WO2011029810A1 - Verfahren zur herstellung einer wässrigen bindemitteldispersion - Google Patents
Verfahren zur herstellung einer wässrigen bindemitteldispersion Download PDFInfo
- Publication number
- WO2011029810A1 WO2011029810A1 PCT/EP2010/063086 EP2010063086W WO2011029810A1 WO 2011029810 A1 WO2011029810 A1 WO 2011029810A1 EP 2010063086 W EP2010063086 W EP 2010063086W WO 2011029810 A1 WO2011029810 A1 WO 2011029810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monomer
- aqueous
- monomers
- granular
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F12/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
- C08F2/26—Emulsion polymerisation with the aid of emulsifying agents anionic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/066—Copolymers with monomers not covered by C08L33/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/068—Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
Definitions
- the present invention furthermore relates to aqueous polymer dispersions obtained by the process according to the invention, the use of these aqueous polymer emulsion dispersions as binders for granular and / or fibrous substrates, processes for the production of moldings using the aqueous dispersion of polymer dispersion according to the invention and those according to the invention Process accessible shaped body itself.
- binders which contain formaldehyde-releasing crosslinkers. But there is the danger of unwanted formaldehyde emission. To avoid formaldehyde emissions, numerous alternatives to the previously known binders have already been proposed. For example, US Pat. No. 4,076,917 discloses binders which contain carboxylic acid- or carboxylic anhydride-containing polymers and .beta.-hydroxyalkylamides as crosslinkers. A disadvantage is the relatively complicated preparation of the .beta.-hydroxyalkylamides.
- aqueous binders for the production of fiber webs, in particular glass fiber webs, known.
- the binders contain a polycarboxylic acid having at least two carboxylic acid groups and optionally also anhydride groups and a polyol.
- These binders require a phosphorus-containing reaction accelerator to achieve sufficient strengths of the glass fiber webs. It should be noted that the presence of such a reaction accelerator can only be dispensed with if a highly reactive polyol is used. As highly reactive polyols, ⁇ -hydroxyalkylamides are mentioned.
- EP-A-651088 describes corresponding binders for cellulose fiber substrates. These binders necessarily contain a phosphorus-containing reaction accelerator.
- EP-A-672920 describes formaldehyde-free binding, impregnating or coating compositions which comprise a polymer which is composed of 2 to 100% by weight of an ethylenically unsaturated acid or an acid anhydride as comonomer and contains at least one polyol.
- the polyols are substituted triazine, triazinetrione, benzene or cyclohexyl derivatives, the polyol radicals always being in the 1,3,5-position of the mentioned rings.
- DE-A-2214450 describes a copolymer which is composed of 80 to 99% by weight of ethylene and 1 to 20% by weight of maleic anhydride.
- the copolymer is used, together with a crosslinking agent, in powder form or in dispersion in an aqueous medium for surface coating.
- the crosslinking agent used is an amino-containing polyalcohol. det. However, to effect cross-linking, it must be heated up to 300 ° C.
- the binder is free of formaldehyde and is obtained by mixing a carboxylic acid group, carboxylic acid anhydride group or carboxylic acid salt group-having polymer and a crosslinking agent.
- the crosslinker is a ⁇ -hydroxyalkylamide or a polymer or copolymer thereof.
- the polymer which can be crosslinked with the ⁇ -hydroxyalkylamide is, for example, composed of unsaturated mono- or dicarboxylic acids, salts of unsaturated mono- or dicarboxylic acids or unsaturated anhydrides.
- Self-curing polymers are obtained by copolymerization of the ⁇ -hydroxyalkylamides with carboxyl-containing monomers.
- aqueous dispersion of the polymer A (aqueous polymer A dispersion) was found as a binder.
- the implementation of free-radically initiated emulsion polymerizations of ethylenically unsaturated monomers in an aqueous medium has often been described above and is therefore sufficiently known to the person skilled in the art [cf. for this emulsion polymerization in Encyclopedia of Polymer Science and Engineering, Vol. 8, pages 659 et seq. (1987); DC Blackley, in High Polymer Latices, Vol. 1, pp. 35 ff. (1966); H. Warson, The Applications of Synthetic Resin Emulsions, Chapter 5, pages 246 et seq. (1972); D.
- the radically initiated aqueous Emulsion polymerization reactions are usually carried out by dispersing the ethylenically unsaturated monomers in the form of monomer droplets in aqueous medium in the form of monomer droplets with the aid of dispersing aid, and polymerizing them by means of a free-radical polymerization initiator. From this procedure, the present inventive method differs only by the use of specific monomers A1 to A4.
- monomers A1 acrylanide and / or methacrylamide are used, with methacrylamide being particularly preferred.
- the amount of the monomers A1 in the process according to the invention is 0.1 to 5 wt .-%, preferably 0.5 to 3 wt .-% and particularly preferably 0.7 to 2.5 wt .-%, each based on the total monomer.
- Suitable monomers A2 find ethylenically unsaturated, particularly ⁇ , ⁇ - monoethylenically unsaturated C3 to C6 monocarboxylic or dicarboxylic acids used, wherein ⁇ , ⁇ -monoethylenically unsaturated C 3 and C 4 monocarboxylic and C 4 - to C6-dicarboxylic acids are preferred .
- suitable monomers A2 are acrylic acid, methacrylic acid, ethylacrylic acid, allylacetic acid, crotonic acid, vinylacetic acid, maleic acid, fumaric acid, itaconic acid, methylmaleic acid, methylenemalonic acid, dimethylacrylic acid and / or 1,2,3,6-tetrahydrophthalic acid, and the ammonium Called sodium or potassium salts of the aforementioned acids, with acrylic acid and / or methacrylic acid being particularly preferred.
- the C 4 - to C6-dicarboxylic acids according to the invention, the
- the amount of monomers A2 in the process according to the invention is from 0.1 to 15% by weight, preferably from 0.5 to 10% by weight and more preferably from 1 to 7% by weight, based in each case on the total monomer amount.
- the monomers A3 used are ethylenic, in particular ⁇ , ⁇ -monoethylenically unsaturated compounds which have at least one oxiranyl or one oxetanyl group, preference being given to those compounds which have an oxiranyl group.
- Examples of monomers A3 having at least one oxiranyl group are vinyloxirane, allyloxirane, glycidyl acrylate and / or glycidyl methacrylate and as monomers A3 having at least one oxetanyl group vinyloxetane, allyloxetane, acrylic acid-3-methyloxetan-3 ylmethyl ester and / or 2-methacrylic acid-3-methyloxetan-3-ylmethylester called.
- glycidyl acrylate and / or glycidyl methacrylate are used, with glycidyl methacrylate being particularly preferred.
- the amount of monomers A3 in the process according to the invention is 0.1 to 10 wt .-%, preferably 0.3 to 7 wt .-% and particularly preferably 0.5 to 5 wt .-%, each based on the total monomer.
- Suitable monomers A4 are, in principle, all ethylenically unsaturated compounds which differ from the monomers A1 to A3 but are readily copolymerizable with these in a straightforward manner, for example vinylaromatic monomers, such as styrene, .alpha.-methylstyrene, or the like.
- Chlorostyrene or vinyltoluenes vinyl halides, such as vinyl chloride or vinylidene chloride, esters of vinyl alcohol and monocarboxylic acids having 1 to 18 C atoms, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate, esters of preferably 3 to 6 C-atoms having ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, in particular acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, having generally from 1 to 12, preferably 1 to 8 and in particular 1 to 4 C-atoms alkanols, such as especially acrylic and methacrylic acid methyl, ethyl, n-butyl, iso-butyl, pentyl, hexyl, heptyl, octyl, nonyl - decyl and 2-ethylhexyl
- the monomers mentioned usually form the main monomers which, based on the total amount of monomers A4, account for> 80% by weight, preferably> 85% by weight and more preferably> 90% by weight, or even the total amount of the monomers form A4. As a rule, these monomers have only a moderate to low solubility in water under standard conditions [20 ° C., 1 atm (absolute)].
- Monomers A4 which have an increased water solubility under the abovementioned conditions, are those which either protonate at least one sulfonic acid group and / or their corresponding anion or at least one amino, ureido or N-heterocyclic group and / or their nitrogen on the nitrogen - contain or alkylated ammonium derivatives.
- Examples include vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid and its water-soluble salts and N-vinylpyrrolidone, 2-vinylpyridine, 4- Vinylpyridine, 2-vinylimidazole, 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 2- (N, N-diethylamino) ethyl acrylate, 2- (N, N-diethylamino) ethyl methacrylate, 2- (N-tert-butylamino) ethyl methacrylate, N- (3-N ', N'-dimethylaminopropyl) methacrylannide and 2- (1-imidazolin-2-onyl) ethyl methacrylate.
- the abovementioned water-soluble monomers A4 are used merely as modifying monomers in amounts of ⁇ 10% by weight, preferably ⁇ 5% by weight and particularly preferably ⁇ 3% by weight, based in each case on the total amount of monomers A4. However, particularly preferably no such water-soluble monomers A4 are used in the preparation of the polymer A.
- Monomers A4 which usually increase the internal strength of the films of a polymer matrix, usually have at least two non-conjugated ethylenically unsaturated double bonds.
- examples include two vinyl radicals containing monomers, two vinylidene radicals having monomers and two alkenyl radicals having monomers.
- Particularly advantageous are the diesters of dihydric alcohols with ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic acids, among which acrylic and methacrylic acid are preferred.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate and ethylene glycol dimethacrylate, 1, 2-propylene glycol dimethacrylate, 1,3-propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, triallyl cyanurate or triallyl isocyanurate.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacryl
- the abovementioned crosslinking monomers A4 are used in amounts of ⁇ 10% by weight, but preferably in amounts of ⁇ 3% by weight, in each case based on the total amount of monomers A4. However, particularly preferably no such crosslinking monomers A4 are used.
- Preferred monomers A4 are styrene, n-butyl acrylate, methyl methacrylate, tert-butyl acrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate, 2-propylheptyl acrylate and / or 2-ethylhexyl acrylate.
- methacrylamide is advantageously used as monomer A1, acrylic acid and / or methacrylic acid as monomer A2, glycidyl acrylate and / or glycidyl methacrylate as monomer A3 and styrene, n-butyl acrylate, methyl methacrylate and / or 2-ethylhexyl acrylate as monomer A4.
- the total amount of the monomers A1 to A4 can be initially introduced in the aqueous reaction medium before the initiation of the polymerization reaction.
- the metered addition of the monomers A1 to A4 can be carried out as separate individual streams, as inhomogeneous or homogeneous (part) mixtures or as a monomer emulsion.
- the monomers A1 to A4 are advantageously metered in the form of a monomer mixture, in particular in the form of an aqueous monomer emulsion.
- dispersing aids which keep both the monomer droplets and the polymer particles formed dispersed in the aqueous medium and thus ensure the stability of the aqueous polymer dispersion produced are included in the present process.
- Suitable dispersing agents are both the protective colloids commonly used to carry out free-radical aqueous emulsion polymerizations and emulsifiers.
- Suitable protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, alkali metal salts of polyacrylic acids and polymethacrylic acids, gelatin derivatives or acrylic acid, methacrylic acid, maleic anhydride, 2-acrylamido-2-methylpropanesulfonic acid and / or 4-styrenesulfonic acid-containing copolymers and their alkali metal salts but also N-vinylpyrrolidone, N- Vinylcaprolactam, N-vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, acrylates containing amine groups, methacrylates, acrylamides and / or methacrylamides containing homo- and copolymers.
- protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg-Thieme-Verlag, Stuttgart, 1961, pages 41 1 to 420.
- mixtures of protective colloids and / or emulsifiers are used.
- dispersants used are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1000. They may be anionic, cationic or nonionic in nature.
- the individual components must be compatible with each other, which can be checked in case of doubt by hand on fewer preliminary tests.
- anionic emulsifiers are compatible with each other and with nonionic emulsifiers.
- cationic emulsifiers while anionic and cationic emulsifiers are usually incompatible with each other.
- An overview of suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
- Nonionic emulsifiers are, for example, ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12) and also ethoxylated fatty alcohols (EO degree: 3 to 80, alkyl radical: Cs to C36).
- Lutensol® A grades Ci2Ci 4 fatty alcohol ethoxylates, EO grade: 3 to 8
- Luten sol® AO grades Ci 3 Ci 5 oxo alcohol ethoxylates, EO grade: 3 to 30
- Lutensol® AT marks CieCis fatty alcohol ethoxylates, EO grade: 1 1 to 80
- Lutensol® ON brands Cio-oxo alcohol ethoxylates, EO grade: 3 to 1 1
- Lutensol® TO grades C 3 -oxo alcohol ethoxylates, EO grade: 3 to 20
- Typical anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: Cs to C12), of sulfuric monoesters of ethoxylated alkanols (EO degree: 4 to 30, alkyl radical: C12 to Cis) and ethoxylated alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12), of alkylsulfonic acids (alkyl radical: C 12 to C 18) and of alkylaryl sulfonic acids (alkyl radical: C 9 to C 18).
- alkyl sulfates alkyl radical: Cs to C12
- sulfuric monoesters of ethoxylated alkanols EO degree: 4 to 30, alkyl radical: C12 to Cis
- EO degree: 3 to 50 alkyl radical: C 4 to C 12
- alkylsulfonic acids alkyl radical: C 12 to C 18
- R 1 and R 2 are H atoms or C 4 - to C 24 -alkyl and are not simultaneously H atoms, and M 1 and M 2 may be alkali metal ions and / or ammonium ions, has been found to be suitable.
- R 1 and R 2 are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or hydrogen, where R 1 and R 2 are not both simultaneously H and Atoms are.
- M 1 and M 2 are preferably sodium, potassium o- the ammonium, with sodium being particularly preferred.
- Particularly advantageous compounds (I) are those in which M 1 and M 2 are sodium, R 1 is a branched alkyl radical having 12 C atoms and R 2 is an H atom or R 1 .
- technical mixtures are used which have a proportion of 50 to 90% by weight of the monoalkylated product, for example Dowfax® 2A1 (trademark of the Dow Chemical Company).
- the compounds (I) are well known, for example from US-A 4269749, and commercially available.
- Suitable cationic emulsifiers are generally a primary, secondary, tertiary or quaternary ammonium salts containing C 6 -C 6 -alkyl, alkylaryl or heterocyclic radicals, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of Amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
- dodecylammonium acetate or the corresponding sulfate examples which may be mentioned are dodecylammonium acetate or the corresponding sulfate, the sulfates or acetates of the various 2- (N, N, N-trimethylammonium) ethyl paraffins, N-cetylpyridinium sulfate, N-laurylpyridinium sulfate and N-cetyl-N, N, N-trimethylammonium sulfate, N-dodecyl-N, N, N-trimethylammonium sulfate, N-octyl- ⁇ , ⁇ , ⁇ -trimethlyammonium sulfate, N, N-distearyl-N, N-dimethylammonium sulfate and the gemini-surfactant N, N '- (lauryldimethyl) ethylenediamine disulfate, ethoxyl
- the anionic Countergroups are as low as possible nucleophilic, such as perchlorate, sulfate, phosphate, nitrate and carboxylates, such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, and conjugated anions of organosulfonic acids, such as methyl sulfonate, trifluoromethylsulfonate and para-toluenesulfonate , furthermore tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyl) borate, tetrakis [bis (3,5-trifluoromethyl) phenyl] borate, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
- nucleophilic such as perchlorate, sulfate, phosphate,
- the emulsifiers preferably used as dispersing agents are advantageously in a total amount> 0.005 and ⁇ 10 wt .-%, preferably> 0.01 and ⁇ 5 wt .-%, in particular> 0.1 and ⁇ 3 wt .-%, each based on the total amount of monomers used.
