WO2011028018A2 - Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device - Google Patents

Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device Download PDF

Info

Publication number
WO2011028018A2
WO2011028018A2 PCT/KR2010/005925 KR2010005925W WO2011028018A2 WO 2011028018 A2 WO2011028018 A2 WO 2011028018A2 KR 2010005925 W KR2010005925 W KR 2010005925W WO 2011028018 A2 WO2011028018 A2 WO 2011028018A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pitch
gradation region
region
layer
Prior art date
Application number
PCT/KR2010/005925
Other languages
French (fr)
Korean (ko)
Other versions
WO2011028018A3 (en
Inventor
최승규
안철흥
김도형
안호진
Original Assignee
신화인터텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신화인터텍 주식회사 filed Critical 신화인터텍 주식회사
Publication of WO2011028018A2 publication Critical patent/WO2011028018A2/en
Publication of WO2011028018A3 publication Critical patent/WO2011028018A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a broadband reflective liquid crystal film, a manufacturing method thereof, and a light source assembly and a liquid crystal display device including the broadband reflective liquid crystal film.
  • a liquid crystal display is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel.
  • a display by a liquid crystal display is not light-emitting because it is non-luminous in itself.
  • a lighting device such as a light source assembly that is uniformly irradiated onto the information display surface is mounted for the purpose of enabling use in a dark place.
  • the light source assembly used in the liquid crystal display device is largely classified into two types.
  • the first is an edge type light source assembly that provides light at the side of the liquid crystal display
  • the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display.
  • a light guide plate is provided to allow the light emitted from the light source to be irradiated upward, and at least one optical film is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate.
  • a diffuser plate is provided to reduce bright lines of light emitted from the light source, and at least one optical film is provided to adjust optical characteristics of light passing through the diffuser plate.
  • Some liquid crystal display devices include a reflective liquid crystal film as one of the optical films to improve the brightness.
  • cholesteric liquid crystals do not have a wide bandwidth of reflected light, and it is difficult to cover visible light waves with a single cholesteric liquid crystal. Therefore, in order to cover the visible light electric wave field, a plurality of liquid crystal layers are stacked.
  • the thickness itself becomes thick and the light transmittance is not only disadvantageous, but also the adhesive is interposed between the liquid crystal layers.
  • the adhesive generates light distortion. As a result, the brightness, light quality, and image quality of the light source assembly and the liquid crystal display device employing such a reflective liquid crystal film are reduced.
  • the present invention has been conceived based on these points, and the problem to be solved by the present invention is to provide a broadband reflective liquid crystal film which can have a predetermined reflectance for the full-wavelength range of visible light while using only one liquid crystal layer. will be.
  • Another object of the present invention is to provide an illumination device including the broadband reflective liquid crystal film described above.
  • Another object of the present invention is to provide a liquid crystal display device including the broadband reflective liquid crystal film described above.
  • Another problem to be solved by the present invention is to provide a method for manufacturing a broadband reflective liquid crystal film which can have a predetermined reflectance with respect to the wavelength range of visible light while using only one liquid crystal layer.
  • the broadband reflective liquid crystal film according to an embodiment of the present invention for solving the above problems includes a cholesteric liquid crystal layer in which the liquid crystal pitch is changed from the first surface to the second surface direction, wherein the cholesteric liquid crystal layer is A first liquid crystal pitch in a first region adjacent to the first surface, a second liquid crystal pitch smaller than the first liquid crystal pitch in a second region adjacent to the second surface, and between the first and second regions And having a third liquid crystal pitch greater than the first liquid crystal pitch in a third region.
  • the broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, wherein the first gradation region has a liquid crystal pitch in a first direction.
  • a liquid crystal pitch reduction rate of the second gradation region is different from each other.
  • the first to m (divided sequentially from the first surface to the second surface direction using each liquid crystal pitch as a unit) Wherein m is a natural number) and includes a cholesteric liquid crystal layer including a liquid crystal pitch period, wherein the cholesteric liquid crystal layer is formed in the first to nth (where n is a natural number of n ⁇ m) liquid crystal pitch intervals.
  • the ratio when the liquid crystal pitch of the liquid crystal pitch section is larger than the liquid crystal pitch of the k-1 liquid crystal pitch section is 70% or more, and the n + 1th
  • the ratio of the liquid crystal pitch of the h th liquid crystal pitch section to the m th liquid crystal pitch section is smaller than the liquid crystal pitch of the h-1 liquid crystal pitch section.
  • the liquid crystal pitch of at least one of the nth and nth + 1th liquid crystal pitch periods is a maximum value Have, includes the m-th liquid crystal pitch of the liquid crystal region has a pitch has a minimum value, when the first liquid crystal pitch of the liquid crystal region has a pitch between the value of the maximum value and the minimum value.
  • the broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, the first gradation region is a liquid crystal pitch in a first direction Is increased, and the second gradation region is formed on the first gradation region, and includes a liquid crystal layer in which a liquid crystal pitch increases in a second direction opposite to the first direction, wherein the first relative to the liquid crystal layer
  • the ratio of the gradation region and the ratio of the second gradation region to the liquid crystal layer may be different from each other.
  • the broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, the first gradation region is a liquid crystal pitch in a first direction Is reduced, and the second gradation region includes a liquid crystal layer formed on the first gradation region to reduce the liquid crystal pitch in a second direction opposite to the first direction, wherein the liquid crystal pitch of the first gradation region is reduced.
  • the increase rate and the liquid crystal pitch decrease rate of the second gradation region may be different from each other.
  • the light source assembly according to an embodiment of the present invention for solving the other problem includes a broadband reflective liquid crystal film as described above.
  • the liquid crystal display according to the exemplary embodiment of the present invention for solving the another problem includes the broadband reflective liquid crystal film as described above.
  • a liquid cholesteric liquid crystal coating liquid on a substrate, to form a liquid crystal coating layer on one surface of the substrate And drying the liquid crystal coating layer at a first temperature, performing a first curing on the dried liquid crystal coating layer with first energy, and performing a first curing on the first cured liquid crystal coating layer at a second temperature lower than the first temperature.
  • Heat treatment is performed, and the second heat treatment is performed on the first heat-treated liquid crystal coating layer at a third temperature and a second heat treatment higher than the second temperature, and the second curing is performed at a second energy greater than the first energy, and the second heat treatment is performed.
  • FIG. 1 is a cross-sectional view of a broadband reflective liquid crystal film according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating each liquid crystal pitch in the first to third regions of FIG. 1.
  • FIG. 3 is a schematic diagram illustrating a traveling direction of light in a broadband reflective liquid crystal film according to an exemplary embodiment of the present invention.
  • 4 to 6 are graphs showing transmittances according to wavelengths of light incident on respective regions of the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
  • FIG. 7 is a graph showing transmittance according to the wavelength of light incident on the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
  • FIGS. 8 and 9 are graphs illustrating a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some embodiments of the present invention.
  • 10 and 11 are graphs showing changes in the size of the liquid crystal pitch and the size of the reflection wavelength with respect to the thickness of the broadband reflective liquid crystal film according to some embodiments of the present invention.
  • FIG. 14 is a graph illustrating a change in luminance with respect to a viewing angle with respect to comparative examples and examples.
  • 15 and 16 are graphs showing a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some other embodiments of the present invention.
  • 17 and 18 are cross-sectional views of a broadband reflective liquid crystal film according to some other embodiments of the present invention.
  • 19 to 23 are cross-sectional views illustrating process steps of a method of manufacturing a broadband reflective liquid crystal film according to embodiments of the present invention.
  • FIG. 24 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
  • references to elements or layers "on” other elements or layers include all instances where another layer or other element is directly over or in the middle of another element. On the other hand, when a device is referred to as “directly on”, it means that it does not intervene with another device or layer in between. Like reference numerals refer to like elements throughout. "And / or” includes each and all combinations of one or more of the items mentioned.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as terms that include different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as “below” or “beneath” of another device may be placed “above” of another device. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device can also be oriented in other directions, so that spatially relative terms can be interpreted according to orientation.
  • film may be used to mean “ ⁇ sheet” and " ⁇ plate”.
  • narrowband reflective liquid crystal film means a film including a liquid crystal layer, and does not exclude a case in which another layer or film is further included.
  • a composite film in which a liquid crystal layer is formed on a film, and a retardation film is laminated on or behind it may be referred to as a broadband reflective liquid crystal film as long as it is a film including a liquid crystal layer. .
  • FIG. 1 is a cross-sectional view of a broadband reflective liquid crystal film according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating each liquid crystal pitch in the first to third regions of FIG. 1.
  • the broadband reflective liquid crystal film 100 includes a cholesteric liquid crystal layer 110 including cholesteric liquid crystals (or chiral nematic liquid crystals).
  • the cholesteric liquid crystal may include a nematic liquid crystal and a chiral dopant.
  • Cholesteric liquid crystals have a constant pitch and have a spiral structure twisted repeatedly. Repeated twisted helical structure induces Bragg reflection of light.
  • the cholesteric liquid crystal layer 110 may be formed as a single layer.
  • the cholesteric liquid crystal molecules included in the single layer may be the same material.
  • Cholesteric liquid crystals are classified into right-handed cholesteric liquid crystals and left-handed cholesteric liquid crystals according to the twisted direction of the helical structure.
  • Preferred cholesteric liquid crystals reflect right polarized light but transmit left polarized light.
  • the left cholesteric liquid crystal transmits right polarized light but reflects left circular polarized light. Therefore, in theory, the cholesteric liquid crystal transmits 50% of the light included in the wavelength range reflected by the cholesteric liquid crystal and reflects the remaining 50%.
  • the cholesteric liquid crystal layer 110 when light including first and second circularly polarized light is incident from the outside, the cholesteric liquid crystal layer 110 reflects light having a wavelength corresponding to the liquid crystal pitch of each region among the first or second circularly polarized light. Let's do it.
  • the cholesteric liquid crystal layer 110 includes the preferential cholesteric liquid crystal
  • the cholesteric liquid crystal layer 110 Reflects unidirectional polarized light, but reflects light having a wavelength corresponding to the liquid crystal pitch of each region among unipolar polarized light.
  • the pitch (liquid crystal pitch) of the cholesteric liquid crystal is related to the wavelength of the reflected light.
  • the central wavelength of the reflected light reflected by the cholesteric liquid crystal is generally proportional to the liquid crystal pitch.
  • the center wavelength of the reflected light may mean a wavelength that is maximum reflected within the band width or an average wavelength of the band width.
  • the bandwidth of the reflected light may mean a range of wavelengths capable of reflecting about 30% to about 70% of the incident light, preferably reflecting about 40% to about 60% of the incident light
  • the range of wavelengths that can be used may mean a range of wavelengths that can more preferably reflect about 50% of incident light.
  • the cholesteric liquid crystal layer 110 includes a first surface 110_1 and a second surface 110_2.
  • the first surface 110_1 is a surface on which light is incident
  • the second surface 110_2 is a surface opposite to the first surface 110_1 and may be a surface on which light is transmitted and emitted.
  • the first surface 110_1 and the second surface 110_2 may be reversed.
  • the cholesteric liquid crystal layer 110 includes two or more different liquid crystal pitches.
  • the cholesteric liquid crystal layer 110 may have a liquid crystal pitch in a direction from the first surface 110_1 to the second surface 110_2, that is, in the thickness direction of the liquid crystal layer 110.
  • cholesteric liquid crystal layer 110 includes a plurality of regions, each liquid crystal region comprising a plurality of oriented cholesteric liquid crystal molecules, each liquid crystal region formed by cholesteric liquid crystal molecules. Can be classified according to the liquid crystal pitch.
  • the cholesteric liquid crystal layer 110 includes a first region 111 adjacent to the first surface 110_1, a second region 112 adjacent to the second surface 110_2, and a first region.
  • the third region 113 is formed between the region 111 and the second region 112.
  • the first region 111 includes a cholesteric liquid crystal having a first liquid crystal pitch P1
  • the second region 112 includes a cholesteric liquid crystal having a second liquid crystal pitch P2.
  • the third region 113 includes a cholesteric liquid crystal having a third liquid crystal pitch P3.
  • the second liquid crystal pitch P2 is smaller than the first liquid crystal pitch P1
  • the third liquid crystal pitch P3 is larger than the first liquid crystal pitch P1. That is, the magnitude relationship of the first to third liquid crystal pitches P1 to P3 is expressed as P2 ⁇ P1 ⁇ P3.
  • the first region 111 includes a cholesteric liquid crystal having a first liquid crystal pitch P1 and having a spiral structure twisted repeatedly.
  • the oriented cholesteric liquid crystal in the first region 111 includes two or more cholesteric liquid crystal molecules
  • the cholesteric liquid crystal molecules in the first region 111 have a first liquid crystal pitch P1 and are repeatedly It may have a twisted spiral structure.
  • the second region 112 includes a cholesteric liquid crystal having a second liquid crystal pitch P2 and a spirally twisted spiral structure, and the third liquid crystal pitch P3 is disposed in the third region 113.
  • a cholesteric liquid crystal having a spiral structure twisted repeatedly
  • the second liquid crystal pitch P2 is smaller than the first liquid crystal pitch P1
  • the third liquid crystal pitch P3 is larger than the first liquid crystal pitch P1.
  • the liquid crystal pitches P1, P2, When P3) is formed differently from each other, the wavelength of the light reflected by each region (the central wavelength of the reflected light) is also different.
  • the first to third regions 111, 112, and 113 have the first to third liquid crystal pitches having a size relationship of P2 ⁇ P1 ⁇ P3, the first region 111 may have a first wavelength.
  • the light may be reflected, and the second region 112 may reflect light having a second wavelength smaller than the first wavelength, and the third region 113 may reflect light having a third wavelength larger than the first wavelength.
  • FIG. 3 is a schematic diagram illustrating a traveling direction of light in a broadband reflective liquid crystal film according to an exemplary embodiment of the present invention.
  • the first light includes the left circularly polarized light of the first wavelength ⁇ 1 and the right circularly polarized light of the first wavelength ⁇ 1
  • the second light includes the second wavelength ⁇ 2.
  • the third light is the left circularly polarized light (L) of the third wavelength ( ⁇ 3) and the third wavelength ( It is assumed to contain unidirectional polarized light R of [lambda] 3).
  • the first wavelength ⁇ 1 is assumed to be the center light of the reflected light of the first region 111 but is not included in the bandwidth of the reflected light of the second and third regions 112 and 113.
  • the second wavelength ⁇ 2 is the center light of the reflected light of the second region 112, but is not included in the bandwidth of the reflected light of the first and third regions 111 and 113, and the third wavelength ⁇ 3.
  • first to third regions 111, 112, and 113 are made of a preferential cholesteric liquid crystal for convenience of description.
  • the first light incident on the cholesteric liquid crystal layer 110 reaches the first region 111 to transmit the left circle polarized light, but the right circle polarized light R. Light is reflected.
  • the cholesteric liquid crystals of the second region 112 and the third region 113 not only take priority, but if not, the first wavelength ⁇ 1 in the assumption is that the second region 112 and the third region ( Since it is not included in the bandwidth of the reflected light of 113, the left circularly polarized light L of the first wavelength ⁇ 1 passes through the second region 112 and the third region 113 as it is.
  • the first region 111 is transmitted as it is and reaches the second region 112 to the left circle.
  • the polarized light is transmitted and the right polarized light is reflected.
  • the left circularly polarized light L having the second wavelength ⁇ 2 transmitted through the second region 112 passes through the third region 113 as it is.
  • the third light of the third wavelength ⁇ 3 is not included in the bandwidth of the reflected light of the first region 111 and the second region 112, the first region 111 and the second region 112.
  • the light of left circularly polarized light (L) is transmitted through the third region 113
  • the light of right circularly polarized light (R) is reflected.
  • the bandwidth of the reflected light in the first region 111, the bandwidth of the reflected light in the second region 112, and the bandwidth of the reflected light in the third region 113 cover the full-wavelength of the visible light, It will be possible to exhibit a specific reflectance for all light within the range of the field. 4 to 6 and 7 are referred to for more detailed description.
  • 4 to 6 are graphs showing transmittances according to wavelengths of light incident on respective regions of the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
  • FIG. 4 is a graph showing transmittance according to the wavelength of light incident on the first region 111, where the first region 111 has a reflectance of about 50% within a wavelength range of about 510 nm to about 640 nm.
  • Illustrated as having. 5 is a graph showing transmittance according to the wavelength of light incident on the second region 112, where the second region 112 has a reflectance of about 50% within a wavelength range of about 640 nm to about 780 nm.
  • It is. 6 is a graph showing transmittance according to the wavelength of light incident on the third region 113, where the third region 113 has a reflectance of about 50% within a wavelength range of about 380 nm to about 510 nm. It is.
  • the first region 111, the second region 112, and the third region 113 having different reflected light bandwidths can be adjusted by adjusting the liquid crystal pitch of the cholesteric liquid crystal present therein. Of course it can.
  • FIG. 7 is a graph showing transmittance according to the wavelength of light incident on the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
  • the transmittance according to the wavelength is shown in FIG. 7. It may be represented as. That is, it has a reflectance of 50% with respect to the electric field of visible light (about 380 nm to about 780 nm).
  • cholesteric liquid crystals do not have a wide bandwidth of reflected light, so it is difficult to cover the visible light field with a single cholesteric liquid crystal. Even if the cholesteric liquid crystal layer 110 is formed of a kind of cholesteric liquid crystal, a predetermined reflectance with respect to the visible light radio wave field can be realized.
  • the reflected light bandwidth of each region is too narrow, more regions of different pitches are formed in the cholesteric liquid crystal layer 110, so that a predetermined reflectance for the visible light field may be realized. For example, if regions having hundreds of thousands of different pitches are formed in the cholesteric liquid crystal layer 110, even if the reflected light bandwidth of each region is only about 1 nm, a predetermined reflectance is provided for the visible light field. You have a very high chance of having it.
  • the reflectance implemented by the cholesteric liquid crystal layer 110 including a plurality of regions varies depending on the number of regions, the distribution of regions, the reflectance of each region, the reflected light bandwidth of each region, the type of cholesteric liquid crystal, etc.
  • it may have a reflectance of about 30% to about 70% of the full range of visible light.
  • it can be adjusted to have a reflectance of about 40% to about 60% for the full range of visible light, more preferably about 50% for the full range of visible light.
  • the first to third regions 111, 112, and 113 may have a layered structure, for example.
  • the incident light may pass through all of the first to third regions 111, 112, and 113 once regardless of the incident direction.
  • the reflectance of the cholesteric liquid crystal layer 110 may be more reliable.
  • a region having the same liquid crystal pitch as any of the first to third regions 111, 112, and 113, for example, a fourth region having the same liquid crystal pitch as the second liquid crystal pitch P2 may be formed. It may further include.
  • the first liquid crystal pitch and the second liquid crystal are disposed in the order of the first region, the fourth region, the third region, and the second region in the direction of the first surface 110_1 to the second surface 110_2.
  • a cholesteric liquid crystal having a pitch, a third liquid crystal pitch, and a second liquid crystal pitch may be further increased.
  • the broadband reflective liquid crystal film according to the embodiments of the present invention may include P2 in each of a first region adjacent to the first surface, a second region adjacent to the second surface, and a third region between the first region and the second region.
  • P2 in each of a first region adjacent to the first surface, a second region adjacent to the second surface, and a third region between the first region and the second region.
  • the liquid crystal reflects red light regardless of the incident direction of light in the first surface or the second surface.
  • the region is not exposed to the surface of the cholesteric liquid crystal layer. Therefore, it is possible to prevent the phenomenon in which red light is shown off from the side.
  • the side surface visibility of the red light can be prevented even if the liquid crystal layer is changed up and down, the applicability is excellent.
  • the central portion of the liquid crystal layer is responsible for the reflection of red light, while one side of the light has a shorter wavelength, for example, green light, and the other side of the liquid crystal layer has Areas for reflecting light with shorter wavelengths, such as blue light, are arranged. Therefore, it is easy to configure the reflection band for the entire area of visible light.
  • the cholesteric liquid crystal layer 110 gradually increases from the first liquid crystal pitch P1 to the third liquid crystal pitch P3 along the direction of the first surface 110_1 to the second surface 110_2.
  • the liquid crystal pitch may gradually change from the third liquid crystal pitch P3 to the second liquid crystal pitch P2.
  • a cholesteric liquid crystal having a value between the pitches P3 can be formed. It will be described in more detail with reference to Figs.
  • FIGS. 8 and 9 are graphs illustrating a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some embodiments of the present invention.
  • the horizontal axis represents the thickness position of the cholesteric liquid crystal layer 110
  • the vertical axis represents the size of the liquid crystal pitch of the cholesteric liquid crystal in the cholesteric liquid crystal layer 110. .
  • the thickness position of the cholesteric liquid crystal layer 110 may be defined as, for example, the distance from the first surface 110_1 to the cholesteric liquid crystal when viewed based on the first surface 110_1. .
  • the distance from the second surface 110_2 to the cholesteric liquid crystal may be defined. That is, when the leftmost side of the horizontal axis is called the first surface 110_1, it means the size of the liquid crystal pitch of the cholesteric liquid crystal corresponding to the region adjacent to the second surface 110_2 toward the right side. Similarly, when the leftmost side is referred to as the second surface 110_2, it means the size of the liquid crystal pitch of the cholesteric liquid crystal corresponding to the region adjacent to the first surface 110_1 toward the right side.
  • the thickness position of the cholesteric liquid crystal layer 110 is viewed based on the first surface 110_1 will be described as an example. That is, it is assumed that the first surface 110_1 of the cholesteric liquid crystal layer 110 corresponds to "0" in the graph. In some embodiments, the surface on which "0" in the graph is written, for example first surface 110_1, may be in contact with an air layer (not shown). Of course, the same applies to the second surface 110_2 as a reference. In addition, the vertical axis indicates that the size of the liquid crystal pitch increases as it goes up.
  • the cholesteric liquid crystal layer 110 is formed at the first liquid crystal pitch P1 along the direction of the second surface 110_2 at the first surface 110_1.
  • the liquid crystal pitch profile may gradually increase to the third liquid crystal pitch P3 and gradually decrease from the third liquid crystal pitch P3 to the second liquid crystal pitch P2.
  • the third liquid crystal pitch P3 has a maximum value among the liquid crystal pitches of the cholesteric liquid crystal layer 110.
  • the cholesteric liquid crystal layer 110 includes a first gradation region GR1 and a second gradation region GR2, wherein the first gradation region GR1 increases in the liquid crystal pitch in the first direction, and The liquid crystal pitch increases in the second gradation region GR2 in the second direction.
  • the second gradation region GR2 is formed on the first gradation region GR1, and the second direction means a direction opposite to the first direction.
  • the liquid crystal pitch increase rate ⁇ 1 of the first gradation region GR1 and the liquid crystal pitch decrease rate ⁇ 2 of the second gradation region GR2 are different from each other.
  • the second gradation region GR2 is the cholesteric liquid crystal layer 110.
  • the second surface 110_2 and the cholesteric liquid crystal layer 110 has a maximum value at the second surface 110_2 at a region where the first gradation region GR1 and the second gradation region GR2 are in contact with each other.
  • the value has a liquid crystal pitch of a value between the maximum value and the minimum value at the first surface 110_1.
  • the liquid crystal pitch increase rate ⁇ 1 of the first gradation region GR1 is a change in the liquid crystal pitch with respect to the thickness d1 of the first gradation region GR1, that is, the first liquid crystal pitch P1 and the third liquid crystal pitch ( It can be defined as the value of the difference (P3-P1) of P3).
  • the liquid crystal pitch reduction rate ⁇ 2 of the second gradation region GR2 is a change in the liquid crystal pitch with respect to the thickness D-d1 of the second gradation region GR2, that is, the third liquid crystal pitch P3 and the second liquid crystal. It may be defined as the value of the difference P3-P2 of the pitch P2.
  • the first gradation region GR1 and the second gradation region GR2 may be formed to have the same thickness. Or, it may be formed of a different thickness of course.
  • the liquid crystal pitch increase rate ⁇ 1 of the first gradation region GR1 and the liquid crystal pitch decrease rate ⁇ 2 of the second gradation region GR2 may have various values due to the thickness of each gradation region and the change of the liquid crystal pitch.
  • the change in the liquid crystal pitch of the first gradation region GR1 and the second gradation region GR2 is formed asymmetrically with respect to the region where the first gradation region GR1 and the second gradation region GR2 are in contact. Therefore, the increase / decrease rates ⁇ 1 and ⁇ 2 of the liquid crystal pitch of each gradation region have different values.
  • the cholesteric liquid crystal layer 110 may include a first gradation region GR1 in which the liquid crystal pitch increases in the first direction, and a liquid crystal pitch in the second direction. Including an increasing second gradation region GR2, the ratio of the first gradation region GR1 to the cholesteric liquid crystal layer 110 and the second gradation region GR2 with respect to the cholesteric liquid crystal layer 110 The ratios are different.
  • the maximum value D of the thickness position of the horizontal axis of the graph illustrated in FIG. 9 corresponds to the thickness of the cholesteric liquid crystal layer 110
  • the first gradient region with respect to the cholesteric liquid crystal layer 110 corresponds to the ratio of the thickness of the first gradation region GR1 to the total thickness of the cholesteric liquid crystal layer 110.
  • the ratio of the second gradation region GR2 to the cholesteric liquid crystal layer 110 corresponds to the ratio of the thickness of the second gradation region GR2 to the total thickness of the cholesteric liquid crystal layer 110.
  • the ratio of the thickness d2 of the first gradation region GR1 to the overall thickness D of the cholesteric liquid crystal layer 110 is equal to that of the second gradation region GR2 with respect to the overall thickness D. It is different from the ratio of the thickness D-d2. Therefore, the ratio of the first gradation region GR1 to the cholesteric liquid crystal layer 110 and the ratio of the second gradation region GR2 to the cholesteric liquid crystal layer 110 are different from each other. It can be said that the thickness of GR1) and the thickness of the second gradation region GR2 are different from each other.
  • the region having the maximum value among the liquid crystal pitches of the cholesteric liquid crystal layer 110 may be formed to be biased toward one side from the center of the thickness of the cholesteric liquid crystal layer 110.
  • the region where the liquid crystal pitch has the maximum value is not at the same distance from the first surface 110_1 and the second surface 110_2, but rather in the region close to the first surface 110_1 or the second surface 110_2. Can be formed.
  • 10 and 11 are graphs showing changes in the size of the liquid crystal pitch and the size of the reflection wavelength with respect to the thickness of the broadband reflective liquid crystal film according to some embodiments of the present invention.
  • the horizontal axis represents the film thickness of the broadband reflective liquid crystal film
  • the left vertical axis represents the size of the liquid crystal pitch
  • the right vertical axis represents the wavelength of reflection. Indicates the size.
  • the broadband reflective liquid crystal film includes a first gradation region GR1 and a second gradation region GR2.
  • the liquid crystal pitch increases from the interval Pa to the maximum value Pmax in the right direction in which the film thickness increases from zero.
  • the liquid crystal pitch increases from the minimum value Pmin to the maximum value Pmax in the left direction in which the film thickness decreases to zero.
  • the minimum value Pmin of the liquid crystal pitch is about 180 nm
  • the maximum value Pmax is about 580 nm
  • the inter-value Pa is about 320 nm.
  • the thickness of the first gradation region GR1 is about 3.2 um
  • the thickness of the second gradation region GR2 is about 3 um.
  • the broadband reflective liquid crystal film according to some embodiments may have a thickness substantially equal to a region of the first gradation GR1 and the second gradation GR2.
  • the substantially same thickness includes not only the case where the numbers are exactly the same, but also the case where the error in the manufacturing process is taken into consideration.
  • the liquid crystal pitch increase rate of the gradation region GR1 may be greater than the liquid crystal pitch decrease rate of the second gradation region GR2.
  • the thickness of the first gradation region GR1 may be thicker than that of the second gradation region GR2.
  • the ratio of the thickness of the cholesteric liquid crystal layer to the thickness of the first gradation region GR1 may be about 1: 0.05 to about 1: 0.4.
  • the minimum value Pmin of the liquid crystal pitch is about 200 nm
  • the maximum value Pmax is about 500 nm
  • the inter-value Pa is about 395 nm.
  • the thickness of the first gradation region GR1 is about 0.5 um
  • the thickness of the second gradation region GR2 is about 3.5 um. That is, the thickness ratio of the thickness of the cholesteric liquid crystal layer to the first gradation region GR1 may have a value of about 1: 0.25.
  • the thickness of the cholesteric liquid crystal layer is about 5 ⁇ m or less, as illustrated in FIG. 11, the thickness of the second gradation region GR2 may be greater than the thickness of the first gradation region GR1. .
  • this is merely an example and does not exclude a case in which the broadband reflective liquid crystal film including the liquid crystal layer having a thickness of about 5 ⁇ m or less has a liquid crystal pitch corresponding to the graph of FIG. 10.
  • the ratio of the first gradation region GR1 that is, the ratio of the first gradation region GR1 to the thickness of the liquid crystal layer increases, the luminance of the emission surface side of the liquid crystal film increases, and the first gradation region GR1 As the ratio of is decreased, the Off Axis Color (OAC) characteristic of the emission surface side of the liquid crystal film may be improved. Therefore, by adjusting the ratio of the first gradation region GR1, it is possible to determine the optimization region of the luminance and OAC characteristics on the emission surface side of the liquid crystal film.
  • OAC Off Axis Color
  • the OAC change is very large, whereas the broadband according to the embodiment of the present invention has the liquid crystal pitch according to FIG. 11.
  • the change of OAC is relatively small in FIG. 13. That is, the display quality can be expected to be improved.
  • FIG. 14 shows a viewing angle with respect to the case where the liquid crystal pitch of the broadband reflective liquid crystal film increases linearly in one direction (comparative example) and the case where the liquid crystal pitch of the broadband reflective liquid crystal film has the liquid crystal pitch according to FIG. 11 (example). It is a graph showing a change in luminance (view angle) with respect to (view angle).
  • the horizontal axis of the graph illustrated in FIG. 14 represents a viewing angle
  • the vertical axis represents luminance corresponding to each viewing angle.
  • the luminance change according to the viewing angle in the case of the embodiment is smaller than that of the comparative example. More specifically, the luminance difference between the luminance at the front side where the viewing angle is near zero degrees and the luminance at the side where the viewing angle is close to ⁇ 80 degrees is smaller in the case of the embodiment than in the case of the comparative example. That is, it can be seen that the luminance uniformity with respect to the viewing angle is improved in the case of the embodiment.
  • the first to mths are sequentially divided from the first surface to the second surface direction by using each liquid crystal pitch as a unit.
  • m is a natural number
  • a cholesteric liquid crystal layer comprising a liquid crystal pitch period, wherein the cholesteric liquid crystal layer is the first to the nth (where n is a natural number of n ⁇ m) liquid crystal pitch interval, k (Where k is a natural number of 1 ⁇ k?
  • the ratio when the liquid crystal pitch in the liquid crystal pitch section is larger than the liquid crystal pitch in the k-1 liquid crystal pitch section is 70% or more, and the n + 1 th to mth liquid crystals With respect to the pitch section, the ratio of the liquid crystal pitch of the h th liquid crystal pitch section (where h is a natural number of n + 1 ⁇ h ⁇ m) is smaller than the liquid crystal pitch of the h-1 liquid crystal pitch section may be 70% or more. .
  • At least one liquid crystal pitch of the n-th and n-th liquid crystal pitch periods has a maximum value
  • the liquid crystal pitch of the m-th liquid crystal pitch period has a minimum value
  • the liquid crystal pitch of the first liquid crystal pitch period has a maximum value. It has a value between the value and the minimum value.
  • a liquid crystal pitch section including a point where the liquid crystal pitch has a maximum value is, for example, an nth liquid crystal pitch section.
  • the ratio at which the kth liquid crystal pitch section has a larger value than the liquid crystal pitch of the k-1th liquid crystal pitch section is 70% or more. That is, any k-th liquid crystal pitch interval of the first to nth liquid crystal pitch intervals has a liquid crystal pitch larger than the k-1th liquid crystal pitch interval, and the first to n-th liquid crystal pitch intervals generally tend to increase the liquid crystal pitch.
  • the first to n-th liquid crystal pitch periods correspond to the first gradation region described above.
  • any h-th liquid crystal pitch section of the n + 1 to m-th liquid crystal pitch sections is h-
  • the ratio which has a value smaller than the liquid crystal pitch of 1 liquid crystal pitch area is 70% or more. That is, any h-th liquid crystal pitch interval of the n + 1th to mth liquid crystal pitch intervals has a liquid crystal pitch smaller than the h-1th liquid crystal pitch interval, and the n + 1th to mth liquid crystal pitch intervals generally have a liquid crystal pitch. Tends to decrease.
  • the n + 1 th to m th liquid crystal pitch periods correspond to the second gradation region described above.
  • the cholesteric liquid crystal layer may include 25 to 60 liquid crystal pitches.
  • the thickness of the cholesteric liquid crystal layer at this time is, for example, 6.0 to 6.5 um.
  • 15 and 16 are graphs showing a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some other embodiments of the present invention.
  • the cholesteric liquid crystal layer 110 includes a first gradation region GR1 and a second gradation region GR2, and the first gradation region GR1 is The liquid crystal pitch decreases in the first direction, and the liquid crystal pitch decreases in the second direction in the second gradation region GR2.
  • the liquid crystal pitch reduction rate ⁇ 1 of the first gradation region GR1 and the liquid crystal pitch increase rate ⁇ 2 of the second gradation region GR2 are different from each other.
  • the cholesteric liquid crystal layer 110 may include a first gradation region GR1 in which the liquid crystal pitch decreases in the first direction, and a liquid crystal pitch in the second direction.
  • the liquid crystal pitch has a maximum value in a region adjacent to either one of the first surface and the second surface.
  • the liquid crystal pitch has a minimum value in the region between the first and second surfaces, and in the region adjacent to the other one of the first and second surfaces, the liquid crystal pitch has a value between the maximum value and the minimum value. It is distinguished from the above-described embodiments. Other components are substantially the same as the above-described embodiments.
  • a broadband reflective liquid crystal film having a reflectance of about 30% to about 70% with respect to the wavelength range of visible light is discussed, but the present invention is not limited thereto, and some wavelengths or other wavelengths of visible light are not limited thereto.
  • visible light for example, infrared, ultraviolet, X-rays, or the like, or may be adjusted to have a reflectance for high frequency, medium frequency, low frequency electromagnetic waves, and the like.
  • the reflectance is not limited to the above range, and it is apparent that other various reflectances may be employed.
  • the broadband reflective liquid crystal film As described above, according to the broadband reflective liquid crystal film according to the embodiments of the present invention, even if the liquid crystal layer is not laminated in multiple layers, it is possible to reflect the entire wavelength range of visible light. Therefore, the thickness of the broadband reflective liquid crystal film is reduced, and the light transmittance can be improved. In addition, unlike the case of laminating in a multilayer, since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
  • the liquid crystal pitch increases from a value to a maximum value and then decreases to a minimum value or decreases from the value to a minimum value.
  • the light reflectance can be further improved by forming a profile of the liquid crystal pitch which is increased to the maximum value.
  • 17 and 18 are cross-sectional views of a broadband reflective liquid crystal film according to some other embodiments of the present invention.
  • the broadband reflective liquid crystal films 101 and 102 may include a first surface 110_1 and a second surface of the cholesteric liquid crystal layer 110.
  • 110_2) further comprises a retardation film 120 formed on one surface of the substrate, and the substrate 105 formed on the other surface.
  • the broadband reflective liquid crystal film 101 includes a substrate 105 and a collet formed on the first surface 110_1 of the cholesteric liquid crystal layer 110.
  • the phase difference film 120 formed on the second surface 110_2 of the steric liquid crystal layer 110 may be further included.
  • the first surface 110_1 of the cholesteric liquid crystal layer 110 is an incident surface on which light is incident
  • the second surface 110_2 is an exit surface on which light is emitted.
  • the broadband reflective liquid crystal film 102 is a substrate 105 formed on the second surface 110_2 of the cholesteric liquid crystal layer 110. And a retardation film 120 formed on the first surface 110_1 of the cholesteric liquid crystal layer 110.
  • the second surface 110_2 of the cholesteric liquid crystal layer 110 is the entrance face and the first surface 110_1 is the exit face.
  • Substrate 105 is a material capable of supporting the cholesteric liquid crystal layer 110, for example, a transparent material capable of transmitting light, for example, polycarbonate (poly carbonate), poly sulfone (poly sulfone), poly Acrylate (poly acrylate), poly styrene (poly styrene), poly vinyl chloride (poly vinyl chloride), poly vinyl alcohol (poly vinyl alcohol), poly norbornene (polyester), polyester (poly ester) It can comprise a series of materials.
  • the substrate may be made of polyethylene terephtalate or polyethylene naphthalate.
  • the retardation film 120 is formed on the cholesteric liquid crystal layer 110 to linearly polarize light passing through the cholesteric liquid crystal layer 110.
  • the retardation film 120 may be a ⁇ / 4 retardation film for retarding the phase of light by ⁇ / 4.
  • the substrate 105 and the retardation film 120 are formed on both surfaces of the cholesteric liquid crystal layer 110, but some embodiments may omit either.
  • a retardation film made of polycarbonate or the like may be applied to the substrate 105.
  • the retardation film is integrally formed on the broadband reflective liquid crystal film to act as a composite film.
  • the interposition of the adhesive can be omitted, so that the thickness of the broadband reflective liquid crystal films 101 and 102 can be reduced. In addition to reducing, it is possible to prevent the distortion of light due to the interposition of the adhesive.
  • 19 to 23 are cross-sectional views illustrating process steps of a method of manufacturing a broadband reflective liquid crystal film according to embodiments of the present invention.
  • the cholesteric liquid crystal coating layer 110a is formed by coating a liquid cholesteric liquid crystal coating solution on the substrate 105.
  • the cholesteric liquid crystal coating liquid may include a nematic liquid crystal and a chiral dopant, a UV curable material, and a photoinitiator.
  • the blending ratio of the nematic liquid crystal and the chiral dopant changes the reflected light wavelength of the cholesteric liquid crystal.
  • the ratio of the nematic liquid crystal to the chiral dopant may be adjusted within the range of, for example, about 96: 4 to about 94: 6.
  • the nematic liquid crystal and the chiral dopant may have different mixing ratios.
  • UV curable materials and photoinitiators are added to perform the subsequent curing process.
  • UV curable materials include reactive oligomers such as acrylic, urethane, polyester, silicone, ester, and the like, and monofunctional (meth) acrylate monomers or polyfunctional (di, tri) (meth) acrylate monomers.
  • monofunctional (meth) acrylate or polyfunctional (meth) acrylate monomer 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, tetrahydrofurfuryl (meth), for example Acrylate, butoxy ethyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, di Cyclopentadiene (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate,
  • the photoinitiator is one or more free radical initiators selected from benzyl ketals, benzoin ethers, acetophenone derivatives, ketoxime ethers, benzophenones, benzo or thioxanthone compounds, onium salts, ferrocenium salts ( ferrocenium salts, and one or more cationic initiators selected from diazonium salts, or mixtures thereof.
  • Coating of the cholesteric liquid crystal coating liquid may be performed by various known coating methods for coating a solution on a substrate 105, for example, roll coating, dip coating, spin coating, slit coating, air knife coating, gravure coating, and three roll reverse. reverse) coating, comma coating and the like.
  • the liquid crystal coating layer 110a is dried.
  • the drying process is performed to reduce the fluidity of the liquid crystal coating layer 110a to enhance process convenience and to facilitate the subsequent curing process.
  • the said drying process can mount a drying object, for example in a heat processing apparatus or an oven.
  • the cholesteric liquid crystal molecules in the liquid crystal coating layer 110a may be aligned with the first liquid crystal pitch.
  • each of the cholesteric liquid crystal molecules may have the same liquid crystal pitch, but may be aligned with a partially different liquid crystal pitch depending on the process conditions.
  • the dried cholesteric liquid crystal coating layer (see 110a of FIG. 19) is first cured, for example, at a temperature of about 20 to 100 ° C.
  • FIG. 20 the dried cholesteric liquid crystal coating layer (see 110a of FIG. 19) is first cured, for example, at a temperature of about 20 to 100 ° C.
  • the first curing 910 uses less energy than the subsequent second and third curing to form a cholesteric liquid crystal coating layer 110b comprising a partially cured film.
  • the first curing may be performed with a first energy, for example, an ultraviolet irradiation dose of about 10 mJ / cm 2 to 200 mJ / cm 2.
  • a first heat treatment 810 is performed.
  • the first heat treatment 810 may proceed to the second temperature.
  • the second temperature may proceed to a temperature lower than the first temperature at the time of the coating and drying described above.
  • the first heat treatment 810 may be performed for a few seconds to several minutes at a temperature of about 4 to 80 °C.
  • the liquid crystal pitch of the liquid crystal molecules that are already oriented is at least partially varied.
  • the liquid crystal pitch of some liquid crystal molecules generated when performing the first curing may increase.
  • Some liquid crystal molecules can maintain the existing liquid crystal pitch. This phenomenon can be understood to be due to the energy by the first heat treatment.
  • the liquid crystal molecules located in the adjacent space are almost similar to the conditions exposed to the first curing or the heat treatment, they are likely to exhibit the same reactivity, thereby forming a region having the same liquid crystal. If it is assumed that each region is formed in a layered structure as shown in FIG. 1, it can be understood that the liquid crystal molecules in the first region have almost similar conditions exposed to the first curing or heat treatment. The same understanding is possible about the second region and the third region.
  • a second curing 920 is performed simultaneously with the second heat treatment 820.
  • the second heat treatment 820 may be performed at a third temperature.
  • the third temperature may be performed at a temperature higher than the second temperature of the first heat treatment 810, for example, about 50 ° C to about 150 ° C.
  • the second curing may be performed at a second energy. That is, it can travel with energy higher than the 1st energy of the 1st hardening.
  • the second curing When the second curing is performed through UV irradiation, the second curing 920 may be performed at, for example, an ultraviolet irradiation amount of about 70 mJ / cm 2 to 700 mJ / cm 2.
  • a third curing 930 is performed along with the third heat treatment 830.
  • the third heat treatment 830 may be performed at a fourth temperature.
  • the fourth temperature may be performed at a temperature similar to the third temperature of the second heat treatment 820, for example, about 50 ° C. to about 150 ° C.
  • the third hardening 930 may be performed with the third energy.
  • the third energy is similar to or higher than the second energy of the second curing 920, and when UV irradiation is used, the third curing 930 is performed with an ultraviolet radiation dose of, for example, about 70 mJ / cm 2 to about 1200 mJ / cm 2. can do.
  • the third heat treatment and the third curing may be repeatedly performed at least once or more.
  • the broadband reflective liquid crystal film since only one lamination of the liquid crystal coating layer may have a reflectance in the entire wavelength range of visible light, a manufacturing process is performed rather than forming a multilayer liquid crystal layer. This is much simpler and the process efficiency can be improved.
  • the broadband reflective liquid crystal film described above may be used to improve light efficiency by being employed in a light source assembly or a liquid crystal display device including the same.
  • the light source assembly is classified into a direct type light source assembly in which the lamp is located at the bottom, and an edge type light source assembly in which the lamp is located at the side, and the like. It is possible.
  • the present invention is also applicable to a back light assembly disposed below the liquid crystal panel or a front light assembly disposed above the liquid crystal panel.
  • a broadband reflective liquid crystal film according to an embodiment of the present invention is applied to a liquid crystal display device including a direct backlight assembly is described.
  • FIG. 24 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
  • the liquid crystal display 500 may include a backlight assembly 200, a liquid crystal panel assembly 300, and a top chassis 400.
  • the backlight assembly 200 includes a lamp 210, a reflective film 235 for reflecting light emitted from the lamp 210, and a diffuser plate 220 and optical films 230 for adjusting optical characteristics of the emitted light. It includes.
  • the lamp 210 may be, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), an External Electrode Fluorescent Lamp (EEFL), or the like.
  • CCFL Cold Cathode Fluorescent Lamp
  • HCFL Hot Cathode Fluorescent Lamp
  • EEFL External Electrode Fluorescent Lamp
  • a reflective film 235 is disposed below the lamp 210 to reflect light emitted downward from the lamp 210 upward.
  • the diffusion plate 220 and the optical films 230 are disposed on the lamp 210.
  • the diffuser plate 220 diffuses the light incident from the lamp 210.
  • the optical films 230 include a diffusion film for diffusing incident light, a prism sheet for collecting incident light, a broadband reflective liquid crystal film partially reflecting incident circular polarization, and a retardation film for converting circularly polarized light into linearly polarized light. , And / or a protective film.
  • the broadband reflective liquid crystal film according to the embodiments of the present invention is applied to at least the broadband reflective liquid crystal film, 50% of circularly polarized light is transmitted and 50% is reflected to all wavelengths of incident visible light. Light utilization can be maximized.
  • the broadband reflective liquid crystal film according to the embodiment of the present invention is made of a cholesteric liquid crystal layer, the thickness is thinner than that of the multilayered layer, and thus the light efficiency is excellent.
  • the adhesive does not need to be interposed so that light distortion can be minimized.
  • the lamp 210, the reflective film 235, the diffuser plate 220, and the optical films 230 are received by the bottom chassis 240 and the mold frame 250.
  • the bottom chassis 240 forms the bottom surface of the backlight assembly 200, and a mold frame 250 having a window frame shape is disposed on the bottom chassis 240, and the light diffuser plate is disposed at a seating end of the mold frame 250.
  • 220, optical films 230 and liquid crystal panel 310 are seated.
  • the liquid crystal panel assembly 300 includes a liquid crystal panel 310, a first display panel 311, and a second liquid crystal panel 310 including a first display panel 311, a second display panel 312, and a liquid crystal layer interposed therebetween.
  • a polarizing plate (not shown) attached to the surface of the display panel 312, a data TCP (Tape Carrier Package) 330 attached to one side of the liquid crystal panel 310, and a printed circuit board attached to the data TCP 330 ( 340).
  • a data driver integrated circuit (IC) 331 is mounted on the data TCP 330.
  • a gate TCP (not shown) is attached to the other side of the liquid crystal panel 310 adjacent to the attachment side of the data TCP 330, and a gate driver IC (not shown) is mounted on the gate TCP.
  • the top chassis 400 covers an edge of the liquid crystal panel 310 and surrounds side surfaces of the liquid crystal panel 310 and the backlight assembly 200.
  • the data TCP 330, the printed circuit board 340, and the like are bent and received in a space between the side wall of the bottom chassis 240 and the side wall of the top chassis 400.
  • the broadband reflective liquid crystal film according to the exemplary embodiments of the present invention is applied, whereby the thickness is reduced, the luminance is improved, and the optical interference effect can be suppressed. Accordingly, the image quality of the liquid crystal display including the backlight assembly may be improved.

