WO2013100661A1 - Reflective polarizer having dispersed polymer - Google Patents

Reflective polarizer having dispersed polymer Download PDF

Info

Publication number
WO2013100661A1
WO2013100661A1 PCT/KR2012/011632 KR2012011632W WO2013100661A1 WO 2013100661 A1 WO2013100661 A1 WO 2013100661A1 KR 2012011632 W KR2012011632 W KR 2012011632W WO 2013100661 A1 WO2013100661 A1 WO 2013100661A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective polarizer
polymer
component
polymers
sea
Prior art date
Application number
PCT/KR2012/011632
Other languages
French (fr)
Korean (ko)
Inventor
조덕재
한정완
백명기
고승진
이황규
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110145745A external-priority patent/KR101315003B1/en
Priority claimed from KR1020110145746A external-priority patent/KR101340107B1/en
Priority claimed from KR1020110145747A external-priority patent/KR101311090B1/en
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Publication of WO2013100661A1 publication Critical patent/WO2013100661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Definitions

  • the present invention provides a reflective polarizer in which a polymer is dispersed, and more particularly, a reflective polarizer in which a polymer is dispersed, which is very advantageous for maximizing optical properties at a limited thickness.
  • LCD liquid crystal display
  • PDP plasma display
  • FED field emission display
  • ELD electroluminescent display
  • LCD displays are currently expanding their range of use, including notebooks, personal computer monitors, LCD TVs, automobiles, and airplanes, accounting for about 80% of the flat panel market, and are booming to date due to a sharp increase in LCD demand worldwide.
  • liquid crystal displays arrange a liquid crystal and an electrode matrix between a pair of light absorbing optical films.
  • the liquid crystal portion has an optical state that is changed accordingly by moving the liquid crystal portion by an electric field generated by applying a voltage to two electrodes. This process displays an image of a 'pixel' carrying information using polarization in a specific direction.
  • liquid crystal displays include a front optical film and a back optical film that induce polarization.
  • the optical film used in such a liquid crystal display does not necessarily have high utilization efficiency of light emitted from the backlight. This is because 50% or more of the light emitted from the backlight is absorbed by the back side optical film (absorption type polarizing film).
  • a reflective polarizer is provided between the optical cavity and the liquid crystal assembly.
  • FIG. 1 is a view showing the optical principle of a conventional reflective polarizer. Specifically, P-polarized light from the optical cavity to the liquid crystal assembly passes through the reflective polarizer to the liquid crystal assembly, and S-polarized light is reflected from the reflective polarizer to the optical cavity and then polarized light on the diffuse reflection surface of the optical cavity. The direction is reflected in a randomized state and then transmitted back to the reflective polarizer so that S-polarized light is converted into P-polarized light which can pass through the polarizer of the liquid crystal assembly, and then passed through the reflective polarizer to be transmitted to the liquid crystal assembly.
  • the selective reflection of S-polarized light and the transmission of P-polarized light with respect to the incident light of the reflective polarizer are based on the refractive index of each optical layer in a state where an optical layer on a plate having anisotropic refractive index and an optical layer on a plate having an isotropic refractive index are laminated alternately. It is made by the optical thickness setting of each optical layer and the refractive index change of the optical layer according to the difference and the stretching process of the stacked optical layers.
  • the light incident to the reflective polarizer repeats the reflection of S-polarized light and the transmission of P-polarized light while passing through each optical layer, and eventually only the P-polarized light of the incident polarized light is transmitted to the liquid crystal assembly.
  • the reflected S-polarized light is reflected in a state in which the polarization state is randomized at the diffuse reflection surface of the optical cavity and is transmitted to the reflective polarizer again. As a result, power loss can be reduced together with the loss of light generated from the light source.
  • the conventional reflective polarizer has an optical thickness and a refractive index between the optical layers that can be optimized for selective reflection and transmission of incident polarization by alternately stacking isotropic optical layers and anisotropic optical layers having different refractive indices. Since it is manufactured so as to have it, there existed a problem that the manufacturing process of a reflective polarizer was complicated. In particular, since each optical layer of the reflective polarizer has a flat plate structure, it is necessary to separate P-polarized light and S-polarized light in response to a wide range of incident angles of incident polarization, so that the number of optical layers is excessively increased and the production cost is exponentially increased. There was a growing problem. In addition, due to the structure in which the number of laminated layers of the optical layer is excessively formed, there is a problem that the optical performance decrease due to light loss.
  • the multilayer reflective polarizer has skin layers 9 and 10 formed on both surfaces of the core layer 8.
  • the core layer 8 is divided into four groups (1, 2, 3, 4), each group having an isotropic layer and an anisotropic layer alternately stacked to form approximately 200 layers.
  • a separate adhesive layer (5, 6, 7) for bonding them.
  • each group since each group has a very thin thickness of about 200 layers, each group may be damaged when co-extrusion of these groups individually, so the groups often include a protective layer (PBL).
  • PBL protective layer
  • the thickness of the core layer becomes thick and the manufacturing cost increases.
  • the reflective polarizer included in the display panel has a limitation on the thickness of the core layer for slimming, when the adhesive layer is formed on the core layer and / or the skin layer, the core layer is reduced by the thickness thereof, which is very good for improving optical properties. There was no problem.
  • the inside of the core layer and the core layer and the skin layer are bonded by an adhesive layer, there is a problem in that an interlayer peeling phenomenon occurs when an external force is applied, when a long time passes, or when the storage location is poor.
  • the defect rate is excessively high but also there is a problem in that offset interference with the light source occurs due to the formation of the adhesive layer.
  • Skin layers 9 and 10 are formed on both sides of the core layer 8, and separate adhesive layers 11 and 12 are formed to couple them between the core layer 8 and the skin layers 9 and 10. do.
  • peeling may occur due to incompatibility, and the crystallization degree is about 15%.
  • the crystallization degree is about 15%.
  • in order to apply the polycarbonate sheet of the non-stretching process there was no choice but to form an adhesive layer.
  • the addition of the adhesive layer process results in a decrease in yield due to external foreign matters and process defects.
  • FIG. 3 is a perspective view of a reflective polarizer 20 including a rod-shaped polymer, in which the birefringent polymer 22 extending in the longitudinal direction is arranged in one direction in the substrate 21.
  • the birefringent interface between the substrate 21 and the birefringent polymer 22 causes the light modulation effect to perform the function of the reflective polarizer.
  • FIG. 4 is a cross-sectional view of a birefringent island-in-the-sea yarn included in the substrate, and the birefringent island-in-the-sea yarn may generate a light modulation effect at an optical modulation interface between the inner and sea portions of the inner portion, and thus, a very large number such as the birefringent polymer described above. Optical properties can be achieved even if the island-in-the-sea yarns are not disposed.
  • the birefringent island-in-the-sea yarn is a fiber
  • problems of compatibility, ease of handling, and adhesion with a substrate which is a polymer have arisen.
  • due to the circular shape light scattering is induced, and thus the reflection polarization efficiency of the visible wavelength is reduced, and the polarization characteristic is lowered compared to the existing products, thereby limiting the luminance improvement.
  • the voids cause the optical leakage due to light leakage, that is, light loss.
  • a limitation occurs in the reflection and polarization characteristics due to the limitation of the layer configuration due to the organization of tissue in the form of a fabric.
  • the present invention has been made to solve the above-described problems, and the first object of the present invention is to provide a reflective polarizer in which a polymer is significantly improved in optical properties with respect to a reflective polarizer in which a conventional polymer is dispersed.
  • a second object of the present invention is to provide a reflective polarizer in which a polymer is dispersed, which can be manufactured integrally without forming a separate adhesive layer between each group inside the core layer and between the core layer and the skin layer.
  • the reflective polarizer in which the polymer of the present invention is dispersed includes a plurality of plate-shaped polymers dispersed in the substrate to transmit the first polarized light irradiated from the outside and reflect the second polarized light.
  • the plate-shaped polymer has a refractive index different from the substrate in at least one axial direction, the substrate is elongated in at least one axial direction, and the plurality of plate-shaped polymers each form a group to reflect a shear wave (S wave) of a desired wavelength.
  • S wave shear wave
  • a plurality of groups are formed, and the group includes a core layer having a different average optical thickness of the plate-shaped polymers between groups and a skin layer integrally formed on at least one surface of the core layer.
  • the first polarization may be longitudinal, and the second polarization may be transverse.
  • the substrate is polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) Earl Roy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS) , Polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol And at least one of epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), elastomer and cycloolefin polymer.
  • PEN polyethylene naphthalate
  • the polymer is polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) Alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS ), Polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), It may be one or more of phenol, epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), elastomer and cycloolefin polymer.
  • PEN polyethylene na
  • the difference in the refractive index of the substrate and the polymer may be greater than the difference in the refractive index of the extended axial direction of the other axial refractive index.
  • the refractive index of the substrate and the polymer may have a difference in refractive index of 0.05 or less in two axial directions and a difference in refractive index of the other one axial direction of 0.1 or more.
  • the polymer may be elongated in the longitudinal direction.
  • the plurality of polymers may form three groups to reflect light of three wavelength bands.
  • the plurality of polymers may form four groups to reflect light in four wavelength bands.
  • the optical thickness of the polymer may be 1/4 of the desired light wavelength ( ⁇ ).
  • the desired wavelength may include a visible light band.
  • the optical thickness of the polymers included in the same group may have a thickness deviation within 30% of the average optical thickness.
  • the optical thickness of the polymers included in the same group may have a thickness deviation within 20% of the average optical thickness.
  • the optical thickness of the polymers included in the same group may have a thickness deviation within 15% of the average optical thickness.
  • the three reflection bands may include a wavelength band of 450nm, 550nm and 650nm.
  • the four reflection bands may include a wavelength band of 350nm, 450nm, 550nm and 650nm.
  • the plurality of groups may differ from the average optical thickness of the polymers of at least 5%, more preferably at least 10%.
  • the polymer satisfying the aspect ratio of the plurality of polymers may be 50% or more.
  • the plurality of groups may form a plurality of spaced apart layers based on the longitudinal cross section of the polymer.
  • the plurality of polymers included in one group are arranged spaced apart from each other and at least 25 or more and more preferably 50 or more spaced layers based on the longitudinal cross section of the polymer. Can be formed.
  • the plate-shaped polymer has an aspect ratio of the short axis length to the long axis length based on the vertical section in the longitudinal direction of 1/1000 or less, 1/2000 or less, 1/3000 or less, 1 / It may be 5000 or less, 1/10000 or less, 1/20000 or 1/30000 or less.
  • a birefringent interface may be formed between the polymer and the substrate.
  • the polymer has optical birefringence
  • the substrate may be optically isotropic
  • an adhesive layer may not be formed between the group and the group and / or between the core layer and the skin layer.
  • Polymers have birefringence means that when light is irradiated on fibers with different refractive indices, the light incident on the polymer is refracted by two or more lights with different directions.
  • 'Isotropic' means that when light passes through an object, the refractive index is constant regardless of the direction.
  • 'Anisotropy' means that the optical properties of an object are different depending on the direction of light.
  • Anisotropic objects have birefringence and correspond to isotropy.
  • Light modulation' means that the irradiated light is reflected, refracted, scattered, or the intensity of the light, the period of the wave, or the nature of the light is changed.
  • 'Aspect ratio' means the ratio of the short axis length to the long axis length based on the vertical section in the longitudinal direction of the elongated body.
  • the reflective polarizer of the present invention is formed integrally with a plurality of groups having different average optical thicknesses, a separate adhesive layer and / or protective layer PBL is not included in the core layer and between the core layer and the skin layer. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness.
  • a plurality of groups having different average optical thicknesses are formed, all S waves in the visible light wavelength region can be reflected.
  • the polymer inside the substrate has a plate-like shape, it is possible to achieve very excellent optical properties even when the bipolar birefringent polymer contains a very small number of the same area compared to the reflective polarizer including the conventional birefringent polymer.
  • FIG. 1 is a schematic diagram illustrating the principle of a conventional reflective polarizer.
  • DBEF multilayer reflective polarizer
  • FIG 3 is a perspective view of a reflective polarizer comprising a rod-shaped polymer.
  • FIG. 4 is a cross-sectional view showing a path of light incident on a birefringent island-in-the-sea yarn used in a reflective polarizer.
  • FIG. 5 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a reflective polarizer according to another preferred embodiment of the present invention.
  • FIG. 8 is a perspective view of a reflective polarizer according to an exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a plate-like polymer according to an embodiment of the present invention.
  • FIG 10 and 11 are perspective views showing the coupling structure of the distribution plate of the sea-island extrusion mold that can be used in the present invention.
  • FIG. 12 is a cross-sectional view of the distribution plate according to another preferred embodiment of the present invention.
  • FIG 13 and 14 are cross-sectional views showing in detail the arrangement of the island component supply path of the detention distribution plate according to an embodiment of the present invention.
  • 15 and 16 are perspective views showing the coupling structure of the distribution plate of the sea-island type extrusion mold that can be used in the present invention.
  • 17 is a view showing a plurality of islands-in-the-sea extrusion molds according to an embodiment of the present invention.
  • FIG. 18 is a schematic view including first pressurizing means to form two islands-in-the-sea composite flows in accordance with one preferred embodiment of the present invention.
  • 19 is a schematic diagram comprising two second pressurizing means to form two islands-in-the-sea composite flow according to one preferred embodiment of the present invention.
  • 20 is a schematic view including one second pressurizing means to form two islands-in-the-sea composite flow according to one preferred embodiment of the present invention.
  • 21 is a schematic view showing the lamination of the island-in-the-sea composite products according to one preferred embodiment of the present invention.
  • Figure 22 is a cross sectional view of a coat-hanger die in accordance with a preferred embodiment of the present invention
  • Figure 23 is a side view.
  • 24 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to a preferred embodiment of the present invention.
  • 25 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention.
  • 26 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another preferred embodiment of the present invention.
  • FIG. 27 is an exploded perspective view of a liquid crystal display including the reflective polarizer of the present invention.
  • the reflective polarizer in which the polymer of the present invention is dispersed includes a plurality of plate-shaped polymers dispersed in the substrate in order to transmit the first polarized light emitted from the outside and reflect the second polarized light.
  • the plurality of plate-shaped polymers have a refractive index different from the substrate in at least one axial direction
  • the substrate extends in at least one axial direction
  • each of the plurality of plate-shaped polymers has a shear wave (S wave) of a desired wavelength.
  • a group is formed to reflect, and a plurality of groups are formed, and the group includes a core layer having a different average optical thickness of the plate-shaped polymers between groups and a skin layer integrally formed on at least one surface of the core layer.
  • FIG. 5 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention.
  • skin layers 186 and 187 are formed on both surfaces of the core layer 180, and the core layer 180 is divided into two groups A and B.
  • a dotted line dividing groups A and B means an imaginary line.
  • the average optical thickness of the plate-shaped polymers 181 and 182 as the first component included in group A and the average optical thickness of the plate-shaped polymers 183 and 184 as the first component included in the group B are different. Through this, it is possible to reflect the wavelength range of different light.
  • the optical thickness of the plate-shaped polymers 181 and 182 as the first component included in the group A is within 30%, preferably within 20%, more preferably within 15% based on the average optical thickness of the group A. It may have an optical thickness deviation.
  • the optical thickness means n (refractive index) x d (physical thickness).
  • the wavelength and the optical thickness of the light are defined according to the following Equation 1.
  • is the wavelength of light (nm)
  • n is the refractive index
  • d is the physical thickness (nm)
  • the transverse wave (S wave) of 400 nm wavelength can be reflected by the relational formula (1).
  • the wavelength band may cover approximately 320 to 480 nm.
  • the transverse wave (S wave) of 520 nm wavelength can be reflected by Equation 1, and if the thickness deviation is 20%, it is approximately 420 to 620 nm.
  • the wavelength band may be covered, and in this case, the wavelength band may partially overlap with the wavelength band of group A, thereby maximizing light modulation effects.
  • the plate-like polymer which is the first component
  • has optical birefringence P waves must be transmitted and S waves must be reflected, so that the refractive index n is set based on the thickness direction (z-axis refractive index) through which light passes, and the average optical thickness is calculated. can do.
  • the maximum value of the distance between the polymers in the groups A and B may be smaller than the maximum value of the distance between the plate-shaped polymers between the groups A and B.
  • the maximum value d 1 of the distance between the plate-shaped polymers of group A and the maximum value d 2 of the distance between polymers of group B are smaller than the maximum value d 3 of the distance between polymers of groups A and B.
  • the spacing between the plate-shaped polymers in the same group may be smaller than the distance between polymers between adjacent groups, and thus may be integrally formed between groups even without forming an adhesive layer between groups.
  • the polymers dispersed in the core layer form a plurality of layers having a space between them.
  • the number of layers formed by the plate-like polymers in one group may be 25 or more, preferably 50 or more, more preferably 100 or more, most preferably 150 or more, or 200 or more. .
  • the skin layer is manufactured at the same time as the core layer and then the stretching process is performed, the skin layer of the present invention can be stretched in at least one axial direction, unlike the conventional core layer stretching, after the stretching with the unstretched skin layer. As a result, the surface hardness is improved compared to the unstretched skin layer, thereby improving scratch resistance and heat resistance.
  • FIG. 6 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention. Referring to the difference from FIG. 5, three groups A, B, and C having different average optical thicknesses are formed inside the core layer, and the maximum value of the distance between the plate-shaped polymers within the groups A, B, and C is formed. This may be less than the maximum value of the interpolymer distance between groups A, B and C.
  • the core layer is formed of four groups, each group may be adjusted the average optical thickness to cover the optical wavelength band of 350nm, 450nm, 550nm and 650nm, respectively.
  • the outer layer of the core layer may have groups having a large average optical thickness, and the groups having a small average optical thickness may be formed in the inner layer.
  • the average optical thickness of the polymers must be determined to correspond to various light wavelengths.
  • the average optical thickness of the first component of each group within the core layer may differ by at least 5% or more. More preferably, it may differ by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
  • the area of the plate-shaped polymers in a certain area within the same group may be larger than the area of the plate-shaped polymers in a certain area between groups.
  • the density of the polymers in the constant area S 1 inside the group A and the constant area S 2 inside the group B is greater than the constant area S 3 between the group A and the group B.
  • the area occupied by ( ⁇ m 2 ) plate-shaped polymers per unit area in the same group is larger than the area occupied by ( ⁇ m 2 ) plate-shaped polymers per unit area in the group and between groups.
  • each of the plate-shaped polymer 211 can be elongated in various directions, but preferably it is advantageously extended in parallel in any one direction, more preferably between the elongated body in a direction perpendicular to the light irradiated from an external light source Stretching parallel to is effective to maximize the light modulation effect.
  • an aspect ratio whose vertical cross section in the longitudinal direction of the plate-shaped polymer is a short axis length with respect to a long axis length may be 1/1000 or less.
  • 9 is a vertical cross section in the longitudinal direction of a plate-like polymer that can be used in the present invention, wherein the ratio of the relative length of the major axis length (a) and the minor axis length (b) when the major axis length is a and the minor axis length is b (aspect ratio) ) Should be less than 1/1000.
  • the long axis length (a) is 1000
  • the short axis length (b) should be less than or equal to 1, which is 1/1000.
  • the ratio of the short axis length to the long axis length is larger than 1/1000, it is difficult to achieve the desired optical properties.
  • the aspect ratio can be appropriately adjusted through the induction and stretching of the first component in the above-described manufacturing step.
  • the cross section of the polymer is shown as a ratio of the short axis length to the long axis length is greater than 1/1000 in the drawings of the present invention, this is only a problem of the method represented in the drawings for the sake of understanding, in practice Compared with the polymer, the long axis direction is longer and the short axis direction is shorter.
  • the conventional reflective polarizer may include 100 million or more birefringent polymers to achieve desired optical properties.
  • the reflective polarizer of the present invention can achieve optical properties in which the transmittance in the transmission axis direction of the reflective polarizer is 90% or more and the transmittance in the reflection axis direction is 30% or less even when one or more of the plate-shaped polymers are included.
  • the transmittance in the transmission axis direction is 87% or more
  • the optical property of the transmittance in the reflection axis direction can be achieved 10% or less
  • most preferably the transmission axis transmittance is 85% or more and the reflection axis
  • the transmittance may be 7% or less.
  • the reflective polarizer of the present invention may contain 500,000 or less of the planar polymers, and most preferably, 300,000 or less of the planar polymers.
  • the ratio of the short axis length to the long axis length of the polymer is preferably 1/1000 or less, more preferably 1/1500 or less, even more preferably 1/2000 or less, further Preferably less than 1/3000, more preferably less than 1/5000, more preferably less than 1/10000 or less than 1/20000, more preferably less than 1/30000, more preferably less than 1/50000, most Preferably, it may be 1/70000 to 1/170000.
  • the desired optical properties can be achieved even if a smaller number of plate-shaped polymers are included in the substrate.
  • the spacing space between the plate-like polymers forming the same layer may be extremely small.
  • the reflective polarizer of the present invention will necessarily have at least one space between the plate-like polymers forming the same layer.
  • the reflective polarizer is 50% or more of the plurality of plate-like polymers satisfying the above aspect ratio conditions of all the plate-shaped polymer contained in the substrate, Preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, most preferably at least 90%.
  • a birefringent interface may be formed between the plate-like polymer (first component) and the substrate (second component) forming the core layer.
  • the magnitude of the substantial coincidence or mismatch of the refractive indices along the X, Y, and Z axes in the space between the substrate and the plate-shaped polymer is the degree of scattering of the light polarized along the axis. Affects.
  • the scattering power varies in proportion to the square of the refractive index mismatch.
  • the degree of mismatch in refractive index along a particular axis the more strongly scattered light polarized along that axis.
  • the light polarized along that axis is scattered to a lesser extent. If the refractive index of the substrate along a certain axis substantially matches the refractive index of the plate-shaped polymer, incident light polarized with an electric field parallel to this axis will pass through the polymer without scattering regardless of the size, shape and density of the portion of the polymer. . Also, when the refractive indices along that axis are substantially coincident, the light beam passes through the object without being substantially scattered.
  • the first polarized light (P wave) is transmitted without being affected by the birefringent interface formed at the boundary between the substrate and the polymer, but the second polarized light (S wave) is transmitted at the birefringent interface formed at the boundary between the substrate and the polymer. Under the influence of this, modulation of light occurs. Through this, the P wave is transmitted, and the S wave generates light modulation such as scattering and reflection of light, and thus, polarization is separated.
  • the plate-shaped polymer may cause a photomodulation effect by forming a birefringent interface
  • the plate-shaped polymer may have birefringence and conversely, when the substrate has optically birefringence
  • the polymer may have optical isotropy. Specifically, in-plane birefringence between nX1 and nY1 when the refractive index in the x-axis direction of the polymer is nX1, the refractive index in the y-axis direction is nY1, the refractive index in the z-axis direction is nZ1, and the refractive index of the substrate is nX2, nY2 and nZ2. This can happen.
  • At least one of the X, Y, and Z axis refractive indices of the substrate and the polymer may be different. More preferably, when the extension axis is the X axis, the difference in the refractive indices in the Y and Z axis directions is 0.05 or less. The difference in refractive index with respect to the X-axis may be 0.1 or more. On the other hand, if the difference in refractive index is 0.05 or less, it is usually interpreted as a match.
  • the total number of layers of the plate-shaped polymer may be 50 to 3000, the plate-shaped polymer forming one layer is 30 to 1,000, the layer spacing between each layer is 0.01 ⁇ 1.0 ⁇ m.
  • the separation distance between adjacent plate-shaped polymer forming one layer may be up to 0.01 ⁇ 1.0 ⁇ m.
  • the short axis length of the longitudinal cross-section of the plate-shaped polymer may be 0.01 ⁇ 1.0 ⁇ m, the long axis length of the longitudinal cross section of the longitudinal direction may be 100 ⁇ 17,000 ⁇ m.
  • the above-described layer spacing, number of layers, separation distance, long and short length may be appropriately adjusted according to the aspect ratio and the desired light wavelength of the present invention.
  • the thickness of the core layer is 20 to 180 ⁇ m, and the thickness of the skin layer may be 50 to 300 ⁇ m, but is not limited thereto.
  • the first component, the second component and the skin layer component are respectively supplied to the extruded parts. If only the core layer is present, the skin layer component is omitted.
  • the first component may be used without limitation as long as the polymer is dispersed in the second component forming the substrate and used in a reflective polarizer in which a conventional polymer is dispersed.
  • PEN polyethylene naphthalate
  • PET Polyethylene ter
  • the second component may be used without limitation as long as the second component is used as a material of the substrate in the reflective polarizer in which the polymer is dispersed, and preferably, polyethylene naphthalate (PEN) or copolyethylene naphthalate (co-PEN).
  • PEN polyethylene naphthalate
  • co-PEN copolyethylene naphthalate
  • PET Polyethylene terephthalate
  • PC polycarbonate
  • PC polycarbonate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS heat-resistant polystyrene
  • PMMA polymethyl methacrylate
  • PBT polybutylene terephthalate
  • PP Polypropylene
  • PE polyethylene
  • ABS acrylonitrile butadiene styrene
  • PU polyurethane
  • PI polyimide
  • PVC polyvinyl chloride
  • SAN styrene acrylonitrile mixture
  • EVA Ethylene vinyl acetate
  • PA polyamide
  • POM polyacetal
  • UF melanin
  • MF unsaturated polyester
  • UP silicone
  • the skin layer component may be used without limitation as long as it is typically used in a reflective polarizer in which a polymer is dispersed, and preferably, polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, and polystyrene (PS).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS Heat-resistant polystyrene
  • PMMA polymethyl methacrylate
  • PBT polybutylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • ABS acrylonitrile butadiene styrene
  • PU polyurethane
  • PI Polyimide
  • PVC polyvinyl chloride
  • SAN styrene acrylonitrile mixture
  • EVA ethylene vinyl acetate
  • PA polyamide
  • POM polyacetal
  • phenol epoxy
  • EP Urea
  • UF melanin
  • MF melanin
  • UP unsaturated polyester
  • SI silicone
  • cycloolefin polymers can be used.
  • the polycarbonate alloy is preferably made of polycarbonate and modified glycol polycyclohexylene dimethylene terephthalate (PCTG), more preferably polycarbonate and modified glycol polycyclohex
  • the silane dimethylene terephthalate (PCTG) may be a polycarbonate alloy having a weight ratio of 5:95 to 95: 5.
  • the skin layer of the present invention preferably uses a material having a small change in refractive index in spreading and stretching processes, and more preferably, may be polycarbonate or polycarbonate alloy.
  • the first component, the second component and the skin layer component can be supplied separately to the independent extrusion parts, in this case, the extrusion part may be composed of three or more.
  • a feed to one extruder comprising a separate feed passage and distributor so that the polymers do not mix.
  • the extruder may be an extruder, which may further include heating means or the like to convert the supplied polymers into a liquid phase.
  • each island-in-the-sea composites reflects a shear wave (S wave) of a desired wavelength.
  • the first component and the second component transferred from the extruder are introduced into the plurality of islands-in-sea type extrusion molds to form two or more islands-in-sea composites having different average optical thicknesses of the first components.
  • 10 and 11 are perspective views showing the coupling structure of the distribution plate of the island-in-the-sea extrusion mold which can be used in the present invention.
  • the first mold distribution plate S1 positioned at the upper end of the island-in-the-sea extrusion mold may have a first component supply passage 50 and a second component supply passage 51 therein. Through this, the first component transferred through the extruder may be introduced into the first component supply path 50, and the second component may be supplied to the second supply path 51. In some cases, a plurality of such supply paths may be formed.
  • the polymers that have passed through the first mold distribution plate S1 are transferred to a second mold distribution plate S2 positioned below.
  • the first component introduced through the first component supply path 50 is branched and transferred to the plurality of first component supply paths 52 and 53 along the flow path.
  • the second component introduced through the second component supply passage 51 is branched and transferred to the plurality of second component supply passages 54, 55, 56 along the flow path.
  • the polymers that have passed through the second detention distribution plate S2 are transferred to the third detention distribution plate S3 located below.
  • the first component introduced through the first component supply paths 52 and 53 is branched along the flow path to the first component supply paths 59, 60, 63, and 64 formed in the third detention distribution plate S3, respectively. Transferred.
  • the second components introduced through the second component supply paths 54, 55, 56 are second component supply paths 57, 58, 61, 62, 65, 66 formed in the third detention distribution plate S3, respectively. Branched along the flow path and transported.
  • the polymers that have passed through the third detention distribution plate S3 are transferred to the fourth detention distribution plate S4 located below.
  • the first components introduced through the first component supply paths 59, 60, 63, and 64 are spread out into the first component supply paths 69 formed in the fourth detention distribution plate S4, respectively,
  • the second component introduced through the component supply paths 57, 58, 61, 62, 65, and 66 is formed in the upper and lower ends of the first component supply paths 69 along the flow path. It is injected into).
  • the number of layers of the first component included in the island-in-the-sea composite flow is determined according to the number of vertical layers n of the first component supply passages 69.
  • the number of vertical layers is 50
  • the number of layers of the first component included in the first island-in-the-sea composite product is 50.
  • the number of island component layers may be 25 or more, more preferably 50 or more, even more preferably 100 or more, and most preferably 150 or more.
  • the first component is infiltrated between the dispersed first components to form an island-in-the-sea composite flow in which the first component is dispersed in the second component. It discharges through the discharge port 70 of the 6th metal distribution board S6. Meanwhile, FIGS.
  • the 10 and 11 are examples of island-in-the-sea detention distribution plates that may be used in the present invention, and the number, structure, and detention of detention distribution plates for manufacturing island-in-the-sea composites in which the first component is dispersed in the second component. It is obvious to those skilled in the art to appropriately design and use the size, shape and the like of the holes.
  • the diameter of the detention hole in the island component supply passage may be 0.17-5 mm, but is not limited thereto.
  • the island component supply passage in the fourth mold distribution plate increases, a degree of conduction between the island components (first component) may occur.
  • the island component supply passage may be partitioned as shown in FIG. 12, and the sea component supply passages 71 and 72 may be formed on the partition passage so that the sea component may penetrate smoothly between the island components.
  • the degree of conduction between the island components (the first component) included in the final substrate may be minimized.
  • the present invention includes not only a plurality of islands-in-the-sea extrusion molds, but also ones that are integrally formed to produce a plurality of islands-in-sea composites.
  • the arrangement of the island component supply paths of the fourth mold distribution plate may be arranged in a straight line as shown in FIG. 13.
  • FIGS. in order to minimize the bonding and to further disperse the island components in the substrate, FIGS.
  • the island component supply path can be arranged in a zigzag type.
  • Figures 15 and 16 is a view of the detention of the island-in-the-sea extrusion mold according to a preferred embodiment of the present invention.
  • the fourth detention distribution plate T4 of FIG. 15 includes a second component supply passage between the first component supply passage aggregation units 100, 101, and 102 similarly to FIG. 12. It is divided into a flow path. This allows the second component to soak evenly between the first components.
  • a plurality of islands-in-sea composites comprising the first component dispersed in the second component are formed, and preferably, the number of the islands-in-sea composites is two or more, and more preferably three or more. More preferably, it may be four or more.
  • a plurality of island-in-the-sea extrusion molds capable of forming respective islands-in-sea composite composites may be provided, and a plurality of islands-in-sea extrusion molds may be integrally formed.
  • the island-in-the-sea type extrusion molds individually or integrally to form a plurality of island-in-the-sea composites, and to design and arrange the number and structure of the cage distribution plates appropriately for this purpose.
  • the first mold distribution plate may be manufactured as four, which is the number of the fourth cage distribution plates, or the first mold distribution plate. Is common, and it is also possible to branch and supply it to four interruptions.
  • the plurality of islands-in-the-sea composites each have an optical thickness of the first component, an optical thickness of the second component, the number of layers of the first component, etc. to form different islands-in-the-sea composites to cover a range of wavelength regions of different light.
  • the diameter, cross-sectional area, shape, and / or number of layers of the island component supply passage and / or the sea component supply passage formed in each island-in-the-sea extrusion mold may be different.
  • the reflective polarizer which is finally manufactured through the spreading and stretching process, has a plurality of groups formed therein, and the plurality of groups have different average optical thicknesses. For this purpose, in consideration of the spreading degree and the stretching ratio of the first components, The diameters of the aforementioned supply paths can be determined.
  • optical thickness means n (refractive index) x d (physical thickness). Therefore, if two islands-in-sea composites are formed, if the first component is the same between the islands-in-sea composites, the optical thickness is proportional to the size of the physical thickness d. Therefore, by varying the average value of the physical thickness (d) of the first component and / or the second component included in each island-in-the-sea composite product, the difference in the optical thickness between the islands-in-sea composite products can be derived. Meanwhile, in order to cover the entire visible light region, the average optical thickness of the island-in-the-sea composites should be determined to correspond to various light wavelengths.
  • the first component between islands-in-the-sea composites can differ by at least 5% or more, more preferably by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
  • the diameter, cross-sectional area, shape, etc. of the island component supply passage and / or the sea component supply passage may be the same or different.
  • the optical thickness of the first components forming the same island-in-the-sea composite flow may have a deviation of preferably within 20%, more preferably within 15% of the average optical thickness. For example, if the average optical thickness of the first components of the first islands-in-the-sea composite is 100 nm, the first components forming the same first islands-in-the-sea composite will have an optical thickness variation within approximately 20%. Can be.
  • the wavelength and the optical thickness of the light are defined according to the following Equation 1.
  • is the wavelength of light (nm)
  • n is the refractive index
  • d is the physical thickness (nm)
  • the deviation occurs in the optical thickness (nd) can cover not only the wavelength of the target light but also the wavelength range of the light including the same, which is a great help in improving the overall uniform optical properties.
  • the above-described optical thickness deviation is achieved by giving a deviation to the diameter, cross-sectional area, etc. of the island-like extrusion mold in one island-in-the-sea extrusion mold, or the natural minute pressure distribution during the spreading process even if the island component feeding path has the same diameter. The difference can be achieved naturally.
  • the first component conveyed in the extruded portion between the steps (1) and (2) is a plurality of having a different discharge amount in order to have a different average optical thickness between islands
  • the first pressing means may further include the step of discharging each different island-in-the-sea extrusion mold.
  • FIG. 18 is a schematic view including a first pressurizing means to form two islands-in-the-sea composite flows, in which a first component conveyed from an extruder (not shown) includes the plurality of first pressurizing means 130 and 131. And supplied separately to the islands-in-the-sea type extrusion holes 132 and 133 in the respective first pressing means 130 and 131.
  • the first pressing means (130, 131) has a different discharge amount from each other through each of the island-like extrusion mold 132, 133 has the same specification (when the shape diameter of the island component supply path, etc. are the same).
  • the average optical thicknesses of the first components of the first island-in-the-sea composite and the second island-in-the-sea composites formed therethrough may be different.
  • the first pressurizing means (130. 131) each have a different discharge amount, the area of the first compound formed in the first composite stream and the second composite stream produced through the island-in-the-sea extrusion molds 132 and 133 connected thereto The difference in area is caused by different discharge amounts, resulting in a difference in optical thickness between composite flows.
  • the discharge amount of the first pressing means (130, 131) may be preferably 1 to 100 kg / hr, but is not limited thereto.
  • one first pressing means transfers the first component to the two islands-in-the-sea extrusion molds, and the two islands-in-the-sea composites formed from the two islands-in-the-sea extrusion molds are laminated to form one island-in-the-sea composites. It is also possible for one group to be formed. In this case, four groups may be formed through the four first component pressing means and the eight island-in-the-sea extrusion molds. It is also possible for one first pressing means to transfer the first component to three or more islands-in-sea extrusion molds.
  • the second component conveyed from the extrusion section between the steps (1) and (2) is a plurality of having a different discharge amount in order to have a different average optical thickness between islands-in-the-sea composites
  • Each of the second islands may be discharged to different islands-in-sea extrusion molds.
  • FIG. 19 is a schematic view of including two second pressing means to form two islands-in-the-sea composite flows, in which a second component conveyed from an extruder (not shown) includes the plurality of second pressing means 140, Branched to 141 and supplied separately to the islands-in-the-sea extrusion-type extrusion holes 142 and 143 in respective second pressurizing means 140 and 141.
  • the second pressing means (140, 141) has a different discharge amount from each other through this, each island-like extrusion mold 142, 143 has the same specifications (when the shape diameter of the island component supply path, etc. are the same).
  • the average optical thickness of the second component of the first island-in-the-sea composites and the second island-in-the-sea composites formed through them, that is, the thickness of the substrate (core layer) may be different.
  • the discharge amount of the second pressing means 140, 141 may be preferably 1 to 100 kg / hr, but is not limited thereto.
  • one second pressing means transfers the second component to the two islands-in-the-sea extrusion molds, and the two islands-in-the-sea composites formed from the two islands-in-the-sea extrusion molds are laminated to form one island-in-the-sea composites. It is also possible for one group to be formed. In this case, four groups may be formed through the four second component pressing means and the eight island-in-the-sea extrusion molds. It is also possible for one second pressing means to transfer the second component to three or more islands-in-sea extrusion molds.
  • the step of discharging the second component conveyed from the extrusion unit through the second pressing means to each different island-in-the-sea extrusion mold may further include. 20 is a schematic view including one second pressurizing means for forming two islands-in-the-sea composite flows, in which a second component conveyed from an extruder (not shown) is supplied to the second pressurizing means 150 and The plurality of islands-in-the-sea extrusion molds 151 and 152 are separately supplied.
  • the average optical thickness of the second component of the first island-in-the-sea composite and the second island-in-the-sea composites formed thereon may be the same, in which case the first pressurizing means for supplying the first component It can arrange
  • FIG. 21 is a schematic view showing the lamination portion of the island-in-the-sea composites, and the core layer 165 by laminating the plurality of island-in-the-sea composites 161, 162, 163, and 164 manufactured through each island-in-the-sea extrusion mold. ) To form.
  • the lamination step may be carried out in a separate place or when using an integrated island-in-the-sea type extrusion mold may be laminated to one through a separate aggregated distribution plate.
  • the skin layer component may also be laminated simultaneously or sequentially with the core layer in the lamination portion.
  • a separate prespreading step may be further performed to facilitate the spreading of the first component, which will be described later, between steps (2) and (3) or between steps (3) and (4). .
  • the step (4) at least one surface of the laminated core layer is laminated with the skin layer component transferred from the extruder.
  • the skin layer component may be laminated on both surfaces of the core layer.
  • the material and the thickness of the skin layer may be the same or different from each other. Meanwhile, as described above, when the skin layer components are simultaneously laminated in the lamination part of step (3), this step may be omitted.
  • the first component of the core layer in which the skin layer is laminated induces spreading in the flow control unit to form a plate-like shape.
  • FIG. 22 is a cross-sectional view of a coat-hanger die, which is a kind of preferred flow control unit that may be applied to the present invention
  • FIG. 23 is a side view.
  • the spreading degree of the core layer may be appropriately adjusted so that the shape of the vertical cross section in the longitudinal direction of the first component may have a plate shape.
  • the first component included therein also spreads from side to side.
  • the coat hanger die spreads from side to side, but has a structure of decreasing vertically, so that the skin layer is spread in the horizontal direction of the laminated core layer or reduced in the thickness direction.
  • This is the Pascal principle is applied, the fluid in the closed system is induced to spread wide in the width direction by the principle that the pressure is transmitted to a minute portion by a constant pressure. Therefore, the exit size is wider in the width direction than the inlet size of the die and the thickness is reduced.
  • the material in the molten liquid state can be flow and shape control by pressure in the closed system, preferably polymer flow rate and viscosity induction to be a laminar flow of Reynolds number 2,500 or less.
  • the left and right die widths of the exit of the coat-hanger die can be between 800 and 2500 mm, and the fluid flow of the polymer is required to adjust the pressure so that the Reynolds number does not exceed 2,500. The reason is that if it is more than that, the polymer flow becomes turbulent and the core array may be disturbed.
  • the internal temperature may be 265 ⁇ 310 °C.
  • the degree of spreading may be affected by the compatibility of the first component and the second component, etc. In order to have excellent spreadability, it is preferable to use CO-PEN as the first component and PEN as the second component.
  • the degree of spreading can be controlled by appropriately polymerizing monomers constituting CO-PEN, for example, dimethyl-2,6-naphthalene dicarboxylate, dimethyl terephthalate, ethylene glycol and cyclohexanedimethanol (CHDM).
  • the flow control part may be a T-die or a coat-hanger die of a manifold type so that the first component may form a plate shape, but the present invention is not limited thereto, and induces spreading of the core layer to guide the first component to the plate shape. Anything that can be used can be used without limitation.
  • the plate-shaped aspect ratio is a ratio of the short axis length to the long axis length relative to the vertical section is 1/200 or less, 1/300 or less, 1/500 or less. It may be 1/1000 or less, 1/2000 or less, 1/5000 or less, 1/10000 or less, or 1/20000 or less. If the aspect ratio is greater than 1/200, it is difficult to achieve the desired optical properties even when the aspect ratio is reduced through elongation of the polarizer. In particular, when the aspect ratio induces spreading of more than 1/200 and then adjusts the aspect ratio of the final first component through a high draw ratio of 6 times or more, the area of the first component is smaller than that of the second component, so as to form a gap between the first components. Due to the light leakage phenomenon, there is a problem of optical properties deterioration.
  • the desired optical properties can be achieved even if a smaller number of plate-shaped polymers are included in the substrate.
  • a plurality of islands-in-sea composites having different average optical thicknesses of the first component are prepared using a plurality of islands-in-sea extrusion molds and laminated in a molten state so that a separate adhesive layer and / or a protective layer (PBL) are used. Do not need.
  • the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This can significantly reduce the manufacturing cost.
  • the reflective polarizer manufactured by the manufacturing method of the present invention includes a very small number of birefringent polymers in the same area compared to the reflective polarizer including a birefringent polymer because the polymer inside the substrate has a plate-like shape. In this case, not only excellent optical properties can be achieved but also a plurality of groups having different average optical thicknesses are formed, so that all S waves in the visible wavelength range can be reflected.
  • step (5) after the step (5), (6) cooling and smoothing the polarizer induced by the spread transferred from the flow control unit, (7) stretching the polarizer after the smoothing step ; And (8) heat setting the stretched polarizer.
  • cooling and smoothing of the polarizer transferred from the flow control unit may be performed by cooling used in the manufacture of a conventional reflective polarizer to solidify it, and then may be performed through a casting roll process or the like.
  • the stretching may be performed through a stretching process of a conventional reflective polarizer, thereby causing a difference in refractive index between the first component and the second component to cause a light modulation phenomenon at the interface, and the spread-induced first component Stretching further reduces the aspect ratio. Therefore, in order to adjust the optical thickness by inducing the aspect ratio of the plate-shaped shape of the first component desired in the final reflective polarizer, it may be appropriately set in consideration of the diameter, spreading induction condition and elongation ratio of the island-like extrusion hole in the island-like extrusion hole. will be.
  • the stretching step may be performed uniaxially or biaxially, and more preferably, uniaxially.
  • the stretching direction may be performed in the longitudinal direction of the first component.
  • the draw ratio may be 3 to 12 times.
  • methods for changing an isotropic material to birefringence are commonly known and, for example, when drawn under suitable temperature conditions, the polymer molecules can be oriented so that the material becomes birefringent.
  • the final reflective polarizer may be manufactured by performing heat setting of the stretched polarizer as (8).
  • the heat setting may be heat setting through a conventional method, preferably may be performed through an IR heater for 0.1 to 3 minutes at 180 ⁇ 200 °C.
  • the reflective polarizer of the present invention can be manufactured by appropriately controlling the specifications of the island-in-the-sea extrusion mold, the specification and the draw ratio of the flow control unit, etc. It is.
  • an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed comprising a core layer having a plurality of first components dispersed therein and a skin layer formed on at least one surface of the core layer. At least three extrusion parts into which the first component, the second component and the skin layer component are separately put; The extrusion component in which the first component is injected is formed to form a plurality of islands-in-the-sea composites in which the first component is dispersed inside the second component, and each island-in-the-sea composite compound reflects an S wave of a desired wavelength.
  • a plurality of islands-in-sea type extrusion molds in which two or more islands-in-sea type extrusion molds are formed by injecting the first component and the second component transferred from the extruded part into which the second component is injected to form two or more islands-in-sea composites having different average optical thicknesses of the first components.
  • Block portion A collection block unit for laminating two or more islands-in-the-sea composites transferred from the spin block unit into one to form a core layer; A feed block portion in communication with the extruder into which the skin layer component is injected and laminating the skin layer on at least one surface of the core layer transferred from the collection block; And a flow control unit for inducing spreading so that the first component of the core layer on which the skin layer transferred from the feed block unit is laminated forms a plate shape.
  • FIG. 24 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to a preferred embodiment of the present invention.
  • the first extrusion part 220 to which the first component is injected the second extrusion part 221 to which the second component is injected, and the third extrusion part 222 to which the skin layer component is injected are included.
  • the first extrusion part 220 is in communication with the spin block portion (C) comprising four islands-type extrusion mold (223, 224, 225, 226).
  • the first extrusion unit 220 supplies the first island-like extrusion molds 223, 224, 225, and 226 in a molten state.
  • the second extrusion part 221 is also in communication with the spin block part (C) and supplies the second component in the molten state to the four island-like extrusion molds 223, 224, 225, and 226 included therein.
  • Four islands-in-the-sea extrusion molds 223, 224, 225, and 226 produce four islands-in-the-sea composites with the first component dispersed within the second component and having different average optical thicknesses.
  • the four islands-in-the-sea extrusion molds 223, 224, 225, and 226 may be the island-in-the-sea extrusion molds shown in FIG. 10 or 15.
  • the four islands-in-the-sea composites manufactured through the four islands-in-the-sea extrusion molds 223, 224, 225, and 226 are laminated together in the collection block portion 227 to form one core layer.
  • the collection block portion 227 may be formed separately, or in the case of using a single island-in-the-sea type extrusion mold, the island-in-the-sea composites may be laminated in the form of a collective mold inside the island-in-the-sea extrusion mold.
  • the core layer laminated in the collection block portion 227 is transferred to the feed block portion 228 and then laminated with the skin layer component transferred from the third extrusion portion 222. Therefore, the third extrusion part 222 and the feed block portion 228 may be in communication with each other. Thereafter, the core layer in which the skin layer is laminated is transferred to the flow control unit 229, and the spread of the first component is induced to form a plate shape.
  • the flow control part may be a T-die or a coat-hanger die.
  • the third extruded portion 222 may be in communication with the collection block portion 227, in which case the feed block portion 228 may be omitted.
  • 25 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention.
  • the first extrusion part 220 transfers the first component to the four first pressing means 233, 234, 235, and 236.
  • the first pressurizing means 233, 234, 235, and 236 have different discharge amounts, and discharge the first component to the plurality of island-in-the-sea type extrusion holes 241, 242, 243, and 244.
  • the second extrusion part 221 transfers the second component to the four second pressing means 237, 238, 239 and 240.
  • the second pressurizing means 237, 238, 239, and 240 have different discharge amounts and discharge the second component into the plurality of island-in-the-sea type extrusion holes 241, 242, 243, and 244.
  • Four islands-in-the-sea extrusion molds 241, 242, 243, and 244 produce four islands-in-the-sea composites with the first component dispersed within the second component and having different average optical thicknesses.
  • the first pressing means, the second pressing means, and the plurality of island-in-the-sea extrusion molds form the spin block portion C.
  • FIG. 26 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another preferred embodiment of the present invention.
  • a brief description of the difference from FIG. 25 will be given in that a multistage lamination is performed using eight islands-in-the-sea extrusion molds instead of four islands-in-the-sea extrusion molds in order to produce a reflective polarizer having four groups.
  • the first pressurizing means 233 discharges the first component to the two islands-in-the-sea extrusion molds 250 and 251.
  • the second pressurizing means 234 also discharges the first component to the two islands-in-the-sea extrusion molds 250 and 251.
  • the two islands-in-the-sea type extrusion molds 250 and 251 have the same average optical thickness between islands-in-sea composite flows because the first component and the second component are transferred through the same first pressing means and the second pressing means. In this way, eight islands-in-the-sea composites are formed, and these islands-in-the-sea composites have the same average optical thickness by two.
  • the two islands-in-the-sea composites having the same average optical thickness are respectively laminated at the first laminations 258, 259, 260, and 261 to form four islands-in-the-sea composites, and the four islands-in-the-sea composites are the second sum. It is laminated at branch 262 to form one core layer.
  • one first pressing means transfers the first component to the two islands-in-the-sea extrusion molds, but it is apparent to those skilled in the art that the first component can be transferred to the two or more islands-in-sea extrusion molds. The same may be applied to the second pressing means.
  • FIG. 27 is an example of a liquid crystal display device employing a reflective polarizer of the present invention, in which a reflecting plate 280 is inserted into a frame 270, and a cold cathode fluorescent lamp 290 is disposed on an upper surface of the reflecting plate 280. Is located.
  • An optical film 320 is positioned on an upper surface of the cold cathode fluorescent lamp 290, and the optical film 320 includes a diffuser plate 321, a light diffusion film 322, a prism film 323, and a reflective polarizer ( 324 and the absorption polarizing film 325 are laminated in this order, but the stacking order may vary depending on the purpose or some components may be omitted or a plurality may be provided.
  • the diffusion plate 321, the light diffusing film 322, the prism film 323, and the like may be excluded from the overall configuration, and may be changed in order or formed at different positions.
  • a retardation film (not shown) or the like may also be inserted at an appropriate position in the liquid crystal display device. Meanwhile, the liquid crystal display panel 310 may be inserted into the mold frame 300 on the upper surface of the optical film 320.
  • the light irradiated from the cold cathode fluorescent lamp 290 reaches the diffusion plate 321 of the optical film 320.
  • the light transmitted through the diffusion plate 321 passes through the light diffusion film 322 in order to propagate the light in the vertical direction with respect to the optical film 320.
  • the film passing through the light diffusion film 322 passes through the prism film 323 and reaches the reflective polarizer 324 to generate light modulation.
  • the P wave transmits the reflective polarizer 324 without loss, but in the case of the S wave, light modulation (reflection, scattering, refraction, etc.) is generated, and again, by the reflecting plate 280 that is the rear side of the cold cathode fluorescent lamp 290.
  • the reflective polarizer of the present invention when used by being inserted into the liquid crystal display device, a dramatic improvement in luminance can be expected as compared with a conventional reflective polarizer. Meanwhile, the cold cathode fluorescent lamp 290 may be replaced with an LED.
  • the use of the reflective polarizer has been described based on the liquid crystal display, but the present invention is not limited thereto, and may be widely used in flat panel display technologies such as a projection display, a plasma display, a field emission display, and an electroluminescent display.
  • PEN having a refractive index of 1.65 as a first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as a second component were mixed in an molar ratio of 6: 4 to ethylene glycol (EG) and 1. : Refractive index polymerized to 90% by weight of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as a co-PEN and skin layer component having a refractive index of 1.64 reacted at a molar ratio of 2 Polycarbonate alloys of 1.58 were charged to the first extruded portion, the second extruded portion, and the third extruded portion, respectively.
  • EG ethylene glycol
  • PCTG polycyclohexylene dimethylene terephthalate
  • the extrusion temperature of the 1st component and the 2nd component shall be 295 degreeC, and I.V.
  • the polymer flow was corrected through the adjustment, and the skin layer was subjected to the extrusion process at a temperature level of 280 ° C.
  • the first component was transferred to four first pressurizing means (Kawasaki gear pumps) and the second component was also transferred to four second pressurizing means (Kawasaki gear pumps).
  • the discharge amounts of the first pressurization means are respectively 10.5 kg / h, 5.3 kg / h, 6.9 kg / h, and 8.9 kg / h
  • the discharge amounts of the second pressurization means are respectively 10.5 kg / h and 5.3 kg / h.
  • a first composite flow was prepared by adding the first first component transferred from the first pressing means and the first second component transferred from the second pressing means to the first island-in-the-sea extrusion mold. In this order, up to the fourth composite product was prepared.
  • the number of the island component layers of the fourth mold distribution plate T4 is 96
  • the diameter of the detention hole in the island component supply passage is 0.17 mm
  • the total number of four island component supply passages is 9300 each.
  • the diameter of the discharge port of the sixth mold distribution plate was 15 mm x 15 mm.
  • the island-in-the-sea extrusion mold used the same mold. Four composites discharged through the four islands-in-the-sea extrusion molds were transferred through separate flow paths, and then laminated in a collection block to form one core layer polymer. In the feed block having a three-layer structure, a skin layer component flowed through the flow path from the third extrusion part to form a skin layer on the upper and lower surfaces of the core layer polymer.
  • the skin layer is formed such that the aspect ratio of the first composite flow is 1/13500, the aspect ratio of the second composite flow is 1/25000, and the aspect ratio of the third composite flow is 1/19500, and the aspect ratio of the fourth composite flow is 1/15900.
  • the layer polymer was induced to spread in the coat hanger dies of FIGS. 21 and 22, which corrected for flow velocity and pressure gradient. Specifically, the width of the die inlet is 200 mm, the thickness is 20 mm, the width of the die outlet is 960 mm, the thickness is 2.4 mm, The flow rate is 1 m / min. A smoothing process was then performed on the cooling and casting rolls and stretched six times in the MD direction.
  • the long axis length of the first component was not changed, but the short axis length was reduced.
  • heat setting was performed through an IR heater at 180 ° C. for 2 minutes to prepare a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.64.
  • the aspect ratio of the plate A layer was 1/101000, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 10.1 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of layer B was 1/184000 aspect ratio, the number of layers was 96 layers, the short axis length (thickness direction) was 54.9 nm, the major axis length was 10.1 mm, the average optical thickness was 90 nm, and the optical thickness deviation was about 20%.
  • the aspect ratio of the C layer was 1/148000, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 10.1 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of the D layer was 1/120000, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 10.1 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
  • Core layer thickness is 59 micrometers, and skin layer thickness is 170.5 micrometers on upper and lower surfaces.
  • Example 1 PEN having a refractive index of 1.65 as the first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as the second component were mixed in an molar ratio of 88:12. : 90 wt% of co-PEN and polycarbonate having a refractive index of 1.62 at a molar ratio of 2 and a refractive index of 1.58 polymerized with 10 wt% of polycyclohexylene dimethylene terephthalate (PCTG) as a skin layer component.
  • PCTG polycyclohexylene dimethylene terephthalate
  • the aspect ratio of the first composite flow was 1/8670
  • the aspect ratio of the second composite flow was 1/15730
  • the aspect ratio of the third composite flow was 1/12780
  • the aspect ratio of the fourth composite flow was Spreading was performed on the coat-hanger die to 1/10320.
  • a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured in the same manner as in Example 1.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.62.
  • the aspect ratio of the plate A layer was 1/52000, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 5.2 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%.
  • the aspect ratio of the plate B was 1/94370, the number of layers was 96 layers, the short axis length (thickness direction) was 55.1 nm, the major axis length was 5.2 mm, the average optical thickness was 90.4 nm, and the optical thickness deviation was about 20%.
  • the aspect ratio of the C layer was 1/76700, the number of layers was 96 layers, the short axis length (thickness direction) was 67.8 nm, the major axis length was 5.2 mm, the average optical thickness was 111.2 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of the D layer was 1/61900, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 5.2 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
  • PEN having a refractive index of 1.65 as the first component and 70 wt% of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as the second component have a refractive index of 1.59.
  • the aspect ratio of the first composite flow was 1/250
  • the aspect ratio of the second composite flow was 1/455
  • the aspect ratio of the third composite flow was 1/366
  • the aspect ratio of the fourth composite flow was Spreading was performed on the coat-hanger die to reach 1/297.
  • a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured in the same manner as in Example 1.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.59.
  • the aspect ratio of the plate A layer was 1/1500, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 0.15 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of layer B was 1/2780, the number of layers was 96 layers, the short axis length (thickness direction) was 55 nm, the major axis length was 0.15 mm, the average optical thickness was 90.2 nm, and the optical thickness deviation was about 20%.
  • the aspect ratio of the C layer was 1/2170, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 0.15 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of the D layer was 1/1770, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 0.15 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
  • PEN having a refractive index of 1.65 as the first component and 70 wt% of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as the second component have a refractive index of 1.59.
  • the discharge amounts of the first pressurizing means are 5.2 kg / h, 2.6 kg / h, 3.4 kg / h, 4.5 kg / h, respectively, in the same state as in Example 1, and the discharge amounts of the second pressing means are respectively Boulevards are 10.5 kg / h, 5.3 kg / h, 6.9 kg / h and 8.9 kg / h.
  • the aspect ratio of the first composite flow was 1/64
  • the aspect ratio of the second complex flow was 1/117
  • the aspect ratio of the third composite flow was 1/92
  • the aspect ratio of the fourth composite flow was 1.
  • a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured by the same process as in Example 3.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.59.
  • the aspect ratio of the plate A layer was 1/380, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 0.038 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of the B layer was 1/700, the number of layers was 96 layers, the short axis length (thickness direction) was 55 nm, the major axis length was 0.038 mm, the average optical thickness was 90.2 nm, and the optical thickness deviation was about 20%.
  • the aspect ratio of the C layer was 1/556, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 0.038 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%.
  • the plate aspect ratio of the D layer was 1/452, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 0.038 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
  • Transmission axis transmittance and reflection axis transmittance were measured by ASTM D1003 method using COH300A analysis equipment of NIPPON DENSHOKU, Japan.
  • the degree of polarization was measured using an OTSKA RETS-100 analyzer.
  • the luminance of the prepared reflective polarizer was measured as follows. After assembling the panel on a 32 "direct backlight unit equipped with a diffuser plate and a reflective polarizer, the luminance was measured at nine points using a BM-7 measuring instrument manufactured by Topcon Corporation.
  • the relative luminance shows the relative values of the luminance of the other Examples 2 to 3 and Comparative Examples 1 to 2 when the luminance of the reflective polarizer of Example 1 is 100 (reference).
  • the reflective polarizer of the present invention Since the reflective polarizer of the present invention has excellent light modulation performance, it can be widely used in a field requiring modulation of light. Specifically, it can be widely used in flat panel display technologies such as liquid crystal displays, projection displays, plasma displays, field emission displays, and electroluminescent displays requiring high brightness such as mobile displays, LCDs, and LEDs.

