WO2013100664A1 - Method and apparatus for manufacturing multilayer reflective polarizer - Google Patents

Method and apparatus for manufacturing multilayer reflective polarizer Download PDF

Info

Publication number
WO2013100664A1
WO2013100664A1 PCT/KR2012/011635 KR2012011635W WO2013100664A1 WO 2013100664 A1 WO2013100664 A1 WO 2013100664A1 KR 2012011635 W KR2012011635 W KR 2012011635W WO 2013100664 A1 WO2013100664 A1 WO 2013100664A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
layer
reflective polarizer
slit
core layer
Prior art date
Application number
PCT/KR2012/011635
Other languages
French (fr)
Korean (ko)
Inventor
조덕재
한정완
백명기
고승진
이황규
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110145132A external-priority patent/KR101354284B1/en
Priority claimed from KR1020110145854A external-priority patent/KR101354373B1/en
Priority claimed from KR1020110145853A external-priority patent/KR101354360B1/en
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Publication of WO2013100664A1 publication Critical patent/WO2013100664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Definitions

  • the present invention relates to a method and apparatus for manufacturing a multilayer reflective polarizer, and more particularly, to a core layer including a plurality of groups having different average optical thicknesses within the core layer and not forming an adhesive layer between the groups, and integrally with the core layer.
  • the present invention provides a method and apparatus for manufacturing a multilayer reflective polarizer including a formed skin layer.
  • LCD liquid crystal display
  • PDP plasma display
  • FED field emission display
  • ELD electroluminescent display
  • LCD displays are currently expanding their range of use, including notebooks, personal computer monitors, LCD TVs, automobiles, and airplanes, accounting for about 80% of the flat panel market, and are booming to date due to a sharp increase in LCD demand worldwide.
  • liquid crystal displays arrange a liquid crystal and an electrode matrix between a pair of light absorbing optical films.
  • the liquid crystal portion has an optical state that is changed accordingly by moving the liquid crystal portion by an electric field generated by applying a voltage to two electrodes. This process displays an image of a 'pixel' carrying information using polarization in a specific direction.
  • liquid crystal displays include a front optical film and a back optical film that induce polarization.
  • the optical film used in such a liquid crystal display does not necessarily have high utilization efficiency of light emitted from the backlight. This is because 50% or more of the light emitted from the backlight is absorbed by the back side optical film (absorption type polarizing film).
  • a reflective polarizer is provided between the optical cavity and the liquid crystal assembly.
  • FIG. 1 is a view showing the optical principle of a conventional reflective polarizer. Specifically, P-polarized light from the optical cavity to the liquid crystal assembly passes through the reflective polarizer to the liquid crystal assembly, and S-polarized light is reflected from the reflective polarizer to the optical cavity and then polarized light on the diffuse reflection surface of the optical cavity. The direction is reflected in a randomized state and then transmitted back to the reflective polarizer so that S-polarized light is converted into P-polarized light which can pass through the polarizer of the liquid crystal assembly, and then passed through the reflective polarizer to be transmitted to the liquid crystal assembly.
  • the selective reflection of S-polarized light and the transmission of P-polarized light with respect to the incident light of the reflective polarizer are based on the refractive index of each optical layer in a state where an optical layer on a plate having anisotropic refractive index and an optical layer on a plate having an isotropic refractive index are laminated alternately. It is made by the optical thickness setting of each optical layer and the refractive index change of the optical layer according to the difference and the stretching process of the stacked optical layers.
  • the light incident to the reflective polarizer repeats the reflection of S-polarized light and the transmission of P-polarized light while passing through each optical layer, and eventually only the P-polarized light of the incident polarized light is transmitted to the liquid crystal assembly.
  • the reflected S-polarized light is reflected in a state in which the polarization state is randomized at the diffuse reflection surface of the optical cavity and is transmitted to the reflective polarizer again. As a result, power loss can be reduced together with the loss of light generated from the light source.
  • the conventional reflective polarizer has an optical thickness and a refractive index between the optical layers that can be optimized for selective reflection and transmission of incident polarization by alternately stacking isotropic optical layers and anisotropic optical layers having different refractive indices. Since it is manufactured so as to have it, there existed a problem that the manufacturing process of a reflective polarizer was complicated. In particular, since each optical layer of the reflective polarizer has a flat plate structure, it is necessary to separate P-polarized light and S-polarized light in response to a wide range of incident angles of incident polarization, so that the number of optical layers is excessively increased and the production cost is exponentially increased. There was a growing problem. In addition, due to the structure in which the number of laminated layers of the optical layer is excessively formed, there is a problem that the optical performance decrease due to light loss.
  • the multilayer reflective polarizer has skin layers 9 and 10 formed on both surfaces of the core layer 8.
  • the core layer 8 is divided into four groups (1, 2, 3, 4), each group having an isotropic layer and an anisotropic layer alternately stacked to form approximately 200 layers.
  • a separate adhesive layer (5, 6, 7) for bonding them.
  • each group since each group has a very thin thickness of about 200 layers, each group may be damaged when co-extrusion of these groups individually, so the groups often include a protective layer (PBL).
  • PBL protective layer
  • the thickness of the core layer becomes thick and the manufacturing cost increases.
  • the reflective polarizer included in the display panel has a limitation on the thickness of the core layer for slimming, when the adhesive layer is formed on the core layer and / or the skin layer, the core layer is reduced by the thickness thereof, which is very good for improving optical properties. There was no problem.
  • the inside of the core layer and the core layer and the skin layer are bonded by an adhesive layer, there is a problem in that an interlayer peeling phenomenon occurs when an external force is applied, when a long time passes, or when the storage location is poor.
  • the defect rate is excessively high but also there is a problem in that offset interference with the light source occurs due to the formation of the adhesive layer.
  • Skin layers 9 and 10 are formed on both sides of the core layer 8, and separate adhesive layers 11 and 12 are formed to couple them between the core layer 8 and the skin layers 9 and 10. do.
  • peeling may occur due to incompatibility, and the crystallization degree is about 15%.
  • the crystallization degree is about 15%.
  • in order to apply the polycarbonate sheet of the non-stretching process there was no choice but to form an adhesive layer.
  • the addition of the adhesive layer process results in a decrease in yield due to external foreign matters and process defects.
  • FIG. 3 is a perspective view of a reflective polarizer 20 including a rod-shaped polymer, in which the birefringent polymer 22 extending in the longitudinal direction is arranged in one direction in the substrate 21.
  • the birefringent interface between the substrate 21 and the birefringent polymer 22 causes the light modulation effect to perform the function of the reflective polarizer.
  • FIG. 4 is a cross-sectional view of a birefringent island-in-the-sea yarn included in the substrate, and the birefringent island-in-the-sea yarn may generate a light modulation effect at an optical modulation interface between the inner and sea portions of the inner portion, and thus, a very large number such as the birefringent polymer described above. Optical properties can be achieved even if the island-in-the-sea yarns are not disposed.
  • the birefringent island-in-the-sea yarn is a fiber
  • problems of compatibility, ease of handling, and adhesion with a substrate which is a polymer have arisen.
  • due to the circular shape light scattering is induced, and thus the reflection polarization efficiency of the visible wavelength is reduced, and the polarization characteristic is lowered compared to the existing products, thereby limiting the luminance improvement.
  • the voids cause the optical leakage due to light leakage, that is, light loss.
  • a limitation occurs in the reflection and polarization characteristics due to the limitation of the layer configuration due to the organization of tissue in the form of a fabric.
  • the present invention relates to a method and apparatus for manufacturing a multilayer reflective polarizer, and more particularly, to a method for manufacturing a multilayer reflective polarizer including a core layer formed of a plurality of groups having different average optical thicknesses and a skin layer formed simultaneously with the core layer. To provide a device.
  • a method for manufacturing a multilayer reflective polarizer of the present invention for achieving the above object of the present invention is a method of manufacturing a multilayer reflective polarizer comprising a core layer of the first component and the second component alternately laminated, (1) the first Supplying the component and the second component to the extruders, respectively; (2) forming two or more multilayered composites in which the repeating units of the first component and the second component are alternately laminated, wherein each of the multilayered composites reflects a shear wave (S wave) of a desired wavelength; Injecting the first component and the second component transferred from the plurality of slit-type extrusion molds to form two or more multilayered composites having different average optical thicknesses of the repeating units; (3) laminating the two or more multilayered composites into one to form a core layer; And (4) inducing spreading of the core layer in the flow control unit.
  • S wave shear wave
  • the method may further include laminating the skin layer component transferred from the unit.
  • the skin layer component transferred from the extruder may be laminated on at least one surface of the core layer in step (3). have.
  • a multilayer reflective polarizer including a core layer in which a first component and a second component are alternately laminated, a first component and a second component are separately added.
  • the repeating unit of the first component and the second component forms two or more multilayered composite flows in which the laminated units are alternately stacked, and each of the multilayer composite flows is transferred from the extruder to reflect the shear wave (S wave) of a desired wavelength.
  • a spin block portion including a slit-type extrusion block for inputting a first component and a second component to produce two or more multilayered composites having different average optical thicknesses of repeating units;
  • a collection block unit for laminating the two or more multi-layer composite streams transferred from the spin block unit to one to form a core layer;
  • a flow control unit for inducing the spread of the core layer transferred from the collection block unit.
  • the extruder comprises an extruder in which the skin layer components are separately injected
  • the multi-layered composites communicated with the extruder into which the skin layer components are injected and transferred from the spin block unit.
  • the at least one surface may further include a feed block unit for laminating the skin layer.
  • the extruder when the extruder includes an extruded portion into which the skin layer component is separately injected, at least one surface of the core layer formed in communication with the extruder into which the skin layer component is injected and the collection block portion
  • the skin layer can be laminated.
  • the spin block portion discharges the first component conveyed from the extruded portion and the first pressing means for supplying to the island-in-the-sea extrusion mold and the second component conveyed from the extruded portion It may include a second pressing means for discharging to supply to the island-in-the-sea extrusion mold.
  • a plurality of multi-layered composites having different average optical thicknesses are manufactured using a plurality of slit-type extrusion molds and laminated in a molten state, so that a separate adhesive layer and / or protective layer (PBL) is formed inside the core layer. It can reflect all the S-waves in the visible wavelength range without the need.
  • the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness.
  • FIG. 1 is a schematic diagram illustrating the principle of a conventional reflective polarizer.
  • DBEF multilayer reflective polarizer
  • FIG 3 is a perspective view of a reflective polarizer comprising a rod-shaped polymer.
  • FIG. 4 is a cross-sectional view showing a path of light incident on a birefringent island-in-the-sea yarn used in a reflective polarizer.
  • Figure 5 is a perspective view of the distribution plate of the slit-shaped extrusion mold that can be used in the present invention
  • Figure 6 is a bottom view of them
  • Figure 7 is a bond.
  • FIG. 8 is a cross-sectional view of a multilayer composite according to a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram comprising two first press means to form two multi-layered composite flows in accordance with a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram comprising two second pressurizing means to form two multi-layered composite flows in accordance with a preferred embodiment of the present invention.
  • Figure 11 is a schematic diagram showing the lamination of the multi-layered composites and skin layer according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a coat-hanger die in accordance with a preferred embodiment of the present invention
  • FIG. 13 is a side view.
  • FIG. 14 is a cross-sectional view of a multilayer reflective polarizer in accordance with a preferred embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a multilayer reflective polarizer according to another exemplary embodiment of the present invention.
  • 16 is a cross-sectional view of a multilayer reflective polarizer according to another preferred embodiment of the present invention.
  • 17 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to a preferred embodiment of the present invention.
  • FIG. 18 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to another preferred embodiment of the present invention.
  • FIG. 19 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to another preferred embodiment of the present invention.
  • FIG. 20 is an exploded perspective view of a liquid crystal display device including the reflective polarizer of the present invention.
  • a method of manufacturing a multilayer reflective polarizer comprising a core layer of alternating first and second components, the method comprising: (1) supplying first and second components to the extruders, respectively; (2) forming two or more multilayered composites in which the repeating units of the first component and the second component are alternately laminated, wherein each of the multilayered composites reflects a shear wave (S wave) of a desired wavelength; Injecting the first component and the second component transferred from the plurality of slit-type extrusion molds to form two or more multilayered composites having different average optical thicknesses of the repeating units; (3) laminating the two or more multilayered composites into one to form a core layer; And (4) inducing spreading of the core layer in the flow control unit.
  • S wave shear wave
  • the method may further include laminating the skin layer component transferred from the unit.
  • the skin layer component transferred from the extruder may be laminated on at least one surface of the core layer in step (3). have.
  • the first component, the second component and the skin layer component are respectively supplied to the extruded parts. If only the core layer is present, the skin layer component is omitted.
  • the first component may be any polymer as long as it is used in a reflective polarizer in which a conventional polymer is dispersed as a polymer dispersed in the second component forming a substrate, and preferably, polyethylene naphthalate (PEN), copolyethylene, Phthalate (co-PEN), Polyethylene terephthalate (PET), Polycarbonate (PC), Polycarbonate (PC) alloy, Polystyrene (PS), Heat-resistant polystyrene (PS), Polymethylmethacrylate (PMMA), Polybutyl Rent Terephthalate (PBT), Polypropylene (PP), Polyethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Polyurethane (PU), Polyimide (PI), Polyvinyl Chloride (PVC), Styrene Acrylic Nitrile Blend (
  • the second component may be used without limitation as long as the second component is used as a material of the substrate in the reflective polarizer in which the polymer is dispersed.
  • the polyethylene naphthalate (PEN) and the copolyethylene naphthalate (co-PEN) are used.
  • PET Polyethylene terephthalate
  • PC polycarbonate
  • PC polycarbonate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS heat-resistant polystyrene
  • PMMA polymethyl methacrylate
  • PBT polybutylene terephthalate
  • PP Polypropylene
  • PE polyethylene
  • ABS acrylonitrile butadiene styrene
  • PU polyurethane
  • PI polyimide
  • PVC polyvinyl chloride
  • SAN styrene acrylonitrile mixture
  • EVA Ethylene vinyl acetate
  • PA polyamide
  • POM polyacetal
  • UF melanin
  • MF unsaturated polyester
  • UP silicone
  • the skin layer component may be used without limitation as long as it is typically used in a reflective polarizer in which a polymer is dispersed.
  • a polymer is dispersed.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS Heat-resistant polystyrene
  • PMMA polymethyl methacrylate
  • PBT polybutylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • ABS acrylonitrile butadiene styrene
  • PU polyurethane
  • PI Polyimide
  • PVC polyvinyl chloride
  • SAN styrene acrylonitrile mixture
  • EVA ethylene vinyl acetate
  • PA polyamide
  • POM polyacetal
  • phenol epoxy
  • EP Urea
  • UF melanin
  • MF melanin
  • UP unsaturated polyester
  • SI silicone
  • cycloolefin polymers can be used.
  • the polycarbonate alloy is preferably made of polycarbonate and modified glycol polycyclohexylene dimethylene terephthalate (PCTG), more preferably polycarbonate and modified glycol polycyclohex
  • the silane dimethylene terephthalate (PCTG) may be a polycarbonate alloy having a weight ratio of 15:85 to 85:15.
  • the skin layer of the present invention preferably uses a material having a small change in refractive index in spreading and stretching processes, and more preferably, may be polycarbonate or polycarbonate alloy.
  • the first component, the second component and the skin layer component can be supplied separately to the independent extrusion parts, in this case, the extrusion part may be composed of three or more.
  • a feed to one extruder comprising a separate feed passage and distributor so that the polymers do not mix.
  • the extruder may be an extruder, which may further include heating means or the like to convert the supplied polymers into a liquid phase.
  • step (2) two or more multilayer composite flows in which the repeating units of the first component and the second component are alternately laminated are formed, and each of the multilayer composite flows reflects the shear wave (S wave) of a desired wavelength.
  • the first component and the second component transferred from the extruder are introduced into a plurality of slit-type extrusion slots to form two or more multi-layered composite flows having different average optical thicknesses of the repeating units.
  • FIGS. 5 to 7 are perspective views, bottom views, and coupling views of the distribution plates of the slit-type extrusion mold that may be used in the present invention. It is a perspective view which shows the coupling structure of the distribution board of a slit-type extrusion mold.
  • the first mold distribution plate S1 positioned at the upper end of the slit-type extrusion mold may be composed of a first component supply passage 50 and a second component supply passage 51 therein. Through this, the first component transferred through the extruder may be introduced into the first component supply path 50, and the second component may be supplied to the second supply path 51. In some cases, a plurality of such supply paths may be formed.
  • the polymers that have passed through the first mold distribution plate S1 are transferred to a second mold distribution plate S2 positioned below.
  • the first component introduced through the first component supply path 50 is branched and transferred to the plurality of first component supply paths 52 and 53 along the flow path.
  • the second component introduced through the second component supply passage 51 is branched and transferred to the plurality of second component supply passages 54, 55, 56 along the flow path.
  • the polymers that have passed through the second detention distribution plate S2 are transferred to the third detention distribution plate S3 located below.
  • the first components introduced through the first component supply paths 52 and 53 are first component supply paths 60, 61, 62, 63, 67, 68, 69, respectively formed in the third detention distribution plate S3. And branched along the flow path.
  • the second components introduced through the second component supply paths 54, 55, and 56 are second component supply paths 57, 58, 59, 64, 65, and 66 formed in the third detention distribution plate S3, respectively.
  • 71, 72, 73 are branched along the flow path.
  • the first component introduced through some of the first component supply paths 60 and 67 among the first component supply paths formed in the third prison distribution plate S3 is flow paths formed in the fourth prison distribution plate S4.
  • the first component introduced through some of the second component supply paths 57, 64, and 71 among the second component supply paths formed in the third prison distribution plate S3 is a flow path formed in the fourth prison distribution plate S4. Is transferred to the second flow path 75.
  • the first component conveyed through the first component supply paths of the third prison distribution plate S3 is distributed to the odd-numbered flow paths 74, 76, 78, 80 of the fourth prison distribution plate S4.
  • the second component transferred through the second component supply paths of the third prison distribution plate S3 is transferred to the even-numbered flow paths 75, 77, 79 of the fourth prison distribution plate S4.
  • the first component and the second component may be alternately stacked.
  • a lower portion of the fourth detention distribution plate S4 may further include a detention distribution plate (not shown) which is perpendicular to the flow direction of the fourth detention distribution plate and has a larger number of flow passages, and repeats the desired layer. It would be apparent to one skilled in the art to extend the number of flow paths by a number.
  • the first component transferred through the odd-numbered flow paths 74, 76, 78, and 80 of the fourth detention distribution plate S4 on the same principle is the odd-numbered flow paths 81, of the fifth detention distribution plate S5.
  • FIG. 6 is a bottom view of the slit-type extrusion mold of FIG. 5, and the discharge path of the fifth mold distribution plate S5 is integrally formed with the slit type, not spaced apart from the hole type.
  • the first component and the second component form respective layers. Therefore, the number of layers of the multilayer composite stream may be determined according to the number of slits of the fifth mold distribution plate S5.
  • the preferred number of layers may be at least 100, more preferably at least 150, even more preferably at least 200 and most preferably at least 300.
  • the multi-layered composite stream is discharged through the discharge port 94 of the sixth mold distribution plate.
  • 8 is a cross-sectional view of a multi-layered composite, in which the first components 100 and 102 and the second components 101 and 103 are alternately stacked. At this time, one first component 100 and the stacked second component 101 may be defined as a repeating unit, and one complex flow includes a plurality of repeating units.
  • Figures 5 to 7 are examples of the detention distribution plate that can be used in the slit-type extrusion mold that can be used of the present invention, the detention distribution plate to produce a multilayer composite flow of the first component and the second component alternately laminated It will be apparent to those skilled in the art that the number, structure, size of the hole, size, shape, slit size of the fifth mold distribution plate, size of the discharge hole, etc. are properly designed and used by those skilled in the art.
  • the diameter of the slits in the bottom view of the fifth mold distribution plate may be 0.17 ⁇ 0.6mm
  • the diameter of the discharge port may be 5 ⁇ 50mm, but is not limited thereto, and then, in consideration of the spreading process and the stretching process Setting the diameter of the slit and the like is apparent to those skilled in the art.
  • the plurality of multi-layer composites are different in the optical thickness, the number of repeating units of the repeating unit of the first and second components laminated alternately to form a different multi-layer composite flow to cover the wavelength range of the different light, respectively can do.
  • the size of the detention hole, the thickness of the slit, the shape or the number of layers formed in each multi-layer extrusion hole may be different.
  • the reflective polarizer manufactured through the spreading and stretching process may be formed so that a plurality of repeating units may be combined to form a group, and each group may be set to have a different average optical thickness.
  • optical thickness means n (refractive index) x d (physical thickness). Therefore, if two multilayer composites are formed, if the first component and the second component are the same between the multilayer composites and there is no difference in refractive index, the optical thickness is proportional to the size of the physical thickness d. Therefore, by varying the average value of the physical thickness (d) of the repeating unit of the first component and the second component included in each multilayer composite stream, it is possible to derive the difference in optical thickness between the multilayer composite stream. To this end, by designing the thickness of the slits included in the slit-type extrusion mold differently for each extrusion mold, it is possible to produce multi-layered composites having different average optical thicknesses.
  • the average optical thickness of the multilayer composites should be determined to correspond to various light wavelengths.
  • the average optical thickness of the repeating units between the multilayered composites May differ by at least 5%, more preferably by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
  • the thicknesses of the first component and the second component forming the same repeating unit may be the same.
  • the number, cross-sectional area, shape, diameter of the slit, etc. of the detention holes may also be the same or different in the slit-type extrusion mold forming one multilayer composite flow.
  • the optical thickness of the repeating units forming the same multilayer composite stream may have a deviation of preferably within 20%, more preferably within 15% of the average optical thickness. For example, if the average optical thickness of the repeating units of the first multilayer composite flow is 200 nm, the repeating units forming the same first multilayer composite flow may have an optical thickness variation within about 20%.
  • the wavelength and the optical thickness of the light are defined according to the following Equation 1.
  • is the wavelength of light (nm)
  • n is the refractive index
  • d is the physical thickness (nm)
  • the optical thickness (nd) can cover not only the wavelength of the target light but also the wavelength range of the light including the same, which is a great help in improving the overall uniform optical properties.
  • d denotes the thickness of one layer, and since the repeating unit is composed of two layers of the first component and the second component, if the physical thicknesses of the first component and the second component are different, the repeating unit and the wavelength of the light Can be defined according to relation 2 below.
  • n 1 is the refractive index of one layer
  • n 2 is the refractive index of two layers
  • d 1 is the physical thickness of one layer (nm)
  • d 2 is the physical thickness of two layers (nm).
  • optical thickness deviation can be achieved by giving a deviation in the number, cross-sectional area, shape, diameter of the slit, etc. in a single slit-type extruded hole, or naturally by the minute minute pressure distribution during the spreading process. It can be.
  • the multiple multilayer composites of the present invention can cover the entire visible light region by differently setting the average optical thickness of the repeating units constituting the composite flow, and the optical thickness appropriate to the repeating units forming one composite flow. Deviation can be made to reflect the S wave of a wide wavelength range.
  • one multi-layer composite flow is produced in one slit-type extrusion die, but a section is added to the inside of the slit-type extrusion die to produce a plurality of multi-layer composite flows, and one aggregated die is produced. It is also within the scope of the present invention to correspond to the integrated slit-type extruded through one laminated through one.
  • the thickness of the slits included in the slit-type extrusion die differently for each extrusion die, it is possible to produce a multi-layer composites having a different average optical thickness.
  • the first component conveyed in the extruded portion between the steps (1) and (2) is a plurality of agents having different discharge amounts in order to have a different average optical thickness between the multilayer composite flow 1 may further include the step of being discharged into the different slit-type extrusion hole through the pressing means.
  • FIG. 9 is a schematic view including a first pressurizing means for forming two multi-layered composite flows, in which a first component conveyed from an extrusion unit (not shown) includes the plurality of first pressurizing means 130 and 131. It is branched to and supplied to the respective slit-type extrusion holes 132 and 133 separately from the respective first pressing means 130 and 131.
  • the first pressing means (130, 131) has a different discharge amount from each other through which the area difference occurs and each of the slit-type extrusion slots 132, 133 are the same specifications (when the diameter of the slit, etc.) is the same
  • the average optical thickness of the first multi-layer composites and the second multi-layer composites formed through may be different.
  • the discharge amount of the first pressing means (130, 131) may be preferably 1 to 100 kg / hr, but is not limited thereto.
  • one first pressing means transfers the first component to the two slit-type extrusion molds, and the two multilayer composite flows formed from the two slit-type extrusion molds are laminated to form one multilayer composite flow, and then one It is also possible for groups to be formed. In this case, four groups may be formed through the four first component pressing means and the eight slit extrusion holes. It is also possible for one first pressing means to convey the first component to three or more slit-type extrusion fittings.
  • the second component conveyed in the extrusion section between the steps (1) and (2) is a plurality of agents having different discharge amounts in order to have a different average optical thickness between the multilayer composite flow 2 may be discharged into different slit-type extrusion holes through the pressing means.
  • FIG. 10 is a schematic view including two second pressing means to form two multi-layered composite flows, wherein the second component conveyed from the extruder (not shown) is the plurality of second pressing means 140, 141. ) And is supplied separately to the respective slit-type extrusion holes 142, 143 in the respective second pressing means 140, 141.
  • the first pressing means (150, 151) has a different discharge amount from each other through each of the slit-type extrusion spheres (152, 153) has the same specifications (when the shape diameter of the island component supply path, etc. are the same).
  • the average optical thickness of the second component of the first multi-layer composites and the second multi-layer composites formed through may be different.
  • the discharge amount of the second pressurizing means 150 and 151 may be preferably 1 to 100 kg / hr, but is not limited thereto.
  • one second pressing means transfers the second component to the two slit-type extrusion molds, and the two multilayer composite flows formed from the two slit-type extrusion molds are laminated to form one multilayer composite flow, and then one It is also possible for groups to be formed. In this case, four groups of final reflective polarizers may be formed through four second component pressing means and eight slit extrusion holes. It is also possible for one second pressurizing means to convey the second component to the three or more slit-type extrusion fittings.
  • FIG. 11 is a schematic view showing a lamination portion of a multilayer composite stream.
  • the core layer 165 is formed by laminating a plurality of multilayer composite streams 161, 162, 163, and 164 manufactured through respective slit-type extrusion holes. To form.
  • the laminating step may be carried out in a separate place, or when using a single slit-type extrusion mold may be laminated through a separate aggregated distribution plate.
  • the skin layer transferred from the extrusion unit in step (3) is laminated on at least one surface of the core layer, or (3) before the core layer formed through the step (3)
  • the method may further include laminating the core layer.
  • the skin layer component may be laminated on both surfaces of the core layer.
  • the material and the thickness of the skin layer may be the same or different from each other.
  • a separate preliminary spreading step may be further performed to easily spread the repeating unit described later between steps (2) and (3) or between steps (3) and (4).
  • step (4) the core layer in which the skin layer is laminated is induced in the flow control unit.
  • FIG. 12 is a cross-sectional view of a coat-hanger die, which is a kind of preferred flow control unit that can be applied to the present invention
  • FIG. 13 is a side view.
  • the spreading degree of the core layer may be appropriately adjusted to adjust the repeating unit to have an optical thickness suitable for reflecting light of a desired wavelength. This may be appropriately designed in consideration of further reducing the optical thickness during the stretching process.
  • the core layer in which the skin layer transferred through the flow path is laminated in FIG. 12 is widely spread from side to side in the coat-hanger die, the first component included therein is also widely spread from side to side.
  • the coat hanger die is wide spread from side to side but has a structure that is reduced up and down, so that the skin layer is reduced in the horizontal direction of the laminated core layer or reduced in the thickness direction.
  • This is the Pascal principle is applied, the fluid in the closed system is induced to spread wide in the width direction by the principle that the pressure is transmitted to a minute portion by a constant pressure. Therefore, the exit size is wider in the width direction than the inlet size of the die and the thickness is reduced.
  • the material in the molten liquid state can be flow and shape control by pressure in the closed system, preferably polymer flow rate and viscosity induction to be a laminar flow of Reynolds number 2,500 or less.
  • the left and right die widths of the exit of the coat-hanger die can be between 800 and 2500 mm, and the fluid flow of the polymer is required to adjust the pressure so that the Reynolds number does not exceed 2,500. The reason is that if it is more than that, the polymer flow becomes turbulent and the core array may be disturbed.
  • the internal temperature may be 265 ⁇ 310 °C.
  • the flow control unit may be a T-die or a coat-hanger die of a manifold type that may induce the spread of the repeating unit, but is not limited thereto, and may be used without limitation as long as it may induce the spread of the core layer.
  • a plurality of multi-layered composites having different average optical thicknesses are manufactured using a plurality of slit-type extrusion molds and laminated in a molten state, so that a separate adhesive layer and / or protective layer (PBL) is formed inside the core layer. It can reflect all the S-waves in the visible wavelength range without the need.
  • the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness.
  • step (4) after the step (4), (5) cooling and smoothing the polarizer induced by the spread transferred from the flow control unit, (6) stretching the polarizer after the smoothing step ; And (7) heat setting the stretched polarizer.
  • cooling and smoothing of the polarizer transferred from the flow control unit may be performed by cooling used in the manufacture of a conventional reflective polarizer to solidify it, and then may be performed through a casting roll process or the like.
  • the stretching may be performed through a stretching process of a conventional reflective polarizer, thereby causing a difference in refractive index between the first component and the second component to cause a light modulation phenomenon at the interface, and the spread-induced repeating unit may be stretched. Finally, the optical thickness corresponding to the desired light wavelength range is obtained. Therefore, in order to control the optical thickness of the repeating unit in the final reflecting polarizer, the slit diameter of the slit extruded in the slit-type extrusion mold, spreading conditions and draw ratio can be appropriately set.
  • the stretching step may be performed uniaxially or biaxially, and more preferably, uniaxially.
  • the stretching direction can be performed in the longitudinal direction.
  • the draw ratio may be 3 to 12 times.
  • methods for changing an isotropic material to birefringence are commonly known and, for example, when drawn under suitable temperature conditions, the polymer molecules can be oriented so that the material becomes birefringent.
  • the final reflective polarizer may be manufactured by performing heat setting of the stretched polarizer as step (7).
  • the heat setting may be heat setting through a conventional method, preferably may be performed through an IR heater for 0.1 to 3 minutes at 180 ⁇ 200 °C.
  • the reflective polarizer of the present invention if the average optical thickness of the target repeating unit between groups is determined in consideration of this, it is possible to manufacture the reflective polarizer of the present invention by appropriately controlling the specifications of the slit, the specification and the draw ratio of the flow control unit. .
  • the multilayer reflective polarizer of the present invention manufactured by the above-described method has a first layer having in-plane birefringence and a second layer alternately laminated with the first layer, in order to transmit the first polarized light irradiated from the outside and reflect the second polarized light.
  • the first layer and the second layer have different refractive indices in at least one axial direction
  • the first layer and the second layer extend in at least one axial direction
  • the first layer and the second layer Is a repeating unit
  • the repeating units form a group to reflect the shear wave (S wave) of the desired wavelength
  • the group is two or more
  • the groups are formed integrally
  • FIG. 14 is a cross-sectional view of a multilayer reflective polarizer in accordance with a preferred embodiment of the present invention.
  • skin layers 189 and 190 are integrally formed on both surfaces of the core layer 180, and the core layer 180 is divided into two groups A and B.
  • a dotted line dividing groups A and B means an imaginary line.
  • group A the first layers 181 and 183 corresponding to the first component and the second layers 182 and 184 corresponding to the second component are alternately stacked.
  • the first layer 181 and the second layer 182 may be defined as one repeating unit R1, and the group A may include at least 25 repeating units.
  • the first layers 185 and 187 and the second layers 182 and 184 corresponding to the second component are alternately stacked.
  • the first layer 185 and the second layer 186 are defined as one repeating unit (R2), and the group A includes at least 25 repeating units, preferably 50 or more, more preferably 100 More than one, most preferably 150 or more.
  • the thicknesses of the first layer and the second layer may be the same.
  • the average optical thickness of the repeating units R1 included in the group A and the average optical thickness of the repeating units R2 included in the group B are different. Through this, it is possible to reflect the wavelength region of different S waves.
  • the optical thickness of the repeating units included in the group A may have an optical thickness deviation of preferably within 20%, more preferably within 15% based on the average optical thickness of the group A. Therefore, if the average optical thickness of the group A is 200 nm, the transverse wave (S wave) of the wavelength of 400 nm can be reflected by the above equation (2). In this case, if the thickness variation is 20%, the wavelength band may cover approximately 320 to 480 nm.
  • the average optical thickness of the repeating units (R2) of group B is 130 nm, it is possible to reflect the transverse wave (S wave) of 520 nm wavelength according to relation 1, and if the thickness deviation is 20%, the wavelength band is approximately 420-620 nm. In this case, it may partially overlap with the wavelength band of Group A, thereby maximizing the light modulation effect.
  • the refractive index n can be set and the average optical thickness can be calculated based on the thickness direction (z-axis refractive index) through which light passes.
  • FIG. 15 is a cross-sectional view of a multilayer reflective polarizer according to another exemplary embodiment of the present invention. Referring to the difference from FIG. 14, three groups A, B, and C having different average optical thicknesses are formed inside the core layer, and the average optical thicknesses of the repeating units between the groups are different.
  • the core layer 16 is a cross-sectional view of a multilayer reflective polarizer according to another preferred embodiment of the present invention.
  • the core layer is formed of four groups, each group may be adjusted the average optical thickness to cover the optical wavelength band of 350nm, 450nm, 550nm and 650nm, respectively.
  • the outer layer of the core layer may have groups having a large average optical thickness, and the groups having a small average optical thickness may be formed in the inner layer.
  • the average optical thickness of the repeating units must be determined to correspond to various light wavelengths.
  • the average optical thickness of the first component between the groups may differ by at least 5% or more. More preferably, 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
  • the skin layer is manufactured at the same time as the core layer and then the stretching process is performed, the skin layer of the present invention can be stretched in at least one axial direction, unlike the conventional core layer stretching, after the stretching with the unstretched skin layer. As a result, the surface hardness is improved compared to the unstretched skin layer, thereby improving scratch resistance and heat resistance.
  • a birefringent interface may be formed between the first layer and the second layer forming the core layer.
  • the magnitude of the substantial coincidence or inconsistency of the refractive indices along the X, Y, and Z axes in the space between the first layer and the second layer is the axis. This affects the degree of scattering of the polarized light. In general, the scattering power varies in proportion to the square of the refractive index mismatch. Thus, the greater the degree of mismatch in refractive index along a particular axis, the more strongly scattered light polarized along that axis.
  • the light polarized along that axis is scattered to a lesser extent. If the refractive index of the second layer along a certain axis is substantially coincident with the refractive index of the first layer, incident light polarized with an electric field parallel to this axis is not scattered regardless of the size, shape and density of the portion of the first layer. Will pass through the first floor. Also, when the refractive indices along that axis are substantially coincident, the light beam passes through the object without being substantially scattered.
  • the first polarized light (P wave) is transmitted without being affected by the birefringent interface formed at the boundary between the second layer and the first layer, but the second polarized light (S wave) is transmitted to the second layer and the first layer. Modulation of light occurs due to the influence of the birefringent interface formed at the boundary. Through this, the P wave is transmitted, and the S wave generates light modulation such as scattering and reflection of light, and thus, polarization is separated.
  • the first layer and the second layer may have a birefringent interface formed at their surface, the light modulation effect may be induced.
  • the first layer may have birefringence.
  • the refractive index in the x-axis direction of the first layer is nX1
  • the refractive index in the y-axis direction is nY1
  • the refractive index in the z-axis direction is nZ1
  • the refractive indices of the second layer are nX2, nY2 and nZ2
  • nX1 and nY1 In-plane birefringence can occur.
  • At least one of the X, Y, and Z axis refractive indices may be different from each other in the first layer and the second layer, and more preferably, the difference in refractive index with respect to the Y and Z axis directions when the extension axis is the X axis Is 0.05 or less, and the difference in refractive index with respect to the X-axis may be 0.1 or more.
  • the difference in refractive index is 0.05 or less, it is usually interpreted as matching.
  • the total number of layers of the multilayer reflective polarizer may be 100 to 2000.
  • the thickness range of the repeating unit may be appropriately designed according to the wavelength range and the refractive index of the desired light, preferably 65 to 300nm.
  • the thicknesses of the first layer and the second layer forming the repeating unit may be the same or different.
  • the thickness of the core layer is 10 to 300 ⁇ m, and the thickness of the skin layer may be 50 to 190 ⁇ m, but is not limited thereto.
  • a multilayer reflective polarizer including a core layer in which a first component and a second component are alternately laminated, a first component and a second component are separately added.
  • the repeating unit of the first component and the second component forms two or more multilayered composite flows in which the laminated units are alternately stacked, and each of the multilayer composite flows is transferred from the extruder to reflect the shear wave (S wave) of a desired wavelength.
  • a spin block portion including a slit-type extrusion block for inputting a first component and a second component to produce two or more multilayered composites having different average optical thicknesses of repeating units;
  • a collection block unit for laminating the two or more multi-layer composite streams transferred from the spin block unit to one to form a core layer;
  • a flow control unit for inducing the spread of the core layer transferred from the collection block unit.
  • the extruder includes an extruded portion into which the skin layer component is separately added to at least one surface of the core layer, the multi-layered composite flow communicated with the extruder into which the skin layer component is injected and transferred from the spin block portion. It may further include a feed block unit for laminating the skin layer on at least one side of the.
  • the extruder when the extruder includes an extruded portion into which the skin layer component is separately added, at least a core layer formed in communication with the extruder into which the skin layer component is injected and the collection block portion.
  • the skin layer may be laminated on one surface.
  • FIG. 17 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer in which a skin layer and a core layer are integrally formed in accordance with a preferred embodiment of the present invention.
  • the first extrusion part 220 to which the first component is injected the second extrusion part 221 to which the second component is injected, and the third extrusion part 222 to which the skin layer component is injected are included.
  • the first extrusion portion 220 is in communication with the spin block portion (C) comprising four slit-shaped extrusion holes (223, 224, 225, 226).
  • the first extruder 220 supplies the first slit extruded holes 223, 224, 225, and 226 in a molten state.
  • the second extrusion part 221 is also in communication with the spin block part (C) and supplies the second component in the molten state to the four slit-type extrusion holes (223, 224, 225, 226) included therein.
  • Four slit extruded molds 223, 224, 225, and 226 produce four multilayered composites in which the first and second components are alternately stacked and the average optical thickness of the repeating units is different. To this end, the respective slit diameters of the four slit-type extrusion fittings may be different.
  • the four slit-type extrusion holes 223, 224, 225, and 226 may be the slit type extrusion holes shown in FIG. 5.
  • the use of one integrated slit-type extrusion mold is naturally included in the scope of the present invention.
  • Four multi-layered composite streams manufactured through the four slit-shaped extrusion holes 223, 224, 225, and 226 are laminated together in the collection block portion 227 to form one core layer.
  • the collection block portion 227 may be formed separately, or in the case of using a single integrated slit-type extrusion mold, the multi-layered composites may be laminated in the form of a collection mold in the slit-type extrusion mold.
  • the core layer laminated in the collection block portion 227 is transferred to the feed block portion 228 and then laminated with the skin layer component transferred from the third extrusion portion 222. Therefore, the third extrusion part 222 and the feed block portion 228 may be in communication with each other. Thereafter, the core layer in which the skin layer is laminated is transferred to the flow control unit 229, and the spread of the first component is induced.
  • the flow control part may be a T-die or a coat-hanger die. Meanwhile, when the core layer and the skin layer are laminated in the collection block unit 227, the feed block unit 228 may be omitted.
  • the first extrusion part 220 transfers the first component to the four first pressing means 233, 234, 235, and 236.
  • the first pressurizing means 233, 234, 235, and 236 have different discharge amounts, and discharge the first component to the plurality of slit-type extrusion holes 241, 242, 243, and 244.
  • the second extrusion part 221 transfers the second component to the four second pressing means 237, 238, 239 and 240.
  • the second pressurizing means 237, 238, 239, and 240 have different discharge amounts, and discharge the second component into the plurality of slit-type extrusion holes 241, 242, 243, and 244.
  • Four slit extruded molds 241, 242, 243 and 244 produce four multilayered composites with different average optical thicknesses.
  • the first pressurizing means, the second pressurizing means and the plurality of slit-type extrusion molds form the spin block portion (C).
  • FIG. 19 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention. Briefly focusing on the difference from FIG. 18, it is characterized by using 8 slit extruded holes, not 4 slit extruded holes, in order to manufacture a multilayer reflective polarizer having 4 groups. .
  • the first pressurizing means 233 discharges the first component to the two slit-type extrusion holes 250 and 251.
  • the second pressurizing means 234 also discharges the first component to the two slit-type extrusion holes 250 and 251.
  • the two slit-shaped extrusion holes 250 and 251 have the same optical thickness between the multilayer composite streams because the first and second components are transferred through the same first and second pressing means. In this way, eight multilayer composites are formed, each of which has the same average optical thickness.
  • the two multilayer composites having the same average optical thickness are respectively laminated at the first laminations 258, 259, 260, and 261 to form four multilayer composites, and the four multilayer composites are arranged at the second lamination 262. ) To form one core layer.
  • one first pressing means transfers the first component to the two slit-type extrusion molds, but it is apparent to those skilled in the art that the first component can be transferred to the two or more slit-type extrusion molds. The same may be applied to the second pressing means.
  • FIG. 20 is an example of a liquid crystal display device employing a reflective polarizer of the present invention, in which a reflecting plate 280 is inserted into a frame 270, and a cold cathode fluorescent lamp 290 is disposed on an upper surface of the reflecting plate 280. Is located.
  • An optical film 320 is positioned on an upper surface of the cold cathode fluorescent lamp 290, and the optical film 320 includes a diffuser plate 321, a light diffusion film 322, a prism film 323, and a reflective polarizer ( 324 and the absorption polarizing film 325 are laminated in this order, but the stacking order may vary depending on the purpose or some components may be omitted or a plurality may be provided.
  • the diffusion plate 321, the light diffusing film 322, the prism film 323, and the like may be excluded from the overall configuration, and may be changed in order or formed at different positions.
  • a retardation film (not shown) or the like may also be inserted at an appropriate position in the liquid crystal display device. Meanwhile, the liquid crystal display panel 310 may be inserted into the mold frame 300 on the upper surface of the optical film 320.
  • the light irradiated from the cold cathode fluorescent lamp 290 reaches the diffusion plate 321 of the optical film 320.
  • the light transmitted through the diffusion plate 321 passes through the light diffusion film 322 in order to propagate the light in the vertical direction with respect to the optical film 320.
  • the film passing through the light diffusion film 322 passes through the prism film 323 and reaches the reflective polarizer 324 to generate light modulation.
  • the P wave transmits the reflective polarizer 324 without loss, but in the case of the S wave, light modulation (reflection, scattering, refraction, etc.) is generated, and again, by the reflecting plate 280 that is the rear side of the cold cathode fluorescent lamp 290.
  • the reflective polarizer of the present invention when used by being inserted into the liquid crystal display device, a dramatic improvement in luminance can be expected as compared with a conventional reflective polarizer. Meanwhile, the cold cathode fluorescent lamp 290 may be replaced with an LED.
  • the use of the reflective polarizer has been described based on the liquid crystal display, but the present invention is not limited thereto, and may be widely used in flat panel display technologies such as a projection display, a plasma display, a field emission display, and an electroluminescent display.
  • PEN having a refractive index of 1.65 as a first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as a second component were mixed in an molar ratio of 6: 4 to ethylene glycol (EG) and 1. : Refractive index polymerized to 90% by weight of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as a co-PEN and skin layer component having a refractive index of 1.64 reacted at a molar ratio of 2 Polycarbonate alloys of 1.58 were charged to the first extruded portion, the second extruded portion, and the third extruded portion, respectively.
  • EG ethylene glycol
  • PCTG polycyclohexylene dimethylene terephthalate
  • the extrusion temperature of the 1st component and the 2nd component shall be 295 degreeC, and I.V.
  • the polymer flow was corrected through the adjustment, and the skin layer was subjected to the extrusion process at a temperature level of 280 ° C.
  • One slit-type extrusion mold is composed of 300 layers, the thickness of the slit of the first slit-type extrusion mold on the bottom of the fifth mold distribution plate of FIG. 7 is 0.26 mm, and the slit thickness of the second slit extrusion mold is 0.21 mm.
  • the slit thickness of the third slit extruded die was 0.17 mm
  • the slit thickness of the fourth slit extruded die was 0.30 mm
  • the diameter of the discharge port of the sixth die distribution plate was 15 mm 15 mm.
  • the four composite streams discharged through the four slit-type extrusion holes were transferred through separate flow paths and then laminated in a collection block to form one core layer polymer.
  • a skin layer component flowed through the flow path from the third extrusion part to form a skin layer on the upper and lower surfaces of the core layer polymer.
  • Spread was induced in the coat hanger die of FIGS.
  • the width of the die inlet is 200 mm
  • the thickness is 20 mm
  • the width of the die outlet is 960 mm
  • the thickness is 2.4 mm
  • the flow rate is 1 m / min.
  • a smoothing process was then performed on the cooling and casting rolls and stretched six times in the MD direction. Subsequently, heat setting was performed through an IR heater at 180 ° C. for 2 minutes to prepare a multilayer reflective polarizer as shown in FIG. 16.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.64.
  • Group A had 300 layers (150 repeating units), and the repeating unit had a thickness of 168 nm, an average optical thickness of 275.5 nm, and an optical thickness deviation of about 20%.
  • Group B consisted of 300 layers (150 repeating units) with a thickness of 138nm, an average optical thickness of 226.3nm, and an optical thickness deviation of about 20%.
  • Group C had 300 layers (150 repeating units) with a repeating unit thickness of 110 nm, an average optical thickness of 180.4 nm, and an optical thickness deviation of about 20%.
  • the D group had 300 layers (150 repeating units), the thickness of the repeating unit was 200nm, the average optical thickness was 328nm, and the optical thickness deviation was about 20%.
  • the core thickness of the manufactured multilayer reflective polarizer was 92.4 ⁇ m and the skin layer thickness was 153.8 ⁇ m, respectively, so that the total thickness was 400 ⁇ m.
  • An 800-layer reflective polarizer was prepared in the same manner as in Example 1 except that the number of layers of the four slit-type extrusion holes was 200 each.
  • the core layer thickness of the final product was 61.6 mu m and the skin layer thickness was 169.2 mu m, respectively, so that the total thickness was 400 mu m.
  • a 600-layer reflective polarizer was prepared in the same manner as in Example 2 except that the third slit-type extrusion slot was not used.
  • Example 2 The same procedure as in Example 2 was carried out except that the thickness of the slits of the four extruded slits was the same as that of the slits of the first slits.
  • Example 1 four groups were individually formed into sheets through four slit extruded molds and drawn individually. Thereafter, four groups made of a sheet were adhered through a pressure sensitive adhesive to form a core layer, and then a skin layer was attached to both surfaces of the core layer with a pressure sensitive adhesive to prepare an 800 layer reflective polarizer.
  • the manufactured reflective polarizer has a thickness of 83.2 ⁇ m in the core layer and 158.4 ⁇ m in the thickness of the skin layer. The total thickness was 400 ⁇ m, and the pressure-sensitive adhesive layer was included in the thickness of the core layer and the skin layer.
  • Transmission axis transmittance and reflection axis transmittance were measured by ASTM D1003 method using COH300A analysis equipment of NIPPON DENSHOKU, Japan.
  • the degree of polarization was measured using an OTSKA RETS-100 analyzer.
  • the luminance of the prepared reflective polarizer was measured as follows. After assembling the panel on a 32 "direct backlight unit equipped with a diffuser plate and a reflective polarizer, the luminance was measured at nine points using a BM-7 measuring instrument manufactured by Topcon Corporation.
  • the relative luminance shows the relative values of the luminance of the other examples and the comparative examples when the luminance of the reflective polarizer of Example 1 is 100 (reference).
  • Comparative Example 2 including the adhesive layer is lower in optical properties than Example 2, which does not include the same number of adhesive layers. This is because optical properties are deteriorated due to destructive interference with respect to the optical wavelength by the adhesive layer.
  • the reflective polarizer of the present invention Since the reflective polarizer of the present invention has excellent light modulation performance, it can be widely used in a field requiring modulation of light. Specifically, it can be widely used in flat panel display technologies such as liquid crystal displays, projection displays, plasma displays, field emission displays, and electroluminescent displays requiring high brightness such as mobile displays, LCDs, and LEDs.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A method for manufacturing a reflective polarizer according to the present invention produces a plurality of multilayer combined flows having different mean optical widths by means of a plurality of slit-type extrusion dies, and combines same while in molten states, thereby obviating a separate adhesion layer and/or a protective boundary layer (PBL) in the interior of a core layer, and allowing all S waves in the visible wavelength range to be reflected. Also, formation of a skin layer, on at least one surface of a core layer, while in a molten state obviates a separate adhesion step. Thus, manufacturing costs may be significantly reduced, and optical properties can be favorably maximized within the restricted widths.