Abstract

Provided are a broadband reflective liquid crystal film and a method for manufacturing same. The broadband reflective liquid crystal film comprises a cholesteric liquid crystal layer in which the pitch of the liquid crystals varies from a first surface toward a second surface. The cholesteric liquid crystal layer has a first liquid crystal pitch in a first region adjacent to the first surface, a second liquid crystal pitch smaller than the first liquid crystal pitch in a second region adjacent to the second surface, and a third liquid crystal pitch larger than the first liquid crystal pitch in a third region formed between the first region and the second region.

Description

광대역 반사형 액정 필름, 그의 제조 방법과 광대역 반사형 액정 필름을 포함하는 광원 어셈블리 및 액정 표시 장치Broadband reflective liquid crystal film, light source assembly and liquid crystal display device including the manufacturing method and broadband reflective liquid crystal film
본 발명은 광대역 반사형 액정 필름, 그의 제조 방법과 광대역 반사형 액정 필름을 포함하는 광원 어셈블리 및 액정 표시 장치에 관한 것이다. The present invention relates to a broadband reflective liquid crystal film, a manufacturing method thereof, and a light source assembly and a liquid crystal display device including the broadband reflective liquid crystal film.
액정 표시 장치(Liquid Crystal Display; LCD)는 두 개의 유리판 사이에 액정을 주입해 상하 유리판 전극에 전원을 인가하여 각 화소에 액정 분자배열이 변화함으로써 영상을 표시하는 장치이다. 음극선관 표시 장치(Cathode Ray Tube; CRT), 플라즈마 표시 장치(Plasma Display Panel; PDP) 등과는 달리 액정 표시 장치에 의한 표시는 그 자체가 비발광성이기 때문에 빛이 없는 곳에서는 사용이 불가능하다. 이러한 단점을 보완하여 어두운 곳에서의 사용이 가능하게 할 목적으로 정보 표시면에 균일하게 조사되는 조명 장치, 예컨대 광원 어셈블리를 장착한다.A liquid crystal display (LCD) is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel. Unlike a cathode ray tube (CRT), a plasma display panel (PDP), and the like, a display by a liquid crystal display is not light-emitting because it is non-luminous in itself. To compensate for this disadvantage, a lighting device such as a light source assembly that is uniformly irradiated onto the information display surface is mounted for the purpose of enabling use in a dark place.
액정 표시 장치에 사용되는 광원 어셈블리는 크게 2종류로 구분된다. 첫째는 액정 표시 장치의 측면에서 빛을 제공하는 에지형 광원 어셈블리고 둘째는 액정 표시 장치의 후면에서 빛을 직접 제공하는 직하형 광원 어셈블리다. 에지형 광원 어셈블리의 경우, 광원으로부터 출사된 빛이 상측으로 조사되도록 하기 위해 도광판을 구비하며, 도광판을 통과한 빛의 광학적 특성을 조절하기 위해 도광판 위쪽에 적어도 하나의 광학 필름을 구비한다. 직하형 광원 어셈블리의 경우에는 광원으로부터 출사된 빛의 휘선을 감소시키기 위해 확산판을 구비하며, 확산판을 통과한 빛의 광학적 특성을 조절하기 위해 적어도 하나의 광학 필름을 구비한다. 몇몇 액정 표시 장치는 휘도를 개선하기 위해 광학 필름의 하나로서 반사형 액정 필름을 구비한다. The light source assembly used in the liquid crystal display device is largely classified into two types. The first is an edge type light source assembly that provides light at the side of the liquid crystal display, and the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display. In the case of the edge type light source assembly, a light guide plate is provided to allow the light emitted from the light source to be irradiated upward, and at least one optical film is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate. In the case of the direct type light source assembly, a diffuser plate is provided to reduce bright lines of light emitted from the light source, and at least one optical film is provided to adjust optical characteristics of light passing through the diffuser plate. Some liquid crystal display devices include a reflective liquid crystal film as one of the optical films to improve the brightness.
일반적으로 콜레스테릭 액정은 반사광 밴드폭이 그리 넓지 못하여, 단일 콜레스테릭 액정으로 가시광 전파장을 커버하기는 어렵다. 따라서, 가시광 전파장을 커버하기 위해서는 다수의 액정층을 적층한다.In general, cholesteric liquid crystals do not have a wide bandwidth of reflected light, and it is difficult to cover visible light waves with a single cholesteric liquid crystal. Therefore, in order to cover the visible light electric wave field, a plurality of liquid crystal layers are stacked.
그러나, 다수의 액정층을 적층하면, 그 자체로 두께가 두꺼워져 광투과율이 불리해질 뿐만 아니라, 액정층간에 접착제를 개재하여야 하기 때문에, 접착제에 의해서도 광투과율이 저하된다. 또, 접착제는 광 왜곡을 발생시킨다. 그 결과, 이러한 반사형 액정 필름을 채용한 광원 어셈블리 및 액정 표시 장치의 휘도, 광질, 화질이 저하된다.However, when a large number of liquid crystal layers are laminated, the thickness itself becomes thick and the light transmittance is not only disadvantageous, but also the adhesive is interposed between the liquid crystal layers. In addition, the adhesive generates light distortion. As a result, the brightness, light quality, and image quality of the light source assembly and the liquid crystal display device employing such a reflective liquid crystal film are reduced.
본 발명은 이러한 점들에 근거해 착안된 것으로서, 본 발명이 해결하고자 하는 과제는 하나의 액정층만을 사용하면서도 가시광의 전파장 범위에 대해 소정의 반사율을 가질 수 있는 광대역 반사형 액정 필름을 제공하고자 하는 것이다. The present invention has been conceived based on these points, and the problem to be solved by the present invention is to provide a broadband reflective liquid crystal film which can have a predetermined reflectance for the full-wavelength range of visible light while using only one liquid crystal layer. will be.
본 발명이 해결하고자 하는 다른 과제는 상기한 광대역 반사형 액정 필름을 포함하는 조명 장치를 제공하고자 하는 것이다.Another object of the present invention is to provide an illumination device including the broadband reflective liquid crystal film described above.
본 발명이 해결하고자 하는 또 다른 과제는 상기한 광대역 반사형 액정 필름을 포함하는 액정 표시 장치를 제공하고자 하는 것이다. Another object of the present invention is to provide a liquid crystal display device including the broadband reflective liquid crystal film described above.
본 발명이 해결하고자 하는 또 다른 과제는 하나의 액정층만을 사용하면서도 가시광의 전파장 범위에 대해 소정의 반사율을 가질 수 있는 광대역 반사형 액정 필름의 제조 방법을 제공하고자 하는 것이다.Another problem to be solved by the present invention is to provide a method for manufacturing a broadband reflective liquid crystal film which can have a predetermined reflectance with respect to the wavelength range of visible light while using only one liquid crystal layer.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름은, 제1 표면에서 제2 표면 방향으로 액정 피치가 변하는 콜레스테릭 액정층을 포함하되, 상기 콜레스테릭 액정층은 상기 제1 표면에 인접한 제1 영역에서 제1 액정 피치를 가지고, 상기 제2 표면에 인접한 제2 영역에서 상기 제1 액정 피치보다 작은 제2 액정 피치를 가지며, 상기 제1 및 제2 영역 사이의 제3 영역에서 상기 제1 액정 피치보다 큰 제3 액정 피치를 가지는 것을 포함한다.The broadband reflective liquid crystal film according to an embodiment of the present invention for solving the above problems includes a cholesteric liquid crystal layer in which the liquid crystal pitch is changed from the first surface to the second surface direction, wherein the cholesteric liquid crystal layer is A first liquid crystal pitch in a first region adjacent to the first surface, a second liquid crystal pitch smaller than the first liquid crystal pitch in a second region adjacent to the second surface, and between the first and second regions And having a third liquid crystal pitch greater than the first liquid crystal pitch in a third region.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 광대역 반사형 액정 필름은, 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로, 상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 증가하고, 상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 증가하는 액정층을 포함하되, 상기 제1 그라데이션 영역의 액정 피치 증가율과, 상기 제2 그라데이션 영역의 액정 피치 감소율이 서로 다른 것을 포함한다.The broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, wherein the first gradation region has a liquid crystal pitch in a first direction. A liquid crystal layer increasing on the first gradation region to increase the liquid crystal pitch in a second direction opposite to the first direction, wherein the liquid crystal pitch of the first gradation region is increased; And a liquid crystal pitch reduction rate of the second gradation region is different from each other.
상기 과제를 해결하기 위한 본 발명의 또 다른 실시예에 따른 광대역 반사형 액정 필름은, 각 액정 피치를 하나의 단위로 하여 제1 표면에서 제2 표면 방향으로 순차로 구분한 제1 내지 제m (단, m은 자연수) 액정 피치 구간을 포함하는 콜레스테릭 액정층을 포함하되, 상기 콜레스테릭 액정층은 상기 제1 내지 상기 제n (단, n은 n<m인 자연수) 액정 피치 구간에 대하여, 제k (단, k는 1<k≤n인 자연수) 액정 피치 구간의 액정 피치가 제k-1 액정 피치 구간의 액정 피치보다 큰 경우의 비율이 70% 이상이고, 상기 제n+1 내지 상기 제m 액정 피치 구간에 대하여, 제h (단, h는 n+1<h≤m인 자연수) 액정 피치 구간의 액정 피치가 제h-1 액정 피치 구간의 액정 피치보다 작은 경우의 비율이 70% 이상이며, 상기 제n 및 상기 제n+1 액정 피치 구간 중 적어도 하나의 액정 피치가 최대값을 가지고, 상기 제m 액정 피치 구간의 액정 피치가 최소값을 가지며, 상기 제1 액정 피치 구간의 액정 피치가 상기 최대값과 상기 최소값의 사이값을 가지는 것을 포함한다.In the broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems, the first to m (divided sequentially from the first surface to the second surface direction using each liquid crystal pitch as a unit) Wherein m is a natural number) and includes a cholesteric liquid crystal layer including a liquid crystal pitch period, wherein the cholesteric liquid crystal layer is formed in the first to nth (where n is a natural number of n <m) liquid crystal pitch intervals. With respect to k (where k is a natural number of 1 < k ≤ n), the ratio when the liquid crystal pitch of the liquid crystal pitch section is larger than the liquid crystal pitch of the k-1 liquid crystal pitch section is 70% or more, and the n + 1th The ratio of the liquid crystal pitch of the h th liquid crystal pitch section to the m th liquid crystal pitch section (where h is a natural number of n + 1 <h ≦ m) is smaller than the liquid crystal pitch of the h-1 liquid crystal pitch section. 70% or more, and the liquid crystal pitch of at least one of the nth and nth + 1th liquid crystal pitch periods is a maximum value Have, includes the m-th liquid crystal pitch of the liquid crystal region has a pitch has a minimum value, when the first liquid crystal pitch of the liquid crystal region has a pitch between the value of the maximum value and the minimum value.
상기 과제를 해결하기 위한 본 발명의 또 다른 실시예에 따른 광대역 반사형 액정 필름은, 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로, 상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 증가하고, 상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 증가하는 액정층을 포함하되, 상기 액정층에 대한 상기 제1 그라데이션 영역의 비율과 상기 액정층에 대한 상기 제2 그라데이션 영역의 비율이 서로 다른 것을 포함한다.The broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, the first gradation region is a liquid crystal pitch in a first direction Is increased, and the second gradation region is formed on the first gradation region, and includes a liquid crystal layer in which a liquid crystal pitch increases in a second direction opposite to the first direction, wherein the first relative to the liquid crystal layer The ratio of the gradation region and the ratio of the second gradation region to the liquid crystal layer may be different from each other.
상기 과제를 해결하기 위한 본 발명의 또 다른 실시예에 따른 광대역 반사형 액정 필름은, 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로, 상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 감소하고, 상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 감소하는 액정층을 포함하되, 상기 제1 그라데이션 영역의 액정 피치 증가율과, 상기 제2 그라데이션 영역의 액정 피치 감소율이 서로 다른 것을 포함한다.The broadband reflective liquid crystal film according to another embodiment of the present invention for solving the above problems is a liquid crystal layer including a first gradation region and a second gradation region, the first gradation region is a liquid crystal pitch in a first direction Is reduced, and the second gradation region includes a liquid crystal layer formed on the first gradation region to reduce the liquid crystal pitch in a second direction opposite to the first direction, wherein the liquid crystal pitch of the first gradation region is reduced. The increase rate and the liquid crystal pitch decrease rate of the second gradation region may be different from each other.
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 광원 어셈블리는 상기한 바와 같은 광대역 반사형 액정 필름을 포함한다.The light source assembly according to an embodiment of the present invention for solving the other problem includes a broadband reflective liquid crystal film as described above.
상기 또 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 액정 표시 장치는 상기한 바와 같은 광대역 반사형 액정 필름을 포함한다.The liquid crystal display according to the exemplary embodiment of the present invention for solving the another problem includes the broadband reflective liquid crystal film as described above.
상기 또 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름의 제조 방법은, 기재 상에 액상의 콜레스테릭 액정 코팅액을 도포하여, 상기 기재의 일면 상에 액정 코팅층을 형성하고, 상기 액정 코팅층을 제1 온도에서 건조시키고, 상기 건조된 액정 코팅층에 제1 에너지로 제1 경화를 진행하고, 상기 제1 경화된 액정 코팅층에 상기 제1 온도보다 낮은 제2 온도로 제1 열처리를 진행하고, 상기 제1 열처리된 액정 코팅층에 상기 제2 온도보다 높은 제3 온도 제2 열처리를 진행함과 동시에 상기 제1 에너지보다 큰 제2 에너지로 제2 경화를 진행하고, 상기 제2 열처리 및 상기 제2 본경화된 액정 코팅층에 상기 제3 온도보다 높은 제4 온도로 제3 열처리를 진행함과 동시에 상기 제2 에너지보다 큰 제3 에너지로 제3 경화를 진행하는 것을 포함한다.In the method for manufacturing a broadband reflective liquid crystal film according to an embodiment of the present invention for solving the above another problem, by applying a liquid cholesteric liquid crystal coating liquid on a substrate, to form a liquid crystal coating layer on one surface of the substrate And drying the liquid crystal coating layer at a first temperature, performing a first curing on the dried liquid crystal coating layer with first energy, and performing a first curing on the first cured liquid crystal coating layer at a second temperature lower than the first temperature. Heat treatment is performed, and the second heat treatment is performed on the first heat-treated liquid crystal coating layer at a third temperature and a second heat treatment higher than the second temperature, and the second curing is performed at a second energy greater than the first energy, and the second heat treatment is performed. Performing a third heat treatment on the second main cured liquid crystal coating layer at a fourth temperature higher than the third temperature and performing a third curing at a third energy larger than the second energy. Include.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
도 1은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름의 단면도이다. 1 is a cross-sectional view of a broadband reflective liquid crystal film according to an embodiment of the present invention.
도 2는 도 1의 제1 내지 제3 영역 내의 각 액정 피치를 도시한 개략도이다.FIG. 2 is a schematic diagram illustrating each liquid crystal pitch in the first to third regions of FIG. 1.
도 3은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름에서 빛의 진행 방향을 예시적으로 나타낸 개략도이다.FIG. 3 is a schematic diagram illustrating a traveling direction of light in a broadband reflective liquid crystal film according to an exemplary embodiment of the present invention.
도 4 내지 도 6은 각각 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름의 각 영역에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프들이다.4 to 6 are graphs showing transmittances according to wavelengths of light incident on respective regions of the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이다.7 is a graph showing transmittance according to the wavelength of light incident on the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
도 8 및 도 9는 본 발명의 몇몇 실시예에 따른 콜레스테릭 액정층의 두께 위치에 따른 피치 변화를 나타낸 그래프이다.8 and 9 are graphs illustrating a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some embodiments of the present invention.
도 10 및 도 11은 본 발명의 몇몇 실시예들에 따른 광대역 반사형 액정 필름의 두께에 대한 액정 피치의 크기 및 반사 파장의 크기의 변화를 나타낸 그래프이다.10 and 11 are graphs showing changes in the size of the liquid crystal pitch and the size of the reflection wavelength with respect to the thickness of the broadband reflective liquid crystal film according to some embodiments of the present invention.
도 12 및 도 13은 본 발명의 몇몇 실시예들에 따른 광대역 반사형 액정 필름의 OAC를 측정한 결과를 나타낸 사진이다.12 and 13 are photographs showing the results of measuring the OAC of the broadband reflective liquid crystal film according to some embodiments of the present invention.
도 14는 비교예 및 실시예에 대하여 시야각에 대한 휘도 변화를 나타낸 그래프이다.14 is a graph illustrating a change in luminance with respect to a viewing angle with respect to comparative examples and examples.
도 15 및 도 16은 본 발명의 몇몇 다른 실시예에 따른 콜레스테릭 액정층의 두께 위치에 따른 피치 변화를 나타낸 그래프이다.15 and 16 are graphs showing a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some other embodiments of the present invention.
도 17 및 도 18은 본 발명의 몇몇 다른 실시예들에 따른 광대역 반사형 액정 필름의 단면도이다.17 and 18 are cross-sectional views of a broadband reflective liquid crystal film according to some other embodiments of the present invention.
도 19 내지 도 23은 본 발명의 실시예들에 따른 광대역 반사형 액정 필름의 제조 방법을 나타낸 공정 단계별 단면도들이다.19 to 23 are cross-sectional views illustrating process steps of a method of manufacturing a broadband reflective liquid crystal film according to embodiments of the present invention.
도 24는 본 발명의 일 실시예에 따른 액정 표시 장치의 단면도이다.24 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
소자(elements) 또는 층이 다른 소자 또는 층"위(on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 "직접 위(directly on)"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. "및/또는"는 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. References to elements or layers "on" other elements or layers include all instances where another layer or other element is directly over or in the middle of another element. On the other hand, when a device is referred to as "directly on", it means that it does not intervene with another device or layer in between. Like reference numerals refer to like elements throughout. "And / or" includes each and all combinations of one or more of the items mentioned.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의"아래(below)"또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다. The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as terms that include different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as "below" or "beneath" of another device may be placed "above" of another device. Thus, the exemplary term "below" can encompass both an orientation of above and below. The device can also be oriented in other directions, so that spatially relative terms can be interpreted according to orientation.
본 명세서에서 사용되는 용어인 "필름"은 "~시트", "~판"의 의미로 사용될 수 있다.As used herein, the term "film" may be used to mean "~ sheet" and "~ plate".
본 명세서에서 "광대역 반사형 액정 필름"이라 함은 액정층을 포함하는 필름을 의미하며, 여기에 다른 층이나 필름이 추가로 포함되어 있는 경우를 배제하지 않는다. 예를 들면, 필름 상에 액정층이 형성되어 있고, 그 위 또는 그 이면에 위상차 필름이 적층되어 있는 복합 필름 등의 경우에도 액정층을 포함하는 필름인 이상 광대역 반사형 액정 필름으로 지칭될 수 있다.As used herein, the term "broadband reflective liquid crystal film" means a film including a liquid crystal layer, and does not exclude a case in which another layer or film is further included. For example, a composite film in which a liquid crystal layer is formed on a film, and a retardation film is laminated on or behind it may be referred to as a broadband reflective liquid crystal film as long as it is a film including a liquid crystal layer. .
이하, 첨부된 도면을 참고로 하여 본 발명의 실시예들에 대해 설명한다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름의 단면도이다. 도 2는 도 1의 제1 내지 제3 영역 내의 각 액정 피치를 도시한 개략도이다.1 is a cross-sectional view of a broadband reflective liquid crystal film according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating each liquid crystal pitch in the first to third regions of FIG. 1.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름(100)은 콜레스테릭 액정(또는 카이럴 네마틱 액정)을 포함하는 콜레스테릭 액정층(110)을 포함한다. 콜레스테릭 액정은 네마틱 액정(nematic liquid crystal)과 키랄 도펀트(chiral dopant)를 포함하여 이루어질 수 있다. 콜레스테릭 액정은 일정한 피치(pitch)를 가지며 반복적으로 꼬인 나선형 구조를 갖는다. 반복되는 꼬인 나선형 구조는 광의 브래그(Bragg) 반사를 유도한다. Referring to FIG. 1, the broadband reflective liquid crystal film 100 according to an embodiment of the present invention includes a cholesteric liquid crystal layer 110 including cholesteric liquid crystals (or chiral nematic liquid crystals). The cholesteric liquid crystal may include a nematic liquid crystal and a chiral dopant. Cholesteric liquid crystals have a constant pitch and have a spiral structure twisted repeatedly. Repeated twisted helical structure induces Bragg reflection of light.