- the total amount of the protective colloids used as dispersing aids in addition to or instead of the emulsifiers is often> 0.1 and ⁇ 10% by weight and frequently> 0.2 and ⁇ 7% by weight, in each case based on the total monomers.
- the total amount of the dispersing aid in the aqueous reaction medium before initiation of the polymerization reaction can be submitted.
- the addition of the main or the total amount of dispersing aid takes place in the form of an aqueous monomer emulsion.
- free-radical polymerization initiator can be both peroxides and azo compounds.
- redox initiator systems come into consideration.
- peroxides may in principle inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxydisulfuric, such as their mono- and di-sodium, - potassium or ammonium salts or organic peroxides, such as alkyl hydroperoxides
- inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxydisulfuric, such as their mono- and di-sodium, - potassium or ammonium salts or organic peroxides, such as alkyl hydroperoxides
- tert-butyl, p-menthyl or cumyl hydroperoxide as well as dialkyl- or diarylperoxides, such as di-tert-butyl or di-cumyl peroxide
- an azo compound substantially 2,2
- Suitable oxidizing agents for redox initiator systems are essentially the abovementioned peroxides.
- Suitable reducing agents may be sulfur compounds having a low oxidation state, such as alkali metal sulfites, for example potassium and / or sodium sulfite, alkali hydrogen sulfites, for example potassium and / or sodium hydrogen sulfite, alkali metal metabisulfites, for example potassium and / or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and / or Sodium formaldehyde sulfoxylate, alkali salts, especially potassium and / or sodium salts, aliphatic sulfinic acids and alkali metal hydrogen sulfides, such as, for example, potassium and / or sodium hydrosulfide, salts of polyvalent metals, such as iron (
- the total amount of the radical initiator in the aqueous reaction medium before initiation of the polymerization reaction can be presented.
- Initiation of the polymerization reaction is understood to mean the start of the polymerization reaction of the monomers present in the polymerization vessel after radical formation of the radical initiator.
- the initiation of the polymerization reaction can take place by addition of free-radical initiator to the aqueous polymerization mixture in the polymerization vessel under polymerization conditions.
- a partial or total amount of the free radical initiator is added to the aqueous polymerization mixture containing the monomers present in the polymerization vessel under conditions which are not suitable for initiating a polymerization reaction, for example at low temperature, and then polymerization conditions in the aqueous polymerization mixture be set.
- Polymerization conditions are to be understood as meaning in general those temperatures and pressures under which the free-radically initiated aqueous emulsion polymerization proceeds at a sufficient rate of polymerization. They are dependent, in particular, on the radical initiator used.
- the type and amount of the radical initiator, the polymerization temperature and the polymerization pressure are advantageously selected so that the free-radical initiator has a half-life of ⁇ 3 hours, more preferably ⁇ 1 hour and most preferably ⁇ 30 minutes, and there are always enough starting radicals available to effect the polymerization reaction to initiate and maintain.
- the reaction temperature for the free-radical aqueous emulsion polymerization according to the invention is the entire range from 0 to 170 ° C into consideration.
- the free-radical aqueous emulsion polymerization according to the invention can be carried out at a pressure of less than or equal to 1 atm [1.013 bar (absolute), atmospheric pressure], such that the polymerization temperature can exceed 100 ° C. and can be up to 170 ° C.
- polymerization is preferably carried out under elevated pressure in the process according to the invention.
- the pressure may be 1, 2, 1, 5, 2, 5, 10, 15 bar (absolute) or even higher values.
- the free-radical aqueous emulsion polymerization according to the invention is carried out at 1 atm or in overpressure up to 20 bar with exclusion of oxygen, in particular under an inert gas atmosphere, for example under nitrogen or argon.
- the aqueous reaction medium may in principle also in minor amounts ( ⁇ 5 wt .-%) include water-soluble organic solvents such as methanol, ethanol, isopropanol, butanols, pentanols, but also acetone, etc.
- the process according to the invention is preferably carried out in the absence of such solvents.
- free radical-transferring compounds in the process according to the invention in order to reduce or control the molecular weight of the polymers obtainable by the polymerization.
- free radical-transferring compounds such as, for example, n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene dichloride, chloroform, bromoform, bromotrichloromethane, dibromodichloromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride, benzyl bromide, organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, such as, for example, ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-
- the total amount of radical-chain-transferring compounds optionally used in the process according to the invention is generally ⁇ 5% by weight, often ⁇ 3% by weight and frequently ⁇ 1% by weight.
- a partial or total amount of the radical chain transferring compound optionally used is fed to the reaction medium before the initiation of the free-radical polymerization.
- a partial or total amount of the radical chain transferring compound can advantageously also be fed to the aqueous reaction medium together with the monomers A1 to A4 during the polymerization.
- the polymers A obtainable by the process according to the invention can in principle have glass transition temperatures Tg in the range of> -70 and ⁇ 150 ° C.
- the monomers A1 to A4 are advantageously selected such that the resulting polymers A have a glass transition temperature Tg in the range of> -10 and ⁇ 130 ° C. and particularly advantageously in the range> 10 and ⁇ 100 ° C.
- Glass transition temperature Tg is understood to mean the midpoint temperature according to ASTM D 3418-82, determined by differential thermal analysis (DSC) [cf. also Ullmann 's Encyclopedia of Industrial Chemistry, page 169, Verlag Chemie, Weinheim, 1992 and Zosel in paint and varnish, 82, pages 125 to 134, 1976]. According to Fox (TG Fox, Bull. Am.
- the free-radically initiated aqueous emulsion polymerization according to the invention can also be carried out in the presence of a polymer seed, for example in the presence of from 0.01 to 3% by weight, frequently from 0.02 to 2% by weight and often from 0.04 to 1, 5% by weight of a polymer seed, in each case based on the total amount of monomers.
- a polymer seed is used in particular when the particle size of the polymer particles to be produced by means of a free-radically aqueous emulsion polymerization is to be specifically adjusted (see, for example, US Pat. No. 2,520,959 and US Pat. No. 3,397,165).
- a polymer seed is used whose polymer seed particles have a narrow particle size distribution and weight-average diameters Dw ⁇ 100 nm, frequently> 5 nm to ⁇ 50 nm and often> 15 nm to ⁇ 35 nm.
- the determination of the weight-average particle diameter is known to the person skilled in the art and is carried out, for example, by the method of the analytical ultracentrifuge.
- Weight-average particle diameter is understood in this document to mean the weight-average Dw50 value determined by the method of the analytical ultracentrifuge (compare, in this regard, SE Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992 , Chapter 10, Analysis of Polymer Dispersions with Eight-Cell AUC Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Gurchtie, pp. 147-175).
- a narrow particle size distribution is to be understood as meaning the ratio of the weight-average particle diameter Dw50 and the number-average particle diameter DN50 [Dw50 / DN50] ⁇ 2.0, preferably ⁇ 1.5, and particularly preferably ⁇ 1, determined by the method of the analytical ultracentrifuge. 2 or ⁇ 1, 1.
- the polymer seed is used in the form of an aqueous polymer dispersion. The aforementioned amounts are based on the polymer solids content of the aqueous polymer seed dispersion.
- a polymer seed is understood to mean a polymer seed, which was produced in a separate reaction step and whose monomeric composition is different from the polymer prepared by the free-radically initiated aqueous emulsion polymerization, which, however, means that different monomers or monomer mixtures are used for producing the foreign polymer seed and for preparing the aqueous polymer dispersion be used of different composition.
- the preparation of a foreign polymer seed is familiar to the person skilled in the art and is usually carried out by initially charging a relatively small amount of monomers and a relatively large amount of emulsifiers in a reaction vessel and adding a sufficient amount of polymerization initiator at reaction temperature.
- polymer foreign seed having a glass transition temperature> 50 ° C., frequently> 60 ° C. or> 70 ° C. and often> 80 ° C. or> 90 ° C.
- polystyrene or a polymethyl methacrylate polymer seed preference is given to using polymer foreign seed having a glass transition temperature> 50 ° C., frequently> 60 ° C. or> 70 ° C. and often> 80 ° C. or> 90 ° C.
- the total amount of foreign polymer seed can be presented in the polymerization vessel. But it is also possible to submit only a subset of the foreign polymer seed in the polymerization and the remaining residual during the polymerization together with the monomers A1 to A4 admit. If necessary, however, it is also possible to add the total amount of polymer seed in the course of the polymerization. Preferably, the total amount of Fremdpolymersaat is submitted before initiation of the polymerization in the polymerization.
- the aqueous polymer A dispersions obtainable according to the invention usually have a polymer solids content of> 10 and ⁇ 70% by weight, frequently> 20 and ⁇ 65% by weight and often> 25 and ⁇ 60% by weight, in each case based on the aqueous Polymerisate, on.
- the number-average particle diameter (cumulant z-average) determined by quasi-elastic light scattering (ISO standard 13 321) is generally between 10 and 2000 nm, frequently between 20 and 1000 nm and often between 100 and 700 nm and 100 to 400 nm.
- aqueous polymer A dispersions obtainable by the process according to the invention can in principle be used for the production of adhesives, sealants, plastics, paper coating slips, nonwoven fabrics, paints and coating compositions for organic substrates, such as leather or textile materials, and for the modification of mineral binders.
- aqueous polymer dispersions obtainable by the process according to the invention are particularly advantageously suitable for use as binders for granular and / or fibrous substrates.
- the abovementioned aqueous polymer A dispersions can therefore advantageously be used for the production of moldings from granular and / or fibrous substrates.
- Granular and / or fibrous substrates are familiar to the person skilled in the art.
- these are wood chips, wood fibers, cellulose fibers, textile fibers, plastic fibers, glass fibers, mineral fibers or natural fibers such as jute, flax, hemp or sisal, but also cork chips, sand and others
- Organic or inorganic natural and / or synthetic granular and / or fibrous compounds whose longest extent in the case of granular substrates is ⁇ 10 mm, preferably ⁇ 5 mm and in particular ⁇ 2 mm.
- substrate according to the invention should also include the fiber webs obtainable from fibers, such as so-called mechanically bonded or chemically pre-bonded nonwoven fabrics and mechanically consolidated or chemically pre-bonded papers (in particular base papers and glued papers) and in particular also porous filter papers.
- base paper is to be understood as meaning a material which is flat according to DIN 6730 (August 1985) and consists essentially of fibers of predominantly vegetable origin, which is formed by dewatering a pulp slurry containing various auxiliaries on a wire, the fiber felt thus obtained then compressed and dried.
- excipients which are known to the person skilled in the art are fillers, dyes, pigments, binders, optical brighteners, retention aids, wetting agents, defoamers, preservatives, slimicides, plasticizers, antiblocking agents, antistatics, water repellents, etc.
- base paper (basis weight ⁇ 225 g / m 2 ) or of raw board (basis weight> 225 g / m 2 ).
- cardboard is also common, which comprises a basis weight of about 150 to 600 g / m 2 both base paper grades and raw paperboard.
- base paper is intended to encompass both base paper, raw board and cardboard.
- raw paper surfaces are treated with sizing agents, which essentially influence the absorbency and thus the writing or printability of the raw paper.
- the papers treated in this way are called "glued papers”.
- Corresponding methods and the type and amounts of the corresponding sizing agents are familiar to the person skilled in the art.
- the base paper or the glued paper is refined by the so-called brushing, or transferred to the finished form of use.
- coating of paper is understood to mean the one- or two-sided coating of the paper with an aqueous coating material consisting essentially of pigments and binders. Depending on the type of coating color, the layer thickness to be achieved or the type of paper to be produced, this will be the case different coating methods, for example, the known in the art roller, doctor blade, air brushing or casting coating used, which in each case followed by a drying step.
- the papers treated in this way are called “coated papers”.
- novel aqueous polymer A dispersion is particularly advantageously suitable as a formaldehyde-free binder system for the abovementioned fibers or fiber webs or papers formed therefrom.
- novel aqueous polymer A dispersions are used as sole or as an additional binder or binder component for the reinforcement of base paper and for sized paper, but in particular for filter paper.
- the process for producing a shaped body from a granular and / or fibrous substrate and the abovementioned aqueous polymer dispersion A or a binder formulation containing these advantageously takes place such that the inventive aqueous polymer A dispersion or a binder formulation containing them on the granular and / or fibrous substrate is applied or the granular and / or fibrous substrate is impregnated with the novel aqueous polymer A dispersion or a binder formulation containing them, optionally the treated with the aqueous polymer A dispersion or a binder formulation containing these granular and / or fibrous Substrate is brought into shape and the thus treated granular and / or fibrous substrate is then subjected to a thermal treatment step at a temperature> 50 ° C.
- Aqueous binder formulations which contain an aqueous polymer dispersion A according to the invention may comprise further customary auxiliaries known to the person skilled in the art, such as fillers, dyes, pigments, optical brighteners, retention aids, wetting agents, defoamers, preservatives, slimicides, plasticizers, Antiblocking agents, antistatic agents, water repellents, etc.
- auxiliaries known to the person skilled in the art, such as fillers, dyes, pigments, optical brighteners, retention aids, wetting agents, defoamers, preservatives, slimicides, plasticizers, Antiblocking agents, antistatic agents, water repellents, etc.
- the application (impregnation) of the aqueous polymer A dispersion according to the invention or a binder formulation containing these to the granular and / or fibrous substrate is generally carried out such that the aqueous polymer A dispersion according to the invention or a dispersion containing them Binder formulation evenly on the surface of the granular and / or fibrous substrate is applied.
- the amount of aqueous polymer A dispersion or aqueous binder formulation is chosen so that per 100 g of granular and / or fibrous substrate> 1 g and ⁇ 100 g, preferably> 1 g and ⁇ 50 g and particularly preferably> 5 g and ⁇ 30 g of polymer A (calculated as a solid) are used.
- the technique of impregnating the granular and / or fibrous substrates is familiar to the person skilled in the art and takes place, for example, by impregnation or by spraying the granular and / or fibrous substrates.
- the granular and / or fibrous substrate is optionally brought into the desired shape, for example by introduction into a heatable press or mold.
- the shaped impregnated granular and / or fibrous substrate is dried and cured in a manner known to those skilled in the art.
- the drying and curing of the optionally shaped impregnated granular and / or fibrous substrate takes place at a temperature> 50 ° C and ⁇ 250 ° C, preferably> 100 ° C and ⁇ 220 ° C and particularly preferably> 150 and ⁇ 200 ° C.
- the moldings obtainable by the process according to the invention in particular non-woven fabrics or papers, have advantageous properties, in particular improved tear strength or increased bursting pressure, in comparison to the moldings of the prior art.
- Feed 1 consisted of a homogeneous emulsion prepared from 396 g of deionized water, 46.7 g of a 3% strength by weight aqueous sodium pyrophosphate solution, 6.2 g of a 45% strength by weight aqueous solution of a C 12 -C 14 -alkyldiphenyl ether disulfonic acid Sodium salt (Dowfax® 2A1), 50.0 g of a 28% strength by weight aqueous solution of sodium lauryl ether sulfate (Texapon® NSO from Cognis), 68.6 g of acrylic acid, 46.7 g of a 15% strength by weight aqueous solution Solution of methacrylamide, 23.5 g of glycidyl methacrylate, 734 g of styrene and 567 g of n-butyl acrylate.
