WO2011028192A1 - Method and system for the complex recycling of hot emissions from engines - Google Patents

Method and system for the complex recycling of hot emissions from engines Download PDF

Info

Publication number
WO2011028192A1
WO2011028192A1 PCT/UA2009/000061 UA2009000061W WO2011028192A1 WO 2011028192 A1 WO2011028192 A1 WO 2011028192A1 UA 2009000061 W UA2009000061 W UA 2009000061W WO 2011028192 A1 WO2011028192 A1 WO 2011028192A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
steam
heat
liquid
engines
Prior art date
Application number
PCT/UA2009/000061
Other languages
French (fr)
Russian (ru)
Inventor
Дмытро БYЯДЖИ
Original Assignee
Buyadgie Dmytro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buyadgie Dmytro filed Critical Buyadgie Dmytro
Publication of WO2011028192A1 publication Critical patent/WO2011028192A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to a method and apparatus for producing mechanical work, electrical energy, producing heat and cold by utilizing the heat of combustion products in engines.
  • This invention can be used in various fields of technology where internal and external combustion engines are used, as well as jet, turboprop and turbofan engines.
  • the scope of the invention covers almost all transport devices, thermal and diesel generator, as well as cogeneration energy systems.
  • the problem that is solved by this invention is global in nature, therefore, these areas of application are not exhaustive.
  • Modern vehicles use a maximum of 40% of the calorific value of fuel for their direct functions. This leads not only to the loss of non-renewable carbohydrate raw materials, but also makes a significant contribution to the accelerated deterioration of the environmental situation on the planet. At the same time, the improvement of all elements and units has almost reached the limit, which requires a radical review of the basic principles of functioning of energy transport systems.
  • One of the promising directions of a significant reduction in fuel consumption while maintaining or even increasing engine power is the step-by-step utilization of energy emissions using power units, an air conditioner that uses heat, intercoolers to recover some of the energy spent on compression turbocharged air, etc. The proposed method allows you to additionally get 30-40% energy savings with the same fuel consumption.
  • the work of energy systems includes such processes:
  • thermal emissions generated by the operation of engines are not utilized. As a result of this, firstly, a large amount of thermal energy is lost, and secondly, the atmosphere is polluted.
  • the known device for the comprehensive utilization of thermal emissions of engines includes a generator, diesel, condensation and convection stages, pumps, oil cooler, oil pump, primary water pump, primary water cooler, storage tank, supercharger air cooler, chilled coolant tank, oil line, return and direct pipelines, contact chamber, condensate drain pipe, condensing heat exchanger, hot water heater heating, heating system, primary water pipeline.
  • the prototype and the claimed invention have such common features: - engine cooling circuit; - liquid pump;
  • the prototype device does not use the efficiency of heat of exhaust gases and does not produce cold due to the heat removed for air conditioning.
  • the basis of the invention is the task to create a method for the comprehensive utilization of thermal emissions of engines and a system for its implementation, in which by introducing new components and elements, as well as their other structural arrangement, to reduce energy consumption and increase the efficiency of heat of exhaust gases.
  • the problem is solved by two inventions, united by a single inventive concept, namely, the method of integrated utilization of thermal emissions of engines and a system for its implementation.
  • the problem is solved in a method for the comprehensive utilization of thermal emissions of engines by the fact that the liquid from the engine cooling shell is heated with heat from the engine cylinders, after which the heated liquid is evaporated using the heat of the exhaust gases, the steam obtained in this way is used to generate electricity, the exhaust steam coolant is condensed with high pressure refrigerant vapor, and the condensate formed is cooled with a high pressure liquid refrigerant and served engine cooling jacket.
  • the liquid high-pressure refrigerant after cooling the condensate is additionally heated with hot air after turbocharging.
  • the problem is solved in a system for the comprehensive utilization of thermal emissions of engines, including a cooling circuit interconnected by pipelines an engine, a liquid pump and a condenser, in that it further comprises a steam generator, a power generator, a steam engine, an air conditioning steam generator, an intercooler, a heat pump, a radiator, an ejector and an evaporator, the output of the engine cooling circuit being connected in series with a liquid pump, a steam generator, a steam engine and a steam generator of the air conditioner, which is connected to the ejector and the intercooler, the intercooler is connected to the power generator, the input of the engine cooling circuit and the heat pump, which th is connected to the ejector, evaporator and condenser, and the condenser is connected to the radiator and ejector.
  • FIG. 1 is a schematic diagram of a system for the comprehensive utilization of thermal emissions of engines
  • FIG. 2 is a schematic diagram of an automobile air conditioner
  • FIG. 3 is a block diagram of a power flow distribution system in a hybrid vehicle.
  • the system for the comprehensive utilization of thermal emissions of engines includes interconnected pipelines for the engine cooling circuit 1, a liquid pump 2, a steam generator 3, a power generator 4, a steam engine 5, an air conditioning steam generator 6, an intercooler 7, a heat pump 8, a condenser 9, a radiator 10, ejector 11, evaporator 12 and throttle 13.
  • the output of the cooling circuit of engine 1 is connected in series with a liquid pump 2, a steam generator 3, a steam engine 5 and an air conditioning steam generator b, which is connected to an ejector 11 and an intercooler 7, an intercooler 7 is connected to a power generator 4, the input of the cooling circuit of the engine 1 and a heat pump 8, which is connected to the ejector 11, the evaporator 12 and the condenser 9, and the condenser 9 is connected to the radiator 10 and the ejector 11.
  • the system of integrated utilization of thermal emissions of engines (Fig. 1) is implemented as follows.
  • a cooling liquid for example, water or antifreeze
