用のリード線を外径側に取り出して、この軸力センサを、増力機構の入力部となる回転軸の周囲に配置する事により図れる。即ち、この軸力センサをこの回転軸の周囲に配置し、更に、必要に応じて、ケースユニット内に保持した状態で、キャリパ等のディスクブレーキの構成部材の内部に支持する為、パッド交換時にこの軸力センサが落下する事を防止できて、パッドの交換作業性の向上を図れる。又、前記回転軸は、異物が存在する外部空間からは隔てられた、キャリパ等のディスクブレーキの構成部材の内部の空間内に存在する。この為、前記軸力センサの構造を工夫する事により、この軸力センサを前記回転軸の周囲に配置すれば、この軸力センサに、泥水等の異物が付着する事を防止できて、この軸力センサを組み込んだ電動式ディスクブレーキの耐候性の向上を図れる。 In addition, the excellent pad replacement workability and weather resistance are such that the entire axial force sensor is formed in an annular shape, and a lead wire for taking out electric charges is taken out to the outer diameter side. This can be achieved by arranging it around the rotation shaft that serves as the input unit. In other words, this axial force sensor is arranged around this rotating shaft, and further, if necessary, supported inside a component component of a disc brake such as a caliper while being held in the case unit. This axial force sensor can be prevented from falling, and the pad replacement workability can be improved. The rotating shaft is present in a space inside a component member of a disc brake such as a caliper, which is separated from an external space in which foreign matter exists. For this reason, by devising the structure of the axial force sensor, if this axial force sensor is arranged around the rotating shaft, foreign matter such as muddy water can be prevented from adhering to the axial force sensor. The weather resistance of the electric disc brake incorporating the axial force sensor can be improved.
下部は図2のa-o-a断面部分に、右端部及び上部は同b-o-b断面部分に、それぞれ対応する、本発明の実施の形態の第1例を示す、電動式ディスクブレーキの断面図。The electric disc brake showing the first example of the embodiment of the present invention, the lower part corresponding to the a-a cross section of FIG. FIG. 図1のc-c断面図。FIG. 2 is a cross-sectional view taken along the line cc of FIG. 図3(A)及び(B)は、増力機構及び軸力センサを組み合わせたユニットを示す断面図であって、図3(A)は増力機構及び軸力センサを組み合わせたユニットを取り出して、キャリパに組み付けた状態で示す断面図であり、図3(B)は組み付ける以前の状態で示す断面図である。3 (A) and 3 (B) are cross-sectional views showing a unit in which the force-increasing mechanism and the axial force sensor are combined. FIG. It is sectional drawing shown in the state assembled | attached to FIG. 3, FIG. 3 (B) is sectional drawing shown in the state before assembling. 軸力センサを取り出して示す断面図。Sectional drawing which takes out and shows an axial force sensor. 軸力センサの分解斜視図。The exploded perspective view of an axial force sensor. 水晶圧電素子を1個取り出して示す斜視図。The perspective view which takes out and shows one crystal piezoelectric element. 図7(A)及び(B)は、片面に導体を被覆した絶縁板を示す斜視図であって、図7(A)は片面に導体を被覆した絶縁板を、導体を被覆していない面から見た状態であり、図7(B)は片面に導体を被覆した絶縁板を、導体を被覆した面から見た状態である。7A and 7B are perspective views showing an insulating plate with a conductor coated on one side, and FIG. 7A shows a surface without a conductor coated with an insulating plate coated with a conductor on one side. FIG. 7B shows a state where an insulating plate having a conductor coated on one side is viewed from the surface coated with the conductor. 本発明の実施の形態の第2例を示す、軸力センサの要部分解斜視図。The principal part disassembled perspective view of the axial force sensor which shows the 2nd example of embodiment of this invention. 同第3例を示す、軸力センサの要部斜視図。The principal part perspective view of the axial force sensor which shows the 3rd example. 軸力センサの水晶圧電素子を1個取り出して示す斜視図。The perspective view which takes out and shows one crystal | crystallization piezoelectric element of an axial force sensor. 本発明の実施の形態の第4例を示す、軸力センサの断面図。Sectional drawing of the axial force sensor which shows the 4th example of embodiment of this invention. 軸力センサの分解斜視図。The exploded perspective view of an axial force sensor. 軸力センサの水晶圧電素子を1個取り出して示す斜視図。The perspective view which takes out and shows one crystal | crystallization piezoelectric element of an axial force sensor. 本発明の実施の形態の第5例を示す、軸力センサの断面図。Sectional drawing of the axial force sensor which shows the 5th example of embodiment of this invention. 軸力センサの水晶圧電素子を1個取り出して示す斜視図。The perspective view which takes out and shows one crystal | crystallization piezoelectric element of an axial force sensor. 本発明の実施の形態の第6例を示す、軸力センサの斜視図。The perspective view of the axial force sensor which shows the 6th example of embodiment of this invention. 軸力センサの端面図。The end view of an axial force sensor. 図17のd-d断面図。Dd sectional drawing of FIG. 軸力センサの分解斜視図。The exploded perspective view of an axial force sensor. 本発明の実施の形態の第7例を示す、軸力センサの斜視図。The perspective view of the axial force sensor which shows the 7th example of embodiment of this invention. 軸力センサの端面図。The end view of an axial force sensor. 図21のe-e断面図。Ee sectional drawing of FIG. 軸力センサのく分解斜視図。The exploded perspective view of an axial force sensor. 図24(A)、(B)、(C)及び(D)は、角部に面取りを施した水晶圧電素子の4例それぞれを示す図であって、図24(A)はその一例を示す斜視図及び側面図であり、図24(B)は別の一例を示す斜視図及び側面図であり、図24(C)はさらに別の一例を示す斜視図及び側面図であり、図24(D)はさらに別の一例を示す斜視図及び側面図である。FIGS. 24A, 24B, 24C, and 24D are diagrams showing four examples of crystal piezoelectric elements each having a chamfered corner, and FIG. 24A shows an example thereof. FIG. 24B is a perspective view and a side view showing another example, and FIG. 24C is a perspective view and a side view showing another example, and FIG. (D) is the perspective view and side view which show another example. 図25(A)、(B)及び(C)は、円盤状の水晶圧電素子に対する導体の添着状態の3例を示す図であって、図25(A)及び(C)は斜視図であり、図25(B)は側面図である。25 (A), (B) and (C) are diagrams showing three examples of the state in which the conductor is attached to the disc-shaped crystal piezoelectric element, and FIGS. 25 (A) and (C) are perspective views. FIG. 25B is a side view. 図26(A)、(B)及び(C)は、四角板状の水晶圧電素子に対する導体の添着状況の3例を示す図であって、図26(A)及び(C)は斜視図であり、図26(B)は側面図である。26 (A), (B) and (C) are diagrams showing three examples of the state of attachment of a conductor to a quadrangular plate-like crystal piezoelectric element, and FIGS. 26 (A) and (C) are perspective views. FIG. 26B is a side view. 従来構造の1例を示す断面図。Sectional drawing which shows an example of a conventional structure. 従来から知られている軸力センサの1例を示す端面図。The end view which shows an example of the axial force sensor conventionally known. 図28の拡大f-f断面図。FIG. 29 is an enlarged ff sectional view of FIG. 28.
 [実施の形態の第1例]
 図1~図7(A)、(B)は、本発明の実施の形態の第1例を示している。先ず、電動式ディスクブレーキ全体の構造に就いて、図1~2により説明する。尚、本例の構造の場合には、フローティングキャリパ型ディスクブレーキを対象としており、電動モータ1aにより駆動される増力機構2a、及び、予圧を付与した軸力センサ8bを含む測定ユニットを、キャリパ14に対して容易に組み付けられる様にしている。このキャリパ14を、請求の範囲に記載したトルク受部材に相当する図示しないサポートに対し軸方向の変位を可能に支持する構造は、油圧式を含めて、従来から広く知られているフローティングキャリパ型ディスクブレーキと同様である。又、制動時に、前記増力機構2aを伸長させてアウタ、インナ両パッド5a、6aをロータ7aの両側面に押し付ける際の機能等は、前述の図27に記載された構造を含めて、従来から知られている電動式ディスクブレーキと同様である。図1に示した増力機構2aの構造は、基本的には、前記特許文献6に記載された従来構造と同様である。但し、本発明を実施する場合、増力機構2aは、図示の様な送りねじ機構15とボール・ランプ機構16とを組み合わせた構造に限らず、カム・ローラ機構、送りねじ機構等、回転方向の力を増力しつつ軸力に変換する、各種機械的な増力機構を採用できる。
[First example of embodiment]
1 to 7A and 7B show a first example of the embodiment of the present invention. First, the structure of the entire electric disc brake will be described with reference to FIGS. In the case of the structure of this example, a floating caliper type disc brake is a target. A measuring unit including a force-increasing mechanism 2a driven by an electric motor 1a and an axial force sensor 8b to which preload is applied is provided as a caliper 14. Can be easily assembled. A structure that supports the caliper 14 so as to be capable of axial displacement with respect to a support (not shown) corresponding to the torque receiving member described in the claims includes a floating caliper type widely known in the art including a hydraulic type. It is the same as a disc brake. Further, during braking, the function and the like for extending the force-increasing mechanism 2a and pressing the outer and inner pads 5a, 6a against both side surfaces of the rotor 7a, including the structure shown in FIG. It is the same as a known electric disc brake. The structure of the force-increasing mechanism 2a shown in FIG. 1 is basically the same as the conventional structure described in Patent Document 6. However, when the present invention is implemented, the force-increasing mechanism 2a is not limited to the structure in which the feed screw mechanism 15 and the ball / ramp mechanism 16 are combined as shown in the figure, but includes a cam / roller mechanism, a feed screw mechanism, etc. Various mechanical force-increasing mechanisms that convert force into force while increasing force can be used.
 本例の場合には、前記増力機構2aを構成し、その先半部(アウタ側半部)を駆動側ロータ17の中心部に設けたねじ孔18に螺合させた駆動スピンドル19の基端部を、減速機20を構成する減速大歯車21の中心部にスプライン係合させている。又、前記駆動スピンドル19の軸方向中間部に外向フランジ状の鍔部22を形成し、この鍔部22のインナ側面をスラスト転がり軸受23により支承している。この構成により前記駆動スピンドル19を、インナ側に向いたスラスト荷重を支承しつつ、回転駆動自在としている。 In the case of this example, the base end of the drive spindle 19 is configured by constituting the force-increasing mechanism 2a and having the front half (outer side half) screwed into the screw hole 18 provided in the center of the drive side rotor 17. The portion is spline-engaged with the central portion of the reduction large gear 21 constituting the reduction gear 20. Further, an outward flange-like flange portion 22 is formed at an axially intermediate portion of the drive spindle 19, and an inner side surface of the flange portion 22 is supported by a thrust rolling bearing 23. With this configuration, the drive spindle 19 can be rotationally driven while supporting a thrust load directed toward the inner side.
