WO2010050750A2 - Reflection polarizer, light source assembly including the same, and lcd device - Google Patents

Reflection polarizer, light source assembly including the same, and lcd device Download PDF

Info

Publication number
WO2010050750A2
WO2010050750A2 PCT/KR2009/006273 KR2009006273W WO2010050750A2 WO 2010050750 A2 WO2010050750 A2 WO 2010050750A2 KR 2009006273 W KR2009006273 W KR 2009006273W WO 2010050750 A2 WO2010050750 A2 WO 2010050750A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
reflective polarizer
crystal layer
filler
light
Prior art date
Application number
PCT/KR2009/006273
Other languages
French (fr)
Korean (ko)
Other versions
WO2010050750A3 (en
Inventor
최승규
안철흥
김도형
김영관
안호진
이지선
연제민
Original Assignee
신화인터텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신화인터텍 주식회사 filed Critical 신화인터텍 주식회사
Priority to CN2009801426827A priority Critical patent/CN102197332A/en
Publication of WO2010050750A2 publication Critical patent/WO2010050750A2/en
Publication of WO2010050750A3 publication Critical patent/WO2010050750A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a reflective polarizer, and more particularly, to a reflective polarizer applied to a display, a light source assembly including the same, and a liquid crystal display device.
  • a liquid crystal display is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel.
  • the display by the liquid crystal display itself is non-luminous and thus cannot be used in the absence of light.
  • a light source assembly uniformly irradiated on the information display surface is mounted for the purpose of enabling use in a dark place.
  • the light source assembly used in the liquid crystal display device is largely classified into two types.
  • the first is an edge type light source assembly that provides light at the side of the liquid crystal display
  • the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display.
  • a light guide plate is provided to allow the light emitted from the light source to be irradiated upward, and at least one optical film is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate.
  • a diffuser plate is provided to reduce bright lines of light emitted from the light source, and at least one optical film is provided to adjust optical characteristics of light passing through the diffuser plate.
  • Some liquid crystal displays have reflective polarizers as one of the optical films to improve the brightness.
  • the cholesteric liquid crystal applied to the reflective polarizer is not so wide a reflected light bandwidth, it is difficult to cover the visible light radio wave with a single cholesteric liquid crystal. Therefore, in order to cover the visible light electric wave field, a plurality of liquid crystal layers are stacked.
  • the thickness itself becomes thick, not only the light transmittance is disadvantageous, but also the light transmittance is also lowered by the adhesive because it must interpose the liquid crystal interlayer adhesive.
  • the adhesive generates light distortion. As a result, the brightness, light quality, and image quality of the light source assembly and the liquid crystal display device employing such reflective polarizers are reduced.
  • the present invention has been conceived based on these points, and the problem to be solved by the present invention is to increase the luminance and improve the visual visibility of the surface by using a single liquid crystal layer and having a predetermined reflectance for the wavelength range of visible light. It is to provide a reflective polarizer to which fine color correction is applied.
  • Another problem to be solved by the present invention is to provide a reflective polarizer with increased luminance, improved visual visibility, and fine color correction.
  • Another object of the present invention is to provide a liquid crystal display device in which luminance is increased, visual visibility is improved, and fine color correction is applied.
  • Reflective polarizer for solving the above problems includes a liquid crystal layer comprising a cholesteric liquid crystal, and a filler dispersed in the liquid crystal layer.
  • Reflective polarizer for solving the above problems is a reflective polarizer comprising a liquid crystal layer comprising a cholesteric liquid crystal, and a filler dispersed in the liquid crystal layer, the surface of the reflective polarizer is flat Randomly disposed between the surface and the flat surface, and includes a protruding surface protruding from the flat surface, wherein the maximum protruding height protruding from the flat surface is 0.001 ⁇ m to 100 ⁇ m.
  • the light source assembly according to an embodiment of the present invention for solving the other problem includes a reflective polarizer as described above.
  • the liquid crystal display according to the exemplary embodiment of the present invention for solving the another problem includes the reflective polarizer as described above.
  • the reflective polarizer may exhibit a predetermined reflectance with respect to the full-wavelength range of visible light while having a single liquid crystal layer.
  • the thickness of the reflective polarizer is reduced, and the light transmittance can be improved.
  • unlike the case of laminating in a multilayer since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
  • the projecting surface is formed on the surface of the reflective polarizer by the filler, visual visibility can be improved. Furthermore, by finely adjusting the reflectance for each liquid crystal pitch, the color of emitted light can be finely corrected.
  • FIG. 1 is a cross-sectional view of a reflective polarizer according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of region A of FIG. 1.
  • FIG. 3 is a schematic diagram illustrating a traveling direction of light in the reflective polarizer of FIG. 2 of the present invention.
  • FIGS. 4 to 6 are graphs showing transmittances according to wavelengths of light incident on a liquid crystal pitch region of a reflective polarizer according to an exemplary embodiment of the present invention.
  • FIG. 7 is a graph showing transmittance according to wavelength of light incident on a liquid crystal layer of a reflective polarizer according to an exemplary embodiment of the present invention.
  • FIGS. 8-11 are partial cross-sectional views of reflective polarizers in accordance with some embodiments of the present invention.
  • FIG. 12 is a photograph of a reflective polarizer prepared without dispersing a filler in the liquid crystal layer.
  • FIG. 13 is a photograph of a reflective polarizer according to an embodiment of the present invention and is a photograph of a reflective polarizer manufactured by dispersing a filler in a liquid crystal layer.
  • FIG. 14 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a filler dispersed in the liquid crystal layer is spherical.
  • FIG. 15 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a cross section of fillers dispersed in the liquid crystal layer is triangular. do.
  • FIG. 16 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention, in which the liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a spherical filler dispersed in the liquid crystal layer is adjacent to the substrate side. The case where only a light reflection band is located is illustrated.
  • 17 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
  • 18 to 21 are cross-sectional views illustrating various shapes of an embossed pattern.
  • FIG. 22 is a cross-sectional view illustrating a case in which reflective polarizers are directly stacked with other optical sheets according to some embodiments of the present disclosure.
  • 23 and 24 are bottom views for explaining an arrangement of an embossed pattern of the reflective polarizer of FIG. 22.
  • 25 is a cross-sectional view illustrating a case in which reflective polarizers are spaced apart from each other by an optical sheet according to some embodiments of the present disclosure.
  • FIG. 26 is a bottom view illustrating an arrangement of an embossed pattern of the reflective polarizer of FIG. 25.
  • FIG. 27 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
  • 28 to 30 are cross-sectional views of reflective polarizers according to still other embodiments of the present invention.
  • FIG. 31 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
  • liquid crystal layer 120 embossed pattern
  • top chassis 600 liquid crystal display
  • references to elements or layers "on” other elements or layers include all instances where another layer or other element is directly over or in the middle of another element. On the other hand, when a device is referred to as “directly on”, it means that no device or layer is intervened in between. Like reference numerals refer to like elements throughout. "And / or” includes each and all combinations of one or more of the items mentioned.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as including terms in different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as “below” or “beneath” of another device may be placed “above” of another device. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device can also be oriented in other directions, so that spatially relative terms can be interpreted according to orientation.
  • ⁇ film may be used to mean “ ⁇ sheet” and " ⁇ plate”.
  • a reflective polarizer 10 may include a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, and a filler dispersed in the liquid crystal layer 110. And 150.
  • the substrate 105 supports the liquid crystal layer 110.
  • Substrate 105 is a transparent material capable of transmitting light, for example, polycarbonate (poly carbonate), poly sulfone (poly sulfone), poly acrylate (poly acrylate), poly styrene (poly styrene), polyvinyl It may comprise a chloride (poly vinyl chloride), poly vinyl alcohol (poly vinyl alcohol), poly norbornene (poly norbornene), polyester (poly ester) material.
  • the substrate 105 may be made of polyethylene terephtalate, polyethylene naphthalate, or the like.
  • a retardation film made of polycarbonate or the like may be applied as the substrate 105.
  • the reflective polarizer 10 serves as a composite film which integrally performs the reflective polarization and the retardation compensation.
  • the retardation film is used as the base material 105 to form the liquid crystal layer 110 directly on one surface thereof, since the interposition of the adhesive can be omitted, the thickness of the reflective polarizer 10 is not only reduced, but also the interposition of the adhesive. The distortion of the light can be prevented.
  • substrate 105 is applied in the form of a rectangular plate.
  • the thickness of the substrate 105 may be, for example, about 10 to 1000 ⁇ m, more specifically 25 to 600 ⁇ m. However, of course, the thickness of the substrate 105 is not limited to the above example.
  • the substrate 105 may be omitted. That is, the reflective polarizer 10 may be formed of only the liquid crystal layer 110 and the filler 150 dispersed in the liquid crystal layer 110.
  • the liquid crystal layer 110 is formed on one surface of the substrate 105.
  • FIG. 1 illustrates a case in which the liquid crystal layer 110 is directly formed on one surface of the substrate 105
  • the liquid crystal layer 110 may be formed on the substrate 105 through an adhesive agent.
  • another layer may be interposed between the liquid crystal layer 110 and the substrate 105.
  • the liquid crystal layer 110 includes a cholesteric liquid crystal (or chiral nematic liquid crystal).
  • the cholesteric liquid crystal may include a nematic liquid crystal and a chiral dopant. Cholesteric liquid crystals have a constant pitch and have a spiral structure twisted repeatedly. Repeated twisted helical structure induces Bragg reflection of light.
  • Cholesteric liquid crystals are classified into right-handed cholesteric liquid crystals and left-handed cholesteric liquid crystals according to their spiral directions.
  • Preferred cholesteric liquid crystals reflect right polarized light but transmit left polarized light.
  • the left cholesteric liquid crystal transmits right polarized light but reflects left circular polarized light. Therefore, in theory, the cholesteric liquid crystal transmits 50% of the light included in the wavelength range reflected by the cholesteric liquid crystal and reflects the remaining 50%.
  • the pitch (liquid crystal pitch) of the cholesteric liquid crystal is related to the wavelength of the reflected light.
  • the central wavelength of the reflected light reflected by the cholesteric liquid crystal is generally proportional to the liquid crystal pitch.
  • the center wavelength of the reflected light may mean a wavelength that is maximum reflected within the band width or an average wavelength of the band width.
  • the bandwidth of the reflected light may mean a range of wavelengths capable of reflecting about 30% to about 70% of the incident light, preferably reflecting about 40% to about 60% of the incident light
  • the range of wavelengths that can be used may mean a range of wavelengths that can more preferably reflect about 50% of incident light.
  • the liquid crystal layer 110 may include a plurality of liquid crystal pitch regions (“112” of FIG. 2) having different pitches of the cholesteric liquid crystal. As the liquid crystal layer 110 includes more liquid crystal pitch regions 112, its reflection band increases.
  • the central wavelength of the reflected light of the maximum liquid crystal pitch region of the liquid crystal layer 110 is greater than or equal to the red wavelength
  • the central wavelength of the reflected light of the minimum liquid crystal pitch region is smaller than or equal to the blue wavelength
  • the central wavelength of the reflected light of the liquid crystal pitch regions is It is distributed between the wavelengths of blue light and red light, respectively, and reflects the whole visible light area
  • FIG. 2 is an enlarged view of the region A of FIG. 1 and illustrates an example in which a plurality of liquid crystal pitch regions of the liquid crystal layer are vertically disposed such that the liquid crystal pitch gradually decreases from the first surface on the substrate 105 side to the surface on the second surface. do.
  • the interval from the first liquid crystal pitch region to the first liquid crystal pitch region in contact with the substrate 105 has a central wavelength of reflected light of 650 nm to 780 nm, constituting the red light reflection band RR.
  • the center wavelength of the reflected light is 520 nm to 650 nm, which constitutes the green light reflection band GR.
  • the section BR from the (m + 1) th liquid crystal pitch region to the last nth liquid crystal pitch region has a center wavelength of reflected light of 380 nm to 520 nm, constituting a blue light reflection band.
  • FIG. 3 is a schematic diagram illustrating a light propagation direction in the liquid crystal layer of FIG. 2 according to the present invention.
  • the first light includes the left circularly polarized light of the first wavelength ⁇ 1 and the right circularly polarized light of the first wavelength ⁇ 1
  • the second light includes the second wavelength ⁇ 2.
  • the left circularly polarized light of (L) and the right polarized light (R) of the second wavelength ( ⁇ 2) of the third light and the third light (L3) of the left circularly polarized light (L) of the third wavelength ( ⁇ 3)
  • R unidirectional polarized light R of [lambda] 3
  • the first wavelength ⁇ 1 is a wavelength of the red band
  • the second wavelength ⁇ 2 is a wavelength of the green band
  • the third wavelength ⁇ 3 is a wavelength of the blue band.
  • each liquid crystal pitch region consists of a left cholesteric liquid crystal, or some liquid crystal pitch region consists of a preferential cholesteric liquid crystal and some liquid crystal pitch regions comprise a left cholesteric liquid. It may be made of Trek liquid crystal. In addition, even within the same liquid crystal pitch region, both the left linear cholesteric liquid crystal and the preferential cholesteric liquid crystal may be included.
  • the first light having the first wavelength ⁇ 1 incident on the liquid crystal layer 110 includes a liquid crystal pitch region having the wavelength as the center wavelength of the reflected light in the red light reflection band RR.
  • the left circularly polarized light is transmitted through the center, but the right circularly polarized light is reflected.
  • the cholesteric liquid crystals of the green light reflection band GR and the blue light reflection band BR not only take priority, but if not, the first wavelength lambda 1 is the wavelength of the red band in the home.
  • the left circularly polarized light L of ( ⁇ 1) is no longer reflected in the green light reflection band GR and the blue light reflection band BR, and passes through as it is.
  • the second light which is the second wavelength ⁇ 2
  • the red light reflection band RR is transmitted as it is, and light reaching the green circle reflection L is transmitted through the green light reflection band GR.
  • the right polarized light is reflected.
  • the left circularly polarized light L having the second wavelength ⁇ 2 transmitted through the green light reflection band GR passes through the blue light reflection band BR as it is.
  • the third light of the third wavelength ⁇ 3 transmits both the red light reflection band RR and the green light reflection band GR, and reaches the blue light reflection band BR, where the left circularly polarized light L is applied. The light is transmitted, and the circularly polarized light is reflected.
  • the first light, the second light, and the third light pass through the red light reflection band RR, the green light reflection band GR, and the blue light reflection band BR, all of the left circle polarized light L All transmitted and right polarized light R is reflected. Assuming that the light is classified into left circularly polarized light and right circularly polarized light, and that they are the same, in conclusion, the first light, the second light, and the third light incident on the liquid crystal layer 110 are concluded. Only about 50% of silver is transmitted and the remaining about 50% is reflected.
  • FIG. 4 to 6 are graphs showing transmittances according to wavelengths of light incident on a liquid crystal pitch region of a reflective polarizer according to an exemplary embodiment of the present invention.
  • FIG. 4 is a graph showing transmittance according to the wavelength of light incident on the red light reflection band RR, and the red light reflection band RR has a reflectance of about 50% within a wavelength range of 650 nm to 780 nm.
  • Show that you have FIG. 5 is a graph showing the transmittance according to the wavelength of light incident on the green light reflection band GR.
  • the green light reflection band GR has a reflectance of about 50% within a wavelength range of 520 nm to 650 nm.
  • 6 is a graph showing the transmittance according to the wavelength of light incident on the blue light reflection band BR, which shows that the blue light reflection band BR has a reflectance of about 50% within a wavelength range of 380 nm to 520 nm.
  • FIG. 7 is a graph showing transmittance according to wavelength of light incident on a liquid crystal layer of a reflective polarizer according to an exemplary embodiment of the present invention.
  • the wavelength of visible light is 380 nm.
  • the wavelength of visible light is 380 nm.
  • cholesteric liquid crystals do not have a wide bandwidth of reflected light, and thus, it is difficult to cover visible light waves with a single cholesteric liquid crystal.
  • by forming a plurality of liquid crystal pitch regions 112 in the single liquid crystal layer 110 By having different reflected light bandwidths, it is possible to implement a predetermined reflectance for the visible light wave field.
  • the thickness of the liquid crystal layer 110 may be about 1 to 100 ⁇ m. More preferably in the range of about 2-15 ⁇ m.
  • FIG. 2 to 7 illustrate an example in which a plurality of liquid crystal pitch regions 112 of the liquid crystal layer 110 are vertically disposed such that the liquid crystal pitch gradually decreases from the first surface on the substrate 105 side to the surface on the second surface.
  • the present invention is not limited thereto, and the liquid crystal pitch region may be disposed such that the liquid crystal pitch is reduced in the opposite direction or is random in the vertical direction.
  • the reflective polarizer 10 has a reflectance of about 30% to about 70% with respect to the full-wavelength range of the visible light
  • the present invention is not limited thereto, and some wavelengths or other wavelengths of the visible light are not limited thereto.
  • light for example, infrared, ultraviolet, X-rays, or the like, or may be adjusted to have a reflectance for high frequency, medium frequency, low frequency electromagnetic waves, and the like.
  • the reflectance is not limited to the above range, and it is apparent that other various reflectances may be employed.
  • the method of forming the liquid crystal layer as described above may be referred to from the disclosure of Korean Patent Application No. 2008-0102601 filed by the present applicant, and the disclosure is incorporated and incorporated as fully disclosed herein.
  • the filler 150 is dispersed in the liquid crystal layer 110.
  • the filler 150 is a different material from the liquid crystal molecules and may be particles such as beads inserted between the liquid crystal molecules.
  • the filler 150 may include a material having a refractive index different from that of the cholesteric liquid crystal. Since the refractive index is different from that of the cholesteric liquid crystal, the filler 150 may itself serve as a diffusion unit.
  • the filler 150 is a monomer such as acrylic, styrene, nylon, melamine formaldehyde, propylene, ethylene, silicone, urethane, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polycarbonate, and the like.
  • Organic materials such as homopolymers or copolymers obtained by use, and inorganic materials such as antimony, tin, alumina, silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, and the like.
  • Dispersion arrangement of the filler 150 may be achieved by using a mixture of cholesteric liquid crystal and filler in a predetermined ratio in the process of forming the liquid crystal layer 110, but is not limited thereto. In this case, the filler 150 may be randomly dispersed in the liquid crystal layer 110.
  • the filler 150 dispersed in the liquid crystal layer 110 forms a partially convex protruding surface PS2 on the surface of the reflective polarizer 10 to thereby improve visual visibility of the reflective polarizer 10 or to reflect the reflective polarizer 10.
  • the emitted light color is finely corrected. Formation of the protruding surface PS2 and the reflectance adjustment for each liquid crystal pitch may be performed at the same time by the filler 150, but only one may be made.
  • FIG. 8-11 are partial cross-sectional views of reflective polarizers in accordance with some embodiments of the present invention.
  • 12 is a photograph of a reflective polarizer prepared without dispersing a filler in the liquid crystal layer.
  • FIG. 13 is a photograph of a reflective polarizer according to an embodiment of the present invention and is a photograph of a reflective polarizer manufactured by dispersing a filler in a liquid crystal layer.
  • the surface of the reflective polarizer 10 may include a flat surface PS1 and a protruding surface PS2 that protrudes finely from the flat surface PS1.
  • the protruding surface PS2 is formed by the filler 150.
  • the surface of the liquid crystal layer 110 may be a flat surface (eg, the reflective polarizer 10).
  • PS1 the surface of the exposed filler 150 constitutes the protruding surface PS2 of the reflective polarizer 10.
  • the filler 150 is surrounded by the liquid crystal layer 110, the area of the liquid crystal layer 110 surrounding the filler 150 is the filler 150.
  • the surface of the liquid crystal layer 110 which is separated from the filler 150 constitutes the flat surface PS1 of the reflective polarizer 10, but the liquid crystal layer 110 around the filler 150 is formed.
  • the protruding surface PS2 of the reflective polarizer 10 is formed in the region where the filler 10 is located. Therefore, when the filler 150 is randomly disposed in the liquid crystal layer 110, the protruding surface PS2 of the reflective polarizer 10 is also randomly disposed between the flat surfaces PS1.
  • the surface of the reflective polarizer 10 consists of only a single complete flat surface, no abnormal visual recognition phenomenon appears when viewed from the outside. However, in the actual manufacturing process, it is almost impossible to realize a complete single flat surface.
  • the surface of the reflective polarizer will comprise a plurality of flat surfaces, which are distinguished by rather fine steps. If the area of each of the flat surfaces divided by the steps is rather large and large enough to be visually discernible, these various flat surfaces are perceived as uneven spots. That is, the rainbow spot defect appears as shown in FIG.
  • the filler 150 having a size of 100 ⁇ m or less is dispersed in the liquid crystal layer 110 to partially form the protruding surface PS2 on the surface of the reflective polarizer 10, even under the same process conditions. It was confirmed that the rainbow stain defect was not recognized. This is presumably because partial light scattering or light diffusion by the filler 150 or the protruding surface PS2 suppresses the visibility of the rainbow stain. That is, even in this case, although the surface of the reflective polarizer is not a complete single flat surface, but may be composed of a plurality of flat surfaces which are distinguished by fine steps, nevertheless, as a light scattering or light diffusing effect by the protruding surface PS2 Rainbow stains are presumed not to be visualized.
  • the filler 150 having a thickness of 100 ⁇ m or less was used, the height and size of the protruding surface PS2 were also small, so that the protruding surface PS2 was hardly visually recognized by the naked eye, and was recognized as a perfect flat surface.
  • the size of the filler 150 is preferably 100 ⁇ m or less. Since the nanoparticles may also be applied to the filler 150, the lower limit of the size of the filler 150 may be 0.001 ⁇ m. In some embodiments, nanoparticles applied as the filler 150 may aggregate together to form larger chunks as a whole.
  • the size of the filler 150 may be 0.1 to 50 ⁇ m. More preferably, it may be 1 to 10 ⁇ m.
  • the maximum height of the protruding surface PS2 from the flat surface PS1 will be generally smaller than the size of the pillar 150. In exemplary embodiments, the maximum protrusion height of the protruding surface PS2 may range from 0.001 ⁇ m to 100 ⁇ m. More preferably, the maximum protrusion height of the protruding surface PS2 may range from 0.1 ⁇ m to 50 ⁇ m.
  • the size of the filler 150 may be 10 times or less than the thickness of the liquid crystal layer 110.
  • the size of the filler 150 for forming the protruding surface PS2 is preferably 0.0001 times or more relative to the thickness of the liquid crystal layer 110. More preferably, the size of the filler 150 may be 0.1 to 4 times the thickness of the liquid crystal layer 110.
  • the shape of the filler 150 for forming the protruding surface PS2 on the surface of the reflective polarizer 10 may be a spherical shape, an ellipsoid, a tetrahedron, a hexahedron, or a polygonal column such as a triangular pillar, a square pillar, a cylinder, an elliptical pillar, or the like.
  • the present invention is not limited thereto, and may be star-shaped, dumbbell-shaped or other amorphous form.
  • the content of the filler 150 dispersed in the liquid crystal layer 110 may be 0.1 to 20% by weight, preferably 0.5 to 10% by weight.
  • the total area of the protruding surface PS2 is controlled by the content of the filler 150.
  • the total area of the exemplary protruding surface PS2 of the reflective polarizer 10 may be 0.01% to 10% of the total area of the flat surface PS1 of the reflective polarizer 10.
  • the space occupied by the filler 150 in the liquid crystal layer 110 is a space in which the cholesteric liquid crystal is not arranged and is excluded from the liquid crystal pitch region 112 and does not reflect circularly polarized light. Therefore, as the dispersed filler 150 occupies each liquid crystal pitch region 112, the reflectance of the wavelength decreases.
  • the volume of the space occupied by the filler 150 for each liquid crystal pitch region of the liquid crystal layer 110 may be different, and thus, reflectance of a specific wavelength may be selectively selected. Can be reduced.
  • FIG. 14 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a filler dispersed in the liquid crystal layer is spherical.
  • the space in which the filler 150 occupies the liquid crystal pitch area of the red light reflection band RR adjacent to the substrate 105 is defined as the liquid crystal pitch area of the first space S1 and the green light reflection band GR.
  • the space occupying the second space S2 and the space occupying the liquid crystal pitch area of the blue light reflection band BR adjacent to the surface are defined as the third space S3, the size of the second space S2 among them is defined. Is maximum, and the first space S1 is minimum. Compared with the case where the filler 150 is not dispersed, although the volume of each reflection band RR, GR, BR is reduced, the red light reflection in which the filler 150 occupies the smallest first space S1 is relatively small.
  • the band RR is reduced the least, and the green light reflection band GR is reduced the most. Accordingly, the reflective polarizer of FIG. 14 emits light having a relatively small green wavelength and a large red wavelength. That is, the light emitted by the reflective polarizer is finely adjusted so that the red system has a strong color as compared with the case where the filler 150 is not dispersed.
  • FIG. 15 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a cross section of fillers dispersed in the liquid crystal layer is triangular. do.
  • the filler having a triangular cross section may be, for example, a tetrahedral or triangular pillar-shaped filler.
  • the size of the first space S1 is the largest and the third space.
  • the size of S3 becomes minimum. Therefore, in the present embodiment, the red light reflection band RR is reduced the most, and the blue light reflection band BR is reduced the least. Accordingly, the reflective polarizer of FIG. 15 emits light of a strong blue color, which has a relatively low red wavelength and a large blue wavelength, as compared with the case where the filler 150 is not dispersed.
  • FIG. 16 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention, in which the liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and the spherical filler dispersed in the liquid crystal layer is adjacent to the substrate side.
  • the spherical filler 150 having a smaller size than the size of the red light reflection band RR and having a specific gravity greater than that of the liquid crystal layer 110.
  • the spherical filler 150 is located only in the red light reflection band RR, the actual size of the red light reflection band RR decreases, but the green light reflection band GR or the blue light reflection band. (BR) does not decrease in size. Therefore, only the red wavelength reflectivity is selectively reduced as compared with the case where the filler 150 is not dispersed, and the green or blue system emits light of strong color.
  • color fine correction by the filler 150 may be performed in various ways. . As described above, when the content of the filler 150 is 20% by weight or less of the cholesteric liquid crystal, overall decrease in luminance due to the dispersion of the filler 150 may be minimized.
  • the above embodiments mainly described the fine correction of the color for the light passing through the reflective polarizer 10 in the vertical direction, but in the same way of the off axis color (OAC) of the color viewed from the inclined angle
  • OAC off axis color
  • fine correction is also possible.
  • the degree of fine correction in the vertical direction and the degree of fine correction in the inclined direction, wavelength, etc. may be different.
  • the off-axis color is selectively corrected, there is an advantage that the color correction film can be omitted.
  • the reflective polarizer 10 exhibits a predetermined reflectance for the full-wavelength range of the visible light even with a single liquid crystal layer 110, thereby reducing the thickness of the reflective polarizer, and thus the light transmittance. This can be improved.
  • the reflective polarizer 10 according to the exemplary embodiment of the present invention includes the filler 150 in the liquid crystal layer 110, whereby visual visibility is improved and color fine adjustment is possible.
  • 17 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
  • the reflective polarizer 100 includes a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, a filler 150 dispersed in the liquid crystal layer 110, And a plurality of embossed patterns 120 and diffusion units 160 formed on the other surface of the substrate 105.
  • the substrate 105, the liquid crystal layer 110, and the filler 150 are the same as those described with reference to FIGS. 1 to 16, redundant descriptions are omitted.
  • the embossed pattern 120 is close to or in close contact with another optical sheet (not shown), an optical plate (not shown), or a liquid crystal panel (not shown) to which the other surface of the reflective polarizer 100 substrate 105 is adjacent.
  • another optical sheet not shown
  • an optical plate not shown
  • a liquid crystal panel not shown
  • the diffusion unit 160 is disposed in the interior of the embossed pattern 120.
  • the diffusion unit for example, a homopolymer obtained by using monomers such as acrylic, styrene, melamine formaldehyde, propylene, ethylene, silicone, urethane, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polycarbonate, etc.
  • an organic material such as a polymer or a copolymer, or an inorganic material such as silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, or the like may be applied.
  • each emboss pattern 120 is independently formed in an island shape, and the neighboring emboss patterns 120 are spaced a predetermined distance D from each other.
  • the embossed pattern 120 may have a three-dimensional shape whose cross section is a semicircle (FIG. 18), a trapezoid (FIG. 19), and a triangle (FIG. 20). In some embodiments, as shown in FIG. 21, it may be formed in an amorphous three-dimensional shape. Irrespective of the specific shape of the embossed pattern 120, the width of the surface in which the embossed pattern 120 is in contact with the other surface of the base 105 is defined as the diameter R of the embossed pattern, and the embossed pattern 120 is referred to as the base 105.
  • the diameter R of the embossed pattern 120 is about 0.1 ⁇ m to 100 ⁇ m, and the height h of the embossed pattern 120 is About 0.05 ⁇ m to 50 ⁇ m.
  • the embossing pattern 120 may be formed of a transparent material, and may be advantageous in terms of light transmittance of the reflective polarizer 100.
  • the emboss pattern 120 has the same or similar hardness as other adjacent optical sheets, optical plates or liquid crystal panels to reduce scratching of other adjacent optical sheets, optical plates, liquid crystal panels, and the like. It may be made of a material having a.
  • having similar hardness includes, for example, a case where the difference in MOS hardness is within 1 range. Within this range of similar hardness, the scratch can be minimized even if the tip of the embossed pattern 120 is in contact with another adjacent optical sheet, optical plate, liquid crystal panel, or the like.
  • the embossed pattern 120 may be made of a material having a lower hardness than other adjacent optical sheets, optical plates, and liquid crystal panels.
  • the reflective polarizer 100 when the reflective polarizer 100 is adjacent to another optical sheet, when the embossed pattern 120 of the reflective polarizer 100 is lower in hardness than other adjacent optical sheets, mutual friction occurs between the two sheets. Even if the contact surface of the embossed pattern 120 is to be ground, the surface of another adjacent optical sheet hardly scratches. Until the embossed pattern 120 is ground and all removed, the surface of the substrate 105 of the reflective polarizer 100 continues to be protected from scratches.
  • the embossed pattern 120 may be made of a material having a MOS hardness of at least one lower than that of an adjacent optical sheet, preferably, a material having a low 1.5 or more, and more preferably a material having a low 2.0 or more.
  • embossed pattern 120 may comprise a material having a friction coefficient of 0.35 or less. If the friction coefficient of the embossing pattern 120 is 0.35 or less, even if the tip of the embossing pattern 120 comes into contact with another adjacent optical sheet, optical plate, liquid crystal panel, or the like, when pressure is applied from the outside, it easily slips on the contact surface. Therefore, the occurrence of scratches can be minimized. As an example of satisfying the condition of the friction coefficient, the embossed pattern 120 may include a UV curable material and an additive.
  • UV curable materials examples include reactive oligomers such as acrylics, urethanes, polyesters, silicones, esters, and the like, and monofunctional (meth) acrylate monomers or polyfunctional (di, tri) (meth) acrylate monomers. do.
  • monofunctional (meth) acrylate or polyfunctional (meth) acrylate monomer 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, tetrahydrofurfuryl (meth), for example Acrylate, butoxy ethyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, di Cyclopentadiene (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methyl triethylene diglycol (meth) acrylate, isobornyl (meth) acrylate, N-vinylpyrroli Don, N-vinyl caprolactam, diacetone acrylamide, isobutoxymethyl (meth)
  • a material having high lubricity may be applied.
  • a silicon based additive and a fluorine based additive may be applied.
  • a reactive monomer or a reactive oligomer having a silicone group for example, a silicone group-containing vinyl compound, a silicone group-containing (meth) acrylate compound, a (meth) acryloxy group-containing organosiloxane, silicone polyacrylate) Etc.
  • a reactive monomer or reactive oligomer having a fluorine group e.g., a fluoroalkyl group-containing vinyl compound, a fluoroalkyl group-containing (meth) acrylate compound, fluorine polyacrylate, etc.
  • a silicone group or a fluorine group A resin for example, polydimethylsiloxane, a fluoropolymer, etc.
  • a surfactant having a silicone group or a fluorine group for example, dimethyl silicone
  • the content ratio of the UV curable material and the additive may range from 100 parts by weight: 0.001 parts by weight to 100 parts by weight: 10 parts by weight, preferably 100 parts by weight: 0.01 parts by weight to 100 parts by weight: 5 parts by weight. .
  • the embossing pattern 120 may further include a photoinitiator in addition to the UV curable material and the additive.
  • the photoinitiator is one or more free radical initiators selected from benzyl ketals, benzoin ethers, acetophenone derivatives, ketoxime ethers, benzophenones, benzo or thioxanthone compounds, onium salts, ferrocenium salts ( ferrocenium salts, and one or more cationic initiators selected from diazonium salts, or mixtures thereof.
  • Securing the light transmittance of the reflective polarizer 100, and the degree of adhesion prevention, antistatic and scratch prevention with other adjacent optical sheets, optical plates, and liquid crystal panels may be embossed with the constituent materials of the embossed pattern 120 described above. It depends on the shape, arrangement and the like of 120. Reference is made to FIGS. 22 to 26 for a more detailed description. For convenience of description, the illustration of the filler is omitted in FIGS. 22 to 26.
  • FIG. 22 is a cross-sectional view illustrating a case in which reflective polarizers are directly stacked with other optical sheets according to some embodiments of the present disclosure. That is, FIG. 22 illustrates a case where another optical sheet is seated on the first seating end 81 of the mold frame 50 and the reflective polarizer 100 is directly stacked thereon.
  • the upper surface of the other optical sheet 70 is flat.
  • the optical sheet 70 and the reflective polarizer 100 only contact the embossed pattern 120 of the reflective polarizer 100, and the top surface of the optical sheet 70 and the substrate 105 of the reflective polarizer 100 are directly It does not contact and is spaced a predetermined distance apart. Therefore, although the optical sheet 70 and the reflective polarizer 100 are laminated sequentially, the whole surface does not adhere closely.
  • the height and arrangement of the embossed pattern 120 Is preferably controlled appropriately. For example, when the reflective polarizer 100 and the optical sheet 70 have a large area in the example of FIG. 22, if the height of the embossed pattern 120 is too low, the top surface of the optical sheet 70 The likelihood that the substrate 105 of the reflective polarizer 100 is in close contact with each other will increase, and the anti-contact reliability will be lowered.
  • the height h of the embossed pattern 120 is set within the range of about 0.05 ⁇ m to 50 ⁇ m, a high level of semi-adhesion reliability can be ensured.
  • the height h of the embossed pattern 120 is set in proportion to the thickness of the substrate 105.
  • the height h of the embossed pattern 120 may have a range of 0.0001 to 0.5 times the thickness of the substrate 105.
  • the ratio of the diameter R of the embossed pattern 120 to the height h of the embossed pattern 120 may be adjusted in a range of about 10: 1 to 1:10.
  • FIG. 23 and 24 are bottom views for explaining an arrangement of an embossed pattern of the reflective polarizer of FIG. 22.
  • the plurality of embossed patterns 120 are arranged at equal intervals at positions of a predetermined matrix. That is, FIG. 23 illustrates an example in which embossed patterns 120 are arranged on vertices of squares repeatedly arranged. In some other embodiments of the present invention, the plurality of embossed patterns 120 may be arranged in random order, as shown in FIG. 24.
  • the minimum spacing D of the embossed pattern 120 is preferably about 1 ⁇ m or more.
  • the area occupied by the embossed pattern 120 is preferably adjusted in the range of 0.001% to 95% of the total substrate 105 area, more preferably in the range of 0.01% to 10%. It is better to adjust at.
  • the occupied area of the embossed pattern 120 may be adjusted by the diameter of each embossed pattern, the number of embossed patterns, the spacing of the embossed patterns, the density of the embossed pattern, and the like.
  • the average spacing (D) between the neighboring embossing pattern may be, for example, about 5 ⁇ m to 500 ⁇ m.
  • FIG. 25 is a cross-sectional view illustrating a case in which reflective polarizers are spaced apart from each other by an optical sheet according to some embodiments of the present disclosure. That is, in FIG. 25, another optical sheet 70 is seated on the first seating end 81 of the mold frame 80, and the reflective polarizer 100 is mounted on the second seating end 82 of the mold frame 80. The case where it is seated is illustrated.
  • the optical sheet 70 and the reflective polarizer 100 have spaced apart from each other at approximately the thickness of the second seating end 82 at both sides.
  • the central portion of the optical sheet 70 and / or the reflective polarizer 100 may often be bent.
  • complete separation between the optical sheet 70 and the reflective polarizer 100 is difficult to ensure.
  • the optical sheet 70 is normally kept flat, but the reflective polarizer 100 is convexly curved downward, so that the optical sheet 70 and the reflective polarizer 100 are in contact with each other at the center portion. This may occur. That is, even if the two sides are spaced apart and secured to different seating ends 81 and 82, such a seating mode does not cover even the center part.
  • FIG. 26 An example of an embossed pattern 120 arrangement applicable to the seating aspect of FIG. 25 is shown in FIG. 26.
  • the embossed pattern 120 is disposed at different densities according to the center portion CP and both side portions SP that divide the substrate into 1/3. Since the center portion CP has a high possibility of contacting the neighboring optical sheet 70, the density of the embossed pattern 120 is high, while the side portions SP are spaced apart by the second seating end 82. Therefore, the density of the embossed pattern 120 may be relatively low. Although the density of the embossed pattern 120 may be constant within the same central portion CP, the density of the embossed pattern 120 may be increased toward the center line as shown in FIG. 25.
  • the embossed pattern 120 may be disposed to have a higher density as the center line is closer to the center line. In some other embodiments of the present invention, the embossed pattern 120 of both side portions SP may be omitted.
  • the arrangement of the embossed pattern as in FIGS. 23 and 24 may also be applied to the seating aspect of FIG. 25, applying the arrangement of FIG. 26 may be advantageous in view of the overall light transmission characteristics of the reflective polarizer 100.
  • FIG. 27 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
  • the reflective polarizer 101 includes a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, fillers dispersed in the liquid crystal layer, and the other surface of the substrate 105.
  • the adhesion preventing layer 125 formed in the contact unit, and the diffusion unit 160 dispersed in the adhesion preventing layer 125 is included.
  • the substrate 105 and the liquid crystal layer 110 are the same as in the above-described embodiment, except that the diffusion unit 160 may also be dispersedly disposed in the adhesion preventing layer 125 instead of the emboss pattern 120. Therefore, duplicate description thereof will be omitted.
  • the other surface of the adhesion preventing layer 125 includes a reference surface 121 and a plurality of embossed pattern surfaces 122 protruding from the reference surface 121.
  • the embossed pattern surface 122 of the adhesion preventing layer 125 has substantially the same function as the embossed pattern 120 described in the embodiments of FIGS. 17 to 26. Therefore, the shape of the embossed pattern surface 125, the protruding height of the embossed pattern surface 122 with respect to the reference plane 121 of the adhesion preventing layer 125, the arrangement of the embossed pattern surface 122, and the like are described above.
  • the shape of the, the height of the embossed pattern 120 with respect to the substrate 105, the arrangement of the embossed pattern 120 is substantially the same.
  • the adhesion preventing layer 125 including the embossed pattern surface 122 is made of a material substantially the same as the material of the embossed pattern 120.
  • 28 to 30 are cross-sectional views of reflective polarizers according to still other embodiments of the present invention.
  • the reflective polarizers 103_1, 103_2, and 103_3 employ the bead 130 instead of the emboss pattern 120 described with reference to FIGS. 17 to 26. That is, a plurality of beads 130 are formed on the other surface of the substrate 105 instead of the plurality of emboss patterns 120.
  • Bead 130 may include, for example, at least one of organic beads and inorganic beads. Examples of the organic beads include homopolymers or copolymers obtained by using monomers such as acrylic, styrene, melamine formaldehyde, propylene, ethylene, silicone, urethane, methyl (meth) acrylate, polycarbonate, and the like.
  • the inorganic beads include silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, and the like. Since the beads 130 replace the role of the emboss pattern 120, the shape or arrangement of the beads 130 is substantially the same as that of the emboss pattern 120 described above.
  • the plurality of beads 130 are supported by the substrate 105 by the support coating film 140 of the substrate 105.
  • the support coating layer 140 is formed on the other surface of the substrate 105 of the reflective polarizers 103_1, 103_2, and 103_3 to at least partially surround the beads 130.
  • the support coating layer 140 may be formed to surround the entire bead 130 as shown in FIG. 28, or may be formed to surround only a portion of the bead 130 as shown in FIG. 29.
  • the support coating film 140 may be formed in a pattern shape to surround the bead 130, as shown in FIG.
  • the support coating film 140 may be, for example, a thermosetting resin or an epoxy acrylate resin, a urethane acrylate resin, a silicone acrylate resin, an acrylic acrylate and an ester acrylate such as an acrylic resin, a urethane resin, a polyester resin, or the like. It may be made by including an ultraviolet curable resin such as.
  • the diffusion unit 160 is substantially the same as the above-described embodiments except that the diffusion unit 160 is distributed and disposed inside the support coating layer 140.
  • the reflective polarizers according to the embodiments of the present invention may have a single liquid crystal layer and exhibit a predetermined reflectance with respect to the full-wavelength range of visible light.
  • the thickness of the reflective polarizer is reduced, and the light transmittance can be improved.
  • unlike the case of laminating in a multilayer since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
  • Embodiments having emboss patterns, beads, etc. on the other side of the substrate may further be in close proximity or in close contact with neighboring optical sheets to generate static electricity, or may be applied to reflective polarizers or other optical sheets by friction caused by flow. It is effective in preventing scratches from occurring.
  • the reflective polarizer described above may be employed in a light source assembly or a liquid crystal display including the same, and used to enhance light efficiency.
  • the light source assembly is classified into a direct type light source assembly in which the lamp is located at the bottom, an edge type light source assembly in which the lamp is located at the side, and the like.
  • the reflective polarizer according to embodiments of the present invention may be employed in any kind of light source assembly.
  • the present invention is also applicable to a back light assembly disposed below the liquid crystal panel or a front light assembly disposed above the liquid crystal panel.
  • a reflective polarizer according to an embodiment of the present invention is applied to a liquid crystal display including a direct type backlight assembly is illustrated.
  • FIG. 31 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
  • the liquid crystal display 600 includes a backlight assembly 300, a liquid crystal panel assembly 400, and a top chassis 500.
  • the backlight assembly 300 includes a lamp 310, a reflective film 315 that reflects light emitted from the lamp 310, and a diffuser plate 320 and optical films 330 that adjust optical characteristics of the emitted light. It includes.
  • the lamp 310 may be, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), an External Electrode Fluorescent Lamp (EEFL), or the like.
  • CCFL Cold Cathode Fluorescent Lamp
  • HCFL Hot Cathode Fluorescent Lamp
  • EEFL External Electrode Fluorescent Lamp
  • a reflective film 315 is disposed below the lamp 310 to reflect light emitted downward from the lamp 310 upward.
  • the diffusion plate 320 and the optical films 230 are disposed on the lamp 310.
  • the diffusion plate 320 diffuses the light incident from the lamp 310.
  • Optical films 330 include a diffuser film that diffuses incident light, a prism sheet that collects incident light, a reflective polarizer that partially reflects incident circularly polarized light, a retardation film that converts circularly polarized light into linearly polarized light, and / Or a protective film.
  • the reflective polarizer the reflective polarizer according to the embodiments of the present invention described above is applied. Accordingly, light utilization is maximized, visibility is improved, and color fine correction is possible. Further, when the reflective polarizer according to the embodiments of the present invention having the embossed pattern or the bead is applied, the adhesion and the proximity of neighboring optical sheets may be prevented, thereby reducing the static electricity or the scratch.
  • the lamp 310, the reflective film 315, the diffuser plate 320, and the optical films 330 are received by the bottom chassis 340 and the mold frame 350.
  • the bottom chassis 340 forms the bottom surface of the backlight assembly 300, and a mold frame 350 having a window frame shape is disposed on the bottom chassis 340, and the light diffuser plate is disposed at a seating end provided in the mold frame 350.
  • 320, the optical films 330 and the liquid crystal panel 410 are seated.
  • the liquid crystal panel assembly 400 includes a liquid crystal panel 410 including a first display panel 411, a second display panel 412, and a liquid crystal layer (not shown) interposed therebetween, the first display panel 411, and the second display panel 411.
  • the polarizing plate 420 attached to the surface of the display panel 412, the data TCP (Tape Carrier Package) 430 attached to one side of the liquid crystal panel 310, and the printed circuit board 440 attached to the data TCP 430. ).
  • a data driver integrated circuit (IC) 431 is mounted on the data TCP 430.
  • a gate TCP (not shown) is attached to the other side of the liquid crystal panel 410 adjacent to an attachment side of the data TCP 430, and a gate driver IC (not shown) is mounted on the gate TCP.
  • the top chassis 500 covers an edge of the liquid crystal panel 410 and surrounds side surfaces of the liquid crystal panel 410 and the backlight assembly 300.
  • the data TCP 430, the printed circuit board 440, and the like are bent and received in a space between the side wall of the bottom chassis 340 and the side wall of the top chassis 500.
  • the present invention is applicable to the display industry. However, it is not limited thereto.