Description

다층 반사편광자의 제조방법 및 장치Method and apparatus for manufacturing multilayer reflective polarizer
본 발명은 다층 반사 편광자 제조방법 및 장치에 관한 것으로, 보다 상세하게는 코어층 내부에 상이한 평균 광학적 두께를 갖는 복수개의 그룹을 포함하며 그룹간 접착층을 형성하지 않는 코어층 및 상기 코어층과 일체형으로 형성된 스킨층을 포함하는 다층 반사편광자의 제조방법 및 장치를 제공하는 것이다. The present invention relates to a method and apparatus for manufacturing a multilayer reflective polarizer, and more particularly, to a core layer including a plurality of groups having different average optical thicknesses within the core layer and not forming an adhesive layer between the groups, and integrally with the core layer. The present invention provides a method and apparatus for manufacturing a multilayer reflective polarizer including a formed skin layer.
평판디스플레이 기술은 TV분야에서 이미 시장을 확보한 액정디스플레이(LCD), 프로젝션 디스플레이 및 플라즈마 디스플레이(PDP)가 주류를 이루고 있고, 또 전계방출디스플레이(FED)와 전계발광디스플레이(ELD)등이 관련기술의 향상과 더불어 각 특성에 따른 분야를 점유할 것으로 전망된다. 액정 디스플레이는 현재 노트북, 퍼스널 컴퓨터 모니터, 액정 TV, 자동차, 항공기 등 사용범위가 확대되고 있으며 평판시장의 80%가량을 차지하고 있고 세계적으로 LCD의 수요가 급증해 현재까지 호황을 누리고 있다. Flat panel display technology is mainly made up of liquid crystal display (LCD), projection display, and plasma display (PDP), which have already secured market in TV, and related technologies such as field emission display (FED) and electroluminescent display (ELD) With the improvement of the market, it is expected to occupy the field according to each characteristic. LCD displays are currently expanding their range of use, including notebooks, personal computer monitors, LCD TVs, automobiles, and airplanes, accounting for about 80% of the flat panel market, and are booming to date due to a sharp increase in LCD demand worldwide.
종래의 액정 디스플레이는 한 쌍의 흡광성 광학필름들 사이에 액정 및 전극 매트릭스를 배치한다. 액정 디스플레이에 있어서, 액정 부분은 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정부분을 움직이게 함으로써, 이에 따라 변경되는 광학 상태를 가지고 있다. 이러한 처리는 정보를 실은 '픽셀'을 특정 방향의 편광을 이용하여 영상을 표시한다. 이러한 이유 때문에, 액정 디스플레이는 편광을 유도하는 전면 광학필름 및 배면 광학필름을 포함한다. Conventional liquid crystal displays arrange a liquid crystal and an electrode matrix between a pair of light absorbing optical films. In a liquid crystal display, the liquid crystal portion has an optical state that is changed accordingly by moving the liquid crystal portion by an electric field generated by applying a voltage to two electrodes. This process displays an image of a 'pixel' carrying information using polarization in a specific direction. For this reason, liquid crystal displays include a front optical film and a back optical film that induce polarization.
이러한 액정 디스플레이에서 사용되는 광학필름은 백라이트로부터 발사되는 광의 이용효율이 반드시 높다고는 할 수 없다. 이것은, 백라이트로부터 발사되는 광 중 50%이상이 배면측 광학필름(흡수형 편광필름)에 의해 흡수되기 때문이다. 그래서, 액정 디스플레이에서 백라이트 광의 이용효율을 높이기 위해서, 광학캐비티와 액정어셈블리 사이에 반사형 편광자를 설치한다.   The optical film used in such a liquid crystal display does not necessarily have high utilization efficiency of light emitted from the backlight. This is because 50% or more of the light emitted from the backlight is absorbed by the back side optical film (absorption type polarizing film). Thus, in order to increase the utilization efficiency of backlight light in the liquid crystal display, a reflective polarizer is provided between the optical cavity and the liquid crystal assembly.
도 1은 종래의 반사형 편광자의 광학원리를 도시하는 도면이다. 구체적으로 광학캐비티로부터 액정어셈블리로 향하는 빛 중 P편광은 반사형 편광자를 통과하여 액정어셈블리로 전달되도록 하고, S편광은 반사형 편광자에서 광학캐비티로 반사된 다음 광학캐비티의 확산반사면에서 빛의 편광 방향이 무작위화된 상태로 반사되어 다시 반사형 편광자로 전달되어 결국에는 S편광이 액정어셈블리의 편광기를 통과할 수 있는 P편광으로 변환되어 반사형 편광자를 통과한 후 액정어셈블리로 전달되도록 하는 것이다.   1 is a view showing the optical principle of a conventional reflective polarizer. Specifically, P-polarized light from the optical cavity to the liquid crystal assembly passes through the reflective polarizer to the liquid crystal assembly, and S-polarized light is reflected from the reflective polarizer to the optical cavity and then polarized light on the diffuse reflection surface of the optical cavity. The direction is reflected in a randomized state and then transmitted back to the reflective polarizer so that S-polarized light is converted into P-polarized light which can pass through the polarizer of the liquid crystal assembly, and then passed through the reflective polarizer to be transmitted to the liquid crystal assembly.
상기 반사형 편광자의 입사광에 대한 S편광의 선택적 반사와 P편광의 투과 작용은 이방성 굴절률을 갖는 평판상의 광학층과, 등방성 굴절률을 갖는 평판상의 광학층이 상호 교호 적층된 상태에서 각 광학층간의 굴절율 차이와 적층된 광학층의 신장 처리에 따른 각 광학층들의 광학적 두께 설정 및 광학층의 굴절률 변화에 의해서 이루어진다. The selective reflection of S-polarized light and the transmission of P-polarized light with respect to the incident light of the reflective polarizer are based on the refractive index of each optical layer in a state where an optical layer on a plate having anisotropic refractive index and an optical layer on a plate having an isotropic refractive index are laminated alternately. It is made by the optical thickness setting of each optical layer and the refractive index change of the optical layer according to the difference and the stretching process of the stacked optical layers.
즉, 반사형 편광자로 입사되는 빛은 각 광학층을 거치면서 S편광의 반사와 P편광의 투과 작용을 반복하여 결국에는 입사편광 중 P편광만 액정어셈블리로 전달된다. 한편, 반사된 S편광은 전술한 바와 같이, 광학캐비티의 확산반사면에서 편광상태가 무작위화 된 상태로 반사되어 다시 반사형 편광자로 전달된다. 이에 의해, 광원으로부터 발생된 빛의 손실과 함께 전력 낭비를 줄일 수 있었다.   That is, the light incident to the reflective polarizer repeats the reflection of S-polarized light and the transmission of P-polarized light while passing through each optical layer, and eventually only the P-polarized light of the incident polarized light is transmitted to the liquid crystal assembly. On the other hand, the reflected S-polarized light is reflected in a state in which the polarization state is randomized at the diffuse reflection surface of the optical cavity and is transmitted to the reflective polarizer again. As a result, power loss can be reduced together with the loss of light generated from the light source.
그런데, 이러한 종래 반사형 편광자는 굴절률이 상이한 평판상의 등방성 광학층과 이방성 광학층이 교호 적층되고, 이를 신장처리하여 입사편광의 선택적 반사 및 투과에 최적화될 수 있는 각 광학층간의 광학적 두께 및 굴절률을 갖도록 제작되기 때문에, 반사형 편광자의 제작공정이 복잡하다는 문제점이 있었다. 특히, 반사형 편광자의 각 광학층이 평판 구조를 가지고 있어서, 입사편광의 광범위한 입사각 범위에 대응하여 P편광과 S편광을 분리하여야 하기 때문에, 광학층의 적층수가 과도하게 증가하여 생산비가 기하급수적으로 증가하는 문제가 있었다. 또한, 광학층의 적층수가 과도하게 형성되는 구조에 의하여 광손실에 의한 광학적 성능 저하가 우려되는 문제점이 있었다.  However, the conventional reflective polarizer has an optical thickness and a refractive index between the optical layers that can be optimized for selective reflection and transmission of incident polarization by alternately stacking isotropic optical layers and anisotropic optical layers having different refractive indices. Since it is manufactured so as to have it, there existed a problem that the manufacturing process of a reflective polarizer was complicated. In particular, since each optical layer of the reflective polarizer has a flat plate structure, it is necessary to separate P-polarized light and S-polarized light in response to a wide range of incident angles of incident polarization, so that the number of optical layers is excessively increased and the production cost is exponentially increased. There was a growing problem. In addition, due to the structure in which the number of laminated layers of the optical layer is excessively formed, there is a problem that the optical performance decrease due to light loss.
도 2는 종래의 다층 반사형 편광자(DBEF)의 단면도이다. 구체적으로 다층 반사형 편광자는 코어층(8)의 양면에 스킨층(9, 10)이 형성된다. 코어층(8)은 4개의 그룹(1, 2, 3, 4)으로 구분되는데, 각각의 그룹들은 등방층과 이방층이 교호적층되어 대략 200층을 형성한다. 한편, 상기 코어층(8)을 형성하는 4개의 그룹(1, 2, 3, 4) 사이에 이들을 결합하기 위한 별도의 접착층(5, 6, 7)이 형성된다. 또한 각각의 그룹들은 200층 내외의 매우 얇은 두께를 가지므로 이들 그룹들을 개별적으로 공압출하는 경우 각각의 그룹들이 손상될 수 있어 상기 그룹들은 보호층(PBL)을 포함하는 경우가 많았다. 이 경우 코어층의 두께가 두꺼워지고 제조원가가 상승하는 문제가 있었다. 또한, 디스플레이 패널에 포함되는 반사형 편광자의 경우 슬림화를 위하여 코어층의 두께에 제약이 있으므로, 코어층 및/또는 스킨층에 접착층이 형성되면 그 두께만큼 코어층이 줄어들게 되므로 광학물성 향상에 매우 좋지 않은 문제가 있었다. 나아가, 코어층 내부 및 코어층과 스킨층을 접착층으로 결합하고 있으므로, 외력을 가하거나, 장시간 경과하거나 또는 보관장소가 좋지 않은 경우에는 층간 박리현상이 발생하는 문제가 있었다. 또한 접착층의 부착과정에서 불량률이 지나치게 높아질 뿐만 아니라 접착층의 형성으로 인하여 광원에 대한 상쇄간섭이 발생하는 문제가 있었다.2 is a cross-sectional view of a conventional multilayer reflective polarizer (DBEF). Specifically, the multilayer reflective polarizer has skin layers 9 and 10 formed on both surfaces of the core layer 8. The core layer 8 is divided into four groups (1, 2, 3, 4), each group having an isotropic layer and an anisotropic layer alternately stacked to form approximately 200 layers. On the other hand, between the four groups (1, 2, 3, 4) forming the core layer (8) is formed a separate adhesive layer (5, 6, 7) for bonding them. In addition, since each group has a very thin thickness of about 200 layers, each group may be damaged when co-extrusion of these groups individually, so the groups often include a protective layer (PBL). In this case, there is a problem that the thickness of the core layer becomes thick and the manufacturing cost increases. In addition, since the reflective polarizer included in the display panel has a limitation on the thickness of the core layer for slimming, when the adhesive layer is formed on the core layer and / or the skin layer, the core layer is reduced by the thickness thereof, which is very good for improving optical properties. There was no problem. Furthermore, since the inside of the core layer and the core layer and the skin layer are bonded by an adhesive layer, there is a problem in that an interlayer peeling phenomenon occurs when an external force is applied, when a long time passes, or when the storage location is poor. In addition, in the process of attaching the adhesive layer, not only the defect rate is excessively high but also there is a problem in that offset interference with the light source occurs due to the formation of the adhesive layer.
상기 코어층(8)의 양면에 스킨층(9, 10)이 형성되며, 상기 코어층(8)과 스킨층(9, 10) 사이에 이들을 결합하기 위하여 별도의 접착층(11, 12)이 형성된다. 종래의 폴리카보네이트 재질의 스킨층과 PEN-coPEN이 교호적층된 코어층과 공압출을 통해 일체화하는 경우 상용성 부재로 인하여 박리가 일어날 수 있으며, 결정화도 15% 내외로 인하여 연신 공정 수행시 신장축에 대한 복굴절 발생 위험성이 높다. 이에따라 무연신 공정의 폴리카보네이트 시트를 적용하기 위해서 접착층을 형성할 수 밖에 없었다. 그 결과 접착층 공정의 추가로 인하여 외부 이물 및 공정 불량 발생에 따른 수율 감소가 나타나며, 통상적으로 스킨층의 폴리카보네이트 무연신 시트를 생산시에는 와인딩 공정으로 인한 불균일한 전단 압력에 의한 복굴절 발생이 나타나 이를 보완하기 위한 폴리머 분자구조 변형 및 압출라인의 속도 제어 등의 별도의 제어가 요구되어 생산성 저하 요인이 발생되었다. Skin layers 9 and 10 are formed on both sides of the core layer 8, and separate adhesive layers 11 and 12 are formed to couple them between the core layer 8 and the skin layers 9 and 10. do. In case of integrating the conventional polycarbonate skin layer and PEN-coPEN by alternatingly laminated core layer through co-extrusion, peeling may occur due to incompatibility, and the crystallization degree is about 15%. There is a high risk of birefringence. Accordingly, in order to apply the polycarbonate sheet of the non-stretching process, there was no choice but to form an adhesive layer. As a result, the addition of the adhesive layer process results in a decrease in yield due to external foreign matters and process defects. In general, when the polycarbonate non-stretched sheet of the skin layer is produced, birefringence occurs due to uneven shear pressure due to the winding process. In order to compensate, a separate control such as deformation of the polymer molecular structure and speed control of the extrusion line were required, resulting in a decrease in productivity.
상기 종래의 다층 반사형 편광자의 제조방법을 간단히 설명하면, 코어층을 형성하는 평균 광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤, 다시 4개의 공압출된 4개의 그룹을 연신한 후, 연신된 4개의 그룹을 접착제로 접착하여 코어층을 제작한다. 왜냐하면 접착제 접착후 코어층을 연신하면 박리현상이 발생하기 때문이다. 이후, 코어층의 양면에 스킨층을 접착하게 된다. 결국 다층구조를 만들기 위해서는 2층구조를 접어서 4층구조를 만들고 연속해서 접는 방식의 다층구조를 만드는 공정을 통해 하나의 그룹(209층)을 형성하고 이를 공압출하므로 두께 변화를 줄 수 없어 하나이 공정에서 다층내부에 그룹을 형성하기 어려웠다. 그 결과 평균광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤 이를 접착할 수 밖에 없는 실정이다.Briefly describing the conventional method of manufacturing a multilayer reflective polarizer, after co-extracting four groups having different average optical thicknesses for forming the core layer separately, the four co-extruded groups are stretched and then stretched. The four groups were glued together to form a core layer. This is because peeling phenomenon occurs when the core layer is stretched after adhesive bonding. Thereafter, the skin layer is adhered to both surfaces of the core layer. After all, to make a multi-layer structure, by folding the two-layer structure to form a four-layer structure, and by forming a multi-layer structure of a continuous folding method to form a group (209 layers) and co-extruded it can not give a change in thickness one process It was difficult to form groups inside the multilayer at. As a result, four groups having different average optical thicknesses can be co-extruded separately and then bonded to each other.
상술한 공정은 단속적으로 이루어지므로 제작단가의 현저한 상승을 불러왔으며, 그 결과 백라이트 유닛에 포함되는 모든 광학필름들 중 원가가 가장 비싼 문제가 있었다. 이에 따라, 원가절감의 차원에서 휘도저하를 감소하고서라도 반사형 편광자를 제외한 액정 디스플레이가 빈번하게 출시되는 심각한 문제가 발생하였다.Since the above-described process is performed intermittently, the production cost has been increased, and as a result, there is a problem that the cost is the most expensive among all the optical films included in the backlight unit. Accordingly, there has been a serious problem in that a liquid crystal display is often released except for a reflective polarizer even though the luminance decrease in terms of cost reduction.
이에, 다층 반사형 편광자가 아닌 기재 내부에 길이방향으로 신장된 복굴절성 폴리머를 배열하여 반사형 편광자의 기능을 달성할 수 있는 폴리머가 분산된 반사편광자가 제안되었다. 도 3은 봉상형 폴리머를 포함하는 반사형 편광자(20)의 사시도로서, 기재(21) 내부에 길이방향으로 신장된 복굴절성 폴리머(22)가 일방향으로 배열되어 있다. 이를 통해 기재(21)와 복굴절성 폴리머(22) 간의 복굴절성 계면에 의하여 광변조 효과를 유발하여 반사형 편광자의 기능을 수행할 수 있게 되는 것이다. 그러나, 상술한 교호적층된 반사형 편광자에 비하여 가시광선 전체 파장영역의 광을 반사하기 어려워 광변조 효율이 너무나도 떨어지는 문제가 발생하였다. 이에, 교호적층된 반사 편광자와 비슷한 투과율 및 반사율을 가지기 위해서는 기재 내부에 지나치게 많은 수의 복굴절성 폴리머(22)를 배치하여야 하는 문제가 있었다. 구체적으로 반사형 편광자의 수직단면을 기준으로 가로 32인치 디스플레이 패널을 제조하는 경우 가로 1580 ㎜이고 높이(두께) 400㎛ 이하인 기재(21) 내부에 상술한 적층형 반사 편광자와 유사한 광학 물성을 가지기 위해서는 상기 길이방향의 단면직경이 0.1 ~ 0.3㎛인 원형 또는 타원형의 복굴절성 폴리머(22)가 최소 1억개 이상 포함되어야 하는데, 이 경우 생산비용이 지나치게 많아질 뿐 아니라, 설비가 지나치게 복잡해지고 또한 이를 생산하는 설비를 제작하는 것 자체가 거의 불가능하여 상용화되기 어려운 문제가 있었다. 또한, 시트 내부에 포함되는 복굴절성 폴리머(22)의 광학적 두께를 다양하게 구성하기 어려우므로 가시광선 전체 영역의 광을 반사하기 어려워 물성이 감소하는 문제가 있었다.Accordingly, a reflective polarizer in which a polymer is dispersed, which can achieve the function of the reflective polarizer by arranging the birefringent polymer elongated in the longitudinal direction inside the substrate rather than the multilayer reflective polarizer, has been proposed. 3 is a perspective view of a reflective polarizer 20 including a rod-shaped polymer, in which the birefringent polymer 22 extending in the longitudinal direction is arranged in one direction in the substrate 21. Through this, the birefringent interface between the substrate 21 and the birefringent polymer 22 causes the light modulation effect to perform the function of the reflective polarizer. However, as compared with the above-described alternately stacked reflective polarizers, it is difficult to reflect light in the entire visible light wavelength region, resulting in a problem that the light modulation efficiency is too low. Thus, in order to have a transmittance and reflectance similar to that of the alternating reflective polarizers, there is a problem in that a large number of birefringent polymers 22 must be disposed inside the substrate. Specifically, in the case of manufacturing a horizontal 32-inch display panel based on the vertical cross section of the reflective polarizer, in order to have optical properties similar to those of the stacked reflective polarizer described above in the substrate 21 having a width of 1580 mm and a height (thickness) of 400 μm or less, At least 100 million circular or elliptical birefringent polymers 22 having a cross-sectional diameter in the longitudinal direction of 0.1 to 0.3 μm should be included. In this case, not only the production cost is excessively high, but also the equipment becomes too complicated and There was a problem that it is difficult to commercialize the facility itself is almost impossible. In addition, since the optical thickness of the birefringent polymer 22 included in the sheet is difficult to be configured in various ways, it is difficult to reflect the light in the entire visible light region, thereby reducing the physical properties.
이를 극복하기 위하여 기재 내부에 복굴절성 해도사를 포함하는 기술적 사상이 제안되었다. 도 4는 기재내부에 포함되는 복굴절성 해도사의 단면도로서, 상기 복굴절성 해도사는 내부의 도부분과 해부분의 광변조 계면에서 광변조 효과를 발생시킬 수 있으므로, 상술한 복굴절성 폴리머와 같이 매우 많은 수의 해도사를 배치하지 않더라도 광학물성을 달성할 수 있다. 그러나, 복굴절성 해도사는 섬유이므로 폴리머인 기재와의 상용성, 취급용이성, 밀착성의 문제가 발생하였다. 나아가, 원형 형상으로 인하여 광산란이 유도되어 가시광선 영역의 광파장에 대한 반사편광 효율이 저하되어, 기존 제품 대비 편광특성이 저하되어 휘도 향상 한계가 있었으며, 더불어 해도사의 경우 도접합 현상 줄이면서, 해성분 영역이 세분화 되므로 공극 발생으로 인하여 빛샘 즉 광 손실현상으로 인한 광특성 저하 요인이 발생되었다. 또한 직물 형태로 조직 구성으로 인하여 레이어 구성의 한계로 인하여 반사 및 편광 특성 향상에 한계점이 발생되는 문제가 있었다.In order to overcome this problem, a technical idea including a birefringent island-in-the-sea yarn has been proposed. FIG. 4 is a cross-sectional view of a birefringent island-in-the-sea yarn included in the substrate, and the birefringent island-in-the-sea yarn may generate a light modulation effect at an optical modulation interface between the inner and sea portions of the inner portion, and thus, a very large number such as the birefringent polymer described above. Optical properties can be achieved even if the island-in-the-sea yarns are not disposed. However, since the birefringent island-in-the-sea yarn is a fiber, problems of compatibility, ease of handling, and adhesion with a substrate which is a polymer have arisen. Furthermore, due to the circular shape, light scattering is induced, and thus the reflection polarization efficiency of the visible wavelength is reduced, and the polarization characteristic is lowered compared to the existing products, thereby limiting the luminance improvement. As the area is subdivided, the voids cause the optical leakage due to light leakage, that is, light loss. In addition, there is a problem that a limitation occurs in the reflection and polarization characteristics due to the limitation of the layer configuration due to the organization of tissue in the form of a fabric.
본 발명은 다층 반사 편광자 제조방법 및 장치에 관한 것으로, 보다 상세하게는 평균 광학적 두께가 상이한 다수의 군으로 형성되는 코어층 및 상기 코어층과 동시에 형성되는 스킨층을 포함하는 다층 반사 편광자 제조방법 및 장치를 제공하는 것이다.The present invention relates to a method and apparatus for manufacturing a multilayer reflective polarizer, and more particularly, to a method for manufacturing a multilayer reflective polarizer including a core layer formed of a plurality of groups having different average optical thicknesses and a skin layer formed simultaneously with the core layer. To provide a device.
본 발명의 상술한 과제를 달성하기 위한 본 발명의 다층 반사 편광자 제조방법은 제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 방법에 있어서, (1) 제1 성분 및 제2 성분을 각각 압출부들에 공급하는 단계; (2) 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 슬릿형 압출구금에 투입하여 상기 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 형성하는 단계; (3) 상기 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 단계; 및 (4) 상기 코어층을 흐름제어부에서 퍼짐을 유도하는 단계;를 포함한다.A method for manufacturing a multilayer reflective polarizer of the present invention for achieving the above object of the present invention is a method of manufacturing a multilayer reflective polarizer comprising a core layer of the first component and the second component alternately laminated, (1) the first Supplying the component and the second component to the extruders, respectively; (2) forming two or more multilayered composites in which the repeating units of the first component and the second component are alternately laminated, wherein each of the multilayered composites reflects a shear wave (S wave) of a desired wavelength; Injecting the first component and the second component transferred from the plurality of slit-type extrusion molds to form two or more multilayered composites having different average optical thicknesses of the repeating units; (3) laminating the two or more multilayered composites into one to form a core layer; And (4) inducing spreading of the core layer in the flow control unit.
본 발명의 바람직한 일실시예에 따르면, 상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계와 (4) 단계 사이에 (3) 단계에서 형성된 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지하는 단계를 더 포함할 수 있다. According to a preferred embodiment of the present invention, in the case of supplying the skin layer component to the extruder in step (1) between the step (3) and (4) extruded on at least one surface of the core layer formed in step (3) The method may further include laminating the skin layer component transferred from the unit.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계에서 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지할 수 있다. According to another preferred embodiment of the present invention, when the skin layer component is supplied to the extruder in step (1), the skin layer component transferred from the extruder may be laminated on at least one surface of the core layer in step (3). have.