 前記鍔部22と前記スラスト転がり軸受23とは、前記軸力センサ8b、及び、波板ばね、圧縮コイルばね、ゴム等、軸方向に関して弾性変形自在な弾性部材24と共に、ケースユニット25内に収納している。このケースユニット25は、インナ側ケース26とアウタ側ケース27とを組み合わせて成る。このケースユニット25は、これらインナ側、アウタ側両ケース26、27を、軸方向に関する若干の相対変位を可能に、且つ、非分離に組み合わせて成る。 The flange portion 22 and the thrust rolling bearing 23 are housed in a case unit 25 together with the axial force sensor 8b and an elastic member 24 that is elastically deformable in the axial direction, such as a wave plate spring, a compression coil spring, and rubber. is doing. The case unit 25 is formed by combining an inner side case 26 and an outer side case 27. The case unit 25 is formed by combining the inner and outer cases 26 and 27 in a non-separable manner so as to allow a slight relative displacement in the axial direction.
 このうちのインナ側ケース26は、中心部に円形の通孔28を有する円輪形の底板部29の外周縁からアウタ側に向け、円筒状の固定側周壁部30を設けている。この固定側周壁部30の基半寄り部分(インナ寄り部分)の円周方向1箇所位置に、前記軸力センサ8bの測定信号を取り出すコネクタ31の端部を露出させる為の取り出し孔32を形成している。又、前記固定側周壁部30の先半寄り部分(アウタ寄り部分)の円周方向複数箇所位置(例えば、円周方向等間隔の2~3箇所位置)に、軸方向に長い係合孔33、33を形成している。尚、前記コネクタ31の端部を露出させる為の構造は、前記取り出し孔32に代えて、前記固定側周壁部30の先端縁(アウタ側端縁)に開口する切り欠きとしても良い。但し、この場合には、この切り欠きと前記各係合孔33、33との円周方向に関する位相をずらせる(円周方向に隣り合う係合孔33、33同士の間に切り欠きを設ける)。 Among these, the inner side case 26 is provided with a cylindrical fixed side peripheral wall portion 30 from the outer peripheral edge of the annular bottom plate portion 29 having a circular through hole 28 in the center portion toward the outer side. An extraction hole 32 for exposing an end portion of the connector 31 for extracting the measurement signal of the axial force sensor 8b is formed at one position in the circumferential direction of the proximal half wall portion (inner wall portion) of the fixed side peripheral wall portion 30. is doing. In addition, the engagement holes 33 that are long in the axial direction are arranged at a plurality of circumferential positions (for example, two to three positions at equal intervals in the circumferential direction) of the first half portion (outer portion) of the fixed-side peripheral wall portion 30. , 33 are formed. The structure for exposing the end portion of the connector 31 may be a notch that opens at the front end edge (outer side end edge) of the fixed peripheral wall portion 30 instead of the extraction hole 32. However, in this case, the phase in the circumferential direction between the notch and each of the engagement holes 33 and 33 is shifted (a notch is provided between the engagement holes 33 and 33 adjacent to each other in the circumferential direction). ).
 一方、前記アウタ側ケース27は、中心部に円形の通孔34を有する円輪形の底板部35の外周縁からインナ側に向け、円筒状の変位側周壁部36を設けている。そして、この変位側周壁部36の先端縁(インナ側端縁)の円周方向複数箇所位置で、前記係合孔33、33に整合する部分に、インナ側に突出する舌片を形成している。前記インナ側、アウタ側両ケース26、27を組み合わせて前記ケースユニット25を構成した状態では、前記各舌片を、このケースユニット25の径方向内方に折り曲げて係合片37、37とし、これら各係合片37、37を前記各係合孔33、33に、軸方向の変位を可能に係合させる。この状態で前記ケースユニット25の軸方向寸法は、前記各係合孔33、33内で前記各係合片37、37が変位できる範囲で、伸縮可能になる。 On the other hand, the outer side case 27 is provided with a cylindrical displacement side peripheral wall portion 36 from the outer peripheral edge of the annular bottom plate portion 35 having a circular through hole 34 in the center portion toward the inner side. A tongue piece projecting toward the inner side is formed at a portion aligned with the engagement holes 33 and 33 at a plurality of positions in the circumferential direction of the distal end edge (inner side end edge) of the displacement side peripheral wall portion 36. Yes. In a state in which the case unit 25 is configured by combining the inner side and outer side cases 26, 27, the tongue pieces are bent radially inward of the case unit 25 to form engagement pieces 37, 37. The engagement pieces 37 and 37 are engaged with the engagement holes 33 and 33 so as to be axially displaceable. In this state, the axial dimension of the case unit 25 can be expanded and contracted within a range in which the engagement pieces 37 and 37 can be displaced in the engagement holes 33 and 33.
 又、前記変位側周壁部36の円周方向複数箇所(例えば、円周方向等間隔の2~3箇所位置)に、この変位側周壁部36の外周面から、前記ケースユニット25の径方向外方に突出する状態で、それぞれ係止片38、38を、突出形成している。これら各係止片38、38はそれぞれ、前記アウタ側ケース27の変位側周壁部36を構成する金属板の一部をこのアウタ側ケース27の径方向外方に曲げ起こしたもので、それぞれの外径側部分を、この外径側部分のアウタ側端縁と後述する係止凹部39とを係合させる係止縁とする方向、即ち、アウタ側に向かうに従って前記変位側周壁部36の外周面からの突出量が多くなる方向に傾斜させている。 Further, at a plurality of locations in the circumferential direction of the displacement side peripheral wall portion 36 (for example, at two or three positions at equal intervals in the circumferential direction), the outer circumferential surface of the displacement side peripheral wall portion 36 is radially outward. The locking pieces 38 and 38 are formed so as to protrude in a protruding state. Each of the locking pieces 38, 38 is formed by bending a part of a metal plate constituting the displacement side peripheral wall portion 36 of the outer side case 27 outward in the radial direction of the outer side case 27. A direction in which the outer diameter side portion is a locking edge for engaging an outer side edge of the outer diameter side portion with a locking recess 39 described later, that is, the outer periphery of the displacement side peripheral wall portion 36 toward the outer side. It is inclined in the direction in which the amount of protrusion from the surface increases.
 この様なケースユニット25内に、前記駆動スピンドル19の中間部に設けた鍔部22と、前記軸力センサ8bと、前記スラスト転がり軸受23と、前記弾性部材24とを組み込む。この組み込み作業は、先ず、前記軸力センサ8bを前記インナ側ケース26の奥部に挿入した後、前記駆動スピンドル19と、前記スラスト転がり軸受23と、前記弾性部材24とを前記インナ側ケース26に挿入する。更に、前記アウタ側ケース27の変位側周壁部36の先端部(インナ側端部)を、前記インナ側ケース26の固定側周壁部30の前端部(アウタ側端部)に外嵌し、更に、前記各係合片37、37と前記各係合孔33、33とを係合させる。この状態で、図3の(B)に示す様な、前記ケースユニット25内に、前記各部材或いは各部19、22、8b、23、24を組み込んだ(サブアッセンブリした)、軸力測定ユニット40を得られる。尚、この状態では、前記軸力センサ8bには、必ずしも、測定精度を確保する為に十分な予圧は付与されていない。 In such a case unit 25, the flange portion 22 provided at the intermediate portion of the drive spindle 19, the axial force sensor 8b, the thrust rolling bearing 23, and the elastic member 24 are incorporated. In this assembling operation, first, the axial force sensor 8b is inserted into the inner case 26, and then the drive spindle 19, the thrust rolling bearing 23, and the elastic member 24 are connected to the inner case 26. Insert into. Furthermore, the distal end portion (inner side end portion) of the displacement side peripheral wall portion 36 of the outer side case 27 is externally fitted to the front end portion (outer side end portion) of the fixed side peripheral wall portion 30 of the inner side case 26, and The engagement pieces 37, 37 and the engagement holes 33, 33 are engaged with each other. In this state, as shown in FIG. 3B, the member or each part 19, 22, 8b, 23, 24 is incorporated (subassembled) into the case unit 25, and the axial force measuring unit 40 is assembled. Can be obtained. In this state, the axial force sensor 8b is not necessarily given a sufficient preload to ensure measurement accuracy.
 上述の様な軸力測定ユニット40は、図1に示す様に、前記キャリパ14のインナ側部分に設けたシリンダ空間41の奥端部(インナ側端部)に組み付ける。このシリンダ空間41の奥端部の内径は、前記インナ側ケース26の固定側周壁部30の外径とほぼ同じとして、このインナ側ケース26を前記シリンダ空間41の奥端部に、がたつきなく保持できる様にしている。但し、この奥端部のうちで前記コネクタ31の端部に整合する部分には、前記シリンダ空間41の内径側及びアウタ側に開口する凹溝42を形成して、前記コネクタ31の端部との干渉防止を図っている。又、前記シリンダ空間41の中間部奥端寄り部分に前記係止凹部39を、前記凹溝42部分を除き、ほぼ全周に亙って形成している。この係止凹部39のアウタ側端部は、前記シリンダ空間41の中心軸に対し直角方向に存在する、段差面43としている。 As shown in FIG. 1, the axial force measuring unit 40 as described above is assembled to the inner end of the cylinder space 41 provided in the inner side portion of the caliper 14. The inner diameter of the rear end portion of the cylinder space 41 is substantially the same as the outer diameter of the fixed peripheral wall portion 30 of the inner case 26, and the inner case 26 is rattled to the rear end portion of the cylinder space 41. It can be held without any loss. However, a concave groove 42 that opens to the inner diameter side and the outer side of the cylinder space 41 is formed in a portion of the rear end portion that is aligned with the end portion of the connector 31. To prevent interference. Further, the locking recess 39 is formed in a portion of the cylinder space 41 near the back end of the intermediate portion, except for the recessed groove 42 portion, over substantially the entire circumference. The outer side end of the locking recess 39 is a stepped surface 43 that exists in a direction perpendicular to the central axis of the cylinder space 41.
 前記軸力測定ユニット40を前記シリンダ空間41の奥端部に組み付けるには、前記弾性部材24を軸方向に圧縮しつつ、前記ケースユニット25を前記シリンダ空間41に押し込む。この押し込み作業に伴って、前記各係止片38、38が前記ケースユニット25の径方向内方に弾性変形し、前記シリンダ空間41のアウタ側乃至中間部を通過する。そして、前記インナ側ケース26をこのシリンダ空間41の奥端部に内嵌すると共に、前記各係止片38、38を前記係止凹部39の内径側に位置する迄、前記アウタ側ケース27を前記シリンダ空間41内に押し込む。すると、前記各係止片38、38が前記変位側周壁部36の外周面から弾性的に突出し、前記係止凹部39内に進入する。この状態で、前記ケースユニット25を前記シリンダ空間41に押し込んだ力を解除すると、前記弾性部材24の弾力により、前記各係止片38、38の先端縁が前記段差面43に突き当たり、前記アウタ側ケース27が前記シリンダ空間41から抜け出る方向(アウタ側)に変位する事はなくなる。又、この状態で、前記軸力センサ8bに、測定精度を確保する為に十分な予圧が付与された状態となる。そこで、前記キャリパ14に形成した接続孔44を通じて前記シリンダ空間41内に、ハーネス45の端部に設けたプラグ46を差し込んで、このプラグ46と前記コネクタ31とを接続し、前記軸力センサ8bの測定信号を取り出し可能とする。 In order to assemble the axial force measurement unit 40 to the inner end of the cylinder space 41, the case unit 25 is pushed into the cylinder space 41 while the elastic member 24 is compressed in the axial direction. With the pushing operation, the locking pieces 38 and 38 are elastically deformed radially inward of the case unit 25 and pass through the outer side or the intermediate portion of the cylinder space 41. The inner side case 26 is fitted into the inner end of the cylinder space 41, and the outer side case 27 is moved until the locking pieces 38 and 38 are positioned on the inner diameter side of the locking recess 39. Push into the cylinder space 41. Then, each of the locking pieces 38, 38 elastically protrudes from the outer peripheral surface of the displacement side peripheral wall portion 36 and enters the locking recess 39. In this state, when the force that pushes the case unit 25 into the cylinder space 41 is released, the leading edges of the locking pieces 38 and 38 abut against the step surface 43 by the elastic force of the elastic member 24, and the outer The side case 27 will not be displaced in the direction (outer side) of exiting from the cylinder space 41. In this state, a sufficient preload is applied to the axial force sensor 8b in order to ensure measurement accuracy. Therefore, a plug 46 provided at the end of the harness 45 is inserted into the cylinder space 41 through the connection hole 44 formed in the caliper 14, and the plug 46 and the connector 31 are connected to each other, and the axial force sensor 8b. The measurement signal can be extracted.