Abstract

Provided is a reflection polarizer. The reflection polarizer comprises: a liquid crystal layer including cholesteric liquid crystals, and fillers that are dispersed in the liquid crystal layer.

Description

반사 편광자, 이를 포함하는 광원 어셈블리 및 액정 표시 장치Reflective polarizer, light source assembly and liquid crystal display including the same
본 발명은 반사 편광자에 관한 것으로서, 보다 상세하게는 디스플레이에 적용되는 반사 편광자, 이를 포함하는 광원 어셈블리 및 액정 표시 장치에 관한 것이다.The present invention relates to a reflective polarizer, and more particularly, to a reflective polarizer applied to a display, a light source assembly including the same, and a liquid crystal display device.
액정 표시 장치(Liquid Crystal Display; LCD)는 두 개의 유리판 사이에 액정을 주입해 상하 유리판 전극에 전원을 인가하여 각 화소에 액정 분자배열이 변화함으로써 영상을 표시하는 장치이다. 음극선관 표시 장치(Cathode Ray Tube; CRT), 플라즈마 표시 장치(Plasma Display Panel; PDP) 등과는 달리 액정 표시 장치에 의한 표시는 그 자체가 비발광성이기 때문에 빛이 없는 곳에서는 사용이 불가능하다. 이러한 단점을 보완하여 어두운 곳에서의 사용이 가능하게 할 목적으로 정보 표시면에 균일하게 조사되는 광원 어셈블리를 장착한다.A liquid crystal display (LCD) is a device that displays an image by injecting a liquid crystal between two glass plates and applying power to the upper and lower glass plate electrodes to change the liquid crystal molecular array in each pixel. Unlike cathode ray tube (CRT), plasma display panel (PDP), and the like, the display by the liquid crystal display itself is non-luminous and thus cannot be used in the absence of light. To compensate for these disadvantages, a light source assembly uniformly irradiated on the information display surface is mounted for the purpose of enabling use in a dark place.
액정 표시 장치에 사용되는 광원 어셈블리는 크게 2종류로 구분된다. 첫째는 액정 표시 장치의 측면에서 빛을 제공하는 에지형 광원 어셈블리고 둘째는 액정 표시 장치의 후면에서 빛을 직접 제공하는 직하형 광원 어셈블리다. 에지형 광원 어셈블리의 경우, 광원으로부터 출사된 빛이 상측으로 조사되도록 하기 위해 도광판을 구비하며, 도광판을 통과한 빛의 광학적 특성을 조절하기 위해 도광판 위쪽에 적어도 하나의 광학 필름을 구비한다. 직하형 광원 어셈블리의 경우에는 광원으로부터 출사된 빛의 휘선을 감소시키기 위해 확산판을 구비하며, 확산판을 통과한 빛의 광학적 특성을 조절하기 위해 적어도 하나의 광학 필름을 구비한다. 몇몇 액정 표시 장치는 휘도를 개선하기 위해 광학 필름의 하나로서 반사 편광자를 구비한다.The light source assembly used in the liquid crystal display device is largely classified into two types. The first is an edge type light source assembly that provides light at the side of the liquid crystal display, and the second is a direct type light source assembly that provides light directly at the rear of the liquid crystal display. In the case of the edge type light source assembly, a light guide plate is provided to allow the light emitted from the light source to be irradiated upward, and at least one optical film is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate. In the case of the direct type light source assembly, a diffuser plate is provided to reduce bright lines of light emitted from the light source, and at least one optical film is provided to adjust optical characteristics of light passing through the diffuser plate. Some liquid crystal displays have reflective polarizers as one of the optical films to improve the brightness.
일반적으로 반사 편광자에 적용되는 콜레스테릭 액정은 반사광 밴드폭이 그리 넓지 못하여, 단일 콜레스테릭 액정으로 가시광 전파장을 커버하기는 어렵다. 따라서, 가시광 전파장을 커버하기 위해서는 다수의 액정층을 적층한다. 그러나, 다수의 액정층을 적층하면, 그 자체로 두께가 두꺼워져 광투과율이 불리해질 뿐만 아니라, 액정층간 접착제를 개재하여야 하기 때문에, 접착제에 의해서도 광투과율이 저하된다. 또, 접착제는 광 왜곡을 발생시킨다. 그 결과, 이러한 반사 편광자를 채용한 광원 어셈블리 및 액정 표시 장치의 휘도, 광질, 화질이 저하된다. In general, the cholesteric liquid crystal applied to the reflective polarizer is not so wide a reflected light bandwidth, it is difficult to cover the visible light radio wave with a single cholesteric liquid crystal. Therefore, in order to cover the visible light electric wave field, a plurality of liquid crystal layers are stacked. However, when a large number of liquid crystal layers are laminated, the thickness itself becomes thick, not only the light transmittance is disadvantageous, but also the light transmittance is also lowered by the adhesive because it must interpose the liquid crystal interlayer adhesive. In addition, the adhesive generates light distortion. As a result, the brightness, light quality, and image quality of the light source assembly and the liquid crystal display device employing such reflective polarizers are reduced.
또한, 반사 편광자의 표면에 디펙트가 발생하면 시인성 및 상품성이 저하될 수 있다. In addition, when defects are generated on the surface of the reflective polarizer, visibility and marketability may be reduced.
나아가, 적용되는 스펙에 따라서는 반사 편광자를 통과한 빛이 특정 색상 계열을 상대적으로 강하게 가질 것이 요구되는 경우가 많다. 그러나, 이를 위하여 새로운 필름을 적용하는 것은 휘도 측면에서도 불리할 뿐만 아니라, 제조 비용을 상승시킨다. Furthermore, depending on the specifications applied, it is often required that the light passing through the reflective polarizer have a relatively strong color family. However, applying a new film for this purpose is disadvantageous not only in terms of brightness, but also increases manufacturing costs.
본 발명은 이러한 점들에 근거해 착안된 것으로서, 본 발명이 해결하고자 하는 과제는 하나의 액정층만을 사용하면서도 가시광의 전파장 범위에 대해 소정의 반사율을 가져 휘도를 증가시키고, 표면의 육안 시인성이 개선되며, 미세 색상 보정이 적용된 반사 편광자를 제공하고자 하는 것이다. The present invention has been conceived based on these points, and the problem to be solved by the present invention is to increase the luminance and improve the visual visibility of the surface by using a single liquid crystal layer and having a predetermined reflectance for the wavelength range of visible light. It is to provide a reflective polarizer to which fine color correction is applied.
본 발명이 해결하고자 하는 다른 과제는 휘도가 증가하고, 육안 시인성이 개선되며, 미세한 색상 보정이 적용된 반사 편광자를 제공하고자 하는 것이다.Another problem to be solved by the present invention is to provide a reflective polarizer with increased luminance, improved visual visibility, and fine color correction.
본 발명이 해결하고자 하는 또 다른 과제는 휘도가 증가하고, 육안 시인성이 개선되며, 미세한 색상 보정이 적용된 액정 표시 장치를 제공하고자 하는 것이다. Another object of the present invention is to provide a liquid crystal display device in which luminance is increased, visual visibility is improved, and fine color correction is applied.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 반사 편광자는 콜레스테릭 액정을 포함하는 액정층, 및 상기 액정층 내에 분산 배치된 필러를 포함한다.Reflective polarizer according to an embodiment of the present invention for solving the above problems includes a liquid crystal layer comprising a cholesteric liquid crystal, and a filler dispersed in the liquid crystal layer.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 반사 편광자는 콜레스테릭 액정을 포함하는 액정층, 및 상기 액정층 내에 분산 배치된 필러를 포함하는 반사 편광자로서, 상기 반사 편광자의 표면은 평탄면 및 상기 평탄면 사이에 랜덤하게 배치되고, 상기 평탄면으로부터 돌출된 돌출면을 포함하되, 상기 돌출면이 상기 평탄면으로부터 돌출된 최대 돌출 높이는 0.001㎛ 내지 100㎛이다.Reflective polarizer according to another embodiment of the present invention for solving the above problems is a reflective polarizer comprising a liquid crystal layer comprising a cholesteric liquid crystal, and a filler dispersed in the liquid crystal layer, the surface of the reflective polarizer is flat Randomly disposed between the surface and the flat surface, and includes a protruding surface protruding from the flat surface, wherein the maximum protruding height protruding from the flat surface is 0.001㎛ to 100㎛.
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 광원 어셈블리는 상기한 바와 같은 반사 편광자를 포함한다.The light source assembly according to an embodiment of the present invention for solving the other problem includes a reflective polarizer as described above.
상기 또 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 액정 표시 장치는 상기한 바와 같은 반사 편광자를 포함한다.The liquid crystal display according to the exemplary embodiment of the present invention for solving the another problem includes the reflective polarizer as described above.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다. According to embodiments of the present invention has at least the following effects.
즉, 본 발명의 실시예들에 따른 반사 편광자에 의하면, 단일 액정층을 구비하면서도 가시광의 전파장 범위에 대해 소정의 반사율을 나타낼 수 있다. 따라서, 반사 편광자의 두께가 감소하며, 광투과율이 개선될 수 있다. 또, 다층으로 적층할 때와는 달리 접착제를 사용할 필요가 전혀 없기 때문에, 접착제의 개재에 따른 빛의 왜곡 현상, 광투과율 저하를 방지할 수 있다. That is, according to the reflective polarizer according to the exemplary embodiments of the present invention, the reflective polarizer may exhibit a predetermined reflectance with respect to the full-wavelength range of visible light while having a single liquid crystal layer. Thus, the thickness of the reflective polarizer is reduced, and the light transmittance can be improved. In addition, unlike the case of laminating in a multilayer, since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
또한, 필러에 의해 반사 편광자의 표면에 돌출면이 형성됨으로써, 육안 시인성이 개선될 수 있다. 나아가, 액정 피치별 반사율을 미세 조절함으로써, 방출광 색상을 미세 보정할 수 있다. In addition, since the projecting surface is formed on the surface of the reflective polarizer by the filler, visual visibility can be improved. Furthermore, by finely adjusting the reflectance for each liquid crystal pitch, the color of emitted light can be finely corrected.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다. The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 반사 편광자의 단면도이다. 1 is a cross-sectional view of a reflective polarizer according to an embodiment of the present invention.
도 2는 도 1의 A 영역의 확대도이다.FIG. 2 is an enlarged view of region A of FIG. 1.
도 3은 본 발명의 도 2의 반사 편광자에서 빛의 진행 방향을 예시적으로 나타낸 개략도이다.FIG. 3 is a schematic diagram illustrating a traveling direction of light in the reflective polarizer of FIG. 2 of the present invention. FIG.
도 4 내지 도 6은 각각 본 발명의 일 실시예에 따른 반사 편광자의 액정 피치 영역에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프들이다.4 to 6 are graphs showing transmittances according to wavelengths of light incident on a liquid crystal pitch region of a reflective polarizer according to an exemplary embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 반사 편광자의 액정층에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이다.7 is a graph showing transmittance according to wavelength of light incident on a liquid crystal layer of a reflective polarizer according to an exemplary embodiment of the present invention.
도 8 내지 도 11은 본 발명의 몇몇 실시예에 따른 반사 편광자의 부분 단면도들이다.8-11 are partial cross-sectional views of reflective polarizers in accordance with some embodiments of the present invention.
도 12는 액정층 내에 필러를 분산시키지 않고 제조된 반사 편광자의 사진이다. 12 is a photograph of a reflective polarizer prepared without dispersing a filler in the liquid crystal layer.
도 13은 본 발명의 일 실시예에 따른 반사 편광자의 사진으로서, 액정층 내에 필러를 분산시켜 제조된 반사 편광자의 사진이다.FIG. 13 is a photograph of a reflective polarizer according to an embodiment of the present invention and is a photograph of a reflective polarizer manufactured by dispersing a filler in a liquid crystal layer. FIG.
도 14는 본 발명의 일 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 필러가 구형인 예를 도시한다.FIG. 14 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a filler dispersed in the liquid crystal layer is spherical.
도 15는 본 발명의 다른 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 필러의 단면이 삼각형인 예를 도시한다.FIG. 15 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a cross section of fillers dispersed in the liquid crystal layer is triangular. do.
도 16은 본 발명의 또 다른 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 구형 필러가 기재 측에 인접한 레드광 반사 대역에만 위치하는 경우를 예시한다.16 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention, in which the liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a spherical filler dispersed in the liquid crystal layer is adjacent to the substrate side. The case where only a light reflection band is located is illustrated.
도 17은 본 발명의 다른 실시예에 따른 반사 편광자의 단면도이다.17 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
도 18 내지 도 21은 엠보 패턴의 다양한 형상을 설명하기 위한 단면도들이다.18 to 21 are cross-sectional views illustrating various shapes of an embossed pattern.
도 22는 본 발명의 몇몇 실시예에 따른 반사 편광자가 다른 광학 시트와 직접 적층되어 있는 경우를 도시한 단면도이다.22 is a cross-sectional view illustrating a case in which reflective polarizers are directly stacked with other optical sheets according to some embodiments of the present disclosure.
도 23 및 도 24는 도 22의 반사 편광자의 엠보 패턴의 배치를 설명하기 위한 저면도들이다.23 and 24 are bottom views for explaining an arrangement of an embossed pattern of the reflective polarizer of FIG. 22.
도 25는 본 발명의 몇몇 실시예에 따른 반사 편광자가 다른 광학 시트와 일정 간격을 두고 이격되어 안착된 경우를 도시한 단면도이다.25 is a cross-sectional view illustrating a case in which reflective polarizers are spaced apart from each other by an optical sheet according to some embodiments of the present disclosure.
도 26은 도 25의 반사 편광자의 엠보 패턴의 배치를 설명하기 위한 저면도이다. FIG. 26 is a bottom view illustrating an arrangement of an embossed pattern of the reflective polarizer of FIG. 25.
도 27은 본 발명의 또 다른 실시예에 따른 반사 편광자의 단면도이다.27 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
도 28 내지 도 30은 본 발명의 또 다른 실시예들에 따른 반사 편광자의 단면도들이다.28 to 30 are cross-sectional views of reflective polarizers according to still other embodiments of the present invention.
도 31은 본 발명의 일 실시예에 따른 액정 표시 장치의 단면도이다.31 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10, 100: 반사 편광자 105: 기재10, 100: reflective polarizer 105: substrate
110: 액정층 120: 엠보 패턴110: liquid crystal layer 120: embossed pattern
130: 비드 140: 지지 코팅막 130: bead 140: support coating film
150: 필러 160: 확산 유닛150: filler 160: diffusion unit
300: 백라이트 어셈블리 400: 액정 패널 어셈블리300: backlight assembly 400: liquid crystal panel assembly
500: 탑 샤시 600: 액정 표시 장치500: top chassis 600: liquid crystal display
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
소자(elements) 또는 층이 다른 소자 또는 층"위(on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 반면, 소자가 "직접 위(directly on)"로 지칭되는 것은 중간에 다른 소자 또는 층을 개재하지 않은 것을 나타낸다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. "및/또는"는 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. References to elements or layers "on" other elements or layers include all instances where another layer or other element is directly over or in the middle of another element. On the other hand, when a device is referred to as "directly on", it means that no device or layer is intervened in between. Like reference numerals refer to like elements throughout. "And / or" includes each and all combinations of one or more of the items mentioned.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)"또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다. The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It may be used to easily describe the correlation of a device or components with other devices or components. Spatially relative terms are to be understood as including terms in different directions of the device in use or operation in addition to the directions shown in the figures. For example, when flipping a device shown in the figure, a device described as "below" or "beneath" of another device may be placed "above" of another device. Thus, the exemplary term "below" can encompass both an orientation of above and below. The device can also be oriented in other directions, so that spatially relative terms can be interpreted according to orientation.
본 명세서에서 사용되는 용어인 "~필름"은 "~시트", "~판"의 의미로 사용될 수 있다.As used herein, the term "~ film" may be used to mean "~ sheet" and "~ plate".
이하, 첨부된 도면을 참고로 하여 본 발명의 실시예들에 대해 설명한다. Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 반사 편광자의 단면도이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 반사 편광자(10)는 기재(105), 기재(105)의 일면에 형성된 액정층(110), 및 액정층(110) 내에 분산 배치된 필러(150)를 포함한다. 1 is a cross-sectional view of a reflective polarizer according to an embodiment of the present invention. Referring to FIG. 1, a reflective polarizer 10 according to an exemplary embodiment of the present invention may include a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, and a filler dispersed in the liquid crystal layer 110. And 150.
기재(105)는 액정층(110)을 지지한다. 기재(105)는 광을 투과시킬 수 있는 투명한 재질, 예컨대, 폴리카보네이트(poly carbonate) 계열, 폴리술폰(poly sulfone) 계열, 폴리아크릴레이트(poly acrylate) 계열, 폴리스티렌(poly styrene) 계열, 폴리비닐클로라이드(poly vinyl chloride) 계열, 폴리비닐알코올(poly vinyl alcohol) 계열, 폴리노르보넨(poly norbornene) 계열, 폴리에스테르(poly ester) 계열의 물질을 포함하여 이루어질 수 있다. 구체적인 예를 들면, 기재(105)는 폴리에틸렌테레프탈레이트(poly ethylene terephtalate) 또는 폴리에틸렌나프탈레이트(poly ethylene naphthalate) 등으로 이루어질 수 있다. The substrate 105 supports the liquid crystal layer 110. Substrate 105 is a transparent material capable of transmitting light, for example, polycarbonate (poly carbonate), poly sulfone (poly sulfone), poly acrylate (poly acrylate), poly styrene (poly styrene), polyvinyl It may comprise a chloride (poly vinyl chloride), poly vinyl alcohol (poly vinyl alcohol), poly norbornene (poly norbornene), polyester (poly ester) material. For example, the substrate 105 may be made of polyethylene terephtalate, polyethylene naphthalate, or the like.
몇몇 실시예에서는 기재(105)로서 폴리카보네이트 등으로 이루어진 위상차 필름이 적용될 수 있다. 이 경우, 반사 편광자(10)는 반사 편광 및 위상차 보상을 일체형으로 수행하는 복합 필름으로 작용하게 된다. 특히, 위상차 필름을 기재(105)로 하여 그 일면의 바로 위에 액정층(110)를 형성하면, 접착제의 개재를 생략할 수 있으므로, 반사 편광자(10)의 두께를 감소시킬 뿐만 아니라, 접착제의 개재에 따른 빛의 왜곡을 방지할 수 있다.In some embodiments, a retardation film made of polycarbonate or the like may be applied as the substrate 105. In this case, the reflective polarizer 10 serves as a composite film which integrally performs the reflective polarization and the retardation compensation. In particular, when the retardation film is used as the base material 105 to form the liquid crystal layer 110 directly on one surface thereof, since the interposition of the adhesive can be omitted, the thickness of the reflective polarizer 10 is not only reduced, but also the interposition of the adhesive. The distortion of the light can be prevented.
몇몇 실시예에서 기재(105)는 직사각형 형상의 판상으로 적용된다. 기재(105)의 두께는 예를 들어, 약 10 내지 1000㎛일 수 있으며, 더욱 구체적으로는 25 내지 600㎛일 수 있다. 그러나, 기재(105)의 두께가 상기 예시에 제한되지 않음은 물론이다. In some embodiments substrate 105 is applied in the form of a rectangular plate. The thickness of the substrate 105 may be, for example, about 10 to 1000 μm, more specifically 25 to 600 μm. However, of course, the thickness of the substrate 105 is not limited to the above example.
다른 몇몇 실시예에서, 기재(105)는 생략될 수도 있다. 즉, 반사 편광자(10)는 액정층(110) 및 액정층(110) 내에 분산 배치된 필러(150)만으로 이루어질 수도 있다.In some other embodiments, the substrate 105 may be omitted. That is, the reflective polarizer 10 may be formed of only the liquid crystal layer 110 and the filler 150 dispersed in the liquid crystal layer 110.
기재(105)의 일면에는 액정층(110)이 형성되어 있다. 도 1에서는 액정층(110)이 기재(105)의 일면에 직접 형성된 경우를 예시하고 있지만, 액정층(110)은 접착제를 매개하여 기재(105) 상에 형성될 수도 있다. 나아가, 액정층(110)과 기재(105) 사이에 그 밖에 다른 층이 개재될 수도 있다.The liquid crystal layer 110 is formed on one surface of the substrate 105. Although FIG. 1 illustrates a case in which the liquid crystal layer 110 is directly formed on one surface of the substrate 105, the liquid crystal layer 110 may be formed on the substrate 105 through an adhesive agent. Furthermore, another layer may be interposed between the liquid crystal layer 110 and the substrate 105.