본 발명의 바람직한 또 다른 일실시예에 따르면, 제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 장치에 있어서, 제1 성분, 제2 성분이 개별적으로 투입되는 2개 이상의 압출부; 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류들은 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 투입하여 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 제조하는 슬릿형 압출구금을 포함하는 스핀블록부; 상기 스핀블록부에서 이송된 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 컬렉션 블록부; 및 상기 컬렉션 블록부에서 이송된 코어층의 퍼짐을 유도하는 흐름제어부를 포함하는 다층 반사편광자의 제조장치를 제공한다. According to still another preferred embodiment of the present invention, in the apparatus for manufacturing a multilayer reflective polarizer including a core layer in which a first component and a second component are alternately laminated, a first component and a second component are separately added. Two or more extrusion parts; The repeating unit of the first component and the second component forms two or more multilayered composite flows in which the laminated units are alternately stacked, and each of the multilayer composite flows is transferred from the extruder to reflect the shear wave (S wave) of a desired wavelength. A spin block portion including a slit-type extrusion block for inputting a first component and a second component to produce two or more multilayered composites having different average optical thicknesses of repeating units; A collection block unit for laminating the two or more multi-layer composite streams transferred from the spin block unit to one to form a core layer; And a flow control unit for inducing the spread of the core layer transferred from the collection block unit.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 연통되어 상기 스핀블록부에서 이송된 다층 복합류의 적어도 일면에 스킨층을 합지하는 피드블록부를 더 포함할 수 있다. According to another preferred embodiment of the present invention, when the extruder comprises an extruder in which the skin layer components are separately injected, the multi-layered composites communicated with the extruder into which the skin layer components are injected and transferred from the spin block unit. The at least one surface may further include a feed block unit for laminating the skin layer.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 상기 컬렉션 블록부와 연통되어 형성된 코어층의 적어도 일면에 스킨층이 합지될 수 있다. According to another preferred embodiment of the present invention, when the extruder includes an extruded portion into which the skin layer component is separately injected, at least one surface of the core layer formed in communication with the extruder into which the skin layer component is injected and the collection block portion The skin layer can be laminated.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 스핀블록부는 상기 압출부에서 이송된 제1 성분을 토출하여 해도형 압출구금에 공급하는 제1 가압수단 및 상기 압출부에서 이송된 제2 성분을 토출하여 해도형 압출구금에 공급하는 제2 가압수단을 포함할 수 있다. According to another preferred embodiment of the present invention, the spin block portion discharges the first component conveyed from the extruded portion and the first pressing means for supplying to the island-in-the-sea extrusion mold and the second component conveyed from the extruded portion It may include a second pressing means for discharging to supply to the island-in-the-sea extrusion mold.
본 발명의 제조방법은 복수개의 슬릿형 압출구금을 이용하여 평균 광학적 두께가 상이한 복수개의 다층 복합류를 제조하고 용융상태에서 이를 합지하므로 코어층 내부에 별도의 접착층 및/또는 보호층(PBL)을 필요로 하지 않으면서 가시광선 파장영역의 S파를 모두 반사할 수 있다. 또한 스킨층 역시 용융상태에서 코어층의 적어도 일면에 형성되므로 별도의 접착단계를 거치지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다. In the manufacturing method of the present invention, a plurality of multi-layered composites having different average optical thicknesses are manufactured using a plurality of slit-type extrusion molds and laminated in a molten state, so that a separate adhesive layer and / or protective layer (PBL) is formed inside the core layer. It can reflect all the S-waves in the visible wavelength range without the need. In addition, the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness.
도 1은 종래의 반사형 편광자의 원리를 설명하는 개략도이다.1 is a schematic diagram illustrating the principle of a conventional reflective polarizer.
도 2는 현재 사용되고 있는 다층 반사형 편광자(DBEF)의 단면도이다.2 is a cross-sectional view of a multilayer reflective polarizer (DBEF) currently in use.
도 3은 봉상형 폴리머를 포함하는 반사형 편광자의 사시도이다.3 is a perspective view of a reflective polarizer comprising a rod-shaped polymer.
도 4는 반사형 편광자에 사용되는 복굴절성 해도사에 입사한 광의 경로를 도시한 단면도이다.4 is a cross-sectional view showing a path of light incident on a birefringent island-in-the-sea yarn used in a reflective polarizer.
도 5는 본 발명에 사용될 수 있는 슬릿형 압출구금의 구금분배판들의 사시도이고, 도 6은 이들의 저면도이며, 도 7은 결합도이다.Figure 5 is a perspective view of the distribution plate of the slit-shaped extrusion mold that can be used in the present invention, Figure 6 is a bottom view of them, Figure 7 is a bond.
도 8은 본 발명의 바람직한 일구현예에 따른 다층 복합류의 단면도이다.8 is a cross-sectional view of a multilayer composite according to a preferred embodiment of the present invention.
도 9는 본 발명의 바람직한 일실시예에 따른 2개의 다층 복합류를 형성하기 위하여 2개의 제1 가압수단들을 포함하는 개략도이다. 9 is a schematic diagram comprising two first press means to form two multi-layered composite flows in accordance with a preferred embodiment of the present invention.
도 10은 본 발명의 바람직한 일실시예에 따른 2개의 다층 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도이다. 10 is a schematic diagram comprising two second pressurizing means to form two multi-layered composite flows in accordance with a preferred embodiment of the present invention.
도 11은 본 발명의 바람직한 일실시예에 따른 다층 복합류 및 스킨층의 합지부를 나타내는 개략도이다.Figure 11 is a schematic diagram showing the lamination of the multi-layered composites and skin layer according to an embodiment of the present invention.
도 12는 본 발명의 바람직한 일실시예에 따른 코트-행거 다이의 단면도이며, 도 13은 측면도이다.12 is a cross-sectional view of a coat-hanger die in accordance with a preferred embodiment of the present invention, and FIG. 13 is a side view.
도 14는 본 발명의 바람직한 일실시예에 따른 다층 반사형 편광자의 단면도이다.14 is a cross-sectional view of a multilayer reflective polarizer in accordance with a preferred embodiment of the present invention.
도 15는 본 발명의 바람직한 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다.15 is a cross-sectional view of a multilayer reflective polarizer according to another exemplary embodiment of the present invention.
도 16은 본 발명의 바람직한 또 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다.16 is a cross-sectional view of a multilayer reflective polarizer according to another preferred embodiment of the present invention.
도 17은 본 발명의 바람직한 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.17 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to a preferred embodiment of the present invention.
도 18은 본 발명의 바람직한 다른 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.18 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to another preferred embodiment of the present invention.
도 19는 본 발명의 바람직한 또 다른 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.19 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer according to another preferred embodiment of the present invention.
도 20은 본 발명의 반사형 편광자를 포함하는 액정표시장치의 분해사시도이다.20 is an exploded perspective view of a liquid crystal display device including the reflective polarizer of the present invention.
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명한다. Hereinafter, with reference to the accompanying drawings the present invention will be described in more detail.
제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 방법에 있어서, (1) 제1 성분 및 제2 성분을 각각 압출부들에 공급하는 단계; (2) 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 슬릿형 압출구금에 투입하여 상기 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 형성하는 단계; (3) 상기 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 단계; 및 (4) 상기 코어층을 흐름제어부에서 퍼짐을 유도하는 단계;를 포함한다.CLAIMS What is claimed is: 1. A method of manufacturing a multilayer reflective polarizer comprising a core layer of alternating first and second components, the method comprising: (1) supplying first and second components to the extruders, respectively; (2) forming two or more multilayered composites in which the repeating units of the first component and the second component are alternately laminated, wherein each of the multilayered composites reflects a shear wave (S wave) of a desired wavelength; Injecting the first component and the second component transferred from the plurality of slit-type extrusion molds to form two or more multilayered composites having different average optical thicknesses of the repeating units; (3) laminating the two or more multilayered composites into one to form a core layer; And (4) inducing spreading of the core layer in the flow control unit.
본 발명의 바람직한 일실시예에 따르면, 상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계와 (4) 단계 사이에 (3) 단계에서 형성된 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지하는 단계를 더 포함할 수 있다. According to a preferred embodiment of the present invention, in the case of supplying the skin layer component to the extruder in step (1) between the step (3) and (4) extruded on at least one surface of the core layer formed in step (3) The method may further include laminating the skin layer component transferred from the unit.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계에서 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지할 수 있다.According to another preferred embodiment of the present invention, when the skin layer component is supplied to the extruder in step (1), the skin layer component transferred from the extruder may be laminated on at least one surface of the core layer in step (3). have.
먼저, (1) 단계로서, 제1 성분, 제2 성분 및 스킨층 성분을 각각 압출부들에 공급한다. 코어층만 존재하는 경우에는 스킨층 성분은 생략된다. 상기 제1 성분은 기재를 형성하는 제2 성분의 내부에 분산되는 폴리머로서 통상적인 폴리머가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있으며 보다 바람직하게는 PEN일 수 있다.First, as step (1), the first component, the second component and the skin layer component are respectively supplied to the extruded parts. If only the core layer is present, the skin layer component is omitted. The first component may be any polymer as long as it is used in a reflective polarizer in which a conventional polymer is dispersed as a polymer dispersed in the second component forming a substrate, and preferably, polyethylene naphthalate (PEN), copolyethylene, Phthalate (co-PEN), Polyethylene terephthalate (PET), Polycarbonate (PC), Polycarbonate (PC) alloy, Polystyrene (PS), Heat-resistant polystyrene (PS), Polymethylmethacrylate (PMMA), Polybutyl Rent Terephthalate (PBT), Polypropylene (PP), Polyethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Polyurethane (PU), Polyimide (PI), Polyvinyl Chloride (PVC), Styrene Acrylic Nitrile Blend (SAN), Ethylene Vinyl Acetate (EVA), Polyamide (PA), Polyacetal (POM), Phenolic, Epoxy (EP), Urea (UF), Melanin (MF), Unsaturated Polyester (UP), Silicone (SI) and cycloolefin polymers are used Number and may be more preferably PEN.
상기 제2 성분은 기재를 형성하는 것으로서 통상적으로 폴리머가 분산된 반사편광자에서 기재의 재질로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 단독 또는 혼합하여 사용할 수 있으며 보다 바람직하게는 디메틸-2,6-나프탈렌 디카르복실레이트, 디메틸테레프탈레이트 및 에틸렌글리콜, 싸이크로헥산디메탄올(CHDM) 등의 단량체들이 적절하게 중합된 co-PEN일 수 있다.The second component may be used without limitation as long as the second component is used as a material of the substrate in the reflective polarizer in which the polymer is dispersed. Preferably, the polyethylene naphthalate (PEN) and the copolyethylene naphthalate (co-PEN) are used. ), Polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT) ), Polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN) Ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI) and cyclic Alone or mixed with a low-olefin polymer Can be used and may be more preferably, dimethyl 2,6-naphthalenedicarboxylate, dimethyl terephthalate and ethylene glycol, Im chroman-hexane dimethanol (CHDM), such as the monomers are suitably polymerized co-PEN.
상기 스킨층 성분은 통상적으로 폴리머가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있다. 상기 폴리카보네이트 얼로이(alloy)는 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)로 이루어질 수 있으며, 보다 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG)가 15 : 85 ~ 85 : 15의 중량비로 이루어진 폴리카보네이트 얼로이일 수 있다. 한편, 본 발명의 스킨층은 퍼짐 및 연신공정에서 굴절율 변화가 적은 재질을 사용하는 것이 좋으며 보다 바람직하게는 폴리카보네이트 또는 폴리카보네이트 얼로이일 수 있다.The skin layer component may be used without limitation as long as it is typically used in a reflective polarizer in which a polymer is dispersed. Preferably, polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, and polystyrene (PS) are used. ), Heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU) ), Polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile mixture (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP) , Urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI) and cycloolefin polymers can be used. The polycarbonate alloy is preferably made of polycarbonate and modified glycol polycyclohexylene dimethylene terephthalate (PCTG), more preferably polycarbonate and modified glycol polycyclohex The silane dimethylene terephthalate (PCTG) may be a polycarbonate alloy having a weight ratio of 15:85 to 85:15. Meanwhile, the skin layer of the present invention preferably uses a material having a small change in refractive index in spreading and stretching processes, and more preferably, may be polycarbonate or polycarbonate alloy.
한편, 상기 제1 성분, 제2 성분 및 스킨층 성분을 개별적으로 독립된 압출부들에 공급할 수 있으며 이 경우 압출부는 3개 이상으로 구성될 수 있다. 또한 폴리머들이 섞이지 않도록 별도의 공급로 및 분배구를 포함하는 하나의 압출부에 공급하는 것 역시 본 발명에 포함된다. 상기 압출부는 익스트루더일 수 있으며, 이는 고체상의 공급된 폴리머들을 액상으로 전환시킬 있도록 가열수단 등을 더 포함할 수 있다.On the other hand, the first component, the second component and the skin layer component can be supplied separately to the independent extrusion parts, in this case, the extrusion part may be composed of three or more. Also included in the present invention is a feed to one extruder comprising a separate feed passage and distributor so that the polymers do not mix. The extruder may be an extruder, which may further include heating means or the like to convert the supplied polymers into a liquid phase.
다음, (2) 단계로서 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 슬릿형 압출구금에 투입하여 상기 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 형성한다. Next, in step (2), two or more multilayer composite flows in which the repeating units of the first component and the second component are alternately laminated are formed, and each of the multilayer composite flows reflects the shear wave (S wave) of a desired wavelength. The first component and the second component transferred from the extruder are introduced into a plurality of slit-type extrusion slots to form two or more multi-layered composite flows having different average optical thicknesses of the repeating units.
구체적으로 도 5 ~ 7은 본 발명에 사용될 수 있는 슬릿형 압출구금의 구금분배판들의 사시도, 저면도 및 결합도이다. 슬릿형 압출구금의 구금분배판들의 결합구조를 내타낸 사시도이다. 슬릿형 압출구금의 상단에 위치하는 제1 구금분배판(S1)은 내부에 제1 성분 공급로(50) 및 제2 성분 공급로(51)로 구성될 수 있다. 이를 통해 상기 압출부를 통해 이송된 제1 성분은 제1 성분 공급로(50)로 투입되고, 제2 성분은 제2 공급로(51)로 공급될 수 있다. 이러한 공급로는 경우에 따라 복수개가 형성될 수 있다. 상기 제1 구금분배판(S1)을 통과한 폴리머들은 하부에 위치하는 제2 구금분배판(S2)로 이송된다. 제1 성분 공급로(50)을 통해 투입된 제1 성분이 유로를 따라 복수개의 제1 성분 공급로들(52, 53)로 분기되어 이송된다. 또한 제2 성분 공급로(51)을 통해 투입된 제2 성분이 유로를 따라 복수개의 제2 성분 공급로들(54, 55, 56)로 분기되어 이송된다. 상기 제2 구금분배판(S2)을 통과한 폴리머들은 하부에 위치하는 제3 구금분배판(S3)로 이송된다. Specifically, FIGS. 5 to 7 are perspective views, bottom views, and coupling views of the distribution plates of the slit-type extrusion mold that may be used in the present invention. It is a perspective view which shows the coupling structure of the distribution board of a slit-type extrusion mold. The first mold distribution plate S1 positioned at the upper end of the slit-type extrusion mold may be composed of a first component supply passage 50 and a second component supply passage 51 therein. Through this, the first component transferred through the extruder may be introduced into the first component supply path 50, and the second component may be supplied to the second supply path 51. In some cases, a plurality of such supply paths may be formed. The polymers that have passed through the first mold distribution plate S1 are transferred to a second mold distribution plate S2 positioned below. The first component introduced through the first component supply path 50 is branched and transferred to the plurality of first component supply paths 52 and 53 along the flow path. In addition, the second component introduced through the second component supply passage 51 is branched and transferred to the plurality of second component supply passages 54, 55, 56 along the flow path. The polymers that have passed through the second detention distribution plate S2 are transferred to the third detention distribution plate S3 located below.
제1 성분 공급로들(52, 53)을 통해 투입된 제1 성분은 각각 제3 구금분배판(S3)에 형성된 제1 성분공급로들(60, 61, 62, 63, 67, 68, 69, 70)으로 유로를 따라 분기되어 이송된다. 마찬가지로 제2 성분 공급로들(54, 55, 56)을 통해 투입된 제2 성분은 각각 제3 구금분배판(S3)에 형성된 제2 성분공급로들(57, 58, 59, 64, 65, 66, 71, 72, 73)으로 유로를 따라 분기되어 이송된다. 그 뒤 제3 구금분배판(S3)에 형성된 제1 성분공급로들 중 일부 제1 성분 공급로들(60, 67)를 통해 투입된 제1 성분은 제4 구금분배판(S4)에 형성된 유로들 중 첫번째 유로(74)로 이송된다. 마찬가지로 제3 구금분배판(S3)에 형성된 제2 성분공급로들 중 일부 제2 성분 공급로들(57, 64, 71)를 통해 투입된 제1 성분은 제4 구금분배판(S4)에 형성된 유로들 중 두번째 유로(75)로 이송된다. 이런 방식으로 제3 구금분배판(S3)의 제1 성분공급로들을 통해 이송된 제1 성분은 제4 구금분배판(S4)의 홀수번째 유로들(74, 76, 78, 80)로 분배되고, 제3 구금분배판(S3)의 제2 성분공급로들을 통해 이송된 제2 성분은 제4 구금분배판(S4)의 짝수번째 유로들(75, 77, 79)로 이송된다. 이를 통해 제1 성분과 제2 성분이 교호적층될 수 있는 것이다. 이와 같은 원리로 제4 구금분배판(S4)의 하부에 상기 제4 구금분배판의 유로방향에 수직이며 유로수가 더 많은 구금분배판(미도시)를 더 포함할 수 있으며, 이를 반복하여 원하는 레이어수만큼 유로의 개수를 확장하는 것은 당업자에게 자명한 것이다. 한편 동일한 원리로 제4 구금분배판(S4)의 홀수번째 유로들(74, 76, 78, 80)을 통해 이송된 제1 성분은 제5 구금분배판(S5)의 홀수번째 유로들(81, 83, 85, 87, 89, 91, 93)으로 이송되고, 제4 구금분배판(S4)의 짝수번째 유로들(75, 77, 79)을 통해 이송된 제2 성분은 제5 구금분배판(S5)의 짝수번째 유로들(82, 84, 86, 88, 90, 91, 92)로 이송된다. 도 6은 도 5의 슬릿형 압출구금의 저면도로서 제5 구금분배판(S5)의 토출로는 홀 타입으로 이격된 것이 아닌 슬릿형 타입으로 일체로 구성된다. 이를 통해 제1 성분과 제2 성분이 각각의 레이어를 형성하는 것이다. 따라서, 제5 구금분배판(S5)의 슬릿의 개수에 따라서 다층 복합류의 레이어의 개수가 결정될 수 있다. 바람직한 레이어의 수는 100개 이상, 보다 바람직하게는 150개 이상, 더욱 바람직하게는 200개 이상, 가장 바람직하게는 300개 이상일 수 있다. 이후, 제6 구금분배판의 토출구(94)를 통해 다층 복합류가 토출된다. 도 8은 다층 복합류의 단면도로서 제1 성분(100, 102)과 제2 성분(101, 103)이 교호적으로 적층된다. 이 때 하나의 제1 성분(100)과 적층된 제2 성분(101)을 반복단위로 정의할 수 있으며, 하나의 복합류는 다수의 반복단위를 포함한다.The first components introduced through the first component supply paths 52 and 53 are first component supply paths 60, 61, 62, 63, 67, 68, 69, respectively formed in the third detention distribution plate S3. And branched along the flow path. Similarly, the second components introduced through the second component supply paths 54, 55, and 56 are second component supply paths 57, 58, 59, 64, 65, and 66 formed in the third detention distribution plate S3, respectively. , 71, 72, 73 are branched along the flow path. Thereafter, the first component introduced through some of the first component supply paths 60 and 67 among the first component supply paths formed in the third prison distribution plate S3 is flow paths formed in the fourth prison distribution plate S4. The first flow path 74 of the. Similarly, the first component introduced through some of the second component supply paths 57, 64, and 71 among the second component supply paths formed in the third prison distribution plate S3 is a flow path formed in the fourth prison distribution plate S4. Is transferred to the second flow path 75. In this manner, the first component conveyed through the first component supply paths of the third prison distribution plate S3 is distributed to the odd-numbered flow paths 74, 76, 78, 80 of the fourth prison distribution plate S4. The second component transferred through the second component supply paths of the third prison distribution plate S3 is transferred to the even-numbered flow paths 75, 77, 79 of the fourth prison distribution plate S4. As a result, the first component and the second component may be alternately stacked. In this way, a lower portion of the fourth detention distribution plate S4 may further include a detention distribution plate (not shown) which is perpendicular to the flow direction of the fourth detention distribution plate and has a larger number of flow passages, and repeats the desired layer. It would be apparent to one skilled in the art to extend the number of flow paths by a number. On the other hand, the first component transferred through the odd-numbered flow paths 74, 76, 78, and 80 of the fourth detention distribution plate S4 on the same principle is the odd-numbered flow paths 81, of the fifth detention distribution plate S5. 83, 85, 87, 89, 91, and 93, and the second component transferred through the even-numbered flow paths 75, 77, and 79 of the fourth detention distribution plate S4 includes a fifth detention distribution plate ( The even-numbered flow paths 82, 84, 86, 88, 90, 91, and 92 of S5) are transferred. FIG. 6 is a bottom view of the slit-type extrusion mold of FIG. 5, and the discharge path of the fifth mold distribution plate S5 is integrally formed with the slit type, not spaced apart from the hole type. As a result, the first component and the second component form respective layers. Therefore, the number of layers of the multilayer composite stream may be determined according to the number of slits of the fifth mold distribution plate S5. The preferred number of layers may be at least 100, more preferably at least 150, even more preferably at least 200 and most preferably at least 300. Thereafter, the multi-layered composite stream is discharged through the discharge port 94 of the sixth mold distribution plate. 8 is a cross-sectional view of a multi-layered composite, in which the first components 100 and 102 and the second components 101 and 103 are alternately stacked. At this time, one first component 100 and the stacked second component 101 may be defined as a repeating unit, and one complex flow includes a plurality of repeating units.