 前記軸力測定ユニット40を組み立てる作業は、前記シリンダ空間41外の広い空間で行えるし、この軸力測定ユニット40をこのシリンダ空間41内に組み付ける作業は、単に前記コネクタ31と前記凹溝42との位相を合わせてから、前記軸力測定ユニット40を前記シリンダ空間41内に押し込むだけで、容易に行える。更に、この軸力測定ユニット40のアウタ側にボール・ランプ機構16を構成する駆動側ロータ17を組み付ける作業は、前記駆動スピンドル19のインナ側端部で前記キャリパ14のインナ側端面から突出した部分を回転させながら、前記駆動スピンドル19のアウタ側部分に前記駆動側ロータ17を螺合させる事により、容易に行える。他の部材の組み付け作業に関しても、前記シリンダ空間41内に、アウタ側開口から挿入する事により、容易に行える。そして、前記軸力測定ユニット40を前記シリンダ空間41内に組み付けた状態では、前記軸力センサ8bに適切な予圧が付与された状態となり、制動に伴ってこの軸力センサ8bに加わる軸力と、この軸力センサ8bの測定信号との関係をほぼ直線的にできる。この為、この測定信号を処理する為の演算器の構成を簡単にしても、前記軸力を十分な精度を確保した上で求められる。 The operation of assembling the axial force measurement unit 40 can be performed in a large space outside the cylinder space 41. The operation of assembling the axial force measurement unit 40 in the cylinder space 41 is simply performed by the connector 31 and the concave groove 42. Can be easily performed by simply pushing the axial force measuring unit 40 into the cylinder space 41. Further, the operation of assembling the drive-side rotor 17 constituting the ball / ramp mechanism 16 on the outer side of the axial force measuring unit 40 is performed by a portion protruding from the inner-side end surface of the caliper 14 at the inner-side end portion of the drive spindle 19. By rotating the drive side rotor 17 to the outer side portion of the drive spindle 19, the drive side rotor 17 can be easily engaged. The operation of assembling other members can be easily performed by inserting the cylinder space 41 into the cylinder space 41 from the outer side opening. When the axial force measuring unit 40 is assembled in the cylinder space 41, an appropriate preload is applied to the axial force sensor 8b, and the axial force applied to the axial force sensor 8b along with braking is reduced. The relationship with the measurement signal of the axial force sensor 8b can be made almost linear. For this reason, even if the configuration of the arithmetic unit for processing the measurement signal is simplified, the axial force can be obtained with sufficient accuracy.
 本例の電動式ディスクブレーキ全体の構造は上述の通りであるが、前記軸力測定ユニット40を構成する、前記軸力センサ8bは、図4~7(A)、(B)に示す様に構成している。即ち、この軸力センサ8bは、全体を円環状に構成する事により、前記増力機構2aの入力部となる回転軸である、前記駆動スピンドル19の中間部インナ寄り部分の周囲に配置している。この為に前記軸力センサ8bを、一対の押圧板47a、47bと、複数個の水晶圧電素子48、48と、絶縁板49と、リード線50とから構成している。このうちの両押圧板47a、47bは、それぞれが円環状に構成されて互いに平行に、且つ、互いに同心に配置されている。又、上記各水晶圧電素子48、48は、それぞれ円柱状に造られたもので、軸方向両端面に電極を被覆しており、前記両押圧板47a、47b同士の間に挟持されている。又、前記絶縁板49は、前記各水晶圧電素子48、48の軸方向一端面(図4~6の上面)と、前記両押圧板47a、47bのうちの一方(図4~5の上方)の押圧板47aとを絶縁する為のもので、優れた耐圧縮性を有する合成樹脂或はセラミック等の薄板としている。この様な絶縁板49の軸方向両側面のうち、前記各水晶圧電素子48、48の軸方向一端面と対向する面の径方向中間部には、図7の(B)に示す様に環状の導体51を、全周に亙って添着している。前記リード線50の一端は、この導体51に導通させている。この構成により、前記両押圧板47a、47b同士の間で前記各水晶圧電素子48、48が押圧される事に伴って発生する電荷を、前記リード線50を通じて取り出し可能としている。特に、本例の軸力センサ8bの場合には、このリード線50を、前記両押圧板47a、47bの外径側に取り出している。 The overall structure of the electric disc brake of this example is as described above. The axial force sensor 8b constituting the axial force measuring unit 40 is configured as shown in FIGS. 4 to 7 (A) and (B). It is composed. That is, the axial force sensor 8b is arranged around an inner portion of the drive spindle 19 that is a rotating shaft that serves as an input portion of the force-increasing mechanism 2a by forming an annular shape as a whole. . For this purpose, the axial force sensor 8b includes a pair of pressing plates 47a and 47b, a plurality of crystal piezoelectric elements 48 and 48, an insulating plate 49, and a lead wire 50. Of these, the pressing plates 47a and 47b are each formed in an annular shape, arranged in parallel with each other and concentrically with each other. Each of the quartz crystal piezoelectric elements 48 and 48 is formed in a columnar shape, covers both ends in the axial direction, and is sandwiched between the pressing plates 47a and 47b. The insulating plate 49 has one end surface in the axial direction of each of the quartz crystal piezoelectric elements 48 and 48 (the upper surface in FIGS. 4 to 6) and one of the pressing plates 47a and 47b (above FIGS. 4 to 5). It is made of a synthetic resin or ceramic thin plate having excellent compression resistance. Of the both side surfaces in the axial direction of the insulating plate 49, the radial intermediate portion of the surface facing the one end surface in the axial direction of each of the quartz crystal piezoelectric elements 48, 48 has an annular shape as shown in FIG. The conductor 51 is attached over the entire circumference. One end of the lead wire 50 is electrically connected to the conductor 51. With this configuration, it is possible to take out the electric charges generated when the quartz crystal piezoelectric elements 48 and 48 are pressed between the pressing plates 47a and 47b through the lead wire 50. In particular, in the case of the axial force sensor 8b of this example, the lead wire 50 is taken out to the outer diameter side of the pressing plates 47a and 47b.
 本例の場合には、前記両押圧板47a、47bを、十分な剛性を確保できる、鋼板、ステンレス鋼板等の金属製としている。これら両押圧板47a、47bのうち、一方(図4~5の上方)の押圧板47aは上下両面を、後述する通孔55、55を形成した部分を除き、何れも平坦面としている。これに対して、他方(図4~5の下方)の押圧板47bの両端面のうちで、上記一方の押圧板47aに対向する面には複数の凹部53、53を、円周方向に関して等間隔に形成している。そして、前記各水晶圧電素子48、48の軸方向両端面のうちの一方の端面を、前記各凹部53、53の奥端面(底面)に突き当てて、この一方の端面と、接地電極となる前記他方の押圧板47bとを導通させている。更に、この他方の押圧板47bの内周縁部に円筒部57を、前記一方の押圧板47a側に突出する状態で形成している。この円筒部57の外径は、この一方の押圧板47aの内径よりも僅かに小さくしている。 In the case of this example, both the pressing plates 47a and 47b are made of metal such as a steel plate and a stainless steel plate that can ensure sufficient rigidity. Among these pressing plates 47a and 47b, one (upper side in FIGS. 4 to 5) has a flat surface on both upper and lower surfaces except for a portion where through holes 55 and 55 described later are formed. On the other hand, among the both end surfaces of the other pressing plate 47b (the lower side in FIGS. 4 to 5), a plurality of recesses 53, 53 are formed on the surface facing the one pressing plate 47a in the circumferential direction, etc. Formed at intervals. Then, one end face of both end faces in the axial direction of each of the quartz crystal piezoelectric elements 48, 48 is abutted against the back end face (bottom face) of each of the recesses 53, 53, and this one end face serves as a ground electrode. The other pressing plate 47b is electrically connected. Further, a cylindrical portion 57 is formed on the inner peripheral edge of the other pressing plate 47b so as to protrude toward the one pressing plate 47a. The outer diameter of the cylindrical portion 57 is slightly smaller than the inner diameter of the one pressing plate 47a.
 尚、本例の場合には、前記各凹部53、53を、前記各水晶圧電素子48、48の外径よりも少し大きな内径を有する円形として、これら各水晶圧電素子48、48の軸方向他半部(図4~6の下半部)を前記各凹部53、53に、緩く内嵌して保持している。そして、この様に、前記各水晶圧電素子48、48を前記他方の押圧板47bの凹部53、53に保持した状態で、この押圧板47bと前記一方の押圧板47aとを、複数本(図示の例では3本)のねじ54により結合している。この為に、この一方の押圧板47aに通孔55、55を、前記他方の押圧板47bにねじ孔56、56を、それぞれ形成している。 In the case of this example, each of the recesses 53 and 53 is a circular shape having an inner diameter slightly larger than the outer diameter of each of the crystal piezoelectric elements 48 and 48. The half (the lower half of FIGS. 4 to 6) is held in the recesses 53, 53 by being loosely fitted inside. In this manner, a plurality of the pressing plates 47b and the one pressing plate 47a (shown in the figure) in a state where the crystal piezoelectric elements 48, 48 are held in the recesses 53, 53 of the other pressing plate 47b. In this example, they are connected by three screws 54). For this purpose, through holes 55, 55 are formed in the one pressing plate 47a, and screw holes 56, 56 are formed in the other pressing plate 47b, respectively.