Abstract

A reflective polarizer according to the present invention is provided with a plurality of groups having different mean optical widths formed in a single integrated body, and thus does not include a separate adhesive layer and/or a protective boundary layer (PBL) in the interior of a core layer and in between a core layer and a skin layer. As such, manufacturing costs may be significantly reduced, and optical properties can be favorably maximized within the restricted widths. Additionally, as a plurality of groups having different mean optical widths are formed, all S waves within the visible wavelength range are reflected.

Description

중합체가 분산된 반사형 편광자Reflective polarizer with dispersed polymer
본 발명은 중합체가 분산된 반사형 편광자로서, 보다 상세하게는 한정된 두께에서 광학물성을 극대화시키는데 매우 유리한 중합체가 분산된 반사형 편광자를 제공하는 것이다.The present invention provides a reflective polarizer in which a polymer is dispersed, and more particularly, a reflective polarizer in which a polymer is dispersed, which is very advantageous for maximizing optical properties at a limited thickness.
평판디스플레이 기술은 TV분야에서 이미 시장을 확보한 액정디스플레이(LCD), 프로젝션 디스플레이 및 플라즈마 디스플레이(PDP)가 주류를 이루고 있고, 또 전계방출디스플레이(FED)와 전계발광디스플레이(ELD)등이 관련기술의 향상과 더불어 각 특성에 따른 분야를 점유할 것으로 전망된다. 액정 디스플레이는 현재 노트북, 퍼스널 컴퓨터 모니터, 액정 TV, 자동차, 항공기 등 사용범위가 확대되고 있으며 평판시장의 80%가량을 차지하고 있고 세계적으로 LCD의 수요가 급증해 현재까지 호황을 누리고 있다. Flat panel display technology is mainly made up of liquid crystal display (LCD), projection display, and plasma display (PDP), which have already secured market in TV, and related technologies such as field emission display (FED) and electroluminescent display (ELD) With the improvement of the market, it is expected to occupy the field according to each characteristic. LCD displays are currently expanding their range of use, including notebooks, personal computer monitors, LCD TVs, automobiles, and airplanes, accounting for about 80% of the flat panel market, and are booming to date due to a sharp increase in LCD demand worldwide.
종래의 액정 디스플레이는 한 쌍의 흡광성 광학필름들 사이에 액정 및 전극 매트릭스를 배치한다. 액정 디스플레이에 있어서, 액정 부분은 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정부분을 움직이게 함으로써, 이에 따라 변경되는 광학 상태를 가지고 있다. 이러한 처리는 정보를 실은 '픽셀'을 특정 방향의 편광을 이용하여 영상을 표시한다. 이러한 이유 때문에, 액정 디스플레이는 편광을 유도하는 전면 광학필름 및 배면 광학필름을 포함한다. Conventional liquid crystal displays arrange a liquid crystal and an electrode matrix between a pair of light absorbing optical films. In a liquid crystal display, the liquid crystal portion has an optical state that is changed accordingly by moving the liquid crystal portion by an electric field generated by applying a voltage to two electrodes. This process displays an image of a 'pixel' carrying information using polarization in a specific direction. For this reason, liquid crystal displays include a front optical film and a back optical film that induce polarization.
이러한 액정 디스플레이에서 사용되는 광학필름은 백라이트로부터 발사되는 광의 이용효율이 반드시 높다고는 할 수 없다. 이것은, 백라이트로부터 발사되는 광 중 50%이상이 배면측 광학필름(흡수형 편광필름)에 의해 흡수되기 때문이다. 그래서, 액정 디스플레이에서 백라이트 광의 이용효율을 높이기 위해서, 광학캐비티와 액정어셈블리 사이에 반사형 편광자를 설치한다.   The optical film used in such a liquid crystal display does not necessarily have high utilization efficiency of light emitted from the backlight. This is because 50% or more of the light emitted from the backlight is absorbed by the back side optical film (absorption type polarizing film). Thus, in order to increase the utilization efficiency of backlight light in the liquid crystal display, a reflective polarizer is provided between the optical cavity and the liquid crystal assembly.
도 1은 종래의 반사형 편광자의 광학원리를 도시하는 도면이다. 구체적으로 광학캐비티로부터 액정어셈블리로 향하는 빛 중 P편광은 반사형 편광자를 통과하여 액정어셈블리로 전달되도록 하고, S편광은 반사형 편광자에서 광학캐비티로 반사된 다음 광학캐비티의 확산반사면에서 빛의 편광 방향이 무작위화된 상태로 반사되어 다시 반사형 편광자로 전달되어 결국에는 S편광이 액정어셈블리의 편광기를 통과할 수 있는 P편광으로 변환되어 반사형 편광자를 통과한 후 액정어셈블리로 전달되도록 하는 것이다.   1 is a view showing the optical principle of a conventional reflective polarizer. Specifically, P-polarized light from the optical cavity to the liquid crystal assembly passes through the reflective polarizer to the liquid crystal assembly, and S-polarized light is reflected from the reflective polarizer to the optical cavity and then polarized light on the diffuse reflection surface of the optical cavity. The direction is reflected in a randomized state and then transmitted back to the reflective polarizer so that S-polarized light is converted into P-polarized light which can pass through the polarizer of the liquid crystal assembly, and then passed through the reflective polarizer to be transmitted to the liquid crystal assembly.
상기 반사형 편광자의 입사광에 대한 S편광의 선택적 반사와 P편광의 투과 작용은 이방성 굴절률을 갖는 평판상의 광학층과, 등방성 굴절률을 갖는 평판상의 광학층이 상호 교호 적층된 상태에서 각 광학층간의 굴절율 차이와 적층된 광학층의 신장 처리에 따른 각 광학층들의 광학적 두께 설정 및 광학층의 굴절률 변화에 의해서 이루어진다. The selective reflection of S-polarized light and the transmission of P-polarized light with respect to the incident light of the reflective polarizer are based on the refractive index of each optical layer in a state where an optical layer on a plate having anisotropic refractive index and an optical layer on a plate having an isotropic refractive index are laminated alternately. It is made by the optical thickness setting of each optical layer and the refractive index change of the optical layer according to the difference and the stretching process of the stacked optical layers.
즉, 반사형 편광자로 입사되는 빛은 각 광학층을 거치면서 S편광의 반사와 P편광의 투과 작용을 반복하여 결국에는 입사편광 중 P편광만 액정어셈블리로 전달된다. 한편, 반사된 S편광은 전술한 바와 같이, 광학캐비티의 확산반사면에서 편광상태가 무작위화 된 상태로 반사되어 다시 반사형 편광자로 전달된다. 이에 의해, 광원으로부터 발생된 빛의 손실과 함께 전력 낭비를 줄일 수 있었다.   That is, the light incident to the reflective polarizer repeats the reflection of S-polarized light and the transmission of P-polarized light while passing through each optical layer, and eventually only the P-polarized light of the incident polarized light is transmitted to the liquid crystal assembly. On the other hand, the reflected S-polarized light is reflected in a state in which the polarization state is randomized at the diffuse reflection surface of the optical cavity and is transmitted to the reflective polarizer again. As a result, power loss can be reduced together with the loss of light generated from the light source.
그런데, 이러한 종래 반사형 편광자는 굴절률이 상이한 평판상의 등방성 광학층과 이방성 광학층이 교호 적층되고, 이를 신장처리하여 입사편광의 선택적 반사 및 투과에 최적화될 수 있는 각 광학층간의 광학적 두께 및 굴절률을 갖도록 제작되기 때문에, 반사형 편광자의 제작공정이 복잡하다는 문제점이 있었다. 특히, 반사형 편광자의 각 광학층이 평판 구조를 가지고 있어서, 입사편광의 광범위한 입사각 범위에 대응하여 P편광과 S편광을 분리하여야 하기 때문에, 광학층의 적층수가 과도하게 증가하여 생산비가 기하급수적으로 증가하는 문제가 있었다. 또한, 광학층의 적층수가 과도하게 형성되는 구조에 의하여 광손실에 의한 광학적 성능 저하가 우려되는 문제점이 있었다.  However, the conventional reflective polarizer has an optical thickness and a refractive index between the optical layers that can be optimized for selective reflection and transmission of incident polarization by alternately stacking isotropic optical layers and anisotropic optical layers having different refractive indices. Since it is manufactured so as to have it, there existed a problem that the manufacturing process of a reflective polarizer was complicated. In particular, since each optical layer of the reflective polarizer has a flat plate structure, it is necessary to separate P-polarized light and S-polarized light in response to a wide range of incident angles of incident polarization, so that the number of optical layers is excessively increased and the production cost is exponentially increased. There was a growing problem. In addition, due to the structure in which the number of laminated layers of the optical layer is excessively formed, there is a problem that the optical performance decrease due to light loss.
도 2는 종래의 다층 반사형 편광자(DBEF)의 단면도이다. 구체적으로 다층 반사형 편광자는 코어층(8)의 양면에 스킨층(9, 10)이 형성된다. 코어층(8)은 4개의 그룹(1, 2, 3, 4)으로 구분되는데, 각각의 그룹들은 등방층과 이방층이 교호적층되어 대략 200층을 형성한다. 한편, 상기 코어층(8)을 형성하는 4개의 그룹(1, 2, 3, 4) 사이에 이들을 결합하기 위한 별도의 접착층(5, 6, 7)이 형성된다. 또한 각각의 그룹들은 200층 내외의 매우 얇은 두께를 가지므로 이들 그룹들을 개별적으로 공압출하는 경우 각각의 그룹들이 손상될 수 있어 상기 그룹들은 보호층(PBL)을 포함하는 경우가 많았다. 이 경우 코어층의 두께가 두꺼워지고 제조원가가 상승하는 문제가 있었다. 또한, 디스플레이 패널에 포함되는 반사형 편광자의 경우 슬림화를 위하여 코어층의 두께에 제약이 있으므로, 코어층 및/또는 스킨층에 접착층이 형성되면 그 두께만큼 코어층이 줄어들게 되므로 광학물성 향상에 매우 좋지 않은 문제가 있었다. 나아가, 코어층 내부 및 코어층과 스킨층을 접착층으로 결합하고 있으므로, 외력을 가하거나, 장시간 경과하거나 또는 보관장소가 좋지 않은 경우에는 층간 박리현상이 발생하는 문제가 있었다. 또한 접착층의 부착과정에서 불량률이 지나치게 높아질 뿐만 아니라 접착층의 형성으로 인하여 광원에 대한 상쇄간섭이 발생하는 문제가 있었다.2 is a cross-sectional view of a conventional multilayer reflective polarizer (DBEF). Specifically, the multilayer reflective polarizer has skin layers 9 and 10 formed on both surfaces of the core layer 8. The core layer 8 is divided into four groups (1, 2, 3, 4), each group having an isotropic layer and an anisotropic layer alternately stacked to form approximately 200 layers. On the other hand, between the four groups (1, 2, 3, 4) forming the core layer (8) is formed a separate adhesive layer (5, 6, 7) for bonding them. In addition, since each group has a very thin thickness of about 200 layers, each group may be damaged when co-extrusion of these groups individually, so the groups often include a protective layer (PBL). In this case, there is a problem that the thickness of the core layer becomes thick and the manufacturing cost increases. In addition, since the reflective polarizer included in the display panel has a limitation on the thickness of the core layer for slimming, when the adhesive layer is formed on the core layer and / or the skin layer, the core layer is reduced by the thickness thereof, which is very good for improving optical properties. There was no problem. Furthermore, since the inside of the core layer and the core layer and the skin layer are bonded by an adhesive layer, there is a problem in that an interlayer peeling phenomenon occurs when an external force is applied, when a long time passes, or when the storage location is poor. In addition, in the process of attaching the adhesive layer, not only the defect rate is excessively high but also there is a problem in that offset interference with the light source occurs due to the formation of the adhesive layer.
상기 코어층(8)의 양면에 스킨층(9, 10)이 형성되며, 상기 코어층(8)과 스킨층(9, 10) 사이에 이들을 결합하기 위하여 별도의 접착층(11, 12)이 형성된다. 종래의 폴리카보네이트 재질의 스킨층과 PEN-coPEN이 교호적층된 코어층과 공압출을 통해 일체화하는 경우 상용성 부재로 인하여 박리가 일어날 수 있으며, 결정화도 15% 내외로 인하여 연신 공정 수행시 신장축에 대한 복굴절 발생 위험성이 높다. 이에따라 무연신 공정의 폴리카보네이트 시트를 적용하기 위해서 접착층을 형성할 수 밖에 없었다. 그 결과 접착층 공정의 추가로 인하여 외부 이물 및 공정 불량 발생에 따른 수율 감소가 나타나며, 통상적으로 스킨층의 폴리카보네이트 무연신 시트를 생산시에는 와인딩 공정으로 인한 불균일한 전단 압력에 의한 복굴절 발생이 나타나 이를 보완하기 위한 폴리머 분자구조 변형 및 압출라인의 속도 제어 등의 별도의 제어가 요구되어 생산성 저하 요인이 발생되었다. Skin layers 9 and 10 are formed on both sides of the core layer 8, and separate adhesive layers 11 and 12 are formed to couple them between the core layer 8 and the skin layers 9 and 10. do. In case of integrating the conventional polycarbonate skin layer and PEN-coPEN by alternatingly laminated core layer through co-extrusion, peeling may occur due to incompatibility, and the crystallization degree is about 15%. There is a high risk of birefringence. Accordingly, in order to apply the polycarbonate sheet of the non-stretching process, there was no choice but to form an adhesive layer. As a result, the addition of the adhesive layer process results in a decrease in yield due to external foreign matters and process defects. In general, when the polycarbonate non-stretched sheet of the skin layer is produced, birefringence occurs due to uneven shear pressure due to the winding process. In order to compensate, a separate control such as deformation of the polymer molecular structure and speed control of the extrusion line were required, resulting in a decrease in productivity.
상기 종래의 다층 반사형 편광자의 제조방법을 간단히 설명하면, 코어층을 형성하는 평균 광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤, 다시 4개의 공압출된 4개의 그룹을 연신한 후, 연신된 4개의 그룹을 접착제로 접착하여 코어층을 제작한다. 왜냐하면 접착제 접착후 코어층을 연신하면 박리현상이 발생하기 때문이다. 이후, 코어층의 양면에 스킨층을 접착하게 된다. 결국 다층구조를 만들기 위해서는 2층구조를 접어서 4층구조를 만들고 연속해서 접는 방식의 다층구조를 만드는 공정을 통해 하나의 그룹(209층)을 형성하고 이를 공압출하므로 두께 변화를 줄 수 없어 하나의 공정에서 다층내부에 그룹을 형성하기 어려웠다. 그 결과 평균광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤 이를 접착할 수 밖에 없는 실정이다.Briefly describing the conventional method of manufacturing a multilayer reflective polarizer, after co-extracting four groups having different average optical thicknesses for forming the core layer separately, the four co-extruded groups are stretched and then stretched. The four groups were glued together to form a core layer. This is because peeling phenomenon occurs when the core layer is stretched after adhesive bonding. Thereafter, the skin layer is adhered to both surfaces of the core layer. After all, in order to make a multi-layered structure, a group of 209 layers is formed through the process of folding a 2-layered structure to form a 4-layered structure and a continuous folding type of multi-layered structure. It was difficult to form groups inside the multilayer in the process. As a result, four groups having different average optical thicknesses can be co-extruded separately and then bonded to each other.
상술한 공정은 단속적으로 이루어지므로 제작단가의 현저한 상승을 불러왔으며, 그 결과 백라이트 유닛에 포함되는 모든 광학필름들 중 원가가 가장 비싼 문제가 있었다. 이에 따라, 원가절감의 차원에서 휘도저하를 감소하고서라도 반사형 편광자를 제외한 액정 디스플레이가 빈번하게 출시되는 심각한 문제가 발생하였다.Since the above-described process is performed intermittently, the production cost has been increased, and as a result, there is a problem that the cost is the most expensive among all the optical films included in the backlight unit. Accordingly, there has been a serious problem in that a liquid crystal display is often released except for a reflective polarizer even though the luminance decrease in terms of cost reduction.
이에, 다층 반사형 편광자가 아닌 기재 내부에 길이방향으로 신장된 복굴절성 폴리머를 배열하여 반사형 편광자의 기능을 달성할 수 있는 중합체가 분산된 반사편광자가 제안되었다. 도 3은 봉상형 폴리머를 포함하는 반사형 편광자(20)의 사시도로서, 기재(21) 내부에 길이방향으로 신장된 복굴절성 폴리머(22)가 일방향으로 배열되어 있다. 이를 통해 기재(21)와 복굴절성 폴리머(22) 간의 복굴절성 계면에 의하여 광변조 효과를 유발하여 반사형 편광자의 기능을 수행할 수 있게 되는 것이다. 그러나, 상술한 교호적층된 반사형 편광자에 비하여 가시광선 전체 파장영역의 광을 반사하기 어려워 광변조 효율이 너무나도 떨어지는 문제가 발생하였다. 이에, 교호적층된 반사 편광자와 비슷한 투과율 및 반사율을 가지기 위해서는 기재 내부에 지나치게 많은 수의 복굴절성 폴리머(22)를 배치하여야 하는 문제가 있었다. 구체적으로 반사형 편광자의 수직단면을 기준으로 가로 32인치 디스플레이 패널을 제조하는 경우 가로 1580 ㎜이고 높이(두께) 400㎛ 이하인 기재(21) 내부에 상술한 적층형 반사 편광자와 유사한 광학 물성을 가지기 위해서는 상기 길이방향의 단면직경이 0.1 ~ 0.3㎛인 원형 또는 타원형의 복굴절성 폴리머(22)가 최소 1억개 이상 포함되어야 하는데, 이 경우 생산비용이 지나치게 많아질 뿐 아니라, 설비가 지나치게 복잡해지고 또한 이를 생산하는 설비를 제작하는 것 자체가 거의 불가능하여 상용화되기 어려운 문제가 있었다. 또한, 시트 내부에 포함되는 복굴절성 폴리머(22)의 광학적 두께를 다양하게 구성하기 어려우므로 가시광선 전체 영역의 광을 반사하기 어려워 물성이 감소하는 문제가 있었다.Accordingly, a reflective polarizer in which a polymer capable of achieving the function of the reflective polarizer by dispersing a birefringent polymer extending in the longitudinal direction inside the substrate rather than the multilayer reflective polarizer has been proposed. 3 is a perspective view of a reflective polarizer 20 including a rod-shaped polymer, in which the birefringent polymer 22 extending in the longitudinal direction is arranged in one direction in the substrate 21. Through this, the birefringent interface between the substrate 21 and the birefringent polymer 22 causes the light modulation effect to perform the function of the reflective polarizer. However, as compared with the above-described alternately stacked reflective polarizers, it is difficult to reflect light in the entire visible light wavelength region, resulting in a problem that the light modulation efficiency is too low. Thus, in order to have a transmittance and reflectance similar to that of the alternating reflective polarizers, there is a problem in that a large number of birefringent polymers 22 must be disposed inside the substrate. Specifically, in the case of manufacturing a horizontal 32-inch display panel based on the vertical cross section of the reflective polarizer, in order to have optical properties similar to those of the stacked reflective polarizer described above in the substrate 21 having a width of 1580 mm and a height (thickness) of 400 μm or less, At least 100 million circular or elliptical birefringent polymers 22 having a cross-sectional diameter in the longitudinal direction of 0.1 to 0.3 μm should be included. In this case, not only the production cost is excessively high, but also the equipment becomes too complicated and There was a problem that it is difficult to commercialize the facility itself is almost impossible. In addition, since the optical thickness of the birefringent polymer 22 included in the sheet is difficult to be configured in various ways, it is difficult to reflect the light in the entire visible light region, thereby reducing the physical properties.
이를 극복하기 위하여 기재 내부에 복굴절성 해도사를 포함하는 기술적 사상이 제안되었다. 도 4는 기재내부에 포함되는 복굴절성 해도사의 단면도로서, 상기 복굴절성 해도사는 내부의 도부분과 해부분의 광변조 계면에서 광변조 효과를 발생시킬 수 있으므로, 상술한 복굴절성 폴리머와 같이 매우 많은 수의 해도사를 배치하지 않더라도 광학물성을 달성할 수 있다. 그러나, 복굴절성 해도사는 섬유이므로 폴리머인 기재와의 상용성, 취급용이성, 밀착성의 문제가 발생하였다. 나아가, 원형 형상으로 인하여 광산란이 유도되어 가시광선 영역의 광파장에 대한 반사편광 효율이 저하되어, 기존 제품 대비 편광특성이 저하되어 휘도 향상 한계가 있었으며, 더불어 해도사의 경우 도접합 현상 줄이면서, 해성분 영역이 세분화 되므로 공극 발생으로 인하여 빛샘 즉 광 손실현상으로 인한 광특성 저하 요인이 발생되었다. 또한 직물 형태로 조직 구성으로 인하여 레이어 구성의 한계로 인하여 반사 및 편광 특성 향상에 한계점이 발생되는 문제가 있었다. In order to overcome this problem, a technical idea including a birefringent island-in-the-sea yarn has been proposed. FIG. 4 is a cross-sectional view of a birefringent island-in-the-sea yarn included in the substrate, and the birefringent island-in-the-sea yarn may generate a light modulation effect at an optical modulation interface between the inner and sea portions of the inner portion, and thus, a very large number such as the birefringent polymer described above. Optical properties can be achieved even if the island-in-the-sea yarns are not disposed. However, since the birefringent island-in-the-sea yarn is a fiber, problems of compatibility, ease of handling, and adhesion with a substrate which is a polymer have arisen. Furthermore, due to the circular shape, light scattering is induced, and thus the reflection polarization efficiency of the visible wavelength is reduced, and the polarization characteristic is lowered compared to the existing products, thereby limiting the luminance improvement. As the area is subdivided, the voids cause the optical leakage due to light leakage, that is, light loss. In addition, there is a problem that a limitation occurs in the reflection and polarization characteristics due to the limitation of the layer configuration due to the organization of tissue in the form of a fabric.
발명은 상술한 문제를 해결하기 위해 안출된 것으로, 본 발명의 첫번째 과제는 종래의 중합체가 분산된 반사편광자에 대하여 광학물성을 현저하게 향상된 중합체가 분산된 반사 편광자를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and the first object of the present invention is to provide a reflective polarizer in which a polymer is significantly improved in optical properties with respect to a reflective polarizer in which a conventional polymer is dispersed.
본 발명의 두번째 과제는 코어층의 내부의 각 그룹들 사이 및 코어층과 스킨층 사이에 별도의 접착층이 형성되지 않고 일체화되어 제조할 수 있는 중합체가 분산된 반사 편광자를 제공하는 것이다. A second object of the present invention is to provide a reflective polarizer in which a polymer is dispersed, which can be manufactured integrally without forming a separate adhesive layer between each group inside the core layer and between the core layer and the skin layer.
상기 과제를 해결하기 위하여 본 발명의 중합체가 분산된 반사 편광자는 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 기재 내부에 분산된 복수의 판상형 중합체를 포함하며, 상기 복수의 판상형 중합체는 상기 기재와 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 기재는 적어도 하나의 축방향으로 신장되며, 상기 복수의 판상형 중합체는 각각 원하는 파장의 횡파(S파)를 반사하기 위하여 그룹을 형성하며, 상기 그룹은 복수개가 형성되며, 그룹간 판상형 중합체들의 평균 광학적 두께가 상이한 코어층 및 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함한다. In order to solve the above problems, the reflective polarizer in which the polymer of the present invention is dispersed includes a plurality of plate-shaped polymers dispersed in the substrate to transmit the first polarized light irradiated from the outside and reflect the second polarized light. The plate-shaped polymer has a refractive index different from the substrate in at least one axial direction, the substrate is elongated in at least one axial direction, and the plurality of plate-shaped polymers each form a group to reflect a shear wave (S wave) of a desired wavelength. A plurality of groups are formed, and the group includes a core layer having a different average optical thickness of the plate-shaped polymers between groups and a skin layer integrally formed on at least one surface of the core layer.
본 발명의 바람직한 일실시예에 따르면, 상기 제1 편광은 종파이고, 상기 제2 편광은 횡파일 수 있다.According to a preferred embodiment of the present invention, the first polarization may be longitudinal, and the second polarization may be transverse.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 기재는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI), 엘라스토머 및 사이크로올레핀폴리머 중 어느 하나 이상일 수 있다. According to another preferred embodiment of the present invention, the substrate is polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) Earl Roy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS) , Polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol And at least one of epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), elastomer and cycloolefin polymer.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 중합체는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI), 엘라스토머 및 사이크로올레핀폴리머 중 어느 하나 이상일 수 있다. According to another preferred embodiment of the present invention, the polymer is polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) Alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS ), Polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), It may be one or more of phenol, epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), elastomer and cycloolefin polymer.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 기재와 중합체의 굴절율의 차이는 신장된 축방향의 굴절율의 차이가 다른 축방향의 굴절율의 차이보다 클 수 있다. According to another preferred embodiment of the present invention, the difference in the refractive index of the substrate and the polymer may be greater than the difference in the refractive index of the extended axial direction of the other axial refractive index.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 기재와 중합체의 굴절율은 2개의 축 방향에 대한 굴절율의 차이가 0.05 이하이고, 나머지 1개의 축방향에 대한 굴절율의 차이가 0.1 이상일 수 있다.According to another preferred embodiment of the present invention, the refractive index of the substrate and the polymer may have a difference in refractive index of 0.05 or less in two axial directions and a difference in refractive index of the other one axial direction of 0.1 or more.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 중합체는 길이방향으로 신장될 수 있다. According to another preferred embodiment of the present invention, the polymer may be elongated in the longitudinal direction.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수의 중합체는 3개의 파장대역의 광을 반사하기 위하여 3개의 그룹을 형성할 수 있다. According to another preferred embodiment of the present invention, the plurality of polymers may form three groups to reflect light of three wavelength bands.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수의 중합체는 4개의 파장대역의 광을 반사하기 위하여 4개의 그룹을 형성할 수 있다. According to another preferred embodiment of the present invention, the plurality of polymers may form four groups to reflect light in four wavelength bands.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 중합체의 광학적 두께는 원하는 광파장(λ)의 1/4 일 수 있다. According to another preferred embodiment of the present invention, the optical thickness of the polymer may be 1/4 of the desired light wavelength (λ).
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 원하는 파장은 가시광선 대역을 포함할 수 있다. According to another preferred embodiment of the present invention, the desired wavelength may include a visible light band.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 동일한 그룹에 포함된 중합체들의 광학적 두께는 평균 광학적 두께 대비 30% 이내의 두께편차를 가질 수 있다. According to another preferred embodiment of the present invention, the optical thickness of the polymers included in the same group may have a thickness deviation within 30% of the average optical thickness.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 동일한 그룹에 포함된 중합체들의 광학적 두께는 평균 광학적 두께 대비 20% 이내의 두께편차를 가질 수 있다. According to another preferred embodiment of the present invention, the optical thickness of the polymers included in the same group may have a thickness deviation within 20% of the average optical thickness.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 동일한 그룹에 포함된 중합체들의 광학적 두께는 평균 광학적 두께 대비 15% 이내의 두께편차를 가질 수 있다. According to another preferred embodiment of the present invention, the optical thickness of the polymers included in the same group may have a thickness deviation within 15% of the average optical thickness.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 3개의 반사대역은 450nm, 550nm 및 650nm의 파장대역을 포함할 수 있다. According to another preferred embodiment of the present invention, the three reflection bands may include a wavelength band of 450nm, 550nm and 650nm.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 4개의 반사대역은 350nm, 450nm, 550nm 및 650nm의 파장대역을 포함할 수 있다. According to another preferred embodiment of the present invention, the four reflection bands may include a wavelength band of 350nm, 450nm, 550nm and 650nm.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수개의 그룹들은 중합체들의 평균 광학적 두께가 5% 이상, 보다 바람직하게는 10% 이상 상이할 수 있다.  According to another preferred embodiment of the present invention, the plurality of groups may differ from the average optical thickness of the polymers of at least 5%, more preferably at least 10%.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수의 중합체중 상기 종횡비를 만족하는 중합체가 50% 이상일 수 있다.  According to another preferred embodiment of the present invention, the polymer satisfying the aspect ratio of the plurality of polymers may be 50% or more.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수개의 그룹은 중합체의 길이방향의 단면을 기준으로 복수개의 이격된 레이어를 형성할 수 있다. According to another preferred embodiment of the present invention, the plurality of groups may form a plurality of spaced apart layers based on the longitudinal cross section of the polymer.
본 발명의 바람직한 또 다른 일실시예에 따르면, 하나의 그룹에 포함된 복수개의 중합체는 서로 이격되어 배치되고 중합체의 길이방향의 단면을 기준으로 적어도 25개 이상 보다 바람직하게는 50게 이상의 이격된 레이어를 형성할 수 있다. According to another preferred embodiment of the present invention, the plurality of polymers included in one group are arranged spaced apart from each other and at least 25 or more and more preferably 50 or more spaced layers based on the longitudinal cross section of the polymer. Can be formed.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 판상형 중합체는 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 종횡비가 1/1000 이하, 1/2000이하, 1/3000 이하, 1/5000 이하, 1/10000 이하, 1/20000 또는 1/30000 이하일 수 있다. According to another preferred embodiment of the present invention, the plate-shaped polymer has an aspect ratio of the short axis length to the long axis length based on the vertical section in the longitudinal direction of 1/1000 or less, 1/2000 or less, 1/3000 or less, 1 / It may be 5000 or less, 1/10000 or less, 1/20000 or 1/30000 or less.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 중합체와 기재간에 복굴절 계면이 형성될 수 있다. According to another preferred embodiment of the present invention, a birefringent interface may be formed between the polymer and the substrate.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 중합체는 광학적 복굴절성을 가지며, 상기 기재는 광학적 등방성일 수 있다. According to another preferred embodiment of the present invention, the polymer has optical birefringence, and the substrate may be optically isotropic.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 그룹과 그룹사이 및/또는 코어층과 스킨층 사이에 접착층이 형성되지 않을 수 있다. According to another preferred embodiment of the present invention, an adhesive layer may not be formed between the group and the group and / or between the core layer and the skin layer.