그런데, 상기 도 5 ~ 7은 본 발명의 사용될 수 있는 슬릿형 압출구금에 사용될 수 있는 구금분배판의 예시이며, 제1 성분과 제2 성분이 교호적층된 다층 복합류를 제조하기 위하여 구금분배판의 개수, 구조, 구금홀의 크기, 형상, 제5 구금분배판의 슬릿크기, 토출구의 크기 등을 당업자가 적절하게 설계하여 사용하는 것은 자명한 것이다. 한편, 제5 구금분배판의 저면도의 슬릿들의 직경은 0.17 ~ 0.6㎜일 수 있고, 토출구의 직경이 5 ~ 50㎜일 수 있지만 이에 제한되지 않으며, 이후, 퍼짐공정 및 연신공정 등을 고려하여 슬릿의 직경 등을 설정하는 것은 당업자에기 자명한 것이다. By the way, Figures 5 to 7 are examples of the detention distribution plate that can be used in the slit-type extrusion mold that can be used of the present invention, the detention distribution plate to produce a multilayer composite flow of the first component and the second component alternately laminated It will be apparent to those skilled in the art that the number, structure, size of the hole, size, shape, slit size of the fifth mold distribution plate, size of the discharge hole, etc. are properly designed and used by those skilled in the art. On the other hand, the diameter of the slits in the bottom view of the fifth mold distribution plate may be 0.17 ~ 0.6mm, the diameter of the discharge port may be 5 ~ 50mm, but is not limited thereto, and then, in consideration of the spreading process and the stretching process Setting the diameter of the slit and the like is apparent to those skilled in the art.
한편, 상기 복수개의 다층 복합류는 각각 상이한 광의 파장영역 범위를 커버하기 위하여 상이한 다층 복합류를 형성하는 교호적층된 제1 성분과 제2 성분의 반복단위의 광학적 두께, 반복단위의 개수 등이 상이할 수 있다. 이를 위해 각각의 다층 압출구금에 형성되는 구금홀의 크기, 슬릿의 두께, 형상 또는 레이어의 개수가 상이할 수 있다. 이를 통해 최종적으로 퍼짐 및 연신 공정을 거쳐 제조되는 반사형 편광자는 내부에 다수의 반복단위가 뭉쳐 하나의 그룹이 형성되며, 각각의 그룹은 평균 광학적 두께가 상이하도록 설정될 수 있다. On the other hand, the plurality of multi-layer composites are different in the optical thickness, the number of repeating units of the repeating unit of the first and second components laminated alternately to form a different multi-layer composite flow to cover the wavelength range of the different light, respectively can do. To this end, the size of the detention hole, the thickness of the slit, the shape or the number of layers formed in each multi-layer extrusion hole may be different. Through this, the reflective polarizer manufactured through the spreading and stretching process may be formed so that a plurality of repeating units may be combined to form a group, and each group may be set to have a different average optical thickness.
보다 구체적으로 광학적 두께(optical thickness)는 n(굴절율) × d(물리적 두께)를 의미한다. 따라서 만일 다층 복합류가 2개 형성되는 경우 다층 복합류간 제1 성분 및 제2 성분이 동일하여 굴절율의 차이가 없다면 광학적 두께는 물리적 두께(d)의 크기에 비례하게 된다. 그러므로 각각의 다층 복합류에 포함되는 제1 성분과 제2 성분의 반복단위의 물리적 두께(d)의 평균값을 달리하는 것을 통해 다층 복합류간의 광학적 두께의 차이를 유도할 수 있는 것이다. 이를 위해 슬릿형 압출구금에 포함된 슬릿들의 두께를 압출구금마다 다르게 설계하여 평균 광학적 두께가 상이한 다층 복합류들을 제조할 수 있는 것이다.More specifically, optical thickness means n (refractive index) x d (physical thickness). Therefore, if two multilayer composites are formed, if the first component and the second component are the same between the multilayer composites and there is no difference in refractive index, the optical thickness is proportional to the size of the physical thickness d. Therefore, by varying the average value of the physical thickness (d) of the repeating unit of the first component and the second component included in each multilayer composite stream, it is possible to derive the difference in optical thickness between the multilayer composite stream. To this end, by designing the thickness of the slits included in the slit-type extrusion mold differently for each extrusion mold, it is possible to produce multi-layered composites having different average optical thicknesses.
한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 다층 복합류의 평균 광학적 두께가 결정되어야 한다. 예를 들어 3개의 복합류가 구성되고 각자 빛의 파장영역 중 450㎚, 550㎚, 650㎚에 대응하도록 다층 복합류의 반복단위의 평균 광학적 두께를 설정하려면 다층 복합류 간의 반복단위의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다. 이 경우 동일한 반복단위를 형성하는 제1 성분과 제2 성분의 두께는 동일할 수 있다. On the other hand, in order to cover the entire visible light region, the average optical thickness of the multilayer composites should be determined to correspond to various light wavelengths. For example, in order to set the average optical thickness of repeating units of a multilayered composite to consist of three composites and to respectively correspond to 450 nm, 550 nm, and 650 nm of the wavelength range of light, the average optical thickness of the repeating units between the multilayered composites. May differ by at least 5%, more preferably by 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region. In this case, the thicknesses of the first component and the second component forming the same repeating unit may be the same.
또한 하나의 다층 복합류를 형성하는 슬릿형 압출구금에서도 구금홀의 개수, 단면적, 형상, 슬릿의 직경 등이 동일하거나 상이할 수 있다. 나아가 동일한 다층 복합류를 형성하는 반복단위들의 광학적 두께는 평균 광학적 두께 대비 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내의 편차를 가질 수 있다. 예를 들어 제1 다층 복합류의 반복단위들의 평균 광학적 두께(optical thickness)가 200㎚라면, 동일한 제1 다층 복합류를 형성하는 반복단위들은 대략 20% 이내의 광학적 두께 편차를 가질 수 있다. 한편 빛의 파장과 광학적 두께는 하기 관계식 1에 따라 정의된다. In addition, the number, cross-sectional area, shape, diameter of the slit, etc. of the detention holes may also be the same or different in the slit-type extrusion mold forming one multilayer composite flow. Furthermore, the optical thickness of the repeating units forming the same multilayer composite stream may have a deviation of preferably within 20%, more preferably within 15% of the average optical thickness. For example, if the average optical thickness of the repeating units of the first multilayer composite flow is 200 nm, the repeating units forming the same first multilayer composite flow may have an optical thickness variation within about 20%. Meanwhile, the wavelength and the optical thickness of the light are defined according to the following Equation 1.
[관계식 1][Relationship 1]
λ= 4nd λ = 4nd
단 λ는 빛의 파장(nm), n은 굴절율, d는 물리적 두께(nm)Where λ is the wavelength of light (nm), n is the refractive index, and d is the physical thickness (nm)
그러므로 광학적 두께(nd)에 편차가 발생하면 타겟으로 하는 빛의 파장 뿐만 아니라 이를 포함하는 빛의 파장범위를 커버할 수 있으므로 전체적으로 균일한 광학물성 향상에 큰 도움이 된다. 한편 상기 d는 하나의 층의 두께를 의미하는 것이며, 반복단위는 제1 성분과 제2 성분의 2개의 층으로 구성되므로 제1 성분과 제2 성분의 물리적 두께가 상이하다면 반복단위와 빛의 파장은 하기 관계식 2에 따라 정의될 수 있다. Therefore, if the deviation occurs in the optical thickness (nd) can cover not only the wavelength of the target light but also the wavelength range of the light including the same, which is a great help in improving the overall uniform optical properties. Meanwhile, d denotes the thickness of one layer, and since the repeating unit is composed of two layers of the first component and the second component, if the physical thicknesses of the first component and the second component are different, the repeating unit and the wavelength of the light Can be defined according to relation 2 below.
[관계식 2][Relationship 2]
λ= 2(n1d1 + n2d2)λ = 2 (n 1 d 1 + n 2 d 2 )
단 λ는 빛의 파장(nm), n1은 1층 굴절율, n2는 2층 굴절율, d1은 1층 물리적 두께(nm), d2는 2층 물리적 두께(nm)를 의미한다.Is the wavelength of light (nm), n 1 is the refractive index of one layer, n 2 is the refractive index of two layers, d 1 is the physical thickness of one layer (nm), and d 2 is the physical thickness of two layers (nm).
상술한 광학적 두께의 편차는 하나의 슬릿형 압출구금에서 구금홀의 개수, 단면적, 형상, 슬릿의 직경 등에 편차를 부여하는 것을 통해 달성되거나 또는 퍼짐과정에서의 자연스러운 미세한 압력배분의 등을 통해 자연스럽게 달성될 수 있는 것이다. The above-described optical thickness deviation can be achieved by giving a deviation in the number, cross-sectional area, shape, diameter of the slit, etc. in a single slit-type extruded hole, or naturally by the minute minute pressure distribution during the spreading process. It can be.
따라서, 본 발명의 복수개의 다층 복합류는 복합류를 구성하는 반복단위의 평균 광학적 두께를 상이하게 설정하여 가시광선 전체 영역을 커버할 수 있으며, 하나의 복합류를 형성하는 반복단위에 절절한 광학 두께편차를 부여하여 넓은 파장범위의 S파를 반사할 수 있다. 나아가, 도 5 ~ 7에서는 하나의 슬릿형 압출구금에서 하나의 다층 복합류가 생산되는 것을 예를 들었지만, 슬릿형 압출구금 내부에 섹션을 부가하여 복수개의 다층 복합류를 생산하고 이를 하나의 집합구금을 통해 하나로 합지하는 것 역시 일체화된 슬릿형 압출구금에 해당하여 본 발명에 범위에 속하는 것이다. 또한 슬릿형 압출구금에 포함된 슬릿의 두께를 압출구금마다 다르게 설계하여 평균 광학적 두께가 상이한 다층 복합류들을 제조할 수 있는 것이다.Therefore, the multiple multilayer composites of the present invention can cover the entire visible light region by differently setting the average optical thickness of the repeating units constituting the composite flow, and the optical thickness appropriate to the repeating units forming one composite flow. Deviation can be made to reflect the S wave of a wide wavelength range. Furthermore, in FIGS. 5 to 7, one multi-layer composite flow is produced in one slit-type extrusion die, but a section is added to the inside of the slit-type extrusion die to produce a plurality of multi-layer composite flows, and one aggregated die is produced. It is also within the scope of the present invention to correspond to the integrated slit-type extruded through one laminated through one. In addition, by designing the thickness of the slits included in the slit-type extrusion die differently for each extrusion die, it is possible to produce a multi-layer composites having a different average optical thickness.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 상기 압출부에서 이송된 제1 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제1 가압수단을 통해 각각 상이한 슬릿형 압출구금으로 토출되는 단계를 더 포함할 수 있다. 구체적으로 도 9는 2개의 다층 복합류를 형성하기 위하여 제1 가압수단을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제1 성분이 상기 복수개의 제1 가압수단(130, 131)들에 분기되어 공급되고 각각의 제1 가압수단(130, 131)들에서 각각의 슬릿형 압출구금(132, 133)들에 개별적으로 공급된다. 이 때, 상기 제1 가압수단(130, 131)은 서로 상이한 토출량을 가지며 이를 통해 면적차이가 발생하게 되고 각각의 슬릿형 압출구금(132, 133)이 동일한 스펙(슬릿의 직경 등이 동일한 경우)을 통해 형성된 제1 다층 복합류 및 제2 다층 복합류의 평균 광학적 두께가 상이해질 수 있다.  According to another preferred embodiment of the present invention, the first component conveyed in the extruded portion between the steps (1) and (2) is a plurality of agents having different discharge amounts in order to have a different average optical thickness between the multilayer composite flow 1 may further include the step of being discharged into the different slit-type extrusion hole through the pressing means. Specifically, FIG. 9 is a schematic view including a first pressurizing means for forming two multi-layered composite flows, in which a first component conveyed from an extrusion unit (not shown) includes the plurality of first pressurizing means 130 and 131. It is branched to and supplied to the respective slit-type extrusion holes 132 and 133 separately from the respective first pressing means 130 and 131. At this time, the first pressing means (130, 131) has a different discharge amount from each other through which the area difference occurs and each of the slit- type extrusion slots 132, 133 are the same specifications (when the diameter of the slit, etc.) is the same The average optical thickness of the first multi-layer composites and the second multi-layer composites formed through may be different.
이를 위해 상기 제1 가압수단(130, 131)의 토출량은 바람직하게는 1 ~ 100 kg/hr일 수 있으나 이에 제한되는 것은 아니다.To this end, the discharge amount of the first pressing means (130, 131) may be preferably 1 to 100 kg / hr, but is not limited thereto.
한편, 하나의 제1 가압수단이 2개의 슬릿형 압출구금에 제1 성분을 이송하고 상기 2개의 슬릿형 압출구금에서 형성된 2개의 다층 복합류가 합지되어 하나의 다층 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제1 성분 가압수단과 8개의 슬릿형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제1 가압수단이 3개 이상의 슬릿형 압출구금에 제1 성분을 이송하는 것 역시 가능하다. On the other hand, one first pressing means transfers the first component to the two slit-type extrusion molds, and the two multilayer composite flows formed from the two slit-type extrusion molds are laminated to form one multilayer composite flow, and then one It is also possible for groups to be formed. In this case, four groups may be formed through the four first component pressing means and the eight slit extrusion holes. It is also possible for one first pressing means to convey the first component to three or more slit-type extrusion fittings.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 압출부에서 이송된 제2 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제2 가압수단을 통해 각각 상이한 슬릿형 압출구금으로 토출될 수 있다. 구체적으로 도 10은 2개의 다층 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제2 성분이 상기 복수개의 제2 가압수단(140, 141)들에 분기되어 공급되고 각각의 제2 가압수단(140, 141)들에서 각각의 슬릿형 압출구금(142, 143)들에 개별적으로 공급된다. 이 때, 상기 제1 가압수단(150, 151)은 서로 상이한 토출량을 가지며 이를 통해 각각의 슬릿형 압출구금(152, 153)이 동일한 스펙(도성분 공급로등의 형상 직경 등이 동일한 경우)을 통해 형성된 제1 다층 복합류 및 제2 다층 복합류의 제2 성분의 평균 광학적 두께가 상이할 수 있다. 이를 위해 상기 제2 가압수단(150, 151)의 토출량은 바람직하게는 1 ~ 100 kg/hr 일 수 있으나 이에 제한되는 것은 아니다.  According to another preferred embodiment of the present invention, the second component conveyed in the extrusion section between the steps (1) and (2) is a plurality of agents having different discharge amounts in order to have a different average optical thickness between the multilayer composite flow 2 may be discharged into different slit-type extrusion holes through the pressing means. Specifically, FIG. 10 is a schematic view including two second pressing means to form two multi-layered composite flows, wherein the second component conveyed from the extruder (not shown) is the plurality of second pressing means 140, 141. ) And is supplied separately to the respective slit-type extrusion holes 142, 143 in the respective second pressing means 140, 141. At this time, the first pressing means (150, 151) has a different discharge amount from each other through each of the slit-type extrusion spheres (152, 153) has the same specifications (when the shape diameter of the island component supply path, etc. are the same). The average optical thickness of the second component of the first multi-layer composites and the second multi-layer composites formed through may be different. To this end, the discharge amount of the second pressurizing means 150 and 151 may be preferably 1 to 100 kg / hr, but is not limited thereto.
한편, 하나의 제2 가압수단이 2개의 슬릿형 압출구금에 제2 성분을 이송하고 상기 2개의 슬릿형 압출구금에서 형성된 2개의 다층 복합류가 합지되어 하나의 다층 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제2 성분 가압수단과 8개의 슬릿형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제2 가압수단이 3개 이상의 슬릿형 압출구금에 제2 성분을 이송하는 것 역시 가능하다.On the other hand, one second pressing means transfers the second component to the two slit-type extrusion molds, and the two multilayer composite flows formed from the two slit-type extrusion molds are laminated to form one multilayer composite flow, and then one It is also possible for groups to be formed. In this case, four groups of final reflective polarizers may be formed through four second component pressing means and eight slit extrusion holes. It is also possible for one second pressurizing means to convey the second component to the three or more slit-type extrusion fittings.
다음 (3) 단계로서, 상기 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성한다. 구체적으로 도 11은 다층 복합류의 합지부를 나타내는 개략도로서, 각각의 슬릿형 압출구금을 통해 제조된 복수개의 다층 복합류들(161, 162, 163, 164)을 하나로 합지하여 코어층(165)을 형성하는 것이다. 한편, 상기 합지단계는 별도의 장소에서 수행되거나 일체형의 슬릿형 압출구금을 사용한 경우에는 별도의 집합구금분배판을 통해 하나로 합지할 수 있다. 또한, 다층 복합류이 개수가 많은 경우에는 합지를 용이하게 하기 위하여 일부 다층 복합류를 먼저 합지하고 이들을 다시 합지하는 형태인 다단합지를 수행하는 것 역시 가능하다. 한편, 스킨층을 합지가히 위하여 바람직하게는 상기 (3) 단계에서 압출부에서 이송된 스킨층이 코어층의 적어도 일면에 합지하거나, (3) 단계를 거쳐 형성된 코어층에 대하여 (4) 단계 이전에 코어층을 합지하는 단계를 더 포함할 수 있다. 바람직하게는 상기 스킨층 성분은 상기 코어층의 양면에 모두 합지될 수 있다. 양면에 스킨층이 합지되는 경우 상기 스킨층의 재질 및 두께는 서로 동일하거나 상이할 수 있다. As a next step (3), the two or more multilayered composites are laminated together to form a core layer. Specifically, FIG. 11 is a schematic view showing a lamination portion of a multilayer composite stream. The core layer 165 is formed by laminating a plurality of multilayer composite streams 161, 162, 163, and 164 manufactured through respective slit-type extrusion holes. To form. On the other hand, the laminating step may be carried out in a separate place, or when using a single slit-type extrusion mold may be laminated through a separate aggregated distribution plate. In addition, when the number of multi-layered composites is large, it is also possible to perform a multi-stage lamination in the form of laminating some multi-layered composites first and then laminating them in order to facilitate lamination. On the other hand, in order to laminate the skin layer, preferably the skin layer transferred from the extrusion unit in step (3) is laminated on at least one surface of the core layer, or (3) before the core layer formed through the step (3) The method may further include laminating the core layer. Preferably, the skin layer component may be laminated on both surfaces of the core layer. When the skin layer is laminated on both surfaces, the material and the thickness of the skin layer may be the same or different from each other.
한편, 상기 (2) 단계와 (3) 단계 사이 또는 (3) 단계와 (4) 단계 사이에 후술하는 반복단위의 퍼짐현상을 용이하게 수행하기 위하여 별도의 예비퍼짐 단계를 더 수행할 수 있다.Meanwhile, a separate preliminary spreading step may be further performed to easily spread the repeating unit described later between steps (2) and (3) or between steps (3) and (4).
다음, (4) 단계로서 상기 스킨층이 합지된 코어층을 흐름제어부에서 퍼짐을 유도한다. 구체적으로 도 12는 본 발명에 적용될 수 있는 바람직한 흐름제어부의 일종인 코트-행거 다이의 단면도이고, 도 13은 측면도이다. 이를 통해 코어층의 퍼짐정도를 적절하게 조절하여 반복단위를 원하는 파장의 광을 반사하기에 적절한 광학적 두께를 갖도록 조절할 수 있다. 이는 이후 연신공정 시 광학적 두께가 더욱 줄어들 것을 고려하여 적절하게 설계될 수 있다. 구체적으로 도 12에서 유로를 통해 이송된 스킨층이 합지된 코어층이 코트-행거 다이에서 좌우로 넓게 퍼지므로 내부에 포함된 제1 성분 역시 좌우로 넓게 퍼지게 된다. 또한 도 13의 측면도에서 보듯 코트행거다이는 좌우로 넓게 퍼져있지만 상하로 줄어드는 구조를 갖고 있어 스킨층이 합지된 코어층의 수평방향으로 퍼지나 두께방향으로 줄어들게 된다. 이는 파스칼의 원리가 적용되는 것으로서, 밀폐계에서 유체는 일정 압력에 의해 미세한 부분까지 압력을 전달되어지는 원리에 의해 폭 방향으로 넓게 퍼지도록 유도된다. 따라서 다이의 입구 사이즈보다 출구사이즈가 폭방향은 넓어지고 두께는 줄어들게 되는 것이다. 이는 용융액체 상태의 물질은 밀폐계에서 압력에 의해 흐름 및 형상 제어가 가능한 파스칼 원리를 이용하며, 바람직하게는 레이놀드수 2,500 이하의 층류의 흐름이 되도록 폴리머 유속 및 점성 유도가 요구된다. 2,500 이상의 난류의 흐름이 되면, 판상형의 유도가 불균일해져, 광특성의 편차가 발생될 가능성이 있다. 코트-행거 다이의 출구의 좌우 다이폭은 800 ~ 2,500 mm 일 수 있으며, 폴리머의 유체 흐름은 레이놀즈수 2,500 초과되지 않도록 압력을 조정 요구된다. 그 이유는 그 이상일 경우 폴리머 흐름이 난류로 되어 Core의 배열이 흐트러질 수 있기 때문이다. 또한 내부 온도는 265 ~ 310℃일 수 있다. Next, in step (4), the core layer in which the skin layer is laminated is induced in the flow control unit. Specifically, FIG. 12 is a cross-sectional view of a coat-hanger die, which is a kind of preferred flow control unit that can be applied to the present invention, and FIG. 13 is a side view. Through this, the spreading degree of the core layer may be appropriately adjusted to adjust the repeating unit to have an optical thickness suitable for reflecting light of a desired wavelength. This may be appropriately designed in consideration of further reducing the optical thickness during the stretching process. In detail, since the core layer in which the skin layer transferred through the flow path is laminated in FIG. 12 is widely spread from side to side in the coat-hanger die, the first component included therein is also widely spread from side to side. In addition, as shown in the side view of Figure 13, the coat hanger die is wide spread from side to side but has a structure that is reduced up and down, so that the skin layer is reduced in the horizontal direction of the laminated core layer or reduced in the thickness direction. This is the Pascal principle is applied, the fluid in the closed system is induced to spread wide in the width direction by the principle that the pressure is transmitted to a minute portion by a constant pressure. Therefore, the exit size is wider in the width direction than the inlet size of the die and the thickness is reduced. It uses the Pascal principle that the material in the molten liquid state can be flow and shape control by pressure in the closed system, preferably polymer flow rate and viscosity induction to be a laminar flow of Reynolds number 2,500 or less. When the flow of 2,500 or more turbulent flows, the induction of the plate-like shape is uneven, and there is a possibility of deviation of optical characteristics. The left and right die widths of the exit of the coat-hanger die can be between 800 and 2500 mm, and the fluid flow of the polymer is required to adjust the pressure so that the Reynolds number does not exceed 2,500. The reason is that if it is more than that, the polymer flow becomes turbulent and the core array may be disturbed. In addition, the internal temperature may be 265 ~ 310 ℃.
상기 흐름제어부는 반복단위의 퍼짐을 유도할 수 있는 T-다이 또는 매니폴드 타입의 Coat-hanger 다이일 수 있으나 이에 제한되는 것은 아니며, 코어층의 퍼짐을 유도할 수 있는 것이면 제한없이 사용될 수 있다.The flow control unit may be a T-die or a coat-hanger die of a manifold type that may induce the spread of the repeating unit, but is not limited thereto, and may be used without limitation as long as it may induce the spread of the core layer.
본 발명의 제조방법은 복수개의 슬릿형 압출구금을 이용하여 평균 광학적 두께가 상이한 복수개의 다층 복합류를 제조하고 용융상태에서 이를 합지하므로 코어층 내부에 별도의 접착층 및/또는 보호층(PBL)을 필요로 하지 않으면서 가시광선 파장영역의 S파를 모두 반사할 수 있다. 또한 스킨층 역시 용융상태에서 코어층의 적어도 일면에 형성되므로 별도의 접착단계를 거치지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다. In the manufacturing method of the present invention, a plurality of multi-layered composites having different average optical thicknesses are manufactured using a plurality of slit-type extrusion molds and laminated in a molten state, so that a separate adhesive layer and / or protective layer (PBL) is formed inside the core layer. It can reflect all the S-waves in the visible wavelength range without the need. In addition, the skin layer is also formed on at least one surface of the core layer in the molten state, and does not go through a separate bonding step. This not only significantly reduces the manufacturing cost but is also very advantageous in maximizing optical properties at a limited thickness.
본 발명의 바람직한 일구현예에 따르면, 상기 (4) 단계 이후, (5) 흐름제어부에서 이송된 퍼짐이 유도된 편광자를 냉각 및 평활화하는 단계, (6) 상기 평활화 단계를 거친 편광자를 연신하는 단계; 및 (7) 상기 연신된 편광자를 열고정하는 단계를 더 포함할 수 있다.According to a preferred embodiment of the present invention, after the step (4), (5) cooling and smoothing the polarizer induced by the spread transferred from the flow control unit, (6) stretching the polarizer after the smoothing step ; And (7) heat setting the stretched polarizer.