 前記各通孔55、55は、それぞれの奥半部(他方の押圧板47b寄り半部)を、前記各ねじ54の杆部を挿通できるだけの内径を有する小径部とし、開口側半部(他方の押圧板47bと反対側半部)を、前記各ねじ54の頭部を緩く収納できるだけの内径及び深さを有する大径部としている。これら各ねじ54の杆部を前記各通孔55、55に挿通すると共に、前記各ねじ孔56、56に螺合させて、前記両押圧板47a、47b同士を軸方向に関する僅かな相対変位を可能とした状態で結合し、これら両押圧板47a、47b同士の間に、前記各水晶圧電素子48、48と前記絶縁板49とを挟持した状態で、前記各ねじ54の頭部は、前記各通孔55、55の大径部に沈入して、前記一方の押圧板47aの軸方向側面から突出しない。従って、組み立てられた軸力センサ8bを前記インナ側ケース26の底板部29と前記スラスト転がり軸受23(図1参照)との間で挟持した状態で、前記各ねじ54が突っ張る事はない。この結果、前記底板部29と前記スラスト転がり軸受23との間に加わる軸力が、前記両押圧板47a、47b同士の間に存在する前記各水晶圧電素子48、48に有効に(前記軸力の大部分がこれら各水晶圧電素子48、48に)加わる。 Each of the through holes 55, 55 has a rear half (a half near the other pressing plate 47b) as a small-diameter part having an inner diameter sufficient to insert the flange part of each screw 54, and the opening-side half (the other half) The half portion opposite to the pressing plate 47b) is a large-diameter portion having an inner diameter and a depth sufficient to loosely accommodate the head of each screw 54. The flanges of the screws 54 are inserted into the through holes 55 and 55 and screwed into the screw holes 56 and 56 so that the pressing plates 47a and 47b are slightly displaced in the axial direction. The heads of the screws 54 are connected in a state where the screw plates 54a, 47b are sandwiched between the quartz piezoelectric elements 48, 48 and the insulating plate 49. It sinks into the large diameter part of each through- hole 55 and 55, and does not protrude from the axial direction side surface of said one press board 47a. Therefore, the screws 54 are not stretched in a state where the assembled axial force sensor 8b is sandwiched between the bottom plate portion 29 of the inner case 26 and the thrust rolling bearing 23 (see FIG. 1). As a result, the axial force applied between the bottom plate portion 29 and the thrust rolling bearing 23 is effectively applied to the crystal piezoelectric elements 48 and 48 existing between the pressing plates 47a and 47b (the axial force). Is added to each of these quartz piezoelectric elements 48, 48).
 又、この様な軸力センサ8bを構成する、前記各水晶圧電素子48、48の軸方向両端面のうち、一端面は前記導体51を介して前記リード線50に通じ、他端面は前記他方の押圧板47bを通じて接地(アース)されている。従って、前記リード線50の他端を、図示しない増幅器に入力する事で、前記各水晶圧電素子48、48に発生した電荷の合計がこの増幅器により電圧値に変換され、この電圧値に基づいて、前記軸力を求められる。尚、上述の様に前記軸力センサ8bの構成各部材を組み立てた状態で、前記他方の押圧板47b側に設けた前記円筒部57が、前記一方の押圧板47aの内径側に、隙間嵌めで係合(嵌合)する。そして、この係合により、これら両押圧板47a、47bを互いに同心に保持する。従って、これら両押圧板47a、47b同士の間で前記各水晶圧電素子48、48を均等に押圧し、前記軸力を精度良く求められる。 In addition, one end surface of each of the quartz piezoelectric elements 48 and 48 constituting the axial force sensor 8b in the axial direction is connected to the lead wire 50 through the conductor 51, and the other end surface is the other end surface. Is grounded through the pressing plate 47b. Accordingly, by inputting the other end of the lead wire 50 to an amplifier (not shown), the total charge generated in each of the crystal piezoelectric elements 48, 48 is converted into a voltage value by this amplifier, and based on this voltage value The axial force is obtained. In the state where the constituent members of the axial force sensor 8b are assembled as described above, the cylindrical portion 57 provided on the side of the other pressing plate 47b is fitted with a gap on the inner diameter side of the one pressing plate 47a. Engage (fit) with. And by this engagement, these press plates 47a and 47b are held concentrically with each other. Accordingly, the crystal piezoelectric elements 48 and 48 are pressed evenly between the pressing plates 47a and 47b, and the axial force can be obtained with high accuracy.
 上述の様な構成を有する軸力センサ8bを、前述の様に底板部29とスラスト転がり軸受23との間に組み付けた、本例の構造によれば、低コストで、しかも優れたパッド交換作業性と耐候性とを確保できる電動式ディスクブレーキを実現できる。
 先ず、低コスト化は、前記軸力センサ8bを、前記両押圧板47a、47b同士の間に前記各水晶圧電素子48、48を挟持して構成する事により図れる。図6に示す様な、それぞれが円柱状で小さな(外径寸法及び軸方向寸法が小さい)水晶圧電素子48、48は極めて安価であり、低コストで調達できる。この為、非常に高価な、単一の円環状の水晶圧電素子を使用する場合に比べて、軸力センサ8b全体としてのコストを、十分に低く抑えられる。この為、この軸力センサ8bを組み込んだ電動式ディスクブレーキの低コスト化を図れる。
According to the structure of this example in which the axial force sensor 8b having the above-described configuration is assembled between the bottom plate portion 29 and the thrust rolling bearing 23 as described above, the pad replacement operation is excellent at low cost. Motorized disc brakes that can ensure high performance and weather resistance.
First, cost reduction can be achieved by configuring the axial force sensor 8b by sandwiching the crystal piezoelectric elements 48, 48 between the pressing plates 47a, 47b. As shown in FIG. 6, the crystal piezoelectric elements 48, 48 each having a cylindrical shape (small outer diameter and axial dimensions) are extremely inexpensive and can be procured at a low cost. For this reason, the cost of the axial force sensor 8b as a whole can be sufficiently reduced as compared with the case of using a very expensive single annular crystal piezoelectric element. For this reason, cost reduction of the electric disc brake incorporating this axial force sensor 8b can be achieved.
 又、優れたパッド交換作業性と耐候性とは、前記軸力センサ8bを、全体を円環状に構成すると共に、電荷取り出し用の前記リード線50を、この軸力センサ8bの外径側に取り出して、この軸力センサ8bを、前記増力機構2aの入力部となる、前記駆動スピンドル19の周囲に配置する事により図れる。即ち、本例の場合には、前記軸力センサ8bをこの駆動スピンドル19の周囲に配置している為、前記アウタ、インナパッド5a、6aの交換時に、この軸力センサ8bが落下する事を防止できて、パッド交換作業性の向上を図れる。又、前記駆動スピンドル19は、異物が存在する外部空間からは隔てられた、前記キャリパ14の内部のシリンダ空間41内に存在する。従って、前記駆動スピンドル19の周囲に配置した前記軸力センサ8bに関しても、前記シリンダ空間41内に存在する事になるので、この軸力センサ8bに泥水等の異物が付着する事を防止できて、この軸力センサ8bの故障を抑えられる。即ち、この軸力センサ8bを組み込んだ電動式ディスクブレーキの耐候性の向上を図れる。 Further, the excellent pad replacement workability and weather resistance are such that the axial force sensor 8b is formed in an annular shape as a whole, and the lead wire 50 for taking out electric charges is disposed on the outer diameter side of the axial force sensor 8b. The axial force sensor 8b can be taken out and disposed around the drive spindle 19, which serves as an input portion of the force-increasing mechanism 2a. That is, in the case of this example, the axial force sensor 8b is disposed around the drive spindle 19, so that the axial force sensor 8b is dropped when the outer and inner pads 5a and 6a are replaced. This can be prevented and the pad workability can be improved. Further, the drive spindle 19 is present in a cylinder space 41 inside the caliper 14 that is separated from an external space in which foreign matter exists. Accordingly, the axial force sensor 8b disposed around the drive spindle 19 is also present in the cylinder space 41, so that foreign matter such as muddy water can be prevented from adhering to the axial force sensor 8b. The failure of the axial force sensor 8b can be suppressed. That is, the weather resistance of the electric disc brake incorporating this axial force sensor 8b can be improved.
  [実施の形態の第2例]
 図8は、本発明の実施の形態の第2例を示している。本例に関しても、電動式ディスクブレーキ全体の構造は、上述した実施の形態の第1例の場合と同様、図1~3に示した通りである。特に、本例の場合には、一対の押圧板47a、47cの互いに対向する面を、(押圧板47c側に設けた円筒部57部分を除き)平坦面としている。そして、これら両押圧板47a、47c同士の間に複数個の水晶圧電素子48を、保持環58により位置決めした状態で挟持している。この保持環58は、前記円筒部57の外径よりも少しだけ大きな内径を有する円環状で、円周方向複数個所に保持孔59、59を形成している。これら各保持孔59、59の内径は、前記各水晶圧電素子48の外径よりも少しだけ大きくして、これら各保持孔59、59の内側にこれら各水晶圧電素子48を、緩く、且つ、位置決めを図った状態で保持可能としている。その他の部分の構成及び作用は、前記実施の形態の第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Second Example of Embodiment]
FIG. 8 shows a second example of the embodiment of the present invention. Also in this example, the structure of the entire electric disc brake is as shown in FIGS. 1 to 3 as in the case of the first example of the embodiment described above. In particular, in the case of this example, the opposing surfaces of the pair of pressing plates 47a and 47c are flat surfaces (except for the cylindrical portion 57 portion provided on the pressing plate 47c side). A plurality of quartz piezoelectric elements 48 are sandwiched between the pressing plates 47a and 47c while being positioned by the holding ring 58. The holding ring 58 is an annular shape having an inner diameter slightly larger than the outer diameter of the cylindrical portion 57, and holding holes 59, 59 are formed at a plurality of locations in the circumferential direction. The inner diameters of the holding holes 59, 59 are slightly larger than the outer diameters of the quartz crystal elements 48, and the quartz piezoelectric elements 48 are loosened inside the holding holes 59, 59, and It can be held in a state of positioning. Since the configuration and operation of the other parts are the same as those in the first example of the above embodiment, overlapping illustrations and descriptions are omitted.