콜레스테릭 액정층(110)은 단일막으로 형성될 수 있다. 몇몇 실시예에서 상기 단일막 내에 포함되는 콜레스테릭 액정 분자는 모두 동일 물질일 수 있다.The cholesteric liquid crystal layer 110 may be formed as a single layer. In some embodiments, the cholesteric liquid crystal molecules included in the single layer may be the same material.
콜레스테릭 액정은 나선형 구조의 꼬인 방향에 따라 우선성(right-handed) 콜레스테릭 액정 및 좌선성(left-handed) 콜레스테릭 액정으로 분류된다. 우선성 콜레스테릭 액정은 우원 편광된 빛은 반사하지만, 좌원 편광된 빛은 투과한다. 반대로, 좌선성 콜레스테릭 액정은 우원 편광된 빛은 투과하지만, 좌원 편광된 빛은 반사한다. 따라서, 이론적으로 콜레스테릭 액정은 그 콜레스테릭 액정이 반사하는 파장 범위 내에 포함된 빛의 50%는 투과하고, 나머지 50%는 반사한다. Cholesteric liquid crystals are classified into right-handed cholesteric liquid crystals and left-handed cholesteric liquid crystals according to the twisted direction of the helical structure. Preferred cholesteric liquid crystals reflect right polarized light but transmit left polarized light. In contrast, the left cholesteric liquid crystal transmits right polarized light but reflects left circular polarized light. Therefore, in theory, the cholesteric liquid crystal transmits 50% of the light included in the wavelength range reflected by the cholesteric liquid crystal and reflects the remaining 50%.
즉, 외부에서 제1 및 제2 원형 편광을 포함하는 광이 입사될 때, 콜레스테릭 액정층(110)은 제1 또는 제2 원형 편광 중 각 영역의 액정 피치에 대응하는 파장의 빛을 반사시킨다. 예를 들어, 콜레스테릭 액정층(110)이 우선성 콜레스테릭 액정을 포함하는 경우, 외부에서 제1 및 제2 원형 편광을 포함하는 광이 입사되면, 콜레스테릭 액정층(110)은 우원 편광된 빛을 반사하되, 우원 편광된 빛 중 각 영역의 액정 피치에 대응하는 파장의 빛을 각각 반사시킨다.That is, when light including first and second circularly polarized light is incident from the outside, the cholesteric liquid crystal layer 110 reflects light having a wavelength corresponding to the liquid crystal pitch of each region among the first or second circularly polarized light. Let's do it. For example, when the cholesteric liquid crystal layer 110 includes the preferential cholesteric liquid crystal, when the light including the first and second circularly polarized light is incident from the outside, the cholesteric liquid crystal layer 110 Reflects unidirectional polarized light, but reflects light having a wavelength corresponding to the liquid crystal pitch of each region among unipolar polarized light.
콜레스테릭 액정의 피치(액정 피치)는 반사되는 빛의 파장에 관계된다. 콜레스테릭 액정에 의해 반사되는 반사광의 중심 파장은 대체로 액정 피치에 비례한다. 여기서 반사광의 중심 파장이란, 콜레스테릭 액정이 반사하는 반사광이 소정의 밴드폭(band width)을 가질 경우, 그 밴드폭 내에서 최대 반사되는 파장 또는 그 밴드폭의 평균 파장을 의미할 수 있다. 여기서, 상기 반사광의 밴드폭이란, 입사된 빛의 약 30% 내지 약 70%를 반사할 수 있는 파장의 범위를 의미할 수 있으며, 바람직하게는 입사된 빛의 약 40% 내지 약 60%를 반사할 수 있는 파장의 범위를, 더욱 바람직하게는 입사된 빛의 약 50% 정도를 반사할 수 있는 파장의 범위를 의미할 수 있다.The pitch (liquid crystal pitch) of the cholesteric liquid crystal is related to the wavelength of the reflected light. The central wavelength of the reflected light reflected by the cholesteric liquid crystal is generally proportional to the liquid crystal pitch. Here, when the reflected light reflected by the cholesteric liquid crystal has a predetermined band width, the center wavelength of the reflected light may mean a wavelength that is maximum reflected within the band width or an average wavelength of the band width. Here, the bandwidth of the reflected light may mean a range of wavelengths capable of reflecting about 30% to about 70% of the incident light, preferably reflecting about 40% to about 60% of the incident light The range of wavelengths that can be used may mean a range of wavelengths that can more preferably reflect about 50% of incident light.
콜레스테릭 액정층(110)은 제1 표면(110_1) 및 제2 표면(110_2)을 포함한다. 제1 표면(110_1)은 빛이 입사되는 면이고, 제2 표면(110_2)은 제1 표면(110_1)과 반대되는 면으로서, 빛이 투과되어 방출되는 면일 수 있다. 그러나 제1 표면(110_1)과 제2 표면(110_2)이 서로 뒤바뀔 수도 있음은 물론이다. The cholesteric liquid crystal layer 110 includes a first surface 110_1 and a second surface 110_2. The first surface 110_1 is a surface on which light is incident, and the second surface 110_2 is a surface opposite to the first surface 110_1 and may be a surface on which light is transmitted and emitted. However, of course, the first surface 110_1 and the second surface 110_2 may be reversed.
콜레스테릭 액정층(110)은 둘 이상의 서로 다른 액정 피치를 포함한다. 예를 들어, 콜레스테릭 액정층(110)은 제1 표면(110_1)로부터 제2 표면(110_2) 방향으로, 다시 말하면 액정층(110)의 두께 방향으로 액정 피치가 변한다. 몇몇 실시예에서, 콜레스테릭 액정층(110)은 복수의 영역을 포함하되, 각 액정 영역은 복수의 배향된 콜레스테릭 액정 분자를 포함하고, 각 액정 영역은 콜레스테릭 액정 분자에 의해 형성되는 액정 피치에 따라 구분될 수 있다.The cholesteric liquid crystal layer 110 includes two or more different liquid crystal pitches. For example, the cholesteric liquid crystal layer 110 may have a liquid crystal pitch in a direction from the first surface 110_1 to the second surface 110_2, that is, in the thickness direction of the liquid crystal layer 110. In some embodiments, cholesteric liquid crystal layer 110 includes a plurality of regions, each liquid crystal region comprising a plurality of oriented cholesteric liquid crystal molecules, each liquid crystal region formed by cholesteric liquid crystal molecules. Can be classified according to the liquid crystal pitch.
도 1에 도시된 바와 같이, 콜레스테릭 액정층(110)은 제1 표면(110_1)에 인접한 제1 영역(111), 제2 표면(110_2)에 인접한 제2 영역(112), 및 제1 영역(111)과 제2 영역(112) 사이에 형성된 제3 영역(113)을 포함한다. 이 때, 제1 영역(111)은 제1 액정 피치(P1)를 가지는 콜레스테릭 액정을 포함하고, 제2 영역(112)은 제2 액정 피치(P2)를 가지는 콜레스테릭 액정을 포함하고, 제3 영역(113)은 제3 액정 피치(P3)를 가지는 콜레스테릭 액정을 포함한다. 이 때, 제2 액정 피치(P2)는 제1 액정 피치(P1)보다 작고, 제3 액정 피치(P3)는 제1 액정 피치(P1)보다 크다. 즉, 제1 내지 제3 액정 피치(P1~P3)의 크기 관계는 P2 < P1 < P3로 표현된다.As shown in FIG. 1, the cholesteric liquid crystal layer 110 includes a first region 111 adjacent to the first surface 110_1, a second region 112 adjacent to the second surface 110_2, and a first region. The third region 113 is formed between the region 111 and the second region 112. In this case, the first region 111 includes a cholesteric liquid crystal having a first liquid crystal pitch P1, and the second region 112 includes a cholesteric liquid crystal having a second liquid crystal pitch P2. The third region 113 includes a cholesteric liquid crystal having a third liquid crystal pitch P3. At this time, the second liquid crystal pitch P2 is smaller than the first liquid crystal pitch P1, and the third liquid crystal pitch P3 is larger than the first liquid crystal pitch P1. That is, the magnitude relationship of the first to third liquid crystal pitches P1 to P3 is expressed as P2 <P1 <P3.
도 2를 참조하면, 제1 영역(111) 내에는 제1 액정 피치(P1)를 가지며 반복적으로 꼬인 나선형 구조를 가지는 콜레스테릭 액정을 포함한다. 제1 영역(111) 내의 배향된 콜레스테릭 액정이 2 이상의 콜레스테릭 액정 분자를 포함하는 경우, 제1 영역(111) 내의 콜레스테릭 액정 분자는 제1 액정 피치(P1)를 가지며 반복적으로 꼬인 나선형 구조를 가질 수 있다. 마찬가지로, 제2 영역(112) 내에는 제2 액정 피치(P2)를 가지며 반복적으로 꼬인 나선형 구조를 가지는 콜레스테릭 액정을 포함하고, 제3 영역(113) 내에는 제3 액정 피치(P3)를 가지며 반복적으로 꼬인 나선형 구조를 가지는 콜레스테릭 액정을 포함한다. 여기서, 제2 액정 피치(P2)는 제1 액정 피치(P1)보다 작고, 제3 액정 피치(P3)는 제1 액정 피치(P1)보다 크다.Referring to FIG. 2, the first region 111 includes a cholesteric liquid crystal having a first liquid crystal pitch P1 and having a spiral structure twisted repeatedly. When the oriented cholesteric liquid crystal in the first region 111 includes two or more cholesteric liquid crystal molecules, the cholesteric liquid crystal molecules in the first region 111 have a first liquid crystal pitch P1 and are repeatedly It may have a twisted spiral structure. Similarly, the second region 112 includes a cholesteric liquid crystal having a second liquid crystal pitch P2 and a spirally twisted spiral structure, and the third liquid crystal pitch P3 is disposed in the third region 113. And a cholesteric liquid crystal having a spiral structure twisted repeatedly. Here, the second liquid crystal pitch P2 is smaller than the first liquid crystal pitch P1, and the third liquid crystal pitch P3 is larger than the first liquid crystal pitch P1.
상술한 것처럼 액정에 대한 반사광의 중심 파장은 액정 피치에 비례하기 때문에, 각 영역이 모두 동일한 종류의 콜레스테릭 액정으로 이루어져 있더라도, 각 영역(111, 112, 113)의 액정 피치(P1, P2, P3)가 서로 다르게 형성되면, 각 영역에 의해 반사되는 빛의 파장(반사광의 중심 파장)도 상이해진다. 예를 들어, 제1 내지 제3 영역(111, 112, 113)이 P2 < P1 < P3의 크기 관계의 제1 내지 제3 액정 피치를 각각 가질 경우, 제1 영역(111)은 제1 파장의 빛을 반사하고, 제2 영역(112)은 제1 파장보다 작은 제2 파장의 빛을 반사하며, 제3 영역(113)은 제1 파장보다 큰 제3 파장의 빛을 반사할 수 있다. 도 3을 참조하여 더욱 구체적으로 살펴본다.As described above, since the center wavelength of the reflected light with respect to the liquid crystal is proportional to the liquid crystal pitch, the liquid crystal pitches P1, P2, When P3) is formed differently from each other, the wavelength of the light reflected by each region (the central wavelength of the reflected light) is also different. For example, when the first to third regions 111, 112, and 113 have the first to third liquid crystal pitches having a size relationship of P2 <P1 <P3, the first region 111 may have a first wavelength. The light may be reflected, and the second region 112 may reflect light having a second wavelength smaller than the first wavelength, and the third region 113 may reflect light having a third wavelength larger than the first wavelength. With reference to Figure 3 will be described in more detail.
도 3은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름에서 빛의 진행 방향을 예시적으로 나타낸 개략도이다. 도 3에서 제1 광은 제1 파장(λ1)의 좌원 편광(L)된 빛과 제1 파장(λ1)의 우원 편광(R)된 빛을 포함하고, 제2 광은 제2 파장(λ2)의 좌원 편광(L)된 빛과 제2 파장(λ2)의 우원 편광(R)된 빛을 포함하고, 제3 광은 제3 파장(λ3)의 좌원 편광(L)된 빛과 제3 파장(λ3)의 우원 편광(R)된 빛을 포함하는 것으로 가정된다.FIG. 3 is a schematic diagram illustrating a traveling direction of light in a broadband reflective liquid crystal film according to an exemplary embodiment of the present invention. In FIG. 3, the first light includes the left circularly polarized light of the first wavelength λ1 and the right circularly polarized light of the first wavelength λ1, and the second light includes the second wavelength λ2. The left circularly polarized light of (L) and the right polarized light (R) of the second wavelength (λ2) of the light, and the third light is the left circularly polarized light (L) of the third wavelength (λ3) and the third wavelength ( It is assumed to contain unidirectional polarized light R of [lambda] 3).
또, 제1 파장(λ1)은 제1 영역(111)의 반사광의 중심광이되, 제2 및 제3 영역(112, 113)의 반사광의 밴드폭에는 포함되지 않는 것으로 가정된다. 마찬가지로, 제2 파장(λ2)은 제2 영역(112)의 반사광의 중심광이되, 제1 및 제3 영역(111, 113)의 반사광의 밴드폭에는 포함되지 않으며, 제3 파장(λ3)은 제3 영역(113)의 반사광의 중심광이되, 제1 및 제2 영역(111, 112)의 반사광의 밴드폭에는 포함되지 않는 것으로 가정된다. The first wavelength λ1 is assumed to be the center light of the reflected light of the first region 111 but is not included in the bandwidth of the reflected light of the second and third regions 112 and 113. Similarly, the second wavelength λ2 is the center light of the reflected light of the second region 112, but is not included in the bandwidth of the reflected light of the first and third regions 111 and 113, and the third wavelength λ3. Is assumed to be the center light of the reflected light of the third region 113, but is not included in the bandwidth of the reflected light of the first and second regions 111 and 112.
아울러, 설명의 편의를 위하여 제1 내지 제3 영역(111, 112, 113)이 모두 우선성 콜레스테릭 액정으로 이루어졌다고 가정된다. 물론, 이는 하나의 예시적인 가정에 불과하며, 각 영역이 모두 좌선성 콜레스테릭 액정으로 이루어지거나, 우선성과 좌선성 콜레스테릭 액정의 조합으로 이루어질 수도 있다. In addition, it is assumed that all of the first to third regions 111, 112, and 113 are made of a preferential cholesteric liquid crystal for convenience of description. Of course, this is only one exemplary assumption, and each region may be made of a left cholesteric liquid crystal or a combination of priority and left cholesteric liquid crystal.
도 3을 참조하면, 상기 가정하에서, 콜레스테릭 액정층(110)으로 입사된 제1 광은 제1 영역(111)에 이르러, 좌원 편광(L)된 빛은 투과하지만, 우원 편광(R)된 빛은 반사된다. 제2 영역(112) 및 제3 영역(113)의 콜레스테릭 액정도 우선성을 띨 뿐만 아니라, 그렇지 않다고 하더라도 상기 가정에서 제1 파장(λ1)은 제2 영역(112) 및 제3 영역(113)의 반사광의 밴드폭 내에 포함되지 않기 때문에, 제1 파장(λ1)의 좌원 편광(L)된 빛은 제2 영역(112) 및 제3 영역(113)을 그대로 투과해 나간다. Referring to FIG. 3, under the assumption, the first light incident on the cholesteric liquid crystal layer 110 reaches the first region 111 to transmit the left circle polarized light, but the right circle polarized light R. Light is reflected. The cholesteric liquid crystals of the second region 112 and the third region 113 not only take priority, but if not, the first wavelength λ1 in the assumption is that the second region 112 and the third region ( Since it is not included in the bandwidth of the reflected light of 113, the left circularly polarized light L of the first wavelength λ1 passes through the second region 112 and the third region 113 as it is.
마찬가지로, 제2 파장(λ2)의 제2 광은 제1 영역(111)의 반사광의 밴드폭에 포함되지 않기 때문에, 제1 영역(111)은 그대로 투과하며, 제2 영역(112)에 이르러 좌원 편광(L)된 빛은 투과되고, 우원 편광(R)된 빛은 반사된다. 제2 영역(112)을 투과한 제2 파장(λ2)의 좌원 편광(L)된 빛은 제3 영역(113)을 그대로 투과한다. 유사하게, 제3 파장(λ3)의 제3 광은 제1 영역(111) 및 제2 영역(112)의 반사광의 밴드폭에 포함되지 않기 때문에, 제1 영역(111) 및 제2 영역(112)은 그대로 투과하며, 제3 영역(113)에 이르러 좌원 편광(L)된 빛은 투과되고, 우원 편광(R)된 빛은 반사된다.Similarly, since the second light of the second wavelength λ2 is not included in the bandwidth of the reflected light of the first region 111, the first region 111 is transmitted as it is and reaches the second region 112 to the left circle. The polarized light is transmitted and the right polarized light is reflected. The left circularly polarized light L having the second wavelength λ 2 transmitted through the second region 112 passes through the third region 113 as it is. Similarly, since the third light of the third wavelength λ3 is not included in the bandwidth of the reflected light of the first region 111 and the second region 112, the first region 111 and the second region 112. ) Is transmitted as it is, the light of left circularly polarized light (L) is transmitted through the third region 113, the light of right circularly polarized light (R) is reflected.
따라서, 제1 광, 제2 광 및 제3 광은 제1 영역(111), 제2 영역(112), 및 제3 영역(113)을 통과하면서, 좌원 편광(L)된 빛은 모두 투과되고, 우원 편광(R)된 빛은 모두 반사된다. 광이 좌원 편광(L)된 빛과 우원 편광(R)된 빛으로 분류되고, 이들이 동일하게 존재한다고 가정하면, 결론적으로 콜레스테릭 액정층(110)에 입사된 제1 광, 제2 광 및 제3 광은 약 50%만이 투과되고, 나머지 약 50%는 반사된다.Therefore, while the first light, the second light, and the third light pass through the first region 111, the second region 112, and the third region 113, all of the left circularly polarized light L is transmitted. , All of the right polarized light is reflected. Assuming that light is classified into left polarized light (L) and right circularly polarized light (R), and that they are the same, in conclusion, the first light, the second light, and the incident light into the cholesteric liquid crystal layer 110 Only about 50% of the third light is transmitted and the remaining about 50% is reflected.
이러한 관점에서, 제1 영역(111)의 반사광의 밴드폭, 제2 영역(112)의 반사광의 밴드폭, 제3 영역(113)의 반사광의 밴드폭이 가시광의 전파장을 커버한다면, 가시광의 전파장 범위 내의 모든 빛에 대하여 특정 반사율을 나타낼 수 있을 것이다. 더욱 구체적인 설명을 위하여 도 4 내지 도 6 및 도 7이 참조된다.From this point of view, if the bandwidth of the reflected light in the first region 111, the bandwidth of the reflected light in the second region 112, and the bandwidth of the reflected light in the third region 113 cover the full-wavelength of the visible light, It will be possible to exhibit a specific reflectance for all light within the range of the field. 4 to 6 and 7 are referred to for more detailed description.
도 4 내지 도 6은 각각 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름의 각 영역에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프들이다. 4 to 6 are graphs showing transmittances according to wavelengths of light incident on respective regions of the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
구체적으로, 도 4는 제1 영역(111)에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이며, 여기서 제1 영역(111)은 약 510nm 내지 약 640nm의 파장 범위 내에서 약 50%의 반사율을 갖는 것으로 예시되어 있다. 도 5는 제2 영역(112)에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이며, 여기서 제2 영역(112)은 약 640nm 내지 약 780nm의 파장 범위 내에서 약 50%의 반사율을 갖는 것으로 예시되어 있다. 도 6은 제3 영역(113)에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이며, 여기서 제3 영역(113)은 약 380nm 내지 약 510nm의 파장 범위 내에서 약 50%의 반사율을 갖는 것으로 예시되어 있다. 상술한 것처럼, 서로 다른 반사광 밴드폭을 갖는 제1 영역(111), 제2 영역(112), 및 제3 영역(113)은 그 내부에 존재하는 콜레스테릭 액정의 액정 피치를 조절함으로써 조절될 수 있음은 물론이다. Specifically, FIG. 4 is a graph showing transmittance according to the wavelength of light incident on the first region 111, where the first region 111 has a reflectance of about 50% within a wavelength range of about 510 nm to about 640 nm. Illustrated as having. 5 is a graph showing transmittance according to the wavelength of light incident on the second region 112, where the second region 112 has a reflectance of about 50% within a wavelength range of about 640 nm to about 780 nm. It is. 6 is a graph showing transmittance according to the wavelength of light incident on the third region 113, where the third region 113 has a reflectance of about 50% within a wavelength range of about 380 nm to about 510 nm. It is. As described above, the first region 111, the second region 112, and the third region 113 having different reflected light bandwidths can be adjusted by adjusting the liquid crystal pitch of the cholesteric liquid crystal present therein. Of course it can.
도 7은 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이다.7 is a graph showing transmittance according to the wavelength of light incident on the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention.
빛이 도 4 내지 도 6에 예시된 반사광 밴드폭 및 반사율을 갖는 제1 영역(111), 제2 영역(112), 및 제3 영역(113)을 모두 거친다면, 파장에 따른 투과율은 도 7로 표시될 수 있다. 즉, 가시광의 전파장(약 380nm 내지 약 780nm)에 대하여 50%의 반사율을 갖게 된다. If the light passes through the first region 111, the second region 112, and the third region 113 having the reflected light bandwidth and reflectivity illustrated in FIGS. 4 to 6, the transmittance according to the wavelength is shown in FIG. 7. It may be represented as. That is, it has a reflectance of 50% with respect to the electric field of visible light (about 380 nm to about 780 nm).
일반적으로 콜레스테릭 액정은 반사광 밴드폭이 그리 넓지 못하여, 단일 콜레스테릭 액정으로 가시광 전파장을 커버하기는 어렵지만, 이와 같이 영역별로 액정 피치를 달리함으로써, 서로 다른 반사광 밴드폭을 갖도록 하면, 동일한 종류의 콜레스테릭 액정으로 콜레스테릭 액정층(110)을 형성하더라도, 가시광 전파장에 대한 소정의 반사율을 구현할 수 있다. In general, cholesteric liquid crystals do not have a wide bandwidth of reflected light, so it is difficult to cover the visible light field with a single cholesteric liquid crystal. Even if the cholesteric liquid crystal layer 110 is formed of a kind of cholesteric liquid crystal, a predetermined reflectance with respect to the visible light radio wave field can be realized.
만약 각 영역의 반사광 밴드폭이 너무 좁은 경우라면, 콜레스테릭 액정층(110) 내에 서로 다른 피치의 영역이 더 많이 형성됨으로써, 가시광 전파장에 대한 소정의 반사율이 구현될 수 있을 것이다. 예를 들어, 콜레스테릭 액정층(110) 내에 수십만 개의 서로 다른 피치를 갖는 영역이 형성되어 있으면, 각 영역의 반사광 밴드폭이 각각 1nm 정도밖에 되지 않는다고 하더라도, 가시광 전파장에 대하여 소정의 반사율을 갖게 될 확률이 매우 높아진다. If the reflected light bandwidth of each region is too narrow, more regions of different pitches are formed in the cholesteric liquid crystal layer 110, so that a predetermined reflectance for the visible light field may be realized. For example, if regions having hundreds of thousands of different pitches are formed in the cholesteric liquid crystal layer 110, even if the reflected light bandwidth of each region is only about 1 nm, a predetermined reflectance is provided for the visible light field. You have a very high chance of having it.
복수의 영역을 포함하는 콜레스테릭 액정층(110)에 의해 구현되는 반사율은 영역의 수, 영역의 분포, 각 영역의 반사율, 각 영역의 반사광 밴드폭, 콜레스테릭 액정의 종류 등에 따라 다르지만, 예를 들어 가시광의 전범위에 대하여 약 30% 내지 약 70%의 반사율을 가질 수 있다. 바람직하게는 가시광의 전범위에 대하여 약 40% 내지 약 60%의 반사율을, 더욱 바람직하게는 가시광의 전범위에 대하여 약 50%의 반사율을 갖도록 조절될 수 있다. Although the reflectance implemented by the cholesteric liquid crystal layer 110 including a plurality of regions varies depending on the number of regions, the distribution of regions, the reflectance of each region, the reflected light bandwidth of each region, the type of cholesteric liquid crystal, etc. For example, it may have a reflectance of about 30% to about 70% of the full range of visible light. Preferably it can be adjusted to have a reflectance of about 40% to about 60% for the full range of visible light, more preferably about 50% for the full range of visible light.