먼저, (5) 단계로서 흐름제어부에서 이송된 편광자를 냉각 및 평활화하는 단계로서 통상의 반사 편광자의 제조에서 사용되던 냉각하여 이를 고형화하고 이후 캐스팅 롤공정 등을 통해 평활화 단계를 수행할 수 있다.First, as a step (5), cooling and smoothing of the polarizer transferred from the flow control unit may be performed by cooling used in the manufacture of a conventional reflective polarizer to solidify it, and then may be performed through a casting roll process or the like.
이후, 상기 평활화 단계를 거친 편광자를 연신하는 공정을 거친다. 상기 연신은 통상의 반사 편광자의 연신공정을 통해 수행될 수 있으며, 이를 통해 제1 성분과 제2 성분간의 굴절율 차이를 유발하여 계면에서 광변조 현상을 유발할 수 있고, 상기 퍼짐유도된 반복단위는 연신을 통해 최종적으로 원하는 광파장 범위에 맞는 광학적 두께를 획득하게 된다. 따라서, 최종 반사 편광자에서 반복단위의 광학적 두께를 조절하기 위해서는 상기 슬릿형 압출구금에서 슬릿형 압출구금의 슬릿직경, 퍼짐유도 조건 및 연신비를 고려하여 적절하게 설정될 수 있는 것이다. 이를 위하여 바람직하게는 연신공정은 일축연신 또는 이축연신을 수행할 수 있으며, 보다 바람직하게는 일축연신을 수행할 수 있다. 일축연신의 경우 연신방향은 길이방향으로 연신을 수행할 수 있다. 또한 연신비는 3 ~ 12배 일 수 있다. 한편, 등방성 재료를 복굴절성으로 변화시키는 방법은 통상적으로 알려진 것이며 예를 들어 적절한 온도 조건 하에서 연신시키는 경우, 중합체 분자들은 배향되어 재료는 복굴절성으로 될 수 있다.Thereafter, a process of stretching the polarizer after the smoothing step is performed. The stretching may be performed through a stretching process of a conventional reflective polarizer, thereby causing a difference in refractive index between the first component and the second component to cause a light modulation phenomenon at the interface, and the spread-induced repeating unit may be stretched. Finally, the optical thickness corresponding to the desired light wavelength range is obtained. Therefore, in order to control the optical thickness of the repeating unit in the final reflecting polarizer, the slit diameter of the slit extruded in the slit-type extrusion mold, spreading conditions and draw ratio can be appropriately set. For this purpose, preferably, the stretching step may be performed uniaxially or biaxially, and more preferably, uniaxially. In the case of uniaxial stretching, the stretching direction can be performed in the longitudinal direction. In addition, the draw ratio may be 3 to 12 times. On the other hand, methods for changing an isotropic material to birefringence are commonly known and, for example, when drawn under suitable temperature conditions, the polymer molecules can be oriented so that the material becomes birefringent.
다음, (7) 단계로서 상기 연신된 편광자를 열고정하는 단계를 거쳐 최종적인 반사형 편광자를 제조할 수 있다. 상기 열고정은 통상의 방법을 통해 열고정될 수 있으며, 바람직하게는 180 ~ 200℃ 에서 0.1 ~ 3분 동안 IR 히터를 통해 수행될 수 있다.Next, the final reflective polarizer may be manufactured by performing heat setting of the stretched polarizer as step (7). The heat setting may be heat setting through a conventional method, preferably may be performed through an IR heater for 0.1 to 3 minutes at 180 ~ 200 ℃.
한편, 본 발명에서 그룹간 목표로 하는 반복단위의 평균 광학적 두께 가 정해지면 이를 고려하여 슬릿의 규격, 흐름제어부의 규격 및 연신비 등을 적절하게 제어하여 본 발명의 반사형 편광자를 제조할 수 있는 것이다.On the other hand, in the present invention, if the average optical thickness of the target repeating unit between groups is determined in consideration of this, it is possible to manufacture the reflective polarizer of the present invention by appropriately controlling the specifications of the slit, the specification and the draw ratio of the flow control unit. .
상술한 방법을 통해 제조된 본 발명의 다층 반사편광자는 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 면내 복굴절을 갖는 제1층 및 제1층과 교호적층된 제2층을 포함하고, 상기 제1층과 제2층은 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 제1층 및 제2층은 적어도 하나의 축방향으로 신장되며, 상기 제1층과 제2층은 하나의 반복단위를 형성하며, 반복단위들은 원하는 파장의 횡파(S파)를 반사시키기 위하여 그룹을 형성하며, 상기 그룹은 2개 이상이고, 상기 그룹들은 일체로 형성되며, 그룹간 반복단위들의 평균 광학적 두께가 상이한 코어층을 포함한다. 또한 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함할 수 있다. 이 경우 코어층과 스킨층 사이에 접착층이 형성되지 않는다. The multilayer reflective polarizer of the present invention manufactured by the above-described method has a first layer having in-plane birefringence and a second layer alternately laminated with the first layer, in order to transmit the first polarized light irradiated from the outside and reflect the second polarized light. Wherein the first layer and the second layer have different refractive indices in at least one axial direction, the first layer and the second layer extend in at least one axial direction, and the first layer and the second layer Is a repeating unit, the repeating units form a group to reflect the shear wave (S wave) of the desired wavelength, the group is two or more, the groups are formed integrally, It includes core layers that differ in average optical thickness. It may also include a skin layer formed integrally on at least one surface of the core layer. In this case, no adhesive layer is formed between the core layer and the skin layer.
도 14는 본 발명의 바람직한 일실시예에 따른 다층 반사형 편광자의 단면도이다. 구체적으로 코어층(180)의 양면에 스킨층(189, 190)이 일체로 형성되고, 상기 코어층(180)은 2개의 그룹(A, B)로 구획된다. 도면에서 그룹 A와 B를 구획하는 점선은 가상의 선을 의미하는 것이다. 그룹 A에서 제1 성분에 해당하는 제1층(181, 183)과 제2 성분에 해당하는 제2층(182, 184)는 교호적층된다. 여기서 제1층(181)과 제2층(182)은 하나의 반복단위(R1)로 정의되며 그룹 A는 적어도 25개 이상의 반복단위를 포함할 수 있다. 그룹 B 역시 제1층(185, 187)과 제2 성분에 해당하는 제2층(182, 184)는 교호적층된다. 여기서 제1층(185)과 제2층(186)은 하나의 반복단위(R2)로 정의되며 그룹 A는 적어도 25개 이상의 반복단위를 포함하며, 바람직하게는 50개 이상, 더욱 바람직하게는 100개 이상, 가장 바람직하게는 150개 이상일 수 있다. 또한 제1층과 제2층의 두께는 서로 동일할 수 있다.14 is a cross-sectional view of a multilayer reflective polarizer in accordance with a preferred embodiment of the present invention. Specifically, skin layers 189 and 190 are integrally formed on both surfaces of the core layer 180, and the core layer 180 is divided into two groups A and B. In the drawing, a dotted line dividing groups A and B means an imaginary line. In group A, the first layers 181 and 183 corresponding to the first component and the second layers 182 and 184 corresponding to the second component are alternately stacked. Here, the first layer 181 and the second layer 182 may be defined as one repeating unit R1, and the group A may include at least 25 repeating units. In the group B, the first layers 185 and 187 and the second layers 182 and 184 corresponding to the second component are alternately stacked. Here, the first layer 185 and the second layer 186 are defined as one repeating unit (R2), and the group A includes at least 25 repeating units, preferably 50 or more, more preferably 100 More than one, most preferably 150 or more. In addition, the thicknesses of the first layer and the second layer may be the same.
한편 그룹 A에 포함된 반복단위(R1)들의 평균 광학적 두께와 그룹 B에 포함된 반복단위(R2)들의 평균 광학적 두께가 상이하다. 이를 통해 서로 다른 S파의 파장영역을 반사할 수 있게 되는 것이다. 또한, 그룹 A에 포함된 반복단위들의 광학적 두께는 그룹 A의 평균 광학적 두께를 기준으로 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내의 광학적 두께편차를 가질 수 있다. 그러므로, 그룹 A의 평균 광학적 두께가 200㎚라면 상술한 관계식 2에 의하여 400㎚ 파장의 횡파(S파)를 반사시킬 수 있는 것이다. 이 경우 두께 편차가 20%라면 대략 320 ~ 480㎚ 파장대역을 커버할 수 있다. 만일 그룹 B의 반복단위(R2)들의 평균 광학적 두께가 130㎚라면 관계식 1에 의하여 520㎚ 파장의 횡파(S파)를 반사시킬 수 있으며, 두께편차가 20%라면 대략 420 ~ 620㎚ 파장대역을 커버할 수 있으며 이 경우 그룹 A의 파장대역과 일부 중첩될 수 있어 이를 통해 광변조 효과를 극대화할 수 있다. 또한, 면내 복굴절을 갖는 제1층은 P파는 투과하고 S파는 반사시켜야 하므로 빛이 통과하는 두께방향(z축 굴절율)을 기준으로 굴절율(n)을 설정하고 평균 광학적 두께를 산정할 수 있다.Meanwhile, the average optical thickness of the repeating units R1 included in the group A and the average optical thickness of the repeating units R2 included in the group B are different. Through this, it is possible to reflect the wavelength region of different S waves. In addition, the optical thickness of the repeating units included in the group A may have an optical thickness deviation of preferably within 20%, more preferably within 15% based on the average optical thickness of the group A. Therefore, if the average optical thickness of the group A is 200 nm, the transverse wave (S wave) of the wavelength of 400 nm can be reflected by the above equation (2). In this case, if the thickness variation is 20%, the wavelength band may cover approximately 320 to 480 nm. If the average optical thickness of the repeating units (R2) of group B is 130 nm, it is possible to reflect the transverse wave (S wave) of 520 nm wavelength according to relation 1, and if the thickness deviation is 20%, the wavelength band is approximately 420-620 nm. In this case, it may partially overlap with the wavelength band of Group A, thereby maximizing the light modulation effect. In addition, since the first layer having in-plane birefringence must transmit P wave and reflect S wave, the refractive index n can be set and the average optical thickness can be calculated based on the thickness direction (z-axis refractive index) through which light passes.
도 15는 본 발명의 바람직한 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다. 이를 상기 도 14와의 차이점을 중심으로 설명하면 코어층 내부에 평균 광학적 두께가 상이한 3개 그룹들(A, B, C)이 형성되며 각각의 그룹간 반복단위들의 평균 광학적 두께가 상이하다.15 is a cross-sectional view of a multilayer reflective polarizer according to another exemplary embodiment of the present invention. Referring to the difference from FIG. 14, three groups A, B, and C having different average optical thicknesses are formed inside the core layer, and the average optical thicknesses of the repeating units between the groups are different.
도 16은 본 발명의 바람직한 또 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다. 구체적으로 코어층은 4개의 그룹들이 형성되며, 각각의 그룹들은 각각 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역을 커버하기 위하여 평균 광학적 두께가 조절될 수 있다. 이 경우 코어층의 외곽층은 평균 광학적 두께가 큰 그룹들이 형성되며, 내부층에 평균 광학적 두께가 작은 그룹들이 형성될 수 있다. 한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 반복단위들의 평균 광학적 두께가 결정되어야 한다. 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역에 대응하도록 코어층 내부의 그룹별 반복단위들의 평균 광학적 두께를 설정하려면 그룹간의 제1 성분의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다.16 is a cross-sectional view of a multilayer reflective polarizer according to another preferred embodiment of the present invention. Specifically, the core layer is formed of four groups, each group may be adjusted the average optical thickness to cover the optical wavelength band of 350nm, 450nm, 550nm and 650nm, respectively. In this case, the outer layer of the core layer may have groups having a large average optical thickness, and the groups having a small average optical thickness may be formed in the inner layer. On the other hand, in order to cover the entire visible light region, the average optical thickness of the repeating units must be determined to correspond to various light wavelengths. To set the average optical thickness of repeating units for each group within the core layer to correspond to the optical wavelength bands of 350 nm, 450 nm, 550 nm, and 650 nm, the average optical thickness of the first component between the groups may differ by at least 5% or more. More preferably, 10% or more. Through this, it is possible to reflect the S-waves in the entire visible light region.
한편, 그룹과 그룹 사이에 접착층이 없이 일체로 형성된다. 또한 코어층과 스킨층 사이에도 일체로 형성된다. 그 결과 접착층으로 인한 광학물성의 저하를 방지할 수 있을 뿐만 아니라 한정된 두께에 보다 많은 층을 부가할 수 있어 광학물성을 현저하게 개선시킬 수 있다. 나아가, 스킨층은 코어층과 동시에 제조된 후 연신공정이 수행되므로 종래의 코어층 연신 후 미연신 스킨층과의 접착과는 달리 본 발명의 스킨층은 적어도 하나의 축방향으로 연신될 수 있다. 이를 통해 미연신 스킨층에 비하여 표면경도가 향상되어 내스크래치성이 개선되며 내열성이 향상될 수 있다.On the other hand, there is no adhesive layer between the group and the group is formed integrally. It is also integrally formed between the core layer and the skin layer. As a result, the deterioration of the optical properties due to the adhesive layer can be prevented, and more layers can be added to the limited thickness, thereby significantly improving the optical properties. Furthermore, since the skin layer is manufactured at the same time as the core layer and then the stretching process is performed, the skin layer of the present invention can be stretched in at least one axial direction, unlike the conventional core layer stretching, after the stretching with the unstretched skin layer. As a result, the surface hardness is improved compared to the unstretched skin layer, thereby improving scratch resistance and heat resistance.
본 발명의 바람직한 일구현예에 따르면, 코어층을 형성하는 제1층과 제2층사이에 복굴절 계면이 형성될 수 있다. 구체적으로, 제1층과 제2층이 교호적층된 다층 반사형 편광자에 있어서, 제1층과 제2층간의 공간상의 X, Y 및 Z축에 따른 굴절률의 실질적인 일치 또는 불일치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으로, 산란능은 굴절률 불일치의 제곱에 비례하여 변화한다. 따라서, 특정 축에 따른 굴절률의 불일치의 정도가 더 클수록, 그 축에 따라 편광된 광선이 더 강하게 산란된다. 반대로, 특정 축에 따른 불일치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란된다. 어떤 축에 따라 제2층의 굴절률이 제1층의 굴절률과 실질적으로 일치되는 경우, 이러한 축에 평행한 전기장으로 편광된 입사광은 제1층의 부분의 크기, 모양 및 밀도와 상관없이 산란되지 않고 제1층을 통과할 것이다. 또한, 그 축에 따른 굴절률이 실질적으로 일치되는 경우, 광선은 실질적으로 산란되지 않고 물체를 통해 통과한다. 보다 구체적으로, 제1편광(P파)는 제2층과 제1층의 경계에 형성되는 복굴절 계면에 영향을 받지 않고 투과되나, 제2편광(S파)는 제2층과 제1층의 경계에 형성되는 복굴절성 계면에 영향을 받아 광의 변조가 일어난다. 이를 통해 P파는 투과되고 S파는 광의 산란, 반사 등의 광의 변조가 발생하게 되어 결국 편광의 분리가 이루어지게 되는 것이다.  According to a preferred embodiment of the present invention, a birefringent interface may be formed between the first layer and the second layer forming the core layer. Specifically, in the multilayer reflective polarizer in which the first layer and the second layer are alternately stacked, the magnitude of the substantial coincidence or inconsistency of the refractive indices along the X, Y, and Z axes in the space between the first layer and the second layer is the axis. This affects the degree of scattering of the polarized light. In general, the scattering power varies in proportion to the square of the refractive index mismatch. Thus, the greater the degree of mismatch in refractive index along a particular axis, the more strongly scattered light polarized along that axis. Conversely, when the mismatch along a particular axis is small, the light polarized along that axis is scattered to a lesser extent. If the refractive index of the second layer along a certain axis is substantially coincident with the refractive index of the first layer, incident light polarized with an electric field parallel to this axis is not scattered regardless of the size, shape and density of the portion of the first layer. Will pass through the first floor. Also, when the refractive indices along that axis are substantially coincident, the light beam passes through the object without being substantially scattered. More specifically, the first polarized light (P wave) is transmitted without being affected by the birefringent interface formed at the boundary between the second layer and the first layer, but the second polarized light (S wave) is transmitted to the second layer and the first layer. Modulation of light occurs due to the influence of the birefringent interface formed at the boundary. Through this, the P wave is transmitted, and the S wave generates light modulation such as scattering and reflection of light, and thus, polarization is separated.
따라서, 상기 제1층과 제2층은 그 경게면에서 복굴절 계면을 형성하여야 광변조 효과를 유발할 수 있으므로, 상기 제2층이 광학적 등방성인 경우, 제1층은 복굴절성을 가질 수 있다. 구체적으로, 상기 제1층의 x축 방향의 굴절율이 nX1, y축 방향의 굴절율이 nY1 및 z축 방향의 굴절율이 nZ1이고, 제2층의 굴절율이 nX2, nY2 및 nZ2일 때, nX1과 nY1 사이의 면내 복굴절이 발생할 수 있다. 더욱 바람직하게는 제1층과 제2층은 X, Y, Z축 굴절율 중 적어도 어느 하나가 상이할 수 있으며, 보다 바람직하게는 신장축이 X축인 경우 Y축 및 Z축 방향에 대한 굴절율의 차이가 0.05 이하이고, X축향에 대한 굴절율의 차이가 0.1 이상일 수 있다. 한편 통상적으로 굴절율의 차이가 0.05 이하이면 정합으로 해석된다.Accordingly, since the first layer and the second layer may have a birefringent interface formed at their surface, the light modulation effect may be induced. When the second layer is optically isotropic, the first layer may have birefringence. Specifically, when the refractive index in the x-axis direction of the first layer is nX1, the refractive index in the y-axis direction is nY1 and the refractive index in the z-axis direction is nZ1, and the refractive indices of the second layer are nX2, nY2 and nZ2, nX1 and nY1 In-plane birefringence can occur. More preferably, at least one of the X, Y, and Z axis refractive indices may be different from each other in the first layer and the second layer, and more preferably, the difference in refractive index with respect to the Y and Z axis directions when the extension axis is the X axis Is 0.05 or less, and the difference in refractive index with respect to the X-axis may be 0.1 or more. On the other hand, if the difference in refractive index is 0.05 or less, it is usually interpreted as matching.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 다층 반사형 편광자의 전체 레이어 수는 100 ~ 2000 개 일 수 있다. 반복단위의 두께범위는 원하는 광의 파장범위 및 굴절율에 따라 적절하게 설계할 수 있으며, 바람직하게는 65 ~ 300㎚일 수 있다. 반복단위를 형성하는 제1층과 제2층의 두께는 동일하거나 상이할 수 있다. 한편 본 발명에서 코어층의 두께는 10 ~ 300 ㎛이고, 스킨층의 두께는 50 ~ 190㎛일 수 있으나 이에 제한되지 않는다. On the other hand, according to a preferred embodiment of the present invention, the total number of layers of the multilayer reflective polarizer may be 100 to 2000. The thickness range of the repeating unit may be appropriately designed according to the wavelength range and the refractive index of the desired light, preferably 65 to 300nm. The thicknesses of the first layer and the second layer forming the repeating unit may be the same or different. Meanwhile, in the present invention, the thickness of the core layer is 10 to 300 μm, and the thickness of the skin layer may be 50 to 190 μm, but is not limited thereto.
본 발명의 바람직한 또 다른 일실시예에 따르면, 제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 장치에 있어서, 제1 성분, 제2 성분이 개별적으로 투입되는 2개 이상의 압출부; 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류들은 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 투입하여 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 제조하는 슬릿형 압출구금을 포함하는 스핀블록부; 상기 스핀블록부에서 이송된 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 컬렉션 블록부; 및 상기 컬렉션 블록부에서 이송된 코어층의 퍼짐을 유도하는 흐름제어부를 포함하는 다층 반사편광자의 제조장치를 제공한다.According to still another preferred embodiment of the present invention, in the apparatus for manufacturing a multilayer reflective polarizer including a core layer in which a first component and a second component are alternately laminated, a first component and a second component are separately added. Two or more extrusion parts; The repeating unit of the first component and the second component forms two or more multilayered composite flows in which the laminated units are alternately stacked, and each of the multilayer composite flows is transferred from the extruder to reflect the shear wave (S wave) of a desired wavelength. A spin block portion including a slit-type extrusion block for inputting a first component and a second component to produce two or more multilayered composites having different average optical thicknesses of repeating units; A collection block unit for laminating the two or more multi-layer composite streams transferred from the spin block unit to one to form a core layer; And a flow control unit for inducing the spread of the core layer transferred from the collection block unit.
만일 코어층의 적어도 일면에 스킨층을 더 합지하려면 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 연통되어 상기 스핀블록부에서 이송된 다층 복합류의 적어도 일면에 스킨층을 합지하는 피드블록부를 더 포함할 수 있다. 또는 본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 상기 컬렉션 블록부와 연통되어 형성된 코어층의 적어도 일면에 스킨층이 합지될 수 있다. If the extruder includes an extruded portion into which the skin layer component is separately added to at least one surface of the core layer, the multi-layered composite flow communicated with the extruder into which the skin layer component is injected and transferred from the spin block portion. It may further include a feed block unit for laminating the skin layer on at least one side of the. Alternatively, according to another preferred embodiment of the present invention, when the extruder includes an extruded portion into which the skin layer component is separately added, at least a core layer formed in communication with the extruder into which the skin layer component is injected and the collection block portion. The skin layer may be laminated on one surface.