  [実施の形態の第3例]
 図9~10は、本発明の実施の形態の第3例を示している。本例の場合には、各水晶圧電素子48a、48aを角柱状(立方体状)としている。この様な角柱状の水晶圧電素子48a、48aを形成するには、大きな人工結晶をスライスして得た平板状の結晶板を碁盤目状に切断する。これら一連の作業(スライス→切断)は容易であり、又、これら一連の作業により生じる廃棄物(水晶の削り滓)は極く少量に抑えられる。この為、前記各水晶圧電素子48a、48aの加工作業の容易化と歩留まりの向上とにより、これら各水晶圧電素子48a、48aのコスト低減を図れる。尚、本例の場合、前記各水晶圧電素子48a、48aの軸方向一端部を保持する為の凹部53、53を設けた押圧板47dには、円筒部57(図4、5、8参照)を設けていない。その他の部分の構成及び作用は、上述した実施の形態の第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Third example of embodiment]
9 to 10 show a third example of the embodiment of the present invention. In the case of this example, each crystal piezoelectric element 48a, 48a has a prismatic shape (cubic shape). In order to form such prismatic crystal piezoelectric elements 48a, 48a, flat crystal plates obtained by slicing large artificial crystals are cut into a grid pattern. These series of operations (slicing → cutting) are easy, and the waste (crystal shavings) generated by these series of operations is extremely small. For this reason, the cost of each crystal piezoelectric element 48a, 48a can be reduced by facilitating the processing operation of each crystal piezoelectric element 48a, 48a and improving the yield. In the case of this example, a cylindrical portion 57 (see FIGS. 4, 5 and 8) is provided on the pressing plate 47d provided with the concave portions 53 and 53 for holding one end portions in the axial direction of the crystal piezoelectric elements 48a and 48a. Is not provided. Since the configuration and operation of other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  [実施の形態の第4例]
 図11~13は、本発明の実施の形態の第4例を示している。本例の場合には、それぞれが角柱状(立方体状)である、複数個の水晶圧電素子48a、48aにそれぞれ設けた6個の面のうち、隣り合う2個の面に、それぞれ電極を被覆している。但し、これら両面に被覆した電極は、互いに離隔させている。そして、一方の面の電極を、押圧板47dに形成した凹部53、53の底面に突き当てて、当該電極をこの押圧板47dを通じて接地している。これに対して、他方の面の電極を、リード線50を介して、図示しない増幅器に通じさせている。この為に、この他方の面の電極を、両押圧板47a、47dの径方向外側に位置させると共に、前記各水晶圧電素子48a、48aの周囲に、導体51aを巻き掛け、この導体51aと前記他方の電極とを導通させると共に、この導体51aに前記リード線50の端部を接続している。この導体51aと前記押圧板47dとは、互いに絶縁している。その他の部分の構成及び作用は、前述した実施の形態の第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Fourth Example of Embodiment]
11 to 13 show a fourth example of the embodiment of the present invention. In the case of this example, electrodes are covered on two adjacent surfaces among the six surfaces respectively provided on the plurality of quartz crystal piezoelectric elements 48a and 48a each having a prismatic shape (cubic shape). is doing. However, these electrodes coated on both sides are separated from each other. The electrode on one surface is abutted against the bottom surface of the recesses 53 formed in the pressing plate 47d, and the electrode is grounded through the pressing plate 47d. On the other hand, the electrode on the other side is connected to an amplifier (not shown) via the lead wire 50. For this purpose, the electrode on the other surface is positioned on the radially outer side of both pressing plates 47a and 47d, and a conductor 51a is wound around each of the quartz piezoelectric elements 48a and 48a. While making the other electrode conductive, the end of the lead wire 50 is connected to the conductor 51a. The conductor 51a and the pressing plate 47d are insulated from each other. Since the configuration and operation of the other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  [実施の形態の第5例]
 図14~15は、本発明の実施の形態の第5例を示している。本例の場合には、各水晶圧電素子48b、48bをそれぞれ、一対の水晶圧電素子片60、60同士の間に電極61を挟持する事により構成している。そして、この様な各水晶圧電素子48b、48bを複数組、一対の押圧板47b、47d同士の間で挟持している。又、前記各水晶圧電素子片60、60の軸方向両端面のうちで前記電極61と反対側の面は、それぞれが接地電極となる前記両押圧板47b、47dに導通させ、同じく他方の端面は、前記電極61を介してリード線50の一端に接続している。その他の部分の構成及び作用は、前述した実施の形態の第1例の場合と同様であるから、重複する図示並びに説明は省略する。
[Fifth Example of Embodiment]
14 to 15 show a fifth example of the embodiment of the present invention. In the case of this example, each crystal piezoelectric element 48b, 48b is constituted by sandwiching an electrode 61 between a pair of crystal piezoelectric element pieces 60, 60, respectively. A plurality of such crystal piezoelectric elements 48b and 48b are sandwiched between a pair of pressing plates 47b and 47d. Of the both end faces in the axial direction of the crystal piezoelectric element pieces 60, 60, the face opposite to the electrode 61 is electrically connected to the pressing plates 47b, 47d, each serving as a ground electrode, and the other end face. Is connected to one end of the lead wire 50 through the electrode 61. Since the configuration and operation of the other parts are the same as in the case of the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.
  [実施の形態の第6例]
 図16~19は、本発明の実施の形態の第6例を示している。本例の場合には、一対の押圧板47e、47fのうちの一方の押圧板47eを、中心部にねじ孔62を形成したナットプレートとしている。又、同じく他方の押圧板47fを、中心部に円形の通孔63を形成したものとしている。そして、これら両押圧板47e、47f同士を、円筒状の結合ねじ64により結合している。この結合ねじ64は、外周面の軸方向一端部に外向フランジ状の鍔部65を、同じく他端寄り部分に雄ねじ部66を、それぞれ設けて成る。又、前記一方の押圧板47eと各水晶圧電素子48、48との間に、これら各水晶圧電素子48、48の設置側に導体51(図7(A)、(B)参照)を添着した絶縁板49を配置している。更に、これら各水晶圧電素子48、48を保持する為の保持環58aの内周縁部に、この絶縁板49の内周縁と係合する、円筒状の係合突条67を形成している。
[Sixth Example of Embodiment]
16 to 19 show a sixth example of the embodiment of the present invention. In the case of this example, one of the pair of pressing plates 47e and 47f is a nut plate having a screw hole 62 formed at the center. Similarly, the other pressing plate 47f is formed with a circular through hole 63 in the center. The pressing plates 47e and 47f are coupled to each other by a cylindrical coupling screw 64. The coupling screw 64 is provided with an outward flange-like flange 65 at one end in the axial direction of the outer peripheral surface and a male thread 66 at the other end. Further, a conductor 51 (see FIGS. 7A and 7B) is attached between the one pressing plate 47e and each of the crystal piezoelectric elements 48 and 48 on the side where the crystal piezoelectric elements 48 and 48 are installed. An insulating plate 49 is arranged. Further, a cylindrical engaging ridge 67 that engages with the inner peripheral edge of the insulating plate 49 is formed on the inner peripheral edge of the holding ring 58a for holding the crystal piezoelectric elements 48, 48.
 本例の構造を組み立てる場合には、前記両押圧板47e、47f同士の間に、前記各水晶圧電素子48、48を保持した前記保持環58a、及び、前記絶縁板49を挟持した状態で、前記結合ねじ64を前記他方の押圧板47fの通孔63に、軸方向他端側から挿通する。更に、この結合ねじ64の雄ねじ部66と前記一方の押圧板47eのねじ孔62とを螺合させると共に、前記鍔部65を、前記他方の押圧板47fの軸方向両側面のうちで前記一方の押圧板47eと反対側の側面の内周縁部に係合させる。そして、前記結合ねじ64を所定のトルクで締め付けて、前記両押圧板47e、47fを不離に結合すると共に、前記各水晶圧電素子48、48に、適切な予圧を付与する。尚、本例の場合には、前記他方の押圧板47fの軸方向両側面のうちで前記一方の押圧板47eと反対側の側面の内径寄り部分に形成した環状凹部68に前記鍔部65を収納して、この鍔部65が前記他方の押圧板47fの軸方向側面から突出しない様にしている。 When assembling the structure of this example, the holding ring 58a holding the quartz crystal elements 48 and 48 and the insulating plate 49 are sandwiched between the pressing plates 47e and 47f. The coupling screw 64 is inserted into the through hole 63 of the other pressing plate 47f from the other end side in the axial direction. Further, the male screw portion 66 of the coupling screw 64 and the screw hole 62 of the one pressing plate 47e are screwed together, and the flange portion 65 is connected to the one of the two axial side surfaces of the other pressing plate 47f. Is engaged with the inner peripheral edge of the side surface opposite to the pressing plate 47e. Then, the connecting screw 64 is tightened with a predetermined torque to connect the pressing plates 47e and 47f without separation, and an appropriate preload is applied to the crystal piezoelectric elements 48 and 48, respectively. In the case of this example, the flange portion 65 is provided in an annular recess 68 formed in a portion closer to the inner diameter of the side surface on the opposite side of the one pressing plate 47e among both axial side surfaces of the other pressing plate 47f. It is stored so that the flange 65 does not protrude from the axial side surface of the other pressing plate 47f.
 この様な本例の場合には、前記結合ねじ64の締め付けに伴って前記各水晶圧電素子48、48を、均等に押圧できる。この結果、得られる軸力センサ8cの性能を良好にできるだけでなく、組立作業時に、一部の水晶圧電素子48に過大な圧縮応力が加わって、当該水晶圧電素子48が損傷する事を防止できる。その他、軸力センサ8cとしての基本的な構造及び作用は、前述の図8に示した実施の形態の第2例と同様である。 In the case of this example, the quartz crystal piezoelectric elements 48 can be evenly pressed as the coupling screw 64 is tightened. As a result, not only can the performance of the obtained axial force sensor 8c be improved, but also it is possible to prevent damage to the quartz crystal element 48 due to excessive compressive stress being applied to some of the quartz crystal elements 48 during assembly work. . In addition, the basic structure and operation of the axial force sensor 8c are the same as those of the second example of the embodiment shown in FIG.
  [実施の形態の第7例]
 図20~23は、本発明の実施の形態の第7例を示している。本例の場合には、一対の押圧板47e、47fの互いに対向する側面同士の間に絶縁板49を設けている。この絶縁板49は、軸方向両側面に導体51(図7(A)、(B)参照)を、それぞれ全周に亙って添着して、請求の範囲に記載した通電板としている。又、前記絶縁板49の軸方向両側面と前記両押圧板47e、47fの側面との間部分に、これら両間部分毎にそれぞれ複数個ずつの前記各水晶圧電素子48、48を設けている。そして、これら各水晶圧電素子48、48の軸方向両端面のうちの一方の端面を、前記絶縁板49の軸方向側面の導体51に導通させ、同じく他方の端面を、前記両押圧板47e、47fのうちの何れかの押圧板に導通させている。更に、これら両押圧板47e、47fと前記両導体51とに、それぞれリード線50、50の端部を接続している。
 この様な本例の構造によれば、前記各水晶圧電素子48、48の数を増やせる分だけ、軸力センサ8dの出力を大きくできる。その他の部分の構成及び作用は、上述した実施の形態の第6例と同様である。
[Seventh example of embodiment]
20 to 23 show a seventh example of the embodiment of the invention. In the case of this example, the insulating plate 49 is provided between the mutually opposing side surfaces of the pair of pressing plates 47e and 47f. The insulating plate 49 has a conductor 51 (see FIGS. 7A and 7B) attached to both sides in the axial direction over the entire circumference, thereby forming a current-carrying plate described in the claims. In addition, a plurality of the quartz crystal piezoelectric elements 48 and 48 are provided between the both side surfaces in the axial direction of the insulating plate 49 and the side surfaces of the pressing plates 47e and 47f, respectively. . Then, one end face of both end faces in the axial direction of each of the quartz crystal piezoelectric elements 48, 48 is conducted to the conductor 51 on the side face in the axial direction of the insulating plate 49, and the other end face is also connected to the both pressing plates 47e, It is made to conduct | electrically_connect to one of the press plates of 47f. Further, the end portions of the lead wires 50 and 50 are connected to the both pressing plates 47e and 47f and the both conductors 51, respectively.
According to such a structure of this example, the output of the axial force sensor 8d can be increased by an amount corresponding to the increase in the number of the quartz piezoelectric elements 48, 48. The structure and operation of the other parts are the same as in the sixth example of the embodiment described above.