다시, 도 1을 참조하면, 제1 내지 제3 영역(111, 112, 113)은 예를 들어, 층상 구조를 이룰 수 있다. 이 경우, 입사 방향과 무관하게 입사된 빛이 제1 내지 제3 영역(111, 112, 113) 모두를 1회씩 통과할 수 있다. 이러한 구조에서, 콜레스테릭 액정층(110)의 반사율은 더욱 신뢰성을 가질 수 있다. Referring back to FIG. 1, the first to third regions 111, 112, and 113 may have a layered structure, for example. In this case, the incident light may pass through all of the first to third regions 111, 112, and 113 once regardless of the incident direction. In this structure, the reflectance of the cholesteric liquid crystal layer 110 may be more reliable.
몇몇 다른 실시예에서는 제1 내지 제3 영역(111, 112, 113) 중 어느 하나와 동일한 액정 피치를 가지는 영역, 예를 들어, 제2 액정 피치(P2)와 동일한 액정 피치를 가지는 제4 영역을 더 포함할 수 있다. 예를 들어, 제1 표면(110_1)에서 제2 표면(110_2) 방향으로 제1 영역, 제4 영역, 제3 영역, 및 제2 영역의 순서로 배치되어, 각각 제1 액정 피치, 제2 액정 피치, 제3 액정 피치, 및 제2 액정 피치를 가지는 콜레스테릭 액정을 포함할 수 있다. 이 경우, 동일한 영역, 예를 들어, 제2 영역(112)을 수 회 통과하면서 이에 해당하는 파장의 빛의 반사율이 더욱 높아질 수 있다. In some other embodiments, a region having the same liquid crystal pitch as any of the first to third regions 111, 112, and 113, for example, a fourth region having the same liquid crystal pitch as the second liquid crystal pitch P2 may be formed. It may further include. For example, the first liquid crystal pitch and the second liquid crystal are disposed in the order of the first region, the fourth region, the third region, and the second region in the direction of the first surface 110_1 to the second surface 110_2. And a cholesteric liquid crystal having a pitch, a third liquid crystal pitch, and a second liquid crystal pitch. In this case, while passing through the same region, for example, the second region 112 several times, the reflectance of light having a corresponding wavelength may be further increased.
또한, 본 발명의 실시예들에 따른 광대역 반사형 액정 필름은, 제1 표면에 인접한 제1 영역, 제2 표면에 인접한 제2 영역 및 제1 영역과 제2 영역 사이의 제3 영역 각각에 P2 < P1 < P3의 크기 관계를 가지는 제1 내지 제3 액정 피치(P1, P2, P3)를 가지는 콜레스테릭 액정층을 포함함으로써, 반사율을 더욱 향상시킬 수 있다.In addition, the broadband reflective liquid crystal film according to the embodiments of the present invention may include P2 in each of a first region adjacent to the first surface, a second region adjacent to the second surface, and a third region between the first region and the second region. By including the cholesteric liquid crystal layers having the first to third liquid crystal pitches P1, P2, and P3 having a size relationship of <P1 <P3, the reflectance can be further improved.
또한, 상대적으로 파장이 긴 장파장의 빛, 예컨대 레드광 반사 대역을 갖는 영역이 입사 표면에 노출되어 있으면 레드의 빛이 측면에서 과시인되는 현상이 발생한다. 그러나, 본 발명의 일 실시예는 레드광 반사 영역, 즉 제2 영역(112)을 중앙부에 위치시켰으므로, 제1 표면 또는 제2 표면의 어느 방향으로 빛을 입사시키더라도 레드광을 반사시키는 액정 영역이 콜레스테릭 액정층의 표면에 노출되지 않는다. 따라서, 레드광이 측면에서 과시인되는 현상을 방지할 수 있다. 뿐만 아니라, 액정층의 위 아래를 바꾸더라도 레드광의 측면 과시인을 방지할 수 있으므로, 적용성이 우수하다.In addition, when a region having a relatively long wavelength light, for example, a region having a red light reflection band is exposed on the incident surface, a phenomenon in which the red light is shown off sideways occurs. However, according to the exemplary embodiment of the present invention, since the red light reflection region, that is, the second region 112 is positioned at the center, the liquid crystal reflects red light regardless of the incident direction of light in the first surface or the second surface. The region is not exposed to the surface of the cholesteric liquid crystal layer. Therefore, it is possible to prevent the phenomenon in which red light is shown off from the side. In addition, since the side surface visibility of the red light can be prevented even if the liquid crystal layer is changed up and down, the applicability is excellent.
또한, 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름은 액정층의 중앙부가 레드광의 반사를 담당하는 한편, 일외측은 그보다 파장이 짧은 광, 예컨대, 그린광을, 타외측은 그린광보다 파장이 더 짧은 광, 예컨대 블루광을 반사시키는 영역이 배치된다. 따라서, 가시광의 전영역에 대한 반사 대역을 구성하기가 용이하다.In addition, in the broadband reflective liquid crystal film according to the exemplary embodiment of the present invention, the central portion of the liquid crystal layer is responsible for the reflection of red light, while one side of the light has a shorter wavelength, for example, green light, and the other side of the liquid crystal layer has Areas for reflecting light with shorter wavelengths, such as blue light, are arranged. Therefore, it is easy to configure the reflection band for the entire area of visible light.
몇몇 다른 실시예에서는, 콜레스테릭 액정층(110)이 제1 표면(110_1)에서 제2 표면(110_2) 방향을 따라, 제1 액정 피치(P1)에서 제3 액정 피치(P3)로 점차 증가하였다가, 제3 액정 피치(P3)에서 제2 액정 피치(P2)로 점차 감소하는 액정 피치 변화를 가질 수 있다. 상술한 바와 같이, 제1 액정 피치(P1)를 가지는 제1 영역(111)과, 제3 액정 피치(P3)를 가지는 제3 영역(113) 사이에 제1 액정 피치(P1)와 제3 액정 피치(P3) 사이의 값을 가지는 콜레스테릭 액정이 형성될 수 있다. 도 8 내지 도 11을 참조하여 더욱 상세히 설명한다.In some other embodiments, the cholesteric liquid crystal layer 110 gradually increases from the first liquid crystal pitch P1 to the third liquid crystal pitch P3 along the direction of the first surface 110_1 to the second surface 110_2. The liquid crystal pitch may gradually change from the third liquid crystal pitch P3 to the second liquid crystal pitch P2. As described above, the first liquid crystal pitch P1 and the third liquid crystal between the first region 111 having the first liquid crystal pitch P1 and the third region 113 having the third liquid crystal pitch P3. A cholesteric liquid crystal having a value between the pitches P3 can be formed. It will be described in more detail with reference to Figs.
도 8 및 도 9는 본 발명의 몇몇 실시예에 따른 콜레스테릭 액정층의 두께 위치에 따른 피치 변화를 나타낸 그래프이다. 도 8 및 도 9에 도시된 그래프에서, 가로축은 콜레스테릭 액정층(110)의 두께 위치를 나타내고, 세로축은 콜레스테릭 액정층(110) 내의 콜레스테릭 액정이 가지는 액정 피치의 크기를 나타낸다.8 and 9 are graphs illustrating a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some embodiments of the present invention. In the graphs shown in FIGS. 8 and 9, the horizontal axis represents the thickness position of the cholesteric liquid crystal layer 110, and the vertical axis represents the size of the liquid crystal pitch of the cholesteric liquid crystal in the cholesteric liquid crystal layer 110. .
여기서, 콜레스테릭 액정층(110)의 두께 위치는, 예를 들어 제1 표면(110_1)을 기준으로 보았을 경우, 제1 표면(110_1)으로부터 해당 콜레스테릭 액정까지의 거리로 정의할 수 있다. 마찬가지로, 제2 표면(110_2)을 기준으로 보는 경우, 제2 표면(110_2)으로부터 해당 콜레스테릭 액정까지의 거리로 정의할 수 있다. 즉, 가로축의 가장 좌측을 제1 표면(110_1)이라고 하면, 우측으로 갈수록 제2 표면(110_2)에 인접한 영역에 해당하는 콜레스테릭 액정이 가지는 액정 피치의 크기를 의미한다. 마찬가지로, 가장 좌측을 제2 표면(110_2)이라고 하면, 우측으로 갈수록 제1 표면(110_1)에 인접한 영역에 해당하는 콜레스테릭 액정이 가지는 액정 피치의 크기를 의미한다. Here, the thickness position of the cholesteric liquid crystal layer 110 may be defined as, for example, the distance from the first surface 110_1 to the cholesteric liquid crystal when viewed based on the first surface 110_1. . Similarly, when referring to the second surface 110_2, the distance from the second surface 110_2 to the cholesteric liquid crystal may be defined. That is, when the leftmost side of the horizontal axis is called the first surface 110_1, it means the size of the liquid crystal pitch of the cholesteric liquid crystal corresponding to the region adjacent to the second surface 110_2 toward the right side. Similarly, when the leftmost side is referred to as the second surface 110_2, it means the size of the liquid crystal pitch of the cholesteric liquid crystal corresponding to the region adjacent to the first surface 110_1 toward the right side.
이하에서는, 콜레스테릭 액정층(110)의 두께 위치는 제1 표면(110_1)을 기준으로 보았을 경우를 하나의 예로써 설명한다. 즉, 콜레스테릭 액정층(110)의 제1 표면(110_1)이 그래프의 "0"에 대응하는 것으로 가정한다. 몇몇 실시예들에 있어서, 그래프의 "0"이 기재된 표면, 예를 들어 제1 표면(110_1)은 공기층(미도시)과 접할 수 있다. 제2 표면(110_2)을 기준으로 하는 경우에도 실질적으로 동일하게 적용될 수 있음은 물론이다. 또한, 세로축은 위로 갈수록 액정 피치의 크기가 증가함을 나타낸다.Hereinafter, a case where the thickness position of the cholesteric liquid crystal layer 110 is viewed based on the first surface 110_1 will be described as an example. That is, it is assumed that the first surface 110_1 of the cholesteric liquid crystal layer 110 corresponds to "0" in the graph. In some embodiments, the surface on which "0" in the graph is written, for example first surface 110_1, may be in contact with an air layer (not shown). Of course, the same applies to the second surface 110_2 as a reference. In addition, the vertical axis indicates that the size of the liquid crystal pitch increases as it goes up.
도 8 및 도 9에 도시된 바와 같이, 몇몇 다른 실시예에서, 콜레스테릭 액정층(110)은 제1 표면(110_1)에서 제2 표면(110_2) 방향을 따라 제1 액정 피치(P1)에서 제3 액정 피치(P3)로 점차 증가하였다가, 제3 액정 피치(P3)에서 제2 액정 피치(P2)로 점차 감소하는 액정 피치 프로파일(profile)을 가질 수 있다. 이 때, 제3 액정 피치(P3)는 콜레스테릭 액정층(110)이 가지는 액정 피치 중 최대값을 가진다. As shown in FIGS. 8 and 9, in some other embodiments, the cholesteric liquid crystal layer 110 is formed at the first liquid crystal pitch P1 along the direction of the second surface 110_2 at the first surface 110_1. The liquid crystal pitch profile may gradually increase to the third liquid crystal pitch P3 and gradually decrease from the third liquid crystal pitch P3 to the second liquid crystal pitch P2. In this case, the third liquid crystal pitch P3 has a maximum value among the liquid crystal pitches of the cholesteric liquid crystal layer 110.
다시 말하면, 콜레스테릭 액정층(110)은 제1 그라데이션 영역(GR1) 및 제2 그라데이션 영역(GR2)을 포함하되, 제1 그라데이션 영역(GR1)은 제1 방향으로 액정 피치가 증가하고, 제2 그라데이션 영역(GR2)은 제2 방향으로 액정 피치가 증가한다. 제2 그라데이션 영역(GR2)은 제1 그라데이션 영역(GR1) 상에 형성되고, 제2 방향은 제1 방향과 반대 방향을 의미한다. 이 때, 제1 그라데이션 영역(GR1)의 액정 피치 증가율(α1)과 제2 그라데이션 영역(GR2)의 액정 피치 감소율(α2)이 서로 다르다. In other words, the cholesteric liquid crystal layer 110 includes a first gradation region GR1 and a second gradation region GR2, wherein the first gradation region GR1 increases in the liquid crystal pitch in the first direction, and The liquid crystal pitch increases in the second gradation region GR2 in the second direction. The second gradation region GR2 is formed on the first gradation region GR1, and the second direction means a direction opposite to the first direction. At this time, the liquid crystal pitch increase rate α1 of the first gradation region GR1 and the liquid crystal pitch decrease rate α2 of the second gradation region GR2 are different from each other.
더욱 구체적으로 설명하면, 제1 그라데이션 영역(GR1)이 콜레스테릭 액정층(110)의 제1 표면(110_1)을 포함할 경우, 제2 그라데이션 영역(GR2)이 콜레스테릭 액정층(110)의 제2 표면(110_2)을 포함하며, 콜레스테릭 액정층(110)은 제2 표면(110_2)에서 최소값을, 제1 그라데이션 영역(GR1) 및 제2 그라데이션 영역(GR2)이 접하는 영역에서 최대값을, 제1 표면(110_1)에서 최대값과 최소값의 사이값의 액정 피치를 가진다.More specifically, when the first gradation region GR1 includes the first surface 110_1 of the cholesteric liquid crystal layer 110, the second gradation region GR2 is the cholesteric liquid crystal layer 110. The second surface 110_2, and the cholesteric liquid crystal layer 110 has a maximum value at the second surface 110_2 at a region where the first gradation region GR1 and the second gradation region GR2 are in contact with each other. The value has a liquid crystal pitch of a value between the maximum value and the minimum value at the first surface 110_1.
나아가, 제1 그라데이션 영역(GR1)의 액정 피치 증가율(α1)은 제1 그라데이션 영역(GR1)의 두께(d1)에 대한 액정 피치의 변화, 즉 제1 액정 피치(P1)와 제3 액정 피치(P3)의 차(P3-P1)의 값으로 정의될 수 있다. 마찬가지로, 제2 그라데이션 영역(GR2)의 액정 피치 감소율(α2)은 제2 그라데이션 영역(GR2)의 두께(D-d1)에 대한 액정 피치의 변화, 즉 제3 액정 피치(P3)와 제2 액정 피치(P2)의 차(P3-P2)의 값으로 정의될 수 있다.Further, the liquid crystal pitch increase rate α1 of the first gradation region GR1 is a change in the liquid crystal pitch with respect to the thickness d1 of the first gradation region GR1, that is, the first liquid crystal pitch P1 and the third liquid crystal pitch ( It can be defined as the value of the difference (P3-P1) of P3). Similarly, the liquid crystal pitch reduction rate α2 of the second gradation region GR2 is a change in the liquid crystal pitch with respect to the thickness D-d1 of the second gradation region GR2, that is, the third liquid crystal pitch P3 and the second liquid crystal. It may be defined as the value of the difference P3-P2 of the pitch P2.
도 8에 도시된 바와 같이, 제1 그라데이션 영역(GR1)과 제2 그라데이션 영역(GR2)은 동일한 두께로 형성될 수도 있다. 또는, 서로 다른 두께로 형성될 수도 있음은 물론이다. 제1 그라데이션 영역(GR1)의 액정 피치 증가율(α1)과 제2 그라데이션 영역(GR2)의 액정 피치 감소율(α2)은 각 그라데이션 영역의 두께 및 액정 피치의 변화 등에 의해 다양한 값을 가질 수 있다. 그러나, 제1 그라데이션 영역(GR1)과 제2 그라데이션 영역(GR2)의 액정 피치의 변화는, 제1 그라데이션 영역(GR1)과 제2 그라데이션 영역(GR2)이 접하는 영역을 기준으로 비대칭하게 형성된다. 따라서, 각 그라데이션 영역의 액정 피치의 증감율(α1, α2)이 서로 다른 값을 가지게 된다.As illustrated in FIG. 8, the first gradation region GR1 and the second gradation region GR2 may be formed to have the same thickness. Or, it may be formed of a different thickness of course. The liquid crystal pitch increase rate α1 of the first gradation region GR1 and the liquid crystal pitch decrease rate α2 of the second gradation region GR2 may have various values due to the thickness of each gradation region and the change of the liquid crystal pitch. However, the change in the liquid crystal pitch of the first gradation region GR1 and the second gradation region GR2 is formed asymmetrically with respect to the region where the first gradation region GR1 and the second gradation region GR2 are in contact. Therefore, the increase / decrease rates α1 and α2 of the liquid crystal pitch of each gradation region have different values.
몇몇 다른 실시예에서, 도 9의 그래프에 도시된 바와 같이, 콜레스테릭 액정층(110)은 제1 방향으로 액정 피치가 증가하는 제1 그라데이션 영역(GR1)과, 제2 방향으로 액정 피치가 증가하는 제2 그라데이션 영역(GR2)을 포함하되, 콜레스테릭 액정층(110)에 대한 제1 그라데이션 영역(GR1)의 비율과 콜레스테릭 액정층(110)에 대한 제2 그라데이션 영역(GR2)의 비율은 서로 다르다.In some other embodiments, as shown in the graph of FIG. 9, the cholesteric liquid crystal layer 110 may include a first gradation region GR1 in which the liquid crystal pitch increases in the first direction, and a liquid crystal pitch in the second direction. Including an increasing second gradation region GR2, the ratio of the first gradation region GR1 to the cholesteric liquid crystal layer 110 and the second gradation region GR2 with respect to the cholesteric liquid crystal layer 110 The ratios are different.
더욱 구체적으로, 도 9에 도시된 그래프의 가로축의 두께 위치의 최대값(D)은 콜레스테릭 액정층(110)의 두께에 대응되므로, 콜레스테릭 액정층(110)에 대한 제1 그라데이션 영역(GR1)의 비율은 콜레스테릭 액정층(110)의 전체 두께에 대한 제1 그라데이션 영역(GR1)의 두께의 비율에 대응된다. 마찬가지로, 콜레스테릭 액정층(110)에 대한 제2 그라데이션 영역(GR2)의 비율은 콜레스테릭 액정층(110)의 전체 두께에 대한 제2 그라데이션 영역(GR2)의 두께의 비율에 대응된다.More specifically, since the maximum value D of the thickness position of the horizontal axis of the graph illustrated in FIG. 9 corresponds to the thickness of the cholesteric liquid crystal layer 110, the first gradient region with respect to the cholesteric liquid crystal layer 110. The ratio of GR1 corresponds to the ratio of the thickness of the first gradation region GR1 to the total thickness of the cholesteric liquid crystal layer 110. Similarly, the ratio of the second gradation region GR2 to the cholesteric liquid crystal layer 110 corresponds to the ratio of the thickness of the second gradation region GR2 to the total thickness of the cholesteric liquid crystal layer 110.
결과적으로, 콜레스테릭 액정층(110)의 전체 두께(D)에 대한 제1 그라데이션 영역(GR1)의 두께(d2)의 비율이, 전체 두께(D)에 대한 제2 그라데이션 영역(GR2)의 두께(D-d2)의 비율과 서로 다르다. 따라서, 콜레스테릭 액정층(110)에 대한 제1 그라데이션 영역(GR1)의 비율과 콜레스테릭 액정층(110)에 대한 제2 그라데이션 영역(GR2)의 비율은 서로 다르다는 것은 제1 그라데이션 영역(GR1)의 두께와 제2 그라데이션 영역(GR2)의 두께가 서로 다름을 의미한다고 할 수 있다. As a result, the ratio of the thickness d2 of the first gradation region GR1 to the overall thickness D of the cholesteric liquid crystal layer 110 is equal to that of the second gradation region GR2 with respect to the overall thickness D. It is different from the ratio of the thickness D-d2. Therefore, the ratio of the first gradation region GR1 to the cholesteric liquid crystal layer 110 and the ratio of the second gradation region GR2 to the cholesteric liquid crystal layer 110 are different from each other. It can be said that the thickness of GR1) and the thickness of the second gradation region GR2 are different from each other.
따라서, 이러한 경우 콜레스테릭 액정층(110)의 액정 피치 중 최대값을 가지는 영역은 콜레스테릭 액정층(110) 두께의 중심에서 일측으로 치우쳐 형성될 수 있다. 다시 말하면, 액정 피치가 최대값을 가지는 영역이 제1 표면(110_1) 및 제2 표면(110_2)으로부터 동일한 거리에 있는 것이 아니라, 제1 표면(110_1) 또는 제2 표면(110_2)에 가까운 영역에 형성될 수 있다.Therefore, in this case, the region having the maximum value among the liquid crystal pitches of the cholesteric liquid crystal layer 110 may be formed to be biased toward one side from the center of the thickness of the cholesteric liquid crystal layer 110. In other words, the region where the liquid crystal pitch has the maximum value is not at the same distance from the first surface 110_1 and the second surface 110_2, but rather in the region close to the first surface 110_1 or the second surface 110_2. Can be formed.
도 10 및 도 11은 본 발명의 몇몇 실시예들에 따른 광대역 반사형 액정 필름의 두께에 대한 액정 피치의 크기 및 반사 파장의 크기의 변화를 나타낸 그래프이다. 10 and 11 are graphs showing changes in the size of the liquid crystal pitch and the size of the reflection wavelength with respect to the thickness of the broadband reflective liquid crystal film according to some embodiments of the present invention.
도 10 및 도 11에 도시된 그래프에서, 가로 축은 광대역 반사형 액정 필름의 두께(film thickness)를 나타내고, 좌측 세로 축은 액정 피치(pitch)의 크기를 나타내며, 우측 세로 축은 반사 파장(wavelength of reflection)의 크기를 나타낸다.In the graphs shown in Figs. 10 and 11, the horizontal axis represents the film thickness of the broadband reflective liquid crystal film, the left vertical axis represents the size of the liquid crystal pitch, and the right vertical axis represents the wavelength of reflection. Indicates the size.
도 10 및 도 11의 그래프에 나타난 바와 같이, 본 발명의 실시예들에 따른 광대역 반사형 액정 필름은 제1 그라데이션 영역(GR1) 및 제2 그라데이션 영역(GR2)을 포함한다. 제1 그라데이션 영역(GR1)에서는, 필름 두께가 0에서 증가하는 우측 방향으로 액정 피치가 사이값(Pa)에서 최대값(Pmax)로 증가한다. 제2 그라데이션 영역(GR2)에서는, 필름 두께가 0으로 감소하는 좌측 방향으로 액정 피치가 최소값(Pmin)에서 최대값(Pmax)로 증가한다.As shown in the graphs of FIGS. 10 and 11, the broadband reflective liquid crystal film according to the exemplary embodiments includes a first gradation region GR1 and a second gradation region GR2. In the first gradation region GR1, the liquid crystal pitch increases from the interval Pa to the maximum value Pmax in the right direction in which the film thickness increases from zero. In the second gradation region GR2, the liquid crystal pitch increases from the minimum value Pmin to the maximum value Pmax in the left direction in which the film thickness decreases to zero.
도 10을 참조하면, 액정 피치의 최소값(Pmin)은 약 180nm이고, 최대값(Pmax)은 약 580nm이며, 사이값(Pa)은 약 320nm이다. 또한, 제1 그라데이션 영역(GR1)의 두께는 약 3.2um이고, 제2 그라데이션 영역(GR2)의 두께는 약 3um 이다. 이와 같이, 몇몇 실시예들에 따른 광대역 반사형 액정 필름은 제1 그라데이션(GR1) 영역과 제2 그라데이션(GR2)의 영역이 실질적으로 동일한 두께로 형성될 수 있다. 이 때, 실질적으로 동일한 두께라고 함은, 수치적으로 완전히 동일한 경우뿐만 아니라, 제조 공정 상의 오차를 고려한 경우를 포함함은 물론이다.Referring to FIG. 10, the minimum value Pmin of the liquid crystal pitch is about 180 nm, the maximum value Pmax is about 580 nm, and the inter-value Pa is about 320 nm. In addition, the thickness of the first gradation region GR1 is about 3.2 um, and the thickness of the second gradation region GR2 is about 3 um. As such, the broadband reflective liquid crystal film according to some embodiments may have a thickness substantially equal to a region of the first gradation GR1 and the second gradation GR2. In this case, the substantially same thickness includes not only the case where the numbers are exactly the same, but also the case where the error in the manufacturing process is taken into consideration.
또한, 제1 그라데이션 영역(GR1)의 액정 피치 증가율은 (580-320)/3200=0.08이고, 제2 그라데이션 영역(GR2)의 액정 피치 감소율은 (580-180)/3000=0.13으로, 제1 그라데이션 영역(GR1)의 액정 피치 증가율이 제2 그라데이션 영역(GR2)의 액정 피치 감소율보다 크게 형성될 수 있다.In addition, the liquid crystal pitch increase rate of the first gradation region GR1 is (580-320) /3200=0.08, and the liquid crystal pitch reduction rate of the second gradation region GR2 is (580-180) /3000=0.13, The liquid crystal pitch increase rate of the gradation region GR1 may be greater than the liquid crystal pitch decrease rate of the second gradation region GR2.