액정층(110)은 콜레스테릭 액정(또는 카이럴 네마틱 액정)을 포함한다. 콜레스테릭 액정은 네마틱 액정(nematic liquid crystal)과 키랄 도펀트(chiral dopant)를 포함하여 이루어질 수 있다. 콜레스테릭 액정은 일정한 피치(pitch)를 가지며 반복적으로 꼬인 나선형 구조를 갖는다. 반복되는 꼬인 나선형 구조는 광의 브래그(Bragg) 반사를 유도한다. The liquid crystal layer 110 includes a cholesteric liquid crystal (or chiral nematic liquid crystal). The cholesteric liquid crystal may include a nematic liquid crystal and a chiral dopant. Cholesteric liquid crystals have a constant pitch and have a spiral structure twisted repeatedly. Repeated twisted helical structure induces Bragg reflection of light.
콜레스테릭 액정은 그 나선 방향에 따라 우선성(right-handed) 콜레스테릭 액정 및 좌선성(left-handed) 콜레스테릭 액정으로 분류된다. 우선성 콜레스테릭 액정은 우원 편광된 빛은 반사하지만, 좌원 편광된 빛은 투과한다. 반대로, 좌선성 콜레스테릭 액정은 우원 편광된 빛은 투과하지만, 좌원 편광된 빛은 반사한다. 따라서, 이론적으로 콜레스테릭 액정은 그 콜레스테릭 액정이 반사하는 파장 범위 내에 포함된 빛의 50%는 투과하고, 나머지 50%는 반사한다. Cholesteric liquid crystals are classified into right-handed cholesteric liquid crystals and left-handed cholesteric liquid crystals according to their spiral directions. Preferred cholesteric liquid crystals reflect right polarized light but transmit left polarized light. In contrast, the left cholesteric liquid crystal transmits right polarized light but reflects left circular polarized light. Therefore, in theory, the cholesteric liquid crystal transmits 50% of the light included in the wavelength range reflected by the cholesteric liquid crystal and reflects the remaining 50%.
콜레스테릭 액정의 피치(액정 피치)는 반사되는 빛의 파장에 관계된다. 콜레스테릭 액정에 의해 반사되는 반사광의 중심 파장은 대체로 액정 피치에 비례한다. 여기서 반사광의 중심 파장이란, 콜레스테릭 액정이 반사하는 반사광이 소정의 밴드폭(band width)을 가질 경우, 그 밴드폭 내에서 최대 반사되는 파장 또는 그 밴드폭의 평균 파장을 의미할 수 있다. 또한, 상기 반사광의 밴드폭이란, 입사된 빛의 약 30% 내지 약 70%를 반사할 수 있는 파장의 범위를 의미할 수 있으며, 바람직하게는 입사된 빛의 약 40% 내지 약 60%를 반사할 수 있는 파장의 범위를, 더욱 바람직하게는 입사된 빛의 약 약 50% 정도를 반사할 수 있는 파장의 범위를 의미할 수 있다.The pitch (liquid crystal pitch) of the cholesteric liquid crystal is related to the wavelength of the reflected light. The central wavelength of the reflected light reflected by the cholesteric liquid crystal is generally proportional to the liquid crystal pitch. Here, when the reflected light reflected by the cholesteric liquid crystal has a predetermined band width, the center wavelength of the reflected light may mean a wavelength that is maximum reflected within the band width or an average wavelength of the band width. In addition, the bandwidth of the reflected light may mean a range of wavelengths capable of reflecting about 30% to about 70% of the incident light, preferably reflecting about 40% to about 60% of the incident light The range of wavelengths that can be used may mean a range of wavelengths that can more preferably reflect about 50% of incident light.
액정층(110)은 콜레스테릭 액정의 피치가 서로 다른 복수의 액정 피치 영역(도 2의 '112')을 포함할 수 있다. 액정층(110)이 더욱 다양한 액정 피치 영역(112)들을 포함할수록 그 반사 대역은 더욱 증가한다. 바람직한 실시예는 액정층(110)의 최대 액정 피치 영역의 반사광 중심 파장이 레드광 파장 이상이고, 최소 액정 피치 영역의 반사광 중심 파장이 블루광 파장 이하이며, 그 사이 액정 피치 영역들의 반사광 중심 파장이 블루광 내지 레드광의 파장 사이에 각각 분포되어 있어서, 가시광 전체 영역을 반사시킨다. The liquid crystal layer 110 may include a plurality of liquid crystal pitch regions (“112” of FIG. 2) having different pitches of the cholesteric liquid crystal. As the liquid crystal layer 110 includes more liquid crystal pitch regions 112, its reflection band increases. In a preferred embodiment, the central wavelength of the reflected light of the maximum liquid crystal pitch region of the liquid crystal layer 110 is greater than or equal to the red wavelength, the central wavelength of the reflected light of the minimum liquid crystal pitch region is smaller than or equal to the blue wavelength, and the central wavelength of the reflected light of the liquid crystal pitch regions is It is distributed between the wavelengths of blue light and red light, respectively, and reflects the whole visible light area | region.
도 2는 도 1의 A 영역의 확대도로서, 액정층의 복수의 액정 피치 영역이 기재(105) 측인 제1 면으로부터 표면인 제2 면 방향으로 액정 피치가 점차 감소하도록 수직 배치된 예를 도시한다. FIG. 2 is an enlarged view of the region A of FIG. 1 and illustrates an example in which a plurality of liquid crystal pitch regions of the liquid crystal layer are vertically disposed such that the liquid crystal pitch gradually decreases from the first surface on the substrate 105 side to the surface on the second surface. do.
도 2의 실시예에서, 기재(105)와 닿아 있는 첫번째 액정 피치 영역으로부터 l번째 액정 피치 영역까지의 구간은 반사광의 중심 파장이 650nm 내지 780nm로서, 레드광 반사 대역(RR)을 구성한다. (l+1)번째 액정 피치 영역으로부터 m번째 액정 피치 영역까지의 구간은 반사광의 중심 파장이 520nm 내지 650nm로서, 그린광 반사 대역(GR)을 구성한다. (m+1)번째 액정 피치 영역으로부터 마지막 n번째 액정 피치 영역까지의 구간(BR)은 반사광의 중심 파장이 380nm 내지 520nm로서, 블루광 반사 대역을 구성한다. In the embodiment of FIG. 2, the interval from the first liquid crystal pitch region to the first liquid crystal pitch region in contact with the substrate 105 has a central wavelength of reflected light of 650 nm to 780 nm, constituting the red light reflection band RR. In the section from the (l + 1) th liquid crystal pitch region to the mth liquid crystal pitch region, the center wavelength of the reflected light is 520 nm to 650 nm, which constitutes the green light reflection band GR. The section BR from the (m + 1) th liquid crystal pitch region to the last nth liquid crystal pitch region has a center wavelength of reflected light of 380 nm to 520 nm, constituting a blue light reflection band.
도 3은 본 발명의 도 2의 액정층에서 빛의 진행 방향을 예시적으로 나타낸 개략도이다. 도 3에서 제1 광은 제1 파장(λ1)의 좌원 편광(L)된 빛과 제1 파장(λ1)의 우원 편광(R)된 빛을 포함하고, 제2 광은 제2 파장(λ2)의 좌원 편광(L)된 빛과 제2 파장(λ2)의 우원 편광(R)된 빛을 포함하고, 제3 광은 제3 파장(λ3)의 좌원 편광(L)된 빛과 제3 파장(λ3)의 우원 편광(R)된 빛을 포함하는 것으로 가정된다. 또, 제1 파장(λ1)은 레드 대역의 파장이고, 제2 파장(λ2)은 그린 대역의 파장이고, 제3 파장(λ3)은 블루 대역의 파장으로 가정된다. FIG. 3 is a schematic diagram illustrating a light propagation direction in the liquid crystal layer of FIG. 2 according to the present invention. FIG. In FIG. 3, the first light includes the left circularly polarized light of the first wavelength λ1 and the right circularly polarized light of the first wavelength λ1, and the second light includes the second wavelength λ2. The left circularly polarized light of (L) and the right polarized light (R) of the second wavelength (λ2) of the third light, and the third light (L3) of the left circularly polarized light (L) of the third wavelength (λ3) It is assumed to contain unidirectional polarized light R of [lambda] 3). In addition, it is assumed that the first wavelength λ1 is a wavelength of the red band, the second wavelength λ2 is a wavelength of the green band, and the third wavelength λ3 is a wavelength of the blue band.
아울러, 설명의 편의를 위하여 액정층(110)의 액정 피치 영역들(112)은 모두 우선성 콜레스테릭 액정으로 이루어졌다고 가정된다. 물론, 이는 하나의 예시적인 가정에 불과하며, 각 액정 피치 영역이 좌선성 콜레스테릭 액정으로 이루어지거나, 어떤 액정 피치 영역은 우선성 콜레스테릭 액정으로 이루어지고 어떤 액정 피치 영역은 좌선성 콜레스트렉 액정으로 이루어질 수도 있다. 또, 동일 액정 피치 영역 내에서도 좌선성 콜레스테릭 액정 및 우선성 콜레스테릭 액정을 모두 포함할 수도 있다.In addition, it is assumed that all of the liquid crystal pitch regions 112 of the liquid crystal layer 110 are made of a preferential cholesteric liquid crystal for convenience of description. Of course, this is just one exemplary assumption, where each liquid crystal pitch region consists of a left cholesteric liquid crystal, or some liquid crystal pitch region consists of a preferential cholesteric liquid crystal and some liquid crystal pitch regions comprise a left cholesteric liquid. It may be made of Trek liquid crystal. In addition, even within the same liquid crystal pitch region, both the left linear cholesteric liquid crystal and the preferential cholesteric liquid crystal may be included.
도 3을 참조하면, 상기 가정하에서, 액정층(110)으로 입사된 제1 파장(λ1)의 제1 광은 레드광 반사 대역(RR)에서 해당 파장을 반사광의 중심 파장으로 갖는 액정 피치 영역을 중심으로 하여 좌원 편광(L)된 빛은 투과하지만, 우원 편광(R)된 빛은 반사한다. 그린광 반사 대역(GR) 및 블루광 반사 대역(BR)의 콜레스테릭 액정도 우선성을 띨 뿐만 아니라, 그렇지 않다고 하더라도 상기 가정에서 제1 파장(λ1)은 레드 대역의 파장이므로, 제1 파장(λ1)의 좌원 편광(L)된 빛은 그린광 반사 대역(GR) 및 블루광 반사 대역(BR)에서는 더이상 반사되지 않고, 그대로 투과해 나간다. Referring to FIG. 3, under the above assumption, the first light having the first wavelength λ1 incident on the liquid crystal layer 110 includes a liquid crystal pitch region having the wavelength as the center wavelength of the reflected light in the red light reflection band RR. The left circularly polarized light is transmitted through the center, but the right circularly polarized light is reflected. The cholesteric liquid crystals of the green light reflection band GR and the blue light reflection band BR not only take priority, but if not, the first wavelength lambda 1 is the wavelength of the red band in the home. The left circularly polarized light L of (λ1) is no longer reflected in the green light reflection band GR and the blue light reflection band BR, and passes through as it is.
마찬가지로, 제2 파장(λ2)인 제2 광은 그린 대역의 파장이므로, 레드광 반사 대역(RR)은 그대로 투과하며, 그린광 반사 대역(GR)에 이르러 좌원 편광(L)된 빛은 투과되고, 우원 편광(R)된 빛은 반사된다. 그린광 반사 대역(GR)을 투과한 제2 파장(λ2)의 좌원 편광(L)된 빛은 블루광 반사 대역(BR)을 그대로 투과한다.Similarly, since the second light, which is the second wavelength λ2, is the wavelength of the green band, the red light reflection band RR is transmitted as it is, and light reaching the green circle reflection L is transmitted through the green light reflection band GR. , The right polarized light is reflected. The left circularly polarized light L having the second wavelength λ 2 transmitted through the green light reflection band GR passes through the blue light reflection band BR as it is.
동일한 방법으로, 제3 파장(λ3)의 제3 광은 레드광 반사 대역(RR) 및 그린광 반사 대역(GR)을 모두 투과하며, 블루광 반사 대역(BR)에 이르러 좌원 편광(L)된 빛은 투과되고, 우원 편광(R)된 빛은 반사된다.In the same way, the third light of the third wavelength λ3 transmits both the red light reflection band RR and the green light reflection band GR, and reaches the blue light reflection band BR, where the left circularly polarized light L is applied. The light is transmitted, and the circularly polarized light is reflected.
따라서, 제1 광, 제2 광 및 제3 광은 레드광 반사 대역(RR), 그린광 반사 대역(GR) 및 블루광 반사 대역(BR)을 거치면서, 좌원 편광(L)된 빛은 모두 투과되고, 우원 편광(R)된 빛은 모두 반사된다. 광이 좌원 편광(L)된 빛과 우원 편광(R)된 빛으로 분류되고, 이들이 동일하게 존재한다고 가정하면, 결론적으로 액정층(110)에 입사된 제1 광, 제2 광 및 제3 광은 약 50%만이 투과되고, 나머지 약 50%는 반사된다.Therefore, while the first light, the second light, and the third light pass through the red light reflection band RR, the green light reflection band GR, and the blue light reflection band BR, all of the left circle polarized light L All transmitted and right polarized light R is reflected. Assuming that the light is classified into left circularly polarized light and right circularly polarized light, and that they are the same, in conclusion, the first light, the second light, and the third light incident on the liquid crystal layer 110 are concluded. Only about 50% of silver is transmitted and the remaining about 50% is reflected.
도 4 내지 도 6은 각각 본 발명의 일 실시예에 따른 반사 편광자의 액정 피치 영역에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프들이다. 구체적으로, 도 4는 레드광 반사 대(RR)역에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프로서, 레드광 반사 대역(RR)은 650nm 내지 780nm의 파장 범위 내에서 약 50%의 반사율을 가짐을 보여준다. 도 5는 그린광 반사 대역(GR)에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프로서, 그린광 반사 대역(GR)은 520nm 내지 650nm의 파장 범위 내에서 약 50%의 반사율을 가짐을 보여준다. 도 6은 블루광 반사 대역(BR)에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프로서, 블루광 반사 대역(BR)은 380nm 내지 520nm의 파장 범위 내에서 약 50%의 반사율을 가짐을 보여준다. 4 to 6 are graphs showing transmittances according to wavelengths of light incident on a liquid crystal pitch region of a reflective polarizer according to an exemplary embodiment of the present invention. Specifically, FIG. 4 is a graph showing transmittance according to the wavelength of light incident on the red light reflection band RR, and the red light reflection band RR has a reflectance of about 50% within a wavelength range of 650 nm to 780 nm. Show that you have FIG. 5 is a graph showing the transmittance according to the wavelength of light incident on the green light reflection band GR. The green light reflection band GR has a reflectance of about 50% within a wavelength range of 520 nm to 650 nm. 6 is a graph showing the transmittance according to the wavelength of light incident on the blue light reflection band BR, which shows that the blue light reflection band BR has a reflectance of about 50% within a wavelength range of 380 nm to 520 nm.
도 7은 본 발명의 일 실시예에 따른 반사 편광자의 액정층에 입사되는 빛의 파장에 따른 투과율을 나타낸 그래프이다. 도 7을 참조하면, 액정층(110)에 입사된 빛이 레드광 반사 대역(RR), 그린광 반사 대역(GR), 및 블루광 반사 대역(BR_을 거치면서, 가시광의 전파장(380nm 내지 780nm)에 대하여 50%의 반사율을 갖게 된다. 7 is a graph showing transmittance according to wavelength of light incident on a liquid crystal layer of a reflective polarizer according to an exemplary embodiment of the present invention. Referring to FIG. 7, while the light incident on the liquid crystal layer 110 passes through the red light reflection band RR, the green light reflection band GR, and the blue light reflection band BR_, the wavelength of visible light is 380 nm. To 780 nm) and a reflectance of 50%.
일반적으로 콜레스테릭 액정은 반사광 밴드폭이 그리 넓지 못하여, 단일 콜레스테릭 액정으로 가시광 전파장을 커버하기 어렵지만, 이와 같이 단일 액정층(110) 내에 복수의 액정 피치 영역(112)을 형성함으로써, 서로 다른 반사광 밴드폭을 갖도록 하면, 가시광 전파장에 대한 소정의 반사율을 구현할 수 있다. In general, cholesteric liquid crystals do not have a wide bandwidth of reflected light, and thus, it is difficult to cover visible light waves with a single cholesteric liquid crystal. However, by forming a plurality of liquid crystal pitch regions 112 in the single liquid crystal layer 110, By having different reflected light bandwidths, it is possible to implement a predetermined reflectance for the visible light wave field.
단일 액정층(110) 내에 충분히 다양한 액정 피치 영역을 형성하기 위하여, 액정층(110)의 두께는 약 1 내지 100㎛일 수 있다. 더욱 바람직하게는 약 2 내지 15㎛의 범위일 수 있다.In order to form sufficiently various liquid crystal pitch regions in the single liquid crystal layer 110, the thickness of the liquid crystal layer 110 may be about 1 to 100 μm. More preferably in the range of about 2-15 μm.
한편, 도 2 내지 도 7에서는 액정층(110)의 복수의 액정 피치 영역(112)이 기재(105) 측인 제1 면으로부터 표면인 제2 면 방향으로 액정 피치가 점차 감소하도록 수직 배치된 예를 설명하였지만, 본 발명이 이에 제한되는 것은 아니며, 액정 피치가 그 반대 방향으로 감소하거나, 수직 방향으로 랜덤하도록 액정 피치 영역이 배치될 수도 있음은 물론이다. 2 to 7 illustrate an example in which a plurality of liquid crystal pitch regions 112 of the liquid crystal layer 110 are vertically disposed such that the liquid crystal pitch gradually decreases from the first surface on the substrate 105 side to the surface on the second surface. Although described, the present invention is not limited thereto, and the liquid crystal pitch region may be disposed such that the liquid crystal pitch is reduced in the opposite direction or is random in the vertical direction.
또한, 이상에서는 반사 편광자(10)가 가시광의 전파장 범위에 대하여 약 30% 내지 약 70%의 반사율을 갖는 경우가 논의되었지만, 본 발명이 이에 제한되는 것은 아니며, 가시광의 일부 파장, 또는 다른 파장의 빛들, 예컨대 적외선, 자외선, X선 등이나, 고주파, 중파, 저주파의 전자기파 등에 대해 반사율을 갖도록 조절될 수도 있음은 물론이다. 또, 반사율도 상기 범위에 제한되지 않으며, 다른 다양한 반사율이 채용될 수도 있음은 자명하다.In addition, although the case in which the reflective polarizer 10 has a reflectance of about 30% to about 70% with respect to the full-wavelength range of the visible light has been discussed, the present invention is not limited thereto, and some wavelengths or other wavelengths of the visible light are not limited thereto. Of light, for example, infrared, ultraviolet, X-rays, or the like, or may be adjusted to have a reflectance for high frequency, medium frequency, low frequency electromagnetic waves, and the like. In addition, the reflectance is not limited to the above range, and it is apparent that other various reflectances may be employed.
위와 같은 액정층을 형성하는 방법은 본 출원인에 의해 출원된 대한민국 특허출원 제2008-0102601호의 개시 내용으로부터 참조될 수 있으며, 상기 개시 내용은 본 명세서에 충분히 개시된 것처럼 원용되어 통합된다. The method of forming the liquid crystal layer as described above may be referred to from the disclosure of Korean Patent Application No. 2008-0102601 filed by the present applicant, and the disclosure is incorporated and incorporated as fully disclosed herein.
다시, 도 1을 참조하면, 액정층(110) 내에는 필러(150)가 분산 배치되어 있다. 필러(150)는 액정 분자와는 상이한 물질로서, 액정 분자들 사이에 삽입된 비드 등과 같은 파티클(particle)일 수 있다. 나아가, 필러(150)는 콜레스테릭 액정과는 굴절률이 다른 물질을 포함하여 이루어질 수 있다. 콜레스테릭 액정과 굴절률이 다르기 때문에, 필러(150)는 그 자체로 확산 유닛의 역할을 할 수 있다. Referring back to FIG. 1, the filler 150 is dispersed in the liquid crystal layer 110. The filler 150 is a different material from the liquid crystal molecules and may be particles such as beads inserted between the liquid crystal molecules. In addition, the filler 150 may include a material having a refractive index different from that of the cholesteric liquid crystal. Since the refractive index is different from that of the cholesteric liquid crystal, the filler 150 may itself serve as a diffusion unit.
필러(150)는, 예를 들면, 아크릴, 스티렌, 나일론, 멜라민 포름알데하이드, 프로필렌, 에틸렌, 실리콘, 우레탄, 폴리메틸(메타) 아크릴레이트, 폴리부틸(메타) 아크릴레이트, 폴리카보네이트 등의 모노머를 사용하여 얻어지는 호모폴리머 또는 코폴리머 등의 유기 물질이나, 안티몬, 주석, 알루미나, 실리카, 지르코니아, 탄산칼슘, 황산바륨, 티타늄 산화물 등의 무기 물질 중 적어도 하나를 포함할 수 있다. The filler 150 is a monomer such as acrylic, styrene, nylon, melamine formaldehyde, propylene, ethylene, silicone, urethane, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polycarbonate, and the like. Organic materials such as homopolymers or copolymers obtained by use, and inorganic materials such as antimony, tin, alumina, silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, and the like.
필러(150)의 분산 배치는, 이에 제한되는 것은 아니지만, 액정층(110)의 형성 과정에서 콜레스테릭 액정과 필러를 일정 비율로 혼합한 혼합물을 사용함으로써 달성될 수 있다. 이와 같은 방식을 사용하는 경우, 필러(150)는 액정층(110) 내에서 랜덤하게 분산 배치될 수 있다. Dispersion arrangement of the filler 150 may be achieved by using a mixture of cholesteric liquid crystal and filler in a predetermined ratio in the process of forming the liquid crystal layer 110, but is not limited thereto. In this case, the filler 150 may be randomly dispersed in the liquid crystal layer 110.
액정층(110) 내에 분산 배치된 필러(150)는 반사 편광자(10) 표면에 부분적으로 볼록한 돌출면(PS2)을 형성함으로써, 반사 편광자(10)의 육안 시인성을 개선하거나, 반사 편광자(10)의 액정 피치별 반사율을 미세 조절함으로써, 방출광 색상을 미세 보정한다. 필러(150)에 의한 돌출면(PS2) 형성과 액정 피치별 반사율 조절은 동시에 이루어질 수도 있지만, 어느 하나만 이루어질 수도 있다.The filler 150 dispersed in the liquid crystal layer 110 forms a partially convex protruding surface PS2 on the surface of the reflective polarizer 10 to thereby improve visual visibility of the reflective polarizer 10 or to reflect the reflective polarizer 10. By fine-adjusting the reflectance for each liquid crystal pitch, the emitted light color is finely corrected. Formation of the protruding surface PS2 and the reflectance adjustment for each liquid crystal pitch may be performed at the same time by the filler 150, but only one may be made.
먼저, 도 8 내지 도 13을 참조하여 필러에 의한 반사 편광자의 육안 시인성 개선을 설명한다.First, the visual visibility improvement of the reflective polarizer by the filler will be described with reference to FIGS. 8 to 13.