- Feed 2 consisted of 1 10 g of a 7 wt .-% aqueous solution of sodium peroxidisulfate.
- the original was heated to 95 ° C. with stirring and nitrogen atmosphere. Subsequently, while maintaining this temperature, 33.0 g of feed 2 were added and the original was stirred for 5 minutes. Subsequently, feed 1 was added simultaneously within 135 minutes and the remainder of feed 2 was metered in over the course of 140 minutes at constant flow rates.
- the solids contents were generally determined by adding a defined amount of the aqueous polymer dispersion (about 0.8 g) using moisture analyzer HR73 from Mettler Toledo was dried at a temperature of 130 ° C to constant weight.
- the number-average particle diameter of the latex particles was determined by dynamic light scattering (DLS) on a 0.005 to 0.01 weight percent aqueous dispersion at 23 ° C. using Autosizer MC from Malvern Instruments, England.
- the mean diameter of the cumulant evaluation (cumulant z-average) of the measured autocorrelation function (ISO standard 13321) is given.
- the glass transition temperature was determined using a differential calorimeter from Mettler Toledo. The heating rate was 10K / min. The evaluation was carried out by means of the software Star Version 9.01.
- Example 2 The preparation of Example 2 was carried out completely analogously to Example 1, but with the difference that in feed 1 393 g instead of 396 g of deionized water, 26.3 g of a 50 wt .-% aqueous solution of acrylamide instead of 46.7 g a 15 wt .-% aqueous solution of methacrylamide and 728 g instead of 734 g of styrene were used.
- the aqueous polymer dispersion obtained had a solids content of 50.2% by weight.
- the number average particle size was determined to be 172 nm and the Tg to 39 ° C.
- Example 3 The preparation of Example 3 was completely analogous to Example 1, but with the difference that in feed 1 266 g instead of 396 g of deionized water, 175 g instead of 46.7 g of a 15 wt .-% aqueous solution of methacrylamide and 715th g were used instead of 734 g of styrene.
- the aqueous polymer dispersion obtained had a solids content of 50.5% by weight.
- the number average particle size was determined to be 179 nm and the Tg to 39 ° C.
- Example 4 The preparation of Example 4 was carried out completely analogously to Example 1, but with the difference that in feed 1 158 g instead of 396 g of deionized water, 327 g instead of 46.7 g of a 15 wt .-% aqueous solution of Methacryl- rylamid and 692 g was used instead of 734 g of styrene.
- the aqueous polymer dispersion obtained had a solids content of
- Comparative Example Vi was carried out completely analogously to Example 1, but with the difference that were used in feed 1 436 g instead of 396 g of deionized water, 741 g instead of 734 g of styrene and no methacrylamide.
- the aqueous polymer dispersion obtained had a solids content of 49.6% by weight.
- the number average particle size was found to be 175 nm and the Tg to 40 ° C.
- Comparative Example C2 The preparation of Comparative Example C2 was carried out completely analogously to Example 1, but with the difference that in feed 1 757 g instead of 734 g of styrene and no glycidyl methacrylate were used.
- the aqueous polymer dispersion obtained had a solids content of
- the number average particle size was determined to be 184 nm and the Tg to 41 ° C.
- Comparative Example V3 was carried out completely analogously to Example 1, but with the difference that in feed 1 802 g instead of 734 g of styrene and no acrylic acid were used.
- the aqueous polymer dispersion obtained had a solids content of 49.8% by weight.
- the number average particle size was determined to be 168 nm and the Tg to 42 ° C. b) application tests
- a commercial base paper for the production of automobile air filters with a basis weight of 107 g / m 2 was used.
- the paper sheets had a size of 21, 0 x 29.7 cm [DIN A4], with the longitudinal direction of the machine direction corresponded.
- the aqueous polymer dispersions obtained according to Examples 1 to 4 and Comparative Examples C1 to V3 were diluted with deionized water to a solids content of 10% by weight. Thereafter, the aforementioned paper sheets were passed in the longitudinal direction through an endless belt at a belt speed of 80 cm per minute through the thus obtained binder baths 1 to 4 and V1 to V3. By subsequent extraction of the binder liquors, a wet application of 210 g / m 2 (corresponding to 21 g of polymer per m 2 ) was set. Thereafter, the wet paper sheets were dried for 3 minutes at 180 ° C in a Mathis oven at maximum hot air flow. Thereafter, the impregnated papers thus obtained were stored for 24 hours at 23 ° C and 50% RH in a climatic room.
- test strips 1 to 4 and test strips V1 to V3 20 x 15 cm test strips were cut out of the impregnated papers.
- aqueous polymer dispersions used for impregnation 1 to 4 and V1 to V3, these are referred to as test strips 1 to 4 and test strips V1 to V3.
- the test strips were incubated for 2 minutes in a 2 wt .-% aqueous solution of emulsifier ® K30 (sodium alkanesulfonate having an average chain length of 15 C; Bayer AG) stored, blotted excess emulsifier with a cotton fabric and immediately after the burst pressure (wet) determined using a Zwick testing machine with the burst pressure test module in accordance with ISO 2758.
- emulsifier ® K30 sodium alkanesulfonate having an average chain length of 15 C; Bayer AG
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Paper (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Wässrige Polymerisatdispersion als Bindemittel für körnige und/oder faserförmige Substrate.
Description
Verfahren zur Herstellung einer wässrigen Bindemitteldispersion
Beschreibung Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer wässrigen Dispersion eines Polymerisats A durch radikalisch initiierte wässrige Emulsionspolymerisation ethylenisch ungesättigter Monomerer in Anwesenheit wenigstens eines Dispergierhilfsmittels und wenigstens eines Radikalinitiators, welches dadurch gekennzeichnet ist, dass zur Polymerisation
0,1 bis 5 Gew.-% Acrylamid und/oder Methacrylamid (Monomer A1 ),
0,1 bis 15 Gew.-% wenigstens einer ethylenisch ungesättigten C3- bis C6-
Mono- oder Dicarbonsäure (Monomer A2),
0,1 bis 10 Gew.-% wenigstens einer ethylenisch ungesättigten Verbindung, welche wenigstens eine Oxiranyl- oder eine Oxeta- nylgruppe aufweist (Monomer A3), und
70 bis 99,7 Gew.-% wenigstens einer anderen ethylenisch ungesättigten Verbindung, welche mit den Monomeren A1 bis A3 copoly- merisierbar ist (Monomer A4), eingesetzt werden, wobei sich die Monomerenmengen A1 bis A4 zu 100 Gew.- % (Gesamtmonomerenmenge) addieren.
Gegenstand der vorliegenden Erfindung sind ferner wässrige Polymerisat- dispersionen, welche nach dem erfindungsgemäßen Verfahren erhalten wurden, die Verwendung dieser wässrigen Polymermerisatdispersionen als Bindemittel für körnige und/oder faserförmige Substrate, Verfahren zur Herstellung von Formkörpern unter Verwendung der erfindungsgemäßen wässrigen Polymerisatdispersiondispersion sowie die nach dem erfindungsgemäßen Verfahren zugänglichen Formkörper selbst.
Die Verfestigung von körnigen oder faserförmigen Substraten, insbesondere in flächenförmigen Gebilden, wie beispielsweise Faservliesen, Faserplatten, Spanplatten oder Papieren etc., erfolgt häufig auf chemischem Weg unter Ver- wendung eines polymeren Bindemittels. Zur Erhöhung der Festigkeit, insbesondere der Nass- und Wärmestandfestigkeit, werden vielfach Bindemittel eingesetzt, welche Formaldehyd abspaltende Vernetzer enthalten. Damit besteht aber die Gefahr der unerwünschten Formaldehydemission.
Zur Vermeidung von Formaldehydemissionen wurden bereits zahlreiche Alternativen zu den bisher bekannten Bindemitteln vorgeschlagen. So sind aus der US-A 4,076,917 Bindemittel bekannt, welche Carbonsäure- oder Carbonsäureanhydrid-haltige Polymerisate und ß-Hydroxyalkylamide als Vernetzer enthal- ten. Nachteilig ist die relativ aufwendige Herstellung der ß-Hydroxyalkylamide.
Aus der EP-A-445578 sind Platten aus feinteiligen Materialien, wie beispielsweise Glasfasern bekannt, in denen Mischungen aus hochmolekularen Poly- carbonsäuren und mehrwertigen Alkoholen, Alkanolaminen oder mehrwertigen Aminen als Bindemittel fungieren.
Aus der EP-A-583086 sind formaldehydfreie, wässrige Bindemittel zur Herstellung von Faservliesen, insbesondere Glasfaservliesen, bekannt. Die Bindemittel enthalten eine Polycarbonsäure mit mindestens zwei Carbonsäuregruppen und gegebenenfalls auch Anhydridgruppen sowie ein Polyol. Diese Bindemittel benötigen einen phosphorhaltigen Reaktionsbeschleuniger, um ausreichende Festigkeiten der Glasfaservliese zu erreichen. Es wird darauf hingewiesen, dass auf die Anwesenheit eines derartigen Reaktionsbeschleunigers nur verzichtet werden kann, wenn ein hochreaktives Polyol eingesetzt wird. Als hochreaktive Polyole werden ß-Hydroxyalkylamide genannt.
Die EP-A-651088 beschreibt entsprechende Bindemittel für Substrate aus Cel- lulosefaser. Diese Bindemittel enthalten zwingend einen phosphorhaltigen Reaktionsbeschleuniger.
Die EP-A-672920 beschreibt formaldehydfreie Binde-, Imprägnier- oder Be- schichtungsmittel, die ein Polymerisat, welches zu 2 bis 100 Gew.-% aus einer ethylenisch ungesättigten Säure oder einem Säureanhydrid als Comonomer aufgebaut ist und mindestens ein Polyol enthalten. Bei den Polyolen handelt es sich um substituierte Triazin-, Triazintrion-, Benzol- oder Cyclohexylderivate, wobei die Polyolreste sich stets in 1 ,3,5-Position der erwähnten Ringe befinden. Trotz einer hohen Trocknungstemperatur werden mit diesen Bindemitteln auf Glasfaservliesen nur geringe Nassreißfestigkeiten erzielt. Die DE-A-2214450 beschreibt ein Copolymerisat, das aus 80 bis 99 Gew.-% Ethylen und 1 bis 20 Gew.-% Maleinsäureanhydrid aufgebaut ist. Das Copolymerisat wird, zusammen mit einem Vernetzungsmittel, in Pulverform oder in Dispersion in einem wässrigen Medium, zur Oberflächenbeschichtung verwendet. Als Vernetzungsmittel wird ein aminogruppenhaltiger Polyalkohol verwen-
det. Um eine Vernetzung zu bewirken, muss jedoch auf bis zu 300 °C erhitzt werden.
Aus der US-A 5,143,582 ist die Herstellung hitzebeständiger Vliesmaterialien unter Verwendung eines thermisch aushärtenden, hitzebeständigen Bindemittels bekannt. Das Bindemittel ist frei von Formaldehyd und wird erhalten durch Mischen eines Carbonsäuregruppen, Carbonsäureanhydridgruppen oder Carbonsäuresalzgruppen aufweisenden Polymers und eines Vernetzers. Der Vernetzer ist ein ß-Hydroxyalkylamid oder ein Polymer oder Copolymer davon. Das mit dem ß-Hydroxyalkylamid vernetzbare Polymer ist beispielsweise aufgebaut aus ungesättigten Mono- oder Dicarbonsäuren, Salzen ungesättigter Mono- oder Dicarbonsäuren oder ungesättigten Anhydriden. Selbsthärtende Polymere werden erhalten durch Copolymerisation der ß-Hydroxyalkylamide mit Carbo- xylgruppen enthaltenden Monomeren.
Desweiteren sind dem Fachmann formaldehydfreie wässrige Bindemittelsysteme auf Basis von Polycarbonsäuren und Polyolen bzw. Polyaminen geläufig (siehe beispielsweise EP-A 445578, EP-A 661305, EP-A 882074, EP-A
882093, EP-A 882094, EP-A 902796, EP-A 1005508, EP-A 1018523, EP-A 1240205, EP-A 1448733, EP-A 1340774 oder EP-A 1457245).
Aufgabe der vorliegenden Erfindung war es, ein formaldehydfreies Bindemittelsystem für körnige und/oder faserförm ige Substrate, insbesondere Papiere, zur Verfügung zu stellen, durch welches im Vergleich zu den Bindemitteln des Standes der Technik Substrate mit einem verbesserten Berstdruck resultieren.
Demgemäß wurde die eingangs definierte wässrige Dispersion des Polymerisats A (wässrige Polymerisat A-Dispersion) als Bindemittel gefunden. Die Durchführung von radikalisch initiierten Emulsionspolymerisationen von e- thylenisch ungesättigten Monomeren in einem wässrigen Medium ist vielfach vorbeschrieben und dem Fachmann daher hinreichend bekannt [vgl. hierzu Emulsionspolymerisation in Encyclopedia of Polymer Science and Engineering, Vol. 8, Seiten 659 ff. (1987); D.C. Blackley, in High Polymer Latices, Vol. 1 , Sei- ten 35 ff. (1966); H. Warson, The Applications of Synthetic Resin Emulsions, Kapitel 5, Seiten 246 ff. (1972); D. Diederich, Chemie in unserer Zeit 24, Seiten 135 bis 142 (1990); Emulsion Polymerisation, Interscience Publishers, New Y- ork (1965); DE-A 40 03 422 und Dispersionen synthetischer Hochpolymerer, F. Hölscher, Springer- Verlag, Berlin (1969)]. Die radikalisch initiierten wässrigen
Emulsionspolymerisationsreaktionen erfolgen üblicherweise dergestalt, dass man die ethylenisch ungesättigten Monomere unter Mitverwendung von Disper- gierhilfsm ittel n, im wässrigen Medium in Form von Monomerentröpfchen dispers verteilt und mittels eines radikalischen Polymerisationsinitiators polyme- risiert. Von dieser Verfahrensweise unterscheidet sich das vorliegende erfindungsgemäße Verfahren lediglich durch den Einsatz der spezifischen Monomeren A1 bis A4.
Als Monomere A1 werden Acrylannid und/oder Methacrylamid eingesetzt, wobei Methacrylamid insbesondere bevorzugt ist.
Die Menge der Monomeren A1 im erfindungsgemäßen Verfahren beträgt 0,1 bis 5 Gew.-%, bevorzugt 0,5 bis 3 Gew.-% und insbesondere bevorzugt 0,7 bis 2,5 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge.
Als Monomere A2 finden ethylenisch ungesättigte, insbesondere α,β- monoethylenisch ungesättigte C3- bis C6-Mono- oder Dicarbonsäuren Verwendung, wobei α,β-monoethylenisch ungesättigte C3- und C4-Mono- und C4- bis C6-Dicarbonsäuren bevorzugt sind. Als Monomere A2 seien beispielhaft Acryl- säure, Methacrylsäure, Ethylacrylsäure, Allylessigsäure, Crotonsäure, Vinyles- sigsäure, Maleinsäure, Fumarsäure, Itakonsäure, Methylmaleinsäure, Methy- lenmalonsäure, Dimethylacrylsäure und/oder 1 ,2,3,6-Tetrahydrophthalsäure sowie die Ammonium-, Natrium- oder Kaliumsalze der vorgenannten Säuren genannt, wobei Acrylsäure und/oder Methacrylsäure insbesondere bevorzugt sind. Selbstverständlich werden zu den C4- bis C6-Dicarbonsäuren erfindungsgemäß auch die davon abgeleiteten Anhydride, wie beispielsweise Maleinsäureanhydrid und/oder Methylmaleinsäureanhydrid als zugehörig betrachtet.