도 11을 참조하면, 본 발명의 다른 몇몇 실시예들에 따른 광대역 반사형 액정 필름은, 제1 그라데이션 영역(GR1)의 두께가 제2 그라데이션 영역(GR2) 보다 두껍게 형성될 수 있다. 예를 들어, 콜레스테릭 액정층의 두께 대 제1 그라데이션 영역(GR1)의 두께의 비는 약 1:0.05 내지 약 1:0.4 일 수 있다. Referring to FIG. 11, in the broadband reflective liquid crystal film according to another exemplary embodiment, the thickness of the first gradation region GR1 may be thicker than that of the second gradation region GR2. For example, the ratio of the thickness of the cholesteric liquid crystal layer to the thickness of the first gradation region GR1 may be about 1: 0.05 to about 1: 0.4.
도 11에 도시된 광대역 반사형 액정 필름은, 액정 피치의 최소값(Pmin)이 약 200nm이고, 최대값(Pmax)이 약 500nm이며, 사이값(Pa)은 약 395nm이다. 또한, 제1 그라데이션 영역(GR1)의 두께는 약 0.5um이고, 제2 그라데이션 영역(GR2)의 두께는 약 3.5um 이다. 즉, 콜레스테릭 액정층의 두께 대(對) 제1 그라데이션 영역(GR1)의 두께 비가 약 1:0.25의 값을 가질 수 있다.In the broadband reflective liquid crystal film shown in FIG. 11, the minimum value Pmin of the liquid crystal pitch is about 200 nm, the maximum value Pmax is about 500 nm, and the inter-value Pa is about 395 nm. In addition, the thickness of the first gradation region GR1 is about 0.5 um, and the thickness of the second gradation region GR2 is about 3.5 um. That is, the thickness ratio of the thickness of the cholesteric liquid crystal layer to the first gradation region GR1 may have a value of about 1: 0.25.
예를 들어, 콜레스테릭 액정층의 두께가 약 5um 이하인 경우, 도 11에 도시된 바와 같이 제1 그라데이션 영역(GR1)의 두께보다 제2 그라데이션 영역(GR2)의 두께를 더욱 두껍게 형성할 수 있다. 다만, 이는 하나의 예에 불과할 뿐, 두께가 약 5um 이하의 액정층을 포함하는 광대역 반사형 액정 필름이 도 10의 그래프에 대응하는 액정 피치를 가지는 경우를 배제하지 않는다.For example, when the thickness of the cholesteric liquid crystal layer is about 5 μm or less, as illustrated in FIG. 11, the thickness of the second gradation region GR2 may be greater than the thickness of the first gradation region GR1. . However, this is merely an example and does not exclude a case in which the broadband reflective liquid crystal film including the liquid crystal layer having a thickness of about 5 μm or less has a liquid crystal pitch corresponding to the graph of FIG. 10.
제1 그라데이션 영역(GR1)의 비율, 즉, 액정층의 두께에 대한 제1 그라데이션 영역(GR1)의 비율이 증가함에 따라 액정 필름의 출사면 쪽의 휘도가 증가하고, 제1 그라데이션 영역(GR1)의 비율이 감소함에 따라 액정 필름의 출사면 쪽의 축외 색상(Off Axis Color; OAC) 특성이 향상될 수 있다. 따라서, 제1 그라데이션 영역(GR1)의 비율을 조절하여, 액정 필름의 출사면 측의 휘도 및 OAC 특성의 최적화 영역을 결정할 수 있다.As the ratio of the first gradation region GR1, that is, the ratio of the first gradation region GR1 to the thickness of the liquid crystal layer increases, the luminance of the emission surface side of the liquid crystal film increases, and the first gradation region GR1 As the ratio of is decreased, the Off Axis Color (OAC) characteristic of the emission surface side of the liquid crystal film may be improved. Therefore, by adjusting the ratio of the first gradation region GR1, it is possible to determine the optimization region of the luminance and OAC characteristics on the emission surface side of the liquid crystal film.
광대역 반사형 액정 필름의 액정 피치가 한 방향으로 선형 증가하는 경우, 도 12에 도시된 바와 같이, OAC의 변화가 매우 큰 것에 반해, 도 11에 따른 액정 피치를 가지는 본 발명의 실시예에 따른 광대역 반사형 액정 필름의 경우, 도 13에 OAC의 변화가 상대적으로 작음을 알 수 있다. 즉, 표시 품질이 향상됨을 예상할 수 있다.When the liquid crystal pitch of the broadband reflective liquid crystal film increases linearly in one direction, as shown in FIG. 12, the OAC change is very large, whereas the broadband according to the embodiment of the present invention has the liquid crystal pitch according to FIG. 11. In the case of the reflective liquid crystal film, it can be seen that the change of OAC is relatively small in FIG. 13. That is, the display quality can be expected to be improved.
도 14는 광대역 반사형 액정 필름의 액정 피치가 한 방향으로 선형 증가하는 경우(비교예)와 광대역 반사형 액정 필름의 액정 피치가 도 11에 따른 액정 피치를 가지는 경우(실시예)에 대하여, 시야각(view angle)에 대한 휘도(luminance) 변화를 나타낸 그래프이다.14 shows a viewing angle with respect to the case where the liquid crystal pitch of the broadband reflective liquid crystal film increases linearly in one direction (comparative example) and the case where the liquid crystal pitch of the broadband reflective liquid crystal film has the liquid crystal pitch according to FIG. 11 (example). It is a graph showing a change in luminance (view angle) with respect to (view angle).
도 14에 도시된 그래프의 가로축은 시야각을 나타내고, 세로축은 각 시야각에 대응되는 휘도를 나타낸다. 그래프에 도시된 바와 같이, 실시예의 경우 시야각에 따른 휘도 변화가 비교예의 경우보다 작다. 더욱 구체적으로, 시야각이 0도(degree)에 인접한 정면에서의 휘도와, 시야각이 ±80도에 인접한 측면에서의 휘도 간의 휘도차이는 실시예의 경우가 비교예의 경우보다 작다. 즉, 실시예의 경우가 시야각에 대한 휘도 균일성이 향상되었음을 알 수 있다.The horizontal axis of the graph illustrated in FIG. 14 represents a viewing angle, and the vertical axis represents luminance corresponding to each viewing angle. As shown in the graph, the luminance change according to the viewing angle in the case of the embodiment is smaller than that of the comparative example. More specifically, the luminance difference between the luminance at the front side where the viewing angle is near zero degrees and the luminance at the side where the viewing angle is close to ± 80 degrees is smaller in the case of the embodiment than in the case of the comparative example. That is, it can be seen that the luminance uniformity with respect to the viewing angle is improved in the case of the embodiment.
다시, 도 10 및 도 11을 참조하면, 본 발명의 몇몇 다른 실시예에서는, 각 액정 피치를 하나의 단위로 하여 제1 표면에서 제2 표면 방향으로 순차로 구분한 제1 내지 제m (단, m은 자연수) 액정 피치 구간을 포함하는 콜레스테릭 액정층을 포함하되, 콜레스테릭 액정층은 제1 내지 상기 제n (단, n은 n<m인 자연수) 액정 피치 구간에 대하여, 제k (단, k는 1<k≤n인 자연수) 액정 피치 구간의 액정 피치가 제k-1 액정 피치 구간의 액정 피치보다 큰 경우의 비율이 70% 이상이고, 제n+1 내지 상기 제m 액정 피치 구간에 대하여, 제h (단, h는 n+1<h≤m인 자연수) 액정 피치 구간의 액정 피치가 제h-1 액정 피치 구간의 액정 피치보다 작은 경우의 비율이 70% 이상일 수 있다.Referring back to FIGS. 10 and 11, in some other embodiments of the present invention, the first to mths are sequentially divided from the first surface to the second surface direction by using each liquid crystal pitch as a unit. m is a natural number) a cholesteric liquid crystal layer comprising a liquid crystal pitch period, wherein the cholesteric liquid crystal layer is the first to the nth (where n is a natural number of n <m) liquid crystal pitch interval, k (Where k is a natural number of 1 < k? N) The ratio when the liquid crystal pitch in the liquid crystal pitch section is larger than the liquid crystal pitch in the k-1 liquid crystal pitch section is 70% or more, and the n + 1 th to mth liquid crystals With respect to the pitch section, the ratio of the liquid crystal pitch of the h th liquid crystal pitch section (where h is a natural number of n + 1 <h ≦ m) is smaller than the liquid crystal pitch of the h-1 liquid crystal pitch section may be 70% or more. .
이 때, 제n 및 상기 제n+1 액정 피치 구간 중 적어도 하나의 액정 피치가 최대값을 가지고, 상기 제m 액정 피치 구간의 액정 피치가 최소값을 가지며, 제1 액정 피치 구간의 액정 피치가 최대값과 상기 최소값의 사이값을 가진다.In this case, at least one liquid crystal pitch of the n-th and n-th liquid crystal pitch periods has a maximum value, the liquid crystal pitch of the m-th liquid crystal pitch period has a minimum value, and the liquid crystal pitch of the first liquid crystal pitch period has a maximum value. It has a value between the value and the minimum value.
도 10 및 도 11의 그래프로 표시한 바와 같이, 액정 피치가 최대값을 가지는 지점을 포함하는 액정 피치 구간을 예를 들어 제n 액정 피치 구간이라고 하면, 제1 내지 제n 액정 피치 구간 중 임의의 제k 액정 피치 구간이 제k-1 액정 피치 구간의 액정 피치보다 큰 값을 가지는 비율이 70% 이상이다. 즉, 제1 내지 제n 액정 피치 구간 중 임의의 제k 액정 피치 구간은 제k-1 액정 피치 구간보다 더 큰 액정 피치를 가지며, 제1 내지 제n 액정 피치 구간은 대체로 액정 피치가 증가하는 경향을 가진다. 이 경우, 제1 내지 제n 액정 피치 구간은 상술한 제1 그라데이션 영역에 대응된다.As shown in the graphs of FIGS. 10 and 11, a liquid crystal pitch section including a point where the liquid crystal pitch has a maximum value is, for example, an nth liquid crystal pitch section. The ratio at which the kth liquid crystal pitch section has a larger value than the liquid crystal pitch of the k-1th liquid crystal pitch section is 70% or more. That is, any k-th liquid crystal pitch interval of the first to nth liquid crystal pitch intervals has a liquid crystal pitch larger than the k-1th liquid crystal pitch interval, and the first to n-th liquid crystal pitch intervals generally tend to increase the liquid crystal pitch. Has In this case, the first to n-th liquid crystal pitch periods correspond to the first gradation region described above.
액정 피치가 최대값을 가지는 지점을 포함하는 액정 피치 구간을 예를 들어 제n+1 액정 피치 구간이라고 하면, 제n+1 내지 제m 액정 피치 구간 중 임의의 제h 액정 피치 구간이 제h-1 액정 피치 구간의 액정 피치보다 작은 값을 가지는 비율이 70% 이상이다. 즉, 제n+1 내지 제m 액정 피치 구간 중 임의의 제h 액정 피치 구간은 제h-1 액정 피치 구간보다 더 작은 액정 피치를 가지며, 제n+1 내지 제m 액정 피치 구간은 대체로 액정 피치가 감소하는 경향을 가진다. 이 경우, 제n+1 내지 제m 액정 피치 구간은 상술한 제2 그라데이션 영역에 대응된다.When the liquid crystal pitch section including the point where the liquid crystal pitch has the maximum value is, for example, the n + 1 liquid crystal pitch section, any h-th liquid crystal pitch section of the n + 1 to m-th liquid crystal pitch sections is h- The ratio which has a value smaller than the liquid crystal pitch of 1 liquid crystal pitch area is 70% or more. That is, any h-th liquid crystal pitch interval of the n + 1th to mth liquid crystal pitch intervals has a liquid crystal pitch smaller than the h-1th liquid crystal pitch interval, and the n + 1th to mth liquid crystal pitch intervals generally have a liquid crystal pitch. Tends to decrease. In this case, the n + 1 th to m th liquid crystal pitch periods correspond to the second gradation region described above.
또한, 본 발명의 몇몇 다른 실시예에서, 콜레스테릭 액정층은 25 내지 60 개의 액정 피치를 포함할 수 있다. 이 때의 콜레스테릭 액정층의 두께는 예를 들어, 6.0 내지 6.5 um이다.In addition, in some other embodiments of the present invention, the cholesteric liquid crystal layer may include 25 to 60 liquid crystal pitches. The thickness of the cholesteric liquid crystal layer at this time is, for example, 6.0 to 6.5 um.
도 15 및 도 16은 본 발명의 몇몇 다른 실시예에 따른 콜레스테릭 액정층의 두께 위치에 따른 피치 변화를 나타낸 그래프이다.15 and 16 are graphs showing a change in pitch according to a thickness position of a cholesteric liquid crystal layer according to some other embodiments of the present invention.
도 15에 도시한 바와 같이, 몇몇 다른 실시예에서, 콜레스테릭 액정층(110)은 제1 그라데이션 영역(GR1) 및 제2 그라데이션 영역(GR2)을 포함하되, 제1 그라데이션 영역(GR1)은 제1 방향으로 액정 피치가 감소하고, 제2 그라데이션 영역(GR2)은 제2 방향으로 액정 피치가 감소한다. 이 때, 제1 그라데이션 영역(GR1)의 액정 피치 감소율(α1)과 제2 그라데이션 영역(GR2)의 액정 피치 증가율(α2)이 서로 다르다.As shown in FIG. 15, in some other embodiments, the cholesteric liquid crystal layer 110 includes a first gradation region GR1 and a second gradation region GR2, and the first gradation region GR1 is The liquid crystal pitch decreases in the first direction, and the liquid crystal pitch decreases in the second direction in the second gradation region GR2. At this time, the liquid crystal pitch reduction rate α1 of the first gradation region GR1 and the liquid crystal pitch increase rate α2 of the second gradation region GR2 are different from each other.
마찬가지로, 도 16에 도시된 바와 같이, 몇몇 다른 실시예에서는, 콜레스테릭 액정층(110)이 제1 방향으로 액정 피치가 감소하는 제1 그라데이션 영역(GR1)과, 제2 방향으로 액정 피치가 감소하는 제2 그라데이션 영역(GR2)을 포함하되, 콜레스테릭 액정층(110)에 대한 제1 그라데이션 영역(GR1)의 비율과 콜레스테릭 액정층(110)에 대한 제2 그라데이션 영역(GR2)의 비율이 서로 다른 값을 가진다.Similarly, as shown in FIG. 16, in some other embodiments, the cholesteric liquid crystal layer 110 may include a first gradation region GR1 in which the liquid crystal pitch decreases in the first direction, and a liquid crystal pitch in the second direction. A second gradient region GR2 that decreases, wherein a ratio of the first gradient region GR1 to the cholesteric liquid crystal layer 110 and a second gradient region GR2 to the cholesteric liquid crystal layer 110 are included. Ratios have different values.
도 15 및 도 16에 도시된 그래프에 대응하는 콜레스테릭 액정층을 포함하는 광대역 반사형 액정 필름은 제1 표면 및 제2 표면 중 어느 하나의 표면에 인접하는 영역에서 액정 피치가 최대값을 가지고, 제1 및 제2 표면 사이의 영역에서 액정 피치가 최소값을 가지며, 제1 표면 및 제2 표면 중 나머지 하나의 표면에 인접하는 영역에서 액정 피치가 최대값과 최소값의 사이값을 가진다는 점에서 상술한 실시예들과 구별된다. 그 외의 구성 요소들에 대해서는 앞서 설명한 실시예들과 실질적으로 동일하다.In the broadband reflective liquid crystal film including the cholesteric liquid crystal layer corresponding to the graphs shown in FIGS. 15 and 16, the liquid crystal pitch has a maximum value in a region adjacent to either one of the first surface and the second surface. In that the liquid crystal pitch has a minimum value in the region between the first and second surfaces, and in the region adjacent to the other one of the first and second surfaces, the liquid crystal pitch has a value between the maximum value and the minimum value. It is distinguished from the above-described embodiments. Other components are substantially the same as the above-described embodiments.
이상의 실시예들에서는 가시광의 전파장 범위에 대하여 약 30% 내지 약 70%의 반사율을 갖는 광대역 반사형 액정 필름에 대해 논의되었지만, 본 발명이 이에 제한되는 것은 아니며, 가시광의 일부 파장, 또는 다른 파장의 빛들, 예컨대 적외선, 자외선, X선 등이나, 고주파, 중파, 저주파의 전자기파 등에 대해 반사율을 갖도록 조절될 수도 있음은 물론이다. 또, 반사율도 상기 범위에 제한되지 않으며, 다른 다양한 반사율이 채용될 수도 있음은 자명하다.In the above embodiments, a broadband reflective liquid crystal film having a reflectance of about 30% to about 70% with respect to the wavelength range of visible light is discussed, but the present invention is not limited thereto, and some wavelengths or other wavelengths of visible light are not limited thereto. Of light, for example, infrared, ultraviolet, X-rays, or the like, or may be adjusted to have a reflectance for high frequency, medium frequency, low frequency electromagnetic waves, and the like. In addition, the reflectance is not limited to the above range, and it is apparent that other various reflectances may be employed.
상술한 것처럼, 본 발명의 실시예들에 따른 광대역 반사형 액정 필름에 의하면, 액정층을 다층으로 적층하지 않더라도, 가시광의 전 파장 범위를 반사시킬 수 있다. 따라서, 광대역 반사형 액정 필름의 두께가 감소하며, 광투과율이 개선될 수 있다. 또, 다층으로 적층할 때와는 달리 접착제를 사용할 필요가 전혀 없기 때문에, 접착제의 개재에 따른 빛의 왜곡 현상, 광투과율 저하를 방지할 수 있다.As described above, according to the broadband reflective liquid crystal film according to the embodiments of the present invention, even if the liquid crystal layer is not laminated in multiple layers, it is possible to reflect the entire wavelength range of visible light. Therefore, the thickness of the broadband reflective liquid crystal film is reduced, and the light transmittance can be improved. In addition, unlike the case of laminating in a multilayer, since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
또한, 본 발명의 몇몇 다른 실시예들에 따른 광대역 반사형 액정 필름에 의하면, 콜레스테릭 액정층 내에서 액정 피치가 사이값에서 최대값까지 증가하였다가 최소값으로 감소하거나, 사이값에서 최소값까지 감소하였다가 최대값으로 증가하는 액정 피치의 프로파일을 형성함으로써, 광반사율을 더욱 향상시킬 수 있다.In addition, according to the broadband reflective liquid crystal film according to some other embodiments of the present invention, in the cholesteric liquid crystal layer, the liquid crystal pitch increases from a value to a maximum value and then decreases to a minimum value or decreases from the value to a minimum value. The light reflectance can be further improved by forming a profile of the liquid crystal pitch which is increased to the maximum value.
도 17 및 도 18은 본 발명의 몇몇 다른 실시예들에 따른 광대역 반사형 액정 필름의 단면도이다.17 and 18 are cross-sectional views of a broadband reflective liquid crystal film according to some other embodiments of the present invention.
도 17 및 도 18을 참조하면, 본 발명의 몇몇 다른 실시예들에 따른 광대역 반사형 액정 필름(101, 102)은 콜레스테릭 액정층(110)의 제1 표면(110_1) 및 제2 표면(110_2) 중 어느 하나의 표면에 형성된 위상차 필름(120)과, 나머지 하나의 표면에 형성된 기재(105)를 더 포함한다. 17 and 18, the broadband reflective liquid crystal films 101 and 102 according to some other embodiments of the present invention may include a first surface 110_1 and a second surface of the cholesteric liquid crystal layer 110. 110_2) further comprises a retardation film 120 formed on one surface of the substrate, and the substrate 105 formed on the other surface.
도 17에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 광대역 반사형 액정 필름(101)은 콜레스테릭 액정층(110)의 제1 표면(110_1) 상에 형성된 기재(105)와, 콜레스테릭 액정층(110)의 제2 표면(110_2) 상에 형성된 위상차 필름(120)을 더 포함할 수 있다. 이 경우, 콜레스테릭 액정층(110)의 제1 표면(110_1)은 빛이 입사되는 입사면이고, 제2 표면(110_2)은 빛이 출사되는 출사면이다.As shown in FIG. 17, the broadband reflective liquid crystal film 101 according to another embodiment of the present invention includes a substrate 105 and a collet formed on the first surface 110_1 of the cholesteric liquid crystal layer 110. The phase difference film 120 formed on the second surface 110_2 of the steric liquid crystal layer 110 may be further included. In this case, the first surface 110_1 of the cholesteric liquid crystal layer 110 is an incident surface on which light is incident, and the second surface 110_2 is an exit surface on which light is emitted.
또한, 도 18에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따른 광대역 반사형 액정 필름(102)은 콜레스테릭 액정층(110)의 제2 표면(110_2) 상에 형성된 기재(105)와, 콜레스테릭 액정층(110)의 제1 표면(110_1) 상에 형성된 위상차 필름(120)을 더 포함할 수 있다. 이 경우, 콜레스테릭 액정층(110)의 제2 표면(110_2)이 입사면이고, 제1 표면(110_1)이 출사면이다.In addition, as shown in FIG. 18, the broadband reflective liquid crystal film 102 according to another embodiment of the present invention is a substrate 105 formed on the second surface 110_2 of the cholesteric liquid crystal layer 110. And a retardation film 120 formed on the first surface 110_1 of the cholesteric liquid crystal layer 110. In this case, the second surface 110_2 of the cholesteric liquid crystal layer 110 is the entrance face and the first surface 110_1 is the exit face.
기재(105)는 콜레스테릭 액정층(110)을 지지할 수 있는 물질로서, 예컨대 광을 투과시킬 수 있는 투명한 재질, 예컨대, 폴리카보네이트(poly carbonate) 계열, 폴리술폰(poly sulfone) 계열, 폴리아크릴레이트(poly acrylate) 계열, 폴리스티렌(poly styrene) 계열, 폴리비닐클로라이드(poly vinyl chloride) 계열, 폴리비닐알코올(poly vinyl alcohol) 계열, 폴리노르보넨(poly norbornene) 계열, 폴리에스테르(poly ester) 계열의 물질을 포함하여 이루어질 수 있다. 구체적인 예를 들면, 기재는 폴리에틸렌테레프탈레이트(poly ethylene terephtalate) 또는 폴리에틸렌나프탈레이트(poly ethylene naphthalate) 등으로 이루어질 수 있다. Substrate 105 is a material capable of supporting the cholesteric liquid crystal layer 110, for example, a transparent material capable of transmitting light, for example, polycarbonate (poly carbonate), poly sulfone (poly sulfone), poly Acrylate (poly acrylate), poly styrene (poly styrene), poly vinyl chloride (poly vinyl chloride), poly vinyl alcohol (poly vinyl alcohol), poly norbornene (polyester), polyester (poly ester) It can comprise a series of materials. For example, the substrate may be made of polyethylene terephtalate or polyethylene naphthalate.
위상차 필름(120)은 콜레스테릭 액정층(110) 상에 형성되어, 콜레스테릭 액정층(110)을 통과한 빛을 선편광시킨다. 이와 같은 위상차 필름(120)은 빛의 위상을 λ/4만큼 지연시키는 λ/4 위상차 필름이 사용될 수 있다.The retardation film 120 is formed on the cholesteric liquid crystal layer 110 to linearly polarize light passing through the cholesteric liquid crystal layer 110. The retardation film 120 may be a λ / 4 retardation film for retarding the phase of light by λ / 4.
도면에서는 콜레스테릭 액정층(110)의 양면에 각각 기재(105)와 위상차 필름(120)을 형성한 경우를 도시하고 있으나, 몇몇 실시예에서는 둘 중 어느 하나를 생략할 수도 있다. 예를 들어, 몇몇 실시예에서는 기재(105)로 폴리카보네이트 등으로 이루어진 위상차 필름이 적용될 수 있다. 이 경우, 광대역 반사형 액정 필름에 위상차 필름이 일체형으로 형성되어 복합 필름으로 작용하게 된다. 특히, 위상차 필름을 기재(105)로 하여 그 일면의 바로 위에 콜레스테릭 액정층(110)을 형성하면, 접착제의 개재를 생략할 수 있으므로, 광대역 반사형 액정 필름(101, 102)의 두께를 감소시킬 뿐만 아니라, 접착제의 개재에 따른 빛의 왜곡을 방지할 수 있다.In the drawing, the substrate 105 and the retardation film 120 are formed on both surfaces of the cholesteric liquid crystal layer 110, but some embodiments may omit either. For example, in some embodiments, a retardation film made of polycarbonate or the like may be applied to the substrate 105. In this case, the retardation film is integrally formed on the broadband reflective liquid crystal film to act as a composite film. In particular, when the cholesteric liquid crystal layer 110 is formed directly on one surface of the retardation film as the base material 105, the interposition of the adhesive can be omitted, so that the thickness of the broadband reflective liquid crystal films 101 and 102 can be reduced. In addition to reducing, it is possible to prevent the distortion of light due to the interposition of the adhesive.