도 8 내지 도 11은 본 발명의 몇몇 실시예에 따른 반사 편광자의 부분 단면도들이다. 도 12는 액정층 내에 필러를 분산시키지 않고 제조된 반사 편광자의 사진이다. 도 13은 본 발명의 일 실시예에 따른 반사 편광자의 사진으로서, 액정층 내에 필러를 분산시켜 제조된 반사 편광자의 사진이다.8-11 are partial cross-sectional views of reflective polarizers in accordance with some embodiments of the present invention. 12 is a photograph of a reflective polarizer prepared without dispersing a filler in the liquid crystal layer. FIG. 13 is a photograph of a reflective polarizer according to an embodiment of the present invention and is a photograph of a reflective polarizer manufactured by dispersing a filler in a liquid crystal layer. FIG.
도 8 내지 도 11을 참조하면, 몇몇 실시예에서, 반사 편광자(10)의 표면은 평탄면(PS1) 및 평탄면(PS1)으로부터 미세하게 돌출된 돌출면(PS2)을 포함할 수 있다. 돌출면(PS2)은 필러(150)에 의해 형성된다. 8 to 11, in some embodiments, the surface of the reflective polarizer 10 may include a flat surface PS1 and a protruding surface PS2 that protrudes finely from the flat surface PS1. The protruding surface PS2 is formed by the filler 150.
예를 들면, 도 8 및 도 9에 도시된 바와 같이, 필러(150)가 액정층(110)의 표면으로부터 노출되어 있는 경우, 액정층(110)의 표면은 반사 편광자(10)의 평탄면(PS1)을, 노출된 필러(150)의 표면은 반사 편광자(10)의 돌출면(PS2)을 구성한다. 다른 예로, 도 10 및 도 11에 도시된 바와 같이, 필러(150)가 액정층(110)에 의해 둘러싸여 있기는 하지만, 필러(150)를 둘러싸는 액정층(110)의 영역이 필러(150)에 대해 컨포말한 구조를 갖는 경우, 필러(150)와 떨어져 있는 액정층(110)의 표면은 반사 편광자(10)의 평탄면(PS1)을 구성하지만, 필러(150) 주변의 액정층(110)은 볼록면을 이룸으로써, 반사 편광자(10)의 미세 돌출면(PS2)을 구성하게 된다. 어느 경우든지, 반사 편광자(10)의 돌출면(PS2)은 필러(10)가 위치하는 영역에 형성된다. 따라서, 액정층(110) 내에서 필러(150)가 랜덤하게 배치되면, 반사 편광자(10)의 돌출면(PS2)도 평탄면(PS1) 사이에서 랜덤하게 배치된다. For example, as shown in FIGS. 8 and 9, when the filler 150 is exposed from the surface of the liquid crystal layer 110, the surface of the liquid crystal layer 110 may be a flat surface (eg, the reflective polarizer 10). PS1, the surface of the exposed filler 150 constitutes the protruding surface PS2 of the reflective polarizer 10. As another example, as shown in FIGS. 10 and 11, although the filler 150 is surrounded by the liquid crystal layer 110, the area of the liquid crystal layer 110 surrounding the filler 150 is the filler 150. In the case of having a conformal structure, the surface of the liquid crystal layer 110 which is separated from the filler 150 constitutes the flat surface PS1 of the reflective polarizer 10, but the liquid crystal layer 110 around the filler 150 is formed. ) Forms a convex surface, thereby constituting the fine projecting surface PS2 of the reflective polarizer 10. In any case, the protruding surface PS2 of the reflective polarizer 10 is formed in the region where the filler 10 is located. Therefore, when the filler 150 is randomly disposed in the liquid crystal layer 110, the protruding surface PS2 of the reflective polarizer 10 is also randomly disposed between the flat surfaces PS1.
이론적으로, 반사 편광자(10)의 표면이 완전한 단일 평탄면만으로 이루어져 있으면, 외부에서 관찰하였을 때 비정상 시인 현상이 나타나지 않는다. 그러나, 실제 제조 과정에서, 완전한 단일 평탄면을 구현하는 것은 거의 불가능하다. 통상적인 제조 과정을 따를 경우, 반사 편광자의 표면은 오히려 미세한 단차에 의해 구별되는 다수의 평탄면을 포함하게 된다. 단차에 의해 구분되는 각 평탄면의 면적이 다소 커서 육안으로 식별 가능할 정도의 크기라면, 이러한 다양한 평탄면들이 불균일한 얼룩 무늬로 시인된다. 즉, 도 12에 도시된 것처럼 레인보우 얼룩 디펙트가 나타난다.Theoretically, if the surface of the reflective polarizer 10 consists of only a single complete flat surface, no abnormal visual recognition phenomenon appears when viewed from the outside. However, in the actual manufacturing process, it is almost impossible to realize a complete single flat surface. When following a conventional manufacturing process, the surface of the reflective polarizer will comprise a plurality of flat surfaces, which are distinguished by rather fine steps. If the area of each of the flat surfaces divided by the steps is rather large and large enough to be visually discernible, these various flat surfaces are perceived as uneven spots. That is, the rainbow spot defect appears as shown in FIG.
도 13을 참조하면, 액정층(110) 내에 크기가 100㎛ 이하인 필러(150)를 분산시켜, 반사 편광자(10)의 표면에 부분적으로 돌출면(PS2)을 형성한 결과, 동일한 공정 조건 하에서도, 레인보우 얼룩 디펙트가 시인되지 않음이 확인되었다. 이는 필러(150) 또는 돌출면(PS2)에 의한 부분적인 광 산란이나 광 확산이 레인보우 얼룩의 시인을 억제하였기 때문인 것으로 추측된다. 즉, 이 경우에도 비록 반사 편광자의 표면은 완전한 단일 평탄면이 아니고, 미세 단차에 의해 구별되는 다수의 평탄면으로 이루어질 수 있지만, 그렇다고 하더라도, 돌출면(PS2)에 의한 광 산란이나 광 확산 효과로서 레인보우 얼룩은 시인되지 않은 것으로 추측된다. 아울러, 100㎛ 이하인 필러(150)를 사용하였기 때문에, 돌출면(PS2)의 높이 및 크기도 작아 육안으로는 돌출면(PS2)이 거의 시인되지 않았고, 완전한 평탄면으로 인식되었다. Referring to FIG. 13, the filler 150 having a size of 100 μm or less is dispersed in the liquid crystal layer 110 to partially form the protruding surface PS2 on the surface of the reflective polarizer 10, even under the same process conditions. It was confirmed that the rainbow stain defect was not recognized. This is presumably because partial light scattering or light diffusion by the filler 150 or the protruding surface PS2 suppresses the visibility of the rainbow stain. That is, even in this case, although the surface of the reflective polarizer is not a complete single flat surface, but may be composed of a plurality of flat surfaces which are distinguished by fine steps, nevertheless, as a light scattering or light diffusing effect by the protruding surface PS2 Rainbow stains are presumed not to be visualized. In addition, since the filler 150 having a thickness of 100 μm or less was used, the height and size of the protruding surface PS2 were also small, so that the protruding surface PS2 was hardly visually recognized by the naked eye, and was recognized as a perfect flat surface.
상기 관점에서, 필러(150)의 크기는 100㎛ 이하인 것이 바람직하다. 필러(150)로는 나노 파티클도 적용 가능하므로, 필러(150) 크기의 하한은 0.001㎛일 수 있다. 몇몇 실시예에서, 필러(150)로서 적용된 나노 파티클은 다수개가 뭉쳐져전체로서 보다 큰 덩어리를 형성할 수 있다. In view of the above, the size of the filler 150 is preferably 100 μm or less. Since the nanoparticles may also be applied to the filler 150, the lower limit of the size of the filler 150 may be 0.001 μm. In some embodiments, nanoparticles applied as the filler 150 may aggregate together to form larger chunks as a whole.
더욱 바람직한 필러(150)의 크기는 0.1 내지 50㎛일 수 있다. 더욱 바람직하게는 1 내지 10㎛일 수 있다. 평탄면(PS1)으로부터의 돌출면(PS2)의 최대 높이는 필러(150)의 크기보다는 대체로 작을 것이다. 예시적으로, 돌출면(PS2)의 최대 돌출 높이는 0.001㎛ 내지 100㎛의 범위일 수 있다. 더욱 바람직하게는 돌출면(PS2)의 최대 돌출 높이는 0.1㎛ 내지 50㎛의 범위일 수 있다.More preferably, the size of the filler 150 may be 0.1 to 50 μm. More preferably, it may be 1 to 10㎛. The maximum height of the protruding surface PS2 from the flat surface PS1 will be generally smaller than the size of the pillar 150. In exemplary embodiments, the maximum protrusion height of the protruding surface PS2 may range from 0.001 μm to 100 μm. More preferably, the maximum protrusion height of the protruding surface PS2 may range from 0.1 μm to 50 μm.
필러(150)가 액정층(110) 내에 안정적으로 분산 배치되기 위해서는 필러(150)의 크기가 액정층(110) 두께의 10배 이하인 것이 바람직하다. In order to stably disperse the filler 150 in the liquid crystal layer 110, the size of the filler 150 may be 10 times or less than the thickness of the liquid crystal layer 110.
또한, 양호한 돌출면(PS2) 형성을 위한 필러(150)의 크기는 액정층(110) 두께 대비 0.0001배 이상인 것이 바람직하다. 더욱 바람직하게는 필러(150)의 크기는 액정층(110) 두께의 0.1 내지 4배일 수 있다. In addition, the size of the filler 150 for forming the protruding surface PS2 is preferably 0.0001 times or more relative to the thickness of the liquid crystal layer 110. More preferably, the size of the filler 150 may be 0.1 to 4 times the thickness of the liquid crystal layer 110.
반사 편광자(10)의 표면에 돌출면(PS2)을 형성하기 위한 필러(150)의 형상은 구형, 타원체, 사면체, 육면체이거나, 삼각 기둥, 사각기둥, 원기둥, 타원 기둥 등의 다각 기둥일 수 있다. 그러나, 이에 제한되는 것은 아니며, 별모양, 아령 모양이나 기타 무정형이어도 무방하다. The shape of the filler 150 for forming the protruding surface PS2 on the surface of the reflective polarizer 10 may be a spherical shape, an ellipsoid, a tetrahedron, a hexahedron, or a polygonal column such as a triangular pillar, a square pillar, a cylinder, an elliptical pillar, or the like. . However, the present invention is not limited thereto, and may be star-shaped, dumbbell-shaped or other amorphous form.
액정층(110)에 분산되는 필러(150)의 함량, 다시 말하면 콜레스테릭 액정에 대한 필러의 중량비는 0.1 내지 20중량%일 수 있으며, 바람직하게는 0.5 내지 10중량%일 수 있다. The content of the filler 150 dispersed in the liquid crystal layer 110, that is, the weight ratio of the filler to the cholesteric liquid crystal may be 0.1 to 20% by weight, preferably 0.5 to 10% by weight.
한편, 돌출면(PS2)이 형성되는 면적이 너무 많으면 돌출면(PS2) 자체가 시인될 수 있다. 따라서, 돌출면(PS2)의 총면적을 제어하는 것이 바람직하다. 대체로 필러(150)의 함량에 의해 돌출면(PS2)의 총 면적이 제어된다. 반사 편광자(10)의 예시적인 돌출면(PS2)의 총 면적은 반사 편광자(10)의 평탄면(PS1)의 총 면적의 0.01% 내지 10%일 수 있다.On the other hand, if the area where the protruding surface PS2 is formed is too large, the protruding surface PS2 itself may be visually recognized. Therefore, it is preferable to control the total area of the protruding surface PS2. In general, the total area of the protruding surface PS2 is controlled by the content of the filler 150. The total area of the exemplary protruding surface PS2 of the reflective polarizer 10 may be 0.01% to 10% of the total area of the flat surface PS1 of the reflective polarizer 10.
계속해서, 필러(150)에 의한 반사 편광자(10)의 미세 색상 보정에 대해 설명한다. Subsequently, fine color correction of the reflective polarizer 10 by the filler 150 will be described.
액정층(110) 내에서 필러(150)가 점유하는 공간은 콜레스테릭 액정이 배열되지 않아 액정 피치 영역(112)으로부터 제외되는 공간으로, 원형 편광을 반사하지 않는 공간이다. 따라서, 각 액정 피치 영역(112)을 분산된 필러(150)가 많이 점유할수록 해당 파장의 반사율은 감소하게 된다. 그런데, 필러(150)의 크기, 형상 및 배치에 따라서는 필러(150)가 액정층(110)의 액정 피치 영역별로 점유하는 공간의 체적이 상이할 수 있으며, 그에 따라 특정 파장의 반사율이 선택적으로 감소할 수 있게 된다. 이하, 구체적인 예를 들어 더욱 상세히 설명한다.The space occupied by the filler 150 in the liquid crystal layer 110 is a space in which the cholesteric liquid crystal is not arranged and is excluded from the liquid crystal pitch region 112 and does not reflect circularly polarized light. Therefore, as the dispersed filler 150 occupies each liquid crystal pitch region 112, the reflectance of the wavelength decreases. However, depending on the size, shape, and arrangement of the filler 150, the volume of the space occupied by the filler 150 for each liquid crystal pitch region of the liquid crystal layer 110 may be different, and thus, reflectance of a specific wavelength may be selectively selected. Can be reduced. Hereinafter, it will be described in more detail with a specific example.
도 14는 본 발명의 일 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 필러가 구형인 예를 도시한다. FIG. 14 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a filler dispersed in the liquid crystal layer is spherical.
도 14에서, 필러(150)가 기재(105)에 인접한 레드광 반사 대역(RR)의 액정 피치 영역을 점유하는 공간을 제1 공간(S1), 그린광 반사 대역(GR)의 액정 피치 영역을 점유하는 공간을 제2 공간(S2), 표면에 인접한 블루광 반사 대역(BR)의 액정 피치 영역을 점유하는 공간을 제3 공간(S3)이라고 정의하면, 이들 중 제2 공간(S2)의 크기가 최대이고, 제1 공간(S1)이 최소가 된다. 필러(150)를 분산시키지 않은 경우에 비해, 각 반사 대역(RR, GR, BR)의 체적이 모두 줄어들긴 하지만, 상대적으로 필러(150)가 가장 작은 제1 공간(S1)을 차지하는 레드광 반사 대역(RR)이 가장 적게 감소하고, 그린광 반사 대역(GR)은 가장 많이 감소하게 된다. 따라서, 도 14의 반사 편광자는 상대적으로 그린 파장이 적고, 레드 파장이 많은 빛을 방출하게 된다. 즉, 반사 편광자에 의해 방출되는 빛은 필러(150)를 분산시키지 않은 경우에 비해 전반적으로 적색 계통이 강한 색상을 띠도록 미세 조절된다. In FIG. 14, the space in which the filler 150 occupies the liquid crystal pitch area of the red light reflection band RR adjacent to the substrate 105 is defined as the liquid crystal pitch area of the first space S1 and the green light reflection band GR. If the space occupying the second space S2 and the space occupying the liquid crystal pitch area of the blue light reflection band BR adjacent to the surface are defined as the third space S3, the size of the second space S2 among them is defined. Is maximum, and the first space S1 is minimum. Compared with the case where the filler 150 is not dispersed, although the volume of each reflection band RR, GR, BR is reduced, the red light reflection in which the filler 150 occupies the smallest first space S1 is relatively small. The band RR is reduced the least, and the green light reflection band GR is reduced the most. Accordingly, the reflective polarizer of FIG. 14 emits light having a relatively small green wavelength and a large red wavelength. That is, the light emitted by the reflective polarizer is finely adjusted so that the red system has a strong color as compared with the case where the filler 150 is not dispersed.
도 15는 본 발명의 다른 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 필러의 단면이 삼각형인 예를 도시한다. 단면이 삼각형인 필러는 예컨대, 사면체나 삼각 기둥 형상의 필러일 수 있다. FIG. 15 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention, in which a liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and a cross section of fillers dispersed in the liquid crystal layer is triangular. do. The filler having a triangular cross section may be, for example, a tetrahedral or triangular pillar-shaped filler.
도 14에서와 마찬가지의 방법으로, 도 15에서 각 반사 대역별(RR, GR, BR) 필러(150)가 점유하는 공간을 비교하면, 제1 공간(S1)의 크기가 최대이고, 제3 공간(S3)의 크기가 최소가 된다. 따라서, 본 실시예에서는 레드광 반사 대역(RR)이 가장 많이 감소하고, 블루광 반사 대역(BR)이 가장 적게 감소하게 된다. 따라서, 도 15의 반사 편광자는 필러(150)를 분산시키지 않은 경우에 비해 상대적으로 레드 파장이 적고, 블루 파장이 많은, 전반적으로 블루 계통이 강한 색상의 빛을 방출하게 된다. In the same manner as in FIG. 14, when the space occupied by the fillers 150 for each reflection band (RR, GR, BR) in FIG. 15 is compared, the size of the first space S1 is the largest and the third space. The size of S3 becomes minimum. Therefore, in the present embodiment, the red light reflection band RR is reduced the most, and the blue light reflection band BR is reduced the least. Accordingly, the reflective polarizer of FIG. 15 emits light of a strong blue color, which has a relatively low red wavelength and a large blue wavelength, as compared with the case where the filler 150 is not dispersed.
도 16은 본 발명의 또 다른 실시예에 따른 반사 편광자의 단면도로서, 액정층의 액정 피치 영역이 도 2와 실질적으로 동일한 수직 배치를 갖고 있고, 액정층 내에 분산된 구형 필러가 기재 측에 인접한 레드광 반사 대역에만 위치하는 경우를 예시한다. 이와 같은 구조는 예컨대, 레드광 반사 대역(RR)의 크기보다 크기가 작고, 액정층(110)보다 비중이 큰 구형 필러(150)를 적용함으로써, 용이하게 구현가능하다. 그러나, 이에 제한되는 것은 아니다. 16 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention, in which the liquid crystal pitch region of the liquid crystal layer has substantially the same vertical arrangement as that of FIG. 2, and the spherical filler dispersed in the liquid crystal layer is adjacent to the substrate side. The case where only a light reflection band is located is illustrated. Such a structure can be easily implemented by applying a spherical filler 150 having a smaller size than the size of the red light reflection band RR and having a specific gravity greater than that of the liquid crystal layer 110. However, it is not limited thereto.
도 16을 참조하면, 구형 필러(150)가 레드광 반사 대역(RR)에만 위치하므로, 레드광 반사 대역(RR)의 실질 크기는 감소하지만, 그린광 반사 대역(GR)이나, 블루광 반사 대역(BR)은 크기가 감소하지 않는다. 따라서, 필러(150)를 분산시키지 않은 경우에 비해 레드 파장의 반사율만 선택적으로 감소하며, 전반적으로 그린 또는 블루 계통이 강한 색상의 빛을 방출하게 된다.Referring to FIG. 16, since the spherical filler 150 is located only in the red light reflection band RR, the actual size of the red light reflection band RR decreases, but the green light reflection band GR or the blue light reflection band. (BR) does not decrease in size. Therefore, only the red wavelength reflectivity is selectively reduced as compared with the case where the filler 150 is not dispersed, and the green or blue system emits light of strong color.
이상의 실시예들로부터 필러(150)의 형상과 배치, 그리고 액정 피치 영역(112)의 수직 배치 등을 변형하면, 필러(150)에 의한 색상 미세 보정은 다양한 방식으로 이루어질 수 있음을 이해할 수 있을 것이다. 상술한 것처럼, 필러(150)의 함량이 콜레스테릭 액정의 20중량%이하이면, 필러(150)의 분산에 따른 전반적인 휘도 저하도 최소화될 수 있다.From the above embodiments, if the shape and arrangement of the filler 150 and the vertical arrangement of the liquid crystal pitch region 112 are modified, it may be understood that color fine correction by the filler 150 may be performed in various ways. . As described above, when the content of the filler 150 is 20% by weight or less of the cholesteric liquid crystal, overall decrease in luminance due to the dispersion of the filler 150 may be minimized.
한편, 이상의 실시예들에서는 주로 반사 편광자(10)를 수직 방향으로 통과하는 빛에 대한 색상의 미세 보정을 설명하였지만, 동일한 방식으로 경사진 각도에서 바라본 색상인 축외색상(OAC; off axis color)의 미세 보정도 가능함은 물론이다. 필러(150)의 형상이나 배치에 따라서는 수직 방향의 미세 보정과 경사진 방향의 미세 보정의 정도, 파장 등이 상이할 수 있음을 쉽게 이해할 수 있을 것이다. 축외 색상을 선택적으로 적절히 보정하게 되면, 색보정 필름을 생략할 수 있는 장점이 있다. On the other hand, the above embodiments mainly described the fine correction of the color for the light passing through the reflective polarizer 10 in the vertical direction, but in the same way of the off axis color (OAC) of the color viewed from the inclined angle Of course, fine correction is also possible. Depending on the shape or arrangement of the filler 150, it will be readily understood that the degree of fine correction in the vertical direction and the degree of fine correction in the inclined direction, wavelength, etc. may be different. When the off-axis color is selectively corrected, there is an advantage that the color correction film can be omitted.
이상 설명한 바와 같이, 본 발명의 일 실시예에 따른 반사 편광자(10)는 단일 액정층(110)만으로도 가시광의 전파장 범위에 대해 소정의 반사율을 나타냄으로써, 반사 편광자의 두께가 감소하며, 광투과율이 개선될 수 있다. 또, 다층으로 적층할 때와는 달리 접착제를 사용할 필요가 전혀 없기 때문에, 접착제의 개재에 따른 빛의 왜곡 현상, 광투과율 저하를 방지할 수 있다. 뿐만 아니라, 본 발명의 일 실시예에 따른 반사 편광자(10)는 액정층(110) 내에 필러(150)를 구비함으로써, 육안 시인성이 개선되고, 색상 미세 조절이 가능하다. As described above, the reflective polarizer 10 according to the exemplary embodiment of the present invention exhibits a predetermined reflectance for the full-wavelength range of the visible light even with a single liquid crystal layer 110, thereby reducing the thickness of the reflective polarizer, and thus the light transmittance. This can be improved. In addition, unlike the case of laminating in a multilayer, since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive. In addition, the reflective polarizer 10 according to the exemplary embodiment of the present invention includes the filler 150 in the liquid crystal layer 110, whereby visual visibility is improved and color fine adjustment is possible.
도 17은 본 발명의 다른 실시예에 따른 반사 편광자의 단면도이다. 17 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
도 17을 참조하면, 본 실시예에 따른 반사 편광자(100)는 기재(105), 기재(105)의 일면에 형성된 액정층(110), 액정층(110) 내에 분산 배치된 필러(150), 및 기재(105)의 타면에 형성된 복수의 엠보 패턴(120) 및 확산 유닛(160)을 포함한다. Referring to FIG. 17, the reflective polarizer 100 according to the present exemplary embodiment includes a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, a filler 150 dispersed in the liquid crystal layer 110, And a plurality of embossed patterns 120 and diffusion units 160 formed on the other surface of the substrate 105.
기재(105), 액정층(110), 및 필러(150)는 도 1 내지 도 16을 참조하여 설명한 것과 동일하므로, 중복 설명은 생략한다.Since the substrate 105, the liquid crystal layer 110, and the filler 150 are the same as those described with reference to FIGS. 1 to 16, redundant descriptions are omitted.
엠보 패턴(120)은 반사 편광자(100) 기재(105)의 타면이 이웃하는 다른 광학 시트(미도시), 광학판(미도시), 또는 액정 패널(미도시) 등과 근접하거나 밀착함으로써, 정전기가 발생하거나, 유동에 의한 마찰이 발생할 경우, 기재(105)의 타면 및/또는 이웃하는 다른 광학 시트, 광학판, 액정 패널 등에 스크래치가 발생하는 것을 방지한다. 이에 대한 더욱 구체적인 설명은 후술된다. The embossed pattern 120 is close to or in close contact with another optical sheet (not shown), an optical plate (not shown), or a liquid crystal panel (not shown) to which the other surface of the reflective polarizer 100 substrate 105 is adjacent. When the friction occurs due to flow or the occurrence of friction, scratches are prevented from occurring on the other surface of the substrate 105 and / or other optical sheets, optical plates, liquid crystal panels, and the like. A more detailed description thereof will be described later.