  • a power steam generator 3 in which this liquid evaporates, and the steam is supplied to the steam engine 5, transferring mechanical energy to the outside or turning it into electricity generator 4.
  • Waste steam at low pressure (for example, atmospheric) is sent to the steam generator of the air conditioner 6, where it condenses and partially cools.
  • the coolant is additionally cooled in the heater-intercooler 7 and returned to the cooling shell of the engine 1.
  • the refrigerant evaporates in the steam generator 6 at high pressure, the resulting vapor enters the nozzle of the ejector 11, where the low pressure steam expands and draws in from the evaporator 12.
  • Vapor mixture it is compressed in the diffuser part of the ejector 11 and enters the condenser 9, where it is condensed by heat removal by external air. In cases where cooling of the coolant is insufficient, additional cooling is carried out by external air in the radiator 10.
  • the condensate of the refrigerant is divided into two parts: the first through the heat pump 8 enters the steam generator of the air conditioner 6 through the heater-intercooler 7, and the second is throttled in the choke 13 and boils in the evaporator 12, creating a cold that cools the interior of the car. In the presence of turbocharging, hot air is cooled in the heater-intercooler 7, and if there is insufficient cooling, it is cooled in the radiator 10.
  • the claimed method of integrated utilization of thermal emissions can be illustrated by the operation of an automobile air conditioner (Fig. 2) or a hybrid vehicle (FIG. 3).
  • FIG. 2 shows a schematic diagram of an automobile air conditioner, which includes an engine 14 connected to each other according to a specific scheme, a steam generator 15, an ejector 16, heat exchangers 17, 18, a radiator 19, a condenser 20, a receiver pump 21, a float chamber 22, a thermostatic expansion valve (expansion valve) 23 , three-way valve 24, evaporator-heater 25, fan 26, solenoid valves 27, 28, 29, 30, 31 and check valve 32.
  • the air conditioner is part of the transport power plant or can be installed separately. In the latter case, it can operate in three modes: cooling, heating and thermal emission. When you turn on the air conditioner in the transport power plant (TEU), thermal emission can be avoided.
  • TEU transport power plant
  • cooling mode the three-way valve 24 opens to the line, and the liquid refrigerant after the condenser 20 enters the evaporator through the expansion valve 20, where it boils at low pressure and temperature, cooling the air that is supplied to the passenger compartment by the fan 26. The resulting refrigerant vapor through the electromagnetic valve 29 enters the ejector 16.
  • the second part of the condensed refrigerant from the condenser 20 passes through the float chamber 22 and the receiver pump 21, from where the high-pressure liquid passes through heat exchangers 17, 18, where it is heated and through the electromagnetic valve 31 it is supplied to the steam generator 15, where it boils at high pressure due to the heat that is taken from the engine 14.
  • the valve 24 opens to the line, the electromagnetic valve 31 closes, all the refrigerant enters the steam generator 15, boils at a high temperature, hot steam through the electromagnetic valve 28 enters the evaporator-heater 25, heats the air, which is supplied by the fan 26 to the vehicle interior. Condensed refrigerant through the valve 24 enters the steam generator 15.
  • the electromagnetic valves 27, 28, 29 they close, the refrigerant circulates through the circuit the steam generator 15 - solenoid valve 30 - check valve 32 - condenser 20 - float chamber 22 - receiver-pump 21 - heat exchangers 17, 18 - solenoid valve 31, taking heat from the engine 14 and giving it to the environment.
  • This scheme makes it possible to recover heat from the engine only during the period when it is necessary to heat the cabin or to cool it, but at least 4 months a year in a temperate climate zone the heat from the engine is not used for useful work.
  • FIG. 3 shows a block diagram of a hybrid vehicle, which includes a main engine 33 interconnected according to a specific scheme, a steam engine 34, an electric generator 35, electric batteries 36, stand-alone electric motors 37, a mechanical battery 38, a hydraulic accumulator 39, a main drive 40, a fuel tank 41 .
  • the main engine 33 is mechanically connected to the drive 40, the accumulator 39 and the mechanical battery 38. Mechanical energy can also be transmitted to the electric generator 35.
  • the main engine 33 receives fuel from the fuel tank 41, and from the engine 33 to the steam engine 34 exit exhaust gases, which are triggered and make it possible to obtain additional mechanical or electrical power.
  • heat from the cooling shell of the main engine 33 is also used for thermal transformation in the system.
  • the steam engine 34 receiving heat from the main engine 33, also produces mechanical energy to the main drive 40 or to the electric generator 35, or to the self-contained wheeled electric motors 37. Excessive electrical energy is accumulated in the batteries 36, where it can be consumed by the wheeled electric motors 37 after parking or in other cases.
  • the claimed method and system for the comprehensive utilization of thermal emissions have industrial applicability and can be implemented in cars and trucks, buses, tractors, etc., as well as in cogeneration power plants.
  • This system does not require radical alteration of existing mechanisms and can be mounted on existing installations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a method and a device for generating electric power and for producing thermal energy by recycling the heat of combustion products from engines. The method for the complex recycling of hot emissions from engines comprises heating the liquid from the engine cooling envelope using the heat from the engine cylinders, and evaporating the heated liquid using the heat from the exhaust gases. The steam thus obtained is used for producing electric power. The system for the complex recycling of the hot emissions from engines comprises an engine cooling circuit, a liquid pump and a condenser connected together by pipes. The system further includes a steam generator, a power generator, a power steam engine, a conditioner steam generator, an intercooler, a heat pump, a radiator, an ejector and an evaporator. The method and the system for the complex recycling of hot emissions are industrially applicable and can be implemented in light or heavy vehicles, buses, tractors, etc., as well as in co-generation power plants.

