WO2011029292A1 - 一种用于识别终端的方法及系统 - Google Patents

一种用于识别终端的方法及系统 Download PDF

Info

Publication number
WO2011029292A1
WO2011029292A1 PCT/CN2010/070548 CN2010070548W WO2011029292A1 WO 2011029292 A1 WO2011029292 A1 WO 2011029292A1 CN 2010070548 W CN2010070548 W CN 2010070548W WO 2011029292 A1 WO2011029292 A1 WO 2011029292A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
terminal
radio link
radio
Prior art date
Application number
PCT/CN2010/070548
Other languages
English (en)
French (fr)
Inventor
韩立锋
和峰
高音
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/257,816 priority Critical patent/US8792891B2/en
Priority to BR112012005655-7A priority patent/BR112012005655B1/pt
Priority to MX2012003073A priority patent/MX2012003073A/es
Priority to IN2276DEN2012 priority patent/IN2012DN02276A/en
Priority to JP2012528215A priority patent/JP5303681B2/ja
Priority to KR1020127009285A priority patent/KR101366232B1/ko
Priority to EP10814894.1A priority patent/EP2466936B1/en
Publication of WO2011029292A1 publication Critical patent/WO2011029292A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to a wireless cellular communication system, and more particularly to a method and system for identifying a terminal during a handover optimization scenario in a Long Term Evolution (LTE) mobile communication system.
  • LTE Long Term Evolution
  • the LTE (Long Term Evolution) network is composed of an E-UTRAN (Evolved UTRAN, Evolved UTRAN) base station eNB (Evolved NodeB) and an EPC (Evolved Packet Core), and the network is flattened.
  • the E-UTRAN includes a set of base station eNBs connected to the EPC through the S1 interface, and the eNBs can be connected through the X2 interface, and S1 and X2 are logical interfaces.
  • One EPC can manage one or more eNBs, and one eNB can also be controlled by multiple EPCs, and one eNB can manage one or more cells.
  • the SON (Self-Organizing Network) technology is a technology that automatically configures and optimizes the network.
  • the technology is self-configuring and self-optimizing.
  • the application of the technology in the LTE system enables the LTE base station (eNB) to automatically configure network parameters according to certain measurements and automatically optimize according to network changes, thereby maintaining optimal network performance. Save a lot of manpower and material resources.
  • the handover refers to the handover within the LTE system and the handover between systems, where:
  • Inter-system handover refers to UTRAN (Universal Terrestrial Radio Access Network) or GSM (Global System For Mobile Communication) or CDMA (Code Division Multiple Access) Multiple access) system switching;
  • UTRAN Universal Terrestrial Radio Access Network
  • GSM Global System For Mobile Communication
  • CDMA Code Division Multiple Access
  • the process of handover in the network that is, the internal handover of the system is: The network side makes a handover decision based on a certain handover algorithm according to the signal quality of the local cell and the neighboring cell reported by the terminal, and then notifies the terminal according to the handover decision. Perform the execution of a specific switching process.
  • the user equipment UE may generate a radio link failure (RLF, Radio Link Failure) when the radio link signal is poor, and perform reestablishment of the radio resource control RRC (Radio Resource Control).
  • RLF Radio Link Failure
  • RRC Radio Resource Control
  • the UE obtains the target cell through the cell selection procedure. If the handover fails during the handover, the source base station or the target base station retains the information of the user for RRC reconstruction.
  • the UE in the RRC re-establishment request message carries a terminal identifier (UE-Identity), and the terminal identifier includes a cell-based radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier), and a short MAC complete' 1 "short Medium Access Control integrity protection” and "Physical Cell Identity” (PCI), where:
  • the C-RNTI is allocated in the source cell (the scenario where the handover fails) or is allocated in the cell that triggered the RRC re-establishment (other scenarios);
  • PCI refers to the physical address of the source cell (the scenario where the handover fails), or the physical address of the cell that triggered the RRC re-establishment (other scenarios);
  • the short MAC integrity verification value (shortMAC-I) is calculated using the source cell (the handover failure scenario) or the KRRCint key and integrity protection algorithm of the cell that triggered the RRC reestablishment.
  • the input is PCI, C. - RNTI and Evolved Global Cell Identity (ECGI,
  • Evolved Cell Global Identifier Evolved Cell Global Identifier
  • PCI and C-RNTI are carried in the RRC reestablishment message
  • ECGI is the ECGI of the target cell selected by the UE during RRC reestablishment.
  • the first type switching the scene too late, as shown in Figure 1, the terminal UE is in the cell under the base station B.
  • the radio link failure RLF occurs, and then the radio resource control RRC re-establishment is attempted in the cell Cell a under the base station A, which indicates that the handover of the UE from the cell Cell b to the cell Cell a is too late.
  • the second type Switching to a premature scenario, as shown in FIG. 2, shortly after the terminal UE switches from the cell Cell a under the base station A to the cell Cell b under the base station B, in the cell Cell b, a wireless chain occurs.
  • the path fails the RLF, and then the UE selects the cell Cell a under the base station A to perform radio resource control RRC re-establishment, that is, returns to the pre-switched cell Cell a for RRC re-establishment. Then, it means that the previously performed handover of the UE from the cell Cell a to the cell Cell b is too early.
  • the third type switching the scenario in which the wrong cell is selected.
  • a radio link failure RLF occurs, and then The UE performs radio resource control RRC reconstruction on the cell Cell a under the base station A.
  • the cell Cell b under the base station B selected before the handover is the wrong target cell, and the correct target cell should be the cell Cell a under the base station A, that is, the UE should directly perform the cell Cell from the base station C. c to the handover of cell Cell a under base station A.
  • An existing decision method includes the following steps:
  • the first step the base station (eNB) A notifies the information of the RLF to the base station (eNB) B;
  • the information of the RLF includes: a physical address of the cell where the RLF occurs, PCI; an RRC reestablishment of the PCI of the attempted cell or an evolved global cell identifier (ECGI); the C-RNTI of the UE in the RLF occurrence cell.
  • the physical address of the cell where the RLF occurs, and the C-RNTI information of the UE in the RLF occurrence cell is an RRC reestablishment message from the UE received by the eNB A.
  • Step 2 The base station (eNB) B receives the information of the RLF, and performs a decision according to the context information of the UE, that is, the PCI and C-RNTI information:
  • the base station B judges that the handover from the cell Cell a to the cell Cell b of the UE is too early, as shown in FIG. 1 , and notifies the eNB of the decision result. A;
  • the base station B determines that the target cell selection of the handover of the UE from the cell Cell c to the cell Cell b is incorrect, as shown in FIG. 3, the correct target The cell is a cell Cell a, and notifies the eNB C of the decision result; • Otherwise, eNB B judges that the UE's handover from cell Cell b to cell Cell a is too late, as shown in Figure 2.
  • the base station A determines the cell in which the radio link failure RLF occurs and the base station to which the cell belongs according to the PCI information in the radio resource control RRC reestablishment message of the UE, if there is a PCI.
  • the base station A may identify the wrong RLF-generating cell and the target base station that erroneously transmits the RLF information when transmitting the RLF information, that is, only through the RRC re-establishment message.
  • the PCI information cannot uniquely identify the cell Cell b and the base station eNB B where the RLF occurs, which inevitably leads to inaccurate optimization of handover parameters and reduces the function of self-optimization of handover parameters.
  • the present invention provides a method and system for identifying a terminal for accurately and uniquely identifying a terminal during a handover optimization scenario of a long term evolution LTE mobile communication system.
  • the present invention provides a method for identifying a terminal, comprising the following steps:
  • Step 11 The source base station that receives the radio resource control re-establishment message determines, according to the physical address of the cell in which the radio link fails in the radio resource control re-establishment message, all target base stations that need to send radio link failure information, Each target base station sends the radio link failure information, where the radio link failure information includes: a physical address of a cell in which a radio link fails, a global cell identifier of a radio resource control reestablishment attempt cell, and a radio chain in the terminal The temporary identifier of the wireless network in the cell where the road fails;
  • Step 12 After the target base station receives the radio link failure information, according to the occurrence Determining the cell by the physical address of the cell in which the line link fails, and determining, in each determined cell, whether the wireless identifier of the received terminal in the cell in which the radio link fails occurs belongs to the existing wireless in the cell. a network temporary identifier, if yes, determining that the terminal is a terminal of a cell in which the radio link fails in the target base station, and if not, determining that the terminal is not the cell; wherein, the source base station refers to receiving the wireless The base station of the resource control re-establishment message, where the target base station refers to the base station to which the cell in which the radio link fails occurs.
  • the method further includes: the terminal that fails the radio link sends a radio resource control re-establishment message to the source base station selected by the cell selection procedure, where the radio resource control re-establishment message includes: The radio network temporary identity of the radio link failure cell, the short media access control integrity verification value, and the physical address of the cell in which the radio link failure occurs.
  • the method further includes:
  • Step 13 After the target base station determines that the terminal belongs to the terminal of the cell in which the radio link fails in the target base station, according to the last handover information of the terminal, determine, according to the handover information of the terminal, And notifying the judgment result to the base station corresponding to the previous handover;
  • Step 14 The base station that receives the notification result notification automatically optimizes the handover parameter according to the decision of the handover scenario between the cells corresponding to the previous handover.
  • the present invention further provides a base station supporting an identification terminal, the base station configured to receive, as a source base station, a radio resource control re-establishment message from a terminal, and control, according to the radio resource, a physical address of a cell in which a radio link failure occurs in a re-establishment message. Determining, by the target base station that needs to send the radio link failure information, the radio link failure information to be sent to each of the determined target base stations, where the radio link failure information includes: The address, the radio resource control, the global cell identifier of the attempted cell, and the temporary radio network of the terminal in the cell in which the radio link fails;
  • the base station is further configured to receive the radio link failure information as the target base station when the radio link fails in the cell under its jurisdiction, and determine according to the physical address of the cell in which the radio link fails in the radio link failure information.
  • the base station of the present invention is further configured to determine, as the target base station, a cell of the cell in which the radio link fails after the terminal belongs to the target base station, and according to the last handover information of the terminal, determine which cell the previous handover belongs to.
  • the handover scenario is performed, and the base station corresponding to the previous handover is notified of the determination result, and the base station that has received the notification result is automatically optimized according to the decision of the handover scenario between the cells corresponding to the previous handover.
  • the present invention also provides a system for identifying a terminal, where the system includes a source base station and one or more target base stations, where: the source base station refers to a base station that receives a radio resource control re-establishment message, and is configured to receive from the terminal.
  • a radio resource control re-establishment message determining, according to a physical address of a cell in which the radio link fails in the radio resource control re-establishment message, all target base stations that need to transmit radio link failure information, and transmitting the radio to each target base station Link failure information, where the radio link failure information includes: a physical address of a cell in which a radio link fails, a global cell identifier of a radio resource control reestablishment attempt cell, and a temporary radio network in a radio link failure cell Identification
  • the target base station is a base station to which the cell in which the radio link fails occurs, and is configured to receive the radio link failure information, and determine a cell according to the physical address of the cell in which the radio link fails, at each determined Determining, by the small area, whether the temporary identifier of the wireless network in the cell in which the wireless link fails is in the temporary identifier of the wireless network that exists in the cell, and if so, determining that the terminal is the wireless under the target base station The terminal of the cell in which the link fails, if not, determines that it is not the terminal of the cell.
  • the system for identifying a terminal of the present invention further includes a terminal, the terminal being configured to send a radio resource control re-establishment message to the source base station selected by the cell selection procedure after the radio link failure occurs, and the radio resource control re-establishment
  • the message includes: a radio network temporary identifier of the cell in which the radio link fails, a short media access control integrity verification value, and a physical address of the cell in which the radio link fails.
  • the target base station is further configured to determine, according to the last handover information of the terminal, a handover scenario between the cells after determining that the terminal belongs to the terminal of the cell in which the radio link fails under the target base station. And notifying the base station corresponding to the previous handover, and the base station receiving the notification result notification automatically optimizes the handover parameter according to the decision of the handover scenario between the corresponding cells.
  • the present invention further provides another method for identifying a terminal, including the following steps: Step 21: A source base station that receives a radio resource control re-establishment message, according to the radio resource control re-establishment message, a cell in which a radio link failure occurs
  • the physical address determines all the target base stations that need to send the radio link failure information, and sends the radio link failure information to each target base station, where the radio link failure information includes: the physicality of the cell in which the radio link failure occurs The address, the radio resource control, the global cell identifier of the attempted cell, the temporary identifier of the radio network in the cell in which the radio link fails, and the short media access control integrity verification value;
  • Step 22 After receiving the radio link failure information, the target base station determines a cell according to the physical address of the cell in which the radio link fails, and generates a failure according to the radio link in each determined cell.
  • the physical address of the cell, the global cell identifier of the radio resource control reestablishment attempt cell, and the radio network temporary identifier in the cell in which the radio link failure occurs are calculated to obtain a short media access control integrity verification value, if If the calculated value is consistent with the received short media access control integrity verification value, determining that the terminal is a terminal of the cell in which the radio link fails in the target base station, and if not, determining that the terminal is not the cell;
  • the source base station refers to a base station that receives a radio resource control re-establishment message
  • the target base station refers to a base station to which a cell that fails to generate a radio link belongs.
  • the method of the present invention further includes: determining, within each determined cell, the received terminal in a cell in which the radio link fails Whether the temporary identifier of the wireless network belongs to the temporary identifier of the wireless network that exists in the cell, and if so, performing the calculation to obtain a calculated value of the short media access control integrity verification value, if not, determining the terminal Not the terminal of the cell.
  • the method of the present invention further includes: generating, by the terminal that fails the radio link, a radio resource control re-establishment message sent by the source base station selected by the cell selection procedure, where the radio resource control re-establishment message is included : The radio network temporary identity of the cell in which the radio link fails, the short media access control integrity verification value, and the physical address of the cell in which the radio link failed.
  • the method further includes:
  • Step 23 The target base station determines that the terminal belongs to the target base station and a wireless link occurs. After the terminal of the failed cell, according to the last handover information of the terminal, it is determined which handover scenario the handover belongs to, and the judgment result is notified to the base station corresponding to the previous handover;
