WO2011029538A1 - Elektrofahrzeug mit einer fahrzeug-klimaanlage - Google Patents

Elektrofahrzeug mit einer fahrzeug-klimaanlage Download PDF

Info

Publication number
WO2011029538A1
WO2011029538A1 PCT/EP2010/005304 EP2010005304W WO2011029538A1 WO 2011029538 A1 WO2011029538 A1 WO 2011029538A1 EP 2010005304 W EP2010005304 W EP 2010005304W WO 2011029538 A1 WO2011029538 A1 WO 2011029538A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
vehicle
refrigerant circuit
battery
electric machine
Prior art date
Application number
PCT/EP2010/005304
Other languages
English (en)
French (fr)
Inventor
Dirk Schroeder
Christian Rebinger
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2011029538A1 publication Critical patent/WO2011029538A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Definitions

  • the invention relates to a vehicle, in particular electric vehicle, according to the preamble of claim 1 and a method for operating a refrigerant circuit of an air conditioner in a vehicle, according to claim 12. Due to measures to increase efficiency falls in today's vehicles with power the proportion of Ab-A loss of heat in the engine cooling water from ever lower. This increasingly creates a lack of heating potential in order to be able to keep the level of comfort for vehicle passengers in the vehicle interior at a high level.
  • a refrigerant circuit which operates on the heat pump principle, in which a compressor are connected together with a condenser, an expansion valve and an evaporator in the refrigerant circuit.
  • a cooler side heat exchanger and two heat exchangers are connected in the air conditioner of the air conditioner.
  • the radiator-side heat exchanger operates as a condenser, which gives off heat to the environment.
  • one of the heat exchangers in the air conditioner works as an evaporator, which draws heat from the vehicle interior supply air.
  • a heat exchanger is connected in the refrigerant circuit, which is also part of an engine coolant circuit.
  • the object of the invention is to provide a vehicle, in particular an electric vehicle, as well as a method for operating a refrigerant circuit in such an electric vehicle, in which the forming waste / heat loss can be effectively used.
  • the characterizing part of claim 1 is in the refrigerant circuit additionally one, with the electric machine and / or with the associated battery thermally coupled heat exchanger can be switched on.
  • the heat exchanger arranged in the air conditioner can work as an evaporator, but additionally also the heat exchanger coupled thermally to the battery.
  • the battery can therefore be cooled indirectly in the cooling mode via the coupled heat exchanger directly or via an intermediate coolant circuit.
  • an additional indoor heat exchanger can be switched into the refrigerant circuit, so that in the cooling mode Total results in a two-evaporator system.
  • the electric machine, the battery and / or the environment can each be used independently or in any combination as heat sources.
  • the conditioning of the indoor supply air in the air conditioner can take place.
  • the incoming air can be cooled and dehumidified at the evaporator.
  • a heating / reheating takes place, wherein the air flow can be additionally heated at a further PTC heat element.
  • the supply of the heating heat exchanger can be done directly via a coolant circuit of the electric machine.
  • the amount of heat can be controlled via clock valves in water-controlled heaters or via louvers in air-controlled heaters.
  • the air conditioner may have two switchable in the refrigerant circuit heat exchanger.
  • the first heat exchanger heating register
  • the second heat exchanger in particular in a cooling operation, work as an evaporator.
  • the first heat exchanger (heating register) can be flowed through by refrigerant, while the second heat exchanger is shut down in the air conditioner, that is, it can not be flowed through by refrigerant.
  • the first heat exchanger (heating register) may be shut down, while the second heat exchanger operates as an evaporator and is flowed through accordingly by refrigerant.
  • a heating operation for heating the vehicle interior preferably both the heat from the environment and / or the waste heat of the electric machine can be used.
  • both the radiator-side heat exchanger and the thermally coupled to the electric machine heat exchanger can work as an evaporator.
  • an evaluation unit can detect both the actual temperature at the electric machine and the ambient temperature and compare both temperatures. On the basis of this comparison, the evaluation unit can connect the heat exchanger of the electric machine and / or the cooler side heat exchanger in the refrigerant circuit.
  • the heat exchanger thermally coupled to the electric machine is not switched on, so that only the cooler side heat exchanger in the refrigerant circuit can operate as an evaporator.
  • the first heat exchanger operating in the air conditioner as a condenser and the second heat exchanger operating as an evaporator can be switched on simultaneously into the refrigerant circuit.
  • a cooling / dehumidifying the incoming circulating air / fresh air takes place in the evaporator of the air conditioner first.
  • heating of the dried circulating air / fresh air can take place via the downstream condenser and optionally via further heating elements.
  • no temperature flap for controlling a desired outlet temperature can be provided in the air duct of the air conditioner.
  • a flow control member may be provided which adjusts a flow rate of the refrigerant flowing through the first heat exchanger (condenser).
  • the first heat exchanger condenser
  • the cooler side heat exchanger can be connected as a further capacitor by means of a switching valve.
  • the cooler-side heat exchanger can be bridged in the heating mode by means of a bypass line, if all the cooling power has already been delivered from the heat exchanger of the air conditioner to the air flowing to the vehicle interior supply air.
  • the refrigerant Downstream of the condenser arranged in the air conditioner, the refrigerant can flow via an expansion element to the second heat exchanger in the air conditioner, which operates as an evaporator to cool the circulating air / fresh air to cool.
  • the refrigerant can be passed to the, with the battery thermally coupled heat exchanger via a further expansion element, which acts as a second evaporator.
  • the invention is not limited to the use of special refrigerants. Rather, all common refrigerants can be used, such as R134A, R744, HFO-1234YF or the like.
  • refrigerants such as R134A, R744, HFO-1234YF or the like.
  • Figures 1 and 2 Show it: Figures 1 and 2, the circuit of an air conditioner according to the first embodiment respectively in the heating mode and in the cooling mode.
  • Embodiment respectively in heating and cooling operation
  • Fig. 5 shows the circuit of an air conditioner according to the third
  • Embodiment in the conditioning of the incoming air flowing through the air conditioner such as
  • Fig. 6 shows an extension of the circuit shown in FIG.
  • Air conditioning in heating mode where the ambient air, the electric machine and the battery serve as heat sources.
  • FIG. 1 an air conditioner of an electric vehicle is shown, by means of which the vehicle interior 2 can be cooled or heated and additionally can cool the battery 1, which is associated with the electric machine, not shown.
  • the heating operation for heating the vehicle interior 2 is shown with reference to FIG. 1, wherein the parts through which the refrigerant flows are emphasized by thick lines in comparison with the parts which are shut down in heating operation. Accordingly, the refrigerant is fed from the compressor 3 via a 3/2-way valve 5 into a first high-pressure line 6, which leads in the direction of the arrow to a first heat exchanger 7.
  • the first heat exchanger 7 is arranged in an air conditioner 9 indicated by dashed lines within an air duct, through which the supply air I is directed into the vehicle interior 2.
  • the working here as a condenser heat exchanger 7 is fluidly coupled via a second high-pressure line 11 and a 3/2-way valve 12 with the interposition of an expansion element 15 with a cooler side heat exchanger 17.
  • the radiator-side heat exchanger 17 operates in the heating operation of FIG. 1 as an evaporator, which extracts heat from the ambient air.
  • the cooler-side heat exchanger 17 is guided downstream with a low pressure line 19 to the suction side of the compressor 3.
  • the low pressure line 19 is passed through an inner heat exchanger 21, in which a heat exchange to the high pressure side, that is to the high pressure line 11, can take place.
  • Fig. 2 the cooling operation of the system is illustrated, wherein the flowed through refrigerant lines are highlighted with thick lines.
  • the 3/2-way valve 5 blocks downstream of the compressor 3, the guided to the first heat exchanger 7 in the air conditioner 9 line 6, while an intermediate line 23 is opened to line 19.