이하, 본 명세서에서 사용된 용어에 대해 간략히 설명한다. Hereinafter, the terms used in the present specification will be briefly described.
'중합체가 복굴절성을 가진다'는 의미는 방향에 따라 굴절률이 다른 섬유에 빛을 조사하는 경우 중합체에 입사한 빛이 방향이 다른 두 개의 빛 이상으로 굴절된다는 것이다. "Polymers have birefringence" means that when light is irradiated on fibers with different refractive indices, the light incident on the polymer is refracted by two or more lights with different directions.
'등방성'이라 함은 빛이 물체를 통과할 때, 방향에 상관없이 굴절률이 일정한 것을 의미한다. 'Isotropic' means that when light passes through an object, the refractive index is constant regardless of the direction.
'이방성'이라 함은 빛의 방향에 따라 물체의 광학적 성질이 다른 것으로 이방성 물체는 복굴절성을 가지며 등방성에 대응된다. 'Anisotropy' means that the optical properties of an object are different depending on the direction of light. Anisotropic objects have birefringence and correspond to isotropy.
'광변조'라 함은 조사된 빛이 반사, 굴절, 산란하거나 빛의 세기, 파동의 주기 또는 빛의 성질이 변화하는 것을 의미한다. 'Light modulation' means that the irradiated light is reflected, refracted, scattered, or the intensity of the light, the period of the wave, or the nature of the light is changed.
'종횡비'라 함은 신장체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 비를 의미한다. 'Aspect ratio' means the ratio of the short axis length to the long axis length based on the vertical section in the longitudinal direction of the elongated body.
본 발명의 반사형 편광자는 평균 광학적 두께가 상이한 복수개의 그룹들이 일체로 형성되므로 코어층 내부 및 코어층과 스킨층 사이에 별도의 접착층 및/또는 보호층(PBL)이 포함되지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다. 또한 평균광학적 두께가 상이한 복수개의 그룹이 형성되므로 가시광선 파장영역의 S파를 모두 반사할 수 있다.Since the reflective polarizer of the present invention is formed integrally with a plurality of groups having different average optical thicknesses, a separate adhesive layer and / or protective layer PBL is not included in the core layer and between the core layer and the skin layer. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness. In addition, since a plurality of groups having different average optical thicknesses are formed, all S waves in the visible light wavelength region can be reflected.
나아가, 기재 내부의 중합체가 판상형을 가지므로 종래의 복굴절성 폴리머를 포함하는 반사형 편광자에 비하여 동일한 면적대비 매우 적은 수의 복굴절성 폴리머를 포함하는 경우에도 매우 우수한 광학물성을 달성할 수 있다. Furthermore, since the polymer inside the substrate has a plate-like shape, it is possible to achieve very excellent optical properties even when the bipolar birefringent polymer contains a very small number of the same area compared to the reflective polarizer including the conventional birefringent polymer.
도 1은 종래의 반사형 편광자의 원리를 설명하는 개략도이다.1 is a schematic diagram illustrating the principle of a conventional reflective polarizer.
도 2는 현재 사용되고 있는 다층 반사형 편광자(DBEF)의 단면도이다.2 is a cross-sectional view of a multilayer reflective polarizer (DBEF) currently in use.
도 3은 봉상형 폴리머를 포함하는 반사형 편광자의 사시도이다.3 is a perspective view of a reflective polarizer comprising a rod-shaped polymer.
도 4는 반사형 편광자에 사용되는 복굴절성 해도사에 입사한 광의 경로를 도시한 단면도이다.4 is a cross-sectional view showing a path of light incident on a birefringent island-in-the-sea yarn used in a reflective polarizer.
도 5는 본 발명의 바람직한 일실시예에 따른 반사형 편광자의 단면도이다.5 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention.
도 6은 본 발명의 바람직한 다른 일실시예에 따른 반사형 편광자의 단면도이다.6 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention.
도 7은 본 발명의 바람직한 또 다른 일실시예에 따른 반사형 편광자의 단면도이다.7 is a cross-sectional view of a reflective polarizer according to another preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 일실시예에 따른 반사형 편광자의 사시도이다.8 is a perspective view of a reflective polarizer according to an exemplary embodiment of the present invention.
도 9는 본 발명의 바람직한 일실시예에 따른 판상형 중합체의 단면도이다.9 is a cross-sectional view of a plate-like polymer according to an embodiment of the present invention.
도 10 및 도 11은 본 발명에 사용될 수 있는 해도(sea-island)형 압출구금의 구금분배판들의 결합구조를 내타낸 사시도이다.10 and 11 are perspective views showing the coupling structure of the distribution plate of the sea-island extrusion mold that can be used in the present invention.
도 12는 본 발명의 바람직한 다른 일실시예에 따른 구금분배판의 단면도이다.12 is a cross-sectional view of the distribution plate according to another preferred embodiment of the present invention.
도 13 및 도 14는 본 발명의 바람직한 일실시예에 따른 구금분배판의 도성분 공급로의 배열을 상세히 나타낸 단면도이다.13 and 14 are cross-sectional views showing in detail the arrangement of the island component supply path of the detention distribution plate according to an embodiment of the present invention.
도 15 및 도 16은 본 발명에 사용될 수 있는 해도형(sea-island type) 압출구금의 구금분배판들의 결합구조를 내타낸 사시도이다.15 and 16 are perspective views showing the coupling structure of the distribution plate of the sea-island type extrusion mold that can be used in the present invention.
도 17은 본 발명의 바람직한 일실시예에 따른 복수개의 해도형 압출구금을 나타내는 도면이다.17 is a view showing a plurality of islands-in-the-sea extrusion molds according to an embodiment of the present invention.
도 18은 본 발명의 바람직한 일실시예에 따른 2개의 해도형 복합류를 형성하기 위하여 제1 가압수단을 포함하는 개략도이다. 18 is a schematic view including first pressurizing means to form two islands-in-the-sea composite flows in accordance with one preferred embodiment of the present invention.
도 19는 본 발명의 바람직한 일실시예에 따른 2개의 해도형 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도이다. 19 is a schematic diagram comprising two second pressurizing means to form two islands-in-the-sea composite flow according to one preferred embodiment of the present invention.
도 20은 본 발명의 바람직한 일실시예에 따른 2개의 해도형 복합류를 형성하기 위하여 하나의 제2 가압수단을 포함하는 개략도이다. 20 is a schematic view including one second pressurizing means to form two islands-in-the-sea composite flow according to one preferred embodiment of the present invention.
도 21은 본 발명의 바람직한 일실시예에 따른 해도형 복합류의 합지부를 나타내는 개략도이다.21 is a schematic view showing the lamination of the island-in-the-sea composite products according to one preferred embodiment of the present invention.
도 22는 본 발명의 바람직한 일실시예에 따른 코트-행거 다이의 단면도이며, 도 23은 측면도이다.Figure 22 is a cross sectional view of a coat-hanger die in accordance with a preferred embodiment of the present invention, and Figure 23 is a side view.
도 24는 본 발명의 바람직한 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다.24 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to a preferred embodiment of the present invention.
도 25는 본 발명의 바람직한 다른 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다.25 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention.
도 26은 본 발명의 바람직한 또 다른 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다.26 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another preferred embodiment of the present invention.
도 27은 본 발명의 반사형 편광자를 포함하는 액정표시장치의 분해사시도이다.27 is an exploded perspective view of a liquid crystal display including the reflective polarizer of the present invention.
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings the present invention will be described in more detail.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 중합체가 분산된 반사형 편광자는 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 기재 내부에 분산된 복수의 판상형 중합체를 포함하며, 상기 복수의 판상형 중합체는 상기 기재와 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 기재는 적어도 하나의 축방향으로 신장되며, 상기 복수의 판상형 중합체는 각각 원하는 파장의 횡파(S파)를 반사하기 위하여 그룹을 형성하며, 상기 그룹은 복수개가 형성되며, 그룹간 판상형 중합체들의 평균 광학적 두께가 상이한 코어층 및 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함한다.According to a preferred embodiment of the present invention, the reflective polarizer in which the polymer of the present invention is dispersed includes a plurality of plate-shaped polymers dispersed in the substrate in order to transmit the first polarized light emitted from the outside and reflect the second polarized light. Wherein the plurality of plate-shaped polymers have a refractive index different from the substrate in at least one axial direction, the substrate extends in at least one axial direction, and each of the plurality of plate-shaped polymers has a shear wave (S wave) of a desired wavelength. A group is formed to reflect, and a plurality of groups are formed, and the group includes a core layer having a different average optical thickness of the plate-shaped polymers between groups and a skin layer integrally formed on at least one surface of the core layer.
도 5는 본 발명의 바람직한 일실시예에 따른 반사형 편광자의 단면도이다. 구체적으로 코어층(180)의 양면에 스킨층(186, 187)이 형성되고, 상기 코어층(180)은 2개의 그룹(A, B)로 구획된다. 도면에서 그룹 A와 B를 구획하는 점선은 가상의 선을 의미하는 것이다. 그룹 A에 포함된 제1 성분인 판상형 중합체(181, 182)들의 평균 광학적 두께와 그룹 B에 포함된 제1 성분인 판상형 중합체(183, 184)들의 평균 광학적 두께가 상이하다. 이를 통해 서로 다른 광의 파장영역을 반사할 수 있게 되는 것이다. 5 is a cross-sectional view of a reflective polarizer according to an exemplary embodiment of the present invention. Specifically, skin layers 186 and 187 are formed on both surfaces of the core layer 180, and the core layer 180 is divided into two groups A and B. In the drawing, a dotted line dividing groups A and B means an imaginary line. The average optical thickness of the plate-shaped polymers 181 and 182 as the first component included in group A and the average optical thickness of the plate-shaped polymers 183 and 184 as the first component included in the group B are different. Through this, it is possible to reflect the wavelength range of different light.
또한, 그룹 A에 포함된 제1 성분인 판상형 중합체(181, 182)들의 광학적 두께는 그룹 A의 평균 광학적 두께를 기준으로 30% 이내, 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내의 광학적 두께편차를 가질 수 있다. 여기에서 광학적 두께(optical thickness)는 n(굴절율) × d(물리적 두께)를 의미한다. 한편 빛의 파장과 광학적 두께는 하기 관계식 1에 따라 정의된다.In addition, the optical thickness of the plate-shaped polymers 181 and 182 as the first component included in the group A is within 30%, preferably within 20%, more preferably within 15% based on the average optical thickness of the group A. It may have an optical thickness deviation. In this case, the optical thickness means n (refractive index) x d (physical thickness). Meanwhile, the wavelength and the optical thickness of the light are defined according to the following Equation 1.
[관계식 1][Relationship 1]
λ= 4nd λ = 4nd
단 λ는 빛의 파장(nm), n은 굴절율, d는 물리적 두께(nm)Where λ is the wavelength of light (nm), n is the refractive index, and d is the physical thickness (nm)
그러므로, 그룹 A의 평균 광학적 두께가 100㎚라면 관계식 1에 의하여 400㎚ 파장의 횡파(S파)를 반사시킬 수 있는 것이다. 이 경우 두께 편차가 20%라면 대략 320 ~ 480㎚ 파장대역을 커버할 수 있다. 만일 그룹 B의 판상형 중합체들(233, 234)의 평균 광학적 두께가 130㎚라면 관계식 1에 의하여 520㎚ 파장의 횡파(S파)를 반사시킬 수 있으며, 두께편차가 20%라면 대략 420 ~ 620㎚ 파장대역을 커버할 수 있으며 이 경우 그룹 A의 파장대역과 일부 중첩될 수 있어 이를 통해 광변조 효과를 극대화할 수 있다. 또한, 제1 성분인 판상형 중합체가 광학적 복굴절성을 갖는 경우 P파는 투과하고 S파는 반사시켜야 하므로 빛이 통과하는 두께방향(z축 굴절율)을 기준으로 굴절율(n)을 설정하고 평균 광학적 두께를 산정할 수 있다. Therefore, if the average optical thickness of the group A is 100 nm, the transverse wave (S wave) of 400 nm wavelength can be reflected by the relational formula (1). In this case, if the thickness variation is 20%, the wavelength band may cover approximately 320 to 480 nm. If the average optical thickness of the plate-shaped polymers 233 and 234 of group B is 130 nm, the transverse wave (S wave) of 520 nm wavelength can be reflected by Equation 1, and if the thickness deviation is 20%, it is approximately 420 to 620 nm. The wavelength band may be covered, and in this case, the wavelength band may partially overlap with the wavelength band of group A, thereby maximizing light modulation effects. In addition, when the plate-like polymer, which is the first component, has optical birefringence, P waves must be transmitted and S waves must be reflected, so that the refractive index n is set based on the thickness direction (z-axis refractive index) through which light passes, and the average optical thickness is calculated. can do.
한편, 그룹 A 및 그룹 B 내부의 중합체간 거리의 최대값이 그룹 A와 B 사이의 판상형 중합체간 거리의 최대값보다 작을 수 있다. 구체적으로 그룹 A의 판상형 중합체간 거리의 최대값 d1 및 그룹 B의 중합체간 거리의 최대값 d2는 그룹 A와 B 사이의 중합체간 거리의 최대값 d3 보다 작다. 다시 말해 동일그룹 내에서 판상형 중합체간의 간격이 인접한 그룹사이의 중합체간 거리보다 작을 수 있으며 이를 통해 그룹간 접착층이 형성되지 않아도 그룹간 일체로 형성될 수 있는 것이다.On the other hand, the maximum value of the distance between the polymers in the groups A and B may be smaller than the maximum value of the distance between the plate-shaped polymers between the groups A and B. Specifically, the maximum value d 1 of the distance between the plate-shaped polymers of group A and the maximum value d 2 of the distance between polymers of group B are smaller than the maximum value d 3 of the distance between polymers of groups A and B. In other words, the spacing between the plate-shaped polymers in the same group may be smaller than the distance between polymers between adjacent groups, and thus may be integrally formed between groups even without forming an adhesive layer between groups.
또한 코어층 내부에 분산된 중합체들은 서로간에 이격 공간을 가지면서 복수의 레이어를 형성한다. 이 경우 하나의 그룹 내부에서 판상형 중합체들이 형성하는 레이어의 개수는 25개 이상일 수 있으며, 바람직하게는 50개 이상, 더욱 바람직하게는 100개 이상, 가장 바람직하게는 150개 이상, 200개 이상일 수 있다. In addition, the polymers dispersed in the core layer form a plurality of layers having a space between them. In this case, the number of layers formed by the plate-like polymers in one group may be 25 or more, preferably 50 or more, more preferably 100 or more, most preferably 150 or more, or 200 or more. .
한편, 그룹과 그룹 사이에 접착층이 없이 일체로 형성된다. 또한 코어층과 스킨층 사이에도 일체로 형성된다. 그 결과 접착층으로 인한 광학물성의 저하를 방지할 수 있을 뿐만 아니라 한정된 두께에 보다 많은 층을 부가할 수 있어 광학물성을 현저하게 개선시킬 수 있다. 나아가, 스킨층은 코어층과 동시에 제조된 후 연신공정이 수행되므로 종래의 코어층 연신 후 미연신 스킨층과의 접착과는 달리 본 발명의 스킨층은 적어도 하나의 축방향으로 연신될 수 있다. 이를 통해 미연신 스킨층에 비하여 표면경도가 향상되어 내스크래치성이 개선되며 내열성이 향상될 수 있다.On the other hand, there is no adhesive layer between the group and the group is formed integrally. It is also integrally formed between the core layer and the skin layer. As a result, the deterioration of the optical properties due to the adhesive layer can be prevented, and more layers can be added to the limited thickness, thereby significantly improving the optical properties. Furthermore, since the skin layer is manufactured at the same time as the core layer and then the stretching process is performed, the skin layer of the present invention can be stretched in at least one axial direction, unlike the conventional core layer stretching, after the stretching with the unstretched skin layer. As a result, the surface hardness is improved compared to the unstretched skin layer, thereby improving scratch resistance and heat resistance.
도 6은 본 발명의 바람직한 다른 일실시예에 따른 반사형 편광자의 단면도이다. 이를 상기 도 5와의 차이점을 중심으로 설명하면 코어층 내부에 평균 광학적 두께가 상이한 3개 그룹들(A, B, C)이 형성되며, 그룹 A, B, C 내부의 판상형 중합체간 거리의 최대값이 그룹 A, B, C 사이의 중합체간 거리의 최대값보다 작을 수 있다. 6 is a cross-sectional view of a reflective polarizer according to another exemplary embodiment of the present invention. Referring to the difference from FIG. 5, three groups A, B, and C having different average optical thicknesses are formed inside the core layer, and the maximum value of the distance between the plate-shaped polymers within the groups A, B, and C is formed. This may be less than the maximum value of the interpolymer distance between groups A, B and C.
도 7은 본 발명의 바람직한 또 다른 일실시예에 따른 반사형 편광자의 단면도이다. 구체적으로 코어층은 4개의 그룹들이 형성되며, 각각의 그룹들은 각각 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역을 커버하기 위하여 평균 광학적 두께가 조절될 수 있다. 이 경우 코어층의 외곽층은 평균 광학적 두께가 큰 그룹들이 형성되며, 내부층에 평균 광학적 두께가 작은 그룹들이 형성될 수 있다. 한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 중합체들의 평균 광학적 두께가 결정되어야 한다. 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역에 대응하도록 코어층 내부의 그룹별 제1 성분의 평균 광학적 두께를 설정하려면 그룹간의 중합체들의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다.7 is a cross-sectional view of a reflective polarizer according to another preferred embodiment of the present invention. Specifically, the core layer is formed of four groups, each group may be adjusted the average optical thickness to cover the optical wavelength band of 350nm, 450nm, 550nm and 650nm, respectively. In this case, the outer layer of the core layer may have groups having a large average optical thickness, and the groups having a small average optical thickness may be formed in the inner layer. Meanwhile, in order to cover the entire visible light region, the average optical thickness of the polymers must be determined to correspond to various light wavelengths. To set the average optical thickness of the first component of each group within the core layer to correspond to the optical wavelength bands of 350 nm, 450 nm, 550 nm and 650 nm, the average optical thickness of the polymers between the groups may differ by at least 5% or more. More preferably, it may differ by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
한편, 동일한 그룹 내부의 일정 면적내의 판상형 중합체들의 면적이 그룹간 일정 면적내의 판상형 중합체들의 면적보다 클 수 있다. 구체적으로 그룹 A 내부의 일정면적 S1 및 그룹 B 내부의 일정면적 S2 에서의 중합체들의 밀도가 그룹 A와 그룹 B 사이의 일정면적 S3 보다 크다. 다시 말해, 동일그룹 내부의 단위면적당 (㎛2) 판상형 중합체가 차지하는 면적은 그룹과 그룹사이 영역에서 단위면적당 (㎛2) 판상형 중합체가 차지하는 면적보다 큰 것이다.On the other hand, the area of the plate-shaped polymers in a certain area within the same group may be larger than the area of the plate-shaped polymers in a certain area between groups. Specifically, the density of the polymers in the constant area S 1 inside the group A and the constant area S 2 inside the group B is greater than the constant area S 3 between the group A and the group B. In other words, the area occupied by (μm 2 ) plate-shaped polymers per unit area in the same group is larger than the area occupied by (μm 2 ) plate-shaped polymers per unit area in the group and between groups.
도 8은 본 발명의 바람직한 일실시예에 따른 반사형 편광자의 사시도로서, 제2 성분(210)의 내부에 복수개의 판상형 중합체(211)가 길이방향으로 신장되어 있고 단면은 판상형이다. 이 경우 상기 판상형 중합체(211)는 각각 다양한 방향으로 신장될 수 있지만, 바람직하게는 어느 일 방향으로 평행하여 신장되는 것이 유리하며, 보다 바람직하게는 외부광원에서 조사되는 광에 수직하는 방향으로 신장체간에 평행하게 신장되는 것이 광변조 효과를 극대화하는데 효과적이다. 8 is a perspective view of a reflective polarizer according to an exemplary embodiment of the present invention, in which a plurality of plate-like polymers 211 are elongated in the longitudinal direction and the cross-section is plate-shaped in the second component 210. In this case, each of the plate-shaped polymer 211 can be elongated in various directions, but preferably it is advantageously extended in parallel in any one direction, more preferably between the elongated body in a direction perpendicular to the light irradiated from an external light source Stretching parallel to is effective to maximize the light modulation effect.
본 발명의 바람직한 일구현예에 따르면, 판상형 중합체의 길이방향의 수직단면의 형상이 장축길이에 대한 단축길이인 종횡비가 1/1000 이하일 수 있다. 도 9는 본 발명에 사용될 수 있는 판상형 중합체의 길이방향의 수직단면으로서, 장축길이를 a라 하고 단축길이를 b라 했을 때 장축길이(a)와 단축길이(b)의 상대적인 길이의 비(종횡비)가 1/1000 이하여야 한다. 다시 말해 장축길이(a)가 1000일 때 단축길이(b)는 그 1/1000인 1보다 작거나 같아야 하는 것이다. 만일 장축길이에 대한 단축길이의 비가 1/1000보다 큰 경우에는 목적하는 광학물성을 달성하기 어려운 문제가 있다. 상기 종횡비는 상술한 제조단계 중 제1 성분의 퍼짐유도 및 연신을 통해 적절하게 조절할 수 있다. 한편, 본 발명 전체의 도면에서 장축길이에 대한 단축길이의 비가 1/1000 보다 큰 비율인 것처럼 중합체의 단면이 도시되어 있지만, 이는 이해를 돕기 위하여 도면으로 표현하는 방법의 문제일 뿐 실제로는 도시된 중합체에 비하여 장축방향은 더 길고 단축방향은 더 짧다.According to one preferred embodiment of the present invention, an aspect ratio whose vertical cross section in the longitudinal direction of the plate-shaped polymer is a short axis length with respect to a long axis length may be 1/1000 or less. 9 is a vertical cross section in the longitudinal direction of a plate-like polymer that can be used in the present invention, wherein the ratio of the relative length of the major axis length (a) and the minor axis length (b) when the major axis length is a and the minor axis length is b (aspect ratio) ) Should be less than 1/1000. In other words, when the long axis length (a) is 1000, the short axis length (b) should be less than or equal to 1, which is 1/1000. If the ratio of the short axis length to the long axis length is larger than 1/1000, it is difficult to achieve the desired optical properties. The aspect ratio can be appropriately adjusted through the induction and stretching of the first component in the above-described manufacturing step. On the other hand, although the cross section of the polymer is shown as a ratio of the short axis length to the long axis length is greater than 1/1000 in the drawings of the present invention, this is only a problem of the method represented in the drawings for the sake of understanding, in practice Compared with the polymer, the long axis direction is longer and the short axis direction is shorter.
구체적으로 반사형 편광자의 수직단면을 기준으로 디스플레이 32인치 기준인가로 1580㎜이고 높이 400 ㎛ 인 경우 종래의 반사형 편광자는 복굴절성 폴리머를 1억개 이상을 포함하여야 원하는 광학물성을 달성할 수 있었다. 이에 비하여 본 발명의 반사형 편광자는 상기 판상형 중합체가 100만개 이하 포함되는 경우에도 반사형 편광자의 투과축 방향의 투과율이 90% 이상이고, 반사축 방향의 투과율이 30% 이하인 광학물성을 달성할 수 있으며, 보다 바람직하게는 투과축 방향의 투과율이 87% 이상이고, 반사축 방향의 투과율이 10% 이하의 광학물성을 달성할 수 있게 되며, 가장 바람직하게는 투과축 투과율이 85% 이상이고 반사축 투과율이 7% 이하일 수 있다. 이 경우 바람직하게는 본 발명의 반사형 편광자는 상기 판상형 중합체가 50만개 이하 포함될 수 있고, 가장 바람직하게는 상기 판상형 중합체가 30만개 이하 포함될 수 있다. 이를 위하여 본 발명의 바람직한 일구현예에 따르면, 상기 중합체의 장축길이에 대한 단축길이의 비가 바람직하게는 1/1000 이하, 보다 바람직하게는 1/1500 이하, 더욱 바람직하게는 1/2000 이하, 더욱 바람직하게는 1/3000 이하, 더욱 바람직하게는 1/5000 이하, 더욱 바람직하게는 1/10000이하 또는1/20000 이하, 더욱 바람직하게는 1/30000이하, 더욱 바람직하게는 1/50000 이하, 가장 바람직하게는 1/70000 ~ 1/170000일 수 있다.Specifically, when the display is 32 inches based on the vertical cross-section of the reflective polarizer and is 1580 mm and has a height of 400 μm, the conventional reflective polarizer may include 100 million or more birefringent polymers to achieve desired optical properties. On the other hand, the reflective polarizer of the present invention can achieve optical properties in which the transmittance in the transmission axis direction of the reflective polarizer is 90% or more and the transmittance in the reflection axis direction is 30% or less even when one or more of the plate-shaped polymers are included. More preferably, the transmittance in the transmission axis direction is 87% or more, the optical property of the transmittance in the reflection axis direction can be achieved 10% or less, most preferably the transmission axis transmittance is 85% or more and the reflection axis The transmittance may be 7% or less. In this case, preferably, the reflective polarizer of the present invention may contain 500,000 or less of the planar polymers, and most preferably, 300,000 or less of the planar polymers. To this end, according to a preferred embodiment of the present invention, the ratio of the short axis length to the long axis length of the polymer is preferably 1/1000 or less, more preferably 1/1500 or less, even more preferably 1/2000 or less, further Preferably less than 1/3000, more preferably less than 1/5000, more preferably less than 1/10000 or less than 1/20000, more preferably less than 1/30000, more preferably less than 1/50000, most Preferably, it may be 1/70000 to 1/170000.
결국, 장축길이에 대한 단축길이의 비가 작을수록 기재 내부에 더 적은수의 판상형 중합체를 포함하여도 원하는 광학물성을 달성할 수 있게 된다. As a result, as the ratio of the short axis length to the long axis length is smaller, the desired optical properties can be achieved even if a smaller number of plate-shaped polymers are included in the substrate.
그런데, 판상형 중합체의 종횡비가 매우 작아지게 되면 동일 레이어를 형성하는 판상평 중합체들 사이에 이격 공간이 극히 작아질 수 있다. 하지만, 본 발명의 반사형 편광자는 동일 레이어를 형성하는 판상형 중합체들 사이에는 반드시 적어도 하나 이상의 이격공간이 존재하게 된다.However, when the aspect ratio of the plate-shaped polymer becomes very small, the spacing space between the plate-like polymers forming the same layer may be extremely small. However, the reflective polarizer of the present invention will necessarily have at least one space between the plate-like polymers forming the same layer.
한편, 상술한 광학물성을 달성하기 위하여 본 발명의 바람직한 일구현예에 따르면, 상기 반사형 편광자는 기재 내부에 포함된 전체 판상형 중합체 중 상술한 종횡비 조건을 만족하는 복수개의 판상형 중합체를 50% 이상, 바람직하게는 60% 이상, 보다 바람직하게는 70% 이상, 더욱 바람직하게는 80% 이상, 가장 바람직하게는 90% 이상 포함할 수 있다. On the other hand, according to a preferred embodiment of the present invention in order to achieve the above-described optical properties, the reflective polarizer is 50% or more of the plurality of plate-like polymers satisfying the above aspect ratio conditions of all the plate-shaped polymer contained in the substrate, Preferably at least 60%, more preferably at least 70%, even more preferably at least 80%, most preferably at least 90%.
본 발명의 바람직한 일구현예에 따르면, 코어층을 형성하는 판상형 중합체(제1 성분)와 기재(제2 성분)간에 복굴절 계면이 형성될 수 있다. 구체적으로, 기재내부에 중합체를 포함하는 반사형 편광자에 있어서, 기재와 판상형 중합체간의 공간상의 X, Y 및 Z축에 따른 굴절률의 실질적인 일치 또는 불일치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으로, 산란능은 굴절률 불일치의 제곱에 비례하여 변화한다. 따라서, 특정 축에 따른 굴절률의 불일치의 정도가 더 클수록, 그 축에 따라 편광된 광선이 더 강하게 산란된다. 반대로, 특정 축에 따른 불일치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란된다. 어떤 축에 따라 기재의 굴절률이 판상형 중합체의 굴절률과 실질적으로 일치되는 경우, 이러한 축에 평행한 전기장으로 편광된 입사광은 중합체의 부분의 크기, 모양 및 밀도와 상관없이 산란되지 않고 중합체를 통과할 것이다. 또한, 그 축에 따른 굴절률이 실질적으로 일치되는 경우, 광선은 실질적으로 산란되지 않고 물체를 통해 통과한다. 보다 구체적으로, 제1편광(P파)는 기재와 중합체의 경계에 형성되는 복굴절 계면에 영향을 받지 않고 투과되나, 제2편광(S파)는 기재와 중합체간의 경계에 형성되는 복굴절성 계면에 영향을 받아 광의 변조가 일어난다. 이를 통해 P파는 투과되고 S파는 광의 산란, 반사 등의 광의 변조가 발생하게 되어 결국 편광의 분리가 이루어지게 되는 것이다.  According to a preferred embodiment of the present invention, a birefringent interface may be formed between the plate-like polymer (first component) and the substrate (second component) forming the core layer. Specifically, in a reflective polarizer including a polymer inside the substrate, the magnitude of the substantial coincidence or mismatch of the refractive indices along the X, Y, and Z axes in the space between the substrate and the plate-shaped polymer is the degree of scattering of the light polarized along the axis. Affects. In general, the scattering power varies in proportion to the square of the refractive index mismatch. Thus, the greater the degree of mismatch in refractive index along a particular axis, the more strongly scattered light polarized along that axis. Conversely, when the mismatch along a particular axis is small, the light polarized along that axis is scattered to a lesser extent. If the refractive index of the substrate along a certain axis substantially matches the refractive index of the plate-shaped polymer, incident light polarized with an electric field parallel to this axis will pass through the polymer without scattering regardless of the size, shape and density of the portion of the polymer. . Also, when the refractive indices along that axis are substantially coincident, the light beam passes through the object without being substantially scattered. More specifically, the first polarized light (P wave) is transmitted without being affected by the birefringent interface formed at the boundary between the substrate and the polymer, but the second polarized light (S wave) is transmitted at the birefringent interface formed at the boundary between the substrate and the polymer. Under the influence of this, modulation of light occurs. Through this, the P wave is transmitted, and the S wave generates light modulation such as scattering and reflection of light, and thus, polarization is separated.