확산 유닛(160)은 엠보 패턴(120)의 내부에 분산 배치된다. 확산 유닛으로는 예를 들어, 아크릴, 스티렌, 멜라민 포름알데하이드, 프로필렌, 에틸렌, 실리콘, 우레탄, 폴리메틸(메타) 아크릴레이트, 폴리부틸(메타) 아크릴레이트, 폴리카보네이트 등의 모노머를 사용하여 얻어지는 호모폴리머 또는 코폴리머 등의 유기 물질이나, 실리카, 지르코니아, 탄산칼슘, 황산바륨, 티타늄 산화물 등의 무기 물질 중 적어도 하나가 적용될 수 있다. The diffusion unit 160 is disposed in the interior of the embossed pattern 120. As the diffusion unit, for example, a homopolymer obtained by using monomers such as acrylic, styrene, melamine formaldehyde, propylene, ethylene, silicone, urethane, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polycarbonate, etc. At least one of an organic material such as a polymer or a copolymer, or an inorganic material such as silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, or the like may be applied.
몇몇 예시적인 실시예들에서, 각 엠보 패턴(120)은 아일랜드 형상으로 독립적으로 형성되어 있고, 이웃하는 엠보 패턴(120)은 소정 간격(D) 이격되어 있다. In some exemplary embodiments, each emboss pattern 120 is independently formed in an island shape, and the neighboring emboss patterns 120 are spaced a predetermined distance D from each other.
도 18 내지 도 21은 엠보 패턴의 다양한 형상을 설명하기 위한 단면도들이다. 도 18 내지 도 21을 참조하면, 엠보 패턴(120)은 그 단면이 반원(도 18), 사다리꼴(도 19), 삼각형(도 20)인 입체 형상을 가질 수 있다. 몇몇 실시예에서는 도 21에 도시된 것처럼, 무정형의 입체 형상으로 이루어질 수도 있다. 엠보 패턴(120)의 구체적인 형상에 상관없이, 엠보 패턴(120)이 기재(105)의 타면에 접하는 면의 폭을 엠보 패턴의 직경(R)으로 정의하고, 엠보 패턴(120)이 기재(105)의 타면으로부터 최대 돌출된 거리를 엠보 패턴의 높이(h)로 정의하면, 엠보 패턴(120)의 직경(R)은 약 0.1㎛ 내지 100㎛이고, 엠보 패턴(120)의 높이(h)는 약 0.05㎛ 내지 50㎛일 수 있다.18 to 21 are cross-sectional views illustrating various shapes of an embossed pattern. 18 to 21, the embossed pattern 120 may have a three-dimensional shape whose cross section is a semicircle (FIG. 18), a trapezoid (FIG. 19), and a triangle (FIG. 20). In some embodiments, as shown in FIG. 21, it may be formed in an amorphous three-dimensional shape. Irrespective of the specific shape of the embossed pattern 120, the width of the surface in which the embossed pattern 120 is in contact with the other surface of the base 105 is defined as the diameter R of the embossed pattern, and the embossed pattern 120 is referred to as the base 105. When the maximum protruding distance from the other surface of) is defined as the height h of the embossed pattern, the diameter R of the embossed pattern 120 is about 0.1 μm to 100 μm, and the height h of the embossed pattern 120 is About 0.05 μm to 50 μm.
엠보 패턴(120)은 투명한 재질로 이루어지는 것이, 반사 편광자(100)의 광투과율 측면에서 유리할 수 있다. The embossing pattern 120 may be formed of a transparent material, and may be advantageous in terms of light transmittance of the reflective polarizer 100.
본 발명의 몇몇 실시예에서는, 엠보 패턴(120)이 인접하는 다른 광학 시트, 광학판, 액정 패널 등을 스크래치하는 것을 감소시키기 위하여, 인접하는 다른 광학 시트, 광학판이나 액정 패널과 동일하거나 유사한 경도를 갖는 물질로 이루어질 수 있다. 여기서, 유사한 경도를 갖는다 함은 예컨대, 모오스 경도의 차가 1 이내의 범위인 경우를 포함한다. 이와 같은 유사 경도의 범위 내에서, 엠보 패턴(120)의 첨단이 인접하는 다른 광학 시트, 광학판, 액정 패널 등과 접촉하더라도, 스크래치가 최소화될 수 있다.In some embodiments of the present invention, the emboss pattern 120 has the same or similar hardness as other adjacent optical sheets, optical plates or liquid crystal panels to reduce scratching of other adjacent optical sheets, optical plates, liquid crystal panels, and the like. It may be made of a material having a. Here, having similar hardness includes, for example, a case where the difference in MOS hardness is within 1 range. Within this range of similar hardness, the scratch can be minimized even if the tip of the embossed pattern 120 is in contact with another adjacent optical sheet, optical plate, liquid crystal panel, or the like.
몇몇 다른 실시예에서, 엠보 패턴(120)은 인접하는 다른 광학 시트, 광학판, 액정 패널보다 경도가 낮은 물질로 이루어질 수 있다. 반사 편광자(100)이 다른 광학 시트와 인접하는 경우를 예를 들어 설명하면, 반사 편광자(100)의 엠보 패턴(120)이 인접하는 다른 광학 시트보다 경도가 낮을 경우, 두 시트간 상호 마찰이 일어나더라도, 엠보 패턴(120)의 접촉면이 그라인딩(grinding)될지언정, 인접하는 다른 광학 시트의 표면은 스크래치가 거의 발생하지 않는다. 엠보 패턴(120)이 그라인딩되어 모두 제거되기까지는 반사 편광자(100)의 기재(105) 표면도 계속해서 스크래치로부터 보호된다. 상기 관점에서, 엠보 패턴(120)은 인접하는 광학 시트보다 모오스 경도가 1 이상 낮은 물질, 바람직하게는 1.5이상 낮은 물질, 더욱 바람직하게는 2.0 이상 낮은 물질로 이루어질 수 있다. In some other embodiments, the embossed pattern 120 may be made of a material having a lower hardness than other adjacent optical sheets, optical plates, and liquid crystal panels. For example, when the reflective polarizer 100 is adjacent to another optical sheet, when the embossed pattern 120 of the reflective polarizer 100 is lower in hardness than other adjacent optical sheets, mutual friction occurs between the two sheets. Even if the contact surface of the embossed pattern 120 is to be ground, the surface of another adjacent optical sheet hardly scratches. Until the embossed pattern 120 is ground and all removed, the surface of the substrate 105 of the reflective polarizer 100 continues to be protected from scratches. In view of the above, the embossed pattern 120 may be made of a material having a MOS hardness of at least one lower than that of an adjacent optical sheet, preferably, a material having a low 1.5 or more, and more preferably a material having a low 2.0 or more.
또한, 몇몇 실시예에서 엠보 패턴(120)은 마찰 계수가 0.35 이하인 물질을 포함하여 이루어질 수 있다. 엠보 패턴(120)의 마찰 계수가 0.35 이하이면, 엠보 패턴(120)의 첨단이 인접하는 다른 광학 시트, 광학판, 액정 패널 등과 접촉하더라도, 외부로부터 압력이 작용하였을 때, 그 접촉면에서 쉽게 미끄러지기 때문에, 스크래치의 발생이 최소화될 수 있다. 상기 마찰 계수의 조건을 만족하는 일 예로, 엠보 패턴(120)은 UV 경화성 물질 및 첨가제를 포함하여 이루어질 수 있다. Further, in some embodiments embossed pattern 120 may comprise a material having a friction coefficient of 0.35 or less. If the friction coefficient of the embossing pattern 120 is 0.35 or less, even if the tip of the embossing pattern 120 comes into contact with another adjacent optical sheet, optical plate, liquid crystal panel, or the like, when pressure is applied from the outside, it easily slips on the contact surface. Therefore, the occurrence of scratches can be minimized. As an example of satisfying the condition of the friction coefficient, the embossed pattern 120 may include a UV curable material and an additive.
상기 적용가능한 UV 경화성 물질의 예는 아크릴계, 우레탄계, 폴리에스터계, 실리콘계, 에스테르계 등의 반응성 올리고머 및 단관능성 (메타)아크릴레이트 모노머 또는 다관능성 (디,트리)(메타)아크릴레이트 모노머들을 포함한다. 상기 단관능성 (메타)아크릴레이트 또는 다관능성 (메타)아크릴레이트 모노머로는, 예컨대 2-하이드록시에틸(메타)아크릴레이트, 2-하이드록시프로필(메타)아크릴레이트, 테트라하이드로퍼퓨릴(메타)아크릴레이트, 부톡시 에틸(메타)아크릴레이트, 에틸디에틸렌글리콜(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, 사이클로헥실(메타)아크릴레이트, 페녹시에틸(메타)아크릴레이트, 디싸이클로펜타디엔(메타)아크릴레이트, 폴리에틸렌글리콜(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 메틸트리에틸렌디글리콜(메타)아크릴레이트, 이소보닐(메타)아크릴레이트, N-비닐피롤리돈, N-비닐카프로락탐, 디아세톤아크릴아마이드, 이소부톡시메틸(메타)아크릴아마이드, N,N-디메틸(메타)아크릴 아마이드, t-옥틸(메타)아크릴아마이드, 디메틸아미노에틸(메타)아크릴레이트, 아크릴로일몰포린, 디싸이클로펜테닐(메타)아크릴레이트, 트리메틸올프로판트리(메타)아크릴레이트, 펜타에리트리톨트리(메타)아크릴레이트, 펜타에리트리톨테트라(메타)아크릴레이트, 에틸렌글리콜디(메타)아크릴레이트, 테트라에틸렌글리콜디(메타)아크릴레이트, 폴리에틸렌글리콜디(메타)아크릴레이트, 1,4-부탄디올디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 네오펜틸글리콜디(메타)아크릴레이트, 트리메틸올프로판트리옥시에틸(메타)아크릴레이트, 트리싸이클로데칸디메탄올디(메타)아크릴레이트, 디싸이클로데칸디메탄올디(메타)아크릴레이트, 트리프로필렌글리콜디(메타)아크릴레이트, 디싸이클로펜탄디(메타)아크릴레이트, 디싸이클로펜타디엔디(메타)아크릴레이트 등을 들 수 있고, 상기 열거된 물질을 단독 또는 혼합하여 사용할 수 있다. Examples of applicable UV curable materials include reactive oligomers such as acrylics, urethanes, polyesters, silicones, esters, and the like, and monofunctional (meth) acrylate monomers or polyfunctional (di, tri) (meth) acrylate monomers. do. As said monofunctional (meth) acrylate or polyfunctional (meth) acrylate monomer, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, tetrahydrofurfuryl (meth), for example Acrylate, butoxy ethyl (meth) acrylate, ethyl diethylene glycol (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethyl (meth) acrylate, di Cyclopentadiene (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methyl triethylene diglycol (meth) acrylate, isobornyl (meth) acrylate, N-vinylpyrroli Don, N-vinyl caprolactam, diacetone acrylamide, isobutoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, t-octyl (meth) acrylamide, di Methylaminoethyl (meth) acrylate, acryloylmorpholine, dicyclopentenyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanedioldi (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dicyclodecane dimethanol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, dicyclopentanedi (meth) acrylate, dicyclopentadienedi (meth) acrylate, and the like, It may be used alone or in mixture of the listed substances.
상기 첨가제로는 윤활성이 높은 물질이 적용될 수 있다. 예를 들면, 실리콘계 첨가제 및 불소계 첨가제 중 적어도 하나가 적용될 수 있다. 구체적으로, 실리콘기(silicon group)를 가지는 반응성 모노머 혹은 반응성 올리고머(예컨대, 실리콘기 함유 비닐 화합물, 실리콘기 함유 (메타)아크릴레이트 화합물, (메타)아크릴옥시기 함유 오가노실록산, 실리콘 폴리아크릴레이트 등), 불소기(fluorine group)를 가지는 반응성 모노머 혹은 반응성 올리고머(예컨대, 플루오로알킬기 함유 비닐 화합물, 플루오로알킬기 함유 (메타)아크릴레이트 화합물, 불소 폴리아크릴레이트 등), 실리콘기 혹은 불소기를 가지는 수지(예컨대, 폴리디메틸실록산, 불소 중합체 등), 실리콘기 혹은 불소기를 가지는 계면활성제나 오일(예컨대 디메틸 실리콘 오일 등) 등이 단독 또는 혼합되어 적용될 수 있다. As the additive, a material having high lubricity may be applied. For example, at least one of a silicon based additive and a fluorine based additive may be applied. Specifically, a reactive monomer or a reactive oligomer having a silicone group (for example, a silicone group-containing vinyl compound, a silicone group-containing (meth) acrylate compound, a (meth) acryloxy group-containing organosiloxane, silicone polyacrylate) Etc.), a reactive monomer or reactive oligomer having a fluorine group (e.g., a fluoroalkyl group-containing vinyl compound, a fluoroalkyl group-containing (meth) acrylate compound, fluorine polyacrylate, etc.), a silicone group or a fluorine group A resin (for example, polydimethylsiloxane, a fluoropolymer, etc.), a surfactant having a silicone group or a fluorine group, an oil (for example, dimethyl silicone oil, etc.) may be applied alone or in combination.
상기 UV 경화성 물질과 첨가제의 함량비는 100중량부 : 0.001중량부 내지 100중량부 : 10중량부의 범위일 수 있고, 바람직하게는 100중량부 : 0.01중량부 내지 100중량부 : 5중량부일 수 있다. The content ratio of the UV curable material and the additive may range from 100 parts by weight: 0.001 parts by weight to 100 parts by weight: 10 parts by weight, preferably 100 parts by weight: 0.01 parts by weight to 100 parts by weight: 5 parts by weight. .
엠보 패턴(120)은 UV 경화성 물질과 첨가제 외에 광개시제를 더 포함할 수 있다. 상기 광개시제는 벤질 케탈류, 벤조인 에테르류, 아세토페논 유도체, 케톡심 에테르류, 벤조페논, 벤조 또는 티옥산톤계 화합물 중 선택된 1종 이상의 자유라디칼 개시제, 오늄 염(onium salts), 페로세늄 염(ferrocenium salts), 및 디아조늄 염(diazonium salts) 중 선택된 1종 이상의 양이온성 개시제, 또는 이들의 혼합물일 수 있다. The embossing pattern 120 may further include a photoinitiator in addition to the UV curable material and the additive. The photoinitiator is one or more free radical initiators selected from benzyl ketals, benzoin ethers, acetophenone derivatives, ketoxime ethers, benzophenones, benzo or thioxanthone compounds, onium salts, ferrocenium salts ( ferrocenium salts, and one or more cationic initiators selected from diazonium salts, or mixtures thereof.
반사 편광자(100)의 광투광율 확보와, 인접하는 다른 광학 시트, 광학판, 액정 패널과의 밀착 방지, 정전기 방지, 및 스크래치 방지 정도는 상술한 엠보 패턴(120)의 구성 물질 등과 함께, 엠보 패턴(120)의 형상, 배치 등에 따라 달라진다. 더욱 구체적인 설명을 위하여 도 22 내지 도 26이 참조된다. 설명의 편의상 도 22 내지 도 26에서 필러의 도시는 생략하였다.Securing the light transmittance of the reflective polarizer 100, and the degree of adhesion prevention, antistatic and scratch prevention with other adjacent optical sheets, optical plates, and liquid crystal panels may be embossed with the constituent materials of the embossed pattern 120 described above. It depends on the shape, arrangement and the like of 120. Reference is made to FIGS. 22 to 26 for a more detailed description. For convenience of description, the illustration of the filler is omitted in FIGS. 22 to 26.
도 22는 본 발명의 몇몇 실시예에 따른 반사 편광자가 다른 광학 시트와 직접 적층되어 있는 경우를 도시한 단면도이다. 즉, 도 22는 몰드 프레임(50)의 제1 안착단(81)에 다른 광학 시트가 안착되어 있고, 그 바로 위에 반사 편광자(100)가 적층되어 있는 경우를 예시한다. 22 is a cross-sectional view illustrating a case in which reflective polarizers are directly stacked with other optical sheets according to some embodiments of the present disclosure. That is, FIG. 22 illustrates a case where another optical sheet is seated on the first seating end 81 of the mold frame 50 and the reflective polarizer 100 is directly stacked thereon.
반사 편광자(100)의 기재(105)의 하면에 적절한 높이를 갖는 복수의 엠보 패턴(120)이 적절한 간격으로 배치되어 있으면, 도 22에 도시된 바와 같이, 다른 광학 시트(70)의 상면이 평탄하더라도, 광학 시트(70)와 반사 편광자(100)는 반사 편광자(100)의 엠보 패턴(120)에서만 접촉할 뿐, 광학 시트(70)의 상면과 반사 편광자(100)의 기재(105)는 직접 접촉하지 않고, 소정거리 이격된다. 따라서, 광학 시트(70)와 반사 편광자(100)는 순차적으로 적층되어 있음에도 불구하고, 전체면이 밀착되지 않는다. 그 결과, 광학 시트(70)와 반사 편광자(100)간 정전기가 방지되고, 반사 편광자(100) 기재(105)면의 스크래치가 방지될 수 있다. 또, 앞서 설명한 바와 같이, 광학 시트(70)의 상면에 접하는 엠보 패턴(120)이 마찰 계수가 0.35 이하인 물질로 이루어지면, 인접하는 다른 광학 시트(70)의 스크래치도 감소될 수 있다. 아울러, 반사 편광자(100)에서 엠보 패턴(120)이 점유하는 면적을 최소로 하면, 광투과율의 저하도 최소화할 수 있음은 물론이다.When a plurality of embossed patterns 120 having appropriate heights are disposed at appropriate intervals on the lower surface of the substrate 105 of the reflective polarizer 100, as shown in FIG. 22, the upper surface of the other optical sheet 70 is flat. However, the optical sheet 70 and the reflective polarizer 100 only contact the embossed pattern 120 of the reflective polarizer 100, and the top surface of the optical sheet 70 and the substrate 105 of the reflective polarizer 100 are directly It does not contact and is spaced a predetermined distance apart. Therefore, although the optical sheet 70 and the reflective polarizer 100 are laminated sequentially, the whole surface does not adhere closely. As a result, static electricity between the optical sheet 70 and the reflective polarizer 100 can be prevented, and scratches on the surface of the reflective polarizer 100 substrate 105 can be prevented. In addition, as described above, when the embossed pattern 120 in contact with the top surface of the optical sheet 70 is made of a material having a friction coefficient of 0.35 or less, scratches of other adjacent optical sheets 70 may be reduced. In addition, if the area occupied by the embossed pattern 120 in the reflective polarizer 100 is minimized, a decrease in light transmittance may be minimized.
반사 편광자(100)에 엠보 패턴(120)이 형성되어 있으면, 다른 광학 시트(70)와의 대면 밀착성이 저하됨은 자명하지만, 이들간 반밀착 신뢰도를 충분히 담보하기 위해서는 엠보 패턴(120)의 높이 및 배치가 적절히 제어되는 것이 바람직하다. 예를 들어, 도 22의 예에서 반사 편광자(100)과 광학 시트(70)가 대면적(大面積)일 때, 엠보 패턴(120)의 높이가 너무 낮으면, 광학 시트(70)의 상면과 반사 편광자(100)의 기재(105)가 밀착될 가능성이 높아져, 반밀착 신뢰도가 저하될 것이다. 따라서, 상술한 것처럼 엠보 패턴(120)의 높이(h)를 약 0.05㎛ 내지 50㎛의 범위 내에 설정하면, 높은 수준의 반밀착 신뢰도를 확보할 수 있다. 몇몇 실시예에서, 엠보 패턴(120)의 높이(h)는 기재(105)의 두께에 비례하여 설정된다. 예를 들면, 엠보 패턴(120)의 높이(h)는 기재(105)의 두께의 0.0001 내지 0.5배의 범위를 가질 수 있다. When the embossed pattern 120 is formed in the reflective polarizer 100, it is obvious that the face adhesion with the other optical sheet 70 is deteriorated. However, in order to sufficiently secure the anti-adherence reliability therebetween, the height and arrangement of the embossed pattern 120 Is preferably controlled appropriately. For example, when the reflective polarizer 100 and the optical sheet 70 have a large area in the example of FIG. 22, if the height of the embossed pattern 120 is too low, the top surface of the optical sheet 70 The likelihood that the substrate 105 of the reflective polarizer 100 is in close contact with each other will increase, and the anti-contact reliability will be lowered. Therefore, as described above, when the height h of the embossed pattern 120 is set within the range of about 0.05 μm to 50 μm, a high level of semi-adhesion reliability can be ensured. In some embodiments, the height h of the embossed pattern 120 is set in proportion to the thickness of the substrate 105. For example, the height h of the embossed pattern 120 may have a range of 0.0001 to 0.5 times the thickness of the substrate 105.
한편, 엠보 패턴(120)의 직경(R)보다 엠보 패턴(120)의 높이(h)가 너무 크면 엠보 패턴(120) 자체의 안정성에 문제가 있고, 엠보 패턴(120)의 높이(h)에 비해 엠보 패턴(120)의 직경(R)이 너무 크면 불필요하게 기재(105) 전체의 면적에 대한 엠보 패턴(120)의 점유 면적이 넓어져 광투과 특성이 불리해진다. 이러한 점들을 고려할 때, 엠보 패턴(120)의 직경(R)과 엠보 패턴(120)의 높이(h)의 비는 약 10 : 1 내지 1 : 10의 범위에서 조절될 수 있다. On the other hand, if the height h of the embossed pattern 120 is larger than the diameter R of the embossed pattern 120, there is a problem in the stability of the embossed pattern 120 itself, and the height h of the embossed pattern 120 In contrast, if the diameter R of the embossed pattern 120 is too large, the occupied area of the embossed pattern 120 with respect to the entire area of the substrate 105 is unnecessarily widened, thereby deteriorating light transmission characteristics. In consideration of these points, the ratio of the diameter R of the embossed pattern 120 to the height h of the embossed pattern 120 may be adjusted in a range of about 10: 1 to 1:10.
도 23 및 도 24는 도 22의 반사 편광자의 엠보 패턴의 배치를 설명하기 위한 저면도들이다. 도 23의 실시예에서 복수의 엠보 패턴(120)은 일정한 행렬의 위치에서 동일한 간격으로 배치되어 있다. 즉, 도 23은 반복적으로 배치된 정사각형의 꼭지점 상에 엠보 패턴(120)들이 배열된 예이다. 본 발명의 몇몇 다른 실시예에서는 복수의 엠보 패턴(120)이 도 24에 도시된 바와 같이, 무질서하게 배치될 수도 있다. 23 and 24 are bottom views for explaining an arrangement of an embossed pattern of the reflective polarizer of FIG. 22. In the embodiment of FIG. 23, the plurality of embossed patterns 120 are arranged at equal intervals at positions of a predetermined matrix. That is, FIG. 23 illustrates an example in which embossed patterns 120 are arranged on vertices of squares repeatedly arranged. In some other embodiments of the present invention, the plurality of embossed patterns 120 may be arranged in random order, as shown in FIG. 24.
다만, 엠보 패턴(120)의 간격(D)이 너무 크면, 인접 광학 시트(70)의 상면과 반사 편광자(100)의 기재(105)가 밀착될 가능성이 높아지므로, 이웃하는 엠보 패턴(120)의 최대 간격(D)은 약 1000㎛ 이하인 것이 바람직하다. 또, 엠보 패턴(120)의 간격(D)이 너무 좁으면 단위 면적당 엠보 패턴(120)의 수가 증가하고, 그에 따라 엠보 패턴(120)이 점유하는 면적이 넓어지므로 광투과 특성이 불리해진다. 따라서, 엠보 패턴(120)의 최소 간격(D)은 약 1㎛ 이상인 것이 바람직하다. However, if the distance D of the embossed pattern 120 is too large, the possibility that the upper surface of the adjacent optical sheet 70 and the substrate 105 of the reflective polarizer 100 is in close contact with each other increases, and thus the neighboring embossed pattern 120 The maximum spacing D of is preferably about 1000 µm or less. In addition, if the spacing D of the embossed pattern 120 is too narrow, the number of embossed patterns 120 per unit area increases, and thus the area occupied by the embossed pattern 120 becomes wide, thereby deteriorating light transmission characteristics. Therefore, the minimum spacing D of the embossed pattern 120 is preferably about 1 μm or more.
또, 광투과 특성을 고려할 때, 엠보 패턴(120)이 점유하는 면적은 전체 기재(105) 면적의 0.001% 내지 95%의 범위에서 조절되는 것이 좋으며, 더욱 바람직하게는 0.01% 내지 10%의 범위에서 조절되는 것이 좋다. 여기서, 엠보 패턴(120)의 점유 면적은 각 엠보 패턴의 직경, 엠보 패턴의 수, 엠보 패턴의 간격, 엠보 패턴의 밀도 등에 의해 조절될 수 있음은 물론이다. In addition, in consideration of light transmission characteristics, the area occupied by the embossed pattern 120 is preferably adjusted in the range of 0.001% to 95% of the total substrate 105 area, more preferably in the range of 0.01% to 10%. It is better to adjust at. Here, the occupied area of the embossed pattern 120 may be adjusted by the diameter of each embossed pattern, the number of embossed patterns, the spacing of the embossed patterns, the density of the embossed pattern, and the like.