  • At the branch point to line 19 is on the side facing away from the heat exchanger 17 side of the shut-off valve 25 in the closed position, so that the refrigerant can be passed through the radiator-side heat exchanger 17, which can deliver heat in the cooling operation as a condenser to the ambient air.
  • the coolant is guided via a parallel to the expansion element 15 switched one-way valve 27 via the inner heat exchanger 21 and the 3/2-way valve 12 to a second heat exchanger 29 within the air conditioner 9.
  • a second heat exchanger 29 within the air conditioner 9.
  • a partial line 33 branches off in the direction of a further heat exchanger 35, which is thermally coupled to the battery 1 via an indicated cooling circuit 37 and operates here as an evaporator.
  • the heat exchanger 35 is another expansion organ 39 upstream.
  • the heat exchanger 35 is coupled downstream with a return line 38, which opens downstream of the second heat exchanger 29 in the return line 36 through which the refrigerant is passed back to the suction side of the compressor 3.
  • an air conditioner according to the second embodiment is shown, in addition, a cooling circuit 41 of an electric machine 40 is thermally coupled via a heat exchanger 43 to the refrigerant circuit.
  • the circuit of the air conditioner basically corresponds to the air conditioning circuit shown in FIGS. 1 and 2.
  • Fig. 3 the heating operation of the air conditioner is highlighted, in which not only the ambient air at the radiator side heat exchanger 17 serves as a heat source, but also the heat generated in the electric machine 40 waste heat.
  • the refrigerant starting from the compressor 3 via the 3/2-way valve 5, first flows to the first heat exchanger 7 in the air conditioner 9.
  • the refrigerant via the 3/2-way valve 12 and the inner heat exchanger 21 and an additionally switched 3rd / 2-way valve 45 in the operating as evaporator cooler side heat exchanger 17 out.
  • the radiator-side heat exchanger 17 is coupled via a low-pressure line 47 to the suction side of the compressor 3.
  • each of the sub-lines 48, 49 has shut-off valves 50, 51, wherein the sub-line 48 is guided through the heat exchanger 43 coupled to the coolant circuit 41 of the electric machine 40.
  • the heat exchanger 43 can thus be switched into the refrigerant circuit or not.
  • the 3/2-way valve 45 upstream of Cooler side heat exchanger 17 of the heat exchanger 17 are bridged by means of a bypass line 53.
  • the switching positions of the shut-off valves 50, 51 and the 3/2-way valve 45 are predetermined by means of an indicated evaluation unit 55.
  • the evaluation unit 55 is in signal communication with an environmental sensor 56 and a temperature sensor 57, with the aid of which the ambient temperature Tu and the water temperature T w in the coolant circuit 41 are detected. If the ambient temperature T u and the water temperature T w are approximately of the same order of magnitude, the 3/2-way valve 45 is opened in the direction of the radiator-side heat exchanger 17 and the shut-off valve 51 connected upstream of the heat exchanger 43 is opened. By contrast, no refrigerant flows through the bypass line 53 and through the partial line 49.
  • the air conditioning can also be operated in cooling mode.
  • the cooling operation of the air conditioner shown in FIG. 3 substantially corresponds to the cooling operation shown in FIG. 2. 4 and 5, an air conditioner according to the third embodiment is shown in different operating states.
  • the air conditioner of Fig. 4 corresponds to the basic structure of the air conditioner shown in FIG.
  • FIG. 4 shows a heating operation in which the supply air I guided into the air conditioner 9 is first cooled and dehumidified in the second heat exchanger 29 and can then flow in the direction of the vehicle interior 2 while absorbing heat through the first heat exchanger 7.
  • an additional 3/2-way valve 60 is connected in the high-pressure line 6, which divides the high-pressure line 6 into two sub-lines 58, 59.
  • the sub-line 58 leads directly to the first heat exchanger 7, while the second sub-line 59 bridges the heat exchanger 7.
  • the flow path of the 3/2-way valve 60 to the first heat exchanger 7 is permanently open, whereby the first heat exchanger 7 operates constantly as a capacitor.
  • the first heat exchanger 7 is connected downstream with a second high-pressure line 11, which opens at a further 3/2-way valve 61 in a connecting line 63 described later and is guided via the 3/2-way valve 12 to the expansion element 31, which operates as the evaporator associated with the second heat exchanger 29.
  • the second heat exchanger 29 is coupled via the already mentioned return line 36 to the suction side of the compressor 3.
  • the heat is first withdrawn from the supply air I into the second heat exchanger 29 operating as an evaporator.
  • the radiator-side heat exchanger 17 is shut down in the illustrated heating mode, so that the first heat exchanger 7 operates as the sole condenser in the refrigerant circuit.
  • FIG. 5 shows a reheating process in which a setpoint outlet temperature of the supply air I set by the user is not adjustable by means of a temperature flap, not shown here, but rather via a corresponding clocking of the 3/2-way valve 60, by means of which a through the first Heat exchanger 7 guided mass flow of the refrigerant is controlled.
  • a partial mass flow is passed through the partial line 58 through the first heat exchanger 7, while a remaining partial mass flow is passed through the sub-line 59 directly into the second high-pressure line 11.
  • the flow path branches off from the already mentioned 3/2-way valve 61 of the high-pressure line 11 into the connecting line 63, which leads to the cooler-side heat exchanger 17.
  • This works as a second capacitor in series connection to the first heat exchanger 7.
  • the cooled in the radiator heat exchanger 17 refrigerant is then via the 3/2-way valve 45 and the 3/2-way valve 12 via the respective expansion elements 31, 39 for working as an evaporator second Heat exchanger 29 and led to the battery side heat exchanger 35, which also operates as an evaporator.
  • the now gaseous refrigerant is returned to the suction side of the compressor 3 again.
  • FIG. 6 shows a circuit of an air conditioning system, the basic structure of which corresponds to the circuits shown in FIGS. 3 to 5.
  • a heating operation is illustrated, wherein the refrigerant flow lines are highlighted with thick lines.
  • the heating operation shown in FIG. 3 not only the ambient air at the radiator side heat exchanger 17 and in the Electric machine 40 formed waste heat as heat sources, but in addition also the waste heat formed in the battery 1.
  • the circuit according to FIG. 6 is expanded by an additional line 65.
  • the heat exchanger 35 is connected to the return line 38, which opens downstream of the disused here second heat exchanger 29 in the return line 36 and is recycled in this way again to the suction side of the compressor 3.
  • a check valve 67 is connected in its open position, the refrigerant can thus branch off from the partial line 48 and flow through the heat exchanger 35 of the battery.
  • the circuit state is illustrated, in which the first heat exchanger 7 in the air conditioner 9 as a condenser heats the circulating air flowing through I.
  • the radiator-side heat exchanger 17, the heat exchanger 43 of the electric machine 40 and the heat exchanger 35 of the battery 1 operate as evaporators, each receiving heat from the ambient air, the battery 1 and the electric machine 40.
  • the check valves 50, 51, the check valve 67 and the 3/2-way valve 45 serving as heat sources electric machine 40 battery 1 and ambient air can be arbitrarily turned on in the refrigerant circuit or decoupled from it.
  • the switching positions of the shut-off valves 50, 51, the check valve 67 and the 3/2-way valve 45 can be specified by means of the direction indicated in FIG. 3 evaluation unit 55.
  • the selection of the heat sources by the evaluation unit 55 is carried out analogously to the method described with reference to FIG. 3, according to which, depending on the particular heat source temperature, the corresponding heat source, ie electric machine 40, battery 1 and / or ambient air are switched on.
  • the one-way valves are designated 68 in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Fahrzeug, insbesondere Elektrofahrzeug, mit einer Elektromaschine (40) und einer zugeordneten Batterie (1), sowie einem Kältemittelkreislauf, in dem zumindest ein kühlerseitiger Wärmetauscher (17) und zumindest ein Wärmetauscher (7, 29) eines Klimageräts (9) geschaltet sind, wobei in einem Heizbetrieb zur Erwärmung des Fahrzeuginnenraums (2) der kühlerseitige Wärmetauscher (17) als Verdampfer arbeitet und der Wärmetauscher (7) des Klimageräts (9) als Kondensator arbeitet. Erfindungsgemäß ist im Kältemittelkreislauf zusätzlich ein mit der Elektromaschine (40) thermisch gekoppelter Wärmetauscher (43) und/oder ein mit der Batterie (1) thermisch gekoppelter Wärmetauscher (35) zuschaltbar.