따라서, 상기 기재와 판상형 중합체는 복굴절 계면을 형성하여야 광변조 효과를 유발할 수 있으므로, 상기 기재가 광학적 등방성인 경우, 판상형 중합체는 복굴절성을 가질 수 있고, 반대로 상기 기재가 광학적으로 복굴절성을 갖는 경우에는 중합체는 광학적 등방성을 가질 수 있다. 구체적으로, 상기 중합체의 x축 방향의 굴절율이 nX1, y축 방향의 굴절율이 nY1 및 z축 방향의 굴절율이 nZ1이고, 기재의 굴절율이 nX2, nY2 및 nZ2일 때, nX1과 nY1 사이의 면내 복굴절이 발생할 수 있다. 더욱 바람직하게는 기재와 중합체의 X, Y, Z축 굴절율 중 적어도 어느 하나가 상이할 수 있으며, 보다 바람직하게는 신장축이 X축인 경우 Y축 및 Z축 방향에 대한 굴절율의 차이가 0.05 이하이고, X축향에 대한 굴절율의 차이가 0.1 이상일 수 있다. 한편 통상적으로 굴절율의 차이가 0.05 이하이면 정합으로 해석된다.Therefore, since the substrate and the plate-shaped polymer may cause a photomodulation effect by forming a birefringent interface, when the substrate is optically isotropic, the plate-shaped polymer may have birefringence and conversely, when the substrate has optically birefringence The polymer may have optical isotropy. Specifically, in-plane birefringence between nX1 and nY1 when the refractive index in the x-axis direction of the polymer is nX1, the refractive index in the y-axis direction is nY1, the refractive index in the z-axis direction is nZ1, and the refractive index of the substrate is nX2, nY2 and nZ2. This can happen. More preferably, at least one of the X, Y, and Z axis refractive indices of the substrate and the polymer may be different. More preferably, when the extension axis is the X axis, the difference in the refractive indices in the Y and Z axis directions is 0.05 or less. The difference in refractive index with respect to the X-axis may be 0.1 or more. On the other hand, if the difference in refractive index is 0.05 or less, it is usually interpreted as a match.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 판상형 중합체의 전체 레이어 수는 50 ~ 3000 개 일 수 있으며, 하나의 레이어를 형성하는 판상형 중합체는 30 ~ 1,000개이고, 각 레이어 간의 층간격은 0.01 ~ 1.0㎛일 수 있다. 또한 하나의 레이어를 형성하는 인접한 판상형 중합체간의 이격거리는 최대 0.01~1.0㎛일 수 있다. 또한 상기 판상형 중합체의 길이방향의 수직단면 중 단축길이는 0.01 ~ 1.0㎛일 수 있으며, 상기 신장체의 길이방향의 수직단면 중 장축길이는 100 ~ 17,000㎛일 수 있다. 한편 상술한 본 발명의 층간격, 레이어 수, 이격거리, 장단축길이 등은 본 발명의 종횡비 및 원하는 광파장에 따라 적절하게 조절될 수 있다. On the other hand, according to a preferred embodiment of the present invention, the total number of layers of the plate-shaped polymer may be 50 to 3000, the plate-shaped polymer forming one layer is 30 to 1,000, the layer spacing between each layer is 0.01 ~ 1.0 μm. In addition, the separation distance between adjacent plate-shaped polymer forming one layer may be up to 0.01 ~ 1.0㎛. In addition, the short axis length of the longitudinal cross-section of the plate-shaped polymer may be 0.01 ~ 1.0㎛, the long axis length of the longitudinal cross section of the longitudinal direction may be 100 ~ 17,000㎛. On the other hand, the above-described layer spacing, number of layers, separation distance, long and short length may be appropriately adjusted according to the aspect ratio and the desired light wavelength of the present invention.
한편 본 발명에서 코어층의 두께는 20 ~ 180㎛이고, 스킨층의 두께는 50 ~ 300㎛일 수 있으나 이에 제한되지 않는다.Meanwhile, in the present invention, the thickness of the core layer is 20 to 180 μm, and the thickness of the skin layer may be 50 to 300 μm, but is not limited thereto.
다음으로 본 발명의 중합체가 분산된 반사형 편광자의 제조방법을 설명한다. Next, the manufacturing method of the reflective polarizer in which the polymer of this invention is disperse | distributed is demonstrated.
먼저, (1) 단계로서, 제1 성분, 제2 성분 및 스킨층 성분을 각각 압출부들에 공급한다. 코어층만 존재하는 경우에는 스킨층 성분은 생략된다. 상기 제1 성분은 기재를 형성하는 제2 성분의 내부에 분산되는 폴리머로서 통상적인 중합체가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있으며 보다 바람직하게는 PEN일 수 있다.First, as step (1), the first component, the second component and the skin layer component are respectively supplied to the extruded parts. If only the core layer is present, the skin layer component is omitted. The first component may be used without limitation as long as the polymer is dispersed in the second component forming the substrate and used in a reflective polarizer in which a conventional polymer is dispersed. Preferably, polyethylene naphthalate (PEN), copolyethylene, Phthalate (co-PEN), Polyethylene terephthalate (PET), Polycarbonate (PC), Polycarbonate (PC) alloy, Polystyrene (PS), Heat-resistant polystyrene (PS), Polymethylmethacrylate (PMMA), Polybutyl Rent Terephthalate (PBT), Polypropylene (PP), Polyethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Polyurethane (PU), Polyimide (PI), Polyvinyl Chloride (PVC), Styrene Acrylic Nitrile Blend (SAN), Ethylene Vinyl Acetate (EVA), Polyamide (PA), Polyacetal (POM), Phenolic, Epoxy (EP), Urea (UF), Melanin (MF), Unsaturated Polyester (UP), Silicone (SI) and cycloolefin polymers are used Number and may be more preferably PEN.
상기 제2 성분은 기재를 형성하는 것으로서 통상적으로 중합체가 분산된 반사편광자에서 기재의 재질로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 단독 또는 혼합하여 사용할 수 있으며 보다 바람직하게는 디메틸-2,6-나프탈렌 디카르복실레이트, 디메틸테레프탈레이트 및 에틸렌글리콜, 싸이크로헥산디메탄올(CHDM) 등의 단량체들이 적절하게 중합된 co-PEN일 수 있다.The second component may be used without limitation as long as the second component is used as a material of the substrate in the reflective polarizer in which the polymer is dispersed, and preferably, polyethylene naphthalate (PEN) or copolyethylene naphthalate (co-PEN). ), Polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT) ), Polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN) Ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI) and cyclic Alone or mixed with a low-olefin polymer Can be used and may be more preferably, dimethyl 2,6-naphthalenedicarboxylate, dimethyl terephthalate and ethylene glycol, Im chroman-hexane dimethanol (CHDM), such as the monomers are suitably polymerized co-PEN.
상기 스킨층 성분은 통상적으로 중합체가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있다. 상기 폴리카보네이트 얼로이(alloy)는 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)로 이루어질 수 있으며, 보다 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG)가 5 : 95 ~ 95 : 5의 중량비로 이루어진 폴리카보네이트 얼로이일 수 있다. 한편, 본 발명의 스킨층은 퍼짐 및 연신공정에서 굴절율 변화가 적은 재질을 사용하는 것이 좋으며 보다 바람직하게는 폴리카보네이트 또는 폴리카보네이트 얼로이일 수 있다.The skin layer component may be used without limitation as long as it is typically used in a reflective polarizer in which a polymer is dispersed, and preferably, polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, and polystyrene (PS). ), Heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU) ), Polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP) , Urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI) and cycloolefin polymers can be used. The polycarbonate alloy is preferably made of polycarbonate and modified glycol polycyclohexylene dimethylene terephthalate (PCTG), more preferably polycarbonate and modified glycol polycyclohex The silane dimethylene terephthalate (PCTG) may be a polycarbonate alloy having a weight ratio of 5:95 to 95: 5. Meanwhile, the skin layer of the present invention preferably uses a material having a small change in refractive index in spreading and stretching processes, and more preferably, may be polycarbonate or polycarbonate alloy.
한편, 상기 제1 성분, 제2 성분 및 스킨층 성분을 개별적으로 독립된 압출부들에 공급할 수 있으며 이 경우 압출부는 3개 이상으로 구성될 수 있다. 또한 폴리머들이 섞이지 않도록 별도의 공급로 및 분배구를 포함하는 하나의 압출부에 공급하는 것 역시 본 발명에 포함된다. 상기 압출부는 익스트루더일 수 있으며, 이는 고체상의 공급된 폴리머들을 액상으로 전환시킬 있도록 가열수단 등을 더 포함할 수 있다.On the other hand, the first component, the second component and the skin layer component can be supplied separately to the independent extrusion parts, in this case, the extrusion part may be composed of three or more. Also included in the present invention is a feed to one extruder comprising a separate feed passage and distributor so that the polymers do not mix. The extruder may be an extruder, which may further include heating means or the like to convert the supplied polymers into a liquid phase.
다음, (2) 제2 성분 내부에 복수개의 제1 성분이 분산된 2개 이상의 해도형 복합류를 형성하고 상기 각각의 해도형 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 해도형 압출구금에 투입하여 제1 성분들의 평균 광학적 두께가 상이한 2개 이상의 해도형 복합류를 형성한다. 구체적으로 도 10 및 도 11은 본 발명에 사용될 수 있는 해도형 압출구금의 구금분배판들의 결합구조를 내타낸 사시도이다. 해도형 압출구금의 상단에 위치하는 제1 구금분배판(S1)은 내부에 제1 성분 공급로(50) 및 제2 성분 공급로(51)로 구성될 수 있다. 이를 통해 상기 압출부를 통해 이송된 제1 성분은 제1 성분 공급로(50)로 투입되고, 제2 성분은 제2 공급로(51)로 공급될 수 있다. 이러한 공급로는 경우에 따라 복수개가 형성될 수 있다. 상기 제1 구금분배판(S1)을 통과한 폴리머들은 하부에 위치하는 제2 구금분배판(S2)로 이송된다. 제1 성분 공급로(50)을 통해 투입된 제1 성분이 유로를 따라 복수개의 제1 성분 공급로들(52, 53)로 분기되어 이송된다. 또한 제2 성분 공급로(51)을 통해 투입된 제2 성분이 유로를 따라 복수개의 제2 성분 공급로들(54, 55, 56)로 분기되어 이송된다. 상기 제2 구금분배판(S2)을 통과한 폴리머들은 하부에 위치하는 제3 구금분배판(S3)로 이송된다. 제1 성분 공급로들(52, 53)을 통해 투입된 제1 성분은 각각 제3 구금분배판(S3)에 형성된 제1 성분공급로들(59, 60, 63, 64)으로 유로를 따라 분기되어 이송된다. 마찬가지로 제2 성분 공급로들(54, 55, 56)을 통해 투입된 제2 성분은 각각 제3 구금분배판(S3)에 형성된 제2 성분공급로들(57, 58, 61, 62, 65, 66)으로 유로를 따라 분기되어 이송된다. 제3 구금분배판(S3)을 통과한 폴리머들은 하부에 위치하는 제4 구금분배판(S4)로 이송된다. 제1 성분 공급로들(59, 60, 63, 64)을 통해 투입된 제1 성분은 각각 제4 구금분배판(S4)에 형성된 제1 성분공급로들(69)로 넓게 퍼져 투입되며, 제2 성분공급로들(57, 58, 61, 62, 65, 66)을 통해 투입된 제2 성분은 유로를 따라 상기 제1 성분공급로들(69)의 상하단에 형성된 제2 성분 공급로(67, 68)로 투입된다. 이 때, 제1 성분공급로들(69)의 세로방향 레이어 수(n)에 따라 해도형 복합류에 포함되는 제1 성분의 레이어 수가 결정되는 것이다. 예를 들어 세로방향 레이어수가 50개인 경우 제1 해도형 복합류에 포함되는 제1 성분의 레이어 수는 50개가 된다. 상기 제4 구금분배판(S4)에서 도성분 레이어의 수는 25개 이상, 보다 바람직하게는 50개 이상, 더욱 바람직하게는 100개 이상, 가장 바람직하게는 150개 이상일 수 있다. 이후 제5 구금분배판(S5)에서는 분산된 제1 성분들 사이에 제1 성분이 스며들어 제2 성분의 내부에 제1 성분이 분산된 해도형 복합류를 형성하며 이후 상기 해도형 복합류는 제6 구금분배판(S6)의 토출구(70)통해 토출된다. 한편 상기 도 10, 11은 본 발명의 사용될 수 있는 해도형 구금분배판들은 예시이며, 제2 성분 내부에 제1 성분이 분산된 해도형 복합류를 제조하기 위하여 구금분배판의 개수, 구조, 구금홀의 크기, 형상 등을 당업자가 적절하게 설계하여 사용하는 것은 자명한 것이다. 바람직하게는 상기 도성분 공급로의 구금홀의 직경은 0.17 ~ 5㎜일 수 있으나 이에 제한되지 않는다.Next, (2) to form two or more islands-in-the-sea composites in which a plurality of first components are dispersed inside the second component, and each island-in-the-sea composites reflects a shear wave (S wave) of a desired wavelength. The first component and the second component transferred from the extruder are introduced into the plurality of islands-in-sea type extrusion molds to form two or more islands-in-sea composites having different average optical thicknesses of the first components. 10 and 11 are perspective views showing the coupling structure of the distribution plate of the island-in-the-sea extrusion mold which can be used in the present invention. The first mold distribution plate S1 positioned at the upper end of the island-in-the-sea extrusion mold may have a first component supply passage 50 and a second component supply passage 51 therein. Through this, the first component transferred through the extruder may be introduced into the first component supply path 50, and the second component may be supplied to the second supply path 51. In some cases, a plurality of such supply paths may be formed. The polymers that have passed through the first mold distribution plate S1 are transferred to a second mold distribution plate S2 positioned below. The first component introduced through the first component supply path 50 is branched and transferred to the plurality of first component supply paths 52 and 53 along the flow path. In addition, the second component introduced through the second component supply passage 51 is branched and transferred to the plurality of second component supply passages 54, 55, 56 along the flow path. The polymers that have passed through the second detention distribution plate S2 are transferred to the third detention distribution plate S3 located below. The first component introduced through the first component supply paths 52 and 53 is branched along the flow path to the first component supply paths 59, 60, 63, and 64 formed in the third detention distribution plate S3, respectively. Transferred. Similarly, the second components introduced through the second component supply paths 54, 55, 56 are second component supply paths 57, 58, 61, 62, 65, 66 formed in the third detention distribution plate S3, respectively. Branched along the flow path and transported. The polymers that have passed through the third detention distribution plate S3 are transferred to the fourth detention distribution plate S4 located below. The first components introduced through the first component supply paths 59, 60, 63, and 64 are spread out into the first component supply paths 69 formed in the fourth detention distribution plate S4, respectively, The second component introduced through the component supply paths 57, 58, 61, 62, 65, and 66 is formed in the upper and lower ends of the first component supply paths 69 along the flow path. It is injected into). At this time, the number of layers of the first component included in the island-in-the-sea composite flow is determined according to the number of vertical layers n of the first component supply passages 69. For example, when the number of vertical layers is 50, the number of layers of the first component included in the first island-in-the-sea composite product is 50. In the fourth mold distribution plate S4, the number of island component layers may be 25 or more, more preferably 50 or more, even more preferably 100 or more, and most preferably 150 or more. Subsequently, in the fifth mold distribution plate S5, the first component is infiltrated between the dispersed first components to form an island-in-the-sea composite flow in which the first component is dispersed in the second component. It discharges through the discharge port 70 of the 6th metal distribution board S6. Meanwhile, FIGS. 10 and 11 are examples of island-in-the-sea detention distribution plates that may be used in the present invention, and the number, structure, and detention of detention distribution plates for manufacturing island-in-the-sea composites in which the first component is dispersed in the second component. It is obvious to those skilled in the art to appropriately design and use the size, shape and the like of the holes. Preferably, the diameter of the detention hole in the island component supply passage may be 0.17-5 mm, but is not limited thereto.
한편, 상기 제4 구금분배판에서 도성분 공급로의 레이어의 수가 많아질수록 도성분(제1 성분)간에 도접합 현상이 발생할 수 있다. 이를 방지하기 위하여 도 12와 같이 도성분 공급로를 구획하고 그 구획로상에 해성분 공급로(71, 72)를 형성하여 해성분이 도성분 사이에 보다 원활히 스며들 수 있도록 할 수 있다. 이를 통해 도성분 공급로의 레이어 수가 많아져도 최종 기재 내부에 포함되는 도성분(제1 성분)간의 도접합 현상을 최소화할 있는 것이다. 한편 상기 구획된 도성분 공급로들은 각각 별도의 해도형 복합류를 형성하는 것 역시 가능하며 이는 일체화된 복수개의 해도형 압출구금으로 해석된다. 결국, 본 발명에서는 해도형 압출구금이 복수개로 형성되는 것 뿐만 아니라 일체형으로 형성되어 복수개의 해도형 복합류를 제조할 수 있는 것은 모두 포함된다.On the other hand, as the number of layers of the island component supply passage in the fourth mold distribution plate increases, a degree of conduction between the island components (first component) may occur. In order to prevent this, the island component supply passage may be partitioned as shown in FIG. 12, and the sea component supply passages 71 and 72 may be formed on the partition passage so that the sea component may penetrate smoothly between the island components. As a result, even if the number of layers in the island component supply path increases, the degree of conduction between the island components (the first component) included in the final substrate may be minimized. On the other hand, it is also possible to form a separate island-in-the-sea composite composite flow path, which is interpreted as a plurality of integrated island-in-the-sea extrusion molds. As a result, the present invention includes not only a plurality of islands-in-the-sea extrusion molds, but also ones that are integrally formed to produce a plurality of islands-in-sea composites.
또한 도 10에서 제4 구금분배판의 도성분 공급로의 배열은 도 13과 같이 직선형으로 배치될 수 있으나, 바람직하게는 도접합을 최소화하고 도성분을 기재내부에 보다 많이 분산시키기 위하여 도 14와 같이 도성분 공급로를 지그재그 타입으로 배치할 수 있다. In addition, in FIG. 10, the arrangement of the island component supply paths of the fourth mold distribution plate may be arranged in a straight line as shown in FIG. 13. However, in order to minimize the bonding and to further disperse the island components in the substrate, FIGS. Likewise, the island component supply path can be arranged in a zigzag type.
구체적으로 도 15 및 16은 본 발명의 바람직한 일구현예에 따른 해도형 압출구금의 구금의 도면이다. 구체적으로 해도형 반사구금의 구금분배판은 6개(T1 ~ T6)이며, 도 10의 구금 분배판과는 제4 구금분배판(T4) 및 제5 구금분배판(T5)에서 차이가 있다. 이를 도 10과의 차이점을 중심으로 설명하면 도 15의 제4 구금분배판(T4)은 도 12와 마찬가지로 제1 성분 공급로 집합부들(100, 101, 102) 사이가 제2 성분 공급로를 포함하는 유로로 구획되어 있다. 이를 통해 제2 성분이 제1 성분들 사이에 고르게 스며들 수 있도록 한다.  Specifically, Figures 15 and 16 is a view of the detention of the island-in-the-sea extrusion mold according to a preferred embodiment of the present invention. Specifically, there are six detention distribution plates of the island-in-the-sea reflective reflector, which are different from the detention distribution plate of FIG. 10 in the fourth detention distribution plate T4 and the fifth detention distribution plate T5. Referring to the difference from FIG. 10, the fourth detention distribution plate T4 of FIG. 15 includes a second component supply passage between the first component supply passage aggregation units 100, 101, and 102 similarly to FIG. 12. It is divided into a flow path. This allows the second component to soak evenly between the first components.
한편, 도 15의 제4 구금분배판(T4) 및 제5 구금분배판(T5)을 통해 복수개의 해도형 복합류를 형성하는 것 역시 가능하다. 즉, 제4 구금분배판(T4)의 구획된 도성분 공급로 집합부들(100, 101, 102)을 통해 별도의 해도형 복합류를 제조하고 이를 구금내부에서 3개의 해도형 복합류를 형성한 후, 다시 하나로 합지할 수 있는 것이다. 이를 위하여 별도의 구금분배판의 설계 및 변경 등은 당업자에게 자명한 것이며, 이는 일체화된 복수의 해도형 압출구금에 포함된다.On the other hand, it is also possible to form a plurality of islands-in-the-sea composite flow through the fourth detention distribution plate (T4) and the fifth detention distribution plate (T5) of FIG. That is, a separate island-in-the-sea complex is manufactured through the collection parts 100, 101, and 102 through the partitioned island component supply passages of the fourth detention distribution plate T4, and three island-in-the-sea complexes are formed in the detention. Afterwards, you can join one again. To this end, the design and modification of a separate mold distribution plate will be apparent to those skilled in the art, which are included in a plurality of integrated islands-type extrusion molds.
본 발명에 있어서, 제2 성분에 분산된 제1 성분을 포함하는 해도형 복합류는 복수개가 형성되며, 바람직하게는 상기 해도형 복합류의 개수는 2개 이상이고, 보다 바람직하게는 3개 이상, 더욱 바람직하게는 4개 이상일 수 있다. 이를 위해 도 17과 같이 각각의 해도형 복합류를 형성할 수 있는 해도형 압출구금이 복수개가 구비될 수 있으며, 복수개의 해도형 압출구금이 일체형으로 형성되는 것도 가능하다. 이 경우 바람직하게는 인접한 압출구금간에 해성분 공급로를 중복하여 형성하는 것 역시 가능하다.In the present invention, a plurality of islands-in-sea composites comprising the first component dispersed in the second component are formed, and preferably, the number of the islands-in-sea composites is two or more, and more preferably three or more. More preferably, it may be four or more. To this end, as shown in FIG. 17, a plurality of island-in-the-sea extrusion molds capable of forming respective islands-in-sea composite composites may be provided, and a plurality of islands-in-sea extrusion molds may be integrally formed. In this case, it is also possible to form overlapping sea component supply passages, preferably between adjacent extrusion spheres.
또한, 복수개의 해도형 복합류를 형성하기 위하여 해도형 압출구금을 개별적 또는 일체형으로 배치하고 이를 위하여 적절하게 구금분배판의 개수 및 구조를 설계 및 배치하는 것은 당업자에게 너무나 자명한 것이다. 예를 들어, 4개의 해도형 복합류를 형성하기 위하여 4개의 해도형 압출구금을 일체형으로 제작하는 경우 제1 구금분배판을 제4 구금분배판의 개수인 4개로 제조하거나, 제1 구금분배판은 공통으로 하고, 이를 4개의 중단 구금분배판에 분기하여 공급하는 것 역시 가능한 것이다.In addition, it is too obvious to those skilled in the art to arrange the island-in-the-sea type extrusion molds individually or integrally to form a plurality of island-in-the-sea composites, and to design and arrange the number and structure of the cage distribution plates appropriately for this purpose. For example, when the four islands-type extrusion molds are integrally manufactured to form four islands-in-the-sea composites, the first mold distribution plate may be manufactured as four, which is the number of the fourth cage distribution plates, or the first mold distribution plate. Is common, and it is also possible to branch and supply it to four interruptions.
한편, 상기 복수개의 해도형 복합류는 각각 상이한 광의 파장영역 범위를 커버하기 위하여 상이한 해도형 복합류를 형성하는 제1 성분의 광학적 두께, 제2 성분의 광학적 두께, 제1 성분의 레이어 수 등이 상이할 수 있다. 이를 위해 각각의 해도형 압출구금에 형성되는 도성분 공급로 및/또는 해성분 공급로의 직경, 단면적, 형상 및/또는 레이어 개수 등이 상이할 수 있다. 이는 최종적으로 퍼짐 및 연신 공정을 거쳐 제조되는 반사형 편광자는 내부에 복수개의 그룹이 형성되며, 상기 복수개의 그룹은 평균 광학적 두께가 상이하며, 이를 위해 제1 성분들의 퍼짐정도, 연신비 등을 고려하여 상술한 공급로들의 직경들이 결정될 수 있다. On the other hand, the plurality of islands-in-the-sea composites each have an optical thickness of the first component, an optical thickness of the second component, the number of layers of the first component, etc. to form different islands-in-the-sea composites to cover a range of wavelength regions of different light. Can be different. To this end, the diameter, cross-sectional area, shape, and / or number of layers of the island component supply passage and / or the sea component supply passage formed in each island-in-the-sea extrusion mold may be different. The reflective polarizer, which is finally manufactured through the spreading and stretching process, has a plurality of groups formed therein, and the plurality of groups have different average optical thicknesses. For this purpose, in consideration of the spreading degree and the stretching ratio of the first components, The diameters of the aforementioned supply paths can be determined.
상술한 바와 같이, 광학적 두께(optical thickness)는 n(굴절율) × d(물리적 두께)를 의미한다. 따라서 만일 해도형 복합류가 2개 형성되는 경우 해도형 복합류간 제1 성분이 동일하다면 광학적 두께는 물리적 두께(d)의 크기에 비례하게 된다. 그러므로 각각의 해도형 복합류에 포함되는 제1 성분 및/또는 제2 성분의 물리적 두께(d)의 평균값을 달리하는 것을 통해 해도형 복합류간의 광학적 두께의 차이를 유도할 수 있는 것이다. 한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 해도형 복합류의 평균 광학적 두께가 결정되어야 한다. 예를 들어 3개의 복합류가 구성되고 각자 빛의 파장영역 중 450㎚, 550㎚, 650㎚에 대응하도록 해도형 복합류의 제1 성분의 평균 광학적 두께를 설정하려면 해도형 복합류 간의 제1 성분의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다.As described above, optical thickness means n (refractive index) x d (physical thickness). Therefore, if two islands-in-sea composites are formed, if the first component is the same between the islands-in-sea composites, the optical thickness is proportional to the size of the physical thickness d. Therefore, by varying the average value of the physical thickness (d) of the first component and / or the second component included in each island-in-the-sea composite product, the difference in the optical thickness between the islands-in-sea composite products can be derived. Meanwhile, in order to cover the entire visible light region, the average optical thickness of the island-in-the-sea composites should be determined to correspond to various light wavelengths. For example, in order to set an average optical thickness of the first component of the islands-in-the-sea composites so that three composites are composed and respectively correspond to 450 nm, 550 nm, and 650 nm of the wavelength range of light, the first component between islands-in-the-sea composites The average optical thickness of can differ by at least 5% or more, more preferably by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
또한 하나의 해도형 복합류를 형성하는 해도형 압출구금에서도 도성분 공급로 및/또는 해성분 공급로의 직경, 단면적, 형상 등이 동일하거나 상이할 수 있다. 나아가 동일한 해도형 복합류를 형성하는 제1 성분들의 광학적 두께는 평균 광학적 두께 대비 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내의 편차를 가질 수 있다. 예를 들어 제1 해도형 복합류의 제1 성분들의 평균 광학적 두께(optical thickness)가 100㎚라면, 동일한 제1 해도형 복합류를 형성하는 제1 성분들은 대략 20% 이내의 광학적 두께 편차를 가질 수 있다. 한편 빛의 파장과 광학적 두께는 하기 관계식 1에 따라 정의된다. In addition, even in the island-in-the-sea type extrusion mold forming one island-in-the-sea composite flow, the diameter, cross-sectional area, shape, etc. of the island component supply passage and / or the sea component supply passage may be the same or different. Furthermore, the optical thickness of the first components forming the same island-in-the-sea composite flow may have a deviation of preferably within 20%, more preferably within 15% of the average optical thickness. For example, if the average optical thickness of the first components of the first islands-in-the-sea composite is 100 nm, the first components forming the same first islands-in-the-sea composite will have an optical thickness variation within approximately 20%. Can be. Meanwhile, the wavelength and the optical thickness of the light are defined according to the following Equation 1.
[관계식 1][Relationship 1]
λ= 4nd λ = 4nd
단 λ는 빛의 파장(nm), n은 굴절율, d는 물리적 두께(nm)Where λ is the wavelength of light (nm), n is the refractive index, and d is the physical thickness (nm)
그러므로 광학적 두께(nd)에 편차가 발생하면 타겟으로 하는 빛의 파장 뿐만 아니라 이를 포함하는 빛의 파장범위를 커버할 수 있으므로 전체적으로 균일한 광학물성 향상에 큰 도움이 된다. 상술한 광학적 두께의 편차는 하나의 해도형 압출구금에서 도성분 공급로의 직경, 단면적 등에 편차를 부여하는 것을 통해 달성되거나 또는 도성분 공급로가 동일한 직경을 갖더라도 퍼짐과정에서의 자연스러운 미세한 압력배분의 차이 등을 통해 자연스럽게 달성될 수 있는 것이다.Therefore, if the deviation occurs in the optical thickness (nd) can cover not only the wavelength of the target light but also the wavelength range of the light including the same, which is a great help in improving the overall uniform optical properties. The above-described optical thickness deviation is achieved by giving a deviation to the diameter, cross-sectional area, etc. of the island-like extrusion mold in one island-in-the-sea extrusion mold, or the natural minute pressure distribution during the spreading process even if the island component feeding path has the same diameter. The difference can be achieved naturally.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 상기 압출부에서 이송된 제1 성분은 해도형 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제1 가압수단을 통해 각각 상이한 해도형 압출구금으로 토출되는 단계를 더 포함할 수 있다. 구체적으로 도 18은 2개의 해도형 복합류를 형성하기 위하여 제1 가압수단을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제1 성분이 상기 복수개의 제1 가압수단(130, 131)들에 분기되어 공급되고 각각의 제1 가압수단(130, 131)들에서 각각의 해도형 압출구금(132, 133)들에 개별적으로 공급된다. 이 때, 상기 제1 가압수단(130, 131)은 서로 상이한 토출량을 가지며 이를 통해 각각의 해도형 압출구금(132, 133)이 동일한 스펙(도성분 공급로등의 형상 직경 등이 동일한 경우)을 통해 형성된 제1 해도형 복합류 및 제2 해도형 복합류의 제1 성분의 평균 광학적 두께가 상이할 수 있다. 제1 가압수단(130. 131)들이 각각 상이한 토출량을 가지게 되면, 이에 연통된 해도형 압출구금(132, 133)을 통해 제조된 제1 복합류와 제2 복합류내에 형성된 제1성분의 면적이 상이한 토출량에 의해 면적차이가 발생하게 되어 복합류간 광학적 두께에 차이가 발생한다. According to another preferred embodiment of the present invention, the first component conveyed in the extruded portion between the steps (1) and (2) is a plurality of having a different discharge amount in order to have a different average optical thickness between islands The first pressing means may further include the step of discharging each different island-in-the-sea extrusion mold. Specifically, FIG. 18 is a schematic view including a first pressurizing means to form two islands-in-the-sea composite flows, in which a first component conveyed from an extruder (not shown) includes the plurality of first pressurizing means 130 and 131. And supplied separately to the islands-in-the-sea type extrusion holes 132 and 133 in the respective first pressing means 130 and 131. At this time, the first pressing means (130, 131) has a different discharge amount from each other through each of the island- like extrusion mold 132, 133 has the same specification (when the shape diameter of the island component supply path, etc. are the same). The average optical thicknesses of the first components of the first island-in-the-sea composite and the second island-in-the-sea composites formed therethrough may be different. When the first pressurizing means (130. 131) each have a different discharge amount, the area of the first compound formed in the first composite stream and the second composite stream produced through the island-in-the- sea extrusion molds 132 and 133 connected thereto The difference in area is caused by different discharge amounts, resulting in a difference in optical thickness between composite flows.