도 17은 본 발명의 바람직한 일구현예에 따른 스킨층과 코어층이 일체로 형성되는 다층반사편광자를 제조하는 장치의 개략도이다. 구체적으로 제1 성분이 투입되는 제1 압출부(220), 제2 성분의 투입되는 제2 압출부(221) 및 스킨층 성분이 투입되는 제3 압출부(222)를 포함한다. 상기 제1 압출부(220)는 4개의 슬릿형 압출구금(223, 224, 225, 226)를 포함하는 스핀블록부(C)에 연통된다. 이 때 제1 압출부(220)은 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)에 제1 성분을 용융상태로 공급한다. 제2 압출부(221) 역시 스핀블록부(C)에 연통되며 이에 포함된 4개의 슬릿형 압출구금(223, 224, 225, 226)에 제2 성분을 용융상태로 공급한다. 4개의 슬릿형 압출구금(223, 224, 225, 226)을 통해 제1성분과 제2성분이 교호적층되며 반복단위들의 평균 광학적 두께가 상이한 4개의 다층 복합류를 생산한다. 이를 위해 상기 4개의 슬릿형 압출구금의 각각의 슬릿직경이 상이할 수 있다. 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)은 도 5에 도시된 슬릿형 압출구금일 수 있다. 또한 4개의 슬릿형 압출구금을 예로 들었지만 일체화된 하나의 슬릿형 압출구금을 사용할 수 있는 것도 본 발명의 범위에 당연히 포함되는 것이다. 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)을 통해 제조된 4개의 다층 복합류들은 컬렉션 블록부(227)에서 하나로 합지되어 하나의 코어층을 형성한다. 이 경우 상기 컬렉션 블록부(227)는 별도로 형성되거나, 일체화된 하나의 슬릿형 압출구금을 사용하는 경우에는 슬릿형 압출구금의 내부에서 집합구금의 형태로 다층 복합류들을 합지할 수 있다. 상기 컬렉션 블록부(227)에서 합지된 코어층은 피드블록부(228)로 이송된 후 제3 압출부(222)에서 이송된 스킨층 성분과 합지된다. 따라서 제3 압출부(222)와 피드블록부(228)는 서로 연통될 수 있다. 이후 스킨층이 합지된 코어층이 흐름제어부(229)로 이송되고 제1 성분의 퍼짐이 유도된다. 바람직하게는 상기 흐름제어부는 T-다이 또는 코트-행거(coat-hanger) 다이일 수 있다. 한편, 컬렉션 블룩부(227)에서 코어층과 스킨층이 합지되는 경우에는 피드블록부(228)은 생략될 수 있다. 17 is a schematic diagram of an apparatus for manufacturing a multilayer reflective polarizer in which a skin layer and a core layer are integrally formed in accordance with a preferred embodiment of the present invention. Specifically, the first extrusion part 220 to which the first component is injected, the second extrusion part 221 to which the second component is injected, and the third extrusion part 222 to which the skin layer component is injected are included. The first extrusion portion 220 is in communication with the spin block portion (C) comprising four slit-shaped extrusion holes (223, 224, 225, 226). At this time, the first extruder 220 supplies the first slit extruded holes 223, 224, 225, and 226 in a molten state. The second extrusion part 221 is also in communication with the spin block part (C) and supplies the second component in the molten state to the four slit-type extrusion holes (223, 224, 225, 226) included therein. Four slit extruded molds 223, 224, 225, and 226 produce four multilayered composites in which the first and second components are alternately stacked and the average optical thickness of the repeating units is different. To this end, the respective slit diameters of the four slit-type extrusion fittings may be different. The four slit-type extrusion holes 223, 224, 225, and 226 may be the slit type extrusion holes shown in FIG. 5. In addition, although four slit-type extrusion molds are exemplified, the use of one integrated slit-type extrusion mold is naturally included in the scope of the present invention. Four multi-layered composite streams manufactured through the four slit-shaped extrusion holes 223, 224, 225, and 226 are laminated together in the collection block portion 227 to form one core layer. In this case, the collection block portion 227 may be formed separately, or in the case of using a single integrated slit-type extrusion mold, the multi-layered composites may be laminated in the form of a collection mold in the slit-type extrusion mold. The core layer laminated in the collection block portion 227 is transferred to the feed block portion 228 and then laminated with the skin layer component transferred from the third extrusion portion 222. Therefore, the third extrusion part 222 and the feed block portion 228 may be in communication with each other. Thereafter, the core layer in which the skin layer is laminated is transferred to the flow control unit 229, and the spread of the first component is induced. Preferably the flow control part may be a T-die or a coat-hanger die. Meanwhile, when the core layer and the skin layer are laminated in the collection block unit 227, the feed block unit 228 may be omitted.
도 18은 본 발명의 바람직한 다른 일구현예에 따른 폴리머가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 17과 차이점을 중심으로 설명하면, 제1 압출부(220)는 4개의 제1 가압수단들(233, 234, 235, 236)에 제1 성분을 이송한다. 상기 제1 가압수단들(233, 234, 235, 236)은 서로 다른 토출량을 가지며 제1 성분을 복수개의 슬릿형 압출구금(241, 242, 243, 244)으로 토출한다. 제2 압출부(221)는 4개의 제2 가압수단들(237, 238, 239, 240)에 제2 성분을 이송한다. 상기 제2 가압수단들(237, 238, 239, 240)은 서로 다른 토출량을 가지며 제2 성분을 복수개의 슬릿형 압출구금(241, 242, 243, 244)로 토출한다. 4개의 슬릿형 압출구금(241, 242, 243, 244)을 통해 서로 다른 평균 광학적 두께를 갖는 4개의 다층 복합류를 생산한다. 상기 제1 가압수단들, 제2 가압수단들 및 복수개의 슬릿형 압출구금은 스핀블록부(C)를 형성한다. 18 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention. 17, the first extrusion part 220 transfers the first component to the four first pressing means 233, 234, 235, and 236. The first pressurizing means 233, 234, 235, and 236 have different discharge amounts, and discharge the first component to the plurality of slit-type extrusion holes 241, 242, 243, and 244. The second extrusion part 221 transfers the second component to the four second pressing means 237, 238, 239 and 240. The second pressurizing means 237, 238, 239, and 240 have different discharge amounts, and discharge the second component into the plurality of slit-type extrusion holes 241, 242, 243, and 244. Four slit extruded molds 241, 242, 243 and 244 produce four multilayered composites with different average optical thicknesses. The first pressurizing means, the second pressurizing means and the plurality of slit-type extrusion molds form the spin block portion (C).
도 19는 본 발명의 바람직한 또 다른 일구현예에 따른 폴리머가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 18과 차이점을 중심으로 간단히 설명하면 4개의 그룹을 갖는 다층 반사형 편광자를 제조하기 위하여 4개의 슬릿형 압출구금이 아닌 8개의 슬릿형 압출구금을 사용하며 다단합지를 수행하는 것에 특징이 있다. 구체적으로 제1 가압수단(233)은 2개의 슬릿형 압출구금(250, 251)에 제1 성분을 토출한다. 제2 가압수단(234) 역시 2개의 슬릿형 압출구금(250, 251)에 제1 성분을 토출한다. 상기 2개의 슬릿형 압출구금(250, 251)은 동일한 제1 가압수단 및 제2 가압수단을 통해 제1 성분 및 제2 성분이 이송되었으므로 다층 복합류간의 평균 광학적 두께가 동일하다. 이러한 방식으로 8개의 다층 복합류가 형성되며 이들 다층 복합류들은 2개씩 평균 광학적 두께가 동일하게 된다. 상기 평균 광학적 두께가 동일한 2개의 다층 복합류들은 각각 제1 합지부(258, 259, 260, 261)에서 합지되어 4개의 다층 복합류를 형성하고 상기 4개의 다층 복합류들은 제2 합지부(262)에서 합지되어 하나의 코어층을 형성한다.  19 is a schematic diagram of an apparatus for manufacturing a reflective polarizer in which a polymer is dispersed according to another exemplary embodiment of the present invention. Briefly focusing on the difference from FIG. 18, it is characterized by using 8 slit extruded holes, not 4 slit extruded holes, in order to manufacture a multilayer reflective polarizer having 4 groups. . Specifically, the first pressurizing means 233 discharges the first component to the two slit-type extrusion holes 250 and 251. The second pressurizing means 234 also discharges the first component to the two slit-type extrusion holes 250 and 251. The two slit-shaped extrusion holes 250 and 251 have the same optical thickness between the multilayer composite streams because the first and second components are transferred through the same first and second pressing means. In this way, eight multilayer composites are formed, each of which has the same average optical thickness. The two multilayer composites having the same average optical thickness are respectively laminated at the first laminations 258, 259, 260, and 261 to form four multilayer composites, and the four multilayer composites are arranged at the second lamination 262. ) To form one core layer.
한편, 도 19에서는 하나의 제1 가압수단이 2개의 슬릿형 압출구금에 제1 성분을 이송하는 것을 설명하였지만, 2개 이상의 슬릿형 압출구금에 제1 성분을 이송할 수 있는 것은 당업자에게 자명한 것이며 이는 제2 가압수단에도 동일하게 적용될 수 있다. Meanwhile, in FIG. 19, one first pressing means transfers the first component to the two slit-type extrusion molds, but it is apparent to those skilled in the art that the first component can be transferred to the two or more slit-type extrusion molds. The same may be applied to the second pressing means.
한편, 본 발명의 바람직한 일구현예에 따르면, 본 발명의 반사형 편광자 포함하는 액정표시장치를 제공한다. 구체적으로 도 20은 본 발명의 반사형 편광자를 채용한 액정표시장치의 일례로서, 프레임(270)상에 반사판(280)이 삽입되고, 상기 반사판(280)의 상면에 냉음극형광램프(290)가 위치한다. 상기 냉음극형광램프(290)의 상면에 광학필름(320)이 위치하며, 상기 광학필름(320)은 확산판(321), 광확산 필름(322), 프리즘 필름(323), 반사형 편광자(324) 및 흡수편광필름(325)의 순으로 적층되나 상기 적층순서는 목적에 따라 달라지거나 일부 구성요소가 생략되거나 복수개로 구비될 수 있다. 예를들어 확산판(321), 광확산 필름(322)이나 프리즘 필름(323) 등은 전체 구성에서 제외될 수 있으며 순서가 바뀌거나 다른 위치에 형성될 수도 있다. 나아가, 위상차 필름(미도시) 등도 액정표시장치 내의 적절한 위치에 삽입될 수 있다. 한편, 상기 광학필름(320)의 상면에 액정표시패널(310)이 몰드프레임(300)에 끼워져 위치할 수 있다. On the other hand, according to a preferred embodiment of the present invention, there is provided a liquid crystal display device comprising the reflective polarizer of the present invention. Specifically, FIG. 20 is an example of a liquid crystal display device employing a reflective polarizer of the present invention, in which a reflecting plate 280 is inserted into a frame 270, and a cold cathode fluorescent lamp 290 is disposed on an upper surface of the reflecting plate 280. Is located. An optical film 320 is positioned on an upper surface of the cold cathode fluorescent lamp 290, and the optical film 320 includes a diffuser plate 321, a light diffusion film 322, a prism film 323, and a reflective polarizer ( 324 and the absorption polarizing film 325 are laminated in this order, but the stacking order may vary depending on the purpose or some components may be omitted or a plurality may be provided. For example, the diffusion plate 321, the light diffusing film 322, the prism film 323, and the like may be excluded from the overall configuration, and may be changed in order or formed at different positions. Furthermore, a retardation film (not shown) or the like may also be inserted at an appropriate position in the liquid crystal display device. Meanwhile, the liquid crystal display panel 310 may be inserted into the mold frame 300 on the upper surface of the optical film 320.
빛의 경로를 중심으로 살펴보면, 냉음극형광램프(290)에서 조사된 빛이 광학필름(320) 중 확산판(321)에 도달한다. 상기 확산판(321)을 통해 전달된 빛은 빛의 진행방향을 광학필름(320)에 대하여 수직으로 진행시키기 위하여 광확산 필름(322)을 통과하게 된다. 상기 광확산 필름(322)을 통과한 필름은 프리즘 필름(323)을 거친 후 반사형 편광자(324)에 도달하여 광변조가 발생하게 된다. 구체적으로 P파는 반사형 편광자(324)를 손실없이 투과하나, S파의 경우 광변조(반사, 산란, 굴절 등)가 발생하여 다시 냉음극형광램프(290)의 뒷면인 반사판(280)에 의해 반사되고 그 빛의 성질이 P파 또는 S파로 랜덤하게 바뀐 후 다시 반사형 편광자(324)를 통과하게 되는 것이다. 그 뒤 흡수편광필름(325)을 지난 후, 액정표시패널(310)에 도달하게 된다. 결국, 상술한 원리로 인하여 본 발명의 반사형 편광자를 액정표시장치에 삽입시켜 사용하는 경우 통상의 반사형 편광자에 비하여 비약적인 휘도의 향상을 기대할 수 있다. 한편, 상기 냉음극형광램프(290)는 LED로 대체될 수 있다.Looking at the center of the light path, the light irradiated from the cold cathode fluorescent lamp 290 reaches the diffusion plate 321 of the optical film 320. The light transmitted through the diffusion plate 321 passes through the light diffusion film 322 in order to propagate the light in the vertical direction with respect to the optical film 320. The film passing through the light diffusion film 322 passes through the prism film 323 and reaches the reflective polarizer 324 to generate light modulation. Specifically, the P wave transmits the reflective polarizer 324 without loss, but in the case of the S wave, light modulation (reflection, scattering, refraction, etc.) is generated, and again, by the reflecting plate 280 that is the rear side of the cold cathode fluorescent lamp 290. Reflected and the nature of the light is randomly changed to P wave or S wave and then pass through the reflective polarizer 324 again. After passing through the absorption polarizing film 325, the liquid crystal display panel 310 is reached. As a result, when the reflective polarizer of the present invention is used by being inserted into the liquid crystal display device, a dramatic improvement in luminance can be expected as compared with a conventional reflective polarizer. Meanwhile, the cold cathode fluorescent lamp 290 may be replaced with an LED.
한편 본 발명에서는 반사형 편광자의 용도를 액정디스플레이를 중심으로 설명하였지만 이에 한정되는 것은 아니며, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.In the present invention, the use of the reflective polarizer has been described based on the liquid crystal display, but the present invention is not limited thereto, and may be widely used in flat panel display technologies such as a projection display, a plasma display, a field emission display, and an electroluminescent display.
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예 및 실험예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples. The following Examples and Experimental Examples are only illustrative of the present invention, and the scope of the present invention is not limited to the following Examples and Experimental Examples.
<실시예 1> <Example 1>
도 17과 같이 공정을 수행하였다. 구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 디메틸테레프탈레이트와 디메틸-2,6-나프탈렌 디카르복실레이트가 6 : 4의 몰비로 혼합된 물질을 에틸렌 글리콜(EG)과 1 : 2의 몰비로 반응시킨 굴절율이 1.64인 co-PEN 및 스킨층 성분으로서 폴리카보네이트 90중량% 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)가 10 중량%로 중합된 굴절율이 1.58인 폴리카보네이트 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. 제1 성분과 제2성분의 압출 온도는 295℃로 하고 Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, 스킨층은 280℃ 온도 수준에서 압출공정을 수행하였다. The process was performed as shown in FIG. 17. Specifically, PEN having a refractive index of 1.65 as a first component and dimethyl terephthalate and dimethyl-2,6-naphthalene dicarboxylate as a second component were mixed in an molar ratio of 6: 4 to ethylene glycol (EG) and 1. : Refractive index polymerized to 90% by weight of polycarbonate and polycyclohexylene dimethylene terephthalate (PCTG) as a co-PEN and skin layer component having a refractive index of 1.64 reacted at a molar ratio of 2 Polycarbonate alloys of 1.58 were charged to the first extruded portion, the second extruded portion, and the third extruded portion, respectively. The extrusion temperature of the 1st component and the 2nd component shall be 295 degreeC, and I.V. The polymer flow was corrected through the adjustment, and the skin layer was subjected to the extrusion process at a temperature level of 280 ° C.
도 6, 7의 슬릿형 압출구금 4개를 이용하여 평균 광학적 두께가 상이한 4개의 복합류를 제조하였다. 구체적으로 제1 압출부에서 이송된 제1 성분을 4개의 슬릿형 압출구금에 분배하고, 제2 압출부에서 이송된 제2 성분을 4개의 슬릿형 압출구금에 이송하였다. 하나의 슬릿형 압출구금은 300 레이어로 구성되며, 도 7의 제5 구금분배판의 저면의 제1 슬릿형 압출구금의 슬릿의 두께는 0.26㎜, 제2 슬릿형 압출구금의 슬릿두께는 0.21㎜, 제3 슬릿형 압출구금의 슬릿두께는 0.17㎜, 제4 슬릿형 압출구금의 슬릿두께는 0.30㎜ 이고, 제6 구금분배판의 토출구의 직경은 15 mm 15 mm였다. 상기 4개의 슬릿형 압출구금을 통해 토출된 4개의 복합류를 별도의 유로를 통해 이송한 후 컬렉션 블록에서 합지하여 하나의 코어층 폴리머를 형성하였다. 3층 구조의 피드블록에서 상기 제3 압출부로부터 스킨층 성분이 유로를 통해 흘러들어 상기 코어층 폴리머의 상하면에 스킨층을 형성하였다. 상기 스킨층이 형성된 코어층 폴리머를 유속 및 압력구배를 보정하는 도 12, 13의 코트행거다이에서 퍼짐을 유도하였다. 구체적으로 다이 입구의 폭은 200mm이고 두께는 20mm이며 다이출구의 폭은 960 mm이고, 두께는 2.4 mm이며, 유속은 1m/min.이다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하고 MD 방향으로 6배 연신하였다. 이어서 180℃ 에서 2분 동안 IR 히터를 통해 열고정을 수행하여 도 16과 같은 다층 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.64였다. A그룹은 300층(150 반복단위)이며 반복단위의 두께는 168nm이고, 평균 광학적두께 275.5nm이며 광학적 두께편차는 20% 내외였다. B그룹은 300층(150 반복단위)이며 반복단위의 두께는 138nm이고, 평균 광학적두께 226.3nm이며 광학적 두께편차는 20% 내외였다. C그룹은 300층(150 반복단위)이며 반복단위의 두께는 110nm이고, 평균 광학적두께 180.4nm이며 광학적 두께편차는 20% 내외였다. D그룹은 300층(150 반복단위)이며 반복단위의 두께는 200nm이고, 평균 광학적두께 328nm이며 광학적 두께편차는 20% 내외였다. 제조된 다층 반사형 편광자의 코어층 두께 92.4 ㎛, 스킨층 두께 각 153.8 ㎛로, 전체 두께가 400㎛가 되도록 하였다. Four composites with different average optical thicknesses were prepared using four slit-shaped extrusion holes in FIGS. 6 and 7. Specifically, the first component conveyed in the first extruded part was distributed to four slit-type extruded parts, and the second component conveyed in the second extruded part was transferred to four slit-type extruded parts. One slit-type extrusion mold is composed of 300 layers, the thickness of the slit of the first slit-type extrusion mold on the bottom of the fifth mold distribution plate of FIG. 7 is 0.26 mm, and the slit thickness of the second slit extrusion mold is 0.21 mm. The slit thickness of the third slit extruded die was 0.17 mm, the slit thickness of the fourth slit extruded die was 0.30 mm, and the diameter of the discharge port of the sixth die distribution plate was 15 mm 15 mm. The four composite streams discharged through the four slit-type extrusion holes were transferred through separate flow paths and then laminated in a collection block to form one core layer polymer. In the feed block having a three-layer structure, a skin layer component flowed through the flow path from the third extrusion part to form a skin layer on the upper and lower surfaces of the core layer polymer. Spread was induced in the coat hanger die of FIGS. 12 and 13 to correct the flow rate and pressure gradient of the core layer polymer having the skin layer formed thereon. Specifically, the width of the die inlet is 200 mm, the thickness is 20 mm, the width of the die outlet is 960 mm, the thickness is 2.4 mm, and the flow rate is 1 m / min. A smoothing process was then performed on the cooling and casting rolls and stretched six times in the MD direction. Subsequently, heat setting was performed through an IR heater at 180 ° C. for 2 minutes to prepare a multilayer reflective polarizer as shown in FIG. 16. The refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64) and the refractive index of the second component was 1.64. Group A had 300 layers (150 repeating units), and the repeating unit had a thickness of 168 nm, an average optical thickness of 275.5 nm, and an optical thickness deviation of about 20%. Group B consisted of 300 layers (150 repeating units) with a thickness of 138nm, an average optical thickness of 226.3nm, and an optical thickness deviation of about 20%. Group C had 300 layers (150 repeating units) with a repeating unit thickness of 110 nm, an average optical thickness of 180.4 nm, and an optical thickness deviation of about 20%. The D group had 300 layers (150 repeating units), the thickness of the repeating unit was 200nm, the average optical thickness was 328nm, and the optical thickness deviation was about 20%. The core thickness of the manufactured multilayer reflective polarizer was 92.4 µm and the skin layer thickness was 153.8 µm, respectively, so that the total thickness was 400 µm.
<실시예 2> <Example 2>
4개의 슬릿형 압출구금의 레이어 수가 각각 200개씩인 것을 제외하고 실시예 1과 동일하게 실시하여 800층 반사형 편광자를 제조하였다. 최종제품의 코어층 두께 61.6㎛, 스킨층 두께 각 169.2㎛로, 전체 두께 400㎛가 되도록 하였다. An 800-layer reflective polarizer was prepared in the same manner as in Example 1 except that the number of layers of the four slit-type extrusion holes was 200 each. The core layer thickness of the final product was 61.6 mu m and the skin layer thickness was 169.2 mu m, respectively, so that the total thickness was 400 mu m.
<실시예 3> <Example 3>
제3 슬릿형 압출구금을 사용하지 않은 것을 제외하고는 실시예 2와 동일하게 실시하여 600층 반사형 편광자를 제조하였다. A 600-layer reflective polarizer was prepared in the same manner as in Example 2 except that the third slit-type extrusion slot was not used.
<비교예 1> Comparative Example 1
4개의 압출구금의 슬릿의 두께를 모두 제1 슬릿형 구금의 슬릿과 동일한 것을 사용한 것을 제외하고는 실시예 2와 동일하게 실시하여 그룹의 구분이 없는 800층 반사 편광자를 제조하였다. The same procedure as in Example 2 was carried out except that the thickness of the slits of the four extruded slits was the same as that of the slits of the first slits.
<비교예 2> Comparative Example 2
실시예 1에서 4개의 슬릿형 압출구금을 통해 개별적으로 4개의 그룹을 시트로 제작하고 개별적으로 연신하였다. 이후 시트로 제작된 4개의 그룹들을 감압접착제를 통해 접착하여 코어층을 형성한 후 코어층의 양면에 스킨층을 감압접착제로 접착하여 800층 반사 편광자를 제조하였다. 제조된 반사편광자는 코어층의 두께가 83.2㎛이고 스킨층의 두께가 158.4㎛이다. 전체 두께는 400㎛ 이며, 감압접착제층의 두께는 코어층과 스킨층 두께에 포함시켰다. In Example 1, four groups were individually formed into sheets through four slit extruded molds and drawn individually. Thereafter, four groups made of a sheet were adhered through a pressure sensitive adhesive to form a core layer, and then a skin layer was attached to both surfaces of the core layer with a pressure sensitive adhesive to prepare an 800 layer reflective polarizer. The manufactured reflective polarizer has a thickness of 83.2 μm in the core layer and 158.4 μm in the thickness of the skin layer. The total thickness was 400 µm, and the pressure-sensitive adhesive layer was included in the thickness of the core layer and the skin layer.
<실험예>Experimental Example
상기 실시예 1 ~ 3 및 비교예 1 ~ 2를 통해 제조된 반사형 편광자에 대하여 다음과 같은 물성을 평가하여 그 결과를 표 1에 나타내었다.The following physical properties of the reflective polarizers prepared through Examples 1 to 3 and Comparative Examples 1 to 2 were evaluated, and the results are shown in Table 1 below.
1. 투과율1. Transmittance
일본 NIPPON DENSHOKU사의 COH300A 분석설비를 이용하여 ASTM D1003 방법으로 투과축 투과율 및 반사축 투과율을 측정하였다. Transmission axis transmittance and reflection axis transmittance were measured by ASTM D1003 method using COH300A analysis equipment of NIPPON DENSHOKU, Japan.
2. 편광도2. Polarization degree
OTSKA사의 RETS-100 분석설비를 이용하여 편광도를 측정하였다. The degree of polarization was measured using an OTSKA RETS-100 analyzer.
3. 상대휘도3. Relative luminance
상기 제조된 반사형 편광자의 휘도를 측정하기 위하여 하기와 같이 수행하였다. 확산판, 반사형 편광자가 구비된 32" 직하형 백라이트 유니트 위에 패널을 조립 한 후, 탑콘사의 BM-7 측정기를 이용하여 9개 지점의 휘도를 측정하여 평균치를 나타내었다. In order to measure the brightness of the prepared reflective polarizer was performed as follows. After assembling the panel on a 32 "direct backlight unit equipped with a diffuser plate and a reflective polarizer, the luminance was measured at nine points using a BM-7 measuring instrument manufactured by Topcon Corporation.
상대휘도는 실시예 1의 반사형 편광자의 휘도를 100(기준)으로 하였을 때, 다른 실시예 및 비교예의 휘도의 상대값을 나타낸 것이다.  The relative luminance shows the relative values of the luminance of the other examples and the comparative examples when the luminance of the reflective polarizer of Example 1 is 100 (reference).
표 1
상대휘도(%) 편광도(λ= 550nm) 편광도(λ= 650nm)
편광도 투과축 투과율 반사축 투과율 편광도 투과축 투과율 반사축 투과율
실시예 1 100 93% 88% 3% 85.3% 88% 7%
실시예 2 97.2 89.4% 89% 5% 79.8% 89% 10%
실시예 3 94.2 85.5% 90% 7% 76.5% 90% 12%
비교예 1 84.8 73% 89% 14% 66.4% 89% 18%
비교예 2 92.7 85.3% 88% 7% 76% 88% 12%
Table 1
Relative luminance (%) Polarization degree (λ = 550nm) Polarization degree (λ = 650nm)
Polarization degree Transmission axis transmittance Reflective axis transmittance Polarization degree Transmission axis transmittance Reflective axis transmittance
Example 1 100 93% 88% 3% 85.3% 88% 7%
Example 2 97.2 89.4% 89% 5% 79.8% 89% 10%
Example 3 94.2 85.5% 90% 7% 76.5% 90% 12%
Comparative Example 1 84.8 73% 89% 14% 66.4% 89% 18%
Comparative Example 2 92.7 85.3% 88% 7% 76% 88% 12%
표 1에서 알 수 있듯이, 본원발명의 실시예 1 ~ 3의 반사형 편광자가 비교예 1 ~ 2의 반사형 편광자에 비하여 현저하게 향상된 광학물성을 갖는 것을 확인할 수 있다. 또한, 접착층을 포함하는 비교예 2는 동일한 층수의 접착층을 포함하지 않는 실시예 2보다 광학물성이 저하된다. 이는 접착층에 의한 광파장에 대한 상쇄간섭에 의한 광특성 저하가 나타나기 때문이다.As can be seen from Table 1, it can be confirmed that the reflective polarizers of Examples 1 to 3 of the present invention have significantly improved optical properties compared to the reflective polarizers of Comparative Examples 1 and 2. In addition, Comparative Example 2 including the adhesive layer is lower in optical properties than Example 2, which does not include the same number of adhesive layers. This is because optical properties are deteriorated due to destructive interference with respect to the optical wavelength by the adhesive layer.
본 발명의 반사형 편광자는 광변조 성능이 우수하므로, 광의 변조가 요구되는 분야에서 폭넓게 사용가능하다. 구체적으로 모바일디스플레이, LCD, LED 등 고휘도가 요구되는 액정표시장치, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.Since the reflective polarizer of the present invention has excellent light modulation performance, it can be widely used in a field requiring modulation of light. Specifically, it can be widely used in flat panel display technologies such as liquid crystal displays, projection displays, plasma displays, field emission displays, and electroluminescent displays requiring high brightness such as mobile displays, LCDs, and LEDs.