Description

ELEKTROFAHRZEUG MIT EINER FAHRZEUG-KLIMAANLAGE
Die Erfindung betrifft ein Fahrzeug, insbesondere Elektrofahrzeug, nach dem Oberbegriff des Patentanspruches 1 sowie ein Verfahren zum Betrieb eines Kältemittelkreislaufes einer Klimaanlage in einem Fahrzeug, nach dem Patentanspruch 12. Aufgrund von Maßnahmen zur Effizienzsteigerung fällt in heutigen Fahrzeugen mit Kraftmaschinen der Anteil an Ab-A erlustwärme in das Motorkühlwasser immer geringer aus. Damit entsteht verstärkt ein Mangel an Heizpotenzial, um das Komfortempfinden für die Fahrzeugpassagiere im Fahrzeuginnenraum entsprechend auf hohem Niveau halten zu können.
In Elektrof ahrzeugen ist dieser Mangel an Energie-/Wärmequellen zur Temperierung des Fahrzeuginnenraumes noch deutlicher. Mit entsprechend dimensionierten elektrischen Zuheizern kann dieser Mangel zwar kompensiert werden, dies erfolgt jedoch zu Lasten der Effizienz und insbesondere der Reichweite.
Als alternative Heiz-/Zuheizmöglichkeit kann auf einen Kältemittelkreislauf zurückgegriffen werden, der nach dem Wärmepumpenprinzip arbeitet, bei dem ein Verdichter zusammen mit einem Kondensator, einem Expansionsventil sowie einem Verdampfer im Kältemittelkreislauf geschaltet sind. Beispielhaft ist aus der DE 102 25 055 A eine mit einem solchen Kältemittelkreislauf arbeitende Klimaanlage für ein Kraftfahrzeug bekannt. In dem Kältemittelkreislauf sind ein kühlerseitiger Wärmetauscher sowie zwei Wärmetauscher im Klimagerät der Klimaanlage geschaltet. Im Kühlbetrieb zur Kühlung des Fahrzeuginnenraums arbeitet der kühlerseitige Wärmetauscher als Kondensator, der Wärme an die Umgebung abgibt. Einer der Wärmetauscher im Klimagerät arbeitet demgegenüber als Verdampfer, der Wärme aus der Fahrzeuginnenraum-Zuluft abzieht. Zusätzlich ist im Kältemittelkreislauf ein Wärmetauscher geschaltet, der zugleich Teil eines Motorkühlmittelkreislaufes ist.
Die Aufgabe der Erfindung besteht darin, ein Fahrzeug, insbesondere Elektrofahrzeug, sowie ein Verfahren zum Betrieb eines Kältemittelkreislaufes in einem solchen Elektrofahrzeug bereitzustellen, in welchem die sich bildende Ab-/Verlustwärme effektiv genutzt werden kann.
Die Aufgabe ist durch die Merkmale des Patentanspruches 1 oder des Patentanspruches 12 gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen offenbart.
Gemäß dem kennzeichnenden Teil des Patentanspruches 1 ist im Kältemittelkreislauf zusätzlich ein, mit der Elektromaschine und/oder mit der zugeordneten Batterie thermisch gekoppelter Wärmetauscher zuschaltbar. Auf diese Weise kann im Kühlbetrieb der Klimaanlage nicht nur der im Klimagerät angeordnete Wärmetauscher als Verdampfer arbeiten, sondern zusätzlich auch der mit der Batterie thermisch gekoppelte Wärmetauscher. Die Batterie kann daher im Kühlbetrieb über den damit gekoppelten Wärmetauscher direkt oder über einen zwischengeschalteten Kühlmittelkreislauf indirekt gekühlt werden. Gegebenenfalls kann noch ein zusätzlicher Innenraumwärmetauscher in den Kältemittelkreislauf geschaltet werden, so dass sich im Kühlbetrieb insgesamt eine Zwei-Verdampfer-Anlage ergibt. Umgekehrt können im Heizbetrieb die Elektromaschine, die Batterie und/oder die Umgebung jeweils unabhängig voneinander oder in beliebiger Kombination als Wärmequellen verwendet werden.
In diesem Fall kann die Konditionierung der Innenraum-Zuluft im Klimagerät stattfinden. Dabei kann die eintretende Luft am Verdampfer abgekühlt und entfeuchtet werden. An einem nachgeschalteten Heizungswärmetauscher erfolgt ein Aufheizen/Nacherwärmen, wobei an einem weiteren PTC-Wärme- element der Luftstrom zusätzlich erwärmt werden kann. Die Speisung des Heizungswärmetauschers kann dabei unmittelbar über einen Kühlmittelkreislauf der Elektromaschine erfolgen. Die Wärmemenge kann über Taktventile bei wassergesteuerten Heizungen bzw. über Luftklappen bei luftgesteuerten Heizungen geregelt werden.
Bevorzugt kann das Klimagerät zwei in den Kältemittelkreislauf schaltbare Wärmetauscher aufweisen. Der erste Wärmetauscher (Heizregister) kann im Heizbetrieb als Kondensator arbeiten. Demgegenüber kann der zweite Wärmetauscher, insbesondere in einem Kühlbetrieb, als Verdampfer arbeiten.
Im Heizbetrieb zur Erwärmung des Fahrzeuginnenraums kann dabei der erste Wärmetauscher (Heizregister) von Kältemittel durchströmt sein, während der zweite Wärmetauscher im Klimagerät stillgelegt, das heißt nicht von Kältemittel durchströmt sein kann.
Im Unterschied dazu kann bei einem Kühlbetrieb zum Kühlen des Fahrzeuginnenraums der erste Wärmetauscher (Heizregister) stillgelegt sein, während der zweite Wärmetauscher als Verdampfer arbeitet und entsprechend von Kältemittel durchströmt ist. Bei einem Heizbetrieb zur Erwärmung des Fahrzeuginnenraums kann bevorzugt sowohl die Wärme aus der Umgebung und/oder die Abwärme der Elektromaschine genutzt werden. Gegebenenfalls können daher sowohl der kühlerseitige Wärmetauscher als auch der mit der Elektromaschine thermisch gekoppelte Wärmetauscher als Verdampfer arbeiten.
Zur Entscheidung darüber, ob die Elektromaschine oder die Umgebung als Wärmequelle für den Heizbetrieb genutzt werden können, ist eine Auswerteeinheit vorgesehen. Die Auswerteeinheit kann sowohl die Ist-Temperatur an der Elektromaschine als auch die Umgebungstemperatur erfassen und beide Temperaturen miteinander vergleichen. Auf der Grundlage dieses Vergleichs kann die Auswerteeinheit den Wärmetauscher der Elektromaschine und/oder den kühlerseitigen Wärmetauscher in den Kältemittelkreislauf zuschalten. Beispielhaft wird bei einer Umgebungstemperatur, die größer als eine erfasste Wassertemperatur des Elektromaschinen-Kühlmittelkreislaufes ist, der mit der Elektromaschine thermisch gekoppelte Wärmetauscher nicht zugeschaltet, so dass lediglich der kühlerseitige Wärmetauscher in dem Kältemittelkreislauf als Verdampfer arbeiten kann. In einer weiteren Ausführungsform kann der im Klimagerät als Kondensator arbeitende erste Wärmetauscher und der als Verdampfer arbeitende zweite Wärmetauscher gleichzeitig in den Kältemittelkreislauf eingeschaltet werden. In diesem Fall erfolgt im Verdampfer des Klimagerätes zunächst eine Abkühlung/Entfeuchtung der eintretenden Umluft/Frischluft. Anschließend kann über den nachgeschalteten Kondensator und gegebenenfalls über weitere Heizungselemente eine Erwärmung der getrockneten Umluft/Frischluft erfolgen.
Gegebenenfalls kann im Luftführungskanal des Klimagerätes keine Temperaturklappe zur Regelung einer Sollausblastemperatur vorgesehen sein. Anstelle dessen kann im Kältemittelkreislauf ein Durchflussregelorgan vorgesehen werden, das eine durch den ersten Wärmetauscher (Kondensator) strömende Durchflussmenge des Kältemittels einstellt. Somit kann lediglich ein Teilstrom durch den ersten Wärmetauscher geführt werden, und der verbleibende Teilstrom des Kältemittels über eine Bypassleitung am ersten Wärmetauscher vorbeiströmen.