Description

СПОСОБ И СИСТЕМА КОМПЛЕКСНОЙ УТИЛИЗАЦИИ ТЕПЛОВЫХ  METHOD AND SYSTEM OF INTEGRATED HEAT DISPOSAL
ВЫБРОСОВ ДВИГАТЕЛЕЙ  ENGINE EMISSIONS
ОБЛАСТЬ ТЕХНИКИ FIELD OF TECHNOLOGY
Изобретение относится к способу и устройству для производства механической работы, электрической энергии, получения тепла и холода за счёт утилизации теплоты продуктов сгорания в двигателях.  The invention relates to a method and apparatus for producing mechanical work, electrical energy, producing heat and cold by utilizing the heat of combustion products in engines.
Данное изобретение может быть использовано в различных областях техники, где применяются двигатели внутреннего и внешнего сгорания, а также реактивные, турбовинтовые и турбовентиляторные двигатели. Область использования изобретения охватывает практически все транспортные устройства, тепловые и дизель-генераторные, а также когенерационные энергетические системы. Проблема, которая решается данным изобретением, носит глобальный характер, поэтому указанные области применения не являются исчерпывающими.  This invention can be used in various fields of technology where internal and external combustion engines are used, as well as jet, turboprop and turbofan engines. The scope of the invention covers almost all transport devices, thermal and diesel generator, as well as cogeneration energy systems. The problem that is solved by this invention is global in nature, therefore, these areas of application are not exhaustive.
Поскольку транспортные системы являются наибольшими источниками тепловых выбросов двигателей, в качестве примеров рассматриваются именно эти виды техники.  Since transport systems are the largest sources of thermal emissions from engines, these types of equipment are considered as examples.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ  BACKGROUND OF THE INVENTION
Современные транспортные средства используют для своих прямых функций максимум 40% теплотворной способности горючего. Это приводит не только к потере невозобновляемого углеводного сырья, но и вносит весомый вклад в ускоренное ухудшение экологической ситуации на планете. При этом совершенствование всех элементов и узлов практически достигло предела, что требует кардинального пересмотра основных принципов функционирования энергетических транспортных систем. Одним из перспективных направлений существенного снижения потребления горючего при сохранении или даже увеличении мощности двигателей является ступенчатая утилизация энергетических выбросов, с использованием силовых узлов, кондиционера, использующего тепло, интеркулеров для возврата части энергии, затраченной на компрессию воздуха при турбонаддуве и т.п. Предлагаемый способ позволяет дополнительно получить 30-40% экономии энергии при одинаковом расходе горючего. Modern vehicles use a maximum of 40% of the calorific value of fuel for their direct functions. This leads not only to the loss of non-renewable carbohydrate raw materials, but also makes a significant contribution to the accelerated deterioration of the environmental situation on the planet. At the same time, the improvement of all elements and units has almost reached the limit, which requires a radical review of the basic principles of functioning of energy transport systems. One of the promising directions of a significant reduction in fuel consumption while maintaining or even increasing engine power is the step-by-step utilization of energy emissions using power units, an air conditioner that uses heat, intercoolers to recover some of the energy spent on compression turbocharged air, etc. The proposed method allows you to additionally get 30-40% energy savings with the same fuel consumption.
Работа энергетических систем включает такие процессы:  The work of energy systems includes such processes:
а) охлаждение жидкости из охлаждающей оболочки двигателя в радиаторе внешним воздухом;  a) cooling the liquid from the engine cooling shell in the radiator with external air;
б) охлаждение воздуха в салоне кондиционером, который имеет привод от основного двигателя;  b) air conditioning in the cabin, which is driven by the main engine;
в) охлаждение горячего воздуха после турбонагнетания в дополнительном радиаторе внешним воздухом;  c) cooling of hot air after turbocharging in an additional radiator with external air;
г) нагревание воздуха в салоне в холодное время года теплом от основного двигателя.  d) heating the air in the cabin during the cold season with heat from the main engine.
В настоящее время тепловые выбросы, образующиеся при работе двигателей, не утилизуются. Вследствие этого, во-первых, теряется большое количество тепловой энергии, во-вторых, загрязняется атмосфера.  Currently, thermal emissions generated by the operation of engines are not utilized. As a result of this, firstly, a large amount of thermal energy is lost, and secondly, the atmosphere is polluted.
Заявителю неизвестны эффективные способы утилизации тепловых выбросов двигателей, в частности выхлопных газов автомобилей.  The applicant is not aware of effective ways to utilize the thermal emissions of engines, in particular car exhaust.
Известное устройство для комплексной утилизации тепловых выбросов двигателей (см. патент Российской Федерации Ν° 2314429) включает генератор, дизель, конденсационную и конвективную ступени, насосы, маслоохладитель, масляный насос, насос воды первого контура, охладитель воды первого контура, бак-аккумулятор, нагнетатель воздуха, охладитель воздуха, бак охлаждённого теплоносителя, маслопровод, обратный и прямой трубопроводы, контактную камеру, трубопровод отвода конденсата, конденсационный теплоутилизатор, нагреватель воды горячего водоснабжения, систему отопления, трубопровод воды первого контура.  The known device for the comprehensive utilization of thermal emissions of engines (see patent of the Russian Federation Ν ° 2314429) includes a generator, diesel, condensation and convection stages, pumps, oil cooler, oil pump, primary water pump, primary water cooler, storage tank, supercharger air cooler, chilled coolant tank, oil line, return and direct pipelines, contact chamber, condensate drain pipe, condensing heat exchanger, hot water heater heating, heating system, primary water pipeline.
Конструкция данного устройства выбрана в качестве прототипа.  The design of this device is selected as a prototype.
