TWI509298B - Method and apparatus for manufacturing multilayer reflective polarizer - Google Patents

Method and apparatus for manufacturing multilayer reflective polarizer Download PDF

Info

Publication number
TWI509298B
TWI509298B TW101151199A TW101151199A TWI509298B TW I509298 B TWI509298 B TW I509298B TW 101151199 A TW101151199 A TW 101151199A TW 101151199 A TW101151199 A TW 101151199A TW I509298 B TWI509298 B TW I509298B
Authority
TW
Taiwan
Prior art keywords
layer
component
units
slit
core layer
Prior art date
Application number
TW101151199A
Other languages
Chinese (zh)
Other versions
TW201333555A (en
Inventor
Duk Jae Cho
Jung Wan Han
Myeong Ki Baek
Seung Jin Ko
Hwang Kyu Lee
Original Assignee
Woongjin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110145132A external-priority patent/KR101354284B1/en
Priority claimed from KR1020110145854A external-priority patent/KR101354373B1/en
Priority claimed from KR1020110145853A external-priority patent/KR101354360B1/en
Application filed by Woongjin Chemical Co Ltd filed Critical Woongjin Chemical Co Ltd
Publication of TW201333555A publication Critical patent/TW201333555A/en
Application granted granted Critical
Publication of TWI509298B publication Critical patent/TWI509298B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

用於製造多層反射式偏光板的方法與裝置Method and apparatus for manufacturing multilayer reflective polarizer 技術領域Technical field

本發明係有關於一種用於製造多層反射式偏光板的方法與裝置,且更特別有關於一種用於製造多層反射式偏光板的方法與裝置,且該多層反射式偏光板包含包括具有不同平均光學厚度之多數層組之一核心層,及一形成為與該核心層結合成一體之表面層,且沒有黏著層形成在該等層組之相鄰層組之間。The present invention relates to a method and apparatus for fabricating a multilayer reflective polarizer, and more particularly to a method and apparatus for fabricating a multilayer reflective polarizer, the multilayer reflective polarizer comprising different averages A core layer of a plurality of layers of optical thickness, and a surface layer formed integrally with the core layer, and no adhesive layer is formed between adjacent layer groups of the layer groups.

背景技術Background technique

平面顯示器技術涵蓋已佔據電視(TV)市場之一重要部份之液晶顯示器(LCD)、投影顯示器及電漿顯示面板(PDP),作為其主要品項。場發射顯示器(FED)及電致發光顯示器(ELD)亦由於其有利特性及與其相關之技術改良而預期獲得市場上之一席之地。該液晶顯示器之應用範圍目前擴及到筆記型電腦、個人電腦螢幕、液晶電視、車輛、航空器等。液晶顯示器佔據該平面顯示器市場之大約80%且隨著需求急速增加,全球銷售量目前非常大。Flat panel display technology covers a major part of the television (TV) market, including liquid crystal displays (LCDs), projection displays, and plasma display panels (PDPs). Field emission displays (FEDs) and electroluminescent displays (ELDs) are also expected to gain a foothold in the market due to their advantageous characteristics and related technological improvements. The application range of the liquid crystal display is currently extended to notebook computers, personal computer screens, LCD TVs, vehicles, aircraft and the like. Liquid crystal displays account for about 80% of the flat panel display market and with the rapid increase in demand, global sales are currently very large.

在一習知液晶顯示器中,液晶及一電極基質係設 置在一對光吸收光學薄膜之間。在該液晶顯示器中,由於藉施加在兩電極之間之一電壓產生之一電場,液晶改變它們的方位,因此改變其光學性質。這程序產生一含有資訊之“像素”,以使用在一特定方位中之偏光顯示一影像。為達此目的,該液晶顯示器包括一前光學薄膜及一後光學薄膜,以產生偏光。In a conventional liquid crystal display, a liquid crystal and an electrode substrate are provided. Placed between a pair of light absorbing optical films. In the liquid crystal display, since an electric field is generated by a voltage applied between two electrodes, the liquid crystal changes their orientation, thus changing its optical properties. This program produces a "pixel" containing information to display an image using polarized light in a particular orientation. To this end, the liquid crystal display includes a front optical film and a rear optical film to generate polarized light.