Zusätzlich zu dem als Kondensator arbeitenden Wärmetauscher im Kältegerät kann mittels eines Schaltventils der kühlerseitige Wärmetauscher als weiterer Kondensator zugeschaltet werden. Gegebenenfalls kann der kühlerseitige Wärmetauscher im Heizbetrieb mittels einer Bypassleitung überbrückt werden, sofern bereits sämtliche Kühlleistung vom Wärmetauscher des Klimagerätes an die zum Fahrzeuginnenraum strömende Zuluft abgegeben worden ist. Stromab des im Klimagerät angeordneten Kondensators kann das Kältemittel über ein Expansionsorgan zum zweiten Wärmetauscher im Klimagerät strömen, der als Verdampfer arbeitet, um die Umluft/Frischluft zu entfeuchten kühlen. In Parallelschaltung dazu kann über ein weiteres Expansionsorgan das Kältemittel zu dem, mit der Batterie thermisch gekoppelten Wärmetauscher geleitet werden, der als zweiter Verdampfer wirkt.
Die Erfindung ist nicht auf die Anwendung spezieller Kältemittel beschränkt. Vielmehr sind sämtliche marktübliche Kältemittel einsetzbar, wie etwa R134A, R744, HFO-1234YF oder dergleichen. Nachfolgend sind drei Ausführungsbeispiele der Erfindung anhand der beigefügten Figuren beschrieben.
Es zeigen: Fig. 1 und 2 die Schaltung einer Klimaanlage gemäß dem ersten Ausführungsbeispiel jeweils im Heizbetrieb und im Kühlbetrieb;
Fig. 3 und 4 die Schaltung einer Klimaanlage gemäß dem zweiten
Ausführungsbeispiel jeweils im Heizbetrieb und im Kühlbetrieb;
Fig. 5 die Schaltung einer Klimaanlage gemäß dem dritten
Ausführungsbeispiel beim Konditionieren der durch das Klimagerät strömende Zuluft; sowie
Fig. 6 eine Erweiterung der in der Fig. 3 gezeigten Schaltung einer
Klimaanlage im Heizbetrieb, in dem die Umgebungsluft, die Elektromaschine und die Batterie als Wärmequellen dienen.
In den Fig. 1 und 2 ist eine Klimaanlage eines Elektrofahrzeuges gezeigt, mittels der der Fahrzeuginnenraum 2 gekühlt oder beheizt werden kann und zusätzlich die Batterie 1 kühlen kann, die der nicht gezeigten Elektromaschine zugeordnet ist. Anhand der Fig. 1 ist der Heizbetrieb zur Erwärmung des Fahrzeuginnenraums 2 dargestellt, wobei die mit Kältemittel durchströmten Teile im Vergleich zu den im Heizbetrieb stillgelegten Teile durch dicke Linien hervorgehoben sind. Demzufolge wird das Kältemittel vom Verdichter 3 über ein 3/2-Wegeventil 5 in eine erste Hochdruckleitung 6 geführt, die in Pfeilrichtung zu einem ersten Wärmetauscher 7 führt. Der erste Wärmetauscher 7 ist in einem gestrichelt angedeuteten Klimagerät 9 innerhalb eines Luftkanals angeordnet, durch den die Zuluft I in den Fahrzeuginnenraum 2 geleitet wird. Der hier als Kondensator arbeitende Wärmetauscher 7 ist über eine zweite Hochdruckleitung 11 sowie über ein 3/2-Wegeventil 12 unter Zwischenschaltung eines Expansionsorgans 15 mit einem kühlerseitigen Wärmetauscher 17 strömungstechnisch gekoppelt. Der kühlerseitige Wärmetauscher 17 arbeitet im Heizbetrieb gemäß Fig. 1 als Verdampfer, der der Umgebungsluft Wärme entzieht. Der kühlerseitige Wärmetauscher 17 ist stromab mit einer Niederdruckleitung 19 bis zur Saugseite des Verdichters 3 geführt. Die Niederdruckleitung 19 wird dabei über einen inneren Wärmetauscher 21 geleitet, in dem ein Wärmeaustausch zur Hochdruckseite, das heißt zur Hochdruckleitung 11 , stattfinden kann.
In der Fig. 2 ist der Kühlbetrieb der Anlage veranschaulicht, wobei die mit Kältemittel durchströmten Leitungen mit dicken Linien hervorgehoben sind. Im Kühlbetrieb sperrt das 3/2-Wegeventil 5 stromab des Verdichters 3 die zum ersten Wärmetauscher 7 im Klimagerät 9 geführte Leitung 6, während eine Zwischenleitung 23 zur Leitung 19 geöffnet wird. An der Verzweigungsstelle zur Leitung 19 ist auf der vom Wärmetauscher 17 abgewandten Seite das Absperrventil 25 in geschlossener Schaltstellung, so dass das Kältemittel durch den kühlerseitigen Wärmetauscher 17 geführt werden kann, der im Kühlbetrieb als Kondensator Wärme an die Umgebungsluft abgeben kann.
Anschließend wird das Kühlmittel über ein parallel zum Expansionsorgan 15 geschaltetes Ein-Wegeventil 27 über den inneren Wärmetauscher 21 sowie über das 3/2-Wegeventil 12 zu einem zweiten Wärmetauscher 29 innerhalb des Klimagerätes 9 geführt. Dem in der Fig. 2 als Verdampfer arbeitenden zweiten Wärmetauscher 29 ist ein Expansionsorgan 31 vorgeschaltet. Stromauf des Expansionsorgans 31 zweigt eine Teilleitung 33 in Richtung auf einen weiteren Wärmetauscher 35 ab, der über einen angedeuteten Kühlkreislauf 37 mit der Batterie 1 thermisch gekoppelt ist und hier als Verdampfer arbeitet. Dem Wärmetauscher 35 ist ein weiteres Expansions- organ 39 vorgeschaltet. Außerdem ist der Wärmetauscher 35 stromab mit einer Rückführleitung 38 gekoppelt, die stromab vom zweiten Wärmetauscher 29 in dessen Rückführleitung 36 einmündet, über die das Kältemittel wieder zur Saugseite des Verdichters 3 geleitet wird.
In den Fig. 3 und 4 ist eine Klimaanlage gemäß dem zweiten Ausführungsbeispiel gezeigt, in der zusätzlich ein Kühlkreislauf 41 einer Elektromaschine 40 über einen Wärmetauscher 43 thermisch mit dem Kältemittelkreislauf gekoppelt ist. Ansonsten entspricht die Schaltung der Klimaanlage grundsätzlich der in den Fig. 1 und 2 gezeigten Klimaanlagen-Schaltung.
In der Fig. 3 ist der Heizbetrieb der Klimaanlage hervorgehoben, bei der nicht nur die Umgebungsluft am kühlerseitigen Wärmetauscher 17 als Wärmequelle dient, sondern zusätzlich auch die in der Elektromaschine 40 gebildete Abwärme. Hierzu strömt das Kältemittel ausgehend vom Verdichter 3 über das 3/2-Wegeventil 5 zunächst zum ersten Wärmetauscher 7 in das Klimagerät 9. Im weiteren Strömungsverlauf wird das Kältemittel über das 3/2-Wegeventil 12 und den inneren Wärmetauscher 21 sowie ein zusätzlich geschaltetes 3/2- Wegeventil 45 in den als Verdampfer arbeitenden kühlerseitigen Wärme- tauscher 17 geführt. Der kühlerseitige Wärmetauscher 17 ist über eine Niederdruckleitung 47 mit der Saugseite des Verdichters 3 gekoppelt.
In der Niederdruckleitung 47 sind in Parallelschaltung zwei Teilleitungen 48, 49 angeordnet. Jede der Teilleitungen 48, 49 weist Sperrventile 50, 51 auf, wobei die Teilleitung 48 durch den mit dem Kühlmittelkreislauf 41 der Elektromaschine 40 gekoppelten Wärmetauscher 43 geführt ist.
Je nach Schaltstellung der Sperrventile 50, 51 kann somit der Wärmetauscher 43 in den Kältemittelkreislauf geschaltet werden oder nicht. Zusätzlich kann in Abhängigkeit der Schaltstellung des 3/2-Wegeventils 45 stromauf des kühlerseitigen Wärmetauschers 17 der Wärmetauscher 17 mittels einer Bypassleitung 53 überbrückt werden.
Die Schaltstellungen der Absperrventile 50, 51 sowie des 3/2-Wegeventils 45 werden mittels einer angedeuteten Auswerteeinheit 55 vorgegeben. Die Auswerteeinheit 55 ist mit einem Umgebungssensor 56 sowie einem Temperatursensor 57 in Signalverbindung, mit deren Hilfe die Umgebungstemperatur Tu und die Wassertemperatur Tw im Kühlmittelkreislauf 41 erfasst wird. Sofern die Umgebungstemperatur Tu und die Wassertemperatur Tw in etwa in gleicher Größenordnung sind, wird das 3/2-Wegeventil 45 in Richtung auf den kühlerseitigen Wärmetauscher 17 geöffnet sowie das dem Wärmetauscher 43 vorgeschaltete Sperrventil 51 geöffnet. Durch die Bypassleitung 53 sowie durch Teilleitung 49 strömt demgegenüber kein Kältemittel.