 本発明の電動式ディスクブレーキを実施する場合に、各水晶圧電素子の角部に面取りを施す事が好ましい。この理由は、前記各圧電素子の角部に、割れや欠け等の損傷が発生する事を防止する為である。即ち、尖った角部は、組み立て以前に他の物品と衝突する事で欠け易いだけでなく、使用時に過大な応力が発生する可能性もある。この応力が発生するメカニズムは、次の通りである。 When carrying out the electric disk brake of the present invention, it is preferable to chamfer the corners of each crystal piezoelectric element. The reason for this is to prevent the occurrence of damage such as cracks or chips at the corners of the piezoelectric elements. That is, the sharp corners are not only easily chipped by colliding with other articles before assembly, but also may cause excessive stress during use. The mechanism for generating this stress is as follows.
 軸力センサの組み立て時や、組み立て後の軸力センサをケースユニット内に組み付ける際に発生するミスアライメント等により、前記軸力センサを構成する一対の押圧板の互いに対向する面同士が多少非平行になる可能性がある。そして、これら両面同士が互いに非平行になった状態のまま、制動時に加わるスラスト荷重に基づいて、これら両面が前記各水晶圧電素子を強く押圧すると、これら各水晶圧電素子に偏荷重が加わる。そして、この偏荷重に基づいて、これら各水晶圧電素子の角部に過大な応力が発生し、この応力により前記角部に、割れや欠け等の損傷が発生し易くなる。角部が損傷した水晶圧電素子は、加わるスラスト荷重と発生する電荷の量との関係が、僅かとは言え、所期の関係(設計値)とはずれ、その分だけ、前記スラスト荷重の測定精度が悪化する可能性がある。更に著しい場合には、前記各水晶圧電素子全体が割れて、前記スラスト荷重の測定自体不能になる可能性もある。 Due to misalignment or the like that occurs when the axial force sensor is assembled or when the assembled axial force sensor is assembled in the case unit, the mutually opposing surfaces of the pair of pressing plates constituting the axial force sensor are somewhat non-parallel. There is a possibility. And when these both surfaces press the said each crystal piezoelectric element strongly based on the thrust load added at the time of braking in the state where these both surfaces became mutually non-parallel, an eccentric load will be added to these each crystal piezoelectric element. Based on this uneven load, excessive stress is generated at the corners of each of the quartz crystal piezoelectric elements, and the stress tends to cause damage such as cracks and chips to the corners. Quartz piezoelectric elements with damaged corners have a slightly different relationship between the applied thrust load and the amount of charge generated, but they are not the desired relationship (design value). Can get worse. Further, in a remarkable case, there is a possibility that the whole quartz piezoelectric element is cracked and the measurement of the thrust load itself becomes impossible.
 そこで、上述の様な原因で、前記スラスト荷重の測定精度が悪化したり、測定不能となる事態が発生するのを防止すべく、前記各水晶圧電素子の角部に、割れや欠け等の損傷が発生しない様にする為に、図24の(A)~(D)に示す様に、水晶圧電素子48c~48fの角部に面取り69a~69dを施す事が好ましい。図24の(A)~(D)に示した4種類の水晶圧電素子48c~48fのうち、(A)に示した水晶圧電素子48cは、全体が円盤状で、外周面と軸方向両端面との連続部に、断面形状が四分の一円弧状の面取り69a、69aを施したものである。又、(B)に示した水晶圧電素子48dは、全体が円盤状で、外周面と軸方向両端面との連続部に、部分円すい面状(テーパ面状)の面取り69b、69bを施したものである。又、(C)に示した水晶圧電素子48eは、全体が四角板状で、外周面と軸方向両端面との連続部に、断面形状が四分の一円弧状の面取り69c、69cを施したものである。更に、(D)に示した水晶圧電素子48fは、全体が四角板状で、外周面と軸方向両端面との連続部に、部分円すい面状の面取り69d、69dを施したものである。 Therefore, in order to prevent a situation in which the measurement accuracy of the thrust load is deteriorated or cannot be measured due to the above-described causes, damage such as a crack or a chip is caused in a corner portion of each crystal piezoelectric element. In order to prevent the occurrence of chamfering, it is preferable to chamfer 69a to 69d at the corners of the quartz crystal piezoelectric elements 48c to 48f as shown in FIGS. Of the four types of crystal piezoelectric elements 48c to 48f shown in FIGS. 24A to 24D, the crystal piezoelectric element 48c shown in FIG. 24A has a disc shape as a whole, and has an outer peripheral surface and both end surfaces in the axial direction. And chamfers 69a and 69a having a quarter arc shape in cross section. Further, the crystal piezoelectric element 48d shown in (B) has a disc shape as a whole, and is formed by chamfering 69b, 69b having a partially conical surface shape (taper surface shape) on a continuous portion between the outer peripheral surface and both end surfaces in the axial direction. Is. Further, the crystal piezoelectric element 48e shown in (C) has a square plate shape as a whole, and chamfers 69c and 69c each having a quarter-arc-shaped cross section are formed on a continuous portion between the outer peripheral surface and both end surfaces in the axial direction. It is a thing. Furthermore, the quartz crystal piezoelectric element 48f shown in FIG. 4D has a rectangular plate shape as a whole, and is formed by chamfering 69d and 69d having a partially conical surface at the continuous portion between the outer peripheral surface and both end surfaces in the axial direction.
 図24の(A)~(D)に示した4種類の水晶圧電素子48c~48fは、何れの形状のものでも、角部に割れや欠け等の損傷を発生しにくくできる。即ち、角部が尖っていない為、組み立て以前にこの角部が他の物品と衝突しても、この角部が欠けにくくなる。又、前述した様なミスアライメントにより、前記水晶圧電素子48c~48fに偏荷重が加わった場合でも、この水晶圧電素子48c~48fの角部に過大な応力が発生しにくくなって、偏荷重に基づく損傷の発生も防止できる。この結果、制動時にピストンに加わるスラスト荷重の測定精度が悪化したり、測定不能となる事態が発生するのを防止できる。 The four types of quartz crystal piezoelectric elements 48c to 48f shown in (A) to (D) of FIG. 24 can hardly cause damage such as cracks and chips at the corners, regardless of the shape. That is, since the corner portion is not sharp, even if this corner portion collides with another article before assembly, the corner portion is not easily chipped. In addition, even when an eccentric load is applied to the crystal piezoelectric elements 48c to 48f due to the misalignment as described above, it is difficult for excessive stress to be generated at the corners of the crystal piezoelectric elements 48c to 48f. It is also possible to prevent the occurrence of damage based on it. As a result, it is possible to prevent a situation in which the measurement accuracy of the thrust load applied to the piston during braking is deteriorated or the measurement becomes impossible.
 尚、上記4種類の水晶圧電素子48c~48fに関しても、その使用状態に応じて、所望の部分に電極を添着する。例えば、図24の(A)~(D)の上段及び図25~26の(A)に示す様に、軸方向片面の中央寄り部分に電極を添着する事ができる。或いは、図25~26の(B)に示す様に、外周面の軸方向中間部に電極を、全周に亙って添着する事もできる。更には、図25~26の(C)に示す様に、軸方向片面から外周面に掛けての部分に電極を添着する事もできる。 It should be noted that the four types of quartz piezoelectric elements 48c to 48f are also attached to desired portions in accordance with their usage conditions. For example, as shown in the upper part of FIGS. 24A to 24D and FIGS. 25A to 26A, electrodes can be attached to the central portion of one surface in the axial direction. Alternatively, as shown in (B) of FIGS. 25 to 26, an electrode can be attached to the entire middle of the outer peripheral surface in the axial direction. Furthermore, as shown in (C) of FIGS. 25 to 26, an electrode can be attached to a portion extending from one axial surface to the outer peripheral surface.
 更に、前記偏荷重に基づく前記水晶圧電素子48c~48fの角部の損傷を、より効果的に防止する為に、この水晶圧電素子48c~48fを挟持する押圧板がスラスト荷重を受ける範囲を、前記各面取り69a~69dを設けた位置との関係で規制する事が好ましい。即ち、前記各水晶圧電素子48c~48fの軸方向両端面のうちで、前記面取りの内側に存在する部分(中央の平坦面部分)全体が、前記各水晶圧電素子48c~48fを挟持する一対の押圧板47e、47f(図16、18~20、22、23参照)がスラスト荷重を受ける範囲の外周縁よりも、軸力センサ8c、8dの径方向に関して内側に存在する様に、各部の寸法を規制する。 Further, in order to more effectively prevent damage to the corners of the crystal piezoelectric elements 48c to 48f due to the eccentric load, a range in which the pressing plate sandwiching the crystal piezoelectric elements 48c to 48f receives a thrust load is It is preferable to regulate in relation to the positions where the chamfers 69a to 69d are provided. That is, of the two axial end surfaces of the crystal piezoelectric elements 48c to 48f, the entire portion (the central flat surface portion) existing inside the chamfer sandwiches the crystal piezoelectric elements 48c to 48f. The dimensions of each part so that the pressing plates 47e and 47f (see FIGS. 16, 18 to 20, 22, and 23) are present inside the radial direction of the axial force sensors 8c and 8d from the outer peripheral edge in the range where the thrust load is received. To regulate.
 具体的には、前記各水晶圧電素子48c~48fを、前述の図16~23と同様の構造で、一対の押圧板47e、47f同士の間に挟持する。これら両押圧板47e、47fの軸方向両側面のうち、前記各水晶圧電素子48c~48fを挟持する面とは反対面である外側面に、それぞれ、高さがδ(図18参照)である、環状凸部70、70を形成する。そして、これら両環状凸部70、70の外径dを、前記水晶圧電素子48c~48f(図18参照)の外径Dよりも十分に小さくする(これら各水晶圧電素子48c~48fの外接円の直径から、各面取り69a~69dの後方向に関する幅寸法の2倍以上を減じた値とする)。要するに、前記各水晶圧電素子48c~48fの軸方向両端面のうちの中央の平坦面部分を、総て、直径がdの円の内側に存在させる。この構成により、前記各水晶圧電素子48c~48fを挟持する押圧板がスラスト荷重を受ける範囲を、前記面取り69a、69b、69c、69dよりも中央寄り部分のみとして、この面取り69a、69b、69c、69d部分に発生する応力を、より小さく抑える事ができる。 Specifically, each of the piezoelectric piezoelectric elements 48c to 48f is sandwiched between a pair of pressing plates 47e and 47f with the same structure as that shown in FIGS. Of the both side surfaces in the axial direction of both the pressing plates 47e and 47f, the height is δ (see FIG. 18) on the outer surface opposite to the surface sandwiching the quartz crystal elements 48c to 48f. The annular convex portions 70 and 70 are formed. Then, the outer diameter d of both the annular convex portions 70, 70 is made sufficiently smaller than the outer diameter D of the quartz crystal piezoelectric elements 48c to 48f (see FIG. 18) (the circumscribed circle of each of the quartz piezoelectric elements 48c to 48f). The value obtained by subtracting at least twice the width dimension of each chamfer 69a to 69d in the rear direction). In short, the central flat surface portion of both end surfaces in the axial direction of each of the quartz crystal piezoelectric elements 48c to 48f is present inside the circle having a diameter d. With this configuration, the chamfers 69a, 69b, 69c, and the chamfers 69a, 69b, 69c, and the chamfers 69a, 69b, 69c, and 69d have a range where the pressing plates sandwiching the crystal piezoelectric elements 48c to 48f receive a thrust load. The stress generated in the 69d portion can be further reduced.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2009年9月10日出願の日本特許出願(特願2009-208818)、2010年7月26日出願の日本特許出願(特願2010-166716)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on September 10, 2009 (Japanese Patent Application No. 2009-208818) and a Japanese patent application filed on July 26, 2010 (Japanese Patent Application No. 2010-166716). Incorporated herein by reference.