한편, 반밀착성과 광투과 특성을 함께 고려하면, 이웃하는 엠보 패턴 간 평균 간격(D)은 예컨대 약 5㎛ 내지 500㎛일 수 있다. On the other hand, in consideration of both the semi-adhesiveness and the light transmission characteristics, the average spacing (D) between the neighboring embossing pattern may be, for example, about 5㎛ to 500㎛.
도 25는 본 발명의 몇몇 실시예에 따른 반사 편광자가 다른 광학 시트와 일정 간격을 두고 이격되어 안착된 경우를 도시한 단면도이다. 즉, 도 25는 몰드 프레임(80)의 제1 안착단(81)에 다른 광학 시트(70)가 안착되어 있고, 몰드 프레임(80)의 제2 안착단(82)에 반사 편광자(100)이 안착되어 있는 경우를 예시한다. 25 is a cross-sectional view illustrating a case in which reflective polarizers are spaced apart from each other by an optical sheet according to some embodiments of the present disclosure. That is, in FIG. 25, another optical sheet 70 is seated on the first seating end 81 of the mold frame 80, and the reflective polarizer 100 is mounted on the second seating end 82 of the mold frame 80. The case where it is seated is illustrated.
도 25를 참조하면, 광학 시트(70)와 반사 편광자(100)는 양쪽 사이드에서 대략 제2 안착단(82)의 두께 이상의 이격 공간이 확보되어 있다. 그러나, 반사 편광자(100)과 광학 시트(70)가 대면적이거나, 외부로부터 수평 방향의 압력이 작용하면, 종종 광학 시트(70) 및/또는 반사 편광자(100)의 중앙 부분이 휠 수 있다. 이렇게, 광학 시트(70) 및/또는 반사 편광자(100)가 휘면 광학 시트(70) 및 반사 편광자(100)간 완전한 이격이 담보되기 어렵다. 예를 들어 도 14에서처럼 광학 시트(70)는 정상적으로 평탄하게 유지되어 있는데, 반사 편광자(100)이 아래 방향으로 볼록하게 휘어서, 중앙 부분에서 광학 시트(70)와 반사 편광자(100)이 서로 접하는 상황이 발생될 수 있다. 즉, 서로 다른 안착단(81, 82)에 안착되어 양 사이드의 이격이 담보되어 있더라도, 이러한 안착 양태가 중앙부의 이격까지 담보하는 것은 아니다. Referring to FIG. 25, the optical sheet 70 and the reflective polarizer 100 have spaced apart from each other at approximately the thickness of the second seating end 82 at both sides. However, when the reflective polarizer 100 and the optical sheet 70 have a large area or when pressure in the horizontal direction is applied from the outside, the central portion of the optical sheet 70 and / or the reflective polarizer 100 may often be bent. As such, when the optical sheet 70 and / or the reflective polarizer 100 are bent, complete separation between the optical sheet 70 and the reflective polarizer 100 is difficult to ensure. For example, as shown in FIG. 14, the optical sheet 70 is normally kept flat, but the reflective polarizer 100 is convexly curved downward, so that the optical sheet 70 and the reflective polarizer 100 are in contact with each other at the center portion. This may occur. That is, even if the two sides are spaced apart and secured to different seating ends 81 and 82, such a seating mode does not cover even the center part.
도 25의 안착 양태에 적용가능한 엠보 패턴(120) 배치의 예가 도 26에 도시되어 있다. 도 26을 참조하면, 엠보 패턴(120)은 기재를 1/3로 등분한 중앙부(CP) 및 양 사이드부(SP)에 따라 상이한 밀도로 배치되어 있다. 중앙부(CP)는 이웃하는 광학 시트(70)와 접촉할 가능성이 높으므로 엠보 패턴(120)의 밀도가 높은 반면, 양 사이드부(SP)는 제2 안착단(82)에 의해 이격이 담보되어 있으므로, 엠보 패턴(120)의 밀도가 상대적으로 낮아도 무방하다. 같은 중앙부(CP) 내에서는 엠보 패턴(120)의 밀도가 일정할 수도 있지만, 도 25에서처럼 정중앙선으로 갈수록 엠보 패턴(120)의 밀도가 커지도록 배치될 수도 있다. 또, 양 사이드부(SP)의 경우에도 중앙부(CP)에 가까울수록 엠보 패턴(120)의 밀도가 커지도록 배치될 수 있다. 전체적으로 엠보 패턴(120)은 정중앙선에 가까울수록 높은 밀도를 갖도록 배치될 수 있다. 본 발명의 다른 몇몇 실시예에서 양 사이드부(SP)의 엠보 패턴(120)은 생략될 수도 있다. 도 25의 안착 양태에서도 도 23 및 도 24에서와 같은 엠보 패턴의 배치를 적용할 수도 있지만, 도 26의 배치를 적용하는 것이 반사 편광자(100)의 전체 광투과 특성 관점에서 유리할 수 있다. An example of an embossed pattern 120 arrangement applicable to the seating aspect of FIG. 25 is shown in FIG. 26. Referring to FIG. 26, the embossed pattern 120 is disposed at different densities according to the center portion CP and both side portions SP that divide the substrate into 1/3. Since the center portion CP has a high possibility of contacting the neighboring optical sheet 70, the density of the embossed pattern 120 is high, while the side portions SP are spaced apart by the second seating end 82. Therefore, the density of the embossed pattern 120 may be relatively low. Although the density of the embossed pattern 120 may be constant within the same central portion CP, the density of the embossed pattern 120 may be increased toward the center line as shown in FIG. 25. In addition, in the case of both side portions SP, the closer to the center portion CP, the greater the density of the embossed pattern 120 may be disposed. In general, the embossed pattern 120 may be disposed to have a higher density as the center line is closer to the center line. In some other embodiments of the present invention, the embossed pattern 120 of both side portions SP may be omitted. Although the arrangement of the embossed pattern as in FIGS. 23 and 24 may also be applied to the seating aspect of FIG. 25, applying the arrangement of FIG. 26 may be advantageous in view of the overall light transmission characteristics of the reflective polarizer 100.
도 27은 본 발명의 또 다른 실시예에 따른 반사 편광자의 단면도이다. 27 is a cross-sectional view of a reflective polarizer according to another embodiment of the present invention.
도 27을 참조하면, 본 실시예에 반사 편광자(101)는 기재(105), 기재(105)의 일면에 형성된 액정층(110), 액정층 내에 분산 배치된 필러, 기재(105)의 타면 상에 형성된 밀착 방지층(125), 밀착 방지층(125) 내에 분산 배치된 확산 유닛(160)을 포함한다. 기재(105) 및 액정층(110)은 앞서 설명한 실시예와 동일하며, 확산 유닛(160)도 엠보 패턴(120) 대신 밀착 방지층(125) 내에 분산 배치될 수 있다는 차이를 제외하고는 실질적으로 동일하므로, 그에 대한 중복 설명은 생략한다. Referring to FIG. 27, in the present exemplary embodiment, the reflective polarizer 101 includes a substrate 105, a liquid crystal layer 110 formed on one surface of the substrate 105, fillers dispersed in the liquid crystal layer, and the other surface of the substrate 105. The adhesion preventing layer 125 formed in the contact unit, and the diffusion unit 160 dispersed in the adhesion preventing layer 125 is included. The substrate 105 and the liquid crystal layer 110 are the same as in the above-described embodiment, except that the diffusion unit 160 may also be dispersedly disposed in the adhesion preventing layer 125 instead of the emboss pattern 120. Therefore, duplicate description thereof will be omitted.
밀착 방지층(125)의 타면은 기준면(121) 및 기준면(121)으로부터 돌출된 복수의 엠보 패턴면(122)을 포함한다. 밀착 방지층(125)의 엠보 패턴면(122)은 도 17 내지 도 26의 실시예들에서 설명한 엠보 패턴(120)과 실질적으로 동일한 기능을 한다. 따라서, 엠보 패턴면(125)의 형상, 밀착 방지층(125)의 기준면(121)에 대한 엠보 패턴면(122)의 돌출 높이, 엠보 패턴면(122)의 배치 등은 이미 설명한 엠보 패턴(120)의 형상, 기재(105)에 대한 엠보 패턴(120)의 높이, 엠보 패턴(120)의 배치 등과 실질적으로 동일하다. 또, 엠보 패턴면(122)을 포함하는 밀착 방지층(125)은 엠보 패턴(120)의 구성 물질과 실질적으로 동일한 물질로 이루어진다. The other surface of the adhesion preventing layer 125 includes a reference surface 121 and a plurality of embossed pattern surfaces 122 protruding from the reference surface 121. The embossed pattern surface 122 of the adhesion preventing layer 125 has substantially the same function as the embossed pattern 120 described in the embodiments of FIGS. 17 to 26. Therefore, the shape of the embossed pattern surface 125, the protruding height of the embossed pattern surface 122 with respect to the reference plane 121 of the adhesion preventing layer 125, the arrangement of the embossed pattern surface 122, and the like are described above. The shape of the, the height of the embossed pattern 120 with respect to the substrate 105, the arrangement of the embossed pattern 120 is substantially the same. In addition, the adhesion preventing layer 125 including the embossed pattern surface 122 is made of a material substantially the same as the material of the embossed pattern 120.
도 28 내지 도 30은 본 발명의 또 다른 실시예들에 따른 반사 편광자의 단면도들이다.28 to 30 are cross-sectional views of reflective polarizers according to still other embodiments of the present invention.
본 발명의 또 다른 실시예들에 따른 반사 편광자들(103_1, 103_2, 103_3)은 도 17 내지 도 26을 참조하여 설명한 엠보 패턴(120) 대신에 비드(130)를 채용한다. 즉, 기재(105)의 타면에 복수의 엠보 패턴(120) 대신에 복수의 비드(130)가 형성된다. 비드(130)는 예를 들어, 유기 비드 및 무기 비드 중 적어도 하나를 포함할 수 있다. 상기 유기 비드로는 아크릴, 스티렌, 멜라민 포름알데하이드, 프로필렌, 에틸렌, 실리콘, 우레탄, 메틸(메타) 아크릴레이트, 폴리카보네이트 등의 모노머를 사용하여 얻어지는 호모폴리머 또는 코폴리머 등이 예시될 수 있다. 상기 무기 비드로는 실리카, 지르코니아, 탄산칼슘, 황산바륨, 티타늄 산화물 등이 예시될 수 있다. 비드(130)가 엠보 패턴(120)의 역할을 대체하므로, 비드(130)의 형상이나 배치는 이미 설명한 엠보 패턴(120)의 그것과 실질적으로 동일하다.The reflective polarizers 103_1, 103_2, and 103_3 according to still another embodiment of the present invention employ the bead 130 instead of the emboss pattern 120 described with reference to FIGS. 17 to 26. That is, a plurality of beads 130 are formed on the other surface of the substrate 105 instead of the plurality of emboss patterns 120. Bead 130 may include, for example, at least one of organic beads and inorganic beads. Examples of the organic beads include homopolymers or copolymers obtained by using monomers such as acrylic, styrene, melamine formaldehyde, propylene, ethylene, silicone, urethane, methyl (meth) acrylate, polycarbonate, and the like. Examples of the inorganic beads include silica, zirconia, calcium carbonate, barium sulfate, titanium oxide, and the like. Since the beads 130 replace the role of the emboss pattern 120, the shape or arrangement of the beads 130 is substantially the same as that of the emboss pattern 120 described above.
복수의 비드(130)는 기재(105)의 지지 코팅막(140)에 의해 기재(105)에 지지되어 있다. 지지 코팅막(140)은 반사 편광자(103_1, 103_2, 103_3)의 기재(105)의 타면에 형성되어, 적어도 부분적으로 비드(130)를 감싼다. 예를 들어, 지지 코팅막(140)은 도 28에 도시된 것처럼, 비드(130)의 전체를 감싸도록 형성되거나, 도 29에 도시된 것처럼, 비드(130)의 일부만을 감싸도록 형성될 수 있다. 또, 지지 코팅막(140)은 도 30에 도시된 것처럼, 패턴 형상으로 형성되어 비드(130)를 감싸는 구조로 형성될 수도 있다. The plurality of beads 130 are supported by the substrate 105 by the support coating film 140 of the substrate 105. The support coating layer 140 is formed on the other surface of the substrate 105 of the reflective polarizers 103_1, 103_2, and 103_3 to at least partially surround the beads 130. For example, the support coating layer 140 may be formed to surround the entire bead 130 as shown in FIG. 28, or may be formed to surround only a portion of the bead 130 as shown in FIG. 29. In addition, the support coating film 140 may be formed in a pattern shape to surround the bead 130, as shown in FIG.
지지 코팅막(140)은 예를 들어 아크릴계 수지, 우레탄계 수지 및 폴리에스테르계 수지 등과 같은 열경화성 수지 또는 에폭시아크릴레이트계 수지, 우레탄아크릴레이트계 수지, 실리콘아크릴레이트계 수지, 아크릴릭 아크릴레이트 및 에스테르 아크릴리에트 등과 같은 자외선 경화 수지를 포함하여 이루어질 수 있다.The support coating film 140 may be, for example, a thermosetting resin or an epoxy acrylate resin, a urethane acrylate resin, a silicone acrylate resin, an acrylic acrylate and an ester acrylate such as an acrylic resin, a urethane resin, a polyester resin, or the like. It may be made by including an ultraviolet curable resin such as.
확산 유닛(160)은 지지 코팅막(140)의 내부에 분산 배치되는 점을 제외하고는 앞서 설명한 실시예들과 실질적으로 동일하다. The diffusion unit 160 is substantially the same as the above-described embodiments except that the diffusion unit 160 is distributed and disposed inside the support coating layer 140.
상술한 것처럼, 본 발명의 실시예들에 따른 반사 편광자들은 단일한 액정층을 구비하면서도 가시광의 전파장 범위에 대해 소정의 반사율을 나타낼 수 있다. 따라서, 반사 편광자의 두께가 감소하며, 광투과율이 개선될 수 있다. 또, 다층으로 적층할 때와는 달리 접착제를 사용할 필요가 전혀 없기 때문에, 접착제의 개재에 따른 빛의 왜곡 현상, 광투과율 저하를 방지할 수 있다. As described above, the reflective polarizers according to the embodiments of the present invention may have a single liquid crystal layer and exhibit a predetermined reflectance with respect to the full-wavelength range of visible light. Thus, the thickness of the reflective polarizer is reduced, and the light transmittance can be improved. In addition, unlike the case of laminating in a multilayer, since there is no need to use an adhesive at all, it is possible to prevent the distortion of light and the decrease in light transmittance due to the interposition of the adhesive.
기재의 타면에 엠보 패턴이나 비드 등을 구비하는 실시예들은 앞서 설명한 효과들 이외에도 추가로 이웃하는 다른 광학 시트와 근접하거나 밀착되어 정전기가 발생하거나, 유동에 의한 마찰에 의해 반사 편광자 또는 다른 광학 시트에 스크래치가 발생하는 것을 방지하는 효과가 있다. Embodiments having emboss patterns, beads, etc. on the other side of the substrate, in addition to the effects described above, may further be in close proximity or in close contact with neighboring optical sheets to generate static electricity, or may be applied to reflective polarizers or other optical sheets by friction caused by flow. It is effective in preventing scratches from occurring.
이상에서 설명한 반사 편광자는 광원 어셈블리나 이를 포함하는 액정 표시 장치 등에 채용되어, 광 효율을 증진시키는데 사용될 수 있다. 광원 어셈블리는 램프가 하부에 위치하는 직하형 광원 어셈블리, 램프가 사이드에 위치하는 에지형 광원 어셈블리 등으로 분류되는데, 본 발명의 실시예들에 따른 반사 편광자는 어떠한 종류의 광원 어셈블리에도 채용가능하다. 또, 액정 패널의 아래쪽에 배치되는 백라이트(back light) 어셈블리나 액정 패널의 위쪽에 배치되는 프론트 라이트(front light) 어셈블리에도 적용가능하다. 이하에서는 다양한 적용예의 일예로서, 본 발명의 일 실시예에 따른 반사 편광자가 직하형 백라이트 어셈블리를 포함하는 액정 표시 장치에 적용된 경우를 예시한다. The reflective polarizer described above may be employed in a light source assembly or a liquid crystal display including the same, and used to enhance light efficiency. The light source assembly is classified into a direct type light source assembly in which the lamp is located at the bottom, an edge type light source assembly in which the lamp is located at the side, and the like. The reflective polarizer according to embodiments of the present invention may be employed in any kind of light source assembly. The present invention is also applicable to a back light assembly disposed below the liquid crystal panel or a front light assembly disposed above the liquid crystal panel. Hereinafter, as an example of various applications, a case in which a reflective polarizer according to an embodiment of the present invention is applied to a liquid crystal display including a direct type backlight assembly is illustrated.
도 31은 본 발명의 일 실시예에 따른 액정 표시 장치의 단면도이다. 31 is a cross-sectional view of a liquid crystal display according to an exemplary embodiment of the present invention.
도 31을 참조하면 액정 표시 장치(600)는 백라이트 어셈블리(300), 액정 패널 어셈블리(400), 및 탑 샤시(500)를 포함한다. Referring to FIG. 31, the liquid crystal display 600 includes a backlight assembly 300, a liquid crystal panel assembly 400, and a top chassis 500.
백라이트 어셈블리(300)는 램프(310), 램프(310)으로부터 출사된 빛을 반사하는 반사 필름(315), 및 출사된 빛의 광학적 특성을 조절하는 확산판(320)과 광학 필름들(330)을 포함한다. The backlight assembly 300 includes a lamp 310, a reflective film 315 that reflects light emitted from the lamp 310, and a diffuser plate 320 and optical films 330 that adjust optical characteristics of the emitted light. It includes.
램프(310)는 예를 들어 CCFL(Cold Cathode Fluorescent Lamp), HCFL(Hot Cathode Fluorescent Lamp), EEFL(External Electrode Fluorescent Lamp) 등이 사용될 수 있다. The lamp 310 may be, for example, a Cold Cathode Fluorescent Lamp (CCFL), a Hot Cathode Fluorescent Lamp (HCFL), an External Electrode Fluorescent Lamp (EEFL), or the like.
램프(310)의 아래에는 반사 필름(315)이 배치되어, 램프(310)로부터 아래로 출사된 빛을 상부로 반사한다. A reflective film 315 is disposed below the lamp 310 to reflect light emitted downward from the lamp 310 upward.
램프(310)의 상부에는 확산판(320) 및 광학 필름들(230)이 배치된다. 확산판(320)은 램프(310)으로부터 입사된 빛을 확산시킨다. 광학 필름들(330)은 입사된 빛을 확산시키는 확산 필름, 입사된 빛을 집광하는 프리즘 시트, 입사된 원편광을 일부 반사하는 반사 편광자, 원편광 빛을 선형 편광으로 변환시키는 위상차 필름, 및/또는 보호 필름을 포함한다. 반사 편광자로는 상술한 본 발명의 실시예들에 따른 반사 편광자가 적용된다. 그에 따라, 광이용율이 극대화되고, 시인성이 개선되며, 색상 미세 보정이 가능해진다. 나아가 엠보 패턴이나 비드를 구비하는 본 발명의 실시예들에 따른 반사 편광자가 적용되면, 이웃하는 광학 시트와의 밀착, 근접이 방지되어 정전기나 스크래치가 감소될 수 있다.The diffusion plate 320 and the optical films 230 are disposed on the lamp 310. The diffusion plate 320 diffuses the light incident from the lamp 310. Optical films 330 include a diffuser film that diffuses incident light, a prism sheet that collects incident light, a reflective polarizer that partially reflects incident circularly polarized light, a retardation film that converts circularly polarized light into linearly polarized light, and / Or a protective film. As the reflective polarizer, the reflective polarizer according to the embodiments of the present invention described above is applied. Accordingly, light utilization is maximized, visibility is improved, and color fine correction is possible. Further, when the reflective polarizer according to the embodiments of the present invention having the embossed pattern or the bead is applied, the adhesion and the proximity of neighboring optical sheets may be prevented, thereby reducing the static electricity or the scratch.
램프(310), 반사 필름(315), 확산판(320) 및 광학 필름들(330)은 바텀 샤시(340) 및 몰드 프레임(350)에 의해 수납된다. 바텀 샤시(340)는 백라이트 어셈블리(300)의 최하부면을 이루며, 바텀 샤시(340) 위에는 창틀 형상의 몰드 프레임(350)이 배치되어, 몰드 프레임(350)에 구비된 안착단에 광확산판(320), 광학 필름들(330) 및 액정 패널(410)을 안착시킨다. The lamp 310, the reflective film 315, the diffuser plate 320, and the optical films 330 are received by the bottom chassis 340 and the mold frame 350. The bottom chassis 340 forms the bottom surface of the backlight assembly 300, and a mold frame 350 having a window frame shape is disposed on the bottom chassis 340, and the light diffuser plate is disposed at a seating end provided in the mold frame 350. 320, the optical films 330 and the liquid crystal panel 410 are seated.
액정 패널 어셈블리(400)는 제1 표시판(411), 제2 표시판(412) 및 그 사이에 개재된 액정층(미도시)을 포함하는 액정 패널(410), 제1 표시판(411) 및 제2 표시판(412)의 표면에 부착된 편광판(420), 액정 패널(310)의 일측에 부착되어 있는 데이터 TCP(Tape Carrier Package)(430), 데이터 TCP(430)에 부착되어 있는 인쇄 회로 기판(440)을 포함한다. 데이터 TCP(430) 상에는 데이터 드라이버 IC(Integrated Circuit)(431)가 실장되어 있다. 또, 데이터 TCP(430)의 부착 측면에 인접한 액정 패널(410)의 타측에는 게이트 TCP(미도시)가 부착되어 있고, 게이트 TCP 상에는 게이트 드라이버 IC(미도시)가 실장되어 있다. The liquid crystal panel assembly 400 includes a liquid crystal panel 410 including a first display panel 411, a second display panel 412, and a liquid crystal layer (not shown) interposed therebetween, the first display panel 411, and the second display panel 411. The polarizing plate 420 attached to the surface of the display panel 412, the data TCP (Tape Carrier Package) 430 attached to one side of the liquid crystal panel 310, and the printed circuit board 440 attached to the data TCP 430. ). On the data TCP 430, a data driver integrated circuit (IC) 431 is mounted. A gate TCP (not shown) is attached to the other side of the liquid crystal panel 410 adjacent to an attachment side of the data TCP 430, and a gate driver IC (not shown) is mounted on the gate TCP.
탑 샤시(500)는 액정 패널(410)의 테두리를 덮으며, 액정 패널(410) 및 백라이트 어셈블리(300)의 측면을 감싼다. 데이터 TCP(430) 및 인쇄 회로 기판(440) 등은 절곡되어 바텀 샤시(340)의 측벽과 탑 샤시(500)의 측벽 사이의 공간에 수납된다. The top chassis 500 covers an edge of the liquid crystal panel 410 and surrounds side surfaces of the liquid crystal panel 410 and the backlight assembly 300. The data TCP 430, the printed circuit board 440, and the like are bent and received in a space between the side wall of the bottom chassis 340 and the side wall of the top chassis 500.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. I can understand that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명은 디스플레이 산업에 이용가능하다. 그러나 이에 제한되는 것은 아니다.The present invention is applicable to the display industry. However, it is not limited thereto.