  • Step 24 The base station that receives the notification result notification automatically optimizes the handover parameter according to the decision of the handover scenario between the cells corresponding to the previous handover.
  • the target base station determines a key and an integrity protection algorithm according to the radio network temporary identifier in the cell, and inputs a physical address of the cell in which the radio link failure occurs in the radio link failure information, and radio resource control. Reconstructing the global cell identifier of the attempting cell, and calculating the short-term media access control integrity verification value of the wireless network temporary identifier in the cell in which the radio link fails.
  • the present invention further provides another base station supporting the identification terminal, the base station is configured to receive a radio resource control re-establishment message as a source base station, and determine a physical address of a cell in which a radio link failure occurs in the re-establishment message according to the radio resource control. All the target base stations that need to send the radio link failure information send the radio link failure information to each determined target base station, where the radio link failure information includes: a physical address of a cell in which the radio link fails And determining, by the RRC, the global cell identifier of the attempted cell, the temporary identifier of the wireless network in the cell in which the wireless link fails, and the short media access control integrity verification value;
  • the base station is further configured to: when the radio link failure occurs in the cell under its jurisdiction, receive the radio link failure information as the target base station, and determine, according to the physical address of the cell in which the radio link fails, determine that the radio link fails under the base station.
  • a cell in each determined cell, according to the physical address of the cell in which the radio link fails, the radio resource control, the global cell identifier of the reestablishment attempt cell, and the temporary radio network in the cell in which the radio link fails.
  • the identifier is calculated to obtain a short media access control integrity verification value, and if the obtained calculated value is consistent with the received short media access control integrity verification value, determining that the terminal is the terminal of the cell If it is inconsistent, it is determined that the terminal is not the terminal of the cell.
  • the base station of the present invention is further configured to determine, as the target base station, in each determined cell, whether the wireless network temporary identifier in the cell in which the received terminal fails in the radio link belongs to the existing temporary identifier of the wireless network in the cell. If yes, the calculated value of a short media access control integrity verification value is calculated, and if not, the terminal is determined not to be the terminal of the cell.
  • the base station of the present invention is further configured to act as a target base station to determine that the terminal belongs to the target base station After the terminal of the cell with the radio link failure, according to the last handover information of the terminal, it is determined which handover scenario the previous handover belongs to, and the judgment result is notified to the base station corresponding to the previous handover, The base station that has received the notification of the decision result automatically performs the optimization of the handover parameter according to the decision of the handover scenario between the cells corresponding to the previous handover.
  • the present invention further provides another system for identifying a terminal, where the system includes a source base station and one or more target base stations, where the source base station refers to a base station that receives a radio resource control re-establishment message, which is set to Receiving, by the terminal, a radio resource control re-establishment message, determining, according to the physical address of the cell in which the radio link fails in the radio resource control re-establishment message, all target base stations that need to send radio link failure information, and sending to each target base station
  • the radio link failure information includes: a physical address of a cell in which a radio link fails, a global cell identifier of a radio resource control reestablishment attempt cell, and a terminal in a radio link failure cell Wireless network temporary identification, short media access control integrity verification value;
  • the target base station is a base station to which a cell in which a radio link failure occurs, and is configured to receive the radio link failure information, and determine a cell according to the physical address of the cell in which the radio link fails.
  • the terminal obtains a short a media access control integrity verification value, if the calculated value is consistent with the received short media access control integrity verification value, determining that the terminal is a cell in which the radio link fails in the target base station If the terminal does not match, it is determined that it is not the terminal of the cell.
  • the system for identifying a terminal further includes a terminal, where the terminal is configured to send a radio resource control re-establishment message to the source base station selected by the cell selection procedure after the radio link fails, and the radio resource control re-establishment
  • the message includes: a radio network temporary identifier of the cell in which the radio link fails, a short media access control integrity verification value, and a physical address of the cell in which the radio link fails.
  • the target base station is further configured to determine, in each of the determined cells, whether the wireless network temporary identifier in the cell in which the received terminal fails to belong to the radio link belongs to a temporary identifier of the existing wireless network in the cell, if And calculating a short media access control integrity verification value calculation value, if not, determining that the terminal is not the terminal of the cell.
  • the target base station is further configured to determine, according to the last handover information of the terminal, a handover scenario between the cells after determining that the terminal belongs to the terminal of the cell in which the radio link fails under the target base station. And notifying the base station corresponding to the previous handover, and the base station receiving the decision result notification automatically optimizes the handover parameter according to the decision of the handover scenario between the cells corresponding to the previous handover.
  • the RRC re-establishment message sent to the source base station further carries the C-RNTI of the UE in the RLF occurrence cell, and also contains the short MAC complete.
  • a short authentication short MAC-I
  • the source base station sends the RLF information carrying the C-RNTI, shortMAC-I, and PCI to the target base station, and the target base station is used according to the C-RNTI and the PCI, or according to the C-RNTI, shortMAC- I and PCI to identify the terminal.
  • the cell in which the RLF is generated can be uniquely determined, which solves the problem that the eNB A identifies the wrong RLF-performing cell when transmitting the RLF information and selects the error to send the RLF information.
  • the problem with the target base station Further, after the terminal is identified, the handover scenario is determined, and the corresponding base station is notified to perform network self-optimization after determining the handover scenario.
  • FIG. 1 is a schematic diagram of a UE switching too late from a cell Cell b to a Cell a in an undesired handover
  • FIG. 2 is a schematic diagram of a UE switching from a cell Cell a to a Cell b too early in an undesired handover
  • FIG. 3 is an undesired In the handover, the UE switches from the cell Cell c to the Cell b to select a schematic diagram of the wrong cell;
  • FIG. 4 is a schematic diagram of a notification of transmitting a radio link failure RLF information in the present invention.
  • FIG. 5 is a schematic diagram of an indication of transmitting a handover premature information in the present invention.
  • FIG. 6 is a schematic diagram of an indication of transmitting a handover error cell information in the present invention.
  • the present invention provides a method and system for identifying a terminal in a handover optimization scenario.
  • the terminal After the radio link fails the RLF, the terminal further carries the C in the RLF occurrence cell in the RRC re-establishment message sent to the source base station.
  • the RNTI further includes a short MAC integrity verification value (small MAC-I), and the source base station sends the RLF information carrying the C-RNTI, shortMAC-I, and PCI to the target base station, and the target base station is configured to use the C-RNTI and the PCI.
  • the present invention can uniquely identify the terminal, thereby uniquely determining the cell in which the RLF occurs, and thus can solve the problem that the eNB A identifies the wrong RLF-enabled cell and the target base station that erroneously transmits the RLF information when transmitting the RLF information. Further, after the terminal is identified, the handover scenario is determined, and the corresponding base station is notified to perform network self-optimization after determining the handover scenario.
  • a method for identifying a terminal includes the following steps:
  • Step 11 The source base station that receives the radio resource control re-establishment message determines, according to the physical address PCI of the radio link failure cell in the radio resource control re-establishment message, all target base stations to which the radio link failure information needs to be sent, Transmitting, by the target, the radio link failure information, where the radio link failure information includes: a physical address PCI of a cell in which a radio link failure occurs, a physical address PCI of a radio resource control reestablishment attempt cell, or a global cell identifier ECGI, the radio network temporary identifier C-RNTI in the cell in which the radio link fails to occur;
  • Step 12 After receiving the radio link failure information, the target base station determines a cell according to a physical address PCI of a cell in which the radio link failure occurs, and determines, in each determined cell, that the received terminal is occurring.
  • the radio network temporarily identifies the C-RNTI in the radio link failure cell, and belongs to the existing radio network temporary identifier C-RNTI in the cell. If yes, it is determined that the terminal is the radio link failure of the target base station. The terminal of the cell, otherwise it is determined not to be the terminal of the cell.
  • the terminal sends a radio resource control re-establishment message to the source base station selected by the cell selection procedure after the radio link fails.
  • the radio resource control re-establishment message includes: the radio link failure occurs in the terminal.
  • the radio network temporary identifier C-RNTI of the cell the short media access control integrity verification value (small MAC-I), and the physical address PCI of the cell in which the radio link failure occurs.
  • the first method only recognizes the terminal through PCI and C-RNTI, and receives it in the LTE system.
  • the source base station of the RRC re-establishment message transmits the radio link failure RLF information
  • the target base station that transmits the RLF information is determined by the PCI of the cell in which the RLF occurs, and if the PCI information is matched to the plurality of target base stations, the radio link fails.
  • the RLF information is sent to all matching target base stations.
  • the radio link failure to be transmitted to the target base station fails.
  • the RLF information includes the physical address PCI of the cell in which the RLF occurs, the PCI of the cell of the RRC reestablishment attempt or the Evolved Cell Global Identifier (ECGI), and the UE in the RLF occurrence cell.
  • C-RNTI the physical address PCI of the cell in which the RLF occurs.
  • the target base station identifies the terminal according to the physical address PCI of the cell in which the RLF occurs in the RLF information and the C-RNTI of the UE in the RLF occurrence cell, if the C-RNTI value is the allocated C-RNTI existing in the cell Cell b.
  • the value indicates that the terminal is the terminal of the cell b of the cell under the control of the base station; otherwise, it is determined not to belong to the local cell. If the target base station matches multiple cells according to PCI, processing for identifying the terminal according to the C-RNTI is performed in each cell.
  • the terminal can be identified, and the computational complexity of the base station is reduced, and the terminal is relatively simple and roughly identified.
  • the present invention also provides another method for identifying a terminal, including the following steps:
  • Step 21 The source base station that receives the radio resource control re-establishment message determines, according to the physical address PCI of the radio link failure cell in the radio resource control re-establishment message, all target base stations to which the radio link failure information needs to be sent, Transmitting, by the target, the radio link failure information, where the radio link failure information includes: a physical address PCI of a cell in which a radio link failure occurs, a global cell identifier ECGI of a radio resource control reestablishment attempt cell, and a terminal in The radio network temporary identifier C-RNTI and the short media access control integrity verification value (shortMAC-I) in the radio link failure cell occur;
  • Step 22 After receiving the radio link failure information, the target base station determines a cell according to a physical address PCI of a cell in which the radio link failure occurs, and fails according to the radio link in each determined cell.
  • the physical address of the generated cell PCI, the global cell identifier ECGI of the radio resource control reestablishment attempt cell, and the radio network temporary identifier C-RNTI in the cell in which the radio link failure occurs are calculated to obtain a short media access control integrity verification value.
  • a calculated value of (small MAC-I) if the calculated value is consistent with the received short media access control integrity verification value (shortMAC-I), determining that the terminal is the target base station and the radio link fails Terminal of the cell, Otherwise it is determined that it is not the terminal of the cell.
  • the terminal sends a radio resource control re-establishment message to the source base station selected by the cell selection procedure after the radio link fails, where the radio resource control re-establishment message includes the radio link failure cell in the terminal.
  • the source base station that receives the RRC re-establishment message determines the target base station that transmits the RLF information through the PCI of the cell in the RLF when transmitting the radio link failure RLF information, and the radio link failure RLF transmitted to the target base station
  • the information includes the physical address PCI of the cell in which the RLF occurs, the global cell identifier (ECGI) of the RRC reestablishment attempt cell, and the C-RNTI of the UE in the RLF occurrence cell, which also contains short MAC integrity. Verification value ( shortMAC-I ).
  • the target base station uniquely determines a terminal based on the PCL C-RNTI and shortMAC-I. Wherein, if the source base station matches the plurality of target base stations by using the PCI information, the radio link failure RLF information is sent to all the matched target base stations.
  • the target base station receives the radio link failure RLF information, determines the key and integrity protection algorithm according to the C-RNTI therein, and inputs the PCI, ECGI, and C-RNTI in the RLF information, and calculates a short MAC-I calculation value.
  • the terminal is a terminal in the target cell of the target base station, so that the cell in which the terminal generates the RLF can be accurately determined. If the same target base station matches multiple cells through PCI, the short MAC-I is verified in multiple cells to determine the cell in which the terminal generates RLF.
  • the base station after receiving the RRC re-establishment message of the UE, the base station performs terminal identification according to shortMAC-I in the RRC re-establishment information to avoid confusion of the cell in which the RLF occurs.
  • specific handover parameters can be optimized to reduce the waste of network resources and improve the performance of the network, thereby realizing the self-optimization function of the network.
  • the present invention further provides a system for identifying a terminal, the system comprising a terminal, a source base station, and one or more target base stations, wherein:
  • the terminal is configured to send, after the radio link fails, a radio resource control re-establishment message to the source base station selected by the cell selection procedure, where the radio resource control re-establishment message includes: the radio network temporarily in the radio link failure cell of the terminal temporarily Identifying a C-RNTI, a short media access control integrity verification value (small MAC-I), and a physical address PCI of the cell in which the radio link failure occurs;
  • the source base station is a base station that receives the radio resource control re-establishment message, and is configured to determine, according to the radio resource control re-establishment message, the physical address PCI of the radio link-failed cell in the re-establishment message according to the radio resource control re-establishment message. All the target base stations to which the radio link failure information is to be sent are sent, and the radio link failure information is sent to each target base station, where the radio link failure information includes: a physical address PCI of a cell in which a radio link failure occurs, a radio resource control reestablishment attempt cell physical address PCI or global cell identity ECGI, a radio network temporary identifier C-RNTI in the cell in which the radio link failure occurs;