  1、1a 電動モータ
  2、2a 増力機構
  3  ピストン
  4  キャリパ爪
  5、5a アウタパッド
  6、6a インナパッド
  7、7a ロータ
  8、8a、8b、8c、8d 軸力センサ
  9  保持体
 10  保持凹部
 11  水晶圧電素子
 12  蓋板
 13  電荷増幅器
 14  キャリパ
 15  送りねじ機構
 16  ボール・ランプ機構
 17  駆動側ロータ
 18  ねじ孔
 19  駆動スピンドル
 20  減速機
 21  減速大歯車
 22  鍔部
 23  スラスト転がり軸受
 24  弾性部材
 25  ケースユニット
 26  インナ側ケース
 27  アウタ側ケース
 28  通孔
 29  底板部
 30  固定側周壁部
 31  コネクタ
 32  取り出し孔
 33  係合孔
 34  通孔
 35  底板部
 36  変位側周壁部
 37  係合片
 38  係止片
 39  係止凹部
 40  軸力測定ユニット
 41  シリンダ空間
 42  凹溝
 43  段差面
 44  接続孔
 45  ハーネス
 46  プラグ
 47a、47b、47c、47d、47e、47f 押圧板
 48、48a、48b、48c、48d、48e、48f 水晶圧電素子
 49  絶縁板
 50  リード線
 51、51a 導体
 53  凹部
 54  ねじ
 55  通孔
 56  ねじ孔
 57  円筒部
 58、58a 保持環
 59  保持孔
 60  水晶圧電素子片
 61  電極
 62  ねじ孔
 63  通孔
 64  結合ねじ
 65  鍔部
 66  雄ねじ部
 67  係合突条
 68  環状凹部
 69a、69b、69c、69d 面取り
 70  環状凸部
DESCRIPTION OF SYMBOLS 1, 1a Electric motor 2, 2a Booster mechanism 3 Piston 4 Caliper claw 5, 5a Outer pad 6, 6a Inner pad 7, 7a Rotor 8, 8a, 8b, 8c, 8d Axial force sensor 9 Holding body 10 Holding recessed part 11 Quartz piezoelectric element DESCRIPTION OF SYMBOLS 12 Cover plate 13 Charge amplifier 14 Caliper 15 Feed screw mechanism 16 Ball | bump / ramp mechanism 17 Drive side rotor 18 Screw hole 19 Drive spindle 20 Reducer 21 Deceleration large gear 22 Claw 23 Thrust rolling bearing 24 Elastic member 25 Case unit 26 Inner side Case 27 Outer side case 28 Through hole 29 Bottom plate part 30 Fixed side peripheral wall part 31 Connector 32 Extraction hole 33 Engagement hole 34 Through hole 35 Bottom plate part 36 Displacement side peripheral wall part 37 Engagement piece 38 Locking piece 39 Locking recess 40 Axis Force measuring unit 41 Dummy space 42 Concave groove 43 Stepped surface 44 Connection hole 45 Harness 46 Plug 47a, 47b, 47c, 47d, 47e, 47f Pressure plate 48, 48a, 48b, 48c, 48d, 48e, 48f Quartz piezoelectric element 49 Insulating plate 50 Lead wire 51, 51a Conductor 53 Concave part 54 Screw 55 Through hole 56 Screw hole 57 Cylindrical part 58, 58a Holding ring 59 Holding hole 60 Crystal piezoelectric element piece 61 Electrode 62 Screw hole 63 Through hole 64 Coupling screw 65 Hook part 66 Male screw part 67 Engagement Ridge 68 annular recess 69a, 69b, 69c, 69d chamfer 70 annular projection

Claims (11)

  1.  車輪と共に回転するロータと、このロータに隣接する状態で車体に支持されるトルク受部材と、このロータを軸方向両側から挟む状態で、軸方向の変位を可能にこのトルク受部材に支持された、アウタ側とインナ側との一対のパッドと、これら両パッドを前記ロータの両側面に向け押圧する為のアクチュエータとを備え、このアクチュエータは、電動モータと、この電動モータの回転駆動力を軸方向の推力に変換して前記インナ側パッドに伝達する増力機構と、この増力機構からこのインナ側パッドに加えられる押し付け力を測定する軸力センサとを備えたものである電動式ディスクブレーキに於いて、この軸力センサは、全体を円環状に構成されたもので、前記電動モータにより回転駆動されて前記増力機構の入力部となる回転軸の周囲に配置されており、且つ、前記軸力センサは、それぞれが円環状に構成されて互いに平行に配置された一対の押圧板と、これら両押圧板同士の間に挟持された複数個の水晶圧電素子と、これら両押圧板同士の間でこれら各水晶圧電素子が押圧される事に伴って発生する電荷を取り出す為のリード線とを備えたものであって、このリード線を、前記両押圧板の外径側に取り出している事を特徴とする電動式ディスクブレーキ。 A rotor that rotates together with the wheels, a torque receiving member that is supported by the vehicle body in a state adjacent to the rotor, and a torque receiving member that is capable of axial displacement while sandwiching the rotor from both sides in the axial direction. And a pair of pads on the outer side and the inner side, and an actuator for pressing both the pads toward both side surfaces of the rotor. The actuator includes an electric motor and a rotational driving force of the electric motor. In an electric disc brake comprising a force-increasing mechanism that converts the thrust into a direction and transmits it to the inner pad, and an axial force sensor that measures the pressing force applied from the force-increasing mechanism to the inner pad. The axial force sensor is generally configured in an annular shape, and is rotationally driven by the electric motor and around the rotating shaft that serves as an input portion of the force-increasing mechanism. The axial force sensor includes a pair of pressing plates each formed in an annular shape and arranged in parallel to each other, and a plurality of quartz piezoelectric elements sandwiched between the pressing plates. And a lead wire for taking out electric charges generated when these quartz piezoelectric elements are pressed between the two pressing plates, and the lead wires are connected to the pressing plates. Electric disc brake characterized by being taken out to the outer diameter side of the motor.
  2.  前記回転軸の中間部外周面に外向フランジ状の鍔部が固設されており、この鍔部のインナ側面と前記アクチュエータを収納した収納空間のインナ側奥端面との間に、この鍔部の側から順番に、スラスト転がり軸受と前記軸力センサとを挟持している、請求項1に記載した電動式ディスクブレーキ。 An outward flange-like flange is fixed on the outer peripheral surface of the intermediate portion of the rotating shaft, and between the inner side surface of the flange and the inner side rear end surface of the storage space storing the actuator, The electric disc brake according to claim 1, wherein a thrust rolling bearing and the axial force sensor are sandwiched in order from the side.
  3.  前記スラスト転がり軸受と鍔部とを、このスラスト転がり軸受よりもインナ側を含む部分に設けられたインナ側ケースと、前記鍔部よりもアウタ側を含む部分に設けられてこのインナ側ケースに対して非分離に組み合わされたアウタ側ケースとを備えたケースユニット内に収納し、このアウタ側ケースのインナ側面と前記鍔部のアウタ側面との間に設けた弾性部材により前記スラスト転がり軸受を、前記軸力センサを設置した前記インナ側ケースの側に弾性的に押圧している、請求項2に記載した電動式ディスクブレーキ。 The thrust rolling bearing and the flange portion are provided in an inner side case provided in a portion including the inner side of the thrust rolling bearing, and in a portion including the outer side from the flange portion, with respect to the inner side case. The thrust rolling bearing is housed in a case unit including an outer side case combined in a non-separable manner, and the thrust rolling bearing is provided by an elastic member provided between the inner side surface of the outer side case and the outer side surface of the flange. The electric disc brake according to claim 2, wherein the electric disc brake is elastically pressed toward the inner case side on which the axial force sensor is installed.
  4.  前記両押圧板は金属製であり、前記各水晶圧電素子の軸方向両端面のうちの一方の端面は、接地電極となる一方の押圧板に導通させており、同じく他方の端面は、前記押し付け力を支承可能な絶縁板を介して他方の押圧板に突き当てており、前記各水晶圧電素子の他方の端面同士を、これら絶縁板と各水晶圧電素子の他方の端面との間に配置した導体により導通させており、前記リード線の一端をこの導体に接続している、請求項1~3のうちの何れか1項に記載した電動式ディスクブレーキ。 Both the pressing plates are made of metal, and one end surface of both end surfaces in the axial direction of each crystal piezoelectric element is electrically connected to one pressing plate serving as a ground electrode, and the other end surface is also pressed against It is abutted against the other pressing plate via an insulating plate capable of supporting force, and the other end surfaces of the quartz piezoelectric elements are arranged between the insulating plate and the other end surface of the quartz piezoelectric elements. The electric disc brake according to any one of claims 1 to 3, wherein the electric disc brake is electrically connected by a conductor and one end of the lead wire is connected to the conductor.
  5.  前記両押圧板は金属製であり、前記各水晶圧電素子はそれぞれが、一対の水晶圧電素子片同士の間に電極を挟持する事により構成されており、これら各水晶圧電素子を複数組、前記両押圧板同士の間に挟持しており、これら各水晶圧電素子片の軸方向両端面のうちで前記電極と反対側の面は、それぞれが接地電極となる前記両押圧板に導通させており、同じく他方の端面は、前記電極を介して前記リード線の一端に接続している、請求項1~3のうちの何れか1項に記載した電動式ディスクブレーキ。 The both pressing plates are made of metal, and each of the quartz piezoelectric elements is configured by sandwiching an electrode between a pair of quartz piezoelectric element pieces. It is sandwiched between the two pressing plates, and the surface on the opposite side of the electrodes in the axial direction of each of the quartz piezoelectric element pieces is electrically connected to the pressing plates, each serving as a ground electrode. The electric disc brake according to any one of claims 1 to 3, wherein the other end face is connected to one end of the lead wire via the electrode.
  6.  前記両押圧板は金属製であり、これら両押圧板の互いに対向する側面同士の間に、通電板が設けられており、この通電板の軸方向両側面と前記両押圧板の側面との間部分に、これら両間部分毎にそれぞれ複数個ずつの前記各水晶圧電素子が設けられており、これら各水晶圧電素子の軸方向両端面のうちの一方の端面は、前記通電板に導通させており、同じく他方の端面は、前記両押圧板のうちの何れかの押圧板に導通させており、これら両押圧板と前記通電板とに、それぞれリード線の端部を接続している、請求項1~3のうちの何れか1項に記載した電動式ディスクブレーキ。 The both pressing plates are made of metal, and energization plates are provided between the mutually opposing side surfaces of the both pressing plates, and between the axial side surfaces of the energizing plates and the side surfaces of the both pressing plates. A plurality of each of the crystal piezoelectric elements is provided in each of the portions between the two parts, and one end face of both end faces in the axial direction of each crystal piezoelectric element is electrically connected to the energizing plate. The other end face is electrically connected to any one of the pressing plates, and the end portions of the lead wires are connected to the pressing plates and the energizing plate, respectively. Item 4. The electric disc brake according to any one of Items 1 to 3.