Ist demgegenüber die Umgebungstemperatur Tu größer als die Wassertemperatur Tw, so wird lediglich der kühlerseitige Wärmetauscher 7 in den Kältemittelkreislauf geschaltet, während der Wärmetauscher 43 der Elektromaschine 40 davon entkoppelt ist. Umgekehrt wird bei einer Umgebungstemperatur Tu, die kleiner als die erfasste Wassertemperatur Tw ist, der Wärmetauscher 43 der Elektromaschine 40 mit dem Kältemittelkreislauf thermisch gekoppelt, während der kühlerseitige Wärmetauscher 17 stillgelegt ist. Anstelle des in der Fig. 3 hervorgehobenen Heizbetriebes kann die Klimaanlage auch im Kühlbetrieb betrieben werden. Der Kühlbetrieb der in der Fig. 3 gezeigten Klimaanlage entspricht im Wesentlichen dem in der Fig. 2 gezeigten Kühlbetrieb. In den Fig. 4 und 5 ist eine Klimaanlage gemäß dem dritten Ausführungsbeispiel in jeweils unterschiedlichen Betriebszuständen gezeigt. Die Klimaanlage der Fig. 4 entspricht vom grundsätzlichen Aufbau der in der Fig. 3 gezeigten Klimaanlage.
In der Fig. 4 ist ein Heizbetrieb dargestellt, bei dem die in das Klimagerät 9 geführte Zuluft I zunächst im zweiten Wärmetauscher 29 gekühlt und entfeuchtet wird und anschließend unter Wärmeaufnahme durch den ersten Wärmetauscher 7 in Richtung des Fahrzeuginnenraums 2 strömen kann.
Hierzu ist in der Hochdruckleitung 6 ein zusätzliches 3/2-Wegeventil 60 geschaltet, das die Hochdruckleitung 6 in zwei Teilleitungen 58, 59 aufteilt. Die Teilleitung 58 führt direkt zum ersten Wärmetauscher 7, während die zweite Teilleitung 59 den Wärmetauscher 7 überbrückt. Im Heizbetrieb ist der Strömungsweg des 3/2-Wegeventils 60 zum ersten Wärmetauscher 7 dauerhaft offen, wodurch der erste Wärmetauscher 7 ständig als Kondensator arbeitet. Der erste Wärmetauscher 7 ist stromab mit einer zweiten Hochdruckleitung 11 verbunden, die an einem weiteren 3/2-Wegeventil 61 in eine später beschriebene Verbindungsleitung 63 mündet und über das 3/2- Wegeventil 12 zum Expansionsorgan 31 geführt ist, das dem als Verdampfer arbeitenden zweiten Wärmetauscher 29 zugeordnet ist. Der zweite Wärmetauscher 29 ist über die bereits genannte Rückführleitung 36 mit der Saugseite des Verdichters 3 gekoppelt. Im oben genannten Heizbetrieb gemäß der Fig. 4 wird daher zunächst von der Zuluft I die Wärme in den als Verdampfer arbeitenden zweiten Wärmetauscher 29 abgezogen. Der kühlerseitige Wärmetauscher 17 ist demgegenüber im dargestellten Heizbetrieb stillgelegt, so dass der erste Wärmetauscher 7 als alleiniger Kondensator im Kältemittelkreislauf arbeitet. In der Fig. 5 ist demgegenüber ein Nachheizvorgang gezeigt, bei dem eine benutzerseitig eingestellte Sollaustrittstemperatur der Zuluft I nicht mittels einer hier nicht dargestellten Temperaturklappe einstellbar ist, sondern vielmehr über eine entsprechende Taktung des 3/2-Wegeventils 60, mittels dem ein durch den ersten Wärmetauscher 7 geführter Massenstrom des Kältemittels geregelt wird. In diesem Fall wird daher lediglich ein Teilmassenstrom über die Teilleitung 58 durch den ersten Wärmetauscher 7 geführt, während ein verbleibender Teilmassenstrom durch die Teilleitung 59 unmittelbar in die zweite Hochdruckleitung 11 geführt wird.
Bei dem in der Fig. 5 gezeigten, mittels des 3/2-Wegeventils 61 durchgeführten Nachheizvorgang zweigt der Strömungsweg vom bereits erwähnten 3/2-Wegeventil 61 der Hochdruckleitung 11 in die Verbindungsleitung 63 ab, die bis zum kühlerseitigen Wärmetauscher 17 führt. Dieser arbeitet als zweiter Kondensator in Reihenschaltung zum ersten Wärmetauscher 7. Das im kühlerseitigen Wärmetauscher 17 abgekühlte Kältemittel wird dann über das 3/2-Wegeventil 45 sowie über das 3/2- Wegeventil 12 über die jeweiligen Expansionsorgane 31 , 39 zum als Verdampfer arbeitenden zweiten Wärmetauscher 29 bzw. zum batterieseitigen Wärmetauscher 35 geführt, der ebenfalls als Verdampfer arbeitet. Anschließend wird das nunmehr gasförmige Kältemittel wieder zur Saugseite des Verdichters 3 rückgeführt.
In der Fig. 6 ist eine Schaltung einer Klimaanlage gezeigt, deren grundsätzlicher Aufbau den in den Fig. 3 bis 5 gezeigten Schaltungen entspricht. Dabei ist ein Heizbetrieb veranschaulicht, wobei die mit Kältemittel durchströmten Leitungen mit dicken Linien hervorgehoben sind. Im Unterschied zum in der Fig. 3 gezeigten Heizbetrieb dienen nicht nur die Umgebungsluft am kühlerseitigen Wärmetauscher 17 und die in der Elektromaschine 40 gebildete Abwärme als Wärmequellen, sondern zusätzlich auch die in der Batterie 1 gebildete Abwärme.
Hierzu ist die Schaltung gemäß der Fig. 6 um eine Zusatzleitung 65 erweitert. Diese zweigt stromab des Wärmetauschers 43 von der Teilleitung 48 ab und ist zur Eingangsseite des Wärmetauschers 35 geführt, der über den Kühlkreislauf 37 mit der Batterie 1 thermisch gekoppelt ist. Ausgangsseitig ist der Wärmetauscher 35 an die Rückführleitung 38 angeschlossen, die stromab des hier stillgelegten zweiten Wärmetauschers 29 in dessen Rückführleitung 36 einmündet und auf diese Weise wieder zur Saugseite des Verdichters 3 rückgeführt wird. In der Zusatzleitung 65 ist ein Sperrventil 67 geschaltet. In seiner Offenstellung kann somit das Kältemittel von der Teilleitung 48 abzweigen und den Wärmetauscher 35 der Batterie durchströmen. In der Fig. 6 ist der Schaltungszustand veranschaulicht, in welchem der erste Wärmetauscher 7 im Klimagerät 9 als Kondensator die durchströmende Umluft I erwärmt. Gemäß der Fig. 6 arbeiten demgegenüber der kühlerseitige Wärmetauscher 17, der Wärmetauscher 43 der Elektromaschine 40 und der Wärmetauscher 35 der Batterie 1 als Verdampfer, die jeweils Wärme aus der Umgebungsluft, der Batterie 1 und der Elektromaschine 40 aufnehmen. Je nach Schaltstellung der Sperrventile 50, 51 , des Sperrventiles 67 und des 3/2- Wegeventils 45 können die als Wärmequellen dienenden Elektromaschine 40, Batterie 1 sowie Umgebungsluft beliebig in den Kältemittelkreislauf eingeschaltet oder davon entkoppelt werden. Die Schaltstellungen der Absperrventile 50, 51 , des Sperrventils 67 sowie des 3/2-Wegeventils 45 können dabei mittels der in der Fig. 3 angedeuteten Auswerteeinheit 55 vorgegeben werden. Die durch die Auswerteeinheit 55 vorgenommene Auswahl der Wärmequellen erfolgt dabei analog zu dem anhand der Fig. 3 beschriebenen Verfahren, wonach in Abhängigkeit der jeweiligen Wärme- quellen-Temperatur die entsprechende Wärmequelle, das heißt Elektroma- schine 40, Batterie 1 und/oder Umgebungsluft zugeschaltet werden.
Durch den Einsatz von zusätzlichen Ein-Wegeventilen können in den Schaltungen der Fig. 1 bis 6 die jeweils stillgelegten Bereiche des Kältekreislaufes bei der Durchführung des Heiz- oder Kühlbetriebes von den Kältemittel durchströmten Bereichen abgetrennt werden, wodurch die im Kältemittelkreislauf befindliche Kältemittelmenge trotz Zuschaltung der drei Wärmequellen nicht unnötig gesteigert werden muss. Beispielhaft sind in der Fig. 6 die Ein-Wegeventile mit 68 bezeichnet.

Claims

Patentansprüche
Fahrzeug, insbesondere Elektrofahrzeug, mit einer Elektromaschine (40) und einer zugeordneten Batterie (1 ), sowie einem Kältemittelkreislauf, in dem zumindest ein kühlerseitiger Wärmetauscher (17) und zumindest ein Wärmetauscher (7, 29) eines Klimageräts (9) geschaltet sind, wobei in einem Heizbetrieb zur Erwärmung des Fahrzeuginnenraums (2) der kühlerseitige Wärmetauscher (17) als Verdampfer arbeitet und der Wärmetauscher (7) des Klimageräts (9) als Kondensator arbeitet, dadurch gekennzeichnet, dass im Kältemittelkreislauf zusätzlich ein mit der Elektromaschine (40) thermisch gekoppelter Wärmetauscher (43) und/oder ein mit der Batterie (1 ) thermisch gekoppelter Wärmetauscher (35) zuschaltbar ist.
Fahrzeug nach Anspruch 1 , dadurch gekennzeichnet, dass das Klimagerät (9) zwei in den Kältemittelkreislauf schaltbare Wärmetauscher (7, 29) aufweist, von denen ein erster Wärmetauscher (7) im Heizbetrieb als Kondensator arbeitet und der zweite Wärmetauscher (29), insbesondere in einem Kühlbetrieb, als Verdampfer arbeitet.
Fahrzeug nach Anspruch 2, dadurch gekennzeichnet, dass im Heizbetrieb der erste Wärmetauscher (7) von Kältemittel durchströmt ist und der zweite Wärmetauscher (29) stillgelegt ist.
Fahrzeug nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass im Kühlbetrieb zum Kühlen des Fahrzeuginnenraums (2) der erste Wärme- tauscher (7) stillgelegt ist, und der zweite Wärmetauscher (29) von Kältemittel durchströmt ist.
5. Fahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Auswerteeinheit (55) die Isttemperatur an der Elektromaschine (40) und/oder an der Batterie (1 ) sowie die Umgebungstemperatur (Tu) erfasst und miteinander vergleicht, wobei auf der Grundlage dieses Vergleichs der Wärmetauscher (43) der Elektromaschine (40) und/oder der Batterie (1 ) in den Kältemittelkreislauf zuschaltbar sind.
6. Fahrzeug, insbesondere nach Anspruch 2, dadurch gekennzeichnet, dass der in dem Klimagerät (9) als Kondensator arbeitende erste Wärmetauscher (7) und der als Verdampfer arbeitende zweite Wärmetauscher (29) gleichzeitig in den Kältemittelkreislauf zuschaltbar sind.
7. Fahrzeug nach Anspruch 6, dadurch gekennzeichnet, dass der als Kondensator arbeitende erste Wärmetauscher (7) mittels einer Bypassleitung (59) überbrückbar ist, und/oder dem ersten Wärmetauscher (7) ein Durchflussregelorgan (60) zugeordnet ist, mit dem eine Durchflussmenge durch den ersten Wärmetauscher (7) einstellbar ist.
8. Fahrzeug nach Anspruch 7, dadurch gekennzeichnet, dass der kühlerseitige Wärmetauscher (17) mittels eines Schaltventils (45) dem Kältemittelkreislauf zuschaltbar ist oder mit einer Bypassleitung (53) überbrückbar ist.
9. Fahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektromaschine (40) und/oder die Batterie (1 ) über einen Kühlmittelkreislauf (37, 41 ) mit dem zugehörigen Wärmetauscher (35, 43) thermisch gekoppelt sind.
10. Fahrzeug nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass im Kühlbetrieb der mit der Batterie (1 ) thermisch gekoppelte Wärmetauscher (35) als zusätzlicher Verdampfer dem Kältemittelkreislauf zuschaltbar ist.
11. Fahrzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Batterie (1 ) sowohl im stationären Betrieb, etwa im Ladebetrieb, als auch im mobilen Fahrzeugbetrieb kühlbar ist.
12. Verfahren zum Betrieb eines Kältemittelkreislaufes einer Klimaanlage in einem Fahrzeug, insbesondere nach einem der vorhergehenden Ansprüche, in welchem Verfahren im Heizbetrieb über einen kühlerseitigen Wärmetauscher (17) Wärme aus der Umgebung und über zumindest einen zusätzlichen Wärmetauscher (43) die in der Elektromaschine (40) gebildete Wärme in den Kältemittelkreislauf übertragen wird.
PCT/EP2010/005304 2009-09-11 2010-08-28 Elektrofahrzeug mit einer fahrzeug-klimaanlage WO2011029538A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009040972.6 2009-09-11
DE102009040972 2009-09-11
DE102009056027.0 2009-11-27
DE102009056027.0A DE102009056027B4 (de) 2009-09-11 2009-11-27 Fahrzeug, insbesondere Elektrofahrzeug

Publications (1)

Publication Number Publication Date
WO2011029538A1 true WO2011029538A1 (de) 2011-03-17

Family

ID=42738856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/005304 WO2011029538A1 (de) 2009-09-11 2010-08-28 Elektrofahrzeug mit einer fahrzeug-klimaanlage

Country Status (2)

Country Link
DE (1) DE102009056027B4 (de)
WO (1) WO2011029538A1 (de)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160777A1 (de) * 2010-06-23 2011-12-29 Audi Ag Vorrichtung zur klimatisierung von fahrzeugen
US20120234518A1 (en) * 2011-03-18 2012-09-20 Denso International America, Inc. Battery heating and cooling system
WO2012131459A1 (en) * 2011-04-01 2012-10-04 Toyota Jidosha Kabushiki Kaisha Cooling apparatus
CN102889653A (zh) * 2011-07-21 2013-01-23 现代自动车株式会社 用于车辆的热泵系统及其控制方法
WO2013014513A1 (en) * 2011-07-26 2013-01-31 Toyota Jidosha Kabushiki Kaisha Cooling system
FR2978534A1 (fr) * 2011-07-27 2013-02-01 Valeo Systemes Thermiques Installation de chauffage, ventilation et/ou climatisation à organe de commande amélioré
WO2013017936A1 (en) * 2011-08-01 2013-02-07 Toyota Jidosha Kabushiki Kaisha Cooling system
WO2013030657A1 (en) * 2011-08-31 2013-03-07 Toyota Jidosha Kabushiki Kaisha Cooling system
CN103124646A (zh) * 2010-10-08 2013-05-29 罗伯特·博世有限公司 用于调节电动车辆的内部空间和/或至少一个构件的空气的空气调节设备和方法
WO2013034967A3 (en) * 2011-09-06 2013-07-11 Toyota Jidosha Kabushiki Kaisha Selector valve and cooling system
FR2987886A3 (fr) * 2012-03-06 2013-09-13 Renault Sa Pompe a chaleur pour vehicule automobile
WO2013136148A1 (en) * 2012-03-16 2013-09-19 Toyota Jidosha Kabushiki Kaisha Cooling system and vehicle that includes cooling system
EP2743107A1 (de) * 2012-12-14 2014-06-18 Valeo Systemes Thermiques Klimaanlage und Verfahren, insbesondere für ein Kraftfahrzeug
DE102013206630A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Kühl- und Heizsystem für ein Elektro- oder Hybrid-Fahrzeug sowie Verfahren zum Betreiben eines derartigen Kühl- und Heizsystems
DE102013206626A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage sowie Verfahren zur Klimatisierung eines Fahrzeuges
DE102013206634A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage für ein Fahrzeug und Verfahren zum Betrieb einer entsprechenden Wärmepumpenanlage
DE102013227034A1 (de) 2013-12-20 2015-06-25 Bayerische Motoren Werke Aktiengesellschaft Thermomanagement für ein Elektro- oder Hybridfahrzeug sowie ein Verfahren zur Konditionierung des Innenraums eines solchen Kraftfahrzeugs
EP2942257A1 (de) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Vorrichtung zum Beheizen des Fahrgastraumes und/oder Fahrstandes von Schienenfahrzeugen
US9274372B2 (en) 2013-09-23 2016-03-01 Samsung Display Co., Ltd. Quantum dot light-emitting device and display apparatus
DE102014217960A1 (de) 2014-09-09 2016-03-10 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage zur Klimatisierung eines Fahrzeuges und Verfahren zum Betrieb einer solchen Wärmepumpenanlage
CN105882349A (zh) * 2015-03-16 2016-08-24 中国新能源汽车有限公司 电动车辆的散热系统
EP2660086B1 (de) 2012-05-02 2017-06-14 MAN Truck & Bus AG Kreislaufsystem für ein Nutzfahrzeug
DE102016203045A1 (de) 2016-02-26 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Temperiereinrichtung zum Temperieren eines Innenraums eines Fahrzeugs sowie Verfahren zum Betreiben einer solchen Temperiereinrichtung
DE102016006682A1 (de) 2016-05-31 2017-11-30 Audi Ag Verfahren zum Betreiben einer Klimaanlage eines Elektro- oder Hybridfahrzeugs sowie Klimaanlage zur Durchführung des Verfahrens
DE102016220474A1 (de) * 2016-10-19 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Kühleinrichtung für ein Kraftfahrzeug, sowie Kraftfahrzeug mit einer solchen Kühleinrichtung
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
WO2018166820A1 (de) * 2017-03-13 2018-09-20 Audi Ag Kälteanlage eines fahrzeugs mit einem als kältekreislauf für einen ac-betrieb und als wärmepumpenkreislauf für einen heizbetrieb betreibaren kältemittelkreislauf
WO2019101620A1 (de) * 2017-11-23 2019-05-31 Volkswagen Ag Temperiereinrichtung eines innenraumes oder von komponenten eines kraftfahrzeuges
FR3075109A1 (fr) * 2017-12-18 2019-06-21 Renault S.A.S Procede de fonctionnement d'un systeme de regulation thermique d'un vehicule automobile a propulsion electrique ou hybride
FR3077236A1 (fr) * 2018-01-30 2019-08-02 Valeo Systemes Thermiques Dispositif de traitement thermique d'un habitacle et d'une chaine de traction d'un vehicule
WO2020030556A1 (de) * 2018-08-07 2020-02-13 Audi Ag Verfahren zum betreiben einer kälteanlage für ein fahrzeug mit einem eine wärmepumpenfunktion aufweisenden kältemittelkreislauf
WO2020089152A1 (de) * 2018-10-29 2020-05-07 Robert Bosch Gmbh Heiz- oder kühlmittelkreislauf für ein elektrofahrzeug
DE102013110224B4 (de) 2012-09-17 2022-03-17 Audi Ag Verfahren zum Betreiben einer Klimaanlage für ein Kraftfahrzeug

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107540B4 (de) 2011-07-16 2013-05-23 Audi Ag Verfahren zum Betreiben eines Kraftwagens in einem Sportbetriebsmodus
DE102013010331B4 (de) 2013-06-20 2023-03-30 Daimler Truck AG Antriebseinrichtung für einen Kraftwagen
DE102017206628A1 (de) * 2017-04-20 2018-10-25 Audi Ag Kälteanlage eines Fahrzeugs
DE102018201945A1 (de) 2018-02-08 2019-08-08 Audi Ag Verfahren zum Betreiben eines Kältemittelkreislaufs sowie Fahrzeugkälteanlage
DE102020200069A1 (de) * 2020-01-07 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Kältemaschine
DE102020122242A1 (de) 2020-08-26 2022-03-03 Audi Aktiengesellschaft Verfahren zum Umschalten von Betriebszuständen einer Kälteanlage eines Kraftfahrzeugs, Kälteanlage und Kraftfahrzeug
DE102020125249A1 (de) 2020-09-28 2022-03-31 Audi Aktiengesellschaft Verfahren zum Betreiben einer Kälteanlage im Kühlbetrieb, Kälteanlage und Kraftfahrzeug mit einer solchen Kälteanlage
DE102021132039A1 (de) 2021-12-06 2023-06-07 Audi Aktiengesellschaft Verfahren zum Betreiben eines Kältemittelkreises eines Kraftfahrzeugs und Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930148A1 (de) * 1998-06-30 2000-01-05 Valeo Climatisation Temperatursteuerung in Elektrofahrzeug
DE69617164T2 (de) * 1995-10-26 2002-08-29 Valeo Climatisation Vorrichtung zur Beheizung/Klimatisierung eines Innenraumes von einem Fahrzeug mit Elektromotor
DE10225055A1 (de) 2002-06-06 2003-12-18 Behr Gmbh & Co Klimaanlage für ein Kraftfahrzeug
EP1961593A1 (de) * 2007-02-23 2008-08-27 Behr GmbH & Co. KG Klimaanlage für ein Fahrzeug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644583B4 (de) * 1996-10-26 2004-12-30 Behr Gmbh & Co. Kg Fahrzeugklimaanlage mit mehreren Kondensatoren und/oder Verdampfern
FR2830926B1 (fr) * 2001-10-12 2004-04-02 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique pour vehicule automobile, notamment de type electrique ou hybride
FR2834778B1 (fr) * 2002-01-16 2004-04-16 Renault Dispositif de gestion thermique, notamment pour vehicule automobile equipe d'une pile a combustible

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617164T2 (de) * 1995-10-26 2002-08-29 Valeo Climatisation Vorrichtung zur Beheizung/Klimatisierung eines Innenraumes von einem Fahrzeug mit Elektromotor
DE19930148A1 (de) * 1998-06-30 2000-01-05 Valeo Climatisation Temperatursteuerung in Elektrofahrzeug
DE10225055A1 (de) 2002-06-06 2003-12-18 Behr Gmbh & Co Klimaanlage für ein Kraftfahrzeug
EP1961593A1 (de) * 2007-02-23 2008-08-27 Behr GmbH & Co. KG Klimaanlage für ein Fahrzeug

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160777A1 (de) * 2010-06-23 2011-12-29 Audi Ag Vorrichtung zur klimatisierung von fahrzeugen
CN103124646A (zh) * 2010-10-08 2013-05-29 罗伯特·博世有限公司 用于调节电动车辆的内部空间和/或至少一个构件的空气的空气调节设备和方法
US9016080B2 (en) * 2011-03-18 2015-04-28 Denso International America, Inc. Battery heating and cooling system
US20120234518A1 (en) * 2011-03-18 2012-09-20 Denso International America, Inc. Battery heating and cooling system
WO2012131459A1 (en) * 2011-04-01 2012-10-04 Toyota Jidosha Kabushiki Kaisha Cooling apparatus
CN103442913A (zh) * 2011-04-01 2013-12-11 丰田自动车株式会社 冷却装置
CN102889653A (zh) * 2011-07-21 2013-01-23 现代自动车株式会社 用于车辆的热泵系统及其控制方法
WO2013014513A1 (en) * 2011-07-26 2013-01-31 Toyota Jidosha Kabushiki Kaisha Cooling system
CN103717421A (zh) * 2011-07-26 2014-04-09 丰田自动车株式会社 冷却系统
FR2978534A1 (fr) * 2011-07-27 2013-02-01 Valeo Systemes Thermiques Installation de chauffage, ventilation et/ou climatisation à organe de commande amélioré
JP2013032870A (ja) * 2011-08-01 2013-02-14 Toyota Motor Corp 冷却装置
WO2013017936A1 (en) * 2011-08-01 2013-02-07 Toyota Jidosha Kabushiki Kaisha Cooling system
CN103717422B (zh) * 2011-08-01 2016-01-20 丰田自动车株式会社 冷却系统
CN103717422A (zh) * 2011-08-01 2014-04-09 丰田自动车株式会社 冷却系统
WO2013030657A1 (en) * 2011-08-31 2013-03-07 Toyota Jidosha Kabushiki Kaisha Cooling system
CN103764418B (zh) * 2011-08-31 2016-02-10 丰田自动车株式会社 冷却系统
CN103764418A (zh) * 2011-08-31 2014-04-30 丰田自动车株式会社 冷却系统
WO2013034967A3 (en) * 2011-09-06 2013-07-11 Toyota Jidosha Kabushiki Kaisha Selector valve and cooling system
FR2987886A3 (fr) * 2012-03-06 2013-09-13 Renault Sa Pompe a chaleur pour vehicule automobile
WO2013136148A1 (en) * 2012-03-16 2013-09-19 Toyota Jidosha Kabushiki Kaisha Cooling system and vehicle that includes cooling system
EP2660086B2 (de) 2012-05-02 2022-08-31 MAN Truck & Bus SE Kreislaufsystem für ein Nutzfahrzeug
EP2660086B1 (de) 2012-05-02 2017-06-14 MAN Truck & Bus AG Kreislaufsystem für ein Nutzfahrzeug
DE102013110224B4 (de) 2012-09-17 2022-03-17 Audi Ag Verfahren zum Betreiben einer Klimaanlage für ein Kraftfahrzeug
EP2743107A1 (de) * 2012-12-14 2014-06-18 Valeo Systemes Thermiques Klimaanlage und Verfahren, insbesondere für ein Kraftfahrzeug
FR2999689A1 (fr) * 2012-12-14 2014-06-20 Valeo Systemes Thermiques Circuit et procede de conditionnement d'air, notamment pour vehicule automobile
DE102013206630B4 (de) 2013-04-15 2023-08-24 Bayerische Motoren Werke Aktiengesellschaft Kühl- und Heizsystem für ein Hybrid-Fahrzeug sowie Verfahren zum Betreiben eines derartigen Kühl- und Heizsystems
DE102013206634A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage für ein Fahrzeug und Verfahren zum Betrieb einer entsprechenden Wärmepumpenanlage
DE102013206626A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage sowie Verfahren zur Klimatisierung eines Fahrzeuges
DE102013206630A1 (de) 2013-04-15 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Kühl- und Heizsystem für ein Elektro- oder Hybrid-Fahrzeug sowie Verfahren zum Betreiben eines derartigen Kühl- und Heizsystems
US9274372B2 (en) 2013-09-23 2016-03-01 Samsung Display Co., Ltd. Quantum dot light-emitting device and display apparatus
US10589596B2 (en) 2013-12-20 2020-03-17 Gentherm Gmbh Thermal management for an electric or hybrid vehicle and a method for air-conditioning the interior of such a motor vehicle
DE102013227034A1 (de) 2013-12-20 2015-06-25 Bayerische Motoren Werke Aktiengesellschaft Thermomanagement für ein Elektro- oder Hybridfahrzeug sowie ein Verfahren zur Konditionierung des Innenraums eines solchen Kraftfahrzeugs
EP2942257A1 (de) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Vorrichtung zum Beheizen des Fahrgastraumes und/oder Fahrstandes von Schienenfahrzeugen
DE102014217960A1 (de) 2014-09-09 2016-03-10 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpenanlage zur Klimatisierung eines Fahrzeuges und Verfahren zum Betrieb einer solchen Wärmepumpenanlage
US10611210B2 (en) 2014-09-09 2020-04-07 Bayerische Motoren Werke Aktiengesellschaft Heat pump system for climate control of a vehicle, and method for operating a heat pump system of this type
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US9895954B2 (en) 2015-03-16 2018-02-20 Thunder Power New Energy Vehicle Development Company Limited Thermal dissipation system of an electric vehicle
EP3327856A1 (de) * 2015-03-16 2018-05-30 Thunder Power New Energy Vehicle Development Company Limited Wärmeableitungssystem eines elektrofahrzeugs
EP3327858A1 (de) * 2015-03-16 2018-05-30 Thunder Power New Energy Vehicle Development Company Limited Wärmeableitungssystem eines elektrofahrzeugs
US10035402B2 (en) 2015-03-16 2018-07-31 Thunder Power New Energy Vehicle Development Company Limited Thermal dissipation system of an electric vehicle
US10035401B2 (en) 2015-03-16 2018-07-31 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
EP3327857A3 (de) * 2015-03-16 2018-08-22 Thunder Power New Energy Vehicle Development Company Limited Wärmeableitungssystem eines elektrofahrzeugs
US10059165B2 (en) 2015-03-16 2018-08-28 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US10347955B2 (en) 2015-03-16 2019-07-09 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US10173518B2 (en) 2015-03-16 2019-01-08 Thunder Power New Energy Vehicle Development Company Limited Thermal dissipation system of an electric vehicle
EP3096392A1 (de) * 2015-03-16 2016-11-23 Thunder Power Hong Kong Ltd. Wärmeableitungssystem eines elektrofahrzeugs
CN105882349A (zh) * 2015-03-16 2016-08-24 中国新能源汽车有限公司 电动车辆的散热系统
DE102016203045A1 (de) 2016-02-26 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Temperiereinrichtung zum Temperieren eines Innenraums eines Fahrzeugs sowie Verfahren zum Betreiben einer solchen Temperiereinrichtung
DE102016006682B4 (de) 2016-05-31 2024-03-14 Audi Ag Verfahren zum Betreiben einer Klimaanlage eines Elektro- oder Hybridfahrzeugs sowie Klimaanlage zur Durchführung des Verfahrens
DE102016006682A1 (de) 2016-05-31 2017-11-30 Audi Ag Verfahren zum Betreiben einer Klimaanlage eines Elektro- oder Hybridfahrzeugs sowie Klimaanlage zur Durchführung des Verfahrens
DE102016220474A1 (de) * 2016-10-19 2018-04-19 Bayerische Motoren Werke Aktiengesellschaft Kühleinrichtung für ein Kraftfahrzeug, sowie Kraftfahrzeug mit einer solchen Kühleinrichtung
US11186136B2 (en) 2016-10-19 2021-11-30 Bayerische Motoren Werke Aktiengesellschaft Cooling apparatus for a motor vehicle, and motor vehicle having such a cooling apparatus
KR102271589B1 (ko) * 2017-03-13 2021-07-05 아우디 아게 에어컨디셔너 작동을 위한 냉각 회로로서 그리고 가열 작동을 위한 히트 펌프 회로로서 작동될 수 있는 냉각제 회로를 포함하는 차량의 냉각 시스템
CN110402203A (zh) * 2017-03-13 2019-11-01 奥迪股份公司 具有可作为用于ac运行的制冷循环回路工作和作为用于加热运行的热泵循环回路工作的制冷介质循环回路的车辆的制冷设备
KR20190124777A (ko) * 2017-03-13 2019-11-05 아우디 아게 에어컨디셔너 작동을 위한 냉각 회로로서 그리고 가열 작동을 위한 히트 펌프 회로로서 작동될 수 있는 냉각제 회로를 포함하는 차량의 냉각 시스템
US11884134B2 (en) 2017-03-13 2024-01-30 Audi Ag Cooling system of a vehicle, comprising a coolant circuit which can be operated as a cooling circuit for an AC operation and as a heat pump circuit for a heating operation
WO2018166820A1 (de) * 2017-03-13 2018-09-20 Audi Ag Kälteanlage eines fahrzeugs mit einem als kältekreislauf für einen ac-betrieb und als wärmepumpenkreislauf für einen heizbetrieb betreibaren kältemittelkreislauf
CN111247014A (zh) * 2017-11-23 2020-06-05 大众汽车有限公司 机动车的内部空间或者部件的调温装置
WO2019101620A1 (de) * 2017-11-23 2019-05-31 Volkswagen Ag Temperiereinrichtung eines innenraumes oder von komponenten eines kraftfahrzeuges
CN111247014B (zh) * 2017-11-23 2023-09-05 大众汽车有限公司 机动车的内部空间或者部件的调温装置
WO2019121415A1 (fr) * 2017-12-18 2019-06-27 Renault S.A.S Procédé de fonctionnement d'un système de régulation thermique d'un véhicule automobile à propulsion électrique ou hybride
FR3075109A1 (fr) * 2017-12-18 2019-06-21 Renault S.A.S Procede de fonctionnement d'un systeme de regulation thermique d'un vehicule automobile a propulsion electrique ou hybride
FR3077236A1 (fr) * 2018-01-30 2019-08-02 Valeo Systemes Thermiques Dispositif de traitement thermique d'un habitacle et d'une chaine de traction d'un vehicule
US11820198B2 (en) 2018-08-07 2023-11-21 Audi Ag Method for operating a vehicular refrigeration system having a refrigeration circuit with a heat pump function
WO2020030556A1 (de) * 2018-08-07 2020-02-13 Audi Ag Verfahren zum betreiben einer kälteanlage für ein fahrzeug mit einem eine wärmepumpenfunktion aufweisenden kältemittelkreislauf
WO2020089152A1 (de) * 2018-10-29 2020-05-07 Robert Bosch Gmbh Heiz- oder kühlmittelkreislauf für ein elektrofahrzeug

Also Published As

Publication number Publication date
DE102009056027B4 (de) 2014-01-16
DE102009056027A1 (de) 2011-04-14

Similar Documents

Publication Publication Date Title
DE102009056027B4 (de) Fahrzeug, insbesondere Elektrofahrzeug
EP3697635B1 (de) Verfahren zum betreiben eines kältemittelkreislaufs sowie fahrzeugkälteanlage
EP1467879B1 (de) Heiz-/kühlkreislauf für eine klimaanlage eines kraftfahrzeugs, klimaanlage und verfahren zur steuerung derselben
DE10036038B4 (de) Verfahren zum Betrieb einer Klimaanlage eines Kraftfahrzeuges
DE112016003558B4 (de) Wärmepumpen-System
EP1456046B1 (de) Aufbau und regelung einer klimaanlage für ein kraftfahrzeug
EP0991536B1 (de) Fahrzeugklimaanlage und deren verwendung
DE60209949T3 (de) Fahrzeug-Klimaanlage
DE112009001136B4 (de) Klimaanlage zur Konditionierung mehrerer Fluide
EP2608973B1 (de) Heiz-/kühleinrichtung und heiz-/kühl-modul für eine heiz-/kühleinrichtung
DE102005007322A1 (de) Fahrzeug-Klimatisierungssystem
DE102010051976B4 (de) Klimaanlage für ein Kraftfahrzeug
WO2020030556A1 (de) Verfahren zum betreiben einer kälteanlage für ein fahrzeug mit einem eine wärmepumpenfunktion aufweisenden kältemittelkreislauf
DE102014203895B4 (de) Kälteanlage
DE112014002518T5 (de) Kältekreislaufvorrichtung
DE112013005304T5 (de) Kältekreislaufvorrichtung
DE10126257A1 (de) Heiz-/Kühlkreislauf für eine Klimaanlage eines Kraftfahrzeuges, Klimaanlage und Verfahren zur Regelung derselben
DE112016003161T5 (de) Wärmepumpenkreislauf
DE10163607A1 (de) Aufbau und Regelung einer Klimaanlage für ein Kraftfahrzeug
DE112017002005B4 (de) Verfahren zum betrieb einer fahrzeugklimaanlage
DE112020004318T5 (de) Anschlussmodul
DE102015015125A1 (de) Fahrzeugklimaanlage
DE102014117950B4 (de) Kältemittelkreislauf, insbesondere für ein Kraftfahrzeug
WO2019214927A1 (de) Kälteanlage für ein fahrzeug mit einem eine wärmepumpenfunktion aufweisenden kältemittelkreislauf
DE102018201945A1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs sowie Fahrzeugkälteanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10749802

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10749802

Country of ref document: EP

Kind code of ref document: A1