  • a target base station is a base station in which a radio link failure occurs in a cell under its jurisdiction, and is configured to receive the radio link failure information, and determine a cell according to a physical address PCI of a cell in which the radio link failure occurs, in each Determining, in the determined cell, whether the received radio terminal temporary identifier C-RNTI in the radio link failure cell belongs to the existing radio network temporary identifier C-RNTI in the cell, and if yes, determining that the terminal is The terminal of the cell in which the radio link fails under the target base station, otherwise it is determined not to be the terminal of the cell.
  • the present invention further provides another system for identifying a terminal, the system comprising a terminal, a source base station and one or more target base stations, wherein:
  • the terminal is configured to send, after the radio link fails, a radio resource control re-establishment message to the source base station selected by the cell selection procedure, where the radio resource control re-establishment message includes: the radio network temporarily in the radio link failure cell of the terminal temporarily Identifying a C-RNTI, a short media access control integrity verification value (small MAC-I), and a physical address PCI of the cell in which the radio link failure occurs;
  • the source base station is a base station that receives the radio resource control re-establishment message, and is configured to receive a radio resource control re-establishment message, and determine, according to the physical address PCI of the radio link failure cell in the radio resource control re-establishment message, to determine that the radio needs to be sent.
  • the radio link failure information is sent to each target base station, where the radio link failure information includes: The physical address PCI of the cell in which the radio link failure occurs, the global cell identifier ECGI of the radio resource control reestablishment attempt cell, the radio network temporary identifier C-RNTI in the cell in which the radio link failure occurs, and the short media access control integrity Verification value (shortMAC-I);
  • the target base station is a base station in which a radio link failure occurs in a cell under its jurisdiction, and is set to receive the radio link failure information, in a cell determined according to a physical address PCI of a cell in which the radio link failure occurs, according to a cell
  • the physical address PCI of the cell in which the radio link fails to occur, the global cell identifier ECGI of the radio resource control reestablishment attempt cell, and the radio network temporary identifier in the cell in which the radio link failure occurs are calculated to obtain a short media access control complete.
  • small MAC-I short verification value
  • shortMAC-I short media access control integrity verification value
  • the base station can identify the terminal where the RLF occurs, and further uniquely determine the cell in which the RLF occurs, and according to the RLF related information, the target base station can determine which handover scenario is performed, and on this basis, the network can implement Optimize specific handover parameters to implement self-optimization of the network and improve network performance.
  • the process of identifying the terminal of the present invention will be further described in detail below with reference to four specific embodiments.
  • Embodiment 1 Identification of a terminal when a late handover decision is made
  • the UE is in a connected state in the cell B of the base station B.
  • the radio link failure RLF occurs in the cell Cell b due to RRC reconfiguration failure, handover failure, or other reasons.
  • the UE selects the RRC re-establishment in the cell Cell a under the control of the base station A by using the cell selection process, and the UE sends an RRC re-establishment request message to the base station A, for example, Figure 1 shows.
  • the base station A receives the RRC re-establishment request message of the UE, and according to the radio link failure RLF, the PCI information of the cell Cell b is generated, indexes the target base station eNB B that sends the RLF information, and sends the RLF information to the target base station eNB. B. As shown in FIG.
  • the Identifier information includes the short MAC-I information of the UE's RRC re-establishment request message in addition to the C-RNTI information in the cell F1 of the RLF. If the eNB A indexes the plurality of target base stations according to the PCI information of the RLF occurrence cell Cell b, the eNB A transmits the RLF information to all target base stations, for example, the eNB H is also the target base station.
  • the eNB B receives the RLF information of the eNB A, and performs identification of the terminal to confirm whether the UE that generates the RLF is the UE in the cell Cell b under the jurisdiction of the base station. When identifying, the eNB B determines the cell Cell b according to the PCI information of the received RLF information, and then identifies the terminal according to the C-RNTI and the shortMAC-I.
  • the authentication of the short MAC-I is performed; otherwise, there is no corresponding C-RNTI value in the cell corresponding to the cell, indicating that the terminal is not the cell of the cell under the control of the base station.
  • the terminal of b Each cell has a certain number of C-RNTIs, and each UE in the connected state is divided into one. After the UE's radio link control RRC is released, its C-RNTI is reclaimed.
  • the eNB B determines the key and integrity protection algorithm according to the C-RNTI, and the input is the PCI, ECGI, and C-RNTI in the RLF information, and the short MAC-I is calculated; if the shortMAC-I and the shortMAC-I in the RLF information are calculated If the value is the same, it is determined that the terminal is the terminal of Cell b under the jurisdiction of the base station. If the eNB B determines a plurality of cells based on the PCI information of the received RLF information, the terminal is identified in each cell.
  • Another base station eNB H also receives the RLF information of eNB A, and also identifies the terminal according to C-RNTI and shortMAC-I, which is the same as the identification mode of eNB B.
  • the eNB B determines, by using the C-RNTI and the shortMAC-I, that the terminal is a cell under the jurisdiction of the base station.
  • the terminal of Cell b indicates that the terminal has a radio link failure RLF in the cell Cell b of the base station, and selects to perform RRC re-establishment in the cell Cell a under the jurisdiction of the eNB A. If the terminal is not just cut into cell b from another cell, it means that the UE switches from cell Cell b to cell Cell a too late.
  • the eNB B may optimize the corresponding handover parameter according to a scenario in which the handover from the cell Cell b to the cell Cell a is too late, and improve network performance.
  • Embodiment 2 Identification of a terminal when switching a premature decision
  • FIG. 2 the second embodiment is described as follows: 201.
  • the UE switches from the cell Cell a under the eNB A to the cell Cell b under the eNB B.
  • the RRC reconfiguration failure, handover failure, or other reasons cause the UE to fail the radio link RLF in the cell Cell b. .
  • the eNB B After the UE successfully switches to the cell Cell b, the eNB B sets a timer for the context context of the UE, and performs the judgment of the handover too early and the error cell, and the eNB B reserves the context of the UE in the timer time ( Context ) In the following steps 205 and 305, after the terminal is matched, if the timer corresponding to the context does not time out, it indicates that the UE has just switched to Cell B. 202.
  • the UE selects the radio resource control RRC re-establishment in the cell Cell a under the eNB A by the cell selection process, and the UE sends an RRC re-establishment request to the eNB A.
  • the message is shown in Figure 2.
  • the eNB A receives the RRC re-establishment request message of the UE, and according to the PCI information of the RLF occurrence cell of the RLF, indexes the target base station eNB B that sends the RLF information, and sends the RLF information to the target base station eNB B. As shown in FIG.
  • the global Identifier information includes the short MAC-I information of the UE's RRC re-establishment request message in addition to the C-RNTI information in the cell F1 of the RLF. If the eNB A indexes the PCI information of the cell Cell b according to the RLF to a plurality of target base stations, the eNB A transmits RLF information to all the target base stations, for example, the eNB H is also the target base station.
  • the eNB B receives the RLF information of the eNB A, and performs identification of the terminal to confirm whether the terminal UE that generates the RLF is the UE in the cell Cell b under the jurisdiction of the base station.
  • the eNB B determines the cell Cell b according to the PCI information of the received RLF information, and then identifies the terminal according to the C-RNTI and the short MAC-I. If there is an allocated C-RNTI value in the cell Cell b, the short MAC-I is verified again. If the verification succeeds, the terminal UE is the terminal of the cell B of the cell under the control of the base station, otherwise the terminal is not the local base station.
  • the terminal of Cell b in the jurisdiction.
  • the eNB B determines the key and integrity protection algorithm according to the C-RNTI, and the input is the PCI, ECGI, and C-RNTI in the RLF information, and the short MAC-I is calculated; if the shortMAC-I and the shortMAC-I in the RLF information are calculated If the value is the same, it is determined that the terminal is the terminal of the cell B of the cell under the control of the base station. If the eNB B determines multiple cells according to the PCI information of the received RLF information, the terminal knowledge is performed in each cell. do not.
  • Another base station eNB H also receives the RLF information of the eNB A, it also performs terminal identification according to the C-RNTI and the short MAC-I, which is the same as the identification mode of the eNB B.
  • the eNB B determines that the terminal is the terminal of the cell B of the cell under the control of the base station by using the C-RNTI and the short MAC-I, and the terminal has failed to generate a radio link in the cell B of the base station.
  • RLF, and RRC re-establishment is selected in the cell Cell a under the jurisdiction of eNB A. If the context timer of the terminal does not time out, it indicates that the UE switches from cell Cell a to cell Cell b too early.
  • the eNB B sends the handover premature indication information to the eNB A, indicating that a premature handover behavior from the cell Cell a to the cell Cell b occurs once, as shown in FIG. 5.
  • the eNB A optimizes the corresponding handover parameter according to a scenario in which the handover from the cell Cell a to the cell Cell b is too early, and improves network performance.
  • Embodiment 3 Identification of a terminal when switching the judgment of an error cell:
  • FIG. 3 Referring to FIG. 3, FIG. 4 and FIG. 6, the third embodiment is described as follows:
  • the radio link fails in the cell Cell b due to RRC reconfiguration failure, handover failure or other reasons. RLF.
  • the eNB B After the UE successfully switches to the cell Cell b, the eNB B sets a timer for the context context of the UE.
  • the UE selects an RRC re-establishment in the cell A of the eNB A by using the cell selection process, and the UE sends an RRC re-establishment request message to the eNB A. As shown in Figure 3.
  • the eNB A receives the RRC re-establishment request message of the UE, and according to the RLF occurrence of the RLC, the cell information of the cell Cell b is indexed to the target base station eNB B that sends the RLF information, and sends the RLF information to the eNB B. As shown in FIG.
  • ECGI Evolved Cell Global Identifier
  • the UE also includes the shortMAC-I information of the RRC re-establishment request message of the UE. If the eNB A indexes the PCI information of the cell Cell b according to the RLF occurrence, For each target base station, eNB A sends RLF information to all target base stations, for example, eNB H is also the target base station.
  • the eNB B receives the RLF information of the eNB A, and performs identification of the terminal to confirm whether the UE that generates the RLF is the UE in the cell Cell b under the jurisdiction of the base station.
  • the eNB B determines the cell Cell b according to the PCI information of the received RLF information, and identifies the terminal according to the C-RNTI and the shortMAC-I. If there is an allocated C-RNTI value in the cell Cell b, the short MAC-I is verified again. Otherwise, the terminal is not the terminal of the cell B of the cell under the control of the base station.
  • the eNB B determines the key and integrity protection algorithm according to the CRNTI, and the input is the PCI, ECGI, and CRNTI in the RLF information, and calculates the shortMAC-I; if the calculated shortMAC-I and the RLF information have the same shortMAC-I value, It is determined that the terminal is a terminal of Cell b under the jurisdiction of the base station. If the eNB B determines a plurality of cells based on the PCI information of the received RLF information, the terminal is identified in each cell.
  • the terminal is also identified according to the C-RNTI and the short MAC-I, which is the same as the eNB B.
  • the eNB B determines, by using the C-RNTI and the shortMAC-I, that the terminal is a cell under the jurisdiction of the base station.
  • the terminal of Cell b indicates that the terminal has a radio link failure RLF in the cell Cell b of the base station, and selects to perform RRC re-establishment in the cell Cell a under the jurisdiction of the eNB A. If the context timer of the terminal does not time out, it indicates that the UE selects an error cell from the cell Cell c to the cell Cell b, and the correct target cell is the cell Cell a of the eNB A.
  • the eNB B sends the handover error cell indication information to the eNB C, indicating that the handover behavior of selecting the wrong cell from the cell Cell c to the cell Cell b occurs once, as shown in FIG. 6.
  • the eNB C optimizes the corresponding handover parameter according to the scenario in which the wrong cell is selected from the cell Cell c to the cell Cell b, and improves network performance.
  • Embodiment 4 Terminal identification using PCI and C-RNTI
  • the UE is in a connected state in the cell B of the eNB B.
  • the radio link failure RLF occurs in the cell Cell b due to RRC reconfiguration failure, handover failure, or other reasons.
  • the UE selects an RRC re-establishment in the cell Cell a of the eNB A, and the UE sends the eNB to the eNB A through the cell selection process.
  • the RRC re-establishment request message After the radio link failure RLF occurs in the cell Cell b, the UE selects an RRC re-establishment in the cell Cell a of the eNB A, and the UE sends the eNB to the eNB A through the cell selection process.
  • the RRC re-establishment request message After the radio link failure RLF occurs in the cell Cell b, the UE selects an RRC re-establishment in the cell Cell a of the eNB A, and the UE sends the eNB to the eNB A through the cell selection process.
  • the RRC re-establishment request message After the radio link failure RLF occurs in the cell Cell b, the UE selects an RRC re-establishment in the
  • the eNB A receives the RRC re-establishment request message of the UE, and according to the PCI information of the RLF occurrence cell of the RLF, indexes the target base station eNB B that sends the RLF information, and sends the RLF information to the target base station eNB B. As shown in FIG. 4, if the eNB A indexes the PCI information of the cell Cell b to the plurality of target base stations according to the RLF, the eNB A transmits the RLF information to all the target base stations. For example, if the base station eNB H is also the target base station, the eNB A also sends the RLF information to the eNB H.
  • the RLF information includes: a physical address of a cell in which the RLF occurs, a PCI of the cell of the RRC reestablishment attempt, or an Evolved Cell Global Identifier (ECGI), and a C-RNTI of the UE in the RLF occurrence cell.
  • ECGI Evolved Cell Global Identifier
  • the eNB B receives the RLF information of the eNB A, and performs identification of the terminal to confirm whether the UE that generates the RLF is the UE in the cell Cell b under the jurisdiction of the base station.
  • the eNB B determines the cell Cell b according to the received PCI information of the RLF information, and then identifies the terminal according to the C-RNTI. If the C-RNTI value is the allocated C-RNTI value existing in the cell Cell b, The terminal is the terminal of the cell b of the cell under the control of the base station; otherwise, it is determined not to belong to the cell.
  • the eNB H also performs the same terminal identification.
  • the eNB B receives the RLF information of the eNB A. If the terminal identifies that the terminal is the terminal of the cell B of the cell under the control of the base station, the terminal UE may learn that the RLF occurs in the cell b of the base station, and then the eNB is in the eNB. An RRC re-establishment attempt is made in the cell Cell a in A.
  • the handover scenario belongs to the handover scenario, that is, the handover of the UE from Cell b to Cell a is too late, or the handover of the UE from Cell a to Cell b is too early, or the UE is The handover of other cells to Cell b selects the wrong cell, and the handover from Cell c to Cell b of eNB C selects the wrong cell.
  • notifying the corresponding base station of the judgment result notifying the base station B when the handover is too late, notifying the base station A when the handover is too early, and notifying the base station C when the handover selection is incorrect, as shown in FIG. 5 and FIG. 6.
  • the notified eNB A, eNB B, and/or eNB C automatically optimize the handover parameters according to the decision of the handover scenario between the corresponding cells, and improve the handover performance.
  • the present invention can accurately and uniquely identify the terminal, so that the cell in which the RLF occurs can be uniquely determined, which solves the problem that the eNB A identifies the wrong RLF-performing cell when transmitting the RLF information and selects The problem of the target base station that sent the RLF information incorrectly. Further, after the terminal is identified, the handover scenario may be determined, and the corresponding base station is notified to perform network self-optimization after the handover scenario is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Description

