WO2011029513A1 - Dosimètre-laser - Google Patents

Dosimètre-laser Download PDF

Info

Publication number
WO2011029513A1
WO2011029513A1 PCT/EP2010/005012 EP2010005012W WO2011029513A1 WO 2011029513 A1 WO2011029513 A1 WO 2011029513A1 EP 2010005012 W EP2010005012 W EP 2010005012W WO 2011029513 A1 WO2011029513 A1 WO 2011029513A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
housing
dosimeter
dosimeter according
sensors
Prior art date
Application number
PCT/EP2010/005012
Other languages
German (de)
English (en)
Inventor
Eric Ten Have
Michael Gowin
Original Assignee
Rheinmetall Waffe Munition Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Waffe Munition Gmbh filed Critical Rheinmetall Waffe Munition Gmbh
Publication of WO2011029513A1 publication Critical patent/WO2011029513A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0233Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/029Multi-channel photometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/18Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors using comparison with a reference electric value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • G01J1/0492Optical or mechanical part supplementary adjustable parts with spectral filtering using at least two different filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Definitions

  • Laser dosimeters are needed to measure the laser radiation incident on a person, for example on a battlefield or in rooms where lasers are used. Such laser dosimeters should be as small as possible and about the size of a badge or badge card so that it can be easily carried by the person to be monitored on laser beams.
  • Such a (personal) laser dosimeter is known for example from US 5,698,343.
  • This known laser dosimeter consists essentially of a small Fresnel biprism which is in optical contact with a layer of a photopolymerizable material. Holograms of interference patterns are then recorded on this layer if the dosimeter is irradiated with coherent light (usually laser light) and evaluated after the end of a monitoring period.
  • the invention has for its object to provide a simple and compact constructed laser dosimeter, with the use of lasers and in particular prohibited laser weapons secured and quantified to prove.
  • the invention is based essentially on the idea to show a laser knife, can be dispensed with the on a prism and an interference hologram recording material.
  • individual or different detectors for individual or different wavelengths and power or energy ranges, the laser radiation falling on the / the detectors).
  • the short-pulse laser radiation is evaluated.
  • a nonlinear effect can be used, for.
  • stimulated Raman scattering, fluorescence conversion, Phosphoressenzkonversion or the use of saturable absorbers Since the detector principle is based on a wavelength shift, behind the non-linear medium another optical filter should be used, which transmits the converted to the detected wavelength, but blocks the incident wavelength. Only then do they fall on the detector (s).
  • Stimulated Raman scattering as well as the fluorescence and phosphorus essence conversion are used to realize a wavelength shift, whereby photons of the incident light are absorbed and photons of a different wavelength are emitted via the non-linear process.
  • the strength or the efficiency of this process is dependent on the intensity of the incident radiation, so that these processes are particularly suitable for the detection of short-pulse laser applications, since high peak intensities are achieved here.
  • a medium for Raman scattering a variety of gaseous, liquid or solid materials are used, but in particular LiNb0 3 and InSb.
  • the choice as a suitable medium depends on the particular details of the wavelengths and signal strengths to be detected and is to be coordinated with them.
  • the dyes to be used For the fluorine essence and phosphorus essence conversion, there are various dyes that can be used. These can be arranged in a low concentration in a polymer matrix (eg PMMA), so that they can be more easily installed in the detector. For the different wavelengths to be detected, the dyes to be used should be selected on the basis of their absorption and emission spectra so as to optimize the combination of signals to be detected and dyes used.
  • a polymer matrix eg PMMA
  • the dyes Dil or SYTO 82 would be suitable; for detection of the wavelength 633 nm, however, DiD or SYTOR Red would be suitable (see also http://www.invitrogen.com/site/us/en/home / supponVesearch-Tools / Fluorescence- SpectraViewer.html).
  • Saturable absorbers do not change the wavelength of the incident radiation, but can be used to distinguish between short-pulse radiation and continuous wave radiation. The absorbers in turn reach a saturated state, so that the medium no longer works as an absorber.
  • the saturation depends on the intensity of the incident radiation, with short pulses with high peak intensity, the rising edge ensures the saturation of the absorber, so that the area of highest intensity no longer absorbs absorption. After the pulse has subsided, the material relaxes and returns to its ground state.
  • absorbers are dye solutions whose absorption spectrum should be matched to the wavelength to be detected. Switchable semiconductor elements can also be used as saturable absorbers.
  • the laser dosimeter consists of a housing, which in its outer wall facing the laser light preferably has a plurality of laser light-transmitting openings, behind each of which at least one optical sensor is arranged.
  • the individual sensors measure laser light of different wavelengths and / or different wavelength ranges, wherein each of the sensors is electrically connected to an evaluation electronics located in the housing, which evaluates and stores the received signals.
  • the power supply required for the operation of the transmitter is preferably carried out by means of a likewise arranged in the housing power source.
  • the housing can be kept small so that it is also possible to carry a plurality of dosimeters on the outside of the body of the respective person to be monitored for laser radiation.
  • sensors can be used according to the latest state of the art and optimized with regard to the particular application (threat profile).
  • the housing of the laser dosimeter should be robust and tamper-proof in order to prevent or leave a falsification of the measured data.
  • the evaluation of the dosimeter by a third party impartial instance is also possible.
  • the housing can be formed by a rear and a front plate with an opening for the entry of the laser radiation.
  • the housing can be formed by a rear and a front plate with an opening for the entry of the laser radiation.
  • Another possibility is the encapsulation of the electronic components with plastic and / or synthetic resin. Bonding the seams with a seal sticker is also recommended. Here, a destruction is also easily recognizable and new stickers only by authorized persons reapplicable. Welding the seams with plastic film similar to drug packaging is another alternative. Since this is a special apparatus for welding, reclosing by unauthorized persons is excluded.
  • a special foil can be used, for example with a special lettering or a hologram. Color paint is also known on at least one fastening screw.
  • the sensors are preceded by optical filters which transmit only light of the predetermined wavelength or the predetermined wavelength range.
  • the transmitter can be constructed such that the signals received by the sensors are each compared with a presettable threshold and that when the threshold is exceeded, an alarm signal (optical, acoustic, tactile or the like) is triggered.
  • Fig. 2 is a schematic cross section of another variant (in part).
  • the combination of filter, detector (sensor) and evaluation unit can be adapted to the prevailing (threat) profile or specifications.
  • the threshold values are variable.
  • Fig1. 1 is a representative of a laser dosimeter. which comprises a housing 2, which preferably has approximately the dimensions of a badge card (also a thicker smart card, a badge or the like) and very robust and tamper-proof (for example by encapsulation of the housing 2 or the electronic components with plastic ) is constructed.
  • a badge card also a thicker smart card, a badge or the like
  • very robust and tamper-proof for example by encapsulation of the housing 2 or the electronic components with plastic
  • the laser light facing outer wall 3 of the housing 2 preferably contains a plurality of laser light transmitting openings 4. Behind each of the openings 4, an optical filter 5 is arranged, wherein the individual filters 5 transmit light of different wavelengths or wavelength ranges. Inside the housing 2, the filters 5 are followed by optical sensors 6. In this case, each of the sensors 6 is electrically connected to an evaluation electronics 7 located in the housing 2, which evaluates and stores the sensor signals.
  • the sensors 3 may be applied to a printed circuit board (not shown) and thereby electrically contacted.
  • a battery 8 or other energy storage is provided, which / is also arranged in the housing 2.
  • the transmitter has 7 memory elements (not shown), which ensure that already stored measurement results are not lost even when switching off the battery voltage (especially when the battery (s) is / are empty).
  • the transmitter 7 is preferably designed so that it can be reinitialized after reading the measured values for repeated use.
  • Fig. 2 shows a variant for measuring short-pulse (pulsed) laser radiation.
  • two further filters 9, 10 are placed behind the filter 5 already incorporated in FIG. 1.
  • the non-linear filter 9 is, for example, a fluorescent dye in a polymer matrix and the second filter 10 is an optical filter.
  • the second filter serves to separate laser and fluorescent light. This is then followed by the sensor 6.
  • the non-linear filter 9 is needed.
  • the transmitter 7 is constructed such that the signals received by the sensors 6 (both variants) are generally stored as a corresponding signal value and are compared in a preferred embodiment in each case with a presettable threshold value. When the threshold value is exceeded, an alarm signal can be triggered become. The alarm signal can then be supplied, for example, to a loudspeaker (also not shown) also located in the laser dosimeter 1.
  • the openings 4 can also be closed by translucent glass or plastic discs. If appropriate, these can also at least partially assume the function of the optical filters.
  • the housing 2 can be closed by a verifiable closure seam 11 and / or a sealing sticker 12 etc. tamper-proof.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention vise à mettre au point un dosimètre-laser (1) de structure aussi simple et compacte que possible. A cet effet, selon l'invention ledit dosimètre-laser (1) comprend un boîtier (2) présentant, dans sa paroi extérieure (3) tournée vers la lumière laser, plusieurs ouvertures (4) laissant passer la lumière laser, derrière lesquelles est disposé respectivement au moins un capteur optique (6). Les capteurs (6) individuels mesurent la lumière laser de différentes longueurs d'ondes, chacun desdits capteurs (6) étant relié électriquement à une électronique d'évaluation (7) située dans le boîtier (2), qui évalue et mémorise les signaux reçus. L'alimentation en énergie requise pour le bon fonctionnement de l'électronique d'évaluation (7) est assurée de préférence au moyen d'une source de courant (8) disposée elle aussi dans le boîtier (2).
PCT/EP2010/005012 2009-09-09 2010-08-14 Dosimètre-laser WO2011029513A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009040660.3 2009-09-09
DE200910040660 DE102009040660A1 (de) 2009-09-09 2009-09-09 Laser-Dosimeter

Publications (1)

Publication Number Publication Date
WO2011029513A1 true WO2011029513A1 (fr) 2011-03-17

Family

ID=43014124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/005012 WO2011029513A1 (fr) 2009-09-09 2010-08-14 Dosimètre-laser

Country Status (2)

Country Link
DE (1) DE102009040660A1 (fr)
WO (1) WO2011029513A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698343A (en) 1994-07-05 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force Laser wavelength detection and energy dosimetry badge
FR2769979A1 (fr) * 1997-10-16 1999-04-23 Corning Inc Senseur et dosimetre pour le rayonnement ultraviolet et verres photoluminescents pour leur fabrication
WO2001018510A1 (fr) * 1999-09-02 2001-03-15 Andreas Nuske Montre-bracelet dosimetre u.v. numerique
US6426503B1 (en) * 2000-06-09 2002-07-30 Southwest Research Institute Opto-electronic ultra-violet radiation dosimeter
US20040253759A1 (en) * 2003-06-12 2004-12-16 Valery Garber Steady-state non-equilibrium distribution of free carriers and photon energy up-conversion using same
US20060065833A1 (en) * 2004-09-30 2006-03-30 Battelle Memorial Institute Infra-red detector and method of making and using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698343A (en) 1994-07-05 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force Laser wavelength detection and energy dosimetry badge
FR2769979A1 (fr) * 1997-10-16 1999-04-23 Corning Inc Senseur et dosimetre pour le rayonnement ultraviolet et verres photoluminescents pour leur fabrication
WO2001018510A1 (fr) * 1999-09-02 2001-03-15 Andreas Nuske Montre-bracelet dosimetre u.v. numerique
US6426503B1 (en) * 2000-06-09 2002-07-30 Southwest Research Institute Opto-electronic ultra-violet radiation dosimeter
US20040253759A1 (en) * 2003-06-12 2004-12-16 Valery Garber Steady-state non-equilibrium distribution of free carriers and photon energy up-conversion using same
US20060065833A1 (en) * 2004-09-30 2006-03-30 Battelle Memorial Institute Infra-red detector and method of making and using same

Also Published As

Publication number Publication date
DE102009040660A1 (de) 2011-03-10

Similar Documents

Publication Publication Date Title
EP1887536A1 (fr) Détecteur de fumée à lumière diffusée
EP0032169A1 (fr) Système de signalisation fonctionnant avec radiation électromagnétique
DE202011102765U1 (de) Vorrichtung mit einer Messanordnung zur infrarot-optischen Messung von Gasen und Gasgemischen mit Kompensation von Umgebungseinflüssen
DE102013106740A1 (de) Eine Vorrichtung zum Bestimmen eines Zustands eines Akkumulators oder einer Batterie, ein Akkumulator oder eine Batterie und ein Verfahren zum Bestimmen eines Zustands eines Akkumulators oder einer Batterie
DE102012010228A1 (de) Kapazitiver Sensor für eine Kollisionsschutzvorrichtung
EP1093100B1 (fr) Capteur infrarouge passif
DE102013217039B4 (de) Überwachung und Inspektion einer Batteriezelle mithilfe elektromagnetischer Wellen über transparente Bauteilkomponenten
EP2879542B1 (fr) Procédé permettant de vérifier cette pièce de monnaie
WO2011029513A1 (fr) Dosimètre-laser
WO2021249671A1 (fr) Document de valeur doté d'un élément support et d'un élément film, et procédé de classification d'un document de valeur
EP0772171B1 (fr) Détecteur passif d'intrusion et utilisation du détecteur
DE102010041141B4 (de) Sensor zur Überwachung eines Mediums
EP1750106B1 (fr) Spectrophotomètre pour des mesures avec une cellule de mesure ouverte à la lumière ambiente
EP1577651B1 (fr) Utilisation d'un élémente photovoltaique pour le contrôle de la fonction d'un phare infrarouge d'un vehicule
DE102006012798A1 (de) Verpackung mit einem Signet und Auslesevorrichtung für das Signet
DE10259293A1 (de) Vorrichtung für die Überprüfung der Echtheit von Banknoten
WO2020035538A1 (fr) Module détecteur et utilisation d'un module détecteur
DE102006052463A1 (de) Einrichtung zur Erfassung einer auf einen Gegenstand einfallenden Strahlungsdosis
DE102013225514A1 (de) Sicherheitselement und Verifikationsverfahren mit einem anregungsabhängigen optischen Effekt im nicht sichtbaren Wellenlängenbereich
DE102021212950B3 (de) Verfahren zum Überwachen einer Komponente bei der Strahlentherapie und Lichtbasiertes Sperrsystem
DE102014110460B3 (de) Optischer Rauchmelder und Verfahren zur optischen Rauchdetektion
DE19808652A1 (de) Verifikationssystem für ein Wert- und Sicherheitserzeugnis
WO2012101126A1 (fr) Système de sécurité pour ensemble de vitrage, ensemble de vitrage avec fonction de sécurité et procédé de détection d'une sollicitation mécanique ou thermique d'un élément de vitrage plan
WO1999060384A1 (fr) Dispositif pour determiner des concentrations de gaz
DE102010006024B4 (de) Sensormodul zur Messung objektschädigender Strahlung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745557

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10745557

Country of ref document: EP

Kind code of ref document: A1