이를 위해 상기 제1 가압수단(130, 131)의 토출량은 바람직하게는 1 ~ 100 kg/hr일 수 있으나 이에 제한되는 것은 아니다. To this end, the discharge amount of the first pressing means (130, 131) may be preferably 1 to 100 kg / hr, but is not limited thereto.
한편, 하나의 제1 가압수단이 2개의 해도형 압출구금에 제1 성분을 이송하고 상기 2개의 해도형 압출구금에서 형성된 2개의 해도형 복합류가 합지되어 하나의 해도형 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제1 성분 가압수단과 8개의 해도형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제1 가압수단이 3개 이상의 해도형 압출구금에 제1 성분을 이송하는 것 역시 가능하다. Meanwhile, one first pressing means transfers the first component to the two islands-in-the-sea extrusion molds, and the two islands-in-the-sea composites formed from the two islands-in-the-sea extrusion molds are laminated to form one island-in-the-sea composites. It is also possible for one group to be formed. In this case, four groups may be formed through the four first component pressing means and the eight island-in-the-sea extrusion molds. It is also possible for one first pressing means to transfer the first component to three or more islands-in-sea extrusion molds.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 압출부에서 이송된 제2 성분은 해도형 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제2 가압수단을 통해 각각 상이한 해도형 압출구금으로 토출될 수 있다. 구체적으로 도 19는 2개의 해도형 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제2 성분이 상기 복수개의 제2 가압수단(140, 141)들에 분기되어 공급되고 각각의 제2 가압수단(140, 141)들에서 각각의 해도형 압출구금(142, 143)들에 개별적으로 공급된다. 이 때, 상기 제2 가압수단(140, 141)은 서로 상이한 토출량을 가지며 이를 통해 각각의 해도형 압출구금(142, 143)이 동일한 스펙(도성분 공급로등의 형상 직경 등이 동일한 경우)을 통해 형성된 제1 해도형 복합류 및 제2 해도형 복합류의 제2 성분의 평균 광학적 두께 즉 기재(코어층)의 두께가 상이할 수 있다. 이를 위해 상기 제2 가압수단(140, 141)의 토출량은 바람직하게는 1 ~ 100 kg/hr일 수 있으나 이에 제한되는 것은 아니다.  According to another preferred embodiment of the present invention, the second component conveyed from the extrusion section between the steps (1) and (2) is a plurality of having a different discharge amount in order to have a different average optical thickness between islands-in-the-sea composites Each of the second islands may be discharged to different islands-in-sea extrusion molds. Specifically, FIG. 19 is a schematic view of including two second pressing means to form two islands-in-the-sea composite flows, in which a second component conveyed from an extruder (not shown) includes the plurality of second pressing means 140, Branched to 141 and supplied separately to the islands-in-the-sea extrusion-type extrusion holes 142 and 143 in respective second pressurizing means 140 and 141. At this time, the second pressing means (140, 141) has a different discharge amount from each other through this, each island- like extrusion mold 142, 143 has the same specifications (when the shape diameter of the island component supply path, etc. are the same). The average optical thickness of the second component of the first island-in-the-sea composites and the second island-in-the-sea composites formed through them, that is, the thickness of the substrate (core layer) may be different. To this end, the discharge amount of the second pressing means 140, 141 may be preferably 1 to 100 kg / hr, but is not limited thereto.
한편, 하나의 제2 가압수단이 2개의 해도형 압출구금에 제2 성분을 이송하고 상기 2개의 해도형 압출구금에서 형성된 2개의 해도형 복합류가 합지되어 하나의 해도형 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제2 성분 가압수단과 8개의 해도형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제2 가압수단이 3개 이상의 해도형 압출구금에 제2 성분을 이송하는 것 역시 가능하다. Meanwhile, one second pressing means transfers the second component to the two islands-in-the-sea extrusion molds, and the two islands-in-the-sea composites formed from the two islands-in-the-sea extrusion molds are laminated to form one island-in-the-sea composites. It is also possible for one group to be formed. In this case, four groups may be formed through the four second component pressing means and the eight island-in-the-sea extrusion molds. It is also possible for one second pressing means to transfer the second component to three or more islands-in-sea extrusion molds.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 (1) 단계와 (2) 단계 사이에, 압출부에서 이송된 제2 성분이 제2 가압수단을 통해 각각 상이한 해도형 압출구금으로 토출되는 단계를 더 포함할 수 있다. 도 20은 2개의 해도형 복합류를 형성하기 위하여 하나의 제2 가압수단을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제2 성분이 상기 제2 가압수단(150)에 공급되고 이를 통해 복수개의 해도형 압출구금(151, 152)들에 개별적으로 공급된다. 이를 통해 형성된 제1 해도형 복합류 및 제2 해도형 복합류의 제2 성분의 평균 광학적 두께 즉 기재(코어층)의 두께는 동일할 수 있으며 이 경우 제1 성분을 공급하는 제1 가압수단을 복수개로 배치하여 각각의 해도형 복합류에 포함되는 제1 성분의 평균 광학적 두께를 상이하도록 조절할 수 있다. According to another preferred embodiment of the present invention, between the steps (1) and (2), the step of discharging the second component conveyed from the extrusion unit through the second pressing means to each different island-in-the-sea extrusion mold It may further include. 20 is a schematic view including one second pressurizing means for forming two islands-in-the-sea composite flows, in which a second component conveyed from an extruder (not shown) is supplied to the second pressurizing means 150 and The plurality of islands-in-the- sea extrusion molds 151 and 152 are separately supplied. The average optical thickness of the second component of the first island-in-the-sea composite and the second island-in-the-sea composites formed thereon may be the same, in which case the first pressurizing means for supplying the first component It can arrange | position in plural and can adjust so that the average optical thickness of the 1st component contained in each island-in-the-sea complex may differ.
다음 (3) 단계로서, 상기 2개 이상의 해도형 복합류를 하나로 합지하여 코어층을 형성한다. 구체적으로 도 21은 해도형 복합류의 합지부를 나타내는 개략도로서, 각각의 해도형 압출구금을 통해 제조된 복수개의 해도형 복합류들(161, 162, 163, 164)을 하나로 합지하여 코어층(165)을 형성하는 것이다. 한편, 상기 합지단계는 별도의 장소에서 수행되거나 일체형의 해도형 압출구금을 사용한 경우에는 별도의 집합구금분배판을 통해 하나로 합지할 수 있다. 또한, 해도형 복합류의 개수가 많은 경우에는 합지를 용이하게 하기 위하여 일부 해도형 복합류를 먼저 합지하고 이들을 다시 합지하는 형태인 다단합지를 수행하는 것 역시 가능하다. 한편, 스킨층 성분 역시 합지부에서 코어층과 동시에 또는 순차적으로 합지되는 것도 가능하다.In the next step (3), the two or more islands-in-the-sea composites are laminated together to form a core layer. Specifically, FIG. 21 is a schematic view showing the lamination portion of the island-in-the-sea composites, and the core layer 165 by laminating the plurality of island-in-the- sea composites 161, 162, 163, and 164 manufactured through each island-in-the-sea extrusion mold. ) To form. On the other hand, the lamination step may be carried out in a separate place or when using an integrated island-in-the-sea type extrusion mold may be laminated to one through a separate aggregated distribution plate. In addition, when the number of islands-in-sea composites is large, it is also possible to carry out a multi-stage lamination in the form of laminating some islands-in-sea composites first and then laminating them in order to facilitate lamination. Meanwhile, the skin layer component may also be laminated simultaneously or sequentially with the core layer in the lamination portion.
한편, 상기 (2) 단계와 (3) 단계 사이 또는 (3) 단계와 (4) 단계 사이에 후술하는 제1 성분의 퍼짐현상을 용이하게 수행하기 위하여 별도의 예비퍼짐 단계를 더 수행할 수 있다.Meanwhile, a separate prespreading step may be further performed to facilitate the spreading of the first component, which will be described later, between steps (2) and (3) or between steps (3) and (4). .
다음, (4) 단계로서 상기 합지된 코어층의 적어도 일면을 압출부에서 이송된 스킨층 성분을 합지한다. 바람직하게는 상기 스킨층 성분은 상기 코어층의 양면에 모두 합지될 수 있다. 양면에 스킨층이 합지되는 경우 상기 스킨층의 재질 및 두께는 서로 동일하거나 상이할 수 있다. 한편, 상술한 바와 같이 상기 (3) 단계의 합지부에서 스킨층 성분을 동시에 합지하는 경우 본 단계는 생략될 수 있다.Next, as the step (4), at least one surface of the laminated core layer is laminated with the skin layer component transferred from the extruder. Preferably, the skin layer component may be laminated on both surfaces of the core layer. When the skin layer is laminated on both surfaces, the material and the thickness of the skin layer may be the same or different from each other. Meanwhile, as described above, when the skin layer components are simultaneously laminated in the lamination part of step (3), this step may be omitted.
다음, (5) 단계로서 상기 스킨층이 합지된 코어층의 제1 성분이 판상형을 형성하도록 흐름제어부에서 퍼짐을 유도한다. 구체적으로 도 22는 본 발명에 적용될 수 있는 바람직한 흐름제어부의 일종인 코트-행거 다이의 단면도이고, 도 23은 측면도이다. 이를 통해 코어층의 퍼짐정도를 적절하게 조절하여 제1 성분의 길이방향의 수직단면의 형상이 판상형을 갖도록 조절할 수 있다. 도 22에서 유로를 통해 이송된 스킨층이 합지된 코어층이 코트-행거 다이에서 좌우로 넓게 퍼지므로 내부에 포함된 제1 성분 역시 좌우로 넓게 퍼지게 된다. 또한 도 23의 측면도에서 보듯 코트행거다이는 좌우로 넓게 퍼져있지만 상하로 줄어드는 구조를 갖고 있어 스킨층이 합지된 코어층의 수평방향으로 퍼지나 두께방향으로 줄어들게 된다. 이는 파스칼의 원리가 적용되는 것으로서, 밀폐계에서 유체는 일정 압력에 의해 미세한 부분까지 압력을 전달되어지는 원리에 의해 폭 방향으로 넓게 퍼지도록 유도된다. 따라서 다이의 입구 사이즈보다 출구사이즈가 폭방향은 넓어지고 두께는 줄어들게 되는 것이다. 이는 용융액체 상태의 물질은 밀폐계에서 압력에 의해 흐름 및 형상 제어가 가능한 파스칼 원리를 이용하며, 바람직하게는 레이놀드수 2,500 이하의 층류의 흐름이 되도록 폴리머 유속 및 점성 유도가 요구된다. 2,500 이상의 난류의 흐름이 되면, 판상형의 유도가 불균일해져, 광특성의 편차가 발생될 가능성이 있다. 코트-행거 다이의 출구의 좌우 다이폭은 800 ~ 2,500 mm 일 수 있으며, 폴리머의 유체 흐름은 레이놀즈수 2,500 초과되지 않도록 압력을 조정 요구된다. 그 이유는 그 이상일 경우 폴리머 흐름이 난류로 되어 Core의 배열이 흐트러질 수 있기 때문이다. 또한 내부 온도는 265 ~ 310℃일 수 있다. 한편 퍼짐의 정도는 제1 성분과 제2 성분의 상용성 등의 영향을 받을 수 있으며, 우수한 퍼짐성을 가지기 위하여 바람직하게는 제1 성분으로 PEN과 제2 성분으로 CO-PEN을 사용할 수 있다. 또한 CO-PEN을 구성하는 단량체들 예를 들어 디메틸-2,6-나프탈렌 디카르복실레이트, 디메틸테레프탈레이트, 에틸렌글리콜 및 싸이크로헥산디메탄올(CHDM) 등을 적절하게 중합하여 퍼짐정도를 조절할 수 있다. 상기 흐름제어부는 제1 성분이 판상형을 형성할 수 있도록, T-다이 또는 매니폴드 타입의 Coat-hanger 다이일 수 있으나 이에 제한되는 것은 아니며, 코어층의 퍼짐을 유도하여 제1 성분을 판상형으로 유도할 수 있는 것이면 제한없이 사용될 수 있다. Next, in step (5), the first component of the core layer in which the skin layer is laminated induces spreading in the flow control unit to form a plate-like shape. Specifically, FIG. 22 is a cross-sectional view of a coat-hanger die, which is a kind of preferred flow control unit that may be applied to the present invention, and FIG. 23 is a side view. Through this, the spreading degree of the core layer may be appropriately adjusted so that the shape of the vertical cross section in the longitudinal direction of the first component may have a plate shape. In FIG. 22, since the core layer in which the skin layer transferred through the flow path is laminated spreads widely from side to side in the coat-hanger die, the first component included therein also spreads from side to side. In addition, as shown in the side view of FIG. 23, the coat hanger die spreads from side to side, but has a structure of decreasing vertically, so that the skin layer is spread in the horizontal direction of the laminated core layer or reduced in the thickness direction. This is the Pascal principle is applied, the fluid in the closed system is induced to spread wide in the width direction by the principle that the pressure is transmitted to a minute portion by a constant pressure. Therefore, the exit size is wider in the width direction than the inlet size of the die and the thickness is reduced. It uses the Pascal principle that the material in the molten liquid state can be flow and shape control by pressure in the closed system, preferably polymer flow rate and viscosity induction to be a laminar flow of Reynolds number 2,500 or less. When the flow of 2,500 or more turbulent flows, the induction of the plate-like shape is uneven, and there is a possibility of deviation of optical characteristics. The left and right die widths of the exit of the coat-hanger die can be between 800 and 2500 mm, and the fluid flow of the polymer is required to adjust the pressure so that the Reynolds number does not exceed 2,500. The reason is that if it is more than that, the polymer flow becomes turbulent and the core array may be disturbed. In addition, the internal temperature may be 265 ~ 310 ℃. On the other hand, the degree of spreading may be affected by the compatibility of the first component and the second component, etc. In order to have excellent spreadability, it is preferable to use CO-PEN as the first component and PEN as the second component. In addition, the degree of spreading can be controlled by appropriately polymerizing monomers constituting CO-PEN, for example, dimethyl-2,6-naphthalene dicarboxylate, dimethyl terephthalate, ethylene glycol and cyclohexanedimethanol (CHDM). have. The flow control part may be a T-die or a coat-hanger die of a manifold type so that the first component may form a plate shape, but the present invention is not limited thereto, and induces spreading of the core layer to guide the first component to the plate shape. Anything that can be used can be used without limitation.
한편, 상기 판상형은 수직단면을 기준으로 장축길이에 대한 단축길이의 비인 종횡비가 1/200 이하, 1/300 이하, 1/500 이하. 1/1000 이하, 1/2000 이하, 1/5000 이하, 1/10000이하 또는 1/20000 이하일 수 있다. 만일 종횡비가 1/200 초과인 경우에는 이후 편광자의 신장을 통해 종횡비가 줄어드는 경우에도 원하는 광학물성을 달성하기 어렵다. 특히 종횡비가 1/200 초과로 퍼짐을 유도하고 이후 6배 이상의 고연신 배율을 통해 최종 제1 성분의 종횡비를 조절하는 경우 제1성분의 면적이 제2성분의 면적대비 적어 제1성분간의 공극으로 인하여 빛샘 현상으로 인하여 광특성 저하의 문제가 발생한다.On the other hand, the plate-shaped aspect ratio is a ratio of the short axis length to the long axis length relative to the vertical section is 1/200 or less, 1/300 or less, 1/500 or less. It may be 1/1000 or less, 1/2000 or less, 1/5000 or less, 1/10000 or less, or 1/20000 or less. If the aspect ratio is greater than 1/200, it is difficult to achieve the desired optical properties even when the aspect ratio is reduced through elongation of the polarizer. In particular, when the aspect ratio induces spreading of more than 1/200 and then adjusts the aspect ratio of the final first component through a high draw ratio of 6 times or more, the area of the first component is smaller than that of the second component, so as to form a gap between the first components. Due to the light leakage phenomenon, there is a problem of optical properties deterioration.
결국, 장축길이에 대한 단축길이의 비가 작을수록 기재 내부에 더 적은수의 판상형 중합체를 포함하여도 원하는 광학물성을 달성할 수 있게 된다.As a result, as the ratio of the short axis length to the long axis length is smaller, the desired optical properties can be achieved even if a smaller number of plate-shaped polymers are included in the substrate.
본 발명의 제조방법은 복수개의 해도형 압출구금을 이용하여 제1 성분의 평균 광학적 두께가 상이한 복수개의 해도형 복합류를 제조하고 용융상태에서 이를 합지하므로 별도의 접착층 및/또는 보호층(PBL)을 필요로 하지 않는다. 또한 스킨층 역시 용융상태에서 코어층의 적어도 일면에 형성되므로 별도의 접착단계를 거치지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있다. 또한, 본 발명의 제조방법을 통해 제조된 반사형 편광자는 기재 내부의 폴리머가 판상형을 가지므로 종래의 복굴절성 폴리머를 포함하는 반사형 편광자에 비하여 동일한 면적대비 매우 적은 수의 복굴절성 폴리머를 포함하는 경우에도 매우 우수한 광학물성을 달성할 수 있을 뿐만 아니라 평균광학적 두께가 상이한 복수개의 그룹이 형성되므로 가시광선 파장영역의 S파를 모두 반사할 수 있다.In the manufacturing method of the present invention, a plurality of islands-in-sea composites having different average optical thicknesses of the first component are prepared using a plurality of islands-in-sea extrusion molds and laminated in a molten state so that a separate adhesive layer and / or a protective layer (PBL) are used. Do not need. In addition, the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This can significantly reduce the manufacturing cost. In addition, the reflective polarizer manufactured by the manufacturing method of the present invention includes a very small number of birefringent polymers in the same area compared to the reflective polarizer including a birefringent polymer because the polymer inside the substrate has a plate-like shape. In this case, not only excellent optical properties can be achieved but also a plurality of groups having different average optical thicknesses are formed, so that all S waves in the visible wavelength range can be reflected.
본 발명의 바람직한 일구현예에 따르면, 상기 (5) 단계 이후, (6) 흐름제어부에서 이송된 퍼짐이 유도된 편광자를 냉각 및 평활화하는 단계, (7) 상기 평활화 단계를 거친 편광자를 연신하는 단계; 및 (8) 상기 연신된 편광자를 열고정하는 단계를 더 포함할 수 있다.According to a preferred embodiment of the present invention, after the step (5), (6) cooling and smoothing the polarizer induced by the spread transferred from the flow control unit, (7) stretching the polarizer after the smoothing step ; And (8) heat setting the stretched polarizer.
먼저, (6) 단계로서 흐름제어부에서 이송된 편광자를 냉각 및 평활화하는 단계로서 통상의 반사 편광자의 제조에서 사용되던 냉각하여 이를 고형화하고 이후 캐스팅 롤공정 등을 통해 평활화 단계를 수행할 수 있다.First, as a step (6), cooling and smoothing of the polarizer transferred from the flow control unit may be performed by cooling used in the manufacture of a conventional reflective polarizer to solidify it, and then may be performed through a casting roll process or the like.
이후, 상기 평활화 단계를 거친 편광자를 연신하는 공정을 거친다. 상기 연신은 통상의 반사 편광자의 연신공정을 통해 수행될 수 있으며, 이를 통해 제1 성분과 제2 성분간의 굴절율 차이를 유발하여 계면에서 광변조 현상을 유발할 수 있고, 상기 퍼짐유도된 제1 성분은 연신을 통해 종횡비가 더욱 줄어들게 된다. 따라서, 최종 반사 편광자에서 원하는 제1 성분의 판상형의 종횡비를 유도하여 광학적 두께를 조절하기 위해서는 상기 해도형 압출구금에서 도성분 공급로의 직경, 퍼짐유도 조건 및 연신비를 고려하여 적절하게 설정될 수 있는 것이다. 이를 위하여 바람직하게는 연신공정은 일축연신 또는 이축연신을 수행할 수 있으며, 보다 바람직하게는 일축연신을 수행할 수 있다. 일축연신의 경우 연신방향은 제1 성분 길이방향으로 연신을 수행할 수 있다. 또한 연신비는 3 ~ 12배 일 수 있다. 한편, 등방성 재료를 복굴절성으로 변화시키는 방법은 통상적으로 알려진 것이며 예를 들어 적절한 온도 조건 하에서 연신시키는 경우, 중합체 분자들은 배향되어 재료는 복굴절성으로 될 수 있다.Thereafter, a process of stretching the polarizer after the smoothing step is performed. The stretching may be performed through a stretching process of a conventional reflective polarizer, thereby causing a difference in refractive index between the first component and the second component to cause a light modulation phenomenon at the interface, and the spread-induced first component Stretching further reduces the aspect ratio. Therefore, in order to adjust the optical thickness by inducing the aspect ratio of the plate-shaped shape of the first component desired in the final reflective polarizer, it may be appropriately set in consideration of the diameter, spreading induction condition and elongation ratio of the island-like extrusion hole in the island-like extrusion hole. will be. For this purpose, preferably, the stretching step may be performed uniaxially or biaxially, and more preferably, uniaxially. In the case of uniaxial stretching, the stretching direction may be performed in the longitudinal direction of the first component. In addition, the draw ratio may be 3 to 12 times. On the other hand, methods for changing an isotropic material to birefringence are commonly known and, for example, when drawn under suitable temperature conditions, the polymer molecules can be oriented so that the material becomes birefringent.
다음, (8) 단계로서 상기 연신된 편광자를 열고정하는 단계를 거쳐 최종적인 반사형 편광자를 제조할 수 있다. 상기 열고정은 통상의 방법을 통해 열고정될 수 있으며, 바람직하게는 180 ~ 200℃ 에서 0.1 ~ 3분 동안 IR 히터를 통해 수행될 수 있다. Next, the final reflective polarizer may be manufactured by performing heat setting of the stretched polarizer as (8). The heat setting may be heat setting through a conventional method, preferably may be performed through an IR heater for 0.1 to 3 minutes at 180 ~ 200 ℃.
한편, 본 발명에서 그룹간 목표로 하는 평균 광학적 두께 및 종횡비가 정해지면 이를 고려하여 해도형 압출구금의 규격, 흐름제어부의 규격 및 연신비 등을 적절하게 제어하여 본 발명의 반사형 편광자를 제조할 수 있는 것이다.On the other hand, in the present invention, if the average optical thickness and aspect ratio to be targeted between groups is determined, the reflective polarizer of the present invention can be manufactured by appropriately controlling the specifications of the island-in-the-sea extrusion mold, the specification and the draw ratio of the flow control unit, etc. It is.
본 발명의 바람직한 일실시예에 따르면, 제2 성분의 내부에 복수개의 제1 성분이 분산된 코어층 및 상기 코어층의 적어도 일면에 형성된 스킨층을 포함하는 중합체가 분산된 반사편광자를 제조하는 장치에 있어서, 제1 성분, 제2 성분 및 스킨층 성분이 개별적으로 투입되는 3개 이상의 압출부; 상기 제2 성분 내부에 제1 성분이 분산된 복수개의 해도형 복합류를 형성하고 상기 각각의 해도형 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 제1 성분이 투입된 압출부 및 제2 성분이 투입된 압출부에서 이송된 제1 성분과 제2 성분을 투입하여 제1 성분들의 평균 광학적 두께가 상이한 2개 이상의 해도형 복합류를 형성하는 복수개의 해도형 압출구금을 포함하는 스핀블록부; 상기 스핀블록부에서 이송된 2개 이상의 해도형 복합류를 하나로 합지하여 코어층을 형성하는 컬렉션 블록부; 상기 스킨층 성분이 투입된 압출기와 연통되어 상기 컬렉션 블록에서 이송된 코어층의 적어도 일면에 스킨층을 합지하는 피드블록부; 및 상기 피드블록부에서 이송된 스킨층이 합지된 코어층의 제1 성분이 판상형을 형성하도록 퍼짐을 유도하는 흐름제어부를 포함한다. According to a preferred embodiment of the present invention, an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed, comprising a core layer having a plurality of first components dispersed therein and a skin layer formed on at least one surface of the core layer. At least three extrusion parts into which the first component, the second component and the skin layer component are separately put; The extrusion component in which the first component is injected is formed to form a plurality of islands-in-the-sea composites in which the first component is dispersed inside the second component, and each island-in-the-sea composite compound reflects an S wave of a desired wavelength. And a plurality of islands-in-sea type extrusion molds in which two or more islands-in-sea type extrusion molds are formed by injecting the first component and the second component transferred from the extruded part into which the second component is injected to form two or more islands-in-sea composites having different average optical thicknesses of the first components. Block portion; A collection block unit for laminating two or more islands-in-the-sea composites transferred from the spin block unit into one to form a core layer; A feed block portion in communication with the extruder into which the skin layer component is injected and laminating the skin layer on at least one surface of the core layer transferred from the collection block; And a flow control unit for inducing spreading so that the first component of the core layer on which the skin layer transferred from the feed block unit is laminated forms a plate shape.
도 24는 본 발명의 바람직한 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다. 구체적으로 제1 성분이 투입되는 제1 압출부(220), 제2 성분의 투입되는 제2 압출부(221) 및 스킨층 성분이 투입되는 제3 압출부(222)를 포함한다. 상기 제1 압출부(220)는 4개의 해도형 압출구금(223, 224, 225, 226)를 포함하는 스핀블록부(C)에 연통된다. 이 때 제1 압출부(220)은 상기 4개의 해도형 압출구금(223, 224, 225, 226)에 제1 성분을 용융상태로 공급한다. 제2 압출부(221) 역시 스핀블록부(C)에 연통되며 이에 포함된 4개의 해도형 압출구금(223, 224, 225, 226)에 제2 성분을 용융상태로 공급한다. 4개의 해도형 압출구금(223, 224, 225, 226)을 통해 제2 성분 내부에 제1 성분이 분산되며 서로 다른 평균 광학적 두께를 갖는 4개의 해도형 복합류를 생산한다. 상기 4개의 해도형 압출구금(223, 224, 225, 226)은 도 10 또는 도 15에 도시된 해도형 압출구금일 수 있다. 또한 4개의 해도형 압출구금을 예로 들었지만 일체화된 하나의 해도형 압출구금을 사용할 수 있는 것도 본 발명의 범위에 당연히 포함되는 것이다. 상기 4개의 해도형 압출구금(223, 224, 225, 226)을 통해 제조된 4개의 해도형 복합류들은 컬렉션 블록부(227)에서 하나로 합지되어 하나의 코어층을 형성한다. 이 경우 상기 컬렉션 블록부(227)는 별도로 형성되거나, 일체화된 하나의 해도형 압출구금을 사용하는 경우에는 해도형 압출구금의 내부에서 집합구금의 형태로 해도형 복합류들을 합지할 수 있다. 상기 컬렉션 블록부(227)에서 합지된 코어층은 피드블록부(228)로 이송된 후 제3 압출부(222)에서 이송된 스킨층 성분과 합지된다. 따라서 제3 압출부(222)와 피드블록부(228)는 서로 연통될 수 있다. 이후 스킨층이 합지된 코어층이 흐름제어부(229)로 이송되고 제1 성분의 퍼짐이 유도되어 판상형을 형성하게 된다. 바람직하게는 상기 흐름제어부는 T-다이 또는 코트-행거(coat-hanger) 다이일 수 있다. 한편, 스킨층이 코어층과 동시에 합지되는 경우 제3 압출부(222)는 컬렉션 블록부(227)에 연통될 수 있으며 이 경우 피드블록부(228)은 생략될 수 있다. 24 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to a preferred embodiment of the present invention. Specifically, the first extrusion part 220 to which the first component is injected, the second extrusion part 221 to which the second component is injected, and the third extrusion part 222 to which the skin layer component is injected are included. The first extrusion part 220 is in communication with the spin block portion (C) comprising four islands-type extrusion mold (223, 224, 225, 226). At this time, the first extrusion unit 220 supplies the first island- like extrusion molds 223, 224, 225, and 226 in a molten state. The second extrusion part 221 is also in communication with the spin block part (C) and supplies the second component in the molten state to the four island- like extrusion molds 223, 224, 225, and 226 included therein. Four islands-in-the- sea extrusion molds 223, 224, 225, and 226 produce four islands-in-the-sea composites with the first component dispersed within the second component and having different average optical thicknesses. The four islands-in-the- sea extrusion molds 223, 224, 225, and 226 may be the island-in-the-sea extrusion molds shown in FIG. 10 or 15. In addition, although four islands-type extrusion molds are exemplified, it is naturally included in the scope of the present invention that one integrated islands-type extrusion mold can be used. The four islands-in-the-sea composites manufactured through the four islands-in-the- sea extrusion molds 223, 224, 225, and 226 are laminated together in the collection block portion 227 to form one core layer. In this case, the collection block portion 227 may be formed separately, or in the case of using a single island-in-the-sea type extrusion mold, the island-in-the-sea composites may be laminated in the form of a collective mold inside the island-in-the-sea extrusion mold. The core layer laminated in the collection block portion 227 is transferred to the feed block portion 228 and then laminated with the skin layer component transferred from the third extrusion portion 222. Therefore, the third extrusion part 222 and the feed block portion 228 may be in communication with each other. Thereafter, the core layer in which the skin layer is laminated is transferred to the flow control unit 229, and the spread of the first component is induced to form a plate shape. Preferably the flow control part may be a T-die or a coat-hanger die. On the other hand, when the skin layer is laminated with the core layer at the same time, the third extruded portion 222 may be in communication with the collection block portion 227, in which case the feed block portion 228 may be omitted.
도 25는 본 발명의 바람직한 다른 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 24와 차이점을 중심으로 설명하면, 제1 압출부(220)는 4개의 제1 가압수단들(233, 234, 235, 236)에 제1 성분을 이송한다. 상기 제1 가압수단들(233, 234, 235, 236)은 서로 다른 토출량을 가지며 제1 성분을 복수개의 해도형 압출구금(241, 242, 243, 244)으로 토출한다. 제2 압출부(221)는 4개의 제2 가압수단들(237, 238, 239, 240)에 제2 성분을 이송한다. 상기 제2 가압수단들(237, 238, 239, 240)은 서로 다른 토출량을 가지며 제2 성분을 복수개의 해도형 압출구금(241, 242, 243, 244)로 토출한다. 한편, 제2 가압수단은 1개만 존재하고 이를 복수의 해도형 압출구금(241, 242, 243, 244)으로 토출하는 것 역시 가능하다. 4개의 해도형 압출구금(241, 242, 243, 244)을 통해 제2 성분 내부에 제1 성분이 분산되며 서로 다른 평균 광학적 두께를 갖는 4개의 해도형 복합류를 생산한다. 상기 제1 가압수단들, 제2 가압수단들 및 복수개의 해도형 압출구금은 스핀블록부(C)를 형성한다. 25 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention. 24, the first extrusion part 220 transfers the first component to the four first pressing means 233, 234, 235, and 236. The first pressurizing means 233, 234, 235, and 236 have different discharge amounts, and discharge the first component to the plurality of island-in-the-sea type extrusion holes 241, 242, 243, and 244. The second extrusion part 221 transfers the second component to the four second pressing means 237, 238, 239 and 240. The second pressurizing means 237, 238, 239, and 240 have different discharge amounts and discharge the second component into the plurality of island-in-the-sea type extrusion holes 241, 242, 243, and 244. On the other hand, there is only one second pressurizing means and it is also possible to discharge it to the plurality of islands-type extrusion mold (241, 242, 243, 244). Four islands-in-the- sea extrusion molds 241, 242, 243, and 244 produce four islands-in-the-sea composites with the first component dispersed within the second component and having different average optical thicknesses. The first pressing means, the second pressing means, and the plurality of island-in-the-sea extrusion molds form the spin block portion C.