Die Menge der Monomeren A2 im erfindungsgemäßen Verfahren beträgt 0,1 bis 15 Gew.-%, bevorzugt 0,5 bis 10 Gew.-% und insbesondere bevorzugt 1 bis 7 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge.
Als Monomere A3 werden ethylenisch, insbesondere α,β-monoethylenisch ungesättigte Verbindungen eingesetzt, welche wenigstens eine Oxiranyl- oder ei- ne Oxetanylgruppe aufweisen, wobei solche Verbindungen bevorzugt sind, welche eine Oxiranylgruppe aufweisen. Als Monomere A3 mit wenigstens einer Oxiranylgruppe seien beispielhaft Vinyloxiran, Allyloxiran, Glycidylacrylat und/oder Glycidylmethacrylat und als Monomere A3 mit wenigstens einer Oxetanylgruppe Vinyloxetan, Allyloxetan, Acrylsäure-3-methyloxetan-3-
ylmethylester und/oder 2-Methacrylsäure-3-methyloxetan-3-ylmethylester genannt. Mit besonderem Vorzug werden Glycidylacrylat und/oder Glycidyl- methacrylat eingesetzt, wobei Glycidylmethacrylat besonders bevorzugt ist. Die Menge der Monomeren A3 im erfindungsgemäßen Verfahren beträgt 0,1 bis 10 Gew.-%, bevorzugt 0,3 bis 7 Gew.-% und insbesondere bevorzugt 0,5 bis 5 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge.
Als Monomere A4 kommen prinzipiell alle ethylenisch ungesättigten Verbindun- gen in Betracht, welche sich von den Monomeren A1 bis A3 unterscheiden, a- ber in einfacher Weise mit diesen radikalisch copolymerisierbar sind, wie beispielsweise vinylaromatische Monomere, wie Styrol, α-Methylstyrol, o- Chlorstyrol oder Vinyltoluole, Vinylhalogenide, wie Vinylchlorid oder Vinyliden- chlorid, Ester aus Vinylalkohol und 1 bis 18 C-Atome aufweisenden Monocar- bonsäuren, wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat und Vi- nylstearat, Ester aus vorzugsweise 3 bis 6 C-Atome aufweisenden α,β- monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itakonsäure, mit im allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alkanolen, wie besonders Acrylsäure- und Methacrylsäure- methyl-, -ethyl-, -n-butyl-, -iso-butyl-, pentyl-, -hexyl-, -heptyl-, -octyl-, -nonyl-, - decyl- und -2-ethylhexylester, Fumar- und Maleinsäuredimethylester oder -di-n- butylester, Nitrile α,β-monoethylenisch ungesättigter Carbonsäuren, wie Acryl- nitril, Methacrylnitril, Fumarsäuredinitril, Maleinsäuredinitril sowie C4-8- konjugierte Diene, wie 1 ,3-Butadien (Butadien) und Isopren. Die genannten Monomere bilden in der Regel die Hauptmonomeren, die, bezogen auf die Gesamtmenge an Monomeren A4, einen Anteil von > 80 Gew.-%, bevorzugt > 85 Gew.-% und insbesondere bevorzugt > 90 Gew.-% auf sich vereinen oder sogar die Gesamtmenge der Monomeren A4 bilden. In aller Regel weisen diese Monomeren in Wasser bei Normalbedingungen [20 °C, 1 atm (absolut)] lediglich eine mäßige bis geringe Löslichkeit auf.
Monomere A4, die unter den vorgenannten Bedingungen eine erhöhte Wasserlöslichkeit aufweisen, sind solche, die entweder wenigstens eine Sulfonsäu- regruppe und/oder deren entsprechendes Anion bzw. wenigstens eine Amino-, Ureido- oder N-heterocyclische Gruppe und/oder deren am Stickstoff protonier- ten oder alkylierten Ammoniumderivate enthalten. Beispielhaft genannt seien Vinylsulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Styrolsulfonsäure und deren wasserlösliche Salze sowie N-Vinylpyrrolidon, 2-Vinylpyridin, 4-
Vinylpyridin, 2-Vinylimidazol, 2-(N,N-Dimethylamino)ethylacrylat, 2-(N,N- Dimethylamino)ethylmethacrylat, 2-(N,N-Diethylamino)ethylacrylat, 2-(N,N- Diethylamino)ethylmethacrylat, 2-(N-tert.-Butylamino)ethylmethacrylat, N-(3- N',N'-Dimethylaminopropyl)methacrylannid und 2-(1-lmidazolin-2- onyl)ethylmethacrylat. Im Normalfall werden die vorgenannten wasserlöslichen Monomeren A4 lediglich als modifizierende Monomere in Mengen von < 10 Gew.-%, bevorzugt < 5 Gew.-% und insbesondere bevorzugt < 3 Gew.-%, jeweils bezogen auf die Gesamtmenge an Monomeren A4, verwendet. Insbesondere bevorzugt werden jedoch keinerlei derartigen wasserlöslichen Monomeren A4 bei Herstellung des Polymerisats A eingesetzt.
Monomere A4, die üblicherweise die innere Festigkeit der Verfilmungen einer Polymermatrix erhöhen, weisen normalerweise wenigstens zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen auf. Beispiele hierfür sind zwei Vinylreste aufweisende Monomere, zwei Vinylidenreste aufweisende Monomere sowie zwei Alkenylreste aufweisende Monomere. Besonders vorteilhaft sind dabei die Di-Ester zweiwertiger Alkohole mit α,β-monoethylenisch ungesättigten Monocarbonsäuren unter denen die Acryl- und Methacrylsäure bevorzugt sind. Beispiele für derartige zwei nicht konjugierte ethylenisch ungesättigte Doppel- bindungen aufweisende Monomere sind Alkylenglykoldiacrylate und - dimethacrylate, wie Ethylenglykoldiacrylat, 1 ,2-Propylenglykoldiacrylat, 1 ,3- Propylenglykoldiacrylat, 1 ,3-Butylenglykoldiacrylat, 1 ,4-Butylenglykoldiacrylate und Ethylenglykoldimethacrylat, 1 ,2-Propylenglykoldimethacrylat, 1 ,3- Propylenglykoldimethacrylat, 1 ,3-Butylenglykoldimethacrylat, 1 ,4- Butylenglykoldimethacrylat sowie Divinylbenzol, Vinylmethacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat, Methylenbisacryla- mid, Cyclopentadienylacrylat, Triallylcyanurat oder Triallylisocyanurat. Häufig werden die vorgenannten vernetzenden Monomeren A4 in Mengen von < 10 Gew.-%, bevorzugt jedoch in Mengen von < 3 Gew.-%, jeweils bezogen auf die Gesamtmenge an Monomeren A4, verwendet. Insbesondere bevorzugt werden jedoch keinerlei derartigen vernetzenden Monomeren A4 eingesetzt.
Vorteilhaft werden zur Herstellung des Polymerisats A als Monomere A4 solche Monomeren oder Monomerenmischungen eingesetzt, welche zu
- 50 bis 100 Gew.-% Ester der Acryl- und/oder Methacrylsäure mit 1 bis 12
Kohlenstoffatomen aufweisenden Alkanolen, oder
- 50 bis 100 Gew.-% Styrol und/oder Butadien, oder
50 bis 100 Gew.-% Vinylchlorid und/oder Vinylidenchlorid, oder
- 50 bis 100 Gew.-% Vinylacetat und/oder Vinylpropionat enthalten.
Als Monomere A4 bevorzugt sind Styrol, n-Butylacrylat, Methylmethacrylat, tert.-Butylacrylat, Methylacrylat, Ethylacrylat, Ethylmethacrylat, 2- Propylheptylacrylat und/oder 2-Ethylhexylacrylat.
Mit großem Vorteil werden im erfindungsgemäßen Verfahren Methacrylamid als Monomer A1 , Acrylsaure und/oder Methacrylsaure als Monomer A2, Glycidylac- rylat und/oder Glycidylmethacrylat als Monomer A3 und Styrol, n-Butylacrylat, Methylmethacrylat und/oder 2-Ethylhexylacrylat als Monomer A4 eingesetzt.
Vorteilhaft werden im erfindungsgemäßen Verfahren
0,5 bis 3 Gew.-% wenigstens eines Monomeren A1
0,5 bis 10 Gew.-% wenigstens eines Monomeren A2 und
0,3 bis 7 Gew.-% wenigstens eines Monomeren A3 und
80 bis 98,7 Gew.-% wenigstens eines Monomeren A4 und insbesondere vorteilhaft
0,7 bis 2,5 Gew.-% wenigstens eines Monomeren A1
1 bis 7 Gew.-% wenigstens eines Monomeren A2 und
0,5 bis 5 Gew.-% wenigstens eines Monomeren A3 und
85,5 bis 97,8 Gew.-% wenigstens eines Monomeren A4 eingesetzt.
Erfindungsgemäß kann die Gesamtmenge der Monomeren A1 bis A4 im wäss- rigen Reaktionsmedium vor Initiierung der Polymerisationsreaktion vorgelegt werden. Es ist aber auch möglich, gegebenenfalls lediglich eine Teilmenge der Monomeren A1 bis A4 im wässrigen Reaktionsmedium vor Initiierung der Polymerisationsreaktion vorzulegen und dann nach Initiierung der Polymerisation unter Polymerisationsbedingungen während der erfindungsgemäßen radikalischen Emulsionspolymerisation die Gesamtmenge bzw. die gegebenenfalls
verbliebene Restmenge nach Maßgabe des Verbrauchs kontinuierlich mit gleichbleibenden oder sich ändernden Mengenströmen oder diskontinuierlich zuzugeben. Dabei kann die Dosierung der Monomeren A1 bis A4 als separate Einzelströme, als inhomogene oder homogene (Teil)gemische oder als Mono- merenemulsion erfolgen. Mit Vorteil werden die Monomeren A1 bis A4 in Form eines Monomerengemisches, insbesondere in Form einer wässrigen Monome- renemulsion dosiert.
Erfindungsgemäß werden im Rahmen des vorliegenden Verfahrens Disper- gierhilfsmittel mitverwendet, die sowohl die Monomerentröpfchen, wie auch die gebildeten Polymerisatteilchen im wässrigen Medium dispers verteilt halten und so die Stabilität der erzeugten wässrigen Polymerisatdispersion gewährleisten. Als Dispergierhilfsmittel kommen sowohl die zur Durchführung von radikalischen wässrigen Emulsionspolymerisationen üblicherweise eingesetzten Schutzkolloide als auch Emulgatoren in Betracht.
Geeignete Schutzkolloide sind beispielsweise Polyvinylalkohole, Polyalky- lenglykole, Alkalimetallsalze von Polyacrylsäuren und Polymethacrylsäuren, Gelatinederivate oder Acrylsäure, Methacrylsäure, Maleinsäureanhydrid, 2- Acrylamido-2-methylpropansulfonsäure und/oder 4-Styrolsulfonsäure enthaltende Copolymerisate und deren Alkalimetallsalze aber auch N-Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylcarbazol, 1-Vinylimidazol, 2-Vinylimidazol, 2- Vinylpyridin, 4-Vinylpyridin, Acrylamid, Methacrylamid, amingruppentragende Acrylate, Methacrylate, Acrylamide und/oder Methacrylamide enthaltende Ho- mo- und Copolymerisate. Eine ausführliche Beschreibung weiterer geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , Seiten 41 1 bis 420. Selbstverständlich können auch Gemische aus Schutzkolloiden und/oder Emulgatoren eingesetzt werden. Häufig werden als Dispergiermittel ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 1000 liegen. Sie können sowohl anionischer, kationischer oder nichtionischer Natur sein. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Im allgemeinen sind anionische Emulgatoren untereinander und mit nichtionischen Emulgatoren verträglich. Desgleichen gilt auch für kationische Emulgatoren, während anionische und
kationische Emulgatoren meistens nicht miteinander verträglich sind. Eine Ü- bersicht geeigneter Emulgatoren findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme- Verlag, Stuttgart, 1961 , Seiten 192 bis 208.
Erfindungsgemäß werden als Dispergierhilfsmittel jedoch insbesondere Emulgatoren eingesetzt.
Gebräuchliche nichtionische Emulgatoren sind z.B. ethoxylierte Mono-, Di- und Tri-Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12) sowie ethoxylierte Fettalkohole (EO-Grad: 3 bis 80; Alkylrest: Cs bis C36). Beispiele hierfür sind die Lutensol® A-Marken (Ci2Ci4-Fettalkoholethoxylate, EO-Grad: 3 bis 8), Luten- sol® AO- Marken (Ci3Ci5-Oxoalkoholethoxylate, EO-Grad: 3 bis 30), Lutensol® AT-Marken (CieCis-Fettalkoholethoxylate, EO-Grad: 1 1 bis 80), Lutensol® ON- Marken (Cio-Oxoalkoholethoxylate, EO-Grad: 3 bis 1 1 ) und die Lutensol® TO- Marken (Ci3-Oxoalkoholethoxylate, EO-Grad: 3 bis 20) der Fa. BASF SE.
Übliche anionische Emulgatoren sind z.B. Alkalimetall- und Ammoniumsalze von Alkylsulfaten (Alkylrest: Cs bis C12), von Schwefelsäurehalbestern ethoxy- lierter Alkanole (EO-Grad: 4 bis 30, Alkylrest: C12 bis Cis) und ethoxylierter Al- kylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12), von Alkylsulfonsäuren (Alkylrest: C12 bis Cis) und von Alkylarylsulfonsäuren (Alkylrest: C9 bis Cis).
Als weitere anionische Emulgatoren haben sich ferner Verbindungen der allgemeinen Formel (I)
worin R1 und R2 H-Atome oder C4- bis C24-Alkyl bedeuten und nicht gleichzeitig H-Atome sind, und M1 und M2 Alkalimetallionen und/oder Ammoniumionen sein können, als geeignet erwiesen. In der allgemeinen Formel (I) bedeuten R1 und R2 bevorzugt lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen, insbesondere mit 6, 12 und 16 C-Atomen oder Wasserstoff, wobei R1 und R2 nicht beide gleichzeitig H-Atome sind. M1 und M2 sind bevorzugt Natrium, Kalium o-
der Ammonium, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen (I), in denen M1 und M2 Natrium, R1 ein verzweigter Alkylrest mit 12 C-Atomen und R2 ein H-Atom oder R1 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalkylier- ten Produktes aufweisen, wie beispielsweise Dowfax® 2A1 (Marke der Dow Chemical Company). Die Verbindungen (I) sind allgemein bekannt, z.B. aus US-A 4269749, und im Handel erhältlich.