  7.  前記両押圧板のうちの少なくとも一方の押圧板のうちで、相手押圧板に対向する面に複数の保持凹部を設け、これら各保持凹部に前記各水晶圧電素子の軸方向端部を内嵌した、請求項1~6のうちの何れか1項に記載した電動式ディスクブレーキ。 A plurality of holding recesses are provided on a surface of at least one of the pressing plates facing the other pressing plate, and axial end portions of the crystal piezoelectric elements are fitted in the holding recesses. The electric disc brake according to any one of claims 1 to 6.
  8.  前記両押圧板の互いに対向する面が平坦面であり、これら両押圧板同士の間に、円周方向複数個所に保持孔を形成した円環状の保持環を配置しており、これら各保持孔に前記各水晶圧電素子の軸方向中間部を内嵌した、請求項1~6のうちの何れか1項に記載した電動式ディスクブレーキ。 The opposing surfaces of the two pressing plates are flat surfaces, and an annular holding ring in which holding holes are formed at a plurality of locations in the circumferential direction is disposed between the two pressing plates. The electric disc brake according to any one of claims 1 to 6, wherein an intermediate portion in the axial direction of each of the quartz crystal piezoelectric elements is fitted inside.
  9.  前記両押圧板のうちの一方の押圧板が、中心部にねじ孔を形成したナットプレートであり、同じく他方の押圧板が、中心部に円形の通孔を形成したものであり、外周面の軸方向一端部に外向フランジ状の鍔部を、同じく他端寄り部分に雄ねじ部を、それぞれ設けた円筒状の結合ねじを前記通孔に、軸方向他端側から挿通し、更にこの雄ねじ部と前記ねじ孔とを螺合させると共に、前記鍔部を、前記他方の押圧板の軸方向両側面のうちで前記一方の押圧板と反対側の側面の内周縁部に係合させた、請求項1~8のうちの何れか1項に記載した電動式ディスクブレーキ。 One of the two pressing plates is a nut plate having a screw hole formed in the center, and the other pressing plate is a circular plate having a circular hole formed in the center. Insert an outward flange-shaped flange at one end in the axial direction, a male screw portion at the other end portion, and a cylindrical coupling screw provided respectively from the other end side in the axial direction. And the screw hole are engaged with each other, and the flange portion is engaged with an inner peripheral edge portion of a side surface on the opposite side to the one pressing plate among both axial side surfaces of the other pressing plate. Item 9. The electric disc brake according to any one of Items 1 to 8.
  10.  各水晶圧電素子の角部に面取りが施されている、請求項1~9のうちの何れか1項に記載した電動式ディスクブレーキ。 The electric disc brake according to any one of claims 1 to 9, wherein a corner portion of each crystal piezoelectric element is chamfered.
  11.  前記各水晶圧電素子の軸方向両端面のうちで、これら各水晶圧電素子の径方向に関して前記面取りの内側に存在する部分全体が、これら各水晶圧電素子を挟持する前記両押圧板がスラスト荷重を受ける範囲の外周縁よりも、前記軸力センサの径方向に関して内側に存在する、請求項10に記載した電動式ディスクブレーキ。 Of the both axial end surfaces of each quartz piezoelectric element, the entire portion existing inside the chamfer with respect to the radial direction of each quartz piezoelectric element is such that the both pressing plates sandwiching each quartz piezoelectric element exert a thrust load. The electric disc brake according to claim 10, wherein the electric disc brake is located on an inner side in a radial direction of the axial force sensor than an outer peripheral edge of a receiving range.
PCT/JP2010/065563 2009-09-10 2010-09-09 Electric disc brake WO2011030839A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009208818 2009-09-10
JP2009-208818 2009-09-10
JP2010-166716 2010-07-26
JP2010166716A JP2011080586A (en) 2009-09-10 2010-07-26 Electric disc brake

Publications (1)

Publication Number Publication Date
WO2011030839A1 true WO2011030839A1 (en) 2011-03-17

Family

ID=43732508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065563 WO2011030839A1 (en) 2009-09-10 2010-09-09 Electric disc brake

Country Status (2)

Country Link
JP (1) JP2011080586A (en)
WO (1) WO2011030839A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431628A1 (en) * 2009-05-13 2012-03-21 Akebono Brake Industry Co., Ltd. Electrically operated disc brake device
WO2013054695A1 (en) 2011-10-11 2013-04-18 Ntn株式会社 Magnetic load sensor for linear actuator and linear actuator
JP2013257000A (en) * 2012-06-13 2013-12-26 Ntn Corp Magnetic load sensor and electrically-operated brake system
WO2014010582A1 (en) 2012-07-11 2014-01-16 Ntn株式会社 Magnetic load sensor and electric brake device
WO2015089680A1 (en) * 2013-12-20 2015-06-25 Kistler Holding Ag Force sensor for manually operated or pneumatic presses
CN105136346A (en) * 2015-07-31 2015-12-09 北京博源天衡科技有限公司 Novel load sensor
US9482587B2 (en) 2011-08-02 2016-11-01 Ntn Corporation Magnetic load sensor unit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866907B2 (en) * 2011-09-16 2016-02-24 セイコーエプソン株式会社 Force sensor, force detection device, robot hand, robot, and method of manufacturing force sensor
KR101294173B1 (en) 2011-10-13 2013-08-08 현대자동차주식회사 Brake pad for vehicle and operating method thereof
JP2013160669A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Sensor device, sensor module, force detector, and robot
JP5890200B2 (en) * 2012-02-24 2016-03-22 リンテック株式会社 Driving force transmission device
JP2013217876A (en) * 2012-04-12 2013-10-24 Seiko Epson Corp Sensor module, stress detector and robot
JP5885249B2 (en) 2012-05-16 2016-03-15 株式会社エー・アンド・デイ Axial force sensor
JP2014196924A (en) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 Force detection device, robot, electronic component transport device, electronic component inspection device, component processing device, and moving body
KR101836628B1 (en) 2016-05-03 2018-03-08 현대자동차주식회사 Electro-mechanical brake system and control method thereof
JP6274296B2 (en) * 2016-11-28 2018-02-07 セイコーエプソン株式会社 Force detection device and robot
JP2018077248A (en) * 2018-01-10 2018-05-17 セイコーエプソン株式会社 Sensor device, sensor module, force detection device, and robot
CN111397788B (en) * 2020-04-30 2021-07-16 大连理工大学 Integrated five-dimensional force measuring method
JP2024021262A (en) * 2022-08-03 2024-02-16 株式会社アドヴィックス electric braking device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231829A (en) * 1990-05-31 1992-08-20 Kistler Instr Ag Intervening type force sensor having pallalelized disk measuring element and integrated amplifier
JP2001512233A (en) * 1997-08-01 2001-08-21 ロトーク・コントロールズ・リミテッド Thrust sensor
JP2003529725A (en) * 2000-03-25 2003-10-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electromechanical wheel brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231829A (en) * 1990-05-31 1992-08-20 Kistler Instr Ag Intervening type force sensor having pallalelized disk measuring element and integrated amplifier
JP2001512233A (en) * 1997-08-01 2001-08-21 ロトーク・コントロールズ・リミテッド Thrust sensor
JP2003529725A (en) * 2000-03-25 2003-10-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electromechanical wheel brake device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431628A4 (en) * 2009-05-13 2012-11-07 Akebono Brake Ind Electrically operated disc brake device
EP2431628A1 (en) * 2009-05-13 2012-03-21 Akebono Brake Industry Co., Ltd. Electrically operated disc brake device
US9482587B2 (en) 2011-08-02 2016-11-01 Ntn Corporation Magnetic load sensor unit
US9429487B2 (en) 2011-10-11 2016-08-30 Ntn Corporation Magnetic load sensor unit for use in a linear motion actuator, and linear motion actuator
WO2013054695A1 (en) 2011-10-11 2013-04-18 Ntn株式会社 Magnetic load sensor for linear actuator and linear actuator
JP2013257000A (en) * 2012-06-13 2013-12-26 Ntn Corp Magnetic load sensor and electrically-operated brake system
WO2014010582A1 (en) 2012-07-11 2014-01-16 Ntn株式会社 Magnetic load sensor and electric brake device
US9528889B2 (en) 2012-07-11 2016-12-27 Ntn Corporation Magnetic load sensor unit and electric brake system
CH709049A1 (en) * 2013-12-20 2015-06-30 Kistler Holding Ag Force sensor for hand-operated or pneumatic presses.
CN105829846A (en) * 2013-12-20 2016-08-03 基斯特勒控股公司 Force sensor for manually operated or pneumatic presses
WO2015089680A1 (en) * 2013-12-20 2015-06-25 Kistler Holding Ag Force sensor for manually operated or pneumatic presses
US9823142B2 (en) 2013-12-20 2017-11-21 Kistler Holding Ag Force sensor for manually operated or pneumatic presses
CN105136346A (en) * 2015-07-31 2015-12-09 北京博源天衡科技有限公司 Novel load sensor

Also Published As

Publication number Publication date
JP2011080586A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2011030839A1 (en) Electric disc brake
JP5159697B2 (en) Electric disc brake device
US7584678B2 (en) Power transmission method and device having load sensing thrust augmentation mechanism
US8381901B2 (en) Roller conveyor motorized roller and roller conveyor device using the same
US8727894B2 (en) Elastic rotary actuators
JP5722363B2 (en) Electromagnetic brake, electric motor and machine having shaft fall prevention function
EP1165985B1 (en) Actuator having compact gear reduction
US8418570B2 (en) Torque sensor
EP2253866B1 (en) Electrically operated linear actuator and electrically operated braking system
JP6139077B2 (en) Electric linear actuator and electric disc brake device
US8887590B2 (en) Automatic clearance compensation device for support yoke of rack-pinion type steering apparatus
JP5336823B2 (en) Worm reducer and electric power steering device
FR2991412A1 (en) BEARING BEARING DEVICE FOR STEERING COLUMN.
US20120181137A1 (en) Electric linear motion actuator and electric disc brake assembly
WO2016006545A1 (en) Joint driving device
JP2010203469A (en) Flexible coupling
CN110582652B (en) Fixed bearing, steering transmission mechanism and steering system
WO2018124059A1 (en) Load sensor and electric brake device
JP2012126338A (en) Steering device for vehicle
US10619718B2 (en) Worm reducer and method of assembling worm reducer
CN108350951B (en) Connecting mechanism of transmission parts in structure
JP2020172170A (en) Electric power steering device
JP2018105686A (en) Load sensor and dynamo-electric brake device
US20230036745A1 (en) Motor gear unit for disc brake apparatus and disc brake apparatus
JP2005237083A (en) Ultrasonic motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815434

Country of ref document: EP

Kind code of ref document: A1