Прототип и заявляемое изобретение имеют такие общие признаки: - охлаждающий контур двигателя; - жидкостный насос; The prototype and the claimed invention have such common features: - engine cooling circuit; - liquid pump;
- конденсатор.  - capacitor.
Но в устройстве-прототипе не используется работоспособность тепла выхлопных газов и не производится за счёт отбрасываемого тепла холод для кондиционирования воздуха.  But the prototype device does not use the efficiency of heat of exhaust gases and does not produce cold due to the heat removed for air conditioning.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ  SUMMARY OF THE INVENTION
В основу изобретения поставлена задача создать способ комплексной утилизации тепловых выбросов двигателей и систему для его осуществления, в которой путём введения новых узлов и элементов, а также их иного конструктивного расположения обеспечить снижение энергозатрат и повышение работоспособности тепла выхлопных газов.  The basis of the invention is the task to create a method for the comprehensive utilization of thermal emissions of engines and a system for its implementation, in which by introducing new components and elements, as well as their other structural arrangement, to reduce energy consumption and increase the efficiency of heat of exhaust gases.
Поставленная задача решена двумя изобретениями, объединёнными единым изобретательским замыслом, а именно способом комплексной утилизации тепловых выбросов двигателей и системой для его осуществления.  The problem is solved by two inventions, united by a single inventive concept, namely, the method of integrated utilization of thermal emissions of engines and a system for its implementation.
В первом изобретении поставленная задача решена в способе комплексной утилизации тепловых выбросов двигателей тем, что жидкость из охлаждающей оболочки двигателя нагревают теплом из цилиндров двигателя, после чего осуществляют испарение нагретой жидкости с помощью тепла выхлопных газов, полученный таким путём пар используют для получения электроэнергии, отработанный пар охлаждающей жидкости конденсируют паром хладагента высокого давления, а образовавшийся конденсат охлаждают жидким холодильным агентом высокого давления и подают в охлаждающую оболочку двигателя. Кроме того, жидкий холодильный агент высокого давления после охлаждения конденсата дополнительно нагревают горячим воздухом после турбонагнетания.  In the first invention, the problem is solved in a method for the comprehensive utilization of thermal emissions of engines by the fact that the liquid from the engine cooling shell is heated with heat from the engine cylinders, after which the heated liquid is evaporated using the heat of the exhaust gases, the steam obtained in this way is used to generate electricity, the exhaust steam coolant is condensed with high pressure refrigerant vapor, and the condensate formed is cooled with a high pressure liquid refrigerant and served engine cooling jacket. In addition, the liquid high-pressure refrigerant after cooling the condensate is additionally heated with hot air after turbocharging.
Во втором изобретении поставленная задача решена в системе комплексной утилизации тепловых выбросов двигателей, включающей соединённые между собой трубопроводами охлаждающий контур двигателя, жидкостный насос и конденсатор, тем, что она дополнительно содержит парогенератор, электрогенератор силовой, паровой двигатель, парогенератор кондиционера, интеркулер, термонасос, радиатор, эжектор и испаритель, при этом выход охлаждающего контура двигателя последовательно связан с жидкостным насосом, парогенератором, паровым двигателем и парогенератором кондиционера, который соединён с эжектором и интеркулером, интеркулер соединён с электрогенератором силовым, входом охлаждающего контура двигателя и термонасосом, который соединён с эжектором, испарителем и конденсатором, а конденсатор соединён с радиатором и эжектором. In the second invention, the problem is solved in a system for the comprehensive utilization of thermal emissions of engines, including a cooling circuit interconnected by pipelines an engine, a liquid pump and a condenser, in that it further comprises a steam generator, a power generator, a steam engine, an air conditioning steam generator, an intercooler, a heat pump, a radiator, an ejector and an evaporator, the output of the engine cooling circuit being connected in series with a liquid pump, a steam generator, a steam engine and a steam generator of the air conditioner, which is connected to the ejector and the intercooler, the intercooler is connected to the power generator, the input of the engine cooling circuit and the heat pump, which th is connected to the ejector, evaporator and condenser, and the condenser is connected to the radiator and ejector.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ  BRIEF DESCRIPTION OF THE DRAWINGS
Заявленное изобретение поясняется чертежами, на которых показано: фиг. 1 - принципиальная схема системы комплексной утилизации тепловых выбросов двигателей;  The claimed invention is illustrated by drawings, which show: FIG. 1 is a schematic diagram of a system for the comprehensive utilization of thermal emissions of engines;
фиг. 2 - принципиальная схема автомобильного кондиционера;  FIG. 2 is a schematic diagram of an automobile air conditioner;
фиг. 3 - блок-схема системы распределения энергетических потоков в гибридном транспортном средстве.  FIG. 3 is a block diagram of a power flow distribution system in a hybrid vehicle.
ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ  MODE FOR CARRYING OUT THE INVENTION
Система комплексной утилизации тепловых выбросов двигателей (фиг. 1) включает соединённые между собой трубопроводами охлаждающий контур двигателя 1, жидкостный насос 2, парогенератор 3, электрогенератор силовой 4, паровой двигатель 5, парогенератор кондиционера 6, интеркулер 7, термонасос 8, конденсатор 9, радиатор 10, эжектор 11, испаритель 12 и дроссель 13.  The system for the comprehensive utilization of thermal emissions of engines (Fig. 1) includes interconnected pipelines for the engine cooling circuit 1, a liquid pump 2, a steam generator 3, a power generator 4, a steam engine 5, an air conditioning steam generator 6, an intercooler 7, a heat pump 8, a condenser 9, a radiator 10, ejector 11, evaporator 12 and throttle 13.