一种用于识别终端的方法及系统
技术领域
本发明涉及无线蜂窝通信系统, 尤其涉及长期演进(LTE )移动通信系 统中切换优化场景过程中用于识别终端的方法及系统。
背景技术
LTE( Long Term Evolution,长期演进)网络由 E-UTRAN(Evolved UTRAN, 演进的通用陆地无线接入网络)基站 eNB ( Evolved NodeB )和演进分组交换 中心 EPC ( Evolved Packet Core )组成, 网络扁平化。 其中 E-UTRAN包含和 EPC通过 S1接口连接的基站 eNB的集合, eNB之间能通过 X2接口连接, S1和 X2是逻辑接口。一个 EPC可以管理一个或多个 eNB,—个 eNB也可以 受控于多个 EPC, —个 eNB可以管理一个或多个小区。
自组网 (SON, Self-Organizing Network )技术是一种自动进行网络配置 和优化的技术。 该技术的特点是自配置并自优化, 该技术在 LTE系统中应用 使得 LTE基站(eNB )可以根据一定的测量自动配置网络参数, 并根据网络 变化进行自动优化, 从而保持网络性能最优, 同时节约大量的人力物力。
对于 LTE系统的切换参数自优化来说, 需要根据网络的运行状况, 根据 切换相关的测量, 按照一定的算法来优化小区重选和切换相关的参数, 以提 高网络的性能。这里的切换是指 LTE系统内部的切换和系统间的切换,其中:
( 1 ) 系统间的切换, 是指到 UTRAN ( Universal Terrestrial Radio Access Network , 通用陆地无线接入网络) 或 GSM ( Global System For Mobile Communication,全球移动通信系统 )或 CDMA( Code Division Multiple Access, 码分多址接入) 系统的切换;
( 2 )在网络中终端进行切换的过程, 即系统内部的切换为: 网络侧根据 终端上报的本小区和邻区的信号质量, 基于一定的切换算法做出切换决策, 然后根据切换决策通知终端进行具体的切换流程的执行。
在切换时, 不合适的切换参数设置会导致乒乓切换、 切换失败和无线链 路失败(RLF, Radio Link Failure ) , 这些都是不期望的切换, 都将对用户的 体验造成负面影响并且会浪费网络资源。 因此, 对于切换参数自优化来说, 对切换失败或者不期望的切换场景的准确判断是进行切换参数调整的基础。
用户设备 UE ( User Equipment )在无线链路信号很差时会发生无线链路 失败( RLF, Radio Link Failure ) , 并进行无线资源控制 RRC ( Radio Resource Control ) 的重建立。 UE在进行 RRC重建立时, 通过小区选择程序来获得目 标小区。 在切换过程中发生的切换失败, 源基站或目标基站会保留用户的信 息, 用于 RRC重建。
UE在 RRC重建立的请求消息里, 会带有终端标识( UE-Identity ) , 该 终端标识含有 UE在小区的无线网络临时标识( C-RNTI, Cell Radio Network Temporary Identifier )、 短的 MAC完整' 1"生马全证值( shortMAC-I, short Medium Access Control integrity protection ) 和小区物理地址 ( PCI , Physical Cell Identity ) , 其中:
• C-RNTI是在源小区分配的 (切换失败的场景), 或者是在触发 RRC重 建的小区里分配的 (其它场景) ;
• PCI是指源小区的物理地址 (切换失败的场景),或者是在触发 RRC重 建的小区的物理地址(其它场景) ;
• 短的 MAC完整性验证值( shortMAC-I )的计算是釆用源小区的 (切换 失败的场景)或者是在触发 RRC重建的小区的 KRRCint key和完整性 保护算法, 输入的是 PCI、 C-RNTI和演进的全球小区标识(ECGI,
Evolved Cell Global Identifier ) , 其中, PCI、 C-RNTI是上述在 RRC 重建消息携带的, ECGI是 UE在 RRC 重建时选择的目标小区的 ECGI。
在现有切换中, 以下是 3种典型的不期望的切换场景, 包括:
第一种: 切换过晚的场景, 如图 1所示, 终端 UE在基站 B下的小区
Cell b中,发生了无线链路失败 RLF,然后在基站 A下的小区 Cell a中尝试进 行无线资源控制 RRC重建, 这说明该 UE从小区 Cell b到小区 Cell a的切换 过晚。 第二种: 切换过早的场景, 如图 2所示, 终端 UE从基站 A下的小区 Cell a中切换到基站 B下的小区 Cell b后不久, 就在小区 Cell b中, 发生了无 线链路失败 RLF, 然后 UE选择了基站 A下的小区 Cell a进行无线资源控制 RRC重建, 也就是说, 又回到切换前的小区 Cell a中进行 RRC重建。 那么, 也就说明之前所进行的 UE从小区 Cell a到小区 Cell b的切换过早。
第三种: 切换选择了错误小区的场景, 如图 3所示, 终端 UE从基站 C 下的小区 Cell c切换到基站 B下的小区 Cell b之后不久, 就发生了无线链路 失败 RLF, 然后 UE在基站 A下的小区 Cell a进行无线资源控制 RRC重建。 这就说明切换之前所选择的基站 B下的小区 Cell b是错误的目标小区, 正确 的目标小区应为基站 A下的小区 Cell a , 也就是说, UE应该直接进行从基站 C下的小区 Cell c到基站 A下的小区 Cell a的切换。
对于上述三种典型的不期望的切换场景, 如何判决不期望切换的类型是 个关键问题。 一种现有的判决方法, 包括如下步骤:
第一步: 基站(eNB ) A将 RLF的信息通知到基站(eNB ) B;
其中 RLF的信息包括: RLF发生的小区的物理地址 PCI; RRC重建 尝试的小区的 PCI或者演进的全球小区标识 ECGI ( Evolved Cell Global Identifier ) ; UE在 RLF发生小区里的 C-RNTI。 其中, RLF发生的小区 的物理地址 PCI和 UE在 RLF发生小区里的 C-RNTI信息是来自 eNB A 接收到的 UE的 RRC重建消息。
第二步: 基站(eNB ) B收到 RLF的信息, 根据其中的 UE的上下文信 息, 即 PCI和 C-RNTI信息, 进行判决:
• 如果这个 UE是刚刚从基站 A下的小区 Cell a切换过来的, 则基站 B 判断这个 UE的从小区 Cell a到小区 Cell b的切换过早,如图 1所示, 并将判决结果通知 eNB A;
· 如果这个 UE是刚刚从基站 C下的小区 Cell c切换过来的, 则基站 B 判断这个 UE的从小区 Cell c到小区 Cell b的切换的目标小区选择错 误, 如图 3所示, 正确的目标小区为小区 Cell a, 并将判决结果通知 eNB C; • 否则, eNB B则判断 UE从小区 Cell b到小区 Cell a的切换过晚, 如 图 2所示。
目前这种切换场景的判决方法存在一个问题是, 基站 A是根据 UE的无 线资源控制 RRC重建消息中的 PCI信息来确定 UE发生无线链路失败 RLF 的小区和该小区所属的基站, 如果存在 PCI混淆的情况, 即两个小区的 PCI 相同, 那么基站 A在发送 RLF的信息时可能会标识了错误的发生 RLF的小 区以及选择了错误发送 RLF信息的目标基站, 即仅通过 RRC重建消息中的 PCI信息不能唯一标识 RLF发生的小区 Cell b和基站 eNB B, 从而必将导致 切换参数优化的不准确, 降低了切换参数自优化的功能。
因此, 为避免上述可能的因 PCI混淆而导致发送 RLF错误的问题, 就需 要进一步能够识别出终端, 因为终端是唯一的, 若能唯一识别出终端, 就能 准确确定出终端所在的小区即为唯一的发生所述的 RLF的小区, 则可在切换 参数优化时提高准确度, 增强自优化功能。 那么在切换场景时如何识别出终 端则成为一个需要解决的问题。
发明内容
为解决现有技术问题, 本发明提供一种用于识别终端的方法及系统, 在 长期演进 LTE移动通信系统的切换优化场景过程中用于准确唯一地识别出终 端。
为了解决上述问题, 本发明提出了一种用于识别终端的方法, 包括如下 步骤:
步骤 11 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败的小区的物理地址确定出需发送无线链路 失败信息的所有目标基站, 向每一目标基站发送所述无线链路失败信息, 所 述无线链路失败信息中包括: 发生无线链路失败的小区的物理地址、 无线资 源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小区内的 无线网络临时标识;
步骤 12: 所述目标基站接收所述无线链路失败信息后, 根据所述发生无 线链路失败的小区的物理地址来确定小区, 在每一所确定的小区内判断所接 收的终端在发生无线链路失败的小区内的无线网络临时标识, 是否属于该小 区内已存在的无线网络临时标识, 若属于, 则判定该终端是所述目标基站下 该无线链路失败发生的小区的终端, 若不属于则判定不是该小区的终端; 其中, 所述源基站是指收到无线资源控制重建立消息的基站, 所述目标 基站是指发生所述无线链路失败的小区所属的基站。
在所述步骤 11之前, 该方法还包括: 发生无线链路失败的终端向通过小 区选择程序选择出的源基站发送无线资源控制重建立消息, 该无线资源控制 重建立消息中包括: 终端在发生无线链路失败小区的无线网络临时标识、 短 的媒体接入控制完整性验证值和无线链路失败发生的小区的物理地址。
所述方法还包括:
步骤 13: 所述目标基站确定所述终端属于该目标基站下发生了无线链路 失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所述切换属于 哪种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站;
步骤 14: 接收到判决结果通知的基站, 根据与上一次切换对应的小区间 的切换场景的判决, 自动进行切换参数的优化。
本发明还提供一种支持识别终端的基站, 所述基站设置成作为源基站从 终端接收无线资源控制重建立消息, 根据所述无线资源控制重建立消息中发 生无线链路失败的小区的物理地址确定出需发送无线链路失败信息的所有目 标基站, 向所确定的每一目标基站发送所述无线链路失败信息, 所述无线链 路失败信息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重 建尝试小区的全球小区标识、 终端在发生无线链路失败的小区内的无线网络 临时标 i只;
所述基站还设置成在其管辖的小区发生无线链路失败时, 作为目标基站 接收无线链路失败信息, 根据所述无线链路失败信息中的发生无线链路失败 的小区的物理地址来确定发生无线链路失败的小区, 在每一所确定的小区内 判断所接收的终端在发生无线链路失败的小区内的无线网络临时标识是否属 于该小区内已存在的无线网络临时标识, 若属于, 则判定所述终端是该小区 的终端, 若不属于则判定所述终端不是该小区的终端。
本发明的基站还设置成作为目标基站在确定终端属于该目标基站下发生 了无线链路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所 述上一次的切换属于哪种小区间的切换场景, 并将判决结果通知与上一次切 换对应的基站, 由接收到判决结果通知的基站, 根据与所述上一次切换对应 的小区间的切换场景的判决自动进行切换参数的优化。 本发明还提供一种用 于识别终端的系统, 所述系统包括源基站和一个或多个目标基站, 其中: 源基站是指收到无线资源控制重建立消息的基站, 其设置成从终端接收 无线资源控制重建立消息, 根据所述无线资源控制重建立消息中发生无线链 路失败的小区的物理地址确定出需发送无线链路失败信息的所有目标基站, 向每一目标基站发送所述无线链路失败信息,所述无线链路失败信息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的全球小 区标识、 终端在发生无线链路失败小区内的无线网络临时标识;
目标基站是指发生无线链路失败的小区所属的基站, 其设置成接收所述 无线链路失败信息, 根据所述发生无线链路失败的小区的物理地址来确定小 区, 在每一所确定的小区内判断所接收的终端在发生无线链路失败的小区内 的无线网络临时标识是否属于该小区内已存在的无线网络临时标识,若属于, 则判定该终端是所述目标基站下该发生无线链路失败的小区的终端, 若不属 于则判定不是该小区的终端。
本发明的用于识别终端的系统还包括终端, 所述终端设置成在发生无线 链路失败后, 向通过小区选择程序选择出的源基站发送无线资源控制重建立 消息, 该无线资源控制重建立消息中包括: 终端在发生无线链路失败小区的 无线网络临时标识、 短的媒体接入控制完整性验证值和发生无线链路失败小 区的物理地址。
所述目标基站还设置成在确定所述终端属于该目标基站下发生了无线链 路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所述切换属 于哪种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站, 由 接收到判决结果通知的基站, 根据对应小区间的切换场景的判决, 自动进行 切换参数的优化。 本发明还提供另一种用于识别终端的方法, 包括如下步骤: 步骤 21 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败的小区的物理地址确定出需发送无线链路 失败信息的所有目标基站, 向每一目标基站发送所述无线链路失败信息, 所 述无线链路失败信息中包括: 无线链路失败发生的小区的物理地址、 无线资 源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败小区内的无 线网络临时标识、 短的媒体接入控制完整性验证值;
步骤 22: 所述目标基站接收所述无线链路失败信息后, 根据所述发生无 线链路失败的小区的物理地址来确定小区, 在每一所确定的小区内根据所述 无线链路失败发生的小区的物理地址、 无线资源控制重建尝试小区的全球小 区标识、 终端在发生无线链路失败小区内的无线网络临时标识计算得到一个 短的媒体接入控制完整性验证值的计算值, 若该计算值与所接收的短的媒体 接入控制完整性验证值一致, 则判定该终端是所述目标基站下该发生无线链 路失败的小区的终端, 若不一致则判定不是该小区的终端;
其中, 所述源基站是指收到无线资源控制重建立消息的基站, 所述目标 基站是指发生无线链路失败的小区所属的基站。
本发明的方法在计算得到一个短的媒体接入控制完整性验证值的计算值 的步骤之前还包括: 在每一所确定的小区内判断所接收的终端在发生无线链 路失败的小区内的无线网络临时标识是否属于该小区内已存在的无线网络临 时标识, 若属于, 则执行所述计算得到一个短的媒体接入控制完整性验证值 的计算值的步骤, 若不属于则判定该终端不是该小区的终端。
在所述步骤 21之前, 本发明的方法还包括: 发生无线链路失败的终端, 向通过小区选择程序选择出的源基站发送的无线资源控制重建立消息, 该无 线资源控制重建立消息中包括: 终端在发生无线链路失败小区的无线网络临 时标识、 短的媒体接入控制完整性验证值和发生无线链路失败小区的物理地 址。
所述方法还包括:
步骤 23: 所述目标基站确定所述终端属于该目标基站下发生了无线链路 失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所述切换属于 哪种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站;