이하, 상기한 바와 같은 광대역 반사형 액정 필름을 제조하는 예시적인 방법들에 대해 설명한다. 이하의 실시예에서 앞서 설명된 실시예와 중복된 구성에 대해서는 그 설명을 생략하거나 간략화한다.Hereinafter, exemplary methods of manufacturing the broadband reflective liquid crystal film as described above will be described. In the following embodiments, a description of the configuration overlapping with the above-described embodiment will be omitted or simplified.
도 19 내지 도 23은 본 발명의 실시예들에 따른 광대역 반사형 액정 필름의 제조 방법을 나타낸 공정 단계별 단면도들이다.19 to 23 are cross-sectional views illustrating process steps of a method of manufacturing a broadband reflective liquid crystal film according to embodiments of the present invention.
도 19를 참조하여, 기재(105)를 준비한 후, 기재(105) 상에 액상의 콜레스테릭 액정 코팅액을 코팅하여 콜레스테릭 액정 코팅층(110a)을 형성한다.Referring to FIG. 19, after preparing the substrate 105, the cholesteric liquid crystal coating layer 110a is formed by coating a liquid cholesteric liquid crystal coating solution on the substrate 105.
콜레스테릭 액정 코팅액은 네마틱 액정(nematic liquid crystal)과 키랄 도펀트(chiral dopant), UV 경화성 물질 및 광개시제를 포함할 수 있다.The cholesteric liquid crystal coating liquid may include a nematic liquid crystal and a chiral dopant, a UV curable material, and a photoinitiator.
네마틱 액정과 키랄 도펀트의 배합 비율은 콜레스테릭 액정의 반사광 파장을 변화시킨다. 상대적으로 네마틱 액정의 배합 비율이 높을수록 반사광의 파장이 긴 반면, 상대적으로 키랄 도펀트의 배합 비율이 높을수록 반사광의 파장이 짧다. 이러한 점을 고려하면, 네마틱 액정과 키랄 도펀트의 비율이 예컨대, 약 96:4 내지 약 94:6의 범위 내에서 조절될 수 있다. 그러나, 네마틱 액정과 키랄 도펀트가 다른 배합 비율을 가질 수 있음은 물론이다.The blending ratio of the nematic liquid crystal and the chiral dopant changes the reflected light wavelength of the cholesteric liquid crystal. The higher the blending ratio of the nematic liquid crystal, the longer the wavelength of the reflected light, while the higher the blending ratio of the chiral dopant, the shorter the wavelength of the reflected light. In view of this, the ratio of the nematic liquid crystal to the chiral dopant may be adjusted within the range of, for example, about 96: 4 to about 94: 6. However, it is a matter of course that the nematic liquid crystal and the chiral dopant may have different mixing ratios.
UV 경화성 물질 및 광개시제는 후속의 경화 공정을 수행하기 위해 첨가된다. UV curable materials and photoinitiators are added to perform the subsequent curing process.
UV 경화성 물질의 예는 아크릴계, 우레탄계, 폴리에스터계, 실리콘계, 에스테르계 등의 반응성 올리고머 및 단관능성 (메타)아크릴레이트 모노머 또는 다관능성 (디,트리)(메타)아크릴레이트 모노머들을 포함한다. 상기 단관능성 (메타)아크릴레이트 또는 다관능성 (메타)아크릴레이트 모노머로는, 예컨대 2-하이드록시에틸(메타)아크릴레이트, 2-하이드록시프로필(메타)아크릴레이트, 테트라하이드로퍼퓨릴(메타)아크릴레이트, 부톡시 에틸(메타)아크릴레이트, 에틸디에틸렌글리콜(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, 사이클로헥실(메타)아크릴레이트, 페녹시에틸(메타)아크릴레이트, 디싸이클로펜타디엔(메타)아크릴레이트, 폴리에틸렌글리콜(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 메틸트리에틸렌디글리콜(메타)아크릴레이트, 이소보닐(메타)아크릴레이트, N-비닐피롤리돈, N-비닐카프로락탐, 디아세톤아크릴아마이드, 이소부톡시메틸(메타)아크릴아마이드, N,N-디메틸(메타)아크릴 아마이드, t-옥틸(메타)아크릴아마이드, 디메틸아미노에틸(메타)아크릴레이트, 아크릴로일몰포린, 디싸이클로펜테닐(메타)아크릴레이트, 트리메틸올프로판트리(메타)아크릴레이트, 펜타에리트리톨트리(메타)아크릴레이트, 펜타에리트리톨테트라(메타)아크릴레이트, 에틸렌글리콜디(메타)아크릴레이트, 테트라에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 네오펜틸글리콜디(메타)아크릴레이트, 트리메틸올프로판트리옥시에틸(메타)아크릴레이트, 트리싸이클로데칸디메탄올디(메타)아크릴레이트, 디싸이클로데칸디메탄올디(메타)아크릴레이트, 트리프로필렌글리콜디(메타)아크릴레이트, 디싸이클로펜탄디(메타)아크릴레이트, 디싸이클로펜타디엔디(메타)아크릴레이트 등을 들 수 있고, 상기 열거된 물질을 단독 또는 혼합하여 사용할 수 있다. Examples of UV curable materials include reactive oligomers such as acrylic, urethane, polyester, silicone, ester, and the like, and monofunctional (meth) acrylate monomers or polyfunctional (di, tri) (meth) acrylate monomers. As said monofunctional (meth) acrylate or polyfunctional (meth) acrylate monomer, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, tetrahydrofurfuryl (meth), for example Acrylate, butoxy ethyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, di Cyclopentadiene (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methyl triethylene diglycol (meth) acrylate, isobornyl (meth) acrylate, N-vinylpyrroli Don, N-vinyl caprolactam, diacetone acrylamide, isobutoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, t-octyl (meth) acrylamide, di Methylaminoethyl (meth) acrylate, acryloylmorpholine, dicyclopentenyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanedioldi (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dicyclodecane dimethanol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, dicyclopentanedi (meth) acrylate, dicyclopentadienedi (meth) acrylate, and the like, It may be used alone or in mixture of the listed substances.
상기 광개시제는 벤질 케탈류, 벤조인 에테르류, 아세토페논 유도체, 케톡심 에테르류, 벤조페논, 벤조 또는 티옥산톤계 화합물 중 선택된 1종 이상의 자유라디칼 개시제, 오늄 염(onium salts), 페로세늄 염(ferrocenium salts), 및 디아조늄 염(diazonium salts) 중 선택된 1종 이상의 양이온성 개시제, 또는 이들의 혼합물일 수 있다.The photoinitiator is one or more free radical initiators selected from benzyl ketals, benzoin ethers, acetophenone derivatives, ketoxime ethers, benzophenones, benzo or thioxanthone compounds, onium salts, ferrocenium salts ( ferrocenium salts, and one or more cationic initiators selected from diazonium salts, or mixtures thereof.
콜레스테릭 액정 코팅액의 코팅은 기재(105) 상에 용액을 코팅하는 공지된 다양한 코팅 방법, 예컨대, 롤 코팅, 딥 코팅, 스핀 코팅, 슬릿 코팅, 에어나이프 코팅, 그라비아 코팅, 3 롤 리버스(roll reverse) 코팅, 콤마 코팅 등의 방법으로 이루어질 수 있다. Coating of the cholesteric liquid crystal coating liquid may be performed by various known coating methods for coating a solution on a substrate 105, for example, roll coating, dip coating, spin coating, slit coating, air knife coating, gravure coating, and three roll reverse. reverse) coating, comma coating and the like.
이어서, 액상의 액정 코팅층(110a)을 건조시킨다. 건조 공정은 액상의 액정 코팅층(110a)의 유동성을 감소시켜 공정 편의성을 증진하고, 후속의 경화 공정을 용이하게 하기 위해 수행한다. 상기 건조 공정은 예컨대, 열처리 장치나 오븐 등에 건조 대상을 재치할 수 있다. 상기 건조 단계를 거치는 동안, 액정 코팅층(110a) 내의 콜레스테릭 액정 분자들은 제1 액정 피치를 가지며 배향될 수 있다. 이 때, 각 콜레스테릭 액정 분자들은 모두 동일한 액정 피치를 가질 수도 있지만, 공정 조건에 따라서는 부분적으로 다른 액정 피치를 가지면서 배향될 수도 있다. Subsequently, the liquid crystal coating layer 110a is dried. The drying process is performed to reduce the fluidity of the liquid crystal coating layer 110a to enhance process convenience and to facilitate the subsequent curing process. The said drying process can mount a drying object, for example in a heat processing apparatus or an oven. During the drying step, the cholesteric liquid crystal molecules in the liquid crystal coating layer 110a may be aligned with the first liquid crystal pitch. At this time, each of the cholesteric liquid crystal molecules may have the same liquid crystal pitch, but may be aligned with a partially different liquid crystal pitch depending on the process conditions.
이어서, 도 20을 참조하여, 건조된 콜레스테릭 액정 코팅층(도 19의 110a 참조)을 예를 들어, 약 20 내지 100℃ 의 온도에서 제1 경화(curing)한다. Next, referring to FIG. 20, the dried cholesteric liquid crystal coating layer (see 110a of FIG. 19) is first cured, for example, at a temperature of about 20 to 100 ° C. FIG.
제1 경화(910)는 후속되는 제2 및 제3 경화 보다 작은 에너지를 이용함으로써, 부분적으로 경화된 막질을 포함하는 콜레스테릭 액정 코팅층(110b)을 형성한다. 예를 들어, UV 조사를 통해 경화 공정을 수행하는 경우, 제1 경화는 제1 에너지, 예를 들어, 약 10mJ/cm2 내지 200mJ/cm2의 자외선 조사량으로 수행될 수 있다.The first curing 910 uses less energy than the subsequent second and third curing to form a cholesteric liquid crystal coating layer 110b comprising a partially cured film. For example, when the curing process is performed through UV irradiation, the first curing may be performed with a first energy, for example, an ultraviolet irradiation dose of about 10 mJ / cm 2 to 200 mJ / cm 2.
이어서, 도 21을 참조하여, 제1 열처리(810)를 수행한다.Next, referring to FIG. 21, a first heat treatment 810 is performed.
제1 열처리(810)는 제2 온도로 진행할 수 있다. 제2 온도는 상술한 코팅 및 건조 시의 제1 온도보다 낮은 온도로 진행될 수 있다. 예를 들어, 제1 열처리(810)는 약 4 내지 80℃의 온도로 수 초 내지 수 분간 수행할 수 있다. 제1 열처리를 진행하면, 이미 배향된 액정 분자들의 액정 피치가 적어도 부분적으로 다양해진다. 예를 들어, 제1 경화 수행시 생성된 몇몇 액정 분자들의 액정 피치가 증가할 수 있다. 일부의 액정 분자들은 기존의 액정 피치를 유지할 수 있다. 이러한 현상은 제1 열처리에 의한 에너지에 기인한 것으로 이해될 수 있다.The first heat treatment 810 may proceed to the second temperature. The second temperature may proceed to a temperature lower than the first temperature at the time of the coating and drying described above. For example, the first heat treatment 810 may be performed for a few seconds to several minutes at a temperature of about 4 to 80 ℃. Proceeding with the first heat treatment, the liquid crystal pitch of the liquid crystal molecules that are already oriented is at least partially varied. For example, the liquid crystal pitch of some liquid crystal molecules generated when performing the first curing may increase. Some liquid crystal molecules can maintain the existing liquid crystal pitch. This phenomenon can be understood to be due to the energy by the first heat treatment.
만약, 인접하는 공간에 위치하는 액정 분자들이 제1 경화나 열처리에 노출되는 조건들이 거의 유사하다면, 이들은 동일한 반응성을 나타낼 가능성이 높으며, 그에 따라 동일한 액정 갖는 영역을 구성하게 될 것이다. 만약, 도 1에 도시된 것처럼 각 영역이 층상 구조로 형성된다고 가정하면, 제1 영역 내의 액정 분자들은 제1 경화나 열처리에 노출되는 조건들이 거의 유사했던 것으로 이해될 수 있다. 제2 영역 및 제3 영역에 대해서도 동일한 이해가 가능하다. If the liquid crystal molecules located in the adjacent space are almost similar to the conditions exposed to the first curing or the heat treatment, they are likely to exhibit the same reactivity, thereby forming a region having the same liquid crystal. If it is assumed that each region is formed in a layered structure as shown in FIG. 1, it can be understood that the liquid crystal molecules in the first region have almost similar conditions exposed to the first curing or heat treatment. The same understanding is possible about the second region and the third region.
이어서, 도 22를 참조하여, 제2 열처리(820)와 동시에 제2 경화(920)를 수행한다.Subsequently, with reference to FIG. 22, a second curing 920 is performed simultaneously with the second heat treatment 820.
제2 열처리(820)는 제3 온도로 수행할 수 있다. 제3 온도는 앞서 수행된 제1 열처리(810)의 제2 온도보다 높은 온도, 예를 들어, 약 50℃ 내지 약 150℃의 온도로 수행할 수 있다. 제2 경화는 제2 에너지로 수행될 수 있다. 즉, 제1 경화의 제1 에너지보다 높은 에너지로 주행될 수 있다. UV 조사를 통해 제2 경화를 진행하는 경우, 제2 경화(920)은 예를 들어, 약 70mJ/cm2 내지 700mJ/cm2의 자외선 조사량으로 수행할 수 있다.The second heat treatment 820 may be performed at a third temperature. The third temperature may be performed at a temperature higher than the second temperature of the first heat treatment 810, for example, about 50 ° C to about 150 ° C. The second curing may be performed at a second energy. That is, it can travel with energy higher than the 1st energy of the 1st hardening. When the second curing is performed through UV irradiation, the second curing 920 may be performed at, for example, an ultraviolet irradiation amount of about 70 mJ / cm 2 to 700 mJ / cm 2.
이어서, 도 23을 참조하여, 제3 열처리(830)와 함께 제3 경화(930)를 수행한다.Next, referring to FIG. 23, a third curing 930 is performed along with the third heat treatment 830.
제3 열처리(830)는 제4 온도로 수행할 수 있다. 제4 온도는 앞서 수행된 제2 열처리(820)의 제3 온도와 유사한 온도, 예를 들어, 약 50℃ 내지 약 150℃의 온도로 수행할 수 있다. 제3 경화(930)는 제3 에너지로 수행할 수 있다. 제3 에너지는 제2 경화(920)의 제2 에너지와 유사하거나 높으며, UV 조사를 이용하는 경우, 제3 경화(930)은 예를 들어, 약 70mJ/cm2 내지 약 1200mJ/cm2의 자외선 조사량으로 수행할 수 있다.The third heat treatment 830 may be performed at a fourth temperature. The fourth temperature may be performed at a temperature similar to the third temperature of the second heat treatment 820, for example, about 50 ° C. to about 150 ° C. The third hardening 930 may be performed with the third energy. The third energy is similar to or higher than the second energy of the second curing 920, and when UV irradiation is used, the third curing 930 is performed with an ultraviolet radiation dose of, for example, about 70 mJ / cm 2 to about 1200 mJ / cm 2. can do.
필요에 따라, 계속해서 제3 열처리 및 제3 경화를 적어도 1회 이상 반복하여 진행할 수 있다.If necessary, the third heat treatment and the third curing may be repeatedly performed at least once or more.
또, 이상에서 설명한 실시예를 조합하여, 열처리 및 프리 경화의 공정과, 열처리 단독 공정을 조합하여 처리할 수도 있다.Moreover, it can also process combining the Example demonstrated above and combining the process of heat processing and pre-cure, and the heat processing individual process.
본 발명의 실시예들에 따른 광대역 반사형 액정 필름의 제조 방법에 의하면, 1회의 액정 코팅층의 적층만으로 가시광의 전 파장 범위에서 반사율을 가질 수 있기 때문에, 다층의 액정층을 형성하는 것보다 제조 공정이 훨씬 단순해져 공정 효율이 개선될 수 있다.According to the method of manufacturing the broadband reflective liquid crystal film according to the embodiments of the present invention, since only one lamination of the liquid crystal coating layer may have a reflectance in the entire wavelength range of visible light, a manufacturing process is performed rather than forming a multilayer liquid crystal layer. This is much simpler and the process efficiency can be improved.
이상에서 설명한 광대역 반사형 액정 필름은 광원 어셈블리나 이를 포함하는 액정 표시 장치 등에 채용되어, 광 효율을 증진시키는데 사용될 수 있다. 광원 어셈블리는 램프가 하부에 위치하는 직하형 광원 어셈블리, 램프가 사이드에 위치하는 에지형 광원 어셈블리 등으로 분류되는데, 본 발명의 실시예들에 따른 광대역 반사형 액정 필름은 어떠한 종류의 광원 어셈블리에도 채용가능하다. 또, 액정 패널의 아래쪽에 배치되는 백라이트(back light) 어셈블리나 액정 패널의 위쪽에 배치되는 프론트 라이트(front light) 어셈블리에도 적용가능하다. 이하에서는 다양한 적용예의 일예로서, 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름이 직하형 백라이트 어셈블리를 포함하는 액정 표시 장치에 적용된 경우를 예시한다.The broadband reflective liquid crystal film described above may be used to improve light efficiency by being employed in a light source assembly or a liquid crystal display device including the same. The light source assembly is classified into a direct type light source assembly in which the lamp is located at the bottom, and an edge type light source assembly in which the lamp is located at the side, and the like. It is possible. The present invention is also applicable to a back light assembly disposed below the liquid crystal panel or a front light assembly disposed above the liquid crystal panel. Hereinafter, as an example of various applications, a case in which a broadband reflective liquid crystal film according to an embodiment of the present invention is applied to a liquid crystal display device including a direct backlight assembly is described.
도 24는 본 발명의 일 실시예에 따른 액정 표시 장치의 단면도이다. 24 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
도 24를 참조하면 액정 표시 장치(500)는 백라이트 어셈블리(200), 액정 패널 어셈블리(300), 및 탑 샤시(400)를 포함한다. Referring to FIG. 24, the liquid crystal display 500 may include a backlight assembly 200, a liquid crystal panel assembly 300, and a top chassis 400.
백라이트 어셈블리(200)는 램프(210), 램프(210)으로부터 출사된 빛을 반사하는 반사 필름(235), 및 출사된 빛의 광학적 특성을 조절하는 확산판(220)과 광학 필름들(230)을 포함한다. The backlight assembly 200 includes a lamp 210, a reflective film 235 for reflecting light emitted from the lamp 210, and a diffuser plate 220 and optical films 230 for adjusting optical characteristics of the emitted light. It includes.
램프(210)는 예를 들어 CCFL(Cold Cathode Fluorescent Lamp), HCFL(Hot Cathode Fluorescent Lamp), EEFL(External Electrode Fluorescent Lamp) 등이 사용될 수 있다. The lamp 210 may be, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), an External Electrode Fluorescent Lamp (EEFL), or the like.
램프(210)의 아래에는 반사 필름(235)이 배치되어, 램프(210)로부터 아래로 출사된 빛을 상부로 반사한다. A reflective film 235 is disposed below the lamp 210 to reflect light emitted downward from the lamp 210 upward.
램프(210)의 상부에는 확산판(220) 및 광학 필름들(230)이 배치된다. 확산판(220)은 램프(210)으로부터 입사된 빛을 확산시킨다. 광학 필름들(230)은 입사된 빛을 확산시키는 확산 필름, 입사된 빛을 집광하는 프리즘 시트, 입사된 원편광을 일부 반사하는 광대역 반사형 액정 필름, 원편광 빛을 선형 편광으로 변환시키는 위상차 필름, 및/또는 보호 필름을 포함한다. 여기서, 적어도 광대역 반사형 액정 필름으로 본 발명의 실시예들에 따른 광대역 반사형 액정 필름을 적용하면, 입사하는 가시광의 전 파장에 대하여 원편광된 빛의 50%는 투과하고 50%는 반사시켜, 광이용율이 극대화될 수 있다. 나아가, 특히, 본 발명의 일 실시예에 따른 광대역 반사형 액정 필름은 콜레스테릭 액정층으로 이루어지기 때문에, 다층을 적층한 경우보다 두께가 얇아 광효율이 뛰어나다. 또한, 접착제가 개재될 필요가 없어 광 왜곡이 최소화될 수 있다.The diffusion plate 220 and the optical films 230 are disposed on the lamp 210. The diffuser plate 220 diffuses the light incident from the lamp 210. The optical films 230 include a diffusion film for diffusing incident light, a prism sheet for collecting incident light, a broadband reflective liquid crystal film partially reflecting incident circular polarization, and a retardation film for converting circularly polarized light into linearly polarized light. , And / or a protective film. Here, when the broadband reflective liquid crystal film according to the embodiments of the present invention is applied to at least the broadband reflective liquid crystal film, 50% of circularly polarized light is transmitted and 50% is reflected to all wavelengths of incident visible light. Light utilization can be maximized. Furthermore, in particular, since the broadband reflective liquid crystal film according to the embodiment of the present invention is made of a cholesteric liquid crystal layer, the thickness is thinner than that of the multilayered layer, and thus the light efficiency is excellent. In addition, the adhesive does not need to be interposed so that light distortion can be minimized.
램프(210), 반사 필름(235), 확산판(220) 및 광학 필름들(230)은 바텀 샤시(240) 및 몰드 프레임(250)에 의해 수납된다. 바텀 샤시(240)는 백라이트 어셈블리(200)의 최하부면을 이루며, 바텀 샤시(240) 위에는 창틀 형상의 몰드 프레임(250)이 배치되어, 몰드 프레임(250)에 구비된 안착단에 광확산판(220), 광학 필름들(230) 및 액정 패널(310)을 안착시킨다. The lamp 210, the reflective film 235, the diffuser plate 220, and the optical films 230 are received by the bottom chassis 240 and the mold frame 250. The bottom chassis 240 forms the bottom surface of the backlight assembly 200, and a mold frame 250 having a window frame shape is disposed on the bottom chassis 240, and the light diffuser plate is disposed at a seating end of the mold frame 250. 220, optical films 230 and liquid crystal panel 310 are seated.
액정 패널 어셈블리(300)는 제1 표시판(311), 제2 표시판(312) 및 그 사이에 개재된 액정층(미도시)을 포함하는 액정 패널(310), 제1 표시판(311) 및 제2 표시판(312)의 표면에 부착된 편광판(미도시), 액정 패널(310)의 일측에 부착되어 있는 데이터 TCP(Tape Carrier Package)(330), 데이터 TCP(330)에 부착되어 있는 인쇄 회로 기판(340)을 포함한다. 데이터 TCP(330) 상에는 데이터 드라이버 IC(Integrated Circuit)(331)가 실장되어 있다. 또, 데이터 TCP(330)의 부착 측면에 인접한 액정 패널(310)의 타측에는 게이트 TCP(미도시)가 부착되어 있고, 게이트 TCP 상에는 게이트 드라이버 IC(미도시)가 실장되어 있다. The liquid crystal panel assembly 300 includes a liquid crystal panel 310, a first display panel 311, and a second liquid crystal panel 310 including a first display panel 311, a second display panel 312, and a liquid crystal layer interposed therebetween. A polarizing plate (not shown) attached to the surface of the display panel 312, a data TCP (Tape Carrier Package) 330 attached to one side of the liquid crystal panel 310, and a printed circuit board attached to the data TCP 330 ( 340). A data driver integrated circuit (IC) 331 is mounted on the data TCP 330. A gate TCP (not shown) is attached to the other side of the liquid crystal panel 310 adjacent to the attachment side of the data TCP 330, and a gate driver IC (not shown) is mounted on the gate TCP.
탑 샤시(400)는 액정 패널(310)의 테두리를 덮으며, 액정 패널(310) 및 백라이트 어셈블리(200)의 측면을 감싼다. 데이터 TCP(330) 및 인쇄 회로 기판(340) 등은 절곡되어 바텀 샤시(240)의 측벽과 탑 샤시(400)의 측벽 사이의 공간에 수납된다. The top chassis 400 covers an edge of the liquid crystal panel 310 and surrounds side surfaces of the liquid crystal panel 310 and the backlight assembly 200. The data TCP 330, the printed circuit board 340, and the like are bent and received in a space between the side wall of the bottom chassis 240 and the side wall of the top chassis 400.
이상에서 설명한 백라이트 어셈블리는 본 발명의 일 실시예들에 따른 광대역 반사형 액정 필름이 적용됨으로써, 두께가 얇아지고, 휘도가 개선되며, 광 간섭 효과가 억제될 수 있다. 그에 따라, 이러한 백라이트 어셈블리를 포함하는 액정 표시 장치의 화질이 개선될 수 있다.In the backlight assembly described above, the broadband reflective liquid crystal film according to the exemplary embodiments of the present invention is applied, whereby the thickness is reduced, the luminance is improved, and the optical interference effect can be suppressed. Accordingly, the image quality of the liquid crystal display including the backlight assembly may be improved.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. I can understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (20)