Перечисленные узлы и элементы соединены между собой трубопроводами по такой схеме: выход охлаждающего контура двигателя 1 последовательно связан с жидкостным насосом 2, парогенератором 3, паровым двигателем 5 и парогенератором кондиционера б, который соединён с эжектором 11 и интеркулером 7, интеркулер 7 соединён с электрогенератором силовым 4, входом охлаждающего контура двигателя 1 и термонасосом 8, который соединён с эжектором 11, испарителем 12 и конденсатором 9, а конденсатор 9 соединён с радиатором 10 и эжектором 11. The listed components and elements are interconnected by pipelines according to the following scheme: the output of the cooling circuit of engine 1 is connected in series with a liquid pump 2, a steam generator 3, a steam engine 5 and an air conditioning steam generator b, which is connected to an ejector 11 and an intercooler 7, an intercooler 7 is connected to a power generator 4, the input of the cooling circuit of the engine 1 and a heat pump 8, which is connected to the ejector 11, the evaporator 12 and the condenser 9, and the condenser 9 is connected to the radiator 10 and the ejector 11.
Работа системы комплексной утилизации тепловых выбросов двигателей (фиг. 1) реализуется следующим образом.  The system of integrated utilization of thermal emissions of engines (Fig. 1) is implemented as follows.
В охлаждающей оболочке двигателя 1 нагревается охлаждающая жидкость (например, вода или тосол), которая далее подаётся насосом 2 к силовому парогенератору 3, в котором эта жидкость испаряется, и пар подаётся в паровой двигатель 5, отдавая механическую энергию наружу или превращая её в электроэнергию в электрогенераторе 4. Отработанный пар при низком давлении (например, атмосферном) направляется к парогенератору кондиционера 6, где конденсируется и частично переохлаждается. После этого охлаждающая жидкость дополнительно охлаждается в нагревателе-интеркулере 7 и возвращается в охлаждающую оболочку двигателя 1. Одновременно в парогенераторе 6 испаряется при высоком давлении хладагент, образовавшийся пар поступает к соплу эжектора 11, где расширяется и всасывает пар низкого давления из испарителя 12. Паровая смесь сжимается в диффузорной части эжектора 11 и поступает в конденсатор 9, где конденсируется путём отвода тепла внешним воздухом. В случаях, когда охлаждение охлаждающей жидкости является недостаточным, доохлаждение проводится внешним воздухом в радиаторе 10. Конденсат хладагента разделяется на две части: первая через термонасос 8 поступает к парогенератору кондиционера 6 через нагреватель-интеркулер 7, а вторая дросселируется в дросселе 13 и кипит в испарителе 12, создавая холод, который охлаждает салон автомобиля. При наличии турбонагнетания горячий воздух охлаждается в нагревателе- интеркулере 7, а при недостаточности охлаждения доохлаждается в радиаторе 10.  In the cooling shell of engine 1, a cooling liquid (for example, water or antifreeze) is heated, which is then pumped 2 to a power steam generator 3, in which this liquid evaporates, and the steam is supplied to the steam engine 5, transferring mechanical energy to the outside or turning it into electricity generator 4. Waste steam at low pressure (for example, atmospheric) is sent to the steam generator of the air conditioner 6, where it condenses and partially cools. After that, the coolant is additionally cooled in the heater-intercooler 7 and returned to the cooling shell of the engine 1. At the same time, the refrigerant evaporates in the steam generator 6 at high pressure, the resulting vapor enters the nozzle of the ejector 11, where the low pressure steam expands and draws in from the evaporator 12. Vapor mixture it is compressed in the diffuser part of the ejector 11 and enters the condenser 9, where it is condensed by heat removal by external air. In cases where cooling of the coolant is insufficient, additional cooling is carried out by external air in the radiator 10. The condensate of the refrigerant is divided into two parts: the first through the heat pump 8 enters the steam generator of the air conditioner 6 through the heater-intercooler 7, and the second is throttled in the choke 13 and boils in the evaporator 12, creating a cold that cools the interior of the car. In the presence of turbocharging, hot air is cooled in the heater-intercooler 7, and if there is insufficient cooling, it is cooled in the radiator 10.
Заявленный способ комплексной утилизации тепловых выбросов можно проиллюстрировать работой автомобильного кондиционера (фиг. 2) или гибридного транспортного средства (фиг. 3). The claimed method of integrated utilization of thermal emissions can be illustrated by the operation of an automobile air conditioner (Fig. 2) or a hybrid vehicle (FIG. 3).
На фиг. 2 показана принципиальная схема автомобильного кондиционера, который включает соединённые между собой по определённой схеме двигатель 14, парогенератор 15, эжектор 16, теплообменники 17, 18, радиатор 19, конденсатор 20, ресивер-насос 21, поплавковую камеру 22, терморегулирующий вентиль (ТРВ) 23, трёхходовой вентиль 24, испаритель-обогреватель 25, вентилятор 26, электромагнитные клапаны 27, 28, 29, 30, 31 и обратный клапан 32.  In FIG. 2 shows a schematic diagram of an automobile air conditioner, which includes an engine 14 connected to each other according to a specific scheme, a steam generator 15, an ejector 16, heat exchangers 17, 18, a radiator 19, a condenser 20, a receiver pump 21, a float chamber 22, a thermostatic expansion valve (expansion valve) 23 , three-way valve 24, evaporator-heater 25, fan 26, solenoid valves 27, 28, 29, 30, 31 and check valve 32.