步骤 24: 接收到判决结果通知的基站, 根据与上一次切换对应的小区间 的切换场景的判决, 自动进行切换参数的优化。
步骤 22中,所述目标基站是根据小区内的无线网络临时标识确定密钥和 完整性保护算法, 输入所述无线链路失败信息中的无线链路失败发生的小区 的物理地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线 链路失败小区内的无线网络临时标识计算得到一个短的媒体接入控制完整性 验证值的计算值。
本发明还提供另一种支持识别终端的基站, 所述基站设置成作为源基站 接收无线资源控制重建立消息, 根据所述无线资源控制重建立消息中发生无 线链路失败的小区的物理地址确定出需发送无线链路失败信息的所有目标基 站, 向所确定的每一目标基站发送所述无线链路失败信息, 所述无线链路失 败信息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝 试小区的全球小区标识、 终端在发生无线链路失败的小区内的无线网络临时 标识、 短的媒体接入控制完整性验证值;
所述基站还设置成在其管辖的小区发生无线链路失败时, 作为目标基站 接收无线链路失败信息, 根据发生无线链路失败的小区的物理地址来确定该 基站下发生无线链路失败的小区, 在每一所确定的小区内, 根据所述发生无 线链路失败的小区的物理地址、无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小区内的无线网络临时标识计算得到一个短的媒 体接入控制完整性验证值的计算值, 若所得到的计算值与所接收的短的媒体 接入控制完整性验证值一致, 则判定所述终端是该小区的终端, 若不一致则 判定所述终端不是该小区的终端。
本发明的基站还设置成作为目标基站在每一所确定的小区内, 判断所接 收的终端在发生无线链路失败的小区内的无线网络临时标识是否属于该小区 内已存在的无线网络临时标识, 若属于, 则计算得到一个短的媒体接入控制 完整性验证值的计算值, 若不属于则判定所述终端不是该小区的终端。
本发明的基站还设置成作为目标基站在确定终端属于该目标基站下发生 了无线链路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所 述上一次的切换属于哪种小区间的切换场景, 并将判决结果通知与上一次切 换对应的基站, 由接收到判决结果通知的基站, 根据与所述上一次的切换对 应的小区间的切换场景的判决自动进行切换参数的优化。 本发明还提供另一 种用于识别终端的系统, 所述系统包括源基站和一个或多个目标基站, 其中, 所述源基站是指收到无线资源控制重建立消息的基站, 其设置成从终端 接收无线资源控制重建立消息, 根据所述无线资源控制重建立消息中发生无 线链路失败的小区的物理地址确定出需发送无线链路失败信息的所有目标基 站, 向每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息中 包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的 全球小区标识、 终端在发生无线链路失败小区内的无线网络临时标识、 短的 媒体接入控制完整性验证值;
所述目标基站是指发生无线链路失败的小区所属的基站, 其设置成接收 所述无线链路失败信息, 根据所述发生无线链路失败的小区的物理地址来确 定小区, 在每一所确定的小区内, 根据所述无线链路失败发生的小区的物理 地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失 败的小区内的无线网络临时标识计算得到一个短的媒体接入控制完整性验证 值的计算值, 若该计算值与所接收的短的媒体接入控制完整性验证值一致, 则判定该终端是所述目标基站下该无线链路失败发生的小区的终端, 若不一 致则判定不是该小区的终端。
所述的用于识别终端的系统, 还包括终端, 所述终端设置成在无线链路 失败后,向通过小区选择程序选择出的源基站发送无线资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发生无线链路失败小区的无线网 络临时标识、 短的媒体接入控制完整性验证值和发生无线链路失败小区的物 理地址。
所述目标基站还设置成在每一所确定的小区内, 判断所接收的终端在发 生无线链路失败的小区内的无线网络临时标识是否属于该小区内已存在的无 线网络临时标识, 若属于, 则计算得到一个短的媒体接入控制完整性验证值 的计算值, 若不属于则判定该终端不是该小区的终端。 所述目标基站还设置成在确定所述终端属于该目标基站下发生了无线链 路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所述切换属 于哪种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站, 由 接收到判决结果通知的基站, 根据与上一次切换对应的小区间的切换场景的 判决, 自动进行切换参数的优化。
本发明的用于识别终端的方法及系统, 在终端无线链路失败 RLF之后, 向源基站发送的 RRC重建立消息中还携带 UE在 RLF发生小区里的 C-RNTI , 还含有短的 MAC 完整性验证值 (shortMAC-I ) , 源基站发送携带所述 C-RNTI 、 shortMAC-I以及 PCI的 RLF信息至目标基站, 目标基站用于根据 C-RNTI和 PCI, 或者根据 C-RNTI 、 shortMAC-I以及 PCI来识别出终端。 由 于本发明中可准确、 唯一地识别出终端, 从而可唯一确定发生 RLF的小区, 这就解决了 eNB A在发送 RLF的信息时标识了错误的发生 RLF的小区以及 选择了错误发送 RLF信息的目标基站的问题。进一步地,在识别出终端之后, 即可根据切换场景判决方法, 判断出切换场景后通知相应基站进行网络自优 化。
附图概述
图 1是不期望的切换中 UE从小区 Cell b到 Cell a切换过晚的示意图; 图 2是不期望的切换中 UE从小区 Cell a到 Cell b切换过早的示意图; 图 3是不期望的切换中 UE从小区 Cell c到 Cell b切换选择了错误小区的 示意图;
图 4是本发明中发送无线链路失败 RLF信息通知的示意图;
图 5是本发明中发送切换过早信息指示的示意图;
图 6是本发明中发送切换错误小区信息指示的示意图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。 本发明提出了一种切换优化场景中的用于识别终端的方法及系统, 终端 在无线链路失败 RLF之后, 在向源基站发送的 RRC重建立消息中还携带 UE 在 RLF发生小区里的 C-RNTI,还含有短的 MAC完整性验证值( shortMAC-I ), 源基站发送携带所述 C-RNTI 、 shortMAC-I以及 PCI的 RLF信息至目标基站, 目标基站用于根据 C-RNTI和 PCI,或者根据 C-RNTI 、 shortMAC-I以及 PCI 来识别出终端。 本发明因可唯一识别出终端, 从而可唯一确定发生 RLF的小 区, 因此能解决 eNB A在发送 RLF的信息时标识了错误的发生 RLF的小区 以及选择了错误发送 RLF信息的目标基站的问题。 进一步地, 在识别出终端 之后, 即可根据切换场景判决方法, 判断出切换场景后通知相应基站进行网 络自优化。
为达到上述目的, 本发明提供的一种用于识别终端的方法, 包括如下步 骤:
步骤 11 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败小区的物理地址 PCI确定出需发送无线链 路失败信息至的所有目标基站,向每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息中包括: 无线链路失败发生的小区的物理地址 PCI、 无线资源控制重建尝试小区的物理地址 PCI或全球小区标识 ECGI、终端在发 生无线链路失败小区内的无线网络临时标识 C-RNTI;
步骤 12: 所述目标基站接收所述无线链路失败信息后, 根据所述无线链 路失败发生的小区的物理地址 PCI来确定小区, 在每一所确定的小区内判断 所接收的终端在发生无线链路失败小区内的无线网络临时标识 C-RNTI,是否 属于该小区内已存在的无线网络临时标识 C-RNTI, 若是, 则判定该终端是所 述目标基站下该无线链路失败发生的小区的终端, 否则判定不是该小区的终 端。
在步骤 11之前, 所述终端在无线链路失败后, 向通过小区选择程序选择 出的源基站发送无线资源控制重建立消息, 该无线资源控制重建立消息中包 括: 终端在发生无线链路失败小区的无线网络临时标识 C-RNTI、短的媒体接 入控制完整性验证值( shortMAC-I )和发生无线链路失败小区的物理地址 PCI。
该第一种方法只通过 PCI和 C-RNTI来识别终端, 在 LTE系统中, 收到 RRC重建立消息的源基站在传递无线链路失败 RLF信息时, 通过 RLF发生 小区的 PCI来确定发送 RLF信息的目标基站, 如果通过 PCI信息匹配到多个 目标基站, 那么就把无线链路失败 RLF信息发往所有匹配到的目标基站。 传 递到目标基站的无线链路失败 RLF信息中含有 RLF发生的小区的物理地址 PCI, RRC重建尝试的小区的 PCI或者演进的全球小区标识(ECGI, Evolved Cell Global Identifier )和 UE在 RLF发生小区里的 C-RNTI。
目标基站根据 RLF信息中的 RLF发生的小区的物理地址 PCI和 UE在 RLF发生小区里的 C-RNTI来识别终端,若该 C-RNTI值是在小区 Cell b中存 在的已分配的 C-RNTI值,则说明终端是本基站所辖小区 Cell b的终端,否则, 则判断为不属于本小区。 若目标基站根据 PCI匹配到多个小区, 则在每一小 区内都进行根据 C-RNTI来识别终端的处理。 通过第一种识别方法的这种方 式可以识别出终端, 并且减少基站的计算复杂度, 比较简单粗略的识别出终 端。
为了更准确来识别终端, 本发明还提供另一种用于识别终端的方法, 包 括如下步骤:
步骤 21 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败小区的物理地址 PCI确定出需发送无线链 路失败信息至的所有目标基站,向每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息中包括: 无线链路失败发生的小区的物理地址 PCI、 无线资源控制重建尝试小区的全球小区标识 ECGI、终端在发生无线链路失败 小区内的无线网络临时标识 C-RNTI、 短的媒体接入控制完整性验证值 ( shortMAC-I ) ;
步骤 22: 所述目标基站接收所述无线链路失败信息后, 根据所述无线链 路失败发生的小区的物理地址 PCI来确定小区, 在每一所确定的小区内根据 所述无线链路失败发生的小区的物理地址 PCI、 无线资源控制重建尝试小区 的全球小区标识 ECGI、终端在发生无线链路失败小区内的无线网络临时标识 C-RNTI计算得到一个短的媒体接入控制完整性验证值( shortMAC-I )的计算 值, 若该计算值与所接收的短的媒体接入控制完整性验证值(shortMAC-I ) 一致, 则判定该终端是所述目标基站下该无线链路失败发生的小区的终端, 否则判定不是该小区的终端。
在步骤 21之前, 所述终端在无线链路失败后, 向通过小区选择程序选择 出的源基站发送无线资源控制重建立消息, 该无线资源控制重建立消息中包 括终端在发生无线链路失败小区的无线网络临时标识 C-RNTI、短的媒体接入 控制完整性验证值( shortMAC-I )和发生无线链路失败小区的物理地址 PCI。
在 LTE系统中, 收到 RRC重建立消息的源基站, 在传递无线链路失败 RLF信息时,通过 RLF发生小区的 PCI来确定发送 RLF信息的目标基站,传 递到目标基站的无线链路失败 RLF信息中除了含有 RLF发生的小区的物理地 址 PCI, RRC 重建尝试小区的全球小区标识(ECGI, Evolved Cell Global Identifier ) , UE在 RLF发生小区里的 C-RNTI夕卜, 还含有短的 MAC完整性 验证值( shortMAC-I ) 。
目标基站根据 PCL C-RNTI和 shortMAC-I来唯一确定一个终端。 其中, 源基站如果通过 PCI信息匹配到多个目标基站, 那么就把无线链路失败 RLF 信息发往所有匹配到的目标基站。 目标基站在收到无线链路失败 RLF信息, 根据其中的 C-RNTI确定密钥和完整性保护算法,输入是 RLF信息中的 PCI、 ECGI和 C-RNTI, 进行计算得到一个 shortMAC-I计算值; 如果计算得到的 shortMAC-I计算值与 RLF信息中的 shortMAC-I值相同, 就判定该终端是目 标基站的目标小区内的终端, 从而可以准确的确定终端发生 RLF的小区。 如 果同一目标基站通过 PCI 匹配到多个小区, 则在多个小区内均进行 shortMAC-I的验证, 从而确定终端发生 RLF的小区。
通过第二种方法, 基站在收到 UE的 RRC重建立消息后, 根据 RRC重 建信息中的 shortMAC-I进行终端的识别,避免发生 RLF的小区的混淆。在此 基础上可以对具体的切换参数进行优化, 减少网络资源的浪费, 提高网络的 性能, 从而实现网络的自优化功能。
利用所述第一种方法和第二种方法识别确定终端后, 再根据该 UE上一 次的切换信息, 来判决属于那种切换场景, 是该 UE切换过晚, 或者是 UE 切换过早, 或者是 UE切换选择了错误小区, 并将判断结果通知对应的基站。 被通知的对应基站, 根据对应小区间的切换场景的判决, 自动进行切换参数 的优化, 提高切换的性能。 基于上述识别终端的方法, 本发明进一步还提供识别终端的系统, 所述 系统包括终端、 源基站和一个或多个目标基站, 其中:
终端设置成在无线链路失败后, 向通过小区选择程序选择出的源基站发 送无线资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发 生无线链路失败小区的无线网络临时标识 C-RNTI、短的媒体接入控制完整性 验证值( shortMAC-I )和发生无线链路失败小区的物理地址 PCI;
源基站是指接收到无线资源控制重建立消息的基站, 其设置成在接收到 无线资源控制重建立消息后, 根据所述无线资源控制重建立消息中发生无线 链路失败小区的物理地址 PCI确定出需发送无线链路失败信息至的所有目标 基站, 向每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息 中包括: 无线链路失败发生的小区的物理地址 PCI、 无线资源控制重建尝试 小区的物理地址 PCI或全球小区标识 ECGI、终端在发生无线链路失败小区内 的无线网络临时标识 C-RNTI;
目标基站是指其管辖的小区发生了无线链路失败的基站, 其设置成接收 所述无线链路失败信息, 根据所述无线链路失败发生的小区的物理地址 PCI 来确定小区, 在每一所确定的小区内判断所接收的终端在发生无线链路失败 小区内的无线网络临时标识 C-RNTI,是否属于该小区内已存在的无线网络临 时标识 C-RNTI, 若是, 则判定该终端是所述目标基站下该无线链路失败发生 的小区的终端, 否则判定不是该小区的终端。
为了更准确来识别终端, 本发明进一步还提供另一种识别终端的系统, 所述系统包括终端、 源基站和一个或多个目标基站, 其中:
终端设置成在无线链路失败后, 向通过小区选择程序选择出的源基站发 送无线资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发 生无线链路失败小区的无线网络临时标识 C-RNTI、短的媒体接入控制完整性 验证值( shortMAC-I )和发生无线链路失败小区的物理地址 PCI;