도 26은 본 발명의 바람직한 또 다른 일구현예에 따른 중합체가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 25와 차이점을 중심으로 간단히 설명하면 4개의 그룹을 갖는 반사형 편광자를 제조하기 위하여 4개의 해도형 압출구금이 아닌 8개의 해도형 압출구금을 사용하며 다단합지를 수행하는 것에 특징이 있다. 구체적으로 제1 가압수단(233)은 2개의 해도형 압출구금(250, 251)에 제1 성분을 토출한다. 제2 가압수단(234) 역시 2개의 해도형 압출구금(250, 251)에 제1 성분을 토출한다. 상기 2개의 해도형 압출구금(250, 251)은 동일한 제1 가압수단 및 제2 가압수단을 통해 제1 성분 및 제2 성분이 이송되었으므로 해도형 복합류간의 평균 광학적 두께가 동일하다. 이러한 방식으로 8개의 해도형 복합류가 형성되며 이들 해도형 복합류들은 2개씩 평균 광학적 두께가 동일하게 된다. 상기 평균 광학적 두께가 동일한 2개의 해도형 복합류들은 각각 제1 합지부(258, 259, 260, 261)에서 합지되어 4개의 해도형 복합류를 형성하고 상기 4개의 해도형 복합류들은 제2 합지부(262)에서 합지되어 하나의 코어층을 형성한다.  26 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another preferred embodiment of the present invention. A brief description of the difference from FIG. 25 will be given in that a multistage lamination is performed using eight islands-in-the-sea extrusion molds instead of four islands-in-the-sea extrusion molds in order to produce a reflective polarizer having four groups. Specifically, the first pressurizing means 233 discharges the first component to the two islands-in-the- sea extrusion molds 250 and 251. The second pressurizing means 234 also discharges the first component to the two islands-in-the- sea extrusion molds 250 and 251. The two islands-in-the-sea type extrusion molds 250 and 251 have the same average optical thickness between islands-in-sea composite flows because the first component and the second component are transferred through the same first pressing means and the second pressing means. In this way, eight islands-in-the-sea composites are formed, and these islands-in-the-sea composites have the same average optical thickness by two. The two islands-in-the-sea composites having the same average optical thickness are respectively laminated at the first laminations 258, 259, 260, and 261 to form four islands-in-the-sea composites, and the four islands-in-the-sea composites are the second sum. It is laminated at branch 262 to form one core layer.
한편, 도 26에서는 하나의 제1 가압수단이 2개의 해도형 압출구금에 제1 성분을 이송하는 것을 설명하였지만, 2개 이상의 해도형 압출구금에 제1 성분을 이송할 수 있는 것은 당업자에게 자명한 것이며 이는 제2 가압수단에도 동일하게 적용될 수 있다. Meanwhile, in FIG. 26, one first pressing means transfers the first component to the two islands-in-the-sea extrusion molds, but it is apparent to those skilled in the art that the first component can be transferred to the two or more islands-in-sea extrusion molds. The same may be applied to the second pressing means.
한편, 본 발명의 바람직한 일구현예에 따르면, 본 발명의 반사형 편광자 포함하는 액정표시장치를 제공한다. 구체적으로 도 27은 본 발명의 반사형 편광자를 채용한 액정표시장치의 일례로서, 프레임(270)상에 반사판(280)이 삽입되고, 상기 반사판(280)의 상면에 냉음극형광램프(290)가 위치한다. 상기 냉음극형광램프(290)의 상면에 광학필름(320)이 위치하며, 상기 광학필름(320)은 확산판(321), 광확산 필름(322), 프리즘 필름(323), 반사형 편광자(324) 및 흡수편광필름(325)의 순으로 적층되나 상기 적층순서는 목적에 따라 달라지거나 일부 구성요소가 생략되거나 복수개로 구비될 수 있다. 예를들어 확산판(321), 광확산 필름(322)이나 프리즘 필름(323) 등은 전체 구성에서 제외될 수 있으며 순서가 바뀌거나 다른 위치에 형성될 수도 있다. 나아가, 위상차 필름(미도시) 등도 액정표시장치 내의 적절한 위치에 삽입될 수 있다. 한편, 상기 광학필름(320)의 상면에 액정표시패널(310)이 몰드프레임(300)에 끼워져 위치할 수 있다. On the other hand, according to a preferred embodiment of the present invention, there is provided a liquid crystal display device comprising the reflective polarizer of the present invention. Specifically, FIG. 27 is an example of a liquid crystal display device employing a reflective polarizer of the present invention, in which a reflecting plate 280 is inserted into a frame 270, and a cold cathode fluorescent lamp 290 is disposed on an upper surface of the reflecting plate 280. Is located. An optical film 320 is positioned on an upper surface of the cold cathode fluorescent lamp 290, and the optical film 320 includes a diffuser plate 321, a light diffusion film 322, a prism film 323, and a reflective polarizer ( 324 and the absorption polarizing film 325 are laminated in this order, but the stacking order may vary depending on the purpose or some components may be omitted or a plurality may be provided. For example, the diffusion plate 321, the light diffusing film 322, the prism film 323, and the like may be excluded from the overall configuration, and may be changed in order or formed at different positions. Furthermore, a retardation film (not shown) or the like may also be inserted at an appropriate position in the liquid crystal display device. Meanwhile, the liquid crystal display panel 310 may be inserted into the mold frame 300 on the upper surface of the optical film 320.
빛의 경로를 중심으로 살펴보면, 냉음극형광램프(290)에서 조사된 빛이 광학필름(320) 중 확산판(321)에 도달한다. 상기 확산판(321)을 통해 전달된 빛은 빛의 진행방향을 광학필름(320)에 대하여 수직으로 진행시키기 위하여 광확산 필름(322)을 통과하게 된다. 상기 광확산 필름(322)을 통과한 필름은 프리즘 필름(323)을 거친 후 반사형 편광자(324)에 도달하여 광변조가 발생하게 된다. 구체적으로 P파는 반사형 편광자(324)를 손실없이 투과하나, S파의 경우 광변조(반사, 산란, 굴절 등)가 발생하여 다시 냉음극형광램프(290)의 뒷면인 반사판(280)에 의해 반사되고 그 빛의 성질이 P파 또는 S파로 랜덤하게 바뀐 후 다시 반사형 편광자(324)를 통과하게 되는 것이다. 그 뒤 흡수편광필름(325)을 지난 후, 액정표시패널(310)에 도달하게 된다. 결국, 상술한 원리로 인하여 본 발명의 반사형 편광자를 액정표시장치에 삽입시켜 사용하는 경우 통상의 반사형 편광자에 비하여 비약적인 휘도의 향상을 기대할 수 있다. 한편, 상기 냉음극형광램프(290)는 LED로 대체될 수 있다.Looking at the center of the light path, the light irradiated from the cold cathode fluorescent lamp 290 reaches the diffusion plate 321 of the optical film 320. The light transmitted through the diffusion plate 321 passes through the light diffusion film 322 in order to propagate the light in the vertical direction with respect to the optical film 320. The film passing through the light diffusion film 322 passes through the prism film 323 and reaches the reflective polarizer 324 to generate light modulation. Specifically, the P wave transmits the reflective polarizer 324 without loss, but in the case of the S wave, light modulation (reflection, scattering, refraction, etc.) is generated, and again, by the reflecting plate 280 that is the rear side of the cold cathode fluorescent lamp 290. Reflected and the nature of the light is randomly changed to P wave or S wave and then pass through the reflective polarizer 324 again. After passing through the absorption polarizing film 325, the liquid crystal display panel 310 is reached. As a result, when the reflective polarizer of the present invention is used by being inserted into the liquid crystal display device, a dramatic improvement in luminance can be expected as compared with a conventional reflective polarizer. Meanwhile, the cold cathode fluorescent lamp 290 may be replaced with an LED.
한편 본 발명에서는 반사형 편광자의 용도를 액정디스플레이를 중심으로 설명하였지만 이에 한정되는 것은 아니며, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.In the present invention, the use of the reflective polarizer has been described based on the liquid crystal display, but the present invention is not limited thereto, and may be widely used in flat panel display technologies such as a projection display, a plasma display, a field emission display, and an electroluminescent display.
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예 및 실험예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples. The following Examples and Experimental Examples are only illustrative of the present invention, and the scope of the present invention is not limited to the following Examples and Experimental Examples.
<실시예 1> <Example 1>
도 25와 같이 공정을 수행하였다. 구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 디메틸테레프탈레이트와 디메틸-2,6-나프탈렌 디카르복실레이트가 6 : 4의 몰비로 혼합된 물질을 에틸렌 글리콜(EG)과 1 : 2의 몰비로 반응시킨 굴절율이 1.64인 co-PEN 및 스킨층 성분으로서 폴리카보네이트 90중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 10 중량%로 중합된 굴절율이 1.58인 폴리카보네이트 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. 제1 성분과 제2성분의 압출 온도는 295℃로 하고 Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, 스킨층은 280℃ 온도 수준에서 압출공정을 수행하였다. 상기 제1 성분을 4개의 제1 가압수단(가와사키사 기어펌프)로 이송하고 제2 성분 역시 4개의 제2 가압수단(가와사키사 기어펌프)으로 이송하였다. 제1 가압수단의 토출량은 각각 순서대로 10.5 kg/h, 5.3 kg/h, 6.9 kg/h, 8.9 kg/h 이고, 제2 가압수단의 토출량은 각각 순서대로 10.5 kg/h, 5.3 kg/h, 6.9 kg/h, 8.9 kg/h 이다. 도 15와 같은 해도형 압출구금 4개를 이용하여 평균광학적두께가 상이한 4개의 복합류를 제조하였다. 구체적으로 제1 가압수단에서 이송된 첫번째 제1 성분과 제2 가압수단에서 이송된 첫번째 제2 성분을 제1 해도형 압출구금에 투입하여 제1 복합류를 제조하였다. 이와 같은 순서로 제4 복합류까지 제조하였다. 제1 ~ 4 해도형 압출구금 중 제4 구금분배판(T4)의 도성분 레이어의 개수는 96개 이고, 도성분 공급로의 구금홀의 직경은 0.17mm이며 전체 4개의 도성분 공급로의 개수는 각각 9300개 였다. 제6 구금분배판의 토출구의 직경은 15 mm × 15 mm 였다. 해도형 압출구금은 동일한 구금을 사용하였다. 상기 4개의 해도형 압출구금을 통해 토출된 4개의 복합류를 별도의 유로를 통해 이송한 후 컬렉션 블록에서 합지하여 하나의 코어층 폴리머를 형성하였다. 3층 구조의 피드블록에서 상기 제3 압출부로부터 스킨층 성분이 유로를 통해 흘러들어 상기 코어층 폴리머의 상하면에 스킨층을 형성하였다. 제1 복합류의 종횡비가 1/13500, 제2복합류의 종횡비가 1/25000 제3 복합류의 종횡비가 1/19500, 제4 복합류의 종횡비가 1/15900가 되도록 상기 스킨층이 형성된 코어층 폴리머를 유속 및 압력구배를 보정하는 도 21, 22의 코트행거다이에서 퍼짐을 유도하였다. 구체적으로 다이 입구의 폭은 200mm이고 두께는 20mm이며 다이출구의 폭은 960 mm이고, 두께는 2.4 mm이며, 유속은 1m/min.이다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하고 MD 방향으로 6배 연신하였다. 그 결과 제1 성분은 길이방향 단면의 장축길이는 변화가 없었으나 단축길이가 줄어들었다. 그 뒤 180℃ 에서 2분 동안 IR 히터를 통해 열고정을 수행하여 도 7과 같은 중합체가 분산된 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.64였다. A층의 판상의 종횡비는 1/101000이고, 층수는 96레이어이며, 단축길이(두께방향)은 100 nm, 장축길이 10.1mm 이고 평균 광학적두께는 164nm, 광학적 두께편차는 20%내외였다. B층의 판상의 종횡비는 1/184000 종횡비, 층수는 96레이어이며, 단축길이(두께방향)은 54.9 nm, 장축길이 10.1mm 이고 평균 광학적두께는 90nm, 광학적 두께편차는 20%내외였다. C층의 판상의 종횡비는 1/148000이고, 층수는 96레이어이며, 단축길이(두께방향)은 68.3nm, 장축길이 10.1mm 이고 평균 광학적두께는 112nm, 광학적 두께편차는 20%내외였다. D층의 판상의 종횡비는 1/120000이고, 층수는 96레이어이며, 단축길이(두께방향)은 84nm, 장축길이 10.1mm 이고 평균 광학적두께는 138nm, 광학적 두께편차는 20%내외였다. 코어층 두께는 59 ㎛이며, 스킨층 두께는 상하면 170.5㎛이다. The process was performed as shown in FIG. Specifically, PEN having a refractive index of 1.65 as a first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as a second component were mixed in an molar ratio of 6: 4 to ethylene glycol (EG) and 1. : Refractive index polymerized to 90% by weight of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as a co-PEN and skin layer component having a refractive index of 1.64 reacted at a molar ratio of 2 Polycarbonate alloys of 1.58 were charged to the first extruded portion, the second extruded portion, and the third extruded portion, respectively. The extrusion temperature of the 1st component and the 2nd component shall be 295 degreeC, and I.V. The polymer flow was corrected through the adjustment, and the skin layer was subjected to the extrusion process at a temperature level of 280 ° C. The first component was transferred to four first pressurizing means (Kawasaki gear pumps) and the second component was also transferred to four second pressurizing means (Kawasaki gear pumps). The discharge amounts of the first pressurization means are respectively 10.5 kg / h, 5.3 kg / h, 6.9 kg / h, and 8.9 kg / h, and the discharge amounts of the second pressurization means are respectively 10.5 kg / h and 5.3 kg / h. , 6.9 kg / h, 8.9 kg / h. Four composites having different average optical thicknesses were prepared using four island-in-the-sea extrusion molds as shown in FIG. 15. Specifically, a first composite flow was prepared by adding the first first component transferred from the first pressing means and the first second component transferred from the second pressing means to the first island-in-the-sea extrusion mold. In this order, up to the fourth composite product was prepared. Among the first to fourth island-in-the-sea extrusion molds, the number of the island component layers of the fourth mold distribution plate T4 is 96, the diameter of the detention hole in the island component supply passage is 0.17 mm, and the total number of four island component supply passages is 9300 each. The diameter of the discharge port of the sixth mold distribution plate was 15 mm x 15 mm. The island-in-the-sea extrusion mold used the same mold. Four composites discharged through the four islands-in-the-sea extrusion molds were transferred through separate flow paths, and then laminated in a collection block to form one core layer polymer. In the feed block having a three-layer structure, a skin layer component flowed through the flow path from the third extrusion part to form a skin layer on the upper and lower surfaces of the core layer polymer. The skin layer is formed such that the aspect ratio of the first composite flow is 1/13500, the aspect ratio of the second composite flow is 1/25000, and the aspect ratio of the third composite flow is 1/19500, and the aspect ratio of the fourth composite flow is 1/15900. The layer polymer was induced to spread in the coat hanger dies of FIGS. 21 and 22, which corrected for flow velocity and pressure gradient. Specifically, the width of the die inlet is 200 mm, the thickness is 20 mm, the width of the die outlet is 960 mm, the thickness is 2.4 mm, The flow rate is 1 m / min. A smoothing process was then performed on the cooling and casting rolls and stretched six times in the MD direction. As a result, the long axis length of the first component was not changed, but the short axis length was reduced. Thereafter, heat setting was performed through an IR heater at 180 ° C. for 2 minutes to prepare a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed. The refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.64. The aspect ratio of the plate A layer was 1/101000, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 10.1 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of layer B was 1/184000 aspect ratio, the number of layers was 96 layers, the short axis length (thickness direction) was 54.9 nm, the major axis length was 10.1 mm, the average optical thickness was 90 nm, and the optical thickness deviation was about 20%. The aspect ratio of the C layer was 1/148000, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 10.1 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of the D layer was 1/120000, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 10.1 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%. Core layer thickness is 59 micrometers, and skin layer thickness is 170.5 micrometers on upper and lower surfaces.
<실시예 2> <Example 2>
실시예 1과 같이 공정을 수행하였다. 구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 디메틸테레프탈레이트와 디메틸-2,6-나프탈렌 디카르복실레이트가 88 : 12의 몰비로 혼합된 물질을 에틸렌 글리콜(EG)과 1 : 2의 몰비로 굴절율이 1.62인 co-PEN 및 폴리카보네이트 90중량% 및 스킨층 성분으로서 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 10 중량%로 중합된 굴절율이 1.58인 폴리카보네이트 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. 중간 조건은 실시예 1과 동일한 상태에서 제1 복합류의 종횡비가 1/8670, 제2 복합류의 종횡비가 1/15730, 제3복합류의 종횡비가 1/12780, 제4 복합류의 종횡비가 1/10320가 되도록 코트-행거 다이에서 퍼짐공정을 수행하였다. 그 뒤 실시예 1과 동일한 공정을 거쳐 도 7과 같은 중합체가 분산된 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.62였다. A층의 판상의 종횡비는 1/52000이고, 층수는 96레이어이며, 단축길이(두께방향)은 100 nm, 장축길이 5.2mm 이고 평균 광학적두께는 164nm, 광학적 두께편차는 20%내외였다. B층의 판상의 종횡비는 1/94370, 층수는 96레이어이며, 단축길이(두께방향)은 55.1 nm, 장축길이 5.2mm 이고 평균 광학적두께는 90.4nm, 광학적 두께편차는 20%내외였다. C층의 판상의 종횡비는 1/76700이고, 층수는 96레이어이며, 단축길이(두께방향)은 67.8nm, 장축길이 5.2mm 이고 평균 광학적두께는 111.2nm, 광학적 두께편차는 20%내외였다. D층의 판상의 종횡비는 1/61900이고, 층수는 96레이어이며, 단축길이(두께방향)은 84nm, 장축길이 5.2mm 이고 평균 광학적두께는 138nm, 광학적 두께편차는 20%내외였다.  The process was carried out as in Example 1. Specifically, PEN having a refractive index of 1.65 as the first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as the second component were mixed in an molar ratio of 88:12. : 90 wt% of co-PEN and polycarbonate having a refractive index of 1.62 at a molar ratio of 2 and a refractive index of 1.58 polymerized with 10 wt% of polycyclohexylene dimethylene terephthalate (PCTG) as a skin layer component. The polycarbonate alloy was charged into the first extrusion section, the second extrusion section and the third extrusion section, respectively. Under the same conditions as in Example 1, the aspect ratio of the first composite flow was 1/8670, the aspect ratio of the second composite flow was 1/15730, the aspect ratio of the third composite flow was 1/12780, and the aspect ratio of the fourth composite flow was Spreading was performed on the coat-hanger die to 1/10320. Thereafter, a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured in the same manner as in Example 1. The refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.62. The aspect ratio of the plate A layer was 1/52000, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 5.2 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%. The aspect ratio of the plate B was 1/94370, the number of layers was 96 layers, the short axis length (thickness direction) was 55.1 nm, the major axis length was 5.2 mm, the average optical thickness was 90.4 nm, and the optical thickness deviation was about 20%. The aspect ratio of the C layer was 1/76700, the number of layers was 96 layers, the short axis length (thickness direction) was 67.8 nm, the major axis length was 5.2 mm, the average optical thickness was 111.2 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of the D layer was 1/61900, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 5.2 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
<실시예 3><Example 3>
실시예 1과 같이 공정을 수행하였다. 구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 폴리카보네이트 70중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 30 중량%로 중합된 굴절율이 1.59인 폴리카보네이트 얼로이 및 스킨층 성분으로서 폴리카보네이트 90중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 10 중량%로 중합된 굴절율이 1.58인 폴리카보네이트 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. 중간 조건은 실시예 1과 동일한 상태에서 제1 복합류의 종횡비가 1/250, 제2복합류의 종횡비가 1/455, 제3 복합류의 종횡비가 1/366, 제4 복합류의 종횡비가 1/297가 되도록 코트-행거 다이에서 퍼짐공정을 수행하였다. 그 뒤 실시예 1과 동일한 공정을 거쳐 도 7과 같은 중합체가 분산된 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.59였다. A층의 판상의 종횡비는 1/1500이고, 층수는 96레이어이며, 단축길이(두께방향)은 100 nm, 장축길이 0.15mm 이고 평균 광학적두께는 164nm, 광학적 두께편차는 20%내외였다. B층의 판상의 종횡비는 1/2780, 층수는 96레이어이며, 단축길이(두께방향)은 55 nm, 장축길이 0.15mm 이고 평균 광학적두께는 90.2nm, 광학적 두께편차는 20%내외였다. C층의 판상의 종횡비는 1/2170이고, 층수는 96레이어이며, 단축길이(두께방향)은 68.3nm, 장축길이 0.15mm 이고 평균 광학적두께는 112nm, 광학적 두께편차는 20%내외였다. D층의 판상의 종횡비는 1/1770이고, 층수는 96레이어이며, 단축길이(두께방향)은 84nm, 장축길이 0.15mm 이고 평균 광학적두께는 138nm, 광학적 두께편차는 20%내외였다.  The process was carried out as in Example 1. Specifically, PEN having a refractive index of 1.65 as the first component and 70 wt% of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as the second component have a refractive index of 1.59. First extrusion of a polycarbonate alloy having a refractive index of 1.58, in which 90% by weight of polycarbonate and 10% by weight of polycyclohexylene dimethylene terephthalate (PCTG) were polymerized as a polycarbonate alloy and skin layer component It injected | thrown-in to the part, 2nd extrusion part, and 3rd extrusion part. Under the same conditions as in Example 1, the aspect ratio of the first composite flow was 1/250, the aspect ratio of the second composite flow was 1/455, the aspect ratio of the third composite flow was 1/366, and the aspect ratio of the fourth composite flow was Spreading was performed on the coat-hanger die to reach 1/297. Thereafter, a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured in the same manner as in Example 1. The refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.59. The aspect ratio of the plate A layer was 1/1500, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 0.15 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of layer B was 1/2780, the number of layers was 96 layers, the short axis length (thickness direction) was 55 nm, the major axis length was 0.15 mm, the average optical thickness was 90.2 nm, and the optical thickness deviation was about 20%. The aspect ratio of the C layer was 1/2170, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 0.15 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of the D layer was 1/1770, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 0.15 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
<비교예 1> Comparative Example 1
제2 성분인 CO-PEN 기재 내부에 직경이 0.158㎛인 제1 성분인 PEN으로 이루어진 복굴절성 섬유가 25000개 포함된 32인치 LCD용 반사형 편광자를 제조하였다. A reflective polarizer for 32-inch LCDs including 25000 birefringent fibers made of PEN, the first component having a diameter of 0.158 μm, was prepared inside the CO-PEN substrate, which is the second component.
<비교예 2> Comparative Example 2
실시예 3과 같이 공정을 수행하였다. 구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 폴리카보네이트 70중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 30 중량%로 중합된 굴절율이 1.59인 폴리카보네이트 얼로이 및 스킨층 성분으로서 폴리카보네이트 90중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 10 중량%로 중합된 굴절율이 1.58인 폴리카보네이트 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. 중간 조건은 실시예 1과 동일한 상태에서 제1 가압수단의 토출량은 각각 순서대로 5.2 kg/h, 2.6 kg/h, 3.4 kg/h, 4.5 kg/h 이고, 제2 가압수단의 토출량은 각각 순서대로 10.5 kg/h, 5.3 kg/h, 6.9 kg/h, 8.9 kg/h 이다. 중간 조건은 실시예 1과 동일한 상태에서 제1 복합류의 종횡비가 1/64, 제2복합류의 종횡비가 1/117 제3 복합류의 종횡비가 1/92, 제4 복합류의 종횡비가 1/75가 되도록 코트-행거 다이에서 퍼짐공정을 수행하였다. 그 뒤 실시예 3과 동일한 공정을 거쳐 도 7과 같은 중합체가 분산된 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.59였다. A층의 판상의 종횡비는 1/380이고, 층수는 96레이어이며, 단축길이(두께방향)은 100 nm, 장축길이 0.038mm 이고 평균 광학적두께는 164nm, 광학적 두께편차는 20%내외였다. B층의 판상의 종횡비는 1/700, 층수는 96레이어이며, 단축길이(두께방향)은 55 nm, 장축길이 0.038mm 이고 평균 광학적두께는 90.2nm, 광학적 두께편차는 20%내외였다. C층의 판상의 종횡비는 1/556이고, 층수는 96레이어이며, 단축길이(두께방향)은 68.3nm, 장축길이 0.038mm 이고 평균 광학적두께는 112nm, 광학적 두께편차는 20%내외였다. D층의 판상의 종횡비는 1/452이고, 층수는 96레이어이며, 단축길이(두께방향)은 84nm, 장축길이 0.038mm 이고 평균 광학적두께는 138nm, 광학적 두께편차는 20%내외였다.  The process was carried out as in Example 3. Specifically, PEN having a refractive index of 1.65 as the first component and 70 wt% of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as the second component have a refractive index of 1.59. First extrusion of a polycarbonate alloy having a refractive index of 1.58, in which 90% by weight of polycarbonate and 10% by weight of polycyclohexylene dimethylene terephthalate (PCTG) were polymerized as a polycarbonate alloy and skin layer component It injected | thrown-in to the part, 2nd extrusion part, and 3rd extrusion part. In the intermediate conditions, the discharge amounts of the first pressurizing means are 5.2 kg / h, 2.6 kg / h, 3.4 kg / h, 4.5 kg / h, respectively, in the same state as in Example 1, and the discharge amounts of the second pressing means are respectively Boulevards are 10.5 kg / h, 5.3 kg / h, 6.9 kg / h and 8.9 kg / h. Under the same conditions as in Example 1, the aspect ratio of the first composite flow was 1/64, the aspect ratio of the second complex flow was 1/117, the aspect ratio of the third composite flow was 1/92, and the aspect ratio of the fourth composite flow was 1. Spreading was performed on the coat-hanger die to be / 75. Thereafter, a reflective polarizer in which the polymer as shown in FIG. 7 was dispersed was manufactured by the same process as in Example 3. The refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.59. The aspect ratio of the plate A layer was 1/380, the number of layers was 96 layers, the short axis length (thickness direction) was 100 nm, the major axis length was 0.038 mm, the average optical thickness was 164 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of the B layer was 1/700, the number of layers was 96 layers, the short axis length (thickness direction) was 55 nm, the major axis length was 0.038 mm, the average optical thickness was 90.2 nm, and the optical thickness deviation was about 20%. The aspect ratio of the C layer was 1/556, the number of layers was 96 layers, the short axis length (thickness direction) was 68.3 nm, the major axis length was 0.038 mm, the average optical thickness was 112 nm, and the optical thickness deviation was about 20%. The plate aspect ratio of the D layer was 1/452, the number of layers was 96 layers, the short axis length (thickness direction) was 84 nm, the major axis length was 0.038 mm, the average optical thickness was 138 nm, and the optical thickness deviation was about 20%.
<실험예>Experimental Example
상기 실시예 1 ~ 3 및 비교예 1 ~ 2를 통해 제조된 반사형 편광자에 대하여 다음과 같은 물성을 평가하여 그 결과를 표 1에 나타내었다.The following physical properties of the reflective polarizers prepared through Examples 1 to 3 and Comparative Examples 1 to 2 were evaluated, and the results are shown in Table 1 below.
1. 투과율1. Transmittance
일본 NIPPON DENSHOKU사의 COH300A 분석설비를 이용하여 ASTM D1003 방법으로 투과축 투과율 및 반사축 투과율을 측정하였다. Transmission axis transmittance and reflection axis transmittance were measured by ASTM D1003 method using COH300A analysis equipment of NIPPON DENSHOKU, Japan.
2. 편광도2. Polarization degree
OTSKA사의 RETS-100 분석설비를 이용하여 편광도를 측정하였다. The degree of polarization was measured using an OTSKA RETS-100 analyzer.
3. 상대휘도3. Relative luminance
상기 제조된 반사형 편광자의 휘도를 측정하기 위하여 하기와 같이 수행하였다. 확산판, 반사형 편광자가 구비된 32" 직하형 백라이트 유니트 위에 패널을 조립 한 후, 탑콘사의 BM-7 측정기를 이용하여 9개 지점의 휘도를 측정하여 평균치를 나타내었다. In order to measure the brightness of the prepared reflective polarizer was performed as follows. After assembling the panel on a 32 "direct backlight unit equipped with a diffuser plate and a reflective polarizer, the luminance was measured at nine points using a BM-7 measuring instrument manufactured by Topcon Corporation.
상대휘도는 실시예 1의 반사형 편광자의 휘도를 100(기준)으로 하였을 때, 다른 실시예 2 ~ 3및 비교예 1 ~ 2의 휘도의 상대값을 나타낸 것이다.  The relative luminance shows the relative values of the luminance of the other Examples 2 to 3 and Comparative Examples 1 to 2 when the luminance of the reflective polarizer of Example 1 is 100 (reference).
표 1
상대휘도(%) 편광도(λ= 550nm) 편광도(λ= 650nm)
편광도 투과축 투과율 반사축 투과율 편광도 투과축 투과율 반사축 투과율
실시예 1 100 85% 88% 7% 83% 88% 8%
실시예 2 97 80% 88% 10% 78% 88% 11%
실시예 3 88 66% 88% 18% 65% 88% 19%
비교예 1 65 43% 89% 35% 35% 89% 43%
비교예 2 80 56% 89% 25% 52% 89% 28%
Table 1
Relative luminance (%) Polarization degree (λ = 550nm) Polarization degree (λ = 650nm)
Polarization degree Transmission axis transmittance Reflective axis transmittance Polarization degree Transmission axis transmittance Reflective axis transmittance
Example 1 100 85% 88% 7% 83% 88% 8%
Example 2 97 80% 88% 10% 78% 88% 11%
Example 3 88 66% 88% 18% 65% 88% 19%
Comparative Example 1 65 43% 89% 35% 35% 89% 43%
Comparative Example 2 80 56% 89% 25% 52% 89% 28%
표 1에서 알 수 있듯이, 본원발명의 실시예 1 ~ 3의 반사형 편광자가 비교예 1 ~ 2의 반사형 편광자에 비하여 현저하게 향상된 광학물성을 갖는 것을 확인할 수 있다.As can be seen from Table 1, it can be confirmed that the reflective polarizers of Examples 1 to 3 of the present invention have significantly improved optical properties compared to the reflective polarizers of Comparative Examples 1 and 2.
본 발명의 반사형 편광자는 광변조 성능이 우수하므로, 광의 변조가 요구되는 분야에서 폭넓게 사용가능하다. 구체적으로 모바일디스플레이, LCD, LED 등 고휘도가 요구되는 액정표시장치, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.Since the reflective polarizer of the present invention has excellent light modulation performance, it can be widely used in a field requiring modulation of light. Specifically, it can be widely used in flat panel display technologies such as liquid crystal displays, projection displays, plasma displays, field emission displays, and electroluminescent displays requiring high brightness such as mobile displays, LCDs, and LEDs.