Кондиционер входит в состав транспортной энергетической установки или может быть установлен отдельно. В последнем случае он может работать в трёх режимах: охлаждения, нагревания и теплового выброса. При включении кондиционера в состав транспортной энергетической установки (ТЭУ) теплового выброса можно избежать. В режиме охлаждения трёхходовой вентиль 24 открывается на линию, а жидкий хладагент после конденсатора 20 через ТРВ поступает в испаритель, где кипит при низких давлении и температуре, охлаждая воздух, который подаётся в салон вентилятором 26. Образовавшийся пар хладагента через электромагнитный клапан 29 попадает в эжектор 16. В это же время вторая часть сконденсированного хладагента из конденсатора 20 проходит через поплавковую камеру 22 и ресивер-насос 21, откуда жидкость высокого давления проходит через теплообменники 17, 18, где нагревается и через электромагнитный клапан 31 подаётся в парогенератор 15, где кипит при высоком давлении за счёт тепла, которое отнимается у двигателя 14. В режиме нагревания вентиль 24 открывается на линию, электромагнитный клапан 31 закрывается, весь хладагент попадает в парогенератор 15, кипит при высокой температуре, горячий пар через электромагнитный клапан 28 поступает в испаритель-обогреватель 25, нагревает воздух, который вентилятором 26 подаётся в салон транспортного средства. Сконденсированный хладагент через вентиль 24 поступает в парогенератор 15. В режиме теплового выброса электромагнитные клапаны 27, 28, 29 закрываются, хладагент циркулирует по контуру парогенератор 15 - электромагнитный клапан 30 - обратный клапан 32 - конденсатор 20 - поплавковая камера 22 - ресивер-насос 21 - теплообменники 17, 18 - электромагнитный клапан 31, отбирая тепло от двигателя 14 и отдавая его окружающей среде. Эта схема даёт возможность утилизации тепла от двигателя только в тот период, когда необходим нагрев салона или его охлаждение, но по крайней мере 4 месяца в году в умеренном климатическом поясе тепло от двигателя не задействовано для полезной работы. The air conditioner is part of the transport power plant or can be installed separately. In the latter case, it can operate in three modes: cooling, heating and thermal emission. When you turn on the air conditioner in the transport power plant (TEU), thermal emission can be avoided. In cooling mode, the three-way valve 24 opens to the line, and the liquid refrigerant after the condenser 20 enters the evaporator through the expansion valve 20, where it boils at low pressure and temperature, cooling the air that is supplied to the passenger compartment by the fan 26. The resulting refrigerant vapor through the electromagnetic valve 29 enters the ejector 16. At the same time, the second part of the condensed refrigerant from the condenser 20 passes through the float chamber 22 and the receiver pump 21, from where the high-pressure liquid passes through heat exchangers 17, 18, where it is heated and through the electromagnetic valve 31 it is supplied to the steam generator 15, where it boils at high pressure due to the heat that is taken from the engine 14. In the heating mode, the valve 24 opens to the line, the electromagnetic valve 31 closes, all the refrigerant enters the steam generator 15, boils at a high temperature, hot steam through the electromagnetic valve 28 enters the evaporator-heater 25, heats the air, which is supplied by the fan 26 to the vehicle interior. Condensed refrigerant through the valve 24 enters the steam generator 15. In the heat release mode, the electromagnetic valves 27, 28, 29 they close, the refrigerant circulates through the circuit the steam generator 15 - solenoid valve 30 - check valve 32 - condenser 20 - float chamber 22 - receiver-pump 21 - heat exchangers 17, 18 - solenoid valve 31, taking heat from the engine 14 and giving it to the environment. This scheme makes it possible to recover heat from the engine only during the period when it is necessary to heat the cabin or to cool it, but at least 4 months a year in a temperate climate zone the heat from the engine is not used for useful work.
На фиг. 3 показана блок-схема гибридного транспортного средства, которое включает соединённые между собой по определённой схеме главный двигатель 33, паровой двигатель 34, электрогенератор 35, электробатареи 36, колёсные автономные электродвигатели 37, механический аккумулятор 38, гидроаккумулятор 39, главный привод 40, топливный бак 41.  In FIG. 3 shows a block diagram of a hybrid vehicle, which includes a main engine 33 interconnected according to a specific scheme, a steam engine 34, an electric generator 35, electric batteries 36, stand-alone electric motors 37, a mechanical battery 38, a hydraulic accumulator 39, a main drive 40, a fuel tank 41 .
В гибридном транспортном средстве главный двигатель 33 имеет механическую связь с приводом 40, гидроаккумулятор 39 и механическим аккумулятором 38. Механическая энергия может также передаваться в электрогенератор 35. В главный двигатель 33 поступает горючее из топливного бака 41, а из двигателя 33 к паровому двигателю 34 выходят выхлопные газы, которые срабатывают и дают возможность получить дополнительную механическую или электрическую мощность. Кроме того, тепло от охлаждающей оболочки главного двигателя 33 также используется для термотрансформации в системе. Паровой двигатель 34, получая тепло от главного двигателя 33, выдаёт также механическую энергию к главному приводу 40 или электрогенератору 35, или к колёсным автономным электродвигателям 37. Избыточная электрическая энергия накапливается в батареях 36, откуда она может потребляться колёсными электродвигателями 37 после стоянки или в других случаях. ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ In a hybrid vehicle, the main engine 33 is mechanically connected to the drive 40, the accumulator 39 and the mechanical battery 38. Mechanical energy can also be transmitted to the electric generator 35. The main engine 33 receives fuel from the fuel tank 41, and from the engine 33 to the steam engine 34 exit exhaust gases, which are triggered and make it possible to obtain additional mechanical or electrical power. In addition, heat from the cooling shell of the main engine 33 is also used for thermal transformation in the system. The steam engine 34, receiving heat from the main engine 33, also produces mechanical energy to the main drive 40 or to the electric generator 35, or to the self-contained wheeled electric motors 37. Excessive electrical energy is accumulated in the batteries 36, where it can be consumed by the wheeled electric motors 37 after parking or in other cases. INDUSTRIAL APPLICABILITY
Заявленный способ и система комплексной утилизации тепловых выбросов имеют промышленную применимость и могут быть реализованы в легковых и грузовых автомобилях, автобусах, тракторах и т.п., а также в когенерационных электростанциях. Эта система не требует коренной переделки существующих механизмов и может быть смонтирована на действующих установках.  The claimed method and system for the comprehensive utilization of thermal emissions have industrial applicability and can be implemented in cars and trucks, buses, tractors, etc., as well as in cogeneration power plants. This system does not require radical alteration of existing mechanisms and can be mounted on existing installations.