源基站是指接收到无线资源控制重建立消息的基站, 设置成接收无线资 源控制重建立消息, 根据所述无线资源控制重建立消息中发生无线链路失败 小区的物理地址 PCI确定出需发送无线链路失败信息至的所有目标基站, 向 每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息中包括: 无线链路失败发生的小区的物理地址 PCI、 无线资源控制重建尝试小区的全 球小区标识 ECGI、 终端在发生无线链路失败小区内的无线网络临时标识 C-RNTI; 短的媒体接入控制完整性验证值(shortMAC-I ) ;
目标基站是指其管辖的小区发生了无线链路失败的基站, 设置成接收所 述无线链路失败信息后,在根据所述无线链路失败发生的小区的物理地址 PCI 确定的小区内, 根据所述无线链路失败发生的小区的物理地址 PCI、 无线资 源控制重建尝试小区的全球小区标识 ECGI、终端在发生无线链路失败小区内 的无线网络临时标识计算得到一个短的媒体接入控制完整' 1·生验证值 ( shortMAC-I ) 的计算值, 若该计算值与所接收的短的媒体接入控制完整性 验证值(shortMAC-I )—致, 则判定该终端是所述目标基站下该无线链路失 败发生的小区的终端, 否则判定不是该小区的终端。
通过上述识别终端的方法及系统, 基站可以识别出发生 RLF的终端, 并 进一步唯一确定发生 RLF的小区,根据 RLF相关信息, 目标基站可以判决出 是何种切换场景, 在此基础上网络可以实现对具体的切换参数进行优化, 实 现网络的自优化功能, 提高网络性能。 下面结合 4个具体实施例再进一步详 细说明本发明的识别终端的过程。
实施例一: 切换过晚的判决时的终端的识别
结合图 1和图 4, 具体实施例一描述如下:
101、UE在基站 B所辖的小区 Cell b中处于连接态,由于 RRC重配失败、 切换失败或其它原因导致 UE在小区 Cell b中发生了无线链路失败 RLF。
102、 UE在小区 Cell b中发生了无线链路失败 RLF后, 通过小区选择过 程选择了在基站 A所辖的小区 Cell a中进行 RRC重建立, UE给基站 A发送 RRC重建立请求消息, 如图 1所示。
103、 基站 A收到 UE的 RRC重建立请求消息, 根据其中的无线链路失 败 RLF发生小区 Cell b的 PCI信息,索引到发送 RLF信息的目标基站 eNB B , 并将 RLF信息发送至目标基站 eNB B。 如图 4所示, eNB A发送至目标基站 eNB B的 RLF信息中,除了现有的 RLF发生的小区 Cell b的物理地址 PCI信 息、 RRC 重建尝试的小区的全球小区标识 (ECGI, Evolved Cell Global Identifier )信息、 UE在 RLF发生小区 Cell b里的 C-RNTI信息外,还含有 UE 的 RRC重建立请求消息的 shortMAC-I信息。如果 eNB A根据 RLF发生小区 Cell b的 PCI信息索引到多个目标基站, 则 eNB A向所有的目标基站都发送 所述 RLF信息 , 例如 eNB H也是目标基站。
104、 eNB B收到 eNB A的 RLF信息, 进行终端的识别 , 以确认这个发 生 RLF的 UE是否是本基站所辖的小区 Cell b中的 UE。识别时, eNB B根据 收到的 RLF信息的 PCI信息,确定小区 Cell b,再根据 C-RNTI和 shortMAC-I 来识别终端。
若在小区 Cell b中存在已分配的 C-RNTI值, 则再进行 shortMAC-I的验 证; 否则, 即小区里没有已分配的 C-RNTI值与之对应, 说明终端不是本基 站所辖小区 Cell b的终端。 每个小区有一定数目的 C-RNTI, 给每个连接态的 UE分一个, UE的无线链路控制 RRC释放后, 则将其 C-RNTI收回。 eNB B 根据 C-RNTI确定 key和完整性保护算法, 输入是 RLF信息中的 PCI、 ECGI 和 C-RNTI, 进行计算得到 shortMAC-I; 如果计算得到的 shortMAC-I与 RLF 信息中的 shortMAC-I值相同,就判定该终端是本基站所辖小区 Cell b的终端。 如果 eNB B根据收到的 RLF信息的 PCI信息, 确定了多个小区, 则在每个小 区都进行终端的识别。
4叚定另一基站 eNB H也收到 eNB A的 RLF信息, 也根据 C-RNTI和 shortMAC-I进行终端的识别 , 与 eNB B的识别方式一样。
105、 eNB B通过 C-RNTI和 shortMAC-I, 判定该终端是本基站所辖小区
Cell b的终端, 则说明该终端在本基站的小区 Cell b中发生了无线链路失败 RLF, 并选择了在 eNB A所辖的小区 Cell a中进行 RRC重建立。 若该终端不 是刚刚从别的小区切入 cell b的, 则说明 UE从小区 Cell b到小区 Cell a的切 换过晚。
106、 eNB B可以根据从小区 Cell b到小区 Cell a的切换过晚的场景, 来 优化对应的切换参数, 提高网络性能。
实施例二: 切换过早的判决时的终端的识别
结合图 2、 图 4和图 5, 具体实施例二描述如下: 201、 UE从 eNB A所辖的小区 Cell a中切换到 eNB B所辖的小区 Cell b 不久, 由于 RRC重配失败、 切换失败或其它原因导致 UE在小区 Cell b中发 生了无线链路失败 RLF。
其中, eNB B在 UE成功切换到小区 Cell b后,对该 UE的上下文 context 设置一个定时器, 用于进行切换过早和错误小区的判断, eNB B在定时器时 间内保留这个 UE的上下文(context ) , 在下面的步骤 205及 305里, 终端匹 配了之后 , 如果此 context对应的定时器未超时 , 说明 UE刚刚切换到 Cell B 不久。 202、 UE在小区 Cell b中发生了无线链路失败 RLF后, 通过小区选择 过程选择了在 eNB A所辖的小区 Cell a中进行无线资源控制 RRC重建立, UE给 eNB A发送 RRC重建立请求消息, 如图 2所示。
203、 eNB A收到 UE的 RRC重建立请求消息, 根据其中的 RLF发生小 区 Cell b的 PCI信息, 索引到发送 RLF信息的目标基站 eNB B, 并将 RLF信 息发送至目标基站 eNB B。如图 4所示, eNB A发送至目标基站 eNB B的 RLF 信息中除了现有的 RLF发生的小区 Cell b的物理地址 PCI信息、 RRC重建尝 试的小区的全球 d、区标识( ECGI , Evolved Cell Global Identifier )信息、 UE 在 RLF发生小区 Cell b里的 C-RNTI信息外, 还含有 UE的 RRC重建立请求 消息的 shortMAC-I信息。 如果 eNB A根据 RLF发生小区 Cell b的 PCI信息 索引到多个目标基站, 则 eNB A向所有的目标基站都发送 RLF信息, 例如 eNB H也是目标基站。
204、 eNB B收到 eNB A的 RLF信息, 进行终端的识别 , 以确认这个发 生 RLF的终端 UE是否是本基站所辖的小区 Cell b中的 UE。 eNB B根据收到 的 RLF信息的 PCI信息, 确定小区 Cell b, 再根据 C-RNTI和 shortMAC-I来 识别终端。若在小区 Cell b中存在已分配的 C-RNTI值,则再进行 shortMAC-I 的验证, 若验证通过, 则说明该终端 UE是本基站所辖小区 Cell b的终端, 否 则说明终端不是本基站所辖小区 Cell b的终端。 eNB B根据 C-RNTI确定 key 和完整性保护算法, 输入是 RLF信息中的 PCI、 ECGI和 C-RNTI, 进行计算 得到 shortMAC-I; 如果计算得到的 shortMAC-I与 RLF信息中的 shortMAC-I 值相同, 就判定该终端是本基站所辖小区 Cell b的终端。 如果 eNB B根据收 到的 RLF信息的 PCI信息, 确定了多个小区, 则在每个小区都进行终端的识 别。
若另一基站 eNB H也收到 eNB A的 RLF信息, 也根据 C-RNTI和 shortMAC-I进行终端的识别 , 与 eNB B的识别方式一样。
205、 eNB B通过 C-RNTI和 shortMAC-I, 判定该终端是本基站所辖小区 Cell b的终端, 则说明该终端在本基站的小区 Cell b中发生了无线链路失败
RLF, 并选择了在 eNB A所辖的小区 Cell a中进行 RRC重建立。 若该终端的 context定时器未超时, 则说明 UE从小区 Cell a到小区 Cell b的切换过早。
206、 eNB B发送切换过早指示信息给 eNB A, 指示发生了一次从小区 Cell a到小区 Cell b的过早的切换行为, 如图 5所示。
207、 eNB A根据从小区 Cell a到小区 Cell b的切换过早的场景, 来优化 对应的切换参数, 提高网络性能。
实施例三: 切换错误小区的判决时的终端的识别:
结合图 3、 图 4和图 6, 具体实施例三描述如下:
301、 UE从 eNB C所辖的小区 Cell c中切换到 eNB B所辖的小区 Cell b 之后不久, 由于 RRC重配失败、 切换失败或其它原因导致 UE在小区 Cell b 中发生了无线链路失败 RLF。
其中, eNB B在 UE成功切换到小区 Cell b后,对该 UE的上下文 context 设置一个定时器。
302、 UE在小区 Cell b中发生了无线链路失败 RLF后, 通过小区选择过 程选择了在 eNB A所辖的小区 Cell a中进行 RRC重建立, UE给 eNB A发送 RRC重建立请求消息。 如图 3所示。
303、 eNB A收到 UE的 RRC重建立请求消息, 根据其中的 RLF发生小 区 Cell b的 PCI信息索引到发送 RLF信息的目标基站 eNB B,并将 RLF信息 发送至 eNB B。 如图 4所示 , eNB A发送至目标基站 eNB B的 RLF信息中除 了现有的 RLF发生的小区 Cell b的物理地址 PCI信息, RRC重建尝试的小区 的全球小区标识(ECGI, Evolved Cell Global Identifier )信息, UE在 RLF 发生小区 Cell b里的 C-RNTI信息外, 还含有 UE的 RRC重建立请求消息的 shortMAC-I信息。如果 eNB A根据 RLF发生小区 Cell b的 PCI信息索引到多 个目标基站, 则 eNB A向所有的目标基站都发送 RLF信息, 例如 eNB H也 是目标基站。
304、 eNB B收到 eNB A的 RLF信息, 进行终端的识别 , 以确认这个发 生 RLF的 UE是否是本基站所辖的小区 Cell b中的 UE。 eNB B根据收到的 RLF信息的 PCI信息, 确定小区 Cell b, 再根据 C-RNTI和 shortMAC-I来识 别终端。 若在小区 Cell b中存在已分配的 C-RNTI值, 则再进行 shortMAC-I 的验证,否则说明终端不是本基站所辖小区 Cell b的终端。 eNB B根据 CRNTI 确定 key和完整性保护算法, 输入是 RLF信息中的 PCI、 ECGI和 CRNTI, 进行计算得到 shortMAC-I; 如果计算得到的 shortMAC-I与 RLF信息中的 shortMAC-I值相同,就判定该终端是本基站所辖小区 Cell b的终端。如果 eNB B根据收到的 RLF信息的 PCI信息, 确定了多个小区, 则在每个小区都进行 终端的识别。
若另一基站 eNB H也收到了 eNB A的 RLF信息, 也根据 C-RNTI和 shortMAC-I进行终端的识别 , 与 eNB B的识别方式一样。
305、 eNB B通过 C-RNTI和 shortMAC-I, 判定该终端是本基站所辖小区
Cell b的终端, 则说明该终端在本基站的小区 Cell b中发生了无线链路失败 RLF, 并选择了在 eNB A所辖的小区 Cell a中进行 RRC重建立。 若该终端的 context定时器未超时,则说明 UE从小区 Cell c到小区 Cell b的切换选择了错 误小区, 正确的目标小区是 eNB A的小区 Cell a。
306、 eNB B发送切换错误小区指示信息给 eNB C, 指示发生了一次从小 区 Cell c到小区 Cell b的选择了错误小区的切换行为, 如图 6所示。
307、 eNB C根据从小区 Cell c到小区 Cell b的选择了错误小区的场景, 来优化对应的切换参数, 提高网络性能。
实施例四: 利用 PCI和 C-RNTI进行终端的识别
401、UE在 eNB B所辖的小区 Cell b中处于连接态,由于 RRC重配失败、 切换失败或其它原因导致 UE在小区 Cell b中发生了无线链路失败 RLF。
402、 UE在小区 Cell b中发生了无线链路失败 RLF后, 通过小区选择过 程选择了在 eNB A所辖的小区 Cell a中进行 RRC重建立, UE给 eNB A发送 RRC重建立请求消息。
403、 eNB A收到 UE的 RRC重建立请求消息, 根据其中的 RLF发生小 区 Cell b的 PCI信息, 索引到发送 RLF信息的目标基站 eNB B, 并将 RLF信 息发送至该目标基站 eNB B。 如图 4所示, 如果 eNB A根据 RLF发生小区 Cell b的 PCI信息索引到多个目标基站, 则 eNB A向所有的目标基站都发送 RLF信息。 例如基站 eNB H也是目标基站 , 则 eNB A也向 eNB H发送 RLF 信息。 RLF信息包括: RLF发生的小区的物理地址 PCI, RRC重建尝试的小 区的 PCI或者演进的全球小区标识( ECGI, Evolved Cell Global Identifier ) , UE在 RLF发生小区里的 C-RNTI。
404、 eNB B收到 eNB A的 RLF信息, 进行终端的识别 , 以确认这个发 生 RLF的 UE是否是本基站所辖的小区 Cell b中的 UE。 eNB B根据收到的 RLF信息的 PCI信息, 确定小区 Cell b, 再根据 C-RNTI来识别终端, 若该 C-RNTI值是在小区 Cell b中存在的已分配的 C-RNTI值, 则说明终端是本基 站所辖小区 Cell b的终端, 否则, 则判断为不属于本小区。 eNB H也是进行 同样的终端识别。
405、 eNB B收到 eNB A的 RLF信息, 若进行终端识别确认该终端是本 基站所辖小区 Cell b的终端,则可以获知该终端 UE在本基站的 Cell b中发生 了 RLF, 然后在 eNB A中的小区 Cell a中进行 RRC重建尝试。 再根据该 UE 上一次的切换信息, 来判决属于那种切换场景, 是该 UE从 Cell b到 Cell a的 切换过晚, 或者是 UE从 Cell a到 Cell b的切换过早, 或者是 UE从其它小区 到 Cell b的切换选择了错误小区, 如从 eNB C的 Cell c到 Cell b的切换选择 了错误小区。 并将判断结果通知对应的基站, 切换过晚则通知基站 B, 切换 过早则通知基站 A, 切换选择错误则通知基站 C, 如图 5和图 6所示。
406、 被通知的 eNB A、 eNB B和 /或 eNB C才艮据对应小区间的切换场景 的判决, 自动进行切换参数的优化, 提高切换的性能。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。 工业实用性
与现有技术相比, 本发明可准确、 唯一地识别出终端, 从而可唯一确定 发生 RLF的小区, 这就解决了 eNB A在发送 RLF的信息时标识了错误的发 生 RLF的小区以及选择了错误发送 RLF信息的目标基站的问题。 进一步地, 在识别出终端之后, 即可根据切换场景判决方法, 判断出切换场景后通知相 应基站进行网络自优化。