Geeignete kationenaktive Emulgatoren sind in der Regel einen C6- bis Cie- Alkyl-, -Alkylaryl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsal- ze, Imidazoliniumsalze, Oxazoliniumsalze, Morpholiniumsalze, Thiazoliniumsal- ze sowie Salze von Aminoxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropy- liumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Sulfat, die Sulfate oder Ace- tate der verschiedenen 2-(N,N,N-Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumsulfat, N-Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N- trimethylammoniumsulfat, N-Dodecyl-N,N,N-trimethylammoniumsulfat, N-Octyl- Ν,Ν,Ν-trimethlyammoniumsulfat, N,N-Distearyl-N,N-dimethylammoniumsulfat sowie das Gemini-Tensid N,N'-(Lauryldimethyl)ethylendiamindisulfat, ethoxylier- tes Talgfettalkyl-N-methylammoniumsulfat und ethoxyliertes Oleylamin (beispielsweise Uniperol® AC der Fa. BASF SE, ca. 1 1 Ethylenoxideinheiten). Zahlreiche weitere Beispiele finden sich in H. Stäche, Tensid-Taschenbuch, Carl- Hanser- Verlag, München, Wien, 1981 und in McCutcheon's, Emulsifiers & De- tergents, MC Publishing Company, Glen Rock, 1989. Günstig ist, wenn die anionischen Gegengruppen möglichst gering nucleophil sind, wie beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie beispielsweise Acetat, Trifluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsäuren, wie zum Beispiel Methylsulfonat, Trifluormethylsulfonat und para-Toluolsulfonat, weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis(pentafluorophenyl)borat, Tetrakis[bis(3,5- trifluormethyl)phenyl]borat, Hexafluorophosphat, Hexafluoroarsenat oder He- xafluoroantimonat.
Die als Dispergierhilfsmittel bevorzugt eingesetzten Emulgatoren werden vorteilhaft in einer Gesamtmenge > 0,005 und < 10 Gew.-%, vorzugsweise > 0,01 und < 5 Gew.-%, insbesondere > 0,1 und < 3 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge, eingesetzt.
Die Gesamtmenge der als Dispergierhilfsmittel zusätzlich oder statt der Emul- gatoren eingesetzten Schutzkolloide beträgt oft > 0,1 und < 10 Gew.-% und häufig > 0,2 und < 7 Gew.-%, jeweils bezogen die Gesamtmonomeren. Bevorzugt werden jedoch anionische und/oder nichtionische Emulgatoren und insbesondere bevorzugt anionische Emulgatoren als Dispergierhilfsmittel eingesetzt.
Erfindungsgemäß kann die Gesamtmenge des Dispergierhilfsmittels im wässri- gen Reaktionsmedium vor Initiierung der Polymerisationsreaktion vorgelegt werden. Es ist aber auch möglich, gegebenenfalls lediglich eine Teilmenge des Dispergierhilfsmittels im wässrigen Reaktionsmedium vor Initiierung der Polymerisationsreaktion vorzulegen und dann unter Polymerisationsbedingungen während der erfindungsgemäßen radikalischen Emulsionspolymerisation die Gesamtmenge bzw. die gegebenenfalls verbliebene Restmenge des Dispergierhilfsmittels kontinuierlich oder diskontinuierlich zuzugeben. Bevorzugt erfolgt die Zugabe der Haupt- oder der Gesamtmenge Dispergierhilfsmittel in Form einer wässrigen Monomerenemulsion. Die Auslösung der radikalisch initiierten wässrigen Emulsionspolymerisation erfolgt mittels eines radikalischen Polymerisationsinitiators (Radikalinitiator). Es kann sich dabei prinzipiell sowohl um Peroxide als auch um Azoverbindungen handeln. Selbstverständlich kommen auch Redoxinitiatorsysteme in Betracht. Als Peroxide können prinzipiell anorganische Peroxide, wie Wasserstoffperoxid oder Peroxodisulfate, wie die Mono- oder Di-Alkalimetall- oder Ammoniumsalze der Peroxodischwefelsäure, wie beispielsweise deren Mono- und Di-Natrium-, - Kalium- oder Ammoniumsalze oder organische Peroxide, wie Alkylhydroperoxi- de, beispielsweise tert.-Butyl-, p-Menthyl- oder Cumylhydroperoxid, sowie Dial- kyl- oder Diarylperoxide, wie Di-tert.-Butyl- oder Di-Cumylperoxid eingesetzt werden. Als Azoverbindung finden im wesentlichen 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril) und 2,2'-
Azobis(amidinopropyl)dihydrochlorid (AIBA, entspricht V-50 von Wako Chemicals) Verwendung. Als Oxidationsmittel für Redoxinitiatorsysteme kommen im wesentlichen die oben genannten Peroxide in Betracht. Als entsprechende Re- duktionsmittel können Schwefelverbindungen mit niedriger Oxidationsstufe, wie Alkalisulfite, beispielsweise Kalium- und/oder Natriumsulfit, Alkalihydrogensulfite, beispielsweise Kalium- und/oder Natriumhydrogensulfit, Alkalimetabisulfite, beispielsweise Kalium- und/oder Natriummetabisulfit, Formaldehydsulfoxylate, beispielsweise Kalium- und/oder Natriumformaldehydsulfoxylat, Alkalisalze,
speziell Kalium- und/oder Natriumsalze aliphatische Sulfinsäuren und Alkalime- tallhydrogensulfide, wie beispielsweise Kalium- und/oder Natriumhydrogensul- fid, Salze mehrwertiger Metalle, wie Eisen-(ll)-sulfat, Eisen-(ll)- Ammoniumsulfat, Eisen-(ll)-phosphat, Endiole, wie Dihydroxymaleinsäure, Benzoin und/oder Ascorbinsäure sowie reduzierende Saccharide, wie Sorbose, Glucose, Fructose und/oder Dihydroxyaceton eingesetzt werden. In der Regel beträgt die Menge des eingesetzten Radikalinitiators, bezogen auf die Ge- samtmonomerenmenge, 0,01 bis 5 Gew.-%, bevorzugt 0,1 bis 3 Gew.-% und insbesondere bevorzugt 0,2 bis 1 ,5 Gew.-%.
Erfindungsgemäß kann die Gesamtmenge des Radikalinitiators im wässrigen Reaktionsmedium vor Initiierung der Polymerisationsreaktion vorgelegt werden. Es ist aber auch möglich, gegebenenfalls lediglich eine Teilmenge des Radikalinitiators im wässrigen Reaktionsmedium vor Initiierung der Polymerisationsre- aktion vorzulegen und dann unter Polymerisationsbedingungen während der erfindungsgemäßen radikalischen Emulsionspolymerisation die Gesamtmenge bzw. die gegebenenfalls verbliebene Restmenge nach Maßgabe des
Verbrauchs kontinuierlich oder diskontinuierlich zuzugeben. Unter Initiierung der Polymerisationsreaktion wird der Start der Polymerisationsreaktion der im Polymerisationsgefäß vorliegenden Monomeren nach Radikalbildung des Radikalinitiators verstanden. Dabei kann die Initiierung der Polymerisationsreaktion durch Zugabe von Radikalinitiator zum wässrigen Polymerisationsgemisch im Polymerisationsgefäß unter Polymerisationsbedingungen er- folgen. Es ist aber auch möglich, dass eine Teil- oder die Gesamtmenge des Radikalinitiators dem die vorgelegten Monomeren enthaltenden wässrigen Polymerisationsgemisch im Polymerisationsgefäß unter Bedingungen, welche nicht geeignet sind eine Polymerisationsreaktion auszulösen, beispielsweise bei tiefer Temperatur, zugegeben werden und danach im wässrigen Polymerisati- onsgemisch Polymerisationsbedingungen eingestellt werden. Unter Polymerisationsbedingungen sind dabei generell diejenigen Temperaturen und Drücke zu verstehen, unter denen die radikalisch initiierte wässrige Emulsionspolymerisation mit ausreichender Polymerisationsgeschwindigkeit verläuft. Sie sind insbesondere abhängig vom verwendeten Radikalinitiator. Vorteilhaft werden Art und Menge des Radikalinitiators, die Polymerisationstemperatur und der Polymerisationsdruck so ausgewählt, dass der Radikalinitiator eine Halbwertszeit < 3 Stunden, insbesondere vorteilhaft < 1 Stunde und ganz besonders vorteilhaft < 30 Minuten aufweist und dabei immer genügend Startradikale zur Verfügung stehen, um die Polymerisationsreaktion zu initiieren und aufrechtzuerhalten.
Als Reaktionstemperatur für die erfindungsgemäße radikalische wässrige E- mulsionspolymerisation kommt der gesamte Bereich von 0 bis 170 °C in Betracht. Dabei werden in der Regel Temperaturen von 50 bis 120 °C, häufig 60 bis 1 10 °C und oft 70 bis 100 °C angewendet. Die erfindungsgemäße radikalische wässrige Emulsionspolymerisation kann bei einem Druck kleiner, gleich oder größer 1 atm [1 ,013 bar (absolut), Atmosphärendruck] durchgeführt werden, so dass die Polymerisationstemperatur 100 °C übersteigen und bis zu 170 °C betragen kann. Bei Anwesenheit von gasförmigen Monomeren A oder Mo- nomeren A mit einem niedrigen Siedepunkt wird im erfindungsgemäßen Verfahren vorzugsweise unter erhöhtem Druck polymerisiert. Dabei kann der Druck 1 ,2, 1 ,5, 2, 5, 10, 15 bar (absolut) oder noch höhere Werte einnehmen. Werden Emulsionspolymerisationen im Unterdruck durchgeführt, werden Drücke von 950 mbar, häufig von 900 mbar und oft 850 mbar (absolut) eingestellt. Vorteil- haft wird die erfindungsgemäße radikalische wässrige Emuslionspolymerisation bei 1 atm bzw. im Überdruck bis zu 20 bar unter Sauerstoffausschluss, insbesondere unter Inertgasatmosphäre, wie beispielsweise unter Stickstoff oder Argon durchgeführt. Das wässrige Reaktionsmedium kann prinzipiell auch in untergeordneten Mengen (< 5 Gew.-%) wasserlösliche organische Lösungsmittel, wie beispielsweise Methanol, Ethanol, Isopropanol, Butanole, Pentanole, aber auch Aceton etc. umfassen. Bevorzugt wird das erfindungsgemäße Verfahren jedoch in Abwesenheit solcher Lösungsmittel durchgeführt.
Neben den vorgenannten Komponenten können im erfindungsgemäßen Verfahren optional auch radikalkettenübertragende Verbindungen eingesetzt werden, um das Molekulargewicht der durch die Polymerisation zugänglichen Polymerisate zu reduzieren bzw. zu kontrollieren. Dabei kommen im wesentlichen a- liphatische und/oder araliphatische Halogenverbindungen, wie beispielsweise n- Butylchlorid, n-Butylbromid, n-Butyljodid, Methylenchlorid, Ethylendichlorid, Chloroform, Bromoform, Bromtrichlormethan, Dibromdichlormethan, Tetrachlorkohlenstoff, Tetrabromkohlenstoff, Benzylchlorid, Benzylbromid, organische Thioverbindungen, wie primäre, sekundäre oder tertiäre aliphatische Thiole, wie beispielsweise Ethanthiol, n-Propanthiol, 2-Propanthiol, n-Butanthiol, 2-
Butanthiol, 2-Methyl-2-propanthiol, n-Pentanthiol, 2-Pentanthiol, 3-Pentanthiol, 2-Methyl-2-butanthiol, 3-Methyl-2-butanthiol, n-Hexanthiol, 2-Hexanthiol, 3- Hexanthiol, 2-Methyl-2-pentanthiol, 3-Methyl-2-pentanthiol, 4-Methyl-2- pentanthiol, 2-Methyl-3-pentanthiol, 3-Methyl-3-pentanthiol, 2-Ethylbutanthiol, 2-
Ethyl-2-butanthiol, n-Heptanthiol und seine isomeren Verbindungen, n- Octanthiol und seine isomeren Verbindungen, n-Nonanthiol und seine isomeren Verbindungen, n-Decanthiol und seine isomeren Verbindungen, n-Undecanthiol und seine isomeren Verbindungen, n-Dodecanthiol und seine isomeren Verbin- düngen, n-Tridecanthiol und seine isomeren Verbindungen, substituierte Thiole, wie beispielsweise 2-Hydroxyethanthiol, aromatische Thiole, wie Benzolthiol, ortho-, meta-, oder para-Methylbenzolthiol, sowie alle weiteren im Polymerhandbook 3rd edtition, 1989, J. Brandrup und E.H. Immergut, John Wiley & Sons, Abschnitt II, Seiten 133 bis 141 , beschriebenen Schwefelverbindungen, aber auch aliphatische und/oder aromatische Aldehyde, wie Acetaldeyhd, Pro- pionaldehyd und/oder Benzaldehyd, ungesättigte Fettsäuren, wie Ölsäure, Diene mit nicht konjugierten Doppelbindungen, wie Divinylmethan oder Vinylcyclo- hexan oder Kohlenwasserstoffe mit leicht abstrahierbaren Wasserstoffatomen, wie beispielsweise Toluol, zum Einsatz. Es ist aber auch möglich, Gemische sich nicht störender vorgenannter radikalkettenübertragender Verbindungen einzusetzen.
Die im erfindungsgemäßen Verfahren optional eingesetzte Gesamtmenge der radikalkettenübertragenden Verbindungen, bezogen auf die Gesamtmonome- renmenge, ist in der Regel < 5 Gew.-%, oft < 3 Gew.-% und häufig < 1 Gew.-%.
Günstig ist es, wenn eine Teil- oder die Gesamtmenge der optional eingesetzten radikalkettenübertragenden Verbindung dem Reaktionsmedium vor der Initiierung der radikalischen Polymerisation zugeführt wird. Darüber hinaus kann eine Teil- oder die Gesamtmenge der radikalkettenübertragenden Verbindung dem wässrigen Reaktionsmedium vorteilhaft auch gemeinsam mit den Monomeren A1 bis A4 während der Polymerisation zugeführt werden.
Die nach dem erfindungsgemäßen Verfahren zugänglichen Polymerisate A können prinzipiell Glasübergangstemperaturen Tg im Bereich von > -70 und < 150 °C aufweisen. Mit Vorteil werden die Monomeren A1 bis A4 so gewählt, dass die erhaltenen Polymerisate A eine Glasübergangstemperatur Tg im Bereich von > -10 und < 130 °C und insbesondere vorteilhaft im Bereich > 10 und < 100 °C aufweisen. Unter Glasübergangstemperatur Tg wird im Rahmen die- ser Schrift die midpoint temperature nach ASTM D 3418-82 verstanden, ermittelt durch Differentialthermoanalyse (DSC) [vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, Seite 169, Verlag Chemie, Weinheim, 1992 und Zosel in Farbe und Lack, 82, Seiten 125 bis 134, 1976].
Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. 1956 [Ser. II] 1 , Seite 123 und gemäß Ullmann's Encyclopädie der technischen Chemie, Bd. 19, Seite 18, 4. Auflage, Verlag Chemie, Weinheim, 1980) gilt für die Glasübergangstemperatur von höchstens schwach vernetzten Mischpolymerisaten in guter Näherung:
1/Tg = x1/Tg1 + x2/Tg2 + .... xn/Tgn, wobei x1 , x2, .... xn die Massenbrüche der Monomeren 1 , 2, .... n und Tg1 , Tg2, .... Tgn die Glasübergangstemperaturen der jeweils nur aus einem der Mono- meren 1 , 2, .... n aufgebauten Polymerisaten in Grad Kelvin bedeuten. Die
Glasübergangstemperaturen dieser Homopolymerisate der meisten ethylenisch ungesättigten Monomere sind bekannt (bzw. können in einfacher an sich bekannter Weise experimentell ermittelt werden) und beispielsweise in J.