Claims

Формула изобретения Claim
1. Способ комплексной утилизации тепловых выбросов двигателей, отличающийся тем, что жидкость из охлаждающей оболочки двигателя нагревают теплом из цилиндров двигателя, после чего осуществляют испарение нагретой жидкости с помощью тепла выхлопных газов,- полученный таким путём пар используют для получения электроэнергии, отработанный пар охлаждающей жидкости конденсируют паром хладагента высокого давления, а образовавшийся конденсат охлаждают жидким холодильным агентом высокого давления и подают в охлаждающую оболочку двигателя.  1. A method for the comprehensive utilization of thermal emissions of engines, characterized in that the liquid from the engine cooling shell is heated with heat from the engine cylinders, after which the heated liquid is evaporated using the heat of the exhaust gases - the steam obtained in this way is used to generate electricity, the spent steam of the cooling liquid condensed with high pressure refrigerant vapor, and the resulting condensate is cooled with a high pressure liquid refrigerant and served in the cooling shell of the engine.
2. Способ по п.1, отличающийся тем, что жидкий холодильный агент высокого давления после охлаждения конденсата дополнительно нагревают горячим воздухом после турбонагнетания.  2. The method according to claim 1, characterized in that the liquid high-pressure refrigerant after cooling the condensate is additionally heated with hot air after turbocharging.
3. Система комплексной утилизации тепловых выбросов двигателей, включающая соединённые между собой трубопроводами охлаждающий контур двигателя, жидкостный насос и конденсатор, отличающаяся тем, что она дополнительно содержит парогенератор, электрогенератор силовой, паровой двигатель, парогенератор кондиционера, интеркулер, термонасос, радиатор, эжектор и испаритель, при этом выход охлаждающего контура двигателя последовательно связан с жидкостным насосом, парогенератором, паровым двигателем и парогенератором кондиционера, который соединён с эжектором и интеркулером, интеркулер соединён с электрогенератором силовым, входом охлаждающего контура двигателя и термонасосом, который соединён с эжектором, испарителем и конденсатором, а конденсатор соединён с радиатором и эжектором.  3. A system for the comprehensive utilization of thermal emissions of engines, including a cooling circuit of an engine, a liquid pump and a condenser interconnected by pipelines, characterized in that it further comprises a steam generator, a power generator, a steam engine, an air conditioning steam generator, an intercooler, a heat pump, a radiator, an ejector and an evaporator while the output of the engine cooling circuit is connected in series with a liquid pump, a steam generator, a steam engine and an air conditioning steam generator, which oedinon ejector and intercooler, the intercooler is connected to an electric power, input of engine cooling circuit and termonasosom, which is connected to the ejector, condenser and evaporator, a condenser connected to the radiator and the ejector.
PCT/UA2009/000061 2009-09-01 2009-11-30 Method and system for the complex recycling of hot emissions from engines WO2011028192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA200909058 2009-09-01
UAA200909058A UA92563C2 (en) 2009-09-01 2009-09-01 Method and system for complex utilization of engine exhaust heat