Claims

权 利 要 求 书
1、 一种用于识别终端的方法, 其包括如下步骤:
步骤 11 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败的小区的物理地址确定出需发送无线链路 失败信息的所有目标基站, 向所确定的每一目标基站发送所述无线链路失败 信息, 所述无线链路失败信息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小 区内的无线网络临时标识;
步骤 12: 目标基站接收到所述无线链路失败信息后, 根据所述发生无线 链路失败的小区的物理地址来确定该目标基站下发生无线链路失败的小区, 在每一所确定的小区内判断所接收的终端在发生无线链路失败小区内的无线 网络临时标识是否属于该小区内已存在的无线网络临时标识, 若属于, 则判 定所述终端是该小区的终端, 若不属于则判定所述终端不是该小区的终端; 其中, 所述源基站是指收到无线资源控制重建立消息的基站, 所述目标 基站是指发生无线链路失败的小区所属的基站。
2、 如权利要求 1所述的用于识别终端的方法, 其在所述步骤 11之前还 包括: 发生无线链路失败的终端向通过小区选择程序选择出的源基站发送无 线资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发生无 线链路失败的小区的无线网络临时标识、 短的媒体接入控制完整性验证值和 发生无线链路失败 d、区的物理地址。
3、 如权利要求 1或 2所述的用于识别终端的方法, 其还包括:
步骤 13 : 目标基站确定终端属于该目标基站下发生无线链路失败的小 区的终端之后, 根据该终端上一次的切换信息, 判决所述上一次的切换属于 哪种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站;
步骤 14: 接收到判决结果通知的基站, 根据与所述上一次切换对应的小 区间的切换场景的判决自动进行切换参数的优化。
4、一种支持识别终端的基站, 所述基站设置成作为源基站从终端接收无 线资源控制重建立消息, 根据所述无线资源控制重建立消息中发生无线链路 失败的小区的物理地址确定出需发送无线链路失败信息的所有目标基站, 向 所确定的每一目标基站发送所述无线链路失败信息, 所述无线链路失败信息 中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区 的全球小区标识、 终端在发生无线链路失败的小区内的无线网络临时标识; 所述基站还设置成在其所管辖的小区发生无线链路失败时, 作为目标基 站接收无线链路失败信息, 根据所述无线链路失败信息中的发生无线链路失 败的小区的物理地址来确定发生无线链路失败的小区, 在每一所确定的小区 内判断所接收的终端在发生无线链路失败的小区内的无线网络临时标识是否 属于该小区内已存在的无线网络临时标识, 若属于, 则判定所述终端是该小 区的终端, 若不属于则判定所述终端不是该小区的终端。
5、 如权利要求 4所述的基站, 其中,
所述基站还设置成在作为目标基站确定所述终端属于该目标基站下发生 了无线链路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所 述上一次的切换属于哪种小区间的切换场景, 并将判决结果通知与上一次切 换对应的基站, 由接收到判决结果通知的基站, 根据与所述上一次切换对应 的小区间的切换场景的判决自动进行切换参数的优化。
6、 一种用于识别终端的系统, 所述系统包括终端和如权利要求 4或 5所 述的基站, 其中, 所述基站为多个, 包括源基站和一个或多个目标基站, 所 述终端设置成:
在发生无线链路失败后, 向通过小区选择程序选择出的源基站发送无线 资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发生无线 链路失败的小区的无线网络临时标识、 短的媒体接入控制完整性验证值和发 生无线链路失败的小区的物理地址。
7、 一种用于识别终端的方法, 其包括如下步骤:
步骤 21 : 收到无线资源控制重建立消息的源基站, 根据所述无线资源控 制重建立消息中发生无线链路失败的小区的物理地址确定出需发送无线链路 失败信息的所有目标基站, 向所确定的每一目标基站发送所述无线链路失败 信息, 所述无线链路失败信息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小 区内的无线网络临时标识、 短的媒体接入控制完整性验证值;
步骤 22: 目标基站接收所述无线链路失败信息后, 根据所述发生无线链 路失败的小区的物理地址来确定所述目标基站下的发生无线链路失败的小 区, 在每一所确定的小区内, 根据所述发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小 区内的无线网络临时标识计算得到一个短的媒体接入控制完整性验证值的计 算值, 若所得到的计算值与所接收的短的媒体接入控制完整性验证值一致, 则判定所述终端是该小区的终端, 若不一致则判定所述终端不是该小区的终 端;
其中, 所述源基站是指收到无线资源控制重建立消息的基站, 所述目标 基站是指发生无线链路失败的小区所属的基站。
8、如权利要求 7所述的用于识别终端的方法, 其在计算得到一个短的媒 体接入控制完整性验证值的计算值的步骤之前还包括: 在每一所确定的小区 内判断所接收的终端在发生无线链路失败的小区内的无线网络临时标识是否 属于该小区内已存在的无线网络临时标识, 若属于, 则执行所述计算得到一 个短的媒体接入控制完整性验证值的计算值的步骤, 若不属于则判定所述终 端不是该小区的终端。
9、 如权利要求 7所述的用于识别终端的方法, 其
在所述步骤 21之前还包括:
发生无线链路失败的终端向通过小区选择程序选择出的源基站发送无线 资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发生无线 链路失败的小区的无线网络临时标识、 短的媒体接入控制完整性验证值和发 生无线链路失败的小区的物理地址。
10、 如权利要求 7、 8或 9所述的用于识别终端的方法, 其还包括: 步骤 23 : 目标基站确定终端属于该目标基站下发生无线链路失败的小区 的终端之后, 根据该终端上一次的切换信息, 判决所述上一次的切换属于哪 种小区间的切换场景, 并将判决结果通知与上一次切换对应的基站; 步骤 24: 接收到判决结果通知的基站, 根据与所述上一次切换对应的小区 间的切换场景的判决自动进行切换参数的优化。
11、 如权利要求 7、 8或 9所述的用于识别终端的方法, 其中, 计算得到一个短的媒体接入控制完整性验证值的计算值的步骤中,所述目 标基站是根据所确定的小区内的无线网络临时标识确定密钥和完整性保护算 法, 输入所述无线链路失败信息中的发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小区的全球小区标识、 终端在发生无线链路失败的小 区内的无线网络临时标识计算得到一个短的媒体接入控制完整性验证值的计 算值。
12、 一种支持识别终端的基站, 所述基站设置成在作为源基站接收到无 线资源控制重建立消息后 , 根据所述无线资源控制重建立消息中发生无线链 路失败的小区的物理地址确定出需发送无线链路失败信息的所有目标基站, 向所确定的每一目标基站发送所述无线链路失败信息, 所述无线链路失败信 息中包括: 发生无线链路失败的小区的物理地址、 无线资源控制重建尝试小 区的全球小区标识、终端在发生无线链路失败的小区内的无线网络临时标识、 短的媒体接入控制完整性验证值;
所述基站还设置成在其管辖的小区发生无线链路失败时, 作为目标基站 接收无线链路失败信息, 根据所述无线链路失败信息中的发生无线链路失败 的小区的物理地址来确定该基站下发生无线链路失败的小区, 在每一所确定 的小区内, 根据所述发生无线链路失败的小区的物理地址、 无线资源控制重 建尝试小区的全球小区标识、 终端在发生无线链路失败的小区内的无线网络 临时标识计算得到一个短的媒体接入控制完整性验证值的计算值, 若所得到 的计算值与所接收的短的媒体接入控制完整性验证值一致, 则判定所述终端 是该小区的终端, 若不一致则判定所述终端不是该小区的终端。
13、如权利要求 12所述的基站, 所述基站还设置成作为目标基站在每一 所确定的小区内, 判断所接收的终端在发生无线链路失败的小区内的无线网 络临时标识是否属于该小区内已存在的无线网络临时标识, 若属于, 则计算 得到一个短的媒体接入控制完整性验证值的计算值, 若不属于则判定所述终 端不是该小区的终端。
14、 如权利要求 12或 13所述的基站, 所述基站还设置成作为目标基站 在确定所述终端属于该目标基站下发生了无线链路失败的小区的终端之后, 根据该终端上一次的切换信息, 判决所述上一次的切换属于哪种小区间的切 换场景, 并将判决结果通知与上一次切换对应的基站, 由接收到判决结果通 知的基站, 根据与所述上一次的切换对应的小区间的切换场景的判决自动进 行切换参数的优化。
15、 一种用于识别终端的系统, 所述系统包括终端和如权利要求 12-14 中任一项所述的基站, 其中, 所述基站为多个, 包括源基站和一个或多个目 标基站, 所述终端设置成:
在发生无线链路失败后, 向通过小区选择程序选择出的源基站发送无线 资源控制重建立消息, 该无线资源控制重建立消息中包括: 终端在发生无线 链路失败的小区的无线网络临时标识、 短的媒体接入控制完整性验证值和发 生无线链路失败的小区的物理地址。
PCT/CN2010/070548 2009-09-14 2010-02-05 一种用于识别终端的方法及系统 WO2011029292A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/257,816 US8792891B2 (en) 2009-09-14 2010-02-05 Method and system for identifying a terminal
BR112012005655-7A BR112012005655B1 (pt) 2009-09-14 2010-02-05 Método e sistema para identificar um terminal
MX2012003073A MX2012003073A (es) 2009-09-14 2010-02-05 Metodo y sistema para identificar una terminal.
IN2276DEN2012 IN2012DN02276A (zh) 2009-09-14 2010-02-05
JP2012528215A JP5303681B2 (ja) 2009-09-14 2010-02-05 端末を識別するための方法及びシステム
KR1020127009285A KR101366232B1 (ko) 2009-09-14 2010-02-05 단말을 식별하는 방법 및 시스템
EP10814894.1A EP2466936B1 (en) 2009-09-14 2010-02-05 Method and system for identifying a terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910176426.1 2009-09-14
CN200910176426.1A CN102026165B (zh) 2009-09-14 2009-09-14 一种用于识别终端的方法及系统