Claims (18)

  1. 콜레스테릭 액정을 포함하는 액정층; 및A liquid crystal layer comprising a cholesteric liquid crystal; And
    상기 액정층 내에 분산 배치된 필러를 포함하는 반사 편광자.A reflective polarizer comprising a filler dispersed in the liquid crystal layer.
  2. 제1 항에 있어서,According to claim 1,
    상기 반사 편광자의 표면은 평탄면 및 상기 평탄면으로부터 돌출된 돌출면을 포함하는 반사 편광자.And a surface of the reflective polarizer includes a flat surface and a projecting surface protruding from the flat surface.
  3. 제2 항에 있어서,The method of claim 2,
    상기 돌출면은 상기 평탄면 사이에 랜덤하게 배치되는 반사 편광자. The projecting surface is a reflective polarizer disposed randomly between the flat surface.
  4. 제1 항에 있어서,According to claim 1,
    상기 액정층은 상기 콜레스테릭 액정의 피치가 서로 다른 복수의 액정 피치 영역을 포함하는 반사 편광자.The liquid crystal layer may include a plurality of liquid crystal pitch regions having different pitches of the cholesteric liquid crystal.
  5. 제1 항에 있어서,According to claim 1,
    상기 필러는 아크릴, 스티렌, 나이론, 멜라민 포름알데하이드, 프로필렌, 에틸렌, 실리콘, 우레탄, 폴리메틸(메타) 아크릴레이트, 폴리부틸(메타) 아크릴레이트, 폴리카보네이트, 안티몬, 주석, 알루미나, 실리카, 지르코니아, 탄산칼슘, 황산바륨, 및 티타늄 산화물 중 적어도 하나를 포함하는 반사 편광자.The fillers are acrylic, styrene, nylon, melamine formaldehyde, propylene, ethylene, silicone, urethane, polymethyl (meth) acrylate, polybutyl (meth) acrylate, polycarbonate, antimony, tin, alumina, silica, zirconia, A reflective polarizer comprising at least one of calcium carbonate, barium sulfate, and titanium oxide.
  6. 제1 항에 있어서, According to claim 1,
    상기 필러는 구형, 타원체, 사면체, 육면체, 삼각 기둥, 사각기둥, 원기둥, 타원 기둥, 다각 기둥 또는 무정형의 형상을 갖는 반사 편광자.The filler is a reflective polarizer having a spherical shape, an ellipsoid, a tetrahedron, a hexahedron, a triangular pole, a square pole, a cylinder, an ellipse pole, a polygonal pole, or an amorphous shape.
  7. 제1 항에 있어서,According to claim 1,
    상기 필러의 크기는 상기 액정층의 두께의 0.0001배 내지 10배인 반사 편광자. The size of the filler is a reflective polarizer of 0.0001 times to 10 times the thickness of the liquid crystal layer.
  8. 제1 항에 있어서,According to claim 1,
    상기 필러의 크기는 상기 액정층의 두께의 0.1배 내지 4배인 반사 편광자. The size of the filler is a reflective polarizer of 0.1 to 4 times the thickness of the liquid crystal layer.
  9. 제1 항에 있어서, According to claim 1,
    상기 필러는 상기 액정층 대비 0.1 내지 20중량%의 함량으로 분산 배치되어 있는 반사 편광자.The filler is a reflective polarizer which is dispersed in an amount of 0.1 to 20% by weight relative to the liquid crystal layer.
  10. 제1 항에 있어서, According to claim 1,
    상기 액정층은 제1 액정 피치를 갖는 제1 액정 피치 영역 및 상기 제1 액정 피치와 상이한 제2 액정 피치를 갖는 제2 액정 피치 영역을 포함하되,The liquid crystal layer includes a first liquid crystal pitch region having a first liquid crystal pitch and a second liquid crystal pitch region having a second liquid crystal pitch different from the first liquid crystal pitch,
    상기 제1 액정 피치 영역을 점유하는 상기 필러의 총 체적은 상기 제2 액정 피치 영역을 점유하는 상기 필러의 총 체적보다 큰 반사 편광자.And a total volume of the filler occupying the first liquid crystal pitch region is greater than a total volume of the filler occupying the second liquid crystal pitch region.
  11. 제1 항에 있어서, According to claim 1,
    상기 액정층은 단일막이고,The liquid crystal layer is a single film,
    380 내지 780nm의 입사광을 30% 내지 70% 반사하는 반사 편광자.A reflective polarizer that reflects 30% to 70% of incident light at 380-780 nm.
  12. 제1 항에 있어서, According to claim 1,
    일면에 상기 액정층이 형성되는 투명 기재를 더 포함하는 반사 편광자.A reflective polarizer further comprising a transparent substrate on which one side of the liquid crystal layer is formed.
  13. 제12 항에 있어서, The method of claim 12,
    상기 기재의 타면에 형성된 엠보 패턴 또는 지지 코팅막에 의해 지지된 비드를 더 포함하는 반사 편광자.Reflective polarizer further comprises a bead supported by an embossed pattern or a support coating film formed on the other surface of the substrate.
  14. 제13 항에 있어서, The method of claim 13,
    상기 엠보 패턴 또는 상기 지지 코팅막은 확산 유닛을 포함하는 반사 편광자. The embossed pattern or the support coating film is a reflective polarizer comprising a diffusion unit.
  15. 제12 항에 있어서, The method of claim 12,
    상기 기재는 위상차 필름인 반사 편광자. The substrate is a reflective polarizer which is a retardation film.
  16. 콜레스테릭 액정을 포함하는 액정층; 및A liquid crystal layer comprising a cholesteric liquid crystal; And
    상기 액정층 내에 분산 배치된 필러를 포함하는 반사 편광자로서,As a reflective polarizer comprising a filler dispersed in the liquid crystal layer,
    상기 반사 편광자의 표면은 평탄면 및 상기 평탄면 사이에 랜덤하게 배치되고, 상기 평탄면으로부터 돌출된 돌출면을 포함하되,The surface of the reflective polarizer is randomly disposed between the flat surface and the flat surface, and includes a protruding surface protruding from the flat surface,
    상기 돌출면이 상기 평탄면으로부터 돌출된 최대 돌출 높이는 0.001㎛ 내지 100㎛인 반사 편광자.And a maximum projecting height from which the projecting surface protrudes from the flat surface is 0.001 µm to 100 µm.
  17. 제1 항 내지 제16 항 중 어느 한 항에 따른 반사 편광자를 포함하는 광원 어셈블리.A light source assembly comprising a reflective polarizer according to any one of claims 1 to 16.
  18. 제1 항 내지 제16 항 중 어느 한 항에 따른 반사 편광자를 포함하는 액정 표시 장치.A liquid crystal display device comprising the reflective polarizer according to any one of claims 1 to 16.
PCT/KR2009/006273 2008-10-29 2009-10-28 Reflection polarizer, light source assembly including the same, and lcd device WO2010050750A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801426827A CN102197332A (en) 2008-10-29 2009-10-28 Reflection polarizer, light source assembly including the same, and LCD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080106523A KR20100047571A (en) 2008-10-29 2008-10-29 Liquid cristal film, light source assembly including the same and liquid crystal display including the liquid crystal film
KR10-2008-0106523 2008-10-29