Claims (17)

  1. 제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 방법에 있어서, A method of manufacturing a multilayer reflective polarizer comprising a core layer in which a first component and a second component are alternately laminated,
    (1) 제1 성분 및 제2 성분을 각각 압출부들에 공급하는 단계; (1) supplying the first component and the second component to the extrusion parts, respectively;
    (2) 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 슬릿형 압출구금에 투입하여 상기 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 형성하는 단계;(2) forming two or more multilayered composites in which the repeating units of the first component and the second component are alternately laminated, wherein each of the multilayered composites reflects a shear wave (S wave) of a desired wavelength; Injecting the first component and the second component transferred from the plurality of slit-type extrusion molds to form two or more multilayered composites having different average optical thicknesses of the repeating units;
    (3) 상기 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 단계; 및 (3) laminating the two or more multilayered composites into one to form a core layer; And
    (4) 상기 코어층을 흐름제어부에서 퍼짐을 유도하는 단계;를 포함하는 다층 반사 편광자 제조방법. (4) inducing spreading of the core layer in the flow control unit.
  2. 제1항에 있어서, The method of claim 1,
    상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계와 (4) 단계 사이에 (3) 단계에서 형성된 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지하는 단계를 더 포함하는 것을 특징으로 하는 다층 반사 편광자 제조방법. When the skin layer component is supplied to the extruder in the step (1), the skin layer component transferred from the extruder is laminated on at least one surface of the core layer formed in the step (3) between the steps (3) and (4). Method for producing a multilayer reflective polarizer, characterized in that it further comprises the step.
  3. 제1항에 있어서, The method of claim 1,
    상기 (1) 단계에서 스킨층 성분을 압출부에 공급하는 경우 (3) 단계에서 코어층의 적어도 일면에 압출부에서 이송된 스킨층 성분을 합지하는 것을 특징으로 하는 다층 반사 편광자 제조방법. When the skin layer component is supplied to the extruder in the step (1), the method of manufacturing a multilayer reflective polarizer comprising laminating the skin layer component transferred from the extruder to at least one surface of the core layer in the step (3).
  4. 제1항에 있어서,The method of claim 1,
    상기 (2) 단계는 4개 이상의 다층 복합류를 형성하는 것을 특징으로 하는 다층 반사 편광자 제조방법.Step (2) is a method for producing a multilayer reflective polarizer, characterized in that to form four or more multilayered composites.
  5. 제1항에 있어서, 상기 복수개의 슬릿형 압출구금은 일체화된 것을 특징으로 하는 다층 반사 편광자 제조방법.The method of claim 1, wherein the plurality of slit-type extrusion holes are integrated.
  6. 제1항에 있어서, 상기 (1) 단계와 (2) 단계 사이에The method of claim 1, wherein the step (1) and (2)
    상기 압출부에서 이송된 제1 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제1 가압수단들을 통해 각각 상이한 슬릿형 압출구금으로 토출되는 단계를 더 포함하는 것을 특징으로 하는 다층 반사 편광자 제조방법. The first component conveyed from the extruder further comprises the step of ejecting into different slit-type extrusion slots respectively through a plurality of first pressing means having a different discharge amount in order to have a different average optical thickness between the multi-layer composite flow Method of manufacturing a multilayer reflective polarizer.
  7. 제1항에 있어서, 상기 (1) 단계와 (2) 단계 사이에The method of claim 1, wherein the step (1) and (2)
    압출부에서 이송된 제2 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제2 가압수단들을 통해 각각 상이한 슬릿형 압출구금으로 토출되는 것을 특징으로 하는 다층 반사 편광자 제조방법. The second component conveyed from the extruded part is discharged into different slit-type extrusion holes through a plurality of second pressing means having a different discharge amount in order to have a different average optical thickness between the multi-layer composite flow.
  8. 제1항에 있어서, 상기 복수개의 슬릿형 압출구금은 서로 상이한 다층 복합류를 제조하기 위하여 제1 성분 및 제2 성분이 공급 및 분배되는 구금분배판상의 슬릿들의 직경이 서로 상이한 것을 특징으로 하는 다층 반사 편광자 제조방법.  2. The multilayer according to claim 1, wherein the plurality of slit-type extrusion molds have different diameters of slits on the mold distribution plate to which the first component and the second component are supplied and distributed to produce different multilayer composites. Reflective polarizer manufacturing method.
  9. 제1항에 있어서, The method of claim 1,
    상기 복수개의 슬릿형 압출구금은 구금홀의 레이어수가 200개 이상인 것을 특징으로 하는 다층 반사 편광자 제조방법.The plurality of slit-type extrusion mold is a multilayer reflective polarizer manufacturing method, characterized in that the number of layers of the detention hole is 200 or more.
  10. 제1항에 있어서,The method of claim 1,
    상기 복수개의 슬릿형 압출구금은 각각의 슬릿형 압출구금의 구금홀의 레이어수가 300개 이상인 것을 특징으로 하는 다층 반사 편광자 제조방법.The plurality of slit-type extrusion mold is a multilayer reflective polarizer manufacturing method, characterized in that the number of layers of the detention hole of each slit-type extrusion mold is 300 or more.
  11. 제1항에 있어서, 동일한 다층 복합류를 형성하는 반복단위들의 광학적 두께는 평균 광학두께 대비 20% 이내의 편차를 갖는 것을 특징으로 하는 다층 반사 편광자 제조방법. The method of claim 1, wherein the optical thicknesses of repeating units forming the same multilayered composite have a variation within 20% of the average optical thickness.
  12. 제1항에 있어서, 동일한 다층 복합류를 형성하는 반복단위들의 광학적 두께는 평균 광학적 두께 대비 15% 이내의 편차를 갖는 것을 특징으로 하는 다층 반사 편광자 제조방법.The method of claim 1, wherein the optical thicknesses of repeating units forming the same multilayered composite have a variation within 15% of the average optical thickness.
  13. 제1항에 있어서, 상기 복수개의 다층 복합류들은 평균 광학적 두께가 10% 이상 상이한 것을 특징으로 하는 다층 반사 편광자 제조방법. The method of claim 1, wherein the plurality of multilayer composites have an average optical thickness of 10% or more.
  14. 제1 성분과 제2 성분이 교호적층된 코어층을 포함하는 다층 반사편광자를 제조하는 장치에 있어서, An apparatus for manufacturing a multilayer reflective polarizer comprising a core layer in which a first component and a second component are alternately laminated,
    제1 성분, 제2 성분이 개별적으로 투입되는 2개 이상의 압출부; Two or more extrusion parts into which the first component and the second component are separately input;
    제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류들은 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 투입하여 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 제조하는 슬릿형 압출구금을 포함하는 스핀블록부; The repeating unit of the first component and the second component forms two or more multilayered composite flows in which the laminated units are alternately stacked, and each of the multilayer composite flows is transferred from the extruder to reflect the shear wave (S wave) of a desired wavelength. A spin block portion including a slit-type extrusion block for inputting a first component and a second component to produce two or more multilayered composites having different average optical thicknesses of repeating units;
    상기 스핀블록부에서 이송된 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 컬렉션 블록부; 및  A collection block unit for laminating the two or more multi-layer composite streams transferred from the spin block unit to one to form a core layer; And
    상기 컬렉션 블록부에서 이송된 코어층의 퍼짐을 유도하는 흐름제어부를 포함하는 다층 반사편광자의 제조장치. Apparatus for manufacturing a multilayer reflective polarizer comprising a flow control unit for inducing the spread of the core layer transferred from the collection block unit.
  15. 제14항에 있어서, 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 연통되어 상기 스핀블록부에서 이송된 다층 복합류의 적어도 일면에 스킨층을 합지하는 피드블록부를 더 포함하는 것을 특징으로 하는 다층 반사편광자의 제조장치. The skin layer of claim 14, wherein the extruder includes an extruded part into which the skin layer component is separately added. Apparatus for manufacturing a multilayer reflective polarizer characterized in that it further comprises a feed block unit for laminating.
  16. 제14항에 있어서, 상기 압출부가 스킨층 성분이 개별적으로 투입되는 압출부를 포함하는 경우, 상기 스킨층 성분이 투입된 압출기와 상기 컬렉션 블록부와 연통되어 형성된 코어층의 적어도 일면에 스킨층이 합지되는 것을 특징으로 하는 다층 반사편광자의 제조장치. The skin layer is laminated on at least one surface of the core layer formed in communication with the extruder into which the skin layer component is added and the collection block portion. Apparatus for producing a multilayer reflective polarizer, characterized in that.
  17. 제14항에 있어서, 상기 스핀블록부는 상기 압출부에서 이송된 제1 성분을 토출하여 해도형 압출구금에 공급하는 제1 가압수단 및 상기 압출부에서 이송된 제2 성분을 토출하여 해도형 압출구금에 공급하는 제2 가압수단을 포함하는 것을 특징으로 하는 다층 반사편광자의 제조장치.15. The island-in-the-sea type extrusion mold of claim 14, wherein the spin block portion discharges the first component transferred from the extruder to supply the island-in-the-sea extrusion mold, and the island-in-the-sea extrusion mold by discharging the second component transferred from the extrusion portion. And a second pressing means for supplying it to the apparatus for manufacturing a multilayer reflective polarizer.
PCT/KR2012/011635 2011-12-28 2012-12-27 Method and apparatus for manufacturing multilayer reflective polarizer WO2013100664A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0145132 2011-12-28
KR1020110145132A KR101354284B1 (en) 2011-12-28 2011-12-28 Manufacturing method of multilayer reflective polizer and device thereof
KR10-2011-0145854 2011-12-29
KR1020110145854A KR101354373B1 (en) 2011-12-29 2011-12-29 Manufacturing method of multilayer reflective polizer and device thereof
KR1020110145853A KR101354360B1 (en) 2011-12-29 2011-12-29 Manufacturing method of multilayer reflective polizer and device thereof
KR10-2011-0145853 2011-12-29