Publications (1)

Publication Number Publication Date
WO2011029292A1 true WO2011029292A1 (zh) 2011-03-17

Family

ID=43731956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070548 WO2011029292A1 (zh) 2009-09-14 2010-02-05 一种用于识别终端的方法及系统

Country Status (9)

Country Link
US (1) US8792891B2 (zh)
EP (1) EP2466936B1 (zh)
JP (1) JP5303681B2 (zh)
KR (1) KR101366232B1 (zh)
CN (1) CN102026165B (zh)
BR (1) BR112012005655B1 (zh)
IN (1) IN2012DN02276A (zh)
MX (1) MX2012003073A (zh)
WO (1) WO2011029292A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110727A (ja) * 2011-10-27 2013-06-06 Sumitomo Electric Ind Ltd 無線通信システム、無線端末装置、通信制御方法および通信制御プログラム
JP2013118588A (ja) * 2011-12-05 2013-06-13 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム
WO2014132560A1 (ja) * 2013-02-28 2014-09-04 日本電気株式会社 無線通信システム、無線局、無線端末、通信制御方法、及び非一時的なコンピュータ可読媒体
JP2015505227A (ja) * 2012-01-27 2015-02-16 華為技術有限公司Huawei Technologies Co.,Ltd. セルラ無線通信システム内の移動局を識別する方法
JP2016517209A (ja) * 2013-03-13 2016-06-09 クアルコム,インコーポレイテッド ワイヤレス通信におけるセル識別衝突検出

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223665A (zh) * 2010-04-19 2011-10-19 中兴通讯股份有限公司 无线链路失败rlf信息的处理方法及系统
EP3358792A1 (en) 2011-11-25 2018-08-08 Bandwidthx Inc. System for providing intelligent network access selection for a mobile wireless device
EP2882224A4 (en) * 2012-07-31 2016-04-13 Fujitsu Ltd METHOD FOR CONTEXT IDENTIFICATION AT A USER DEVICE, USER DEVICE AND BASE STATION
JP6034491B2 (ja) 2012-08-07 2016-11-30 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. ハンドオーバー処理方法および基地局
US9143963B2 (en) * 2012-08-10 2015-09-22 Nokia Solutions And Networks Oy Correlating radio link failure and minimization of drive test reports
GB2506917B (en) * 2012-10-12 2015-06-03 Samsung Electronics Co Ltd Re-establishment of a connection with a mobile terminal
CN114449603B (zh) 2012-12-24 2024-06-07 北京三星通信技术研究有限公司 无线通信系统中的基站及由其执行的方法
CN103945470A (zh) * 2013-01-18 2014-07-23 华为技术有限公司 切换方法、源通信节点和目标通信节点
CN104053190B (zh) * 2013-03-11 2018-05-11 普天信息技术研究院有限公司 一种pci冲突或混淆情况下用户设备迁移的方法
US9826464B2 (en) * 2013-03-26 2017-11-21 Bandwidthx Inc. Systems and methods for establishing wireless connections based on access conditions
US9918315B2 (en) * 2013-08-16 2018-03-13 Sony Corporation Telecommunications apparatus and methods
JP2015142363A (ja) * 2014-01-30 2015-08-03 株式会社Nttドコモ 移動局、再接続要求方法、基地局及び再接続要求処理方法
US9980159B2 (en) * 2014-09-26 2018-05-22 Mediatek Inc. RRC re-establishment on secondary eNodeB for dual connectivity
US11089519B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated Migration of local gateway function in cellular networks
US10462837B2 (en) 2016-11-04 2019-10-29 Qualcomm Incorporated Method, apparatus, and system for reestablishing radio communication links due to radio link failure
US10856151B2 (en) 2016-12-27 2020-12-01 Bandwidthx Inc. Radio management based on user intervention
WO2018125682A1 (en) 2016-12-27 2018-07-05 Bandwidthx Inc. Auto-discovery of amenities
CN108633003B (zh) * 2017-03-16 2021-10-01 华为技术有限公司 一种资源分配方法和装置以及终端设备
EP3791682B1 (en) * 2018-05-09 2023-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Cell id selection in multi cell id scenarios
CN112770409B (zh) * 2019-11-01 2023-06-30 维沃移动通信有限公司 无线链路失败处理方法及装置
CN112839329B (zh) * 2019-11-06 2022-07-22 中国移动通信有限公司研究院 一种验证方法、装置、设备及计算机可读存储介质
CN114040387B (zh) * 2020-07-21 2024-06-04 中国移动通信有限公司研究院 一种攻击消息的确定方法、装置及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207905A (zh) * 2006-12-21 2008-06-25 中兴通讯股份有限公司 切换优化方法及装置
WO2008114183A1 (en) * 2007-03-21 2008-09-25 Nokia Corporation Method, apparatus and computer program product for handover failure recovery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130719B2 (en) * 2005-12-30 2012-03-06 Telefonaktiebolaget Lm Ericsson (Publ) PDSN-based session recovery from RBS/AN failure in a distributed architecture network
WO2008087524A2 (en) * 2007-01-15 2008-07-24 Nokia Corporation Method and apparatus for providing context recovery
WO2008151658A1 (en) 2007-06-13 2008-12-18 Telefonaktiebolaget Lm Ericsson (Publ) Technique for handling radio link failure in a communication network
EP2028890B1 (en) 2007-08-12 2019-01-02 LG Electronics Inc. Handover method with link failure recovery, wireless device and base station for implementing such method
US9544828B2 (en) 2007-12-05 2017-01-10 Qualcomm Incorporated Handover failure procedures in communication systems
US9215731B2 (en) * 2007-12-19 2015-12-15 Qualcomm Incorporated Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network
US8880078B2 (en) * 2009-06-26 2014-11-04 Lg Electronics Inc. Method of logging measurement result at handover failure in wireless communication system
US9144100B2 (en) * 2009-08-17 2015-09-22 Google Technology Holdings LLC Method and apparatus for radio link failure recovery
WO2011139187A1 (en) * 2010-05-03 2011-11-10 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for communication channel re-establishment
EP2636272B1 (en) * 2010-11-04 2018-08-29 LG Electronics Inc. Method and apparatus for reconfiguring connection to base station at relay node in a wireless communication system
JP2012114705A (ja) * 2010-11-25 2012-06-14 Panasonic Corp 通信端末装置及びセルとの再接続方法
KR20140001226A (ko) * 2011-01-06 2014-01-06 엘지전자 주식회사 무선 통신 시스템에서 연결 실패를 회복하는 방법 및 이를 위한 장치
WO2012138079A2 (ko) * 2011-04-03 2012-10-11 엘지전자 주식회사 신호 전송 여부 결정 방법
WO2012160246A1 (en) * 2011-05-20 2012-11-29 Nokia Corporation Pre-configured redirection information
US9226213B2 (en) * 2012-02-23 2015-12-29 Qualcomm Incorporated Enhanced slow associated control channel (ESACCH)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207905A (zh) * 2006-12-21 2008-06-25 中兴通讯股份有限公司 切换优化方法及装置
WO2008114183A1 (en) * 2007-03-21 2008-09-25 Nokia Corporation Method, apparatus and computer program product for handover failure recovery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.300 V9.0.0: Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 9). 3RD GENERATION PARTNERSHIP PROJECT (3GPP).", 3GPP TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK, 18 June 2009 (2009-06-18), pages 57 - 58, XP050377586 *
FUJITSU: "Correction for short MAC-I generation", 3GPP TSG-WG2 MEETING #65, R2-091247, 3 February 2009 (2009-02-03), pages 1 - 2, XP050323093, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_65/Docs/> *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110727A (ja) * 2011-10-27 2013-06-06 Sumitomo Electric Ind Ltd 無線通信システム、無線端末装置、通信制御方法および通信制御プログラム
JP2013118588A (ja) * 2011-12-05 2013-06-13 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム
US10057819B2 (en) 2012-01-27 2018-08-21 Huawei Technologies Co., Ltd Identifying mobile station in a cellular wireless communication system
JP2015505227A (ja) * 2012-01-27 2015-02-16 華為技術有限公司Huawei Technologies Co.,Ltd. セルラ無線通信システム内の移動局を識別する方法
US9198093B2 (en) 2012-01-27 2015-11-24 Huawei Technologies Co., Ltd. Identifying mobile station in a cellular wireless communication system
CN110062431A (zh) * 2012-01-27 2019-07-26 华为技术有限公司 蜂窝无线通信系统的移动台识别方法
JP2020078093A (ja) * 2013-02-28 2020-05-21 日本電気株式会社 無線端末、第1の無線局、第2の無線局、及び制御方法
US10492244B2 (en) 2013-02-28 2019-11-26 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
JPWO2014132560A1 (ja) * 2013-02-28 2017-02-02 日本電気株式会社 無線通信システム、無線局、無線端末、通信制御方法、及びプログラム
KR101898948B1 (ko) 2013-02-28 2018-09-17 닛본 덴끼 가부시끼가이샤 무선 통신 시스템, 무선국, 무선 단말, 통신 제어 방법, 및 비일시적인 컴퓨터 가독 매체
JP2019022241A (ja) * 2013-02-28 2019-02-07 日本電気株式会社 無線通信システム、第1の無線局、第2の無線局、及び通信制御方法
US10206242B2 (en) 2013-02-28 2019-02-12 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
US11812489B2 (en) 2013-02-28 2023-11-07 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
US11723102B2 (en) 2013-02-28 2023-08-08 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
US10555361B2 (en) 2013-02-28 2020-02-04 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
WO2014132560A1 (ja) * 2013-02-28 2014-09-04 日本電気株式会社 無線通信システム、無線局、無線端末、通信制御方法、及び非一時的なコンピュータ可読媒体
US11102837B2 (en) 2013-02-28 2021-08-24 Nec Corporation Radio communication system, radio station, radio terminal, communication control method, and non-transitory computer readable medium
JP7001113B2 (ja) 2013-02-28 2022-01-19 日本電気株式会社 無線端末、第1の無線局、第2の無線局、及び制御方法
US9686714B2 (en) 2013-03-13 2017-06-20 Qualcomm Incorporated Cell identification collision detection in wireless communications
JP2016517209A (ja) * 2013-03-13 2016-06-09 クアルコム,インコーポレイテッド ワイヤレス通信におけるセル識別衝突検出

Also Published As

Publication number Publication date
EP2466936B1 (en) 2018-11-14
CN102026165A (zh) 2011-04-20
US8792891B2 (en) 2014-07-29
CN102026165B (zh) 2014-11-05
EP2466936A1 (en) 2012-06-20
JP2013504902A (ja) 2013-02-07
BR112012005655B1 (pt) 2021-04-06
MX2012003073A (es) 2012-04-02
JP5303681B2 (ja) 2013-10-02
KR101366232B1 (ko) 2014-03-12
EP2466936A4 (en) 2017-11-22
BR112012005655A2 (pt) 2017-05-30
KR20120053075A (ko) 2012-05-24
US20120157156A1 (en) 2012-06-21
IN2012DN02276A (zh) 2015-08-21

Similar Documents

Publication Publication Date Title
WO2011029292A1 (zh) 一种用于识别终端的方法及系统
JP5709989B2 (ja) ハンドオーバーシナリオ判定パラメータの報告方法、ユーザ装置及びハンドオーバーシナリオ判定基地局
KR101265835B1 (ko) 전환 실패 지시 정보의 통지 방법 및 장치
KR101790588B1 (ko) 무선링크 실패 리포트 처리 방법 및 모바일 파라미터 조정 방법
CN101959263B (zh) 无线链路失败信息的发送方法与装置
US8229120B2 (en) Mobile communication method
TWI569664B (zh) 網路節點及其中用於處置無線電通信網路中之通信之方法
KR101545169B1 (ko) 핸드오버 실패의 처리방법 및 사용자 장치
CN102083115B (zh) 一种长期演进系统中rlf指示消息的处理方法和设备
CN102598778B (zh) 向家庭基站过晚切换原因的确定方法及系统
WO2012013107A1 (zh) 切换场景判决过程中确定目标网元的方法及系统
WO2015006974A1 (zh) 一种控制网络切换的方法、设备及系统
WO2017088461A1 (zh) 一种网络覆盖空洞掉话的处理方法、微基站及相关设备
JP6680921B2 (ja) パラメター構成方法及び基地局
WO2012034271A1 (zh) 获取无线网络控制器标识的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257816

Country of ref document: US

Ref document number: 2012528215

Country of ref document: JP

Ref document number: MX/A/2012/003073

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2276/DELNP/2012

Country of ref document: IN

Ref document number: 2010814894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127009285

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005655

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005655

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120314