Brandrup, E.H. Immergut, Polymer Handbook Ist Ed. J. Wiley, New York, 1966, 2nd Ed. J. Wiley, New York, 1975 und 3rd Ed. J. Wiley, New York, 1989, sowie in Ullmann's Encyclopedia of Industrial Chemistry, Seite 169, Verlag Chemie, Weinheim, 1992, aufgeführt.
Vorteilhaft kann die erfindungsgemäße radikalisch initiierte wässrige Emulsi- onspolymerisation auch in Anwesenheit einer Polymersaat, beispielsweise in Anwesenheit von 0,01 bis 3 Gew.-%, häufig von 0,02 bis 2 Gew.-% und oft von 0,04 bis 1 ,5 Gew.-% einer Polymersaat, jeweils bezogen auf die Gesamtmono- merenmenge, erfolgen. Eine Polymersaat wird insbesondere dann eingesetzt, wenn die Teilchengröße der mittels einer radikalisch wässrigen Emulsionspolymerisation herzustellenden Polymerpartikel gezielt eingestellt werden soll (siehe hierzu beispielsweise US-A 2520959 und US-A 3397165). Insbesondere wird eine Polymersaat eingesetzt, deren Polymersaatpartikel eine enge Teilchengrößenverteilung und gewichtsmittlere Durchmesser Dw < 100 nm, häufig > 5 nm bis < 50 nm und oft > 15 nm bis < 35 nm aufweisen. Die Bestimmung der gewichtsmittleren Teilchendurchmesser ist dem Fachmann bekannt und erfolgt beispielsweise über die Methode der Analytischen Ultrazentri- fuge. Unter gewichtsmittlerem Teilchendurchmesser wird in dieser Schrift der nach der Methode der Analytischen Ultrazentrifuge ermittelte gewichtsmittlere Dw50-Wert verstanden (vgl. hierzu S.E. Harding et al., Analytical Ultracentrifu- gation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an
Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Mächtie, Seiten 147 bis 175).
Unter enger Teilchengrößenverteilung soll im Rahmen dieser Schrift verstanden werden, wenn das Verhältnis der nach der Methode der Analytischen Ultrazentrifuge ermittelten gewichtsmittleren Teilchendurchmesser Dw50 und zahlenmittleren Teilchendurchmesser DN50 [Dw50/DN50] < 2,0, bevorzugt < 1 ,5 und insbesondere bevorzugt < 1 ,2 oder < 1 ,1 ist. Üblicherweise wird die Polymersaat in Form einer wässrigen Polymerisatdispersion eingesetzt. Die vorgenannten Mengenangaben beziehen sich dabei auf den Polymerisatfeststoffanteil der wässrigen Polymersaatdispersion.
Wird eine Polymersaat verwendet, so wird vorteilhaft eine Fremdpolymersaat eingesetzt. Im Unterschied zu einer sogenannten in situ-Polymersaat, welche vor Beginn der eigentlichen Emulsionspolymerisation im Reaktionsgefäß hergestellt wird und welche in der Regel die gleiche monomere Zusammensetzung aufweist wie das durch die nachfolgende radikalisch initiierte wässrige Emulsionspolymerisation hergestellte Polymerisat, wird unter einer Fremdpolymersaat eine Polymersaat verstanden, die in einem separaten Reaktionsschritt hergestellt wurde und deren monomere Zusammensetzung von dem durch die radikalisch initiierte wässrige Emulsionspolymerisation hergestellten Polymerisat verschieden ist, was jedoch nichts anderes bedeutet, als dass zur Herstellung der Fremdpolymersaat und zur Herstellung der wässrigen Polymerisatdispersi- on unterschiedliche Monomere bzw. Monomerenmischungen mit unterschiedlicher Zusammensetzung eingesetzt werden. Die Herstellung einer Fremdpolymersaat ist dem Fachmann geläufig und erfolgt üblicherweise dergestalt, dass eine relativ kleine Menge an Monomeren sowie eine relativ große Menge an Emulgatoren in einem Reaktionsgefäß vorgelegt und bei Reaktionstemperatur eine ausreichende Menge an Polymerisationsinitiator zugegeben wird.
Erfindungsgemäß bevorzugt wird eine Polymerfremdsaat mit einer Glasübergangstemperatur > 50 °C, häufig > 60 °C oder > 70 °C und oft > 80 °C oder > 90 °C eingesetzt. Insbesondere bevorzugt ist eine Polystyrol- oder eine Poly- methylmethacrylatpolymersaat.
Die Gesamtmenge an Fremdpolymersaat kann im Polymerisationsgefäß vorgelegt werden. Es ist aber auch möglich, lediglich eine Teilmenge der Fremdpolymersaat im Polymerisationsgefäß vorzulegen und die verbleibende Restmen-
ge während der Polymerisation gemeinsam mit den Monomeren A1 bis A4 zuzugeben. Falls erforderlich, kann aber auch die Gesamtpolymersaatmenge im Verlauf der Polymerisation zuzugeben werden. Vorzugsweise wird die Gesamtmenge an Fremdpolymersaat vor Initiierung der Polymerisationsreaktion im Polymerisationsgefäß vorgelegt.
Die erfindungsgemäß zugänglichen wässrigen Polymerisat A-Dispersionen weisen üblicherweise einen Polymerisatfeststoffgehalt von > 10 und < 70 Gew.-%, häufig > 20 und < 65 Gew.-% und oft > 25 und < 60 Gew.-%, jeweils bezogen auf die wässrige Polymerisatdispersion, auf. Der über quasielastische Lichtstreuung (ISO-Norm 13 321) ermittelte zahlenmittlere Teilchendurchmesser (cumulant z-average) liegt in der Regel zwischen 10 und 2000 nm, häufig zwischen 20 und 1000 nm und oft zwischen 100 und 700 nm bzw. 100 bis 400 nm. Häufig werden bei den erhaltenen wässrigen Polymerisat A-Dispersionen die Restgehalte an nicht umgesetzten Monomeren sowie anderen leichtsiedenden Verbindungen durch dem Fachmann ebenfalls bekannte chemische und/oder physikalische Methoden [siehe beispielsweise EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741 184, DE-A 19741 187, DE-A 19805122, DE- A 19828183, DE-A 19839199, DE-A 19840586 und 198471 15] herabgesetzt.
Die nach dem erfindungsgemäßen Verfahren zugänglichen wässrigen Polymerisat A-Dispersionen können prinzipiell zur Herstellung von Klebstoffen, Dichtmassen, Kunststoff putzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Beschichtungsmitteln für organische Substrate, wie beispielsweise Leder oder textile Stoffe, sowie zur Modifizierung von mineralischen Bindemitteln eingesetzt werden.
Die nach dem erfindungsgemäßen Verfahren zugänglichen wässrigen Polyme- risat A-Dispersionen eignen sich jedoch insbesondere vorteilhaft zur Verwendung als Bindemittel für körnige und/oder faserförmige Substrate. Mit Vorteil lassen sich die genannten wässrigen Polymerisat A-Dispersionen daher zur Herstellung von Formkörpern aus körnigen und/oder faserförmigen Substraten einsetzen.
Körnige und/oder faserförmige Substrate sind dem Fachmann geläufig. Beispielsweise handelt es sich hierbei um Holzschnitzel, Holzfasern, Cellulosefa- sern, Textilfasern, Kunststofffasern, Glasfasern, Mineralfasern oder Naturfasern wie Jute, Flachs, Hanf oder Sisal, aber auch Korkschnitzel, Sand sowie andere
organische oder anorganische natürliche und/oder synthetische körnige und/oder faserförmige Verbindungen, deren längste Ausdehnung im Falle von körnigen Substraten < 10 mm, bevorzugt < 5 mm und insbesondere < 2 mm beträgt. Selbstverständlich soll der Begriff Substrat erfindungsgemäß auch die aus Fasern erhältlichen Faservliese, wie beispielsweise so genannte mechanisch verfestigte oder chemisch vorgebundene Faservliese sowie mechanisch verfestigte oder chemisch vorgebundene Papiere (insbesondere Rohpapiere und geleimte Papiere) sowie insbesondere auch poröse Filterpapiere mit umfassen.
Als Rohpapier soll im Rahmen dieser Schrift ein nach DIN 6730 (August 1985) flächiger, im wesentlichen aus Fasern vorwiegend pflanzlicher Herkunft bestehender Werkstoff verstanden werden, der durch Entwässerung einer verschiedene Hilfsstoffe enthaltenden Faserstoffaufschwemmung auf einem Sieb gebil- det wird, wobei der so erhaltene Faserfilz anschließend verdichtet und getrocknet wird. Als Hilfsstoffe finden beispielsweise dem Fachmann bekannte Füllstoffe, Farbstoffe, Pigmente, Bindemittel, optische Aufheller, Retentionsmittel, Netzmittel, Entschäumer, Konservierungsmittel, Schleimbekämpfungsmittel, Weichmacher, Antiblockmittel, Antistatika, Hydrophobierungsmittel usw. Ver- wendung. Abhängig vom erzielten Flächengewicht des erhaltenen flächigen Werkstoffs spricht man auch von Rohpapier (Flächengewicht < 225 g/m2) oder von Rohpappe (Flächengewicht > 225 g/m2). Daneben ist auch noch der Begriff "Karton" gebräuchlich, welcher mit einem Flächengewicht von ca. 150 bis 600 g/m2 sowohl Rohpapiersorten als auch Rohpappensorten umfasst. Aus Grün- den der Einfachheit soll im folgenden der Begriff "Rohpapier" sowohl Rohpapier, Rohpappe und Karton umfassen.
Häufig werden Rohpapieroberflächen mit Leimungsmitteln behandelt, welche im wesentlichen die Saugfähigkeit und damit die Beschreib- bzw. Bedruckbarkeit des Rohpapiers beeinflussen. Die so behandelten Papiere werden als "geleimte Papiere" bezeichnet. Entsprechende Verfahren sowie Art und Mengen der entsprechenden Leimungsmittel sind dem Fachmann geläufig.
Häufig wird das Rohpapier oder das geleimte Papier noch durch das sogenann- te Streichen veredelt, bzw. in die fertige Gebrauchsform überführt. Dabei versteht man unter Streichen von Papier die ein- oder beidseitige Beschichtung des Papiers mit einer im wesentlichen aus Pigmenten und Bindemitteln bestehenden wässrigen Streichmasse. Abhängig von der Art der Streichfarbe, der zu erzielenden Schichtdicke bzw. der herzustellenden Papiersorte, werden hierfür
unterschiedliche Streichverfahren, beispielsweise die dem Fachmann bekannten Walzen-, Rakel-, Luftbürsten- oder Gussstreichverfahren verwendet, welchen sich jeweils ein Trockenschritt anschließt. Die so behandelten Papiere werden als "gestrichene Papiere" bezeichnet.
Insbesondere vorteilhaft ist die erfindungsgemäße wässrige Polymerisat A- Dispersion als formaldehydfreies Bindemittelsystem für die vorgenannten Fasern bzw. daraus gebildete Faservliese oder Papiere geeignet. Mit besonderem Vorteil werden die erfindungsgemäßen wässrigen Polymerisat A-Dispersionen als alleinige oder als zusätzliche Bindemittel oder Bindemittelkomponente für die Verstärkung von Rohpapier und für geleimtes Papier, insbesondere jedoch für Filterpapier eingesetzt.
Das Verfahren zur Herstellung eines Formkörpers aus einem körnigen und/oder faserförmigen Substrat und der vorgenannten wässrigen Polymerisat A- Dispersion oder einer diese enthaltenden Bindemittelformulierung erfolgt vorteilhaft dergestalt, dass die erfindungsgemäße wässrige Polymerisat A- Dispersion oder eine diese enthaltende Bindemittelformulierung auf das körnige und/oder faserförm ige Substrat aufgebracht wird bzw. das körnige und/oder faserförmige Substrat mit der erfindungsgemäßen wässrigen Polymerisat A- Dispersion oder einer diese enthaltende Bindemittelformulierung getränkt wird, gegebenenfalls das mit der wässrigen Polymerisat A-Dispersion oder einer diese enthaltenden Bindemittelformulierung behandelte körnige und/oder faserförmige Substrat in Form gebracht wird und das so behandelte körnige und/oder faserförmige Substrat anschließend einem thermischen Behandlungsschritt bei einer Temperatur > 50 °C unterzogen werden.
Wässrige Bindemittelformulierungen, welche eine erfindungsgemäße wässrige Polymerisat A-Dispersion enthalten, können weitere, dem Fachmann in Art und Menge geläufige übliche Hilfsstoffe enthalten, wie beispielsweise Füllstoffe, Farbstoffe, Pigmente, optische Aufheller, Retentionsmittel, Netzmittel, Entschäumer, Konservierungsmittel, Schleimbekämpfungsmittel, Weichmacher, Antiblockmittel, Antistatika, Hydrophobierungsmittel etc. Das Aufbringen (Imprägnieren) der erfindungsgemäßen wässrigen Polymerisat A-Dispersion oder einer diese enthaltenden Bindemittelformulierung auf das körnige und/oder faserförmige Substrat erfolgt in der Regel dergestalt, dass die erfindungsgemäße wässrige Polymerisat A-Dispersion oder eine diese enthaltende Bindemittelformulierung gleichmäßig auf die Oberfläche des körnigen
und/oder faserförmigen Substrats aufgebracht wird. Dabei wird die Menge an wässriger Polymerisat A-Dispersion oder an wässriger Bindemittelformulierung so gewählt, dass pro 100 g körnigem und/oder faserförmigem Substrat > 1 g und < 100 g, bevorzugt > 1 g und < 50 g und insbesondere bevorzugt > 5 g und < 30 g Polymerisat A (als Feststoff gerechnet) eingesetzt werden. Die Technik der Imprägnierung der körnigen und/oder faserförmigen Substrate ist dem Fachmann geläufig und erfolgt beispielsweise durch Tränkung oder durch Besprühen der körnigen und/oder faserförmigen Substrate. Nach der Imprägnierung wird das körnige und/oder faserförmige Substrat gegebenenfalls in die gewünschte Form gebracht, beispielsweise durch Einbringen in eine beheizbare Presse oder Form. Daran anschließend wird das in Form gebrachte imprägnierte körnige und/oder faserförmige Substrat in einer dem Fachmann geläufigen Art und Weise getrocknet und ausgehärtet.
Häufig erfolgt die Trocknung und Aushärtung des gegebenenfalls in Form gebrachten imprägnierten körnigen und/oder faserförmigen Substrats bei einer Temperatur > 50 °C und < 250 °C, bevorzugt > 100 °C und < 220 °C und insbesondere bevorzugt > 150 und < 200 °C.
Die nach dem erfindungsgemäßen Verfahren zugänglichen Formkörper, insbesondere Faservliese oder Papiere weisen vorteilhafte Eigenschaften, insbesondere eine verbesserte Reißfestigkeit bzw. einen erhöhten Berstdruck im Vergleich zu den Formkörpern des Standes der Technik auf.
Die Erfindung soll anhand nachfolgender nicht einschränkender Beispiele erläutert werden.