Publications (1)

Publication Number Publication Date
WO2011028192A1 true WO2011028192A1 (en) 2011-03-10

Family

ID=43649536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2009/000061 WO2011028192A1 (en) 2009-09-01 2009-11-30 Method and system for the complex recycling of hot emissions from engines

Country Status (2)

Country Link
UA (1) UA92563C2 (en)
WO (1) WO2011028192A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905619A (en) * 2019-11-18 2020-03-24 天津大学 Mixed working medium Rankine cycle system for recovering waste heat of internal combustion engine
CN113320377A (en) * 2021-06-29 2021-08-31 重庆金康赛力斯新能源汽车设计院有限公司 Whole vehicle thermal management system for energy recycling and vehicle
CN113320378A (en) * 2021-06-29 2021-08-31 重庆金康赛力斯新能源汽车设计院有限公司 Efficient integrated engine thermal management system and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2463858A1 (en) * 1979-08-17 1981-02-27 Jardinier Jean Waste heat recovery system for heat engines - uses exhaust gases to drive turbine to circulate working fluid and drive heat pump compressor
RU2164615C1 (en) * 1999-09-30 2001-03-27 Военный инженерно-космический университет им. А.Ф. Можайского Thermal power plant
RU2196243C2 (en) * 2000-09-30 2003-01-10 Военный инженерно-космический университет им. А.Ф.Можайского Combination stirling engine plant for simultaneous generation of power and heat
RU2314429C1 (en) * 2006-04-24 2008-01-10 Александр Петрович Капишников Device for complex recovery of heat of exhaust of internal combustion engines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2463858A1 (en) * 1979-08-17 1981-02-27 Jardinier Jean Waste heat recovery system for heat engines - uses exhaust gases to drive turbine to circulate working fluid and drive heat pump compressor
RU2164615C1 (en) * 1999-09-30 2001-03-27 Военный инженерно-космический университет им. А.Ф. Можайского Thermal power plant
RU2196243C2 (en) * 2000-09-30 2003-01-10 Военный инженерно-космический университет им. А.Ф.Можайского Combination stirling engine plant for simultaneous generation of power and heat
RU2314429C1 (en) * 2006-04-24 2008-01-10 Александр Петрович Капишников Device for complex recovery of heat of exhaust of internal combustion engines

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905619A (en) * 2019-11-18 2020-03-24 天津大学 Mixed working medium Rankine cycle system for recovering waste heat of internal combustion engine
CN110905619B (en) * 2019-11-18 2022-05-03 天津大学 Mixed working medium Rankine cycle system for recovering waste heat of internal combustion engine
CN113320377A (en) * 2021-06-29 2021-08-31 重庆金康赛力斯新能源汽车设计院有限公司 Whole vehicle thermal management system for energy recycling and vehicle
CN113320378A (en) * 2021-06-29 2021-08-31 重庆金康赛力斯新能源汽车设计院有限公司 Efficient integrated engine thermal management system and vehicle
CN113320378B (en) * 2021-06-29 2022-08-09 重庆金康赛力斯新能源汽车设计院有限公司 Efficient integrated engine thermal management system and vehicle

Also Published As

Publication number Publication date
UA92563C2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
CN103154488B (en) Apparatus for utilizing waste heat from internal combustion engine
CN102182583B (en) Combined-type residual heat recovery system suitable for internal combustion engine
RU2561814C2 (en) Conversion system of thermal energy to mechanical energy in vehicle
US8091360B2 (en) Driving device
CN102200073B (en) The driver element of automobile
US20130219872A1 (en) Thermoelectric recovery and peltier heating of engine fluids
US20050262842A1 (en) Process and device for the recovery of energy
CN101408115B (en) Thermodynamic cycle system suitable for waste heat recovery of engine for automobile
CN109268099B (en) Marine diesel engine waste heat recovery system and method based on thermoelectric power generation and organic Rankine cycle
EP3161275B1 (en) A waste heat recovery device
CN105492734A (en) Engine cooling system
US9500199B2 (en) Exhaust turbocharger of an internal combustion engine
US20130139766A1 (en) Engine arrangement comprising a heat recovery circuit and an exhaust gases after-treatment system
CN110439666A (en) Tool there are two temperature controller, include closed circuit in the Rankine cycle engine-cooling system
WO2011028192A1 (en) Method and system for the complex recycling of hot emissions from engines
CN102996194A (en) Comprehensive energy recycling system based on liquefied natural gas automobile
Yue et al. Thermal analysis on vehicle energy supplying system based on waste heat recovery ORC
RU2725583C1 (en) Cogeneration plant with deep recovery of thermal energy of internal combustion engine
CN102072585B (en) Refrigerating cycle system driven by liquid nitrogen engine with exhaust residual heat of diesel engine as heat source
CN107605580B (en) Automobile waste heat recovery and air conditioner refrigeration composite circulation system and control method thereof
US11035270B2 (en) Internal combustion engine having an exhaust heat recovery system as well as a method for recovering exhaust heat
CN207261089U (en) A kind of vehicle waste heat recycling and air conditioner refrigerating combined cycle system
CN201670084U (en) Vehicular refrigerating device
CN104943503A (en) Power and refrigeration power supply system of car and work method thereof
Hussain et al. Organic Rankine Cycle for Waste Heat Recovery in a Hybrid Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849059

Country of ref document: EP

Kind code of ref document: A1