Claims (18)

  1. 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 기재 내부에 분산되며, 편광자의 수직단면을 기준으로 장축길이에 대한 단축길이의 비인 종횡비가 1/1000 이하인 복수의 판상형 중합체를 포함하며, 상기 복수의 판상형 중합체는 상기 기재와 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 기재는 적어도 하나의 축방향으로 신장되며, 상기 복수의 판상형 중합체는 각각 원하는 파장의 횡파(S파)를 반사하기 위하여 그룹을 형성하며, 상기 그룹은 복수개가 형성되며, 그룹간 판상형 중합체들의 평균 광학적 두께가 상이한 코어층을 포함하는 중합체가 분산된 반사형 편광자.In order to transmit the first polarized light irradiated from the outside and reflect the second polarized light, a plurality of plate-shaped polymers dispersed in the substrate and having an aspect ratio that is a ratio of the short axis length to the long axis length based on the vertical cross section of the polarizer are 1/1000 or less Wherein the plurality of plate-shaped polymers differ in refractive index in at least one axial direction from the substrate, and the substrate is elongated in at least one axial direction, The plurality of plate-shaped polymers each form a group to reflect a shear wave (S wave) of a desired wavelength, wherein the plurality of groups are formed, and a polymer including a core layer having a different average optical thickness of the plate-shaped polymers between groups is dispersed. Reflective polarizer.
  2. 제1항에 있어서, 상기 기재와 중합체의 굴절율의 차이는 신장된 축방향의 굴절율의 차이가 다른 축방향의 굴절율의 차이보다 큰 것을 특징으로 하는 중합체가 분산된 반사형 편광자.The method of claim 1, wherein the difference between the refractive index of the base material and the polymer is a reflective polarizer dispersed in the polymer, characterized in that the difference in the stretched axial refractive index is greater than the difference in the refractive index of the other axial direction.
  3. 제1항에 있어서, 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함하는 중합체가 분산된 반사형 편광자. The reflective polarizer of claim 1, wherein a polymer including a skin layer integrally formed on at least one surface of the core layer is dispersed.
  4. 제3항에 있어서, 상기 코어층과 스킨층 사이에 접착층이 형성되지 않은 것을 특징으로 하는 중합체가 분산된 반사형 편광자.4. The reflective polarizer with dispersed polymer according to claim 3, wherein an adhesive layer is not formed between the core layer and the skin layer.
  5. 제1항에 있어서, 상기 복수의 중합체는 4개의 파장대역의 광을 반사하기 위하여 4개의 그룹을 형성하는 것을 특징으로 하는 중합체가 분산된 반사형 편광자. The reflective polarizer of claim 1, wherein the plurality of polymers form four groups to reflect light in four wavelength bands.
  6. 제1항에 있어서, The method of claim 1,
    상기 동일한 그룹에 포함된 중합체들의 광학적 두께는 평균 광학적 두께 대비 30% 이내의 두께편차를 갖는 것을 특징으로 하는 중합체가 분산된 반사형 편광자. Optically dispersed reflective polarizer of claim 1, wherein the optical thickness of the polymers included in the same group has a thickness deviation within 30% of the average optical thickness.
  7. 제5항에 있어서, 상기 4개의 반사대역은 350nm, 450nm, 550nm 및 650nm의 파장대역을 포함하는 것을 특징으로 하는 중합체가 분산된 반사형 편광자. 6. The reflective polarizer of claim 5, wherein the four reflection bands include wavelength bands of 350 nm, 450 nm, 550 nm, and 650 nm.
  8. 제1항에 있어서, 상기 복수개의 그룹들은 중합체들의 평균 광학적 두께가 5% 이상 상이한 것을 특징으로 하는 중합체가 분산된 반사 편광자 제조방법. The method of claim 1, wherein the plurality of groups differ by at least 5% in average optical thickness of the polymers.
  9. 제1항에 있어서, 상기 복수개의 그룹은 중합체의 길이방향의 단면을 기준으로 복수개의 이격된 레이어를 형성하며, 하나의 그룹에 포함된 복수개의 중합체는 서로 이격되어 배치되고 중합체의 길이방향의 단면을 기준으로 적어도 50개 이상의 이격된 레이어를 형성하는 것을 특징으로 하는 중합체가 분산된 반사형 편광자. The longitudinal cross-section of the polymer of claim 1, wherein the plurality of groups form a plurality of spaced apart layers based on the longitudinal cross-section of the polymer, wherein the plurality of polymers included in one group are disposed spaced apart from each other and the longitudinal cross-section of the polymer Reflective polarizer with a dispersed polymer, characterized in that to form at least 50 or more spaced apart layer.
  10. 제1항에 있어서, 상기 판상형 중합체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 종횡비가 1/5000 이하인 것을 포함하는 중합체가 분산된 반사형 편광자. The reflective polarizer in which the polymer is dispersed according to claim 1, wherein an aspect ratio of the short axis length to the long axis length is 1/5000 or less based on the vertical cross section of the plate-shaped polymer.
  11. 제1항에 있어서, 상기 판상형 중합체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 종횡비가 1/10000 이하인 것을 포함하는 중합체가 분산된 반사형 편광자. The reflective polarizer of claim 1, wherein an aspect ratio of the short axis length to the long axis length is 1/10000 or less based on the vertical cross section of the plate-shaped polymer.
  12. 제1항에 있어서, 상기 판상형 중합체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 종횡비가 1/30000 이하인 것을 포함하는 중합체가 분산된 반사형 편광자. The reflective polarizer of claim 1, wherein an aspect ratio of the short axis length to the long axis length is 1/30000 or less based on the vertical cross section of the plate-shaped polymer.
  13. 제1항에 있어서, 상기 복수의 중합체중 상기 종횡비를 만족하는 중합체가 50% 이상인 것을 특징으로 하는 중합체가 분산된 반사형 편광자.The reflective polarizer with dispersed polymer according to claim 1, wherein the polymer satisfying the aspect ratio is 50% or more among the plurality of polymers.
  14. 제1항에 있어서, 상기 그룹과 그룹사이에 접착층이 형성되지 않는 것을 특징으로 하는 중합체가 분산된 반사형 편광자. The reflective polarizer with dispersed polymer according to claim 1, wherein an adhesive layer is not formed between the groups.
  15. 제9항에 있어서, 상이한 레이어를 형성하는 입접한 중합체들의 평균거리(d2)보다 동일한 레이어를 형성하는 인접한 중합체들의 평균거리(d1)가 작은 것을 특징으로 하는 중합체가 분산된 반사형 편광자.10. A reflective polarizer with dispersed polymer according to claim 9, wherein the average distance d 1 of adjacent polymers forming the same layer is smaller than the average distance d 2 of indented polymers forming different layers.
  16. 제1항에 있어서, 동일한 그룹을 형성하는 인접한 중합체간의 간격의 최대값이 서로 이웃하는 그룹사이의 인접한 중합체간의 간격의 최대값보다 작은 것을 특징으로 하는 중합체가 분산된 반사형 편광자. The reflective polarizer of claim 1, wherein the maximum value of the spacing between adjacent polymers forming the same group is smaller than the maximum value of the spacing between adjacent polymers between adjacent groups.
  17. 제1항에 있어서, 상기 중합체의 수직단면의 단축길이는 0.01 ~ 1.0㎛ 인 것을 특징으로 하는 중합체가 분산된 반사형 편광자. The reflective polarizer having a polymer dispersed therein according to claim 1, wherein the short axis length of the vertical section of the polymer is 0.01 to 1.0 mu m.
  18. 제1항의 반사형 편광자를 포함하는 백라이트 유니트.A backlight unit comprising the reflective polarizer of claim 1.
PCT/KR2012/011632 2011-12-29 2012-12-27 Reflective polarizer having dispersed polymer WO2013100661A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0145745 2011-12-29
KR1020110145745A KR101315003B1 (en) 2011-12-29 2011-12-29 Reflective polizer dispered polymer
KR10-2011-0145746 2011-12-29
KR1020110145746A KR101340107B1 (en) 2011-12-29 2011-12-29 Reflective polizer dispered polymer
KR10-2011-0145747 2011-12-29
KR1020110145747A KR101311090B1 (en) 2011-12-29 2011-12-29 Reflective polizer dispered polymer