  1. 제1 표면에서 제2 표면 방향으로 액정 피치가 변하는 콜레스테릭 액정층을 포함하되,A cholesteric liquid crystal layer in which the liquid crystal pitch is changed in a direction from the first surface to the second surface,
    상기 콜레스테릭 액정층은 상기 제1 표면에 인접한 제1 영역에서 제1 액정 피치를 가지고, 상기 제2 표면에 인접한 제2 영역에서 상기 제1 액정 피치보다 작은 제2 액정 피치를 가지며, 상기 제1 및 제2 영역 사이의 제3 영역에서 상기 제1 액정 피치보다 큰 제3 액정 피치를 가지는 광대역 반사형 액정 필름.The cholesteric liquid crystal layer has a first liquid crystal pitch in a first region adjacent to the first surface, and has a second liquid crystal pitch smaller than the first liquid crystal pitch in a second region adjacent to the second surface. A broadband reflective liquid crystal film having a third liquid crystal pitch greater than the first liquid crystal pitch in a third region between the first and second regions.
  2. 제1 항에 있어서,According to claim 1,
    상기 콜레스테릭 액정층은, 상기 제1 표면에서 상기 제2 표면 방향을 따라, 상기 제1 액정 피치에서 상기 제3 액정 피치로 점차 증가하였다가, 상기 제3 액정 피치에서 상기 제2 액정 피치로 점차 감소하는 액정 피치 변화를 가지는 광대역 반사형 액정 필름.The cholesteric liquid crystal layer gradually increases from the first liquid crystal pitch to the third liquid crystal pitch along the second surface direction at the first surface, and then from the third liquid crystal pitch to the second liquid crystal pitch. A broadband reflective liquid crystal film having a gradually decreasing liquid crystal pitch change.
  3. 제1 항에 있어서,According to claim 1,
    상기 콜레스테릭 액정층의 상기 제1 표면은 외부에서 제공되는 광이 입사되는 입사면이고, 상기 콜레스테릭 액정층의 상기 제2 표면은 상기 광이 상기 액정층을 투과하여 출사되는 출사면인 광대역 반사형 액정 필름.The first surface of the cholesteric liquid crystal layer is an incident surface to which light provided from the outside is incident, and the second surface of the cholesteric liquid crystal layer is an exit surface from which the light is transmitted through the liquid crystal layer. Broadband reflective liquid crystal film.
  4. 제1 항에 있어서,According to claim 1,
    상기 콜레스테릭 액정층은 단일막인 광대역 반사형 액정 필름.The cholesteric liquid crystal layer is a broadband reflective liquid crystal film.
  5. 제4 항에 있어서,The method of claim 4, wherein
    상기 콜레스테릭 액정층은 동일한 종류의 콜레스테릭 액정 분자를 포함하는 광대역 반사형 액정 필름.The cholesteric liquid crystal layer is a broadband reflective liquid crystal film containing the same kind of cholesteric liquid crystal molecules.
  6. 제1 항에 있어서,According to claim 1,
    상기 콜레스테릭 액정층은 단일막으로 형성되고, 상기 콜레스테릭 액정층의 상기 제1 표면 또는 상기 제2 표면 중 어느 하나의 표면 바로 위에 형성된 기재를 더 포함하는 광대역 반사형 액정 필름.The cholesteric liquid crystal layer is formed of a single film, and the broadband reflective liquid crystal film further comprises a substrate formed directly on either surface of the first surface or the second surface of the cholesteric liquid crystal layer.
  7. 제1 항에 있어서,According to claim 1,
    상기 제3 액정 피치는 상기 콜레스테릭 액정층이 가지는 액정 피치 중 최대값인 광대역 반사형 액정 필름.And said third liquid crystal pitch is a maximum value among liquid crystal pitches of the cholesteric liquid crystal layer.
  8. 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로,A liquid crystal layer comprising a first gradation region and a second gradation region,
    상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 증가하고, The liquid crystal pitch of the first gradation region increases in a first direction,
    상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 증가하는 액정층을 포함하되,The second gradation region includes a liquid crystal layer formed on the first gradation region, the liquid crystal pitch is increased in a second direction opposite to the first direction,
    상기 제1 그라데이션 영역의 액정 피치 증가율과, 상기 제2 그라데이션 영역의 액정 피치 감소율이 서로 다른 광대역 반사형 액정 필름.A broadband reflective liquid crystal film having a liquid crystal pitch increase rate in the first gradation region and a liquid crystal pitch decrease rate in the second gradation region.
  9. 제8 항에 있어서,The method of claim 8,
    상기 액정층은 상기 제1 그라데이션 영역과 상기 제2 그라데이션 영역이 접하는 영역에서 최대의 액정 피치를 가지는 광대역 반사형 액정 필름.And the liquid crystal layer has a maximum liquid crystal pitch in a region where the first gradation region and the second gradation region are in contact with each other.
  10. 제9 항에 있어서,The method of claim 9,
    상기 제1 그라데이션 영역은 상기 액정층의 제1 표면을 포함하고, 상기 제2 그라데이션 영역은 상기 액정층의 제2 표면을 포함하되, 상기 액정층은 상기 제2 표면에서 최소값을 가지고, 상기 제1 표면에서 상기 최소값과 상기 최대값의 사이값의 액정 피치를 가지는 광대역 반사형 액정 필름.The first gradation region includes a first surface of the liquid crystal layer, the second gradation region includes a second surface of the liquid crystal layer, the liquid crystal layer having a minimum value at the second surface, and the first The broadband reflective liquid crystal film which has a liquid crystal pitch of the value between the minimum value and the said maximum value at the surface.
  11. 제8 항에 있어서,The method of claim 8,
    상기 제1 그라데이션 영역의 두께는 상기 제2 그라데이션 영역의 두께보다 작은 광대역 반사형 액정 필름.The broadband reflective liquid crystal film having a thickness of the first gradation region is smaller than that of the second gradation region.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 제1 및 제2 그라데이션 영역을 포함하는 상기 액정층의 두께 : 상기 제1 그라데이션 영역의 두께는 1:0.05 내지 1:0.4인 광대역 반사형 액정 필름.Thickness of the liquid crystal layer including the first and second gradation regions: The thickness of the first gradation region is 1: 0.05 to 1: 0.4 broadband reflective liquid crystal film.
  13. 각 액정 피치를 하나의 단위로 하여 제1 표면에서 제2 표면 방향으로 순차로 구분한 제1 내지 제m (단, m은 자연수) 액정 피치 구간을 포함하는 콜레스테릭 액정층을 포함하되,Including a cholesteric liquid crystal layer comprising a liquid crystal pitch period of the first to m (where m is a natural number) divided by the liquid crystal pitch in one unit in a direction from the first surface to the second surface direction,
    상기 콜레스테릭 액정층은 상기 제1 내지 상기 제n (단, n은 n<m인 자연수) 액정 피치 구간에 대하여, 제k (단, k는 1<k≤n인 자연수) 액정 피치 구간의 액정 피치가 제k-1 액정 피치 구간의 액정 피치보다 큰 경우의 비율이 70% 이상이고, The cholesteric liquid crystal layer has a k-th (where k is a natural number of 1 <k≤n) liquid crystal pitch period with respect to the first to nth (where n is a natural number of n <m) liquid crystal pitch period. The ratio when the liquid crystal pitch is larger than the liquid crystal pitch of the k-1th liquid crystal pitch section is 70% or more,
    상기 제n+1 내지 상기 제m 액정 피치 구간에 대하여, 제h (단, h는 n+1<h≤m인 자연수) 액정 피치 구간의 액정 피치가 제h-1 액정 피치 구간의 액정 피치보다 작은 경우의 비율이 70% 이상이며, For the nth + 1th to mth liquid crystal pitch periods, the liquid crystal pitch of the hth liquid crystal pitch period (h is a natural number of n + 1 <h≤m) is greater than the liquid crystal pitch of the h-1th liquid crystal pitch period Small percentage is over 70%,
    상기 제n 및 상기 제n+1 액정 피치 구간 중 적어도 하나의 액정 피치가 최대값을 가지고, 상기 제m 액정 피치 구간의 액정 피치가 최소값을 가지며, 상기 제1 액정 피치 구간의 액정 피치가 상기 최대값과 상기 최소값의 사이값을 가지는 광대역 반사형 액정 필름.At least one liquid crystal pitch of the nth and nth + 1th liquid crystal pitch intervals has a maximum value, a liquid crystal pitch of the mth liquid crystal pitch interval has a minimum value, and a liquid crystal pitch of the first liquid crystal pitch interval is the maximum value A broadband reflective liquid crystal film having a value between the value and the minimum value.
  14. 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로,A liquid crystal layer comprising a first gradation region and a second gradation region,
    상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 증가하고, The liquid crystal pitch of the first gradation region increases in a first direction,
    상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 증가하는 액정층을 포함하되,The second gradation region includes a liquid crystal layer formed on the first gradation region, the liquid crystal pitch is increased in a second direction opposite to the first direction,
    상기 액정층에 대한 상기 제1 그라데이션 영역의 비율과 상기 액정층에 대한 상기 제2 그라데이션 영역의 비율이 서로 다른 광대역 반사형 액정 필름.And a ratio of the first gradation region to the liquid crystal layer and the ratio of the second gradation region to the liquid crystal layer is different from each other.
  15. 제1 그라데이션 영역 및 제2 그라데이션 영역을 포함하는 액정층으로,A liquid crystal layer comprising a first gradation region and a second gradation region,
    상기 제1 그라데이션 영역은 제1 방향으로 액정 피치가 감소하고, The first gradation region is reduced in the liquid crystal pitch in the first direction,
    상기 제2 그라데이션 영역은 상기 제1 그라데이션 영역 상에 형성되어, 상기 제1 방향과 반대인 제2 방향으로 액정 피치가 감소하는 액정층을 포함하되,The second gradation region includes a liquid crystal layer formed on the first gradation region, the liquid crystal pitch is reduced in a second direction opposite to the first direction,
    상기 제1 그라데이션 영역의 액정 피치 증가율과, 상기 제2 그라데이션 영역의 액정 피치 감소율이 서로 다른 광대역 반사형 액정 필름.A broadband reflective liquid crystal film having a liquid crystal pitch increase rate in the first gradation region and a liquid crystal pitch decrease rate in the second gradation region.
  16. 제1 항 내지 제15 항 중 어느 한 항에 따른 광대역 반사형 편광 필름을 포함하는 광원 어셈블리.A light source assembly comprising a broadband reflective polarizing film according to any one of claims 1 to 15.
  17. 제1 항 내지 제15 항 중 어느 한 항에 따른 광대역 반사형 편광 필름을 포함하는 액정 표시 장치.A liquid crystal display device comprising the broadband reflective polarizing film according to any one of claims 1 to 15.
  18. 기재 상에 액상의 콜레스테릭 액정 코팅액을 도포하여, 상기 기재의 일면 상에 액정 코팅층을 형성하고,Applying a liquid cholesteric liquid crystal coating liquid on the substrate to form a liquid crystal coating layer on one side of the substrate,
    상기 액정 코팅층을 제1 온도에서 건조시키고,The liquid crystal coating layer is dried at a first temperature,
    상기 건조된 액정 코팅층에 제1 에너지로 제1 경화를 진행하고,First curing is performed on the dried liquid crystal coating layer with first energy,
    상기 제1 경화된 액정 코팅층에 상기 제1 온도보다 낮은 제2 온도로 제1 열처리를 진행하고,Performing a first heat treatment on the first cured liquid crystal coating layer at a second temperature lower than the first temperature,
    상기 제1 열처리된 액정 코팅층에 상기 제2 온도보다 높은 제3 온도 제2 열처리를 진행함과 동시에 상기 제1 에너지보다 큰 제2 에너지로 제2 경화를 진행하고,The second heat treatment is performed on the first heat-treated liquid crystal coating layer at a third temperature higher than the second temperature, and the second hardening is performed at a second energy greater than the first energy.
    상기 제2 열처리 및 상기 제2 본경화된 액정 코팅층에 상기 제3 온도보다 높은 제4 온도로 제3 열처리를 진행함과 동시에 상기 제2 에너지보다 큰 제3 에너지로 제3 경화를 진행하는 것을 포함하는 광대역 반사형 액정 필름의 제조 방법.Performing a third heat treatment on the second heat treatment and the second main hardened liquid crystal coating layer at a fourth temperature higher than the third temperature, and simultaneously performing a third hardening at a third energy greater than the second energy. The manufacturing method of the broadband reflective liquid crystal film.
  19. 제18 항에 있어서,The method of claim 18,
    상기 제4 온도는 상기 제1 온도보다 낮은 광대역 반사형 액정 필름의 제조 방법.And said fourth temperature is lower than said first temperature.
  20. 제19 항에 있어서,The method of claim 19,
    상기 제3 열처리 및 상기 제3 경화를 진행한 후, 상기 제4 온도로 제4 열처리를 진행함과 동시에 상기 제3 에너지로 제4 경화를 진행하는 것을 더 포함하는 광대역 반사형 액정 필름의 제조 방법.And after performing the third heat treatment and the third curing, performing a fourth heat treatment at the same time as the fourth heat treatment at the fourth temperature. .
PCT/KR2010/005925 2009-09-01 2010-09-01 Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device WO2011028018A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0082057 2009-09-01
KR1020090082057A KR101080050B1 (en) 2009-09-01 2009-09-01 Broadband reflective liquid crystal film, light source assembly including the broadband reflective liquid crystal film and liquid crystal display including the broadband reflective liquid crystal film