Publications (2)

Publication Number Publication Date
WO2010050750A2 true WO2010050750A2 (en) 2010-05-06
WO2010050750A3 WO2010050750A3 (en) 2010-07-29

Family

ID=42129463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006273 WO2010050750A2 (en) 2008-10-29 2009-10-28 Reflection polarizer, light source assembly including the same, and lcd device

Country Status (3)

Country Link
KR (1) KR20100047571A (en)
CN (1) CN102197332A (en)
WO (1) WO2010050750A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064139A2 (en) * 2010-11-10 2012-05-18 주식회사 엘지화학 Liquid crystal film
CN103210327B (en) * 2010-11-10 2015-10-14 Lg化学株式会社 Liquid crystal film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035607A (en) * 1999-09-20 2002-05-11 캐롤린 에이. 베이츠 Optical Films Having at Least One Particle-Containing Layer
KR20040044954A (en) * 2001-09-21 2004-05-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Cholesteric liquid crystal optical bodies and methods of manufacture and use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691789A (en) * 1995-10-30 1997-11-25 Li; Le Single-layer reflective super broadband circular polarizer and method of fabrication therefor
TW289095B (en) * 1993-01-11 1996-10-21
JP4502415B2 (en) * 1998-04-14 2010-07-14 新日本石油株式会社 Fine particles covered with cholesteric liquid crystal thin film
WO2001022130A1 (en) * 1999-09-20 2001-03-29 3M Innovative Properties Company Optical films having at least one particle-containing layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035607A (en) * 1999-09-20 2002-05-11 캐롤린 에이. 베이츠 Optical Films Having at Least One Particle-Containing Layer
KR20040044954A (en) * 2001-09-21 2004-05-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Cholesteric liquid crystal optical bodies and methods of manufacture and use

Also Published As

Publication number Publication date
CN102197332A (en) 2011-09-21
KR20100047571A (en) 2010-05-10
WO2010050750A3 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
KR101184449B1 (en) Patterned light guide panel, method for preparing thereof and lcd back light unit using the same
KR100980072B1 (en) Multi-functional optic film
KR101824039B1 (en) display apparatus
KR20110112084A (en) Display apparatus
US6639725B2 (en) Protective, diffusive film and process for producing the same
WO2014098359A1 (en) Display panel and display apparatus having the same
KR100907231B1 (en) Optical sheet and backlight assembly and liquid crystal display comprising the same
KR20050093524A (en) Transparent optical film having surface-deformation-inhibiting layer where particles are placed
WO2010027240A2 (en) Optical sheet and composite sheet with moire fringe, and backlight assembly having the same
KR101255297B1 (en) liquid crystal display device
WO2010050750A2 (en) Reflection polarizer, light source assembly including the same, and lcd device
US20080062720A1 (en) Backlight assembly and display apparatus having the same
KR100934574B1 (en) Optical sheet, backlight assembly and liquid crystal display comprising same
WO2011028018A2 (en) Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device
KR101155878B1 (en) Reflective polarizer, light source assembly including the same and liquid crystal display including the liquid crystal film
KR100980068B1 (en) Multi-functional optic film
KR100988764B1 (en) Multi-functional optic film
KR100939740B1 (en) Back Light Unit And Liquid Display Device Comprising Of The Same
KR101053789B1 (en) Composite optical film
WO2010137891A2 (en) Reflection sheet, light source assembly, and liquid crystal display device comprising same
KR101001322B1 (en) Optical sheet, light source assembly including the optical sheet and liquid crystal display including the same
KR20100043900A (en) Liquid cristal film, light source assembly including the same and liquid crystal display including the liquid crystal film
KR101370167B1 (en) Backlight unit assembly
JP2000029008A (en) Reflection type liquid crystal display device
WO2020060239A1 (en) Anti-glare film, polarizing plate, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142682.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823830

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823830

Country of ref document: EP

Kind code of ref document: A2