Publications (1)

Publication Number Publication Date
WO2013100661A1 true WO2013100661A1 (en) 2013-07-04

Family

ID=48698003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011632 WO2013100661A1 (en) 2011-12-29 2012-12-27 Reflective polarizer having dispersed polymer

Country Status (2)

Country Link
TW (1) TWI543865B (en)
WO (1) WO2013100661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102364A1 (en) * 2013-12-31 2015-07-09 도레이케미칼 주식회사 Random dispersion-type reflection polarizer
JPWO2017081944A1 (en) * 2015-11-13 2018-10-04 コニカミノルタ株式会社 Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
KR20080056687A (en) * 2006-12-18 2008-06-23 롬 앤드 하스 덴마크 파이낸스 에이에스 Shaped article with polymer domains and process
KR20090028609A (en) * 2006-06-05 2009-03-18 롬 앤드 하스 덴마크 파이낸스 에이에스 Reflective polarizer, fiber and process for making
KR20090042210A (en) * 2006-06-05 2009-04-29 롬 앤드 하스 덴마크 파이낸스 에이에스 Diffusely-reflecting polarizer having nearly isotropic continuous phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
KR20090028609A (en) * 2006-06-05 2009-03-18 롬 앤드 하스 덴마크 파이낸스 에이에스 Reflective polarizer, fiber and process for making
KR20090042210A (en) * 2006-06-05 2009-04-29 롬 앤드 하스 덴마크 파이낸스 에이에스 Diffusely-reflecting polarizer having nearly isotropic continuous phase
KR20080056687A (en) * 2006-12-18 2008-06-23 롬 앤드 하스 덴마크 파이낸스 에이에스 Shaped article with polymer domains and process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102364A1 (en) * 2013-12-31 2015-07-09 도레이케미칼 주식회사 Random dispersion-type reflection polarizer
EP3091378A4 (en) * 2013-12-31 2017-08-16 Toray Chemical Korea Inc. Random dispersion-type reflection polarizer
US9952363B2 (en) 2013-12-31 2018-04-24 Toray Korea Chemical, Inc. Random dispersion-type reflection polarizer
JPWO2017081944A1 (en) * 2015-11-13 2018-10-04 コニカミノルタ株式会社 Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
TW201334963A (en) 2013-09-01
TWI543865B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
WO2012108674A2 (en) Method and apparatus for manufacturing a reflective polarizer having a dispersed polymer
WO2016208987A1 (en) Reflective polarizer and backlight unit including same
WO2013100662A1 (en) Method and apparatus for manufacturing reflective polarizer having dispersed polymer
WO2013100661A1 (en) Reflective polarizer having dispersed polymer
KR101354297B1 (en) Multilayer reflective polizer
KR20140021232A (en) Manufacturing method of multilayer reflective polizer and device thereof
WO2013100663A1 (en) Multilayer reflective polarizer
KR101930546B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101354360B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930960B1 (en) Integrated optical film
KR101940322B1 (en) Integrated optical film
WO2013100664A1 (en) Method and apparatus for manufacturing multilayer reflective polarizer
KR101354364B1 (en) Multilayer reflective polizer
KR101930547B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101931377B1 (en) Reflective polarizer having dispered polymer
KR20140021259A (en) Multilayer reflective polizer
KR20130077173A (en) Reflective polizer dispered polymer
KR101354284B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101940321B1 (en) Multilayer reflective polizer
KR101930548B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101354373B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101940320B1 (en) Multilayer reflective polizer
KR101930549B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101340107B1 (en) Reflective polizer dispered polymer
KR20140021257A (en) Reflective polizer dispered polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861263

Country of ref document: EP

Kind code of ref document: A1