Publications (2)

Publication Number Publication Date
WO2011028018A2 true WO2011028018A2 (en) 2011-03-10
WO2011028018A3 WO2011028018A3 (en) 2011-06-30

Family

ID=43649774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005925 WO2011028018A2 (en) 2009-09-01 2010-09-01 Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device

Country Status (2)

Country Link
KR (1) KR101080050B1 (en)
WO (1) WO2011028018A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035358A1 (en) * 2017-08-15 2019-02-21 富士フイルム株式会社 Vehicular mirror, and vehicular mirror equipped with image display function
WO2022093410A1 (en) * 2020-10-29 2022-05-05 Facebook Technologies, Llc Optical element having multiple layers of polarisation gratings for reducing diffraction artifacts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050698A (en) 2013-10-30 2015-05-11 삼성디스플레이 주식회사 Optical film and display apparatus having the same
KR101957777B1 (en) * 2017-08-29 2019-03-13 주식회사 리노펙 Film deposited gradation layer for implementing multi color

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302388A (en) * 2003-04-01 2004-10-28 Dainippon Printing Co Ltd Optical element
US20050140918A1 (en) * 2001-09-21 2005-06-30 3M Innovative Properties Company Cholesteric liquid crystal optical bodies and methods of manufacture and use
KR20060031993A (en) * 2004-10-11 2006-04-14 삼성전자주식회사 Optical film, manufacturing method thereof, and flat fluorescent lamp and display device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050140918A1 (en) * 2001-09-21 2005-06-30 3M Innovative Properties Company Cholesteric liquid crystal optical bodies and methods of manufacture and use
JP2004302388A (en) * 2003-04-01 2004-10-28 Dainippon Printing Co Ltd Optical element
KR20060031993A (en) * 2004-10-11 2006-04-14 삼성전자주식회사 Optical film, manufacturing method thereof, and flat fluorescent lamp and display device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035358A1 (en) * 2017-08-15 2019-02-21 富士フイルム株式会社 Vehicular mirror, and vehicular mirror equipped with image display function
WO2022093410A1 (en) * 2020-10-29 2022-05-05 Facebook Technologies, Llc Optical element having multiple layers of polarisation gratings for reducing diffraction artifacts
US11733445B2 (en) 2020-10-29 2023-08-22 Meta Platforms Technologies, Llc Optical element having multiple layers for reducing diffraction artifacts

Also Published As

Publication number Publication date
WO2011028018A3 (en) 2011-06-30
KR101080050B1 (en) 2011-11-04
KR20110024171A (en) 2011-03-09

Similar Documents

Publication Publication Date Title
US10955703B2 (en) Quantum-dot embedded polarizer component and display device using same
JP3826145B2 (en) Condensing film, liquid crystal panel and backlight, and method for producing condensing film
WO2011081351A2 (en) Pattern light guide plate, method for manufacturing same, and backlight unit of a liquid crystal display using same
WO2016093449A1 (en) Display device and backlight unit included therein
WO2012108673A2 (en) Reflective polarizer having a dispersed polymer
WO2015199320A1 (en) Backlight unit and display device having the same
WO2010027240A2 (en) Optical sheet and composite sheet with moire fringe, and backlight assembly having the same
WO2013009016A2 (en) Optical member, display device having the same and method for fabricating the same
WO2011090355A2 (en) Tacky adhesive film for use in photoalignment-layer alignment processing
KR20080070530A (en) Color purity improving sheet, optical apparatus, image display, and liquid crystal display
KR101135363B1 (en) Broadband reflective polarizer film and light source assembly including the same
WO2016149976A1 (en) Optical fiber backlight module and liquid crystal display
WO2011028018A2 (en) Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device
WO2016208987A1 (en) Reflective polarizer and backlight unit including same
CN1837929A (en) Back light unit
WO2013151276A1 (en) Display panel and display apparatus having the same
WO2019235807A1 (en) Liquid crystal display device
WO2013129882A1 (en) Light guide plate and backlight unit
WO2010050750A2 (en) Reflection polarizer, light source assembly including the same, and lcd device
WO2010137891A2 (en) Reflection sheet, light source assembly, and liquid crystal display device comprising same
WO2013100661A1 (en) Reflective polarizer having dispersed polymer
WO2014007483A1 (en) Light guide plate and backlight unit comprising same
KR101135364B1 (en) Broadband reflective polarizer film and light source assembly including the same
WO2012026637A1 (en) Multi-functional reflective polarizing film and method for manufacturing same
WO2015093718A1 (en) Light diffusion film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813927

Country of ref document: EP

Kind code of ref document: A2