Publications (1)

Publication Number Publication Date
WO2013100664A1 true WO2013100664A1 (en) 2013-07-04

Family

ID=48698006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011635 WO2013100664A1 (en) 2011-12-28 2012-12-27 Method and apparatus for manufacturing multilayer reflective polarizer

Country Status (2)

Country Link
TW (1) TWI509298B (en)
WO (1) WO2013100664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7560499B2 (en) * 2019-06-28 2024-10-02 ピーシーエムエス ホールディングス インコーポレイテッド OPTICAL METHODS AND SYSTEMS FOR LIGHT FIELD (LF) DISPLAYS BASED ON A TUNABLE LIQUID CRYSTAL (LC) DIFFUSER - Patent application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950704701A (en) * 1992-10-29 1995-11-20 스티븐 에스. 그레이스 Formable reflective multilayer body
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
KR20080052616A (en) * 2005-08-31 2008-06-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Methods of producing multilayer reflective polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495890A (en) * 2005-08-31 2009-07-29 3M创新有限公司 Methods of producing multilayer reflective polarizer
JP5533858B2 (en) * 2009-04-10 2014-06-25 コニカミノルタ株式会社 Optical film, polarizing plate and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950704701A (en) * 1992-10-29 1995-11-20 스티븐 에스. 그레이스 Formable reflective multilayer body
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
KR20080052616A (en) * 2005-08-31 2008-06-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Methods of producing multilayer reflective polarizer

Also Published As

Publication number Publication date
TWI509298B (en) 2015-11-21
TW201333555A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2012108673A2 (en) Reflective polarizer having a dispersed polymer
WO2013100662A1 (en) Method and apparatus for manufacturing reflective polarizer having dispersed polymer
KR101354297B1 (en) Multilayer reflective polizer
KR101930545B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
WO2013100664A1 (en) Method and apparatus for manufacturing multilayer reflective polarizer
WO2013100661A1 (en) Reflective polarizer having dispersed polymer
KR101354360B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
WO2013100663A1 (en) Multilayer reflective polarizer
KR101931378B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930546B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101940319B1 (en) Multilayer reflective polizer
KR101315003B1 (en) Reflective polizer dispered polymer
KR101354364B1 (en) Multilayer reflective polizer
KR101940322B1 (en) Integrated optical film
KR101930547B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930960B1 (en) Integrated optical film
KR101354284B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101354373B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101940321B1 (en) Multilayer reflective polizer
KR101930549B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930548B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR20140021273A (en) High luminance multifunctional polarizing film
KR101340107B1 (en) Reflective polizer dispered polymer
KR101930551B1 (en) Backlight assembly
KR20140021240A (en) Manufacturing method of reflective polarizer dispered polymer and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862452

Country of ref document: EP

Kind code of ref document: A1