在該液晶顯示器中使用之光學薄膜不會有效地利用由一背光發射之光。這是因為由該背光發射之光之至少50%被一後側光學薄膜吸收(一光吸收偏光薄膜)。因此,在該液晶顯示器中,一反射式偏光板設置在一光學共振腔及一液晶總成之間以便增進使用由該背光發射之光之效率。The optical film used in the liquid crystal display does not effectively utilize light emitted by a backlight. This is because at least 50% of the light emitted by the backlight is absorbed by a rear side optical film (a light absorbing polarizing film). Therefore, in the liquid crystal display, a reflective polarizing plate is disposed between an optical resonant cavity and a liquid crystal assembly to enhance the efficiency of using light emitted by the backlight.

圖1是顯示一習知反射式偏光板之光學原理之圖。詳而言之,由該光學共振腔引導至該液晶總成之光之P偏光組分在通過該反射式偏光板之後被透射至該液晶總成。另一方面,光之S偏光組分係由該反射式偏光板向該光學共振腔反射,且接著由該光學共振腔之一擴散反射表面反射使得其偏光方向為隨機且,因此,該S偏光接著再投射在該反射式偏光板上。最後,該S偏光被轉換成可通過該液晶總成之偏光板的P偏光。因此,在通過該反射式偏光板後,該轉換之P偏光被透射至該液晶總成。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the optical principle of a conventional reflective polarizing plate. In detail, the P-polarized component of the light guided to the liquid crystal assembly by the optical cavity is transmitted to the liquid crystal assembly after passing through the reflective polarizing plate. On the other hand, the S-polarized component of the light is reflected by the reflective polarizing plate toward the optical resonant cavity, and then reflected by the diffuse reflective surface of one of the optical resonant cavity such that the polarization direction thereof is random and, therefore, the S-polarized light Then, it is projected on the reflective polarizing plate. Finally, the S-polarized light is converted into P-polarized light that can pass through the polarizing plate of the liquid crystal assembly. Therefore, after passing through the reflective polarizing plate, the converted P-polarized light is transmitted to the liquid crystal assembly.

該反射式偏光板對入射光之該等功能,即,選擇性地反射S偏光及透射P偏光可依據在兩不同平坦光學層之間之一折射率達成,且該等平坦光學層在該等平坦光學層 係交替地堆疊之該反射式偏光板中分別具有一異向性折射率及一等向性折射率,在該光學層拉伸後得到之各光學層之一光學厚度,及該拉伸之光學層之折射率之變化。The function of the reflective polarizer for incident light, that is, selectively reflecting S-polarized light and transmitted P-polarized light, can be achieved according to a refractive index between two different flat optical layers, and the flat optical layers are at the same Flat optical layer The reflective polarizing plates which are alternately stacked have an anisotropic refractive index and an isotropic refractive index, respectively, an optical thickness of each of the optical layers obtained after stretching of the optical layer, and the optical of the stretching The change in the refractive index of the layer.

即,投射在該反射式偏光板上之光在被施加在各個光學層時重覆地進行S偏光反射及P偏光透射且,因此,只有該投射偏光之P偏光組分被透射至該液晶總成。另一方面,該反射之S偏光係以一隨機偏振之狀態由該光學共振腔之擴散反射表面反射,且接著再被透射至該反射式偏光板。這使由一光源產生之光之損失及電力之浪費可減少。That is, the light projected on the reflective polarizing plate repeatedly performs S-polarized reflection and P-polarized light transmission when applied to the respective optical layers, and therefore, only the P-polarized component of the projected polarized light is transmitted to the total of the liquid crystal. to make. On the other hand, the reflected S-polarized light is reflected by the diffuse reflection surface of the optical resonant cavity in a state of random polarization and then transmitted to the reflective polarizing plate. This reduces the loss of light generated by a light source and the waste of electricity.

但是,上述習知反射式偏光板的一問題是因為該反射式偏光板係藉交替堆疊具有不同折射率之一平坦等向光學層及一平坦異向光學層以形成一多層結構,及拉伸該多層結構使得各光學層之光學厚度及折射率對於入射光之選擇反射或透射是最佳的來製造,故該習知反射式偏光板之製造程序複雜。特別地,由於該反射式偏光板之各光學層具有一平坦結構,故對於在入射光之一大入射角度範圍內分離P偏光與S偏光而言,堆疊光學層之數目會過多。在這情形下,製造成本會指數地增加。此外,堆疊光學層之數目過多之結構會產生的問題是會有造成光學效能下降之光損失。However, a problem with the above-mentioned conventional reflective polarizing plate is that the reflective polarizing plate forms a multilayer structure by alternately stacking a flat isotropic optical layer and a flat anisotropic optical layer having different refractive indices, and pulling Extending the multilayer structure such that the optical thickness and refractive index of each optical layer are optimal for selective reflection or transmission of incident light, the fabrication process of the conventional reflective polarizer is complicated. In particular, since each optical layer of the reflective polarizer has a flat structure, the number of stacked optical layers may be excessive for separating P-polarized light and S-polarized light within a large incident angle range of incident light. In this case, the manufacturing cost will increase exponentially. In addition, the problem of an excessive number of stacked optical layers is that there is a loss of light that causes a drop in optical performance.

圖2是顯示一習知多層反射式偏光板(例如,一雙亮度增強薄膜(DBEF))之截面圖。詳而言之,該多層反射式偏光板包括一核心層8,及形成在該核心層8之相對面上之表面層9與10。該核心層8被分成四層組1、2、3與4。各層 組1、2、3與4具有一藉交替堆疊等向層及異向層之多層結構。各層組1、2、3與4包括大約200層。同時分開之黏著層5、6與7係形成為使得各黏著層5、6與7設置在形成該核心層8之四層組1、2、3與4中之相鄰層組之間。當該等層組1、2、3與4被獨立地擠壓時,因為各層組1、2、3與4只具有大約200層,故它具有一非常小厚度,因此它們可能會被破壞。為達此目的,各層組1、2、3與4可包括一保護邊界層(PBL)。但是,在這情形下,有該核心層之厚度增加,且製造成本增加之問題。此外,在一反射式偏光板包括在一顯示面板中之情形下,一核心層之厚度有一限制以便薄化。當黏著層形成在該反射式偏光板中之該核心層及/或表面層之間時,可能有的一問題是由於由提供該等黏著層造成之該核心層之厚度減少,該反射式偏光板之光學性質會劣化。由於該核心層之相鄰層係藉各黏著層耦合,且該核心層及各表面層係藉該對應黏著層耦合,可能有的一問題是一層間剝離現象會在該反射式偏光板受到外力或被使用或儲存一段時間,或該反射式偏光板被儲存在一不良環境中後發生。此外,在附接黏著層之程序中之失敗率會過高。又,有可能該反射式偏光板由於形成該等黏著層而與一光源偏移干涉。2 is a cross-sectional view showing a conventional multilayer reflective polarizing plate (for example, a dual brightness enhancement film (DBEF)). In detail, the multilayer reflective polarizing plate includes a core layer 8 and surface layers 9 and 10 formed on the opposite faces of the core layer 8. The core layer 8 is divided into four layers 1, 2, 3 and 4. Layer Groups 1, 2, 3, and 4 have a multi-layered structure in which an isotropic layer and an anisotropic layer are alternately stacked. Each layer group 1, 2, 3 and 4 comprises approximately 200 layers. At the same time, the separate adhesive layers 5, 6 and 7 are formed such that the adhesive layers 5, 6 and 7 are disposed between adjacent ones of the four layer groups 1, 2, 3 and 4 forming the core layer 8. When the layer groups 1, 2, 3 and 4 are independently extruded, since each of the layer groups 1, 2, 3 and 4 has only about 200 layers, it has a very small thickness, so that they may be destroyed. To this end, each layer group 1, 2, 3 and 4 may comprise a protective boundary layer (PBL). However, in this case, there is a problem that the thickness of the core layer is increased and the manufacturing cost is increased. Further, in the case where a reflective polarizing plate is included in a display panel, the thickness of a core layer is limited to be thinned. When the adhesive layer is formed between the core layer and/or the surface layer in the reflective polarizing plate, there may be a problem that the reflective polarized light is reduced due to the thickness of the core layer caused by the provision of the adhesive layers. The optical properties of the board may deteriorate. Since the adjacent layers of the core layer are coupled by the adhesive layers, and the core layer and the surface layers are coupled by the corresponding adhesive layer, there may be a problem that the peeling phenomenon between the layers may be subjected to an external force on the reflective polarizing plate. It may occur after being used or stored for a period of time, or after the reflective polarizer is stored in an unfavorable environment. In addition, the failure rate in the procedure of attaching the adhesive layer is too high. Moreover, it is possible that the reflective polarizing plate is offset from a light source by the formation of the adhesive layers.

如上所述,該等表面層9與10係分別形成在該核心層8之相對表面上。為了耦合該等表面層9與10,分開之黏著層11與12係分別形成在該核心層8與該表面層9之間及在該核心層8與該表面層10之間。當由一聚碳酸酯材料構成 之該等表面層與其中多數聚2,6萘二甲酸乙二酯(PEN)層及多數共聚2,6萘二甲酸乙二酯(coPEN)層使用兵擠壓交替地堆疊之該核心層結合成一體時,會由於在各表面層與該核心層之間缺少相容性而發生剝離之情形。又,極有可能在一拉伸程序後,會由於大約15%之結晶度而相對於一拉伸軸而產生雙折射。因此,就一非拉伸聚碳酸酯片之應用而言,必須形成黏著層。在這情形中,會由於包含由增加一黏著層形成程序造成之外來物質及加工缺陷而發生產量減少之情形。通常,當為該等表面層製造一非拉伸聚碳酸酯片時,會由於在一捲繞程序中之不均一剪壓力而產生雙折射。為了避免這問題,必須實施例如改變聚合物分子結構或控制一擠壓生產線之速度的不同控制。因此,產率會降低。As described above, the surface layers 9 and 10 are formed on the opposite surfaces of the core layer 8, respectively. In order to couple the surface layers 9 and 10, separate adhesive layers 11 and 12 are formed between the core layer 8 and the surface layer 9, respectively, and between the core layer 8 and the surface layer 10. When made of a polycarbonate material The surface layer is combined with a plurality of layers of polyethylene 2,6 naphthalate (PEN) and a plurality of copolymerized ethylene 2,6 naphthalate (coPEN) layers which are alternately stacked by means of squeezing. When integrated, peeling occurs due to lack of compatibility between the surface layers and the core layer. Moreover, it is highly probable that after a stretching process, birefringence will occur with respect to a stretching axis due to about 15% crystallinity. Therefore, for the application of a non-stretched polycarbonate sheet, an adhesive layer must be formed. In this case, there is a case where the yield is reduced due to inclusion of foreign matter and processing defects caused by the addition of an adhesive layer forming procedure. Generally, when a non-stretched polycarbonate sheet is produced for the surface layers, birefringence is caused by uneven shear pressure in a winding process. In order to avoid this problem, different controls such as changing the molecular structure of the polymer or controlling the speed of an extrusion line must be implemented. Therefore, the yield is lowered.

以下將簡單說明一種用以製造上述習知多層反射式偏光板之方法。該核心層係藉獨立地共擠壓具有不同平均光學厚度之四層組以形成該核心層,拉伸該等共擠壓四層組,且接著使用一黏著劑黏合該拉伸四層組來製造。在該拉伸後實施黏合之理由是,如果該核心層是在藉該黏著劑黏合後拉伸,則會發生一剝離現象。然後,該等表面層分別黏合在該核心層之相對表面上。例如,就形成各層組之多層結構而言,折疊一雙層結構以形成一四層結構,且繼續該折疊以形成具有一所欲層數(例如,209層)之多層結構。接著共擠壓該多層層組。由於該程序,不可能改變各層組之厚度。因此,在一單一程序中在一多層結構中形 成多數層組是困難的。因此,在習知情形中,具有不同平均光學厚度之四層組係獨立地擠壓,且接著黏合在一起。A method for manufacturing the above-described conventional multilayer reflective polarizing plate will be briefly described below. The core layer is formed by independently co-extruding a four-layer group having different average optical thicknesses to form the core layer, stretching the co-extruded four-layer group, and then bonding the stretched four-layer group with an adhesive. Manufacturing. The reason why the bonding is performed after the stretching is that if the core layer is stretched after being bonded by the adhesive, a peeling phenomenon occurs. Then, the surface layers are respectively bonded to the opposite surfaces of the core layer. For example, in the case of forming a multilayer structure of each layer group, a two-layer structure is folded to form a four-layer structure, and the folding is continued to form a multilayer structure having a desired number of layers (for example, 209 layers). The multilayer layer stack is then coextruded. Due to this procedure, it is impossible to change the thickness of each layer group. Therefore, in a single program in a multi-layer structure It is difficult to form a majority layer. Thus, in the conventional case, four layers of different average optical thicknesses are extruded independently and then bonded together.

由於上述程序係間斷地實施,故發生製造成本大幅增加之情形。因此,該反射式偏光板在包含在一背光單元中之光學薄膜中是最昂貴的。因此,在某些情形中,雖然發生亮度降低之情形,但是仍製造一沒有反射式偏光板之液晶顯示器以減少製造成本。當該產品之製造增加時,這會是一嚴重之問題。Since the above-described programs are intermittently implemented, a large increase in manufacturing costs occurs. Therefore, the reflective polarizing plate is the most expensive in an optical film contained in a backlight unit. Therefore, in some cases, although a case where the brightness is lowered, a liquid crystal display having no reflective polarizing plate is manufactured to reduce the manufacturing cost. This can be a serious problem as the manufacturing of the product increases.

為達此目的,已有人提出一種多層反射式偏光板。與該多層反射式偏光板不同,在該多層反射式偏光板中,多數縱向拉伸之雙折射聚合物係配置在一基質中以得到一反射式偏光板功能。圖3是包括多數桿狀聚合物之一反射式偏光板20之立體圖。多數縱向拉伸之雙折射聚合物22係配置在一基質21中使得它們以一方向延伸。在該反射式偏光板20中,光學調變效果係藉在該基質21與各雙折射聚合物22之間之一雙折射界面產生。因此,該反射式偏光板20可完成一所欲反射式偏光板功能。但是,在該反射式偏光板20中,會有一問題是因為在可見光之全部波長範圍中反射光是困難的,故與上述交替堆疊反射式偏光板比較,產生過低光學調變效率。當然,雖然這方法有該等雙折射聚合物22之數目過多的問題,但是藉增加在該基質21中之雙折射聚合物22之數目,仍可獲得類似於該交替堆疊反射式偏光板之透射率及反射率的透射率及反射率。詳而言之,當製造具有一32英吋之水平長度之一顯示器面板時, 以一反射式偏光板之垂直橫截面為基礎,具有一0.1至0.3μm之直徑之一至少一百萬圓形或橢圓形雙折射聚合物22應包含在具有一1,580mm之水平長度及一等於或小於400μm之高度(厚度)之基質21中,以便使該反射式偏光板具有類似於上述交替堆疊反射式偏光板之光學性質的光學性質。在這情形中,製造成本過度地增加。此外,用以製造該反射式偏光板之設備非常複雜。因此,製造該設備會非不可能且,因此,使該反射式偏光板商品化是困難的。又,包括在該基質中之該等雙折射聚合物22具有各種不同光學厚度亦是困難的。因此,達成在可見光之全部波長範圍中之光反射是困難的且,因此,物理性質劣化。To this end, a multilayer reflective polarizer has been proposed. Unlike the multilayer reflective polarizing plate, in the multilayer reflective polarizing plate, a plurality of longitudinally stretched birefringent polymers are disposed in a matrix to obtain a reflective polarizing plate function. 3 is a perspective view of a reflective polarizing plate 20 including one of a plurality of rod-shaped polymers. Most of the longitudinally stretched birefringent polymers 22 are disposed in a matrix 21 such that they extend in one direction. In the reflective polarizing plate 20, an optical modulation effect is produced by a birefringent interface between the substrate 21 and each of the birefringent polymers 22. Therefore, the reflective polarizing plate 20 can perform a function of a reflective polarizing plate. However, in the reflective polarizing plate 20, there is a problem in that it is difficult to reflect light in all wavelength ranges of visible light, and thus an excessively low optical modulation efficiency is generated as compared with the above-described alternately stacked reflective polarizing plates. Of course, although this method has a problem of an excessive number of such birefringent polymers 22, by increasing the number of birefringent polymers 22 in the matrix 21, transmission similar to that of the alternately stacked reflective polarizers can be obtained. Transmittance and reflectivity of rate and reflectivity. In detail, when manufacturing a display panel having a horizontal length of 32 inches, Based on the vertical cross section of a reflective polarizer, one having a diameter of 0.1 to 0.3 μm and at least one million circular or elliptical birefringent polymer 22 should be included in a horizontal length of one, 1,580 mm and one equal to Or a substrate 21 having a height (thickness) of less than 400 μm so that the reflective polarizing plate has optical properties similar to those of the above-described alternately stacked reflective polarizing plates. In this case, the manufacturing cost is excessively increased. In addition, the equipment used to manufacture the reflective polarizer is very complicated. Therefore, it is not impossible to manufacture the device, and therefore, it is difficult to commercialize the reflective polarizing plate. Moreover, it is also difficult for the birefringent polymers 22 included in the matrix to have various optical thicknesses. Therefore, it is difficult to achieve light reflection in all wavelength ranges of visible light, and thus physical properties are deteriorated.

為了解決上述問題,已有人提出配置在一基質中之多數雙折射海-島紗。圖4是配置在配置在一基質中之一數雙折射海-島紗。當使用該海-島紗時,可能在多數島與海組分之間之光學調變界面產生光學調變效果。在這情形中,因此,可與使用一雙折射聚合物之情形不同地,在不配置多數海-島紗之情形下獲得所欲光學性質。但是,因為該雙折射海-島紗是一纖維,故會有有關該雙折射海-島紗與一聚合物之基質之相容性、該雙折射海-島紗與該基質之黏合、及雙折射海-島紗之處理的多種問題。此外,由於該雙折射海-島紗具有一圓形狀,故會產生光散射,因此降低在可見光之波長範圍內反射及偏振光之效率。因此,與現有產品比較,偏光特性之劣化會發生。因此,增強亮度有一極限。此外,在上述海-島紗中,在多數島組分之聚結減少 之條件下,該海組分之區域被再細分。因此,會形成造成光洩漏,即光損失之多數空洞,因此造成光學特性劣化。又,由於該海-島紗具有一織物結構,故形成一多層結構有一限制。因此,增強反射及偏光特性會有一限制。In order to solve the above problems, many birefringent sea-island yarns disposed in a matrix have been proposed. Figure 4 is a number of birefringent sea-island yarns disposed in a matrix. When the sea-island yarn is used, an optical modulation effect may be produced at the optical modulation interface between most islands and sea components. In this case, therefore, the desired optical properties can be obtained without the majority of sea-island yarns being disposed, unlike in the case of using a birefringent polymer. However, since the birefringent sea-island yarn is a fiber, there is compatibility between the birefringent sea-island yarn and a matrix of the polymer, adhesion of the birefringent sea-island yarn to the substrate, and Various problems in the treatment of birefringent sea-island yarns. Further, since the birefringent sea-island yarn has a circular shape, light scattering occurs, thereby reducing the efficiency of reflection and polarization in the wavelength range of visible light. Therefore, deterioration of polarization characteristics occurs in comparison with existing products. Therefore, there is a limit to enhancing brightness. In addition, in the above-mentioned sea-island yarn, the aggregation of most island components is reduced. Under the conditions, the area of the sea component is subdivided. Therefore, many voids causing light leakage, that is, light loss, are formed, thus causing deterioration of optical characteristics. Further, since the sea-island yarn has a woven structure, there is a limitation in forming a multilayer structure. Therefore, there is a limit to enhancing reflection and polarization characteristics.

發明內容Summary of the invention

因此,本發明已鑒於上述問題作成,且本發明之目的在於提供一種用於製造多層反射式偏光板的方法與裝置,且該多層反射式偏光板包含包括具有不同平均光學厚度之多數層組之一核心層,及與形成該核心層同時地形成之一表面層。Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for manufacturing a multilayer reflective polarizing plate comprising a plurality of layer groups including different average optical thicknesses. a core layer and a surface layer formed simultaneously with the formation of the core layer.

依據本發明之一形態,上述及其他目的可藉提供一種用於製造多層反射式偏光板的方法達成,且該多層反射式偏光板包括一核心層,該核心層包括交替地堆疊之第一組分及第二組分,又,該製造方法包括以下步驟:(1)供給一第一組分材料及一第二組分材料至各個擠壓單元;(2)將由該等擠壓單元送出之該等第一與第二組分材料注入多數狹縫型擠壓模,因此形成各包括交替堆疊之第一與第二組分之多數重覆層單元的二或二以上之多層複合體,且各重覆層單元包括一第一組分及一第二組分,並且就該等重覆層單元之一平均光學厚度而言,該等二或二以上之多層複合體是不同的,以分別反射具有不同波長之多數橫波(S 波);(3)積層該等二或二以上之多層複合體,以形成一核心層;及(4)透過一流動控制單元擴展該核心層。According to an aspect of the present invention, the above and other objects are achieved by providing a method for manufacturing a multilayer reflective polarizing plate, and the multilayer reflective polarizing plate comprises a core layer including a first group alternately stacked And the second component, in addition, the manufacturing method comprises the steps of: (1) supplying a first component material and a second component material to each of the extrusion units; (2) delivering the extrusion unit by the extrusion unit The first and second component materials are injected into the plurality of slit-type extrusion dies, thereby forming two or more multilayer composites each including a plurality of overlapping layer units of the first and second components alternately stacked, and Each of the overlapping layer units includes a first component and a second component, and the two or more multilayer composites are different in terms of an average optical thickness of the plurality of overlapping layer units, respectively Reflecting most transverse waves with different wavelengths (S (3) laminating the two or more multilayer composites to form a core layer; and (4) expanding the core layer through a flow control unit.

該方法可更包括在該步驟(3)與該步驟(4)之間,當由在該步驟(1)被供給一表面層材料之一擠壓單元送出該表面層材料時,在該步驟(3)形成之核心層之至少一表面上積層該表面層材料的步驟。The method may further comprise, between the step (3) and the step (4), when the surface layer material is sent out by the extrusion unit supplied to the surface layer material in the step (1), at the step ( 3) a step of laminating the surface layer material on at least one surface of the formed core layer.

該方法可更包括當由在該步驟(1)被供給一表面層材料之一擠壓單元送出該表面層材料時,在該步驟(3)在核心層之至少一表面上積層該表面層材料的步驟。The method may further include laminating the surface layer material on at least one surface of the core layer in the step (3) when the surface layer material is fed by one of the surface layer materials supplied in the step (1). A step of.

依據本發明之另一形態,提供一種用於製造多層反射式偏光板的裝置,且該多層反射式偏光板包括具有交替堆疊第一組分一第二組分之一核心層,又,該裝置包括:二或二以上之擠壓單元,且該等第一組分之一材料及該第二組分之一材料分別供給至該等二或二以上之擠壓單元;一旋轉塊,包括多數用以收納由該等擠壓單元中之一對應