Beispiele a) wässrige Polymerisat A-Dispersionen Beispiel 1 In einem mit Rührer, Thermometer, Rückflusskühler und Dosierleitungen ausgestatteten 5 I-Polymerisationsgefäß wurde bei 20 bis 25 °C (Raumtemperatur) und unter Stickstoffatmosphäre ein Gemisch bestehend aus 560 g entionisiertem Wasser und 26,3 g einer wässrigen Polystyrolsaatlatex (Feststoffgehalt 33 Gew.-%; gewichtsmittlerer Teilchendurchmesser 30 nm) vorgelegt.
Zulauf 1 bestand aus einer homogenen Emulsion, hergestellt aus 396 g entionisiertem Wasser, 46,7 g einer 3 gew.-%igen wässrigen Natriumpyrophosphatlö- sung, 6,2 g einer 45 gew.-%igen wässrigen Lösung eines C12C14- Alkyldiphenylether-disulfonsäure-Natriumsalzes (Dowfax® 2A1), 50,0 g einer 28 gew.-%igen wässrigen Lösung von Natriumlaurylethersulfat (Texapon® NSO der Firma Cognis), 68,6 g Acrylsäure, 46,7 g einer 15 gew.-%igen wässrigen Lösung von Methacrylamid, 23,5 g Glycidylmethacrylat, 734 g Styrol und 567 g n-Butylacrylat.
Zulauf 2 bestand aus 1 10 g einer 7 gew.-%igen wässrigen Lösung von Natrium peroxidisulfat.
Die Vorlage wurde unter Rühren und Stickstoffatmosphäre auf 95 °C aufge- heizt. Anschließend wurden unter Aufrechterhaltung dieser Temperatur 33,0 g von Zulauf 2 zugegeben und die Vorlage 5 Minuten gerührt. Daran anschließend wurden gleichzeitig beginnend Zulauf 1 innerhalb von 135 Minuten und die Restmenge von Zulauf 2 innerhalb von 140 Minuten mit gleichbleibenden Mengenstömen zudosiert.
Nach Beendigung der Zuläufe wurde noch 15 Minuten bei 95 °C nachpolymeri- siert und danach die erhaltene wässrige Polymerisatdispersion auf 75 °C abgekühlt. Bei dieser Temperatur wurden gleichzeitig beginnend 35,0 g einer 10 gew.-%igen wässrigen tert.-Butylhydroperoxid-Lösung und 42,1 g einer 13,3 gew.-%igen wässrigen Lösung von Acetonbisulfit (molares 1 : 1-Additionsprodukt aus Aceton und Natriumhydrogensulfit) innerhalb von 60 Minuten mit gleichbleibenden Mengenströmen zudosiert. Nach Beendigung der Dosierungen wurde die wässrige Polymerisatdispersion auf Raumtemperatur abgekühlt. Der erhaltenen wässrigen Polymerisatdispersion wurden bei Raumtemperatur noch 84,0 g entionisiertes Wasser sowie als Biozide 84,0 g Acticid® MV (1 ,5 gew.-%ige wässrige Biozidlösung der Firma Thor GmbH) und 1 1 ,2 g Acticid® MBS (5 gew.-%ige wässrige Biozidlösung der Firma Thor GmbH) zugegeben und danach die wässrige Polymerisatdispersion über 120 μηη-Filter filtriert. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 49,8 Gew.- % auf. Die zahlenmittlere Teilchengröße wurde zu 172 nm und der Tg-Wert zu 40 °C bestimmt.
Die Feststoffgehalte wurden generell bestimmt, indem eine definierte Menge der wässrigen Polymerisatdispersion (ca. 0,8 g) mit Hilfe Feuchtebestimmer
HR73 der Firma Mettler Toledo bei einer Temperatur von 130 °C bis zur Gewichtskonstanz getrocknet wurde.
Der zahlenmittlere Teilchendurchmesser der Latexteilchen wurde durch dyna- mische Lichtstreuung (DLS) an einer 0,005 bis 0,01 gewichtsprozentigen wässrigen Dispersion bei 23 °C mittels Autosizer MC der Fa. Malvern Instruments, England, ermittelt. Angegeben wird der mittlere Durchmesser der Kumulantenauswertung (cumulant z-average) der gemessenen Autokorrelationsfunktion (ISO-Norm 13321 ).
Die Glasübergangstemperatur wurde mit Hilfe eines Differentialkalorimeters der Firma Mettler Toledo bestimmt. Die Heizrate betrug 10K/min. Die Auswertung erfolgte mittels der Software Star Version 9.01. Beispiel 2
Die Herstellung von Beispiel 2 erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 393 g anstelle von 396 g entionisiertem Wasser, 26,3 g einer 50 gew.-%igen wässrigen Lösung von Acrylamid anstelle von 46,7 g einer 15 gew.-%igen wässrigen Lösung von Methacrylamid und 728 g anstelle von 734 g Styrol eingesetzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 50,2 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 172 nm und der Tg-Wert zu 39 °C bestimmt.
Beispiel 3
Die Herstellung von Beispiel 3 erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 266 g anstelle von 396 g entionisiertem Wasser, 175 g anstelle von 46,7 g einer 15 gew.-%igen wässrigen Lösung von Methacrylamid und 715 g anstelle von 734 g Styrol eingesetzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 50,5 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 179 nm und der Tg-Wert zu 39 °C bestimmt.
Beispiel 4
Die Herstellung von Beispiel 4 erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 158 g anstelle von 396 g entionisiertem Wasser, 327 g anstelle von 46,7 g einer 15 gew.-%igen wässrigen Lösung von Methac- rylamid und 692 g anstelle von 734 g Styrol eingesetzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von
49.1 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 178 nm und der Tg-Wert zu 39 °C bestimmt. Vergleichsbeispiel V1
Die Herstellung des Vergleichsbeispiels Vi erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 436 g anstelle von 396 g entionisiertem Wasser, 741 g anstelle von 734 g Styrol und kein Methacrylamid einge- setzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 49,6 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 175 nm und der Tg-Wert zu 40 °C bestimmt.
Vergleichsbeispiel V2
Die Herstellung des Vergleichsbeispiels V2 erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 757 g anstelle von 734 g Styrol und kein Glycidylmethacrylat eingesetzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von
50.2 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 184 nm und der Tg-Wert zu 41 °C bestimmt.
Vergleichsbeispiel V3
Die Herstellung des Vergleichsbeispiels V3 erfolgte völlig analog Beispiel 1 , jedoch mit dem Unterschied, dass in Zulauf 1 802 g anstelle von 734 g Styrol und keine Acrylsäure eingesetzt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 49,8 Gew.-% auf. Die zahlenmittlere Teilchengröße wurde zu 168 nm und der Tg-Wert zu 42 °C bestimmt.
b) anwendungstechnische Prüfungen
Für die anwendungstechnische Prüfung wurde ein marktübliches Rohpapier zur Herstellung von Automobilluftfiltern mit einem Flächengewicht von 107 g/m2 eingesetzt. Die Papierblätter hatten eine Größe von 21 ,0 x 29,7 cm [DIN A4], wobei die Längsrichtung der Maschinenlaufrichtung entsprach.
Die gemäß den Beispielen 1 bis 4 und der Vergleichsbeispiele V1 bis V3 erhal- tenen wässrigen Polymerisatdispersionen wurden mit entionisiertem Wasser auf einen Feststoffgeh alt von 10 Gew.-% verdünnt. Danach wurden die vorgenannten Papierblätter in Längsrichtung über ein Endlos-Siebband mit einer Bandlaufgeschwindigkeit von 80 cm pro Minute durch die so erhaltenen Bindemittelflotten 1 bis 4 sowie V1 bis V3 geleitet. Durch anschließende Absaugung der Bindemittelflotten wurde ein Nassauftrag von 210 g/m2 (entsprechend 21 g Polymerisat pro m2) eingestellt. Daran anschließend wurden die feuchten Papierblätter für 3 Minuten bei 180 °C in einem Mathisofen bei maximalem Heißluftstrom getrocknet. Danach wurden die so erhaltenen imprägnierten Papiere für 24 Stunden bei 23 °C und 50 % relativer Luftfeuchtigkeit in einem Klimaraum gelagert.
Daran anschließend wurden aus den imprägnierten Papieren 20 x 15 cm Prüfstreifen ausgeschnitten. Entsprechend den zur Imprägnierung verwendeten wässrigen Polymerisatdispersionen 1 bis 4 sowie V1 bis V3, werden diese als Prüfstreifen 1 bis 4 bzw. Prüfstreifen V1 bis V3 bezeichnet. Die Prüfstreifen wurden für 2 Minuten in einer 2 gew.-%igen wässrigen Lösung von Emulgator® K30 (Natriumalkansulfonat mit einer mittleren Kettenlänge von 15 C; Firma Bayer AG) gelagert, überschüssige Emulgatorlösung mit einem Baumwollgewebe abgetupft und unmittelbar danach der Berstdruck (nass) mit einer Festig- keitsprüfmaschine der Fa. Zwick mit dem Prüfmodul Berstdruck gemäß ISO 2758 ermittelt. Dazu wurden die jeweiligen Prüfstreifen über einer kreisförmigen elastischen Membran eingespannt und danach die Membran gemeinsam mit dem jeweiligen Prüfstreifen mittels einer hydraulischen Flüssigkeit solange aufgewölbt bis der jeweilige Prüfstreifen barst. Der Druck beim Bersten der Prüf- streifen wird Berstdruck genannt. Der Berstdruck wird umso besser beurteilt, je höher er ist. Es wurden jeweils 5 separate Messungen durchgeführt. Die in nachfolgender Tabelle 1 angegebenen Berstdruckwerte stellen die Mittelwerte dieser einzelnen Messungen dar.
Tabelle 1 : Berstdruckwerte der unter Verwendung der erfindungsgemäßen Polymerisatdispersionen 1 bis 4 sowie der Vergleichsdispersionen V1 bis V3 erhaltenen Prüfstreifen
Prüfstreifen Berstdruck (nass)
[kPa]
V1 160
V2 158
V3 152
1 189
2 197
3 203
4 179
Claims
1. Verfahren zur Herstellung einer wässrigen Dispersion eines Polymerisats A durch radikalisch initiierte wässrige Emulsionspolymerisation ethylenisch ungesättigter Monomerer in Anwesenheit wenigstens eines Disper- gierhilfsmittels und wenigstens eines Radikalinitiators, dadurch gekennzeichnet, dass zur Polymerisation
0,1 bis 5 Gew.-% Acrylamid und/oder Methacrylamid (Monomer
A1 ),
0,1 bis 15 Gew.-% wenigstens einer ethylenisch ungesättigten C3- bis C6-Mono- oder Dicarbonsäure (Monomer A2),
0,1 bis 10 Gew.-% wenigstens einer ethylenisch ungesättigten
Verbindung, welche wenigstens eine Oxiranyl- oder eine Oxetanylgruppe aufweist (Monomer A3), und
70 bis 99,7 Gew.-% wenigstens einer anderen ethylenisch ungesät tigten Verbindung, welche mit den Monomeren A1 bis A3 copolymerisierbar ist (Monomer A4), eingesetzt werden, wobei sich die Monomerenmengen A1 bis A4 zu 100 Gew.-% addieren.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zur Polym sation
0,7 bis 2,5 Gew.-% wenigstens eines Monomeren A1
1 bis 7 Gew.-% wenigstens eines Monomeren A2 und
0,5 bis 5 Gew.-% wenigstens eines Monomeren A3 und
85,5 bis 97,8 Gew.-% wenigstens eines Monomeren A4 eingesetzt werden. 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Methacrylamid als Monomer A1 , Acrylsäure und/oder Methacrylsäu- re als Monomer A2, Glycidylacrylat und/oder Glycidylmethacrylat als Monomer A3 und Styrol, n-Butylacrylat, Methylmethacrylat und/oder 2- Ethylhexylacrylat als Monomer A4 eingesetzt werden.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Monomeren A1 bis A4 und deren Mengen so gewählt werden, dass das erhaltene Polymerisat A eine Glasübergangstemperatur Tg > 10 und < 100 °C aufweist.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als wenigstens ein Dispergierhilfsmittel ein anionischer Emulgator eingesetzt wird.
Wässrige Polymerisatdispersion, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 5.
Verwendung einer wässrigen Polymerisatdispersion gemäß Anspruch 6 als Bindemittel für körnige und/oder faserförmige Substrate.
Verwendung nach Anspruch 7, wobei als faserförmiges Substrat ein mechanisch verfestigtes oder chemisch vorgebundenes Papier eingesetzt wird.
Verfahren zur Herstellung eines Formkörpers aus körnigen und/oder fa- serförmigen Substraten, dadurch gekennzeichnet, dass eine wässrige Polymerisatdispersion gemäß Anspruch 6 oder eine diese enthaltende Bindemittelformulierung auf das körnige und/oder faserförmige Substrat aufgebracht wird, gegebenenfalls das mit der wässrigen Polymerisatdispersion oder einer diese enthaltende Bindemittelformulierung behandelten körnige und/oder faserförmige Substrat in Form gebracht wird und anschließend das behandelte körnige und/oder faserförmige Substrat einem thermischen Behandlungsschritt bei einer Temperatur > 50 °C unterzogen wird.
Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Menge der wässrigen Polymerisatdispersion so gewählt wird, dass pro 100 g körniges und/oder faserförmiges Substrat > 1 g und < 100 g Polymerisat A aufgebracht werden. 1. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das körnige und/oder faserförmige Substrat ein chemisch oder physikalisch vorgebundenes Papier ist.
12. Formkörper erhältlich nach einem Verfahren gemäß einem der Ansprüche 9 bis 1 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/391,941 US9096697B2 (en) | 2009-09-09 | 2010-09-07 | Method for producing an aqueous binding agent dispersion |
ES10771369.5T ES2542742T3 (es) | 2009-09-09 | 2010-09-07 | Procedimiento para la preparación de una dispersión acuosa de aglutinante |
EP20100771369 EP2475692B1 (de) | 2009-09-09 | 2010-09-07 | Verfahren zur herstellung einer wässrigen bindemitteldispersion |
CN201080040254.6A CN102597023B (zh) | 2009-09-09 | 2010-09-07 | 制备含水粘合剂分散体的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09169849 | 2009-09-09 | ||
EP09169849.8 | 2009-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011029810A1 true WO2011029810A1 (de) | 2011-03-17 |
Family
ID=43083831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/063086 WO2011029810A1 (de) | 2009-09-09 | 2010-09-07 | Verfahren zur herstellung einer wässrigen bindemitteldispersion |
Country Status (5)
Country | Link |
---|---|
US (1) | US9096697B2 (de) |
EP (1) | EP2475692B1 (de) |
CN (1) | CN102597023B (de) |
ES (1) | ES2542742T3 (de) |
WO (1) | WO2011029810A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012065901A1 (en) * | 2010-11-18 | 2012-05-24 | Solvay Sa | Process for preparing a vinylidene chloride polymer latex |
WO2015192257A1 (de) | 2014-06-16 | 2015-12-23 | Flumroc Ag | Verfahren zur herstellung eines wasserlöslichen prepolymeren und prepolymer hergestellt nach dem verfahren |
US10266662B2 (en) | 2014-04-04 | 2019-04-23 | Basf Se | Production of shaped articles |
EP3176187B1 (de) | 2015-12-02 | 2019-08-07 | Organik Kimya Sanayi Ve Tic. A.S. | Formaldehydfreie wärmehärtbare polymere |
CN114369207A (zh) * | 2021-12-27 | 2022-04-19 | 广东华盛银洋环保新材料有限公司 | 一种汽车空气滤纸乳液及其制备方法和汽车空气滤纸 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113015756B (zh) | 2018-10-10 | 2024-08-02 | 罗门哈斯公司 | 包含多阶段胶乳聚合物颗粒的水性组合物 |
CA3168208A1 (en) | 2020-02-21 | 2021-08-26 | Swimc Llc | Stain-blocking polymers, primers, kits, and methods |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2520959A (en) | 1945-11-06 | 1950-09-05 | Goodrich Co B F | Polymerization of vinyl compounds |
US3397165A (en) | 1964-05-04 | 1968-08-13 | Grace W R & Co | Preparation of latex of butadienecontaining copolymers |
DE2214450A1 (de) | 1971-03-25 | 1972-10-05 | Ethylene-Plastique S.A., Courbevoie (Frankreich) | Verfahren zur Behandlung eines Materials mit einem unter Verwendung eines Maleinsäureäthylenanhydrid-Kopolymers hergestellten Pulver |
US4076917A (en) | 1974-03-25 | 1978-02-28 | Rohm And Haas Company | Method for curing polymers containing one or more carboxy or anhydride functions and compositions |
US4269749A (en) | 1979-04-30 | 1981-05-26 | The Dow Chemical Company | Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions |
JPS598747A (ja) * | 1982-07-05 | 1984-01-18 | Daicel Chem Ind Ltd | カラ−舗装材料 |
JPS63264958A (ja) * | 1987-04-20 | 1988-11-01 | 旭化成株式会社 | 繊維質シ−ト用結合剤 |
DE4003422A1 (de) | 1990-02-06 | 1991-08-08 | Basf Ag | Waessrige polyurethanzubereitungen |
EP0445578A2 (de) | 1990-03-03 | 1991-09-11 | BASF Aktiengesellschaft | Formkörper |
US5143582A (en) | 1991-05-06 | 1992-09-01 | Rohm And Haas Company | Heat-resistant nonwoven fabrics |
EP0583086A1 (de) | 1992-08-06 | 1994-02-16 | Rohm And Haas Company | Wässerige hitzehärtbare Zusammensetzung und ihre Verwendung als Glassfaservliesstoff-Bindemittel |
EP0651088A1 (de) | 1993-10-22 | 1995-05-03 | Rohm And Haas Company | Verfahren zur Verstärkung von zellulosischen Substraten |
EP0661305A1 (de) | 1993-12-23 | 1995-07-05 | BASF Aktiengesellschaft | Formaldehydfreie wässrige Kunstharzdispersionen |
EP0672920A1 (de) | 1992-10-23 | 1995-09-20 | Nippon Carbide Kogyo Kabushiki Kaisha | Herstellungsverfahren für retroreflektierende folie |
DE19624299A1 (de) | 1995-06-30 | 1997-01-02 | Basf Ag | Verfahren zur Entfernung organischer Verbindungen aus Dispersionen und Vorrichtung zu dessen Durchführung |
EP0771328A1 (de) | 1994-06-03 | 1997-05-07 | Basf Aktiengesellschaft | Verfahren zur herstellung einer wässrigen polymerisatdispersion |
DE19621027A1 (de) | 1996-05-24 | 1997-11-27 | Basf Ag | Verfahren zur Abtrennung flüchtiger organischer Komponenten aus Suspensionen oder Dispersionen |
EP0882074A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie, wässrige bindemittel |
EP0882093A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie bindemittel für formkörper |
EP0882094A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie beschichtungsmittel für formkörper |
EP0902796A1 (de) | 1996-05-29 | 1999-03-24 | Basf Aktiengesellschaft | Thermisch härtbare, wässrige zusammensetzungen |
DE19741184A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung von Restmonomeren in Flüssigsystemen unter Zugabe eines Redoxinitiatorsystems |
DE19741187A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen |
DE19805122A1 (de) | 1998-02-09 | 1999-04-22 | Basf Ag | Verfahren zur Herstellung wässriger Polymerisatdispersionen mit geringem Restmonomerengehalt |
DE19828183A1 (de) | 1998-06-24 | 1999-12-30 | Basf Ag | Verfahren zur Entfernung von restflüchtigen Komponenten aus Polymerdispersionen |
DE19839199A1 (de) | 1998-08-28 | 2000-03-02 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19840586A1 (de) | 1998-09-05 | 2000-03-09 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19847115C1 (de) | 1998-10-13 | 2000-05-04 | Basf Ag | Gegenstrom-Stripprohr |
EP1005508A1 (de) | 1997-08-19 | 2000-06-07 | Basf Aktiengesellschaft | Wässrige zusammensetzungen |
EP1018523A2 (de) | 1999-01-08 | 2000-07-12 | Basf Aktiengesellschaft | Polymerdispersion |
EP1240205A1 (de) | 1999-10-14 | 2002-09-18 | Basf Aktiengesellschaft | Thermisch härtbare polymerdispersion |
EP1340774A1 (de) | 2002-02-27 | 2003-09-03 | Basf Aktiengesellschaft | Verfahren zur Herstellung einer wässrigen thermisch härtbaren Polymerdispersion |
EP1448733A2 (de) | 2001-10-23 | 2004-08-25 | Basf Aktiengesellschaft | Thermisch härtbare bindemittel |
EP1457245A2 (de) | 2003-03-11 | 2004-09-15 | Basf Aktiengesellschaft | Verwendung von wässrigen Bindemitteln bei der Herstellung von Filtermaterialien |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6433098B1 (en) * | 1994-06-13 | 2002-08-13 | Rohm And Haas Company | Process of preparing curable compositions and compositions therefrom |
DE19526336A1 (de) * | 1995-07-19 | 1997-01-23 | Basf Ag | Verwendung wäßriger Polymerisatdispersionen zum Modifizieren mineralischer Baustoffe |
DE19624281A1 (de) * | 1996-06-18 | 1998-01-02 | Basf Ag | Verfahren zur Herstellung niedrigviskoser, wässriger Polymerisat-Dispersionen mit Polymervolumenkonzentrationen von wenigstens 50 Vol.-% |
US20090163655A1 (en) * | 2006-04-28 | 2009-06-25 | Basf Se | Pressure-sensitive adhesive with enhanced resistance to water-whitening |
-
2010
- 2010-09-07 EP EP20100771369 patent/EP2475692B1/de active Active
- 2010-09-07 CN CN201080040254.6A patent/CN102597023B/zh active Active
- 2010-09-07 WO PCT/EP2010/063086 patent/WO2011029810A1/de active Application Filing
- 2010-09-07 ES ES10771369.5T patent/ES2542742T3/es active Active
- 2010-09-07 US US13/391,941 patent/US9096697B2/en not_active Expired - Fee Related
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2520959A (en) | 1945-11-06 | 1950-09-05 | Goodrich Co B F | Polymerization of vinyl compounds |
US3397165A (en) | 1964-05-04 | 1968-08-13 | Grace W R & Co | Preparation of latex of butadienecontaining copolymers |
DE2214450A1 (de) | 1971-03-25 | 1972-10-05 | Ethylene-Plastique S.A., Courbevoie (Frankreich) | Verfahren zur Behandlung eines Materials mit einem unter Verwendung eines Maleinsäureäthylenanhydrid-Kopolymers hergestellten Pulver |
US4076917A (en) | 1974-03-25 | 1978-02-28 | Rohm And Haas Company | Method for curing polymers containing one or more carboxy or anhydride functions and compositions |
US4269749A (en) | 1979-04-30 | 1981-05-26 | The Dow Chemical Company | Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions |
JPS598747A (ja) * | 1982-07-05 | 1984-01-18 | Daicel Chem Ind Ltd | カラ−舗装材料 |
JPS63264958A (ja) * | 1987-04-20 | 1988-11-01 | 旭化成株式会社 | 繊維質シ−ト用結合剤 |
DE4003422A1 (de) | 1990-02-06 | 1991-08-08 | Basf Ag | Waessrige polyurethanzubereitungen |
EP0445578A2 (de) | 1990-03-03 | 1991-09-11 | BASF Aktiengesellschaft | Formkörper |
US5143582A (en) | 1991-05-06 | 1992-09-01 | Rohm And Haas Company | Heat-resistant nonwoven fabrics |
EP0583086A1 (de) | 1992-08-06 | 1994-02-16 | Rohm And Haas Company | Wässerige hitzehärtbare Zusammensetzung und ihre Verwendung als Glassfaservliesstoff-Bindemittel |
EP0672920A1 (de) | 1992-10-23 | 1995-09-20 | Nippon Carbide Kogyo Kabushiki Kaisha | Herstellungsverfahren für retroreflektierende folie |
EP0651088A1 (de) | 1993-10-22 | 1995-05-03 | Rohm And Haas Company | Verfahren zur Verstärkung von zellulosischen Substraten |
US5718728A (en) * | 1993-10-22 | 1998-02-17 | Rohm And Haas Company | Method for strengthening cellulosic substrates, celluosic non woven wipes, and paper filter stock |
EP0661305A1 (de) | 1993-12-23 | 1995-07-05 | BASF Aktiengesellschaft | Formaldehydfreie wässrige Kunstharzdispersionen |
EP0771328A1 (de) | 1994-06-03 | 1997-05-07 | Basf Aktiengesellschaft | Verfahren zur herstellung einer wässrigen polymerisatdispersion |
DE19624299A1 (de) | 1995-06-30 | 1997-01-02 | Basf Ag | Verfahren zur Entfernung organischer Verbindungen aus Dispersionen und Vorrichtung zu dessen Durchführung |
EP0882094A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie beschichtungsmittel für formkörper |
EP0882074A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie, wässrige bindemittel |
EP0882093A1 (de) | 1996-02-21 | 1998-12-09 | Basf Aktiengesellschaft | Formaldehydfreie bindemittel für formkörper |
DE19621027A1 (de) | 1996-05-24 | 1997-11-27 | Basf Ag | Verfahren zur Abtrennung flüchtiger organischer Komponenten aus Suspensionen oder Dispersionen |
EP0902796A1 (de) | 1996-05-29 | 1999-03-24 | Basf Aktiengesellschaft | Thermisch härtbare, wässrige zusammensetzungen |
EP1005508A1 (de) | 1997-08-19 | 2000-06-07 | Basf Aktiengesellschaft | Wässrige zusammensetzungen |
DE19741184A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung von Restmonomeren in Flüssigsystemen unter Zugabe eines Redoxinitiatorsystems |
DE19741187A1 (de) | 1997-09-18 | 1999-03-25 | Basf Ag | Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen |
DE19805122A1 (de) | 1998-02-09 | 1999-04-22 | Basf Ag | Verfahren zur Herstellung wässriger Polymerisatdispersionen mit geringem Restmonomerengehalt |
DE19828183A1 (de) | 1998-06-24 | 1999-12-30 | Basf Ag | Verfahren zur Entfernung von restflüchtigen Komponenten aus Polymerdispersionen |
DE19839199A1 (de) | 1998-08-28 | 2000-03-02 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19840586A1 (de) | 1998-09-05 | 2000-03-09 | Basf Ag | Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen |
DE19847115C1 (de) | 1998-10-13 | 2000-05-04 | Basf Ag | Gegenstrom-Stripprohr |
EP1018523A2 (de) | 1999-01-08 | 2000-07-12 | Basf Aktiengesellschaft | Polymerdispersion |
EP1240205A1 (de) | 1999-10-14 | 2002-09-18 | Basf Aktiengesellschaft | Thermisch härtbare polymerdispersion |
EP1448733A2 (de) | 2001-10-23 | 2004-08-25 | Basf Aktiengesellschaft | Thermisch härtbare bindemittel |
EP1340774A1 (de) | 2002-02-27 | 2003-09-03 | Basf Aktiengesellschaft | Verfahren zur Herstellung einer wässrigen thermisch härtbaren Polymerdispersion |
EP1457245A2 (de) | 2003-03-11 | 2004-09-15 | Basf Aktiengesellschaft | Verwendung von wässrigen Bindemitteln bei der Herstellung von Filtermaterialien |
Non-Patent Citations (16)
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012065901A1 (en) * | 2010-11-18 | 2012-05-24 | Solvay Sa | Process for preparing a vinylidene chloride polymer latex |
US10266662B2 (en) | 2014-04-04 | 2019-04-23 | Basf Se | Production of shaped articles |
WO2015192257A1 (de) | 2014-06-16 | 2015-12-23 | Flumroc Ag | Verfahren zur herstellung eines wasserlöslichen prepolymeren und prepolymer hergestellt nach dem verfahren |
EP3176187B1 (de) | 2015-12-02 | 2019-08-07 | Organik Kimya Sanayi Ve Tic. A.S. | Formaldehydfreie wärmehärtbare polymere |
EP3176187B2 (de) † | 2015-12-02 | 2022-07-06 | Organik Kimya Sanayi Ve Tic. A.S. | Formaldehydfreie wärmehärtbare polymere |
CN114369207A (zh) * | 2021-12-27 | 2022-04-19 | 广东华盛银洋环保新材料有限公司 | 一种汽车空气滤纸乳液及其制备方法和汽车空气滤纸 |
CN114369207B (zh) * | 2021-12-27 | 2024-04-09 | 广东华盛银洋环保新材料有限公司 | 一种汽车空气滤纸乳液及其制备方法和汽车空气滤纸 |
Also Published As
Publication number | Publication date |
---|---|
US9096697B2 (en) | 2015-08-04 |
CN102597023A (zh) | 2012-07-18 |
ES2542742T3 (es) | 2015-08-11 |
US20120156467A1 (en) | 2012-06-21 |
EP2475692A1 (de) | 2012-07-18 |
EP2475692B1 (de) | 2015-04-29 |
CN102597023B (zh) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2004701B1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP2814885B1 (de) | Wässrige bindemittelzusammensetzung | |
EP2475692B1 (de) | Verfahren zur herstellung einer wässrigen bindemitteldispersion | |
EP2760898B1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP3387031A1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP2158226A1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
US9023919B2 (en) | Aqueous binder composition | |
EP1910423B1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP3169738A1 (de) | Bindemittel für bodenbelagsklebstoffe | |
EP2177563A1 (de) | Wässriges Bindemittel für körnige und/oder faserförmige Substrate | |
WO2007122089A1 (de) | Verwendung einer wässrigen polymerzusammensetzung als bindemittel für faserförmige oder körnige substrate | |
EP1977042A1 (de) | Verwendung einer wässrigen polymerzusammensetzung zum imprägnieren von roh-papier | |
EP3328902A1 (de) | Wässrige dispersion eines oxazolingruppenhaltigen polymers | |
DE102011005638A1 (de) | Verfahren zur Herstellung eines Formkörpers aus körnigen und/oder faserförmigen Substraten | |
WO2007057365A2 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
WO2009135812A1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP3129414B1 (de) | Verfahren zur herstellung einer wässrigen polymerisatdispersion | |
EP3126432B1 (de) | Verfahren zur herstellung von formkörpern | |
DE102008041296A1 (de) | Wässriges Imprägniermittel für Rohpapier | |
WO2007085564A1 (de) | Verfahren zur herstellung einer stabilen, aconitsäurehaltigen wässrigen copolymerisatdispersion | |
WO2007085547A1 (de) | Verfahren zur herstellung von wässrigen dispersionen aconitsäurehaltiger copolymerisate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080040254.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10771369 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010771369 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13391941 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |