WO2011029400A1 - 协作通信的方法及基站 - Google Patents

协作通信的方法及基站 Download PDF

Info

Publication number
WO2011029400A1
WO2011029400A1 PCT/CN2010/076761 CN2010076761W WO2011029400A1 WO 2011029400 A1 WO2011029400 A1 WO 2011029400A1 CN 2010076761 W CN2010076761 W CN 2010076761W WO 2011029400 A1 WO2011029400 A1 WO 2011029400A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
base station
direction matrix
mobile terminal
precoding
Prior art date
Application number
PCT/CN2010/076761
Other languages
English (en)
French (fr)
Inventor
龙毅
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10815002.0A priority Critical patent/EP2437419B1/en
Priority to BRPI1014729-2A priority patent/BRPI1014729B1/pt
Publication of WO2011029400A1 publication Critical patent/WO2011029400A1/zh
Priority to US13/316,934 priority patent/US8462658B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03904Spatial equalizers codebook-based design cooperative design, e.g. exchanging of codebook information between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and a base station for precoding in cooperative communication.
  • a base station acquires channel state information (CSI) of a mobile terminal (MS), according to The CSI information is communicated with the MS using a space division multiple access technique.
  • CSI channel state information
  • MS mobile terminal
  • the distributed cooperative MIMO system application scenarios in the current research are mostly single-user multi-antenna or multi-user single antenna.
  • the number of antennas per base station is greater than the total number of antennas of the terminals it serves, and its application is obviously limited.
  • Embodiments of the present invention provide a distributed cooperative communication method capable of performing precoding based on local channel state information; and simultaneously serving a plurality of multi-antenna mobile terminals.
  • the method for cooperative communication provided by the embodiment of the present invention is: obtaining a direction matrix corresponding to a target mobile terminal, where the number of rows of the direction matrix is based on the total number of mobile terminal antennas in the cooperation area and the target mobile terminal The number of antennas is determined, The number of columns of the direction matrix is determined according to the number of code streams transmitted to the target mobile terminal; the precoding matrix is calculated according to the local channel state information and the direction matrix; precoding is performed according to the precoding matrix, and cooperative communication is performed.
  • the embodiment of the present invention further provides a cooperative base station, where the base station includes: a direction matrix determining unit, configured to obtain a direction matrix corresponding to a target mobile terminal, where the number of rows of the direction matrix is according to the collaboration area The total number of mobile terminal antennas is determined by the number of antennas of the target mobile terminal, and the number of columns of the direction matrix is determined according to the number of code streams transmitted to the target mobile terminal;
  • a direction matrix determining unit configured to obtain a direction matrix corresponding to a target mobile terminal, where the number of rows of the direction matrix is according to the collaboration area
  • the total number of mobile terminal antennas is determined by the number of antennas of the target mobile terminal, and the number of columns of the direction matrix is determined according to the number of code streams transmitted to the target mobile terminal;
  • the method and the base station of the embodiments of the present invention use the method of the agreed direction matrix to eliminate interference between users.
  • the use of the direction matrix can avoid interference of each coordinated base station to other terminals other than the target terminal. Zero can achieve zero total interference, which improves the degree of freedom of the base station in the number of antennas, that is, each base station needs fewer antennas to achieve better results.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a second application scenario according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a third application scenario according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a fourth application scenario according to an embodiment of the present invention.
  • 6 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a first embodiment of the direction matrix determining unit 601.
  • Fig. 8 is a schematic diagram of a second embodiment of the direction matrix determining unit 601. detailed description
  • Embodiments of the present invention provide a method for distributed cooperative communication, which eliminates interference between users by a method of adjacency direction matrix, and is applicable to a multi-antenna mobile terminal.
  • 5101 Obtain a direction matrix corresponding to a target mobile terminal, where the number of rows of the direction matrix is determined according to a total number of mobile terminal antennas in the cooperation area and an antenna number of the target mobile terminal, where the direction matrix The number of columns is determined based on the number of code streams transmitted to the target mobile terminal.
  • each cooperative base station needs zero interference to other terminals other than the target terminal to achieve zero total interference, and the degree of freedom of the base station in the number of antennas is improved. That is, each base station needs fewer antennas to achieve better results.
  • each base station has data information to be transmitted to all mobile terminals and owns local channel state information (local CSI), where Si is data information transmitted to the i-th mobile terminal.
  • local CSI local channel state information
  • Si data information transmitted to the i-th mobile terminal.
  • Each base station calculates a precoding matrix for each mobile terminal based on local channel state information.
  • the local channel state information refers specifically to channel state information between the base station and all mobile terminals in the cooperative set, and the global channel state information specifically refers to channel state information between all cooperative base stations and all mobile terminals in the cooperative set.
  • S201 The base station obtains a direction matrix, where the direction matrix corresponds to a mobile terminal.
  • the number of rows of the direction matrix is equal to the total number of mobile terminal antennas minus the number of antennas of the mobile terminal for which precoding is performed, and the number of columns of the direction matrix is equal to the number of code streams of the mobile terminal for which precoding is performed.
  • Each mobile terminal in the application for the cooperative service of the base station generates a set of direction matrices, and each set of direction matrices includes the same number of direction matrices as the number of cooperative base stations.
  • Each base station will be assigned one of each set of direction matrices.
  • the norm of the sum of a set of direction matrices for each mobile terminal represents the degree of interference caused by signals transmitted to the mobile terminal at other mobile terminals, and if the sum of a set of direction matrices is zero matrix, the corresponding The interference of the signals of the mobile terminal to other mobile terminals is completely eliminated.
  • the norm of the matrix of the direction matrix of all the base stations corresponding to each mobile terminal may be limited to a small threshold that the system can tolerate, for example, the norm of the sum matrix (corresponding to the interference) Strength) Not greater than the noise intensity.
  • the values of the specific elements may be random, and preferably may be a unit matrix or a unitary matrix that meets the requirements of the row and column.
  • the norm of the sum of a set of direction matrices for a target mobile terminal is to meet the requirements to eliminate or reduce the interference.
  • the total number of cooperative base stations is N
  • the number of antennas of the i-th base station is M
  • the number of mobile terminals is M
  • the number of antennas of the j-th mobile terminal and the number of code streams of the received data are respectively ⁇ and .
  • each mobile terminal has One primary base station, the other base stations are its secondary base stations (slave BS).
  • the primary base station may generate a set of direction matrices for all cooperative base stations, and then send each direction matrix to the corresponding cooperative base station.
  • the direction matrix is generated by itself, and for the secondary base station, the direction matrix transmitted by the primary base station is received.
  • the second method is as follows: There is a dispatcher in the cooperative MIMO network, such as a dispatch controller, and all base stations in the cooperative set are controlled by the dispatch controller.
  • a set of direction matrices that meet the above requirements can be generated by the dispatch controller for each mobile terminal's transmitted signal.
  • Mode 3 is a distributed negotiation scheme: There are N base stations in the coordination set and the base station sequence is defined. Each cooperative base station generates a set of direction matrix for each mobile terminal in the service range of the base station according to the same method. And select the direction matrix corresponding to the base station number of its own. In this method, the direction matrix is generated for its own calculation.
  • the fourth method is as follows: ⁇ There are N base stations in the cooperation set and the base station sequence is defined.
  • the first base station first selects a direction matrix corresponding to each mobile terminal, and then transmits its selected direction matrix to the 2-Nth cooperative base station; the second base station selects the base based on the first base station direction matrix.
  • the base station corresponds to the direction matrix of each mobile terminal and transmits it to the 3-Nth cooperative base station; and so on, all base stations obtain a direction matrix for each mobile terminal, and can satisfy the above requirements for the direction matrix .
  • the above-mentioned transmission direction matrix may be directly transmitted in the form of a matrix, or may be transmitted in a manner of using a codebook index.
  • the secondary base station receives the codebook index and then obtains the desired direction matrix by looking up the codebook index in the direction matrix codebook.
  • Each base station obtains instantaneous local channel state information through feedback or channel estimation.
  • Base station according to this The ground channel state information and the assigned direction matrix calculate a precoding matrix for the corresponding data of each mobile terminal.
  • S203 Perform precoding according to a precoding matrix, and perform cooperative communication.
  • Each terminal signal is multiplied by its precoding matrix and superimposed to complete precoding, and downlinked for cooperative communication.
  • the manner of calculating the precoding in the embodiment of the present invention may use, but is not limited to, a method such as ZF and MMSE.
  • ZF as an example to introduce several examples of calculating precoding matrices.
  • the product of the channel matrix and the precoding matrix between the base station and the mobile terminal other than the target mobile terminal except the signal transmission needs to be equal to the direction matrix, in this example,
  • the precoding matrices of BS1 and BS2 for x3 and x4 can be obtained.
  • each base station has 4 antennas, and each mobile terminal has 2 antennas.
  • Each base station has data for three mobile terminals;
  • Each base station has only local channel state information.
  • BS1 and BS2 Two base stations are denoted as BS1 and BS2 respectively; two mobile terminals are denoted as MS1 and MS2 respectively; xl and x2 are signals received by MS1, x3 and x4 are signals received by MS2, and x5 and x6 are MS3 connected Received signal; xl-x6 is shared by BS1 and BS2.
  • BS1 has local channel state information H11, H21, and H31
  • BS2 has local channel state information H12, H22, and H32.
  • Global channel status information is
  • the precoding matrix of BS1 and BS2 for MS2 and MS3 can be obtained by the same method.
  • each base station has m antennas, there are N mobile terminals, and each mobile terminal has n antennas.
  • the interference channel of the i-th cooperative base station can be expressed as H T , , H T , which is a matrix of (N1) nXm.
  • the precoding matrix that the i-th base station needs to calculate is denoted by , and ⁇ is a matrix of mxn. Solving the precoding matrix requires solving the following equation:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

协作通信的方法及基站 技术领域
本发明实施例涉及通信领域,尤其涉及一种协作通信中预编码的方法及基 站。
背景技术
在协作多输入多输出 ( Cooperation Multiple-input Multiple-output , Co-MIMO )系统中 , 基站( Basic Station, BS )获取移动终端( Mobile Station, MS )信道状态信息( channel state information, CSI ), 根据该 CSI信息采用空 分多址技术与 MS进行通信。 现在分布式的协作 MIMO,即协作基站之间不进行即时信道状态信息以及 统计信道状态信息的交互,每个基站的预编码矩阵只根据即时的本地信道状态 信息来计算。此方案不受 backhaul时延和容量的限制。 由于不需要将信道状态 信息集中处理,具有更强的可扩展性。 而且分布式方案与现有蜂窝网的构架更 接近, 协议修改相对筒单。 但是目前的研究中的分布式协作 MIMO系统应用 场景大多为单用户多天线或者多用户单天线。对于多用户多天线的情况,每个 基站的天线数要大于其服务的终端的天线总数, 显然其应用受到较大的限制。
发明内容
本发明的实施例提供一种分布式的协作通信的方法,能够基于本地信道状 态信息进行预编码; 并同时服务多个多天线移动终端。 本发明实施例提供的协作通信的方法为: 获得一方向矩阵, 该方向矩阵与一目标移动终端对应, 所述方向矩阵的行 数根据协作区域内总的移动终端天线数与所述目标移动终端的天线数确定,所 述方向矩阵的列数根据向所述目标移动终端发送的码流数目确定; 根据本地信道状态信息和所述方向矩阵计算预编码矩阵; 根据所述预编码矩阵进行预编码, 并进行协作通信。 同时, 本发明实施例还提供一种协作基站, 该基站包括: 方向矩阵确定单元, 用于获得一方向矩阵,该方向矩阵与一目标移动终端 对应,所述方向矩阵的行数根据协作区域内总的移动终端天线数与所述目标移 动终端的天线数确定,所述方向矩阵的列数根据向所述目标移动终端发送的码 流数目确定;
计算单元, 用于根据本地信道状态信息和所述方向矩阵计算预编码矩阵; 预编码单元, 用于根据所述预编码矩阵进行预编码; 通信单元, 用于根据所述预编码结果进行协作通信。 本发明实施例的方法及基站利用约定方向矩阵的方法消除用户间千扰,在多用 户多天线的情况下 ,通过使用方向矩阵可以避免需要每个协作基站对目标终端 以外的其他终端的干扰为零才可以实现总的干扰为零,提高了基站在天线数量 上的自由度, 即每个基站需要更少的天线就可以实现较优的效果。 附图说明
图 1为本发明实施例方法流程图。 图 2为本发明实施例第一场景示意图。 图 3为本发明实施例第二应用场景示意图。 图 4为本发明实施例第三应用场景示意图。 图 5为本发明实施例第四应用场景示意图。 图 6为本发明实施例基站结构框图。 图 7为方向矩阵确定单元 601的第一实施例的示意图。
图 8为方向矩阵确定单元 601的第二实施例的示意图。 具体实施方式
本发明实施例提供一种分布式协作通信的方法,该方法通过约定方向矩阵 的方法来消除用户间千扰, 可适用于多天线的移动终端。
参阅图 1 , 本发明实施例的方法流程图。
5101 , 获得一方向矩阵, 该方向矩阵与一目标移动终端对应, 所述方向矩 阵的行数根据协作区域内总的移动终端天线数与所述目标移动终端的天线数 确定, 所述方向矩阵的列数根据向所述目标移动终端发送的的码流数目确定。
5102, 根据本地信道状态信息和方向矩阵计算预编码矩阵。
5103, 根据预编码矩阵进行预编码, 并进行协作通信。
多天线的情况下,通过使用方向矩阵可以避免需要每个协作基站对目标终端以 外的其他终端的千扰为零才可以实现总的千扰为零,提高了基站在天线数量上 的自由度, 即每个基站需要更少的天线就可以实现较优的效果。
参阅图 2, 结合应用场景对本发明实施例进行描述。在本例中以 N个基站 协作为 M个移动终端提供服务为例对方案进行介绍。 每个基站拥有向所有移 动终端待发送的数据信息和拥有本地信道状态信息( local CSI ), 其中 Si为向 第 i个移动终端发送的数据信息。每个基站根据本地信道状态信息为每个移动 终端计算预编码矩阵。本地信道状态信息特指本基站与协作集中所有移动终端 之间的信道状态信息,全局信道状态信息特指所有协作基站与协作集中所有移 动终端之间的信道状态信息。 S201 , 基站获得一个方向矩阵, 该方向矩阵与一移动终端对应。 方向矩阵的行数等于总的移动终端天线数目减去对其进行预编码的移动 终端的天线数目 , 方向矩阵的列数等于对其进行预编码的移动终端的码流数 目。应用中针对基站所协作服务的每个移动终端会产生一套方向矩阵,每套方 向矩阵包含的方向矩阵的数目与协作基站数目相同。每个基站将被分配获得每 套方向矩阵中的一个。针对每个移动终端的一套方向矩阵之和的范数代表发送 给该移动终端的信号在其它移动终端处造成的千扰程度,若令某一套方向矩阵 之和为零矩阵则代表所对应的移动终端的信号对其它移动终端的干扰完全消 除。在实际的通信系统中,可以限制对应于每个移动终端的所有基站的方向矩 阵的和矩阵的范数不大于一个系统可以忍受的小阈值,例如可以令和矩阵的范 数(对应于千扰强度) 不大于噪声强度。 确定好该方向矩阵的行数和列数后, 具体各元素的取值可以随机 ,较佳的可以是一个符合行列要求的单位阵或者酉 矩阵。但是针对一个目标移动终端的一套方向矩阵之和的范数要符合要求以消 除或降低千扰。
协作基站总数为 N, 第 i个基站的天线数目 , 移动终端数目为 M, 第 j 个移动终端的天线数目和接收数据的码流数分别为^和 。为以第 k个移动终 端的接收信号为例, 会生成一套方向矩阵, 分别记作 , ί=1,2,...,Ν , C'的行数 为 代表
Figure imgf000006_0001
该移动终端的信号对其它移动终端造成的千扰的程度, 当∑C,=0的时候第 k
i-1 个移动终端的接收信号在其他的移动终端处造成的干扰完全消除。
应用中获得方向矩阵的方法可以有多种方式。 方式一为:每个移动终端有 一个主基站, 其它的基站都是它的辅助基站(slave BS )。 主基站可以为所有的 协作基站通过计算生成一套方向矩阵,然后将各个方向矩阵分别发送给相应的 协作基站。 此方法中, 对主基站而言, 则方向矩阵为自身计算生成, 对于辅助 基站则是接收主基站发送的方向矩阵。 方式二为: 支设协作 MIMO网络中有 一个调度方, 比如调度控制器, 协作集中的所有基站都受该调度控制器控制。 可以由调度控制器为每个移动终端的发送信号生成一套符合上述要求的方向 矩阵。 然后将各个方向矩阵分别发送给对应的基站。在此方法中基站接收调度 方发送的方向矩阵。 方式三为一种分布式协商方案: 支设协作集中有 N个基 站并定义好了基站顺序,每个协作基站按照相同的方法为本基站服务范围内所 有的移动终端分别生成一套方向矩阵,并选择与自己基站序号相对应的方向矩 阵。 此方法中, 方向矩阵为自身计算生成。 方式四为: 殳协作集中有 N个 基站并定义好了基站顺序。第 1个基站先选择对应于每一个移动终端的方向矩 阵, 然后将自己选定的方向矩阵发送给第 2-N个协作基站; 第 2个基站在第 1 个基站方向矩阵的基础上选择本基站对应于每个移动终端的方向矩阵并将其 发送到第 3-N个协作基站; 以此类推,所有的基站都获得针对每个移动终端的 方向矩阵, 并且可以满足上述对方向矩阵的要求。
上述发送方向矩阵可以直接以矩阵的形式发送,也可以釆用码本索引的方 式发送。 当采用码本索引发送时, 需要预先在所有的协作基站中建立方向矩阵 的码本。辅助基站接收到码本索引, 然后通过在方向矩阵码本中查找码本索引 得到所需的方向矩阵。
S202, 根据本地信道状态信息和方向矩阵计算预编码矩阵。
每个基站通过反馈或信道估计获得即时的本地信道状态信息。基站根据本 地信道状态信息和分配到的方向矩阵为对应的每个移动终端的数据计算预编 码矩阵。
要为 j个基站计算第 i个移动终端所发送数据的预编码矩阵, 令(^为获得 的方向矩阵, HTj为第 j个基站与除第 i个移动终端之外的所有协作集内移动终 端之间的信道状态矩阵, ^是需要计算得到的预编码矩阵。 则需要满足
S203, 根据预编码矩阵进行预编码, 并进行协作通信。
将各终端信号与其预编码矩阵相乘后进行叠加, 完成预编码, 并下行发送 进行协作通信。
预编码矩阵, 结合移动终端的数据进行下行广播发送。 令 '和 ^为第 j个 基站对第 i个移动终端的发送信号以及预编码矩阵, 则第 j个基站总的发射信 号为
以适用于多天线用户。
进一步, 本发明实施例中计算预编码的方式可以使用但不限于 ZF 和 MMSE等方法。 我们这里 ZF为例介绍几个计算预编码矩阵的实例。
如图 3所示, 该例中有 2个基站与 2个终端, 每个基站 2根天线, 每个终 端 2根天线。每个基站有两个移动终端的数据; 每个基站只有本地信道状态信 息。 两个基站分别记作 BS1和 BS2; 两个移动终端分别记作 MS1和 MS2; xl 和 x2为 MS1接收的信号, x3和 x4为 MS2接收的信号; xl-x4为 BS1和 BS2 所共享。 BS1拥有本地信道状态信息 H11和 H21, BS2拥有本地信道状态信息 H12和 H22。 全局信道状态信息为
Figure imgf000009_0001
我们首先考虑为 MSI的信号 xl和 x2计算预编码矩阵,令 BS1和 BS2的 对 MS1的预编码矩阵为 ^和 2 ,并约定 BS1和 BS2的方向矩阵分别为 ei和
(2)
Figure imgf000009_0004
则需要满足本基站与除信号发送的目标移动终端之外的其他移动终端之 间的信道矩阵与预编码矩阵的乘积等于方向矩阵, 本实例中即
H2lW = , (3)
^22^12 = C2 (4) 这里需要强调的是 Li和 ^的选择可以是任意的 ,只需要满足
Figure imgf000009_0002
以达到千扰消除的效果。 通过解方程 (3)和 (4)可以得
Figure imgf000009_0003
利用同样的方法可以求得 BS1和 BS2对 x3和 x4的预编码矩阵。
如图 4所示, 2个基站 3个终端的情况。 本例中每个基站有 4根天线, 每 个移动终端 2根天线。 每个基站有三个移动终端的数据;
每个基站只有本地信道状态信息。
两个基站分别记作 BS1和 BS2; 两个移动终端分别记作 MS1和 MS2; xl 和 x2为 MS1接收的信号, x3和 x4为 MS2接收的信号, x5和 x6为 MS3接 收的信号; xl-x6为 BS1和 BS2所共享。 BS1拥有本地信道状态信息 Hll、 H21和 H31, BS2拥有本地信道状态信息 H12、 H22和 H32。 全局信道状态信 息为
Figure imgf000010_0001
我们首先考虑为 MS1的信号 xl和 x2计算预编码矩阵,令 BS1和 BS2对 MS1的预编码矩阵为^和 2 , 并约定 BS1和 BS2的方向矩阵分别为 和
1 0 -1 0
0 1 0 -1
C' c. (8) 0 0 0 0
0 0 0 0 则需要满足
Figure imgf000010_0002
这里需要强调的是 和 C2的选择可以是任意的,只需要满足(^ + C2 = 0就可以达 到千扰消除的效果。 这里需要强调 x 4的方阵, 在独立同
Figure imgf000010_0003
分布信道条件下, 两个矩阵都是满秩的, 有逆矩阵存在。 通过解方程 (9)和 (10) 可以得到
Figure imgf000010_0004
Ί -
Figure imgf000011_0001
利用同样的方法可以求得 BS 1和 BS2对 MS2和 MS3的预编码矩阵。 在更一般的情况下如图 5所示, 假设协作集中有 M个基站, 每个基站 m根天 线, 有 N个移动终端, 每个移动终端有 n根天线。 我们现在考虑为第一个移动 终端的信号计算预编码矩阵。 支设为第一个移动终端约定的一套方向矩阵记为 C,, ί = \,2,...,Μ, 并且按顺序分配给每个协作基站, C,.是 (N-l)nXn的矩阵。 发送 第一个移动终端信号时, 第 i个协作基站的干扰信道可以表示成 HT,, HT,是一个 (N-l)nXm的矩阵。 第 i个基站需要计算的预编码矩阵记为 ,, ^是一个 mxn的 矩阵。 求解预编码矩阵需要解以下方程:
H-W^C,, (7) HTjWn = C2 , (8)
要解方程 (7)-(9), 只需要满足 ^ ^的行数不大于列数(即 ≥(W- 1)" )就可 以解得
= p/m HTi)C,.。 (10) 利用相同的方法可以分别得到其它移动终端的预编码矩阵。
综合上述实施例, 因此本发明实施例的方案可以适用于多基站多移动终 端。 况下,通过使用方向矩阵可以避免需要每个协作基站对目标终端以外的其他终 端的千扰为零才可以实现总的千扰为零, 提高了基站在天线数量上的自由度, 即每个基站需要更少的天线就可以实现较优的效果。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步驟 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一计算机可读 存储介质中, 如 ROM/RAM、 磁碟或光盘等。
进一步, 本发明实施例提供实施上述方法的装置或设备, 实践中可以为一 基站。 在本实施例中, 针对本发明实施例展开对基站的介绍, 应理解为其工作 该与现有基站相结合,协作基站应该有的公知功能被当然应该包括在本实施例 的基站中。 参阅图 6, 本发明实施例中基站的结构框图。
基站 60包括:
方向矩阵确定单元 601 , 用于获得一方向矩阵, 该方向矩阵与一目标移动 终端对应,所述方向矩阵的行数根据协作区域内总的移动终端天线数与所述目 标移动终端的天线数确定,所述方向矩阵的列数根据向所述目标移动终端发送 的码流数目确定;
计算单元 603 , 用于根据本地信道状态信息和所述方向矩阵计算预编码矩 阵;
预编码单元 605, 用于根据所述预编码矩阵进行预编码;
通信单元 607, 用于根据所述预编码结果进行协作通信。
进一步, 该基站还包括:
信息获取单元 609, 用于获取本地信道状态信息和协作集中所有移动终端 的数据信息,所述本地信道状态信息包括基站与其所服务的所有移动终端之间 的信道状态信息。在实施中,计算单元根据本地信道状态信息和所述方向矩阵 计算预编码矩阵可以为 居本地信道状态信息获得本基站与除目标移动终端 之外的其他移动终端之间信道矩阵,根据所述信道矩阵与所述预编码矩阵的乘 积等于所述方向矩阵计算获得所述预编码矩阵。
本发明实施例的基站利用方向矩阵消除用户间干扰,在多用户多天线的情 况下,通过使用方向矩阵可以避免需要每个协作基站对目标终端以外的其他终 端的千扰为零才可以实现总的千扰为零, 提高了基站在天线数量上的自由度, 即每个基站需要更少的天线就可以实现较优的效果。
如图 7所示, 为方向矩阵确定单元 601的第一实施例的示意图,其中该方 向矩阵确定单元 601包括:
方向矩阵生成模块 6011 , 用于通过计算生成所述方向矩阵; 或
方向矩阵接收模块 6013 , 用于接收另一基站或者协作通信网络调度方发 送的所述方向矩阵。该方向矩阵确定单元 601确定的方向矩阵的行数等于本基 站所在协作区域内总的移动终端天线数目减去对其进行预编码的移动终端的 天线数目 , 方向矩阵的列数等于对其进行预编码的移动终端的码流数目。
如图 8所示, 为方向矩阵确定单元 601的第二实施例的示意图, 其中, 方 向矩阵确定单元 601包括:
方向矩阵计算模块 6015, 用于预设本基站在多个协作基站中的分配顺序, 对应本基站服务范围内的移动终端计算一套方向矩阵;选择与所述分配顺序相 对应的方向矩阵。
本发明实施例的基站利用约定方向矩阵的方法消除用户间千扰,在多用户 多天线的情况下,通过使用方向矩阵可以避免需要每个协作基站对目标终端以 外的其他终端的千扰为零才可以实现总的千扰为零,提高了基站在天线数量上 的自由度, 即每个基站需要更少的天线就可以实现较优的效果。 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一计算机可读 存储介质中, 如 ROM/RAM、 磁碟或光盘等。

Claims

权 利 要 求
1、 一种协作通信的方法, 其特征在于, 包括:
获得方向矩阵, 该方向矩阵与目标移动终端对应, 所述方向矩阵的行数才艮 据协作区域内总的移动终端天线数与所述目标移动终端的天线数确定,所述方 向矩阵的列数根据向所述目标移动终端发送的码流数目确定;
根据本地信道状态信息和所述方向矩阵计算预编码矩阵;
根据所述预编码矩阵进行预编码, 并进行协作通信。
2、 如权利要求 1所述的方法, 其特征在于, 所述获得方向矩阵包括: 本基站通过计算获得, 或
接收另一基站发送的所述方向矩阵; 或
接收协作通信网络调度方发送的所述方向矩阵。
3、 如权利要求 1所述的方法, 其特征在于, 所述方向矩阵的行数等于总 的移动终端天线数目减去对其进行预编码的移动终端的天线数目,方向矩阵的 列数等于对其进行预编码的移动终端的码流数目。
4、 如权利要求 1所述的方法, 其特征在于, 所述获得方向矩阵包括: 预设本基站在多个协作基站中的分配顺序;
对应所述本基站服务范围内的移动终端计算所述方向矩阵;
选择与所述分配顺序相对应的方向矩阵。
5、 如权利要求 1所述的方法, 其特征在于, 该方法还包括:
所有目标移动终端的所有方向矩阵的和矩阵的范数不大于一阈值,所述阈 值为零或者根据系统要求设置。
6、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括: 获取本地信道状态信息和协作集中所有移动终端的数据信息,所述本地信 道状态信息包括本基站与其所服务的所有移动终端之间的信道状态信息。
7、 如权利要求 1所述的方法, 其特征在于, 根据本地信道状态信息和所 述方向矩阵计算预编码矩阵包括:
根据本地信道状态信息获得本基站与除目标移动终端之外的其他移动终 端信道矩阵, 4艮据所述信道矩阵与所述预编码矩阵的乘积等于所述方向矩阵计 算获得所述预编码矩。
8、 一种协作基站, 其特征在于, 所述基站包括:
方向矩阵确定单元,用于获得方向矩阵,该方向矩阵与目标移动终端对应, 所述方向矩阵的行数根据协作区域内总的移动终端天线数与所述目标移动终 端的天线数确定,所述方向矩阵的列数根据向所述目标移动终端发送的码流数 目确定;
计算单元, 用于根据本地信道状态信息和所述方向矩阵计算预编码矩阵; 预编码单元, 用于根据所述预编码矩阵进行预编码;
通信单元, 用于根据所述预编码结果进行协作通信。
9、 如权利要求 8所述的基站, 其特征在于, 方向矩阵确定单元包括: 方向矩阵生成模块, 用于通过计算生成所述方向矩阵; 或
方向矩阵接收模块,用于接收另一基站或者协作通信网络调度方发送的所 述方向矩阵。
10、 如权利要求 8所述的基站, 其特征在于, 所述方向矩阵确定单元获得 的方向矩阵具体为:
所述方向矩阵的行数等于协作区域内总的移动终端天线数目减去对其进 行预编码的移动终端的天线数目 ,方向矩阵的列数等于对其进行预编码的移动 终端的码流数目。
11、如权利要求 8所述的基站,其特征在于,所述方向矩阵确定单元包括: 方向矩阵计算模块, 用于预设本基站在多个协作基站中的分配顺序,对应 本基站服务范围内的移动终端计算所述方向矩阵;选择与所述分配顺序相对应 的方向矩阵。
12、 如权利要求 8所述的基站, 其特征在于, 所述基站还包括:
信息获取模块,用于获取本地信道状态信息和协作集中所有移动终端的数 据信息,所述本地信道状态信息包括本基站与其所服务的所有移动终端之间的 信道状态信息。
13、 如权利要求 8所述的基站, 其特征在于, 所述计算单元根据本地信道 状态信息和所述方向矩阵计算预编码矩阵包括:
根据本地信道状态信息获得本基站与除目标移动终端之外的其他移动终 端之间信道矩阵,根据所述信道矩阵与所述预编码矩阵的乘积等于所述方向矩 阵计算获得所述预编码矩。。
PCT/CN2010/076761 2009-09-09 2010-09-09 协作通信的方法及基站 WO2011029400A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10815002.0A EP2437419B1 (en) 2009-09-09 2010-09-09 Method and base station for cooperative communication
BRPI1014729-2A BRPI1014729B1 (pt) 2009-09-09 2010-09-09 Método de comunicação cooperativa e estação base
US13/316,934 US8462658B2 (en) 2009-09-09 2011-12-12 Cooperative communication method and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101901644A CN102025457B (zh) 2009-09-09 2009-09-09 协作通信的方法及基站
CN200910190164.4 2009-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/316,934 Continuation US8462658B2 (en) 2009-09-09 2011-12-12 Cooperative communication method and base station

Publications (1)

Publication Number Publication Date
WO2011029400A1 true WO2011029400A1 (zh) 2011-03-17

Family

ID=43732014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076761 WO2011029400A1 (zh) 2009-09-09 2010-09-09 协作通信的方法及基站

Country Status (5)

Country Link
US (1) US8462658B2 (zh)
EP (1) EP2437419B1 (zh)
CN (1) CN102025457B (zh)
BR (1) BRPI1014729B1 (zh)
WO (1) WO2011029400A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101800294B1 (ko) * 2009-04-02 2017-12-20 삼성전자주식회사 다중 셀 통신 시스템에서 셀 가장자리 사용자의 에러를 최소화하기 위한 장치 및 방법
US9325401B2 (en) 2011-05-13 2016-04-26 Fujitsu Limited Beamforming from multiple transmission sites
KR101903625B1 (ko) 2012-04-26 2018-10-02 삼성전자주식회사 무선 통신 시스템에서 간섭 정렬을 위한 방법 및 장치
KR20140000847A (ko) * 2012-06-26 2014-01-06 삼성전자주식회사 무선통신 시스템에서 간섭처리 방법 및 장치
JP6093120B2 (ja) * 2012-07-13 2017-03-08 シャープ株式会社 移動局装置、基地局装置及び通信方法
CN103634079B (zh) * 2012-08-20 2017-02-08 上海贝尔股份有限公司 在无线异构通信网中优化无线链路监视窗口参数的方法
US9350419B2 (en) * 2012-11-28 2016-05-24 Broadcom Corporation Coordinating transmissions of power line communication (PLC) devices
CN103945555B (zh) * 2013-01-21 2018-03-20 电信科学技术研究院 多点协作传输下的资源调度方法和设备
CN105101444B (zh) 2014-04-30 2018-11-20 华为技术有限公司 信号处理方法和装置、系统
TWI633802B (zh) * 2016-11-03 2018-08-21 財團法人工業技術研究院 合作通訊方法及系統
US10110357B2 (en) * 2016-11-03 2018-10-23 Industrial Technology Research Institute Cooperative communication method and system
CN107979878B (zh) 2017-10-11 2019-08-23 捷开通讯(深圳)有限公司 一种通信方法及基站
CN109977514B (zh) * 2019-03-19 2021-02-09 电子科技大学 一种雷达同步数据流图模型调度序列生成方法
CN113872650B (zh) * 2021-09-28 2022-11-29 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057838A1 (fr) * 2003-12-04 2005-06-23 France Telecom Procede d'emission multi-antennes d'un signal precode lineairement, procede de reception, signal et dispositifs correspondants
CN1773885A (zh) * 2004-11-09 2006-05-17 三星电子株式会社 在多天线宽带无线接入系统中支持各种多天线方案的方法
CN1849769A (zh) * 2003-09-15 2006-10-18 英特尔公司 利用高吞吐量空间频率分组码的多天线系统和方法
WO2008030035A2 (en) * 2006-09-05 2008-03-13 Lg Electronics Inc. Method of transmitting feedback information for precoding and precoding method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493152B1 (ko) * 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
DK3174221T3 (en) * 2007-01-12 2019-01-07 Ericsson Telefon Ab L M Method and device in a wireless communication system
US7995671B2 (en) * 2007-02-09 2011-08-09 Qualcomm Incorporated Multiple-input multiple-output (MIMO) transmission with rank-dependent precoding
EP2485409B1 (en) * 2007-04-20 2016-08-03 Marvell World Trade Ltd. Antenna selection and training using a spatial spreading matrix for use in a wireless mimo communication system
CN101373998B (zh) * 2007-08-20 2012-07-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
PL2294769T3 (pl) * 2008-07-01 2013-03-29 Ericsson Telefon Ab L M Sposoby i urządzenie stosujące macierze kodowania wstępnego w systemie telekomunikacyjnym MIMO
KR101470501B1 (ko) * 2008-08-20 2014-12-08 삼성전자주식회사 양자화된 채널 상태 정보에 기반하여 데이터를 전송하는 장치 및 방법
US8428018B2 (en) * 2008-09-26 2013-04-23 Lg Electronics Inc. Method of transmitting reference signals in a wireless communication having multiple antennas
CN102217206B (zh) * 2009-01-05 2014-10-08 马维尔国际贸易有限公司 用于mimo通信系统的预编码码本

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849769A (zh) * 2003-09-15 2006-10-18 英特尔公司 利用高吞吐量空间频率分组码的多天线系统和方法
WO2005057838A1 (fr) * 2003-12-04 2005-06-23 France Telecom Procede d'emission multi-antennes d'un signal precode lineairement, procede de reception, signal et dispositifs correspondants
CN1773885A (zh) * 2004-11-09 2006-05-17 三星电子株式会社 在多天线宽带无线接入系统中支持各种多天线方案的方法
WO2008030035A2 (en) * 2006-09-05 2008-03-13 Lg Electronics Inc. Method of transmitting feedback information for precoding and precoding method

Also Published As

Publication number Publication date
BRPI1014729A2 (pt) 2016-04-12
CN102025457B (zh) 2013-04-17
CN102025457A (zh) 2011-04-20
EP2437419A1 (en) 2012-04-04
BRPI1014729B1 (pt) 2021-01-26
US20120082118A1 (en) 2012-04-05
EP2437419A4 (en) 2012-04-18
EP2437419B1 (en) 2014-06-18
US8462658B2 (en) 2013-06-11

Similar Documents

Publication Publication Date Title
WO2011029400A1 (zh) 协作通信的方法及基站
KR100995045B1 (ko) 협동 다중 입출력 통신 시스템에서, 프리코딩된 신호를송신하는 방법
EP3609087A1 (en) Wireless communication method and wireless communication apparatus
KR101342427B1 (ko) 채널 상태 정보 피드백을 위한 방법 및 장치
JP6019502B2 (ja) 協調マルチポイント送信のためのチャネルフィードバック
EP2352247A1 (en) Wireless communication system and precoding method
JP2011520338A (ja) 多重セル環境でサウンディングチャネルを用いる協力的mimo
KR20110086337A (ko) 다중 입출력 통신 시스템에서의 스케줄링 방법 및 장치
CN101388703B (zh) 一种多用户mimo预编码的方法及系统
TW201001951A (en) Method and apparatus to support single user (SU) and multiuser (MU) beamforming with antenna array groups
JP2011130438A (ja) 無線通信システムにおけるマルチユーザmimoの伝送方法、基地局及びユーザ端末
TW200803234A (en) Method for transmitting channel state information in multiple antenna system
CN107615694B (zh) 用于确定预编码矩阵的方法和预编码模块
JP2009033744A (ja) チャネルベクトル量子化に基いたスケジューリング及びプリコーディングの方法及び装置
WO2015101017A1 (zh) 一种基于部分干扰对齐的协调波束赋形方法及装置
WO2013157482A1 (ja) 無線通信システム、無線基地局および移動端末
TW200913536A (en) A method for communicating in a MIMO context
TW201042940A (en) A method for communicating in a MIMO network
Adhikary et al. Multi-user MIMO with outdated CSI: Training, feedback and scheduling
TWI458281B (zh) 於多重輸出入背景中的通信方法
JP2015109665A (ja) ネットワークにおいて通信するための方法
JP2009153139A (ja) Mimo下りリンクにおけるプリコーディング処理方法、装置及び基地局
KR101290918B1 (ko) 다중 셀 환경에서 간섭 정렬 기법을 이용한 통신 시스템
CN108347271B (zh) 一种可达系统最大自由度的分布式干扰对齐中和实现方法
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815002

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8614/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010815002

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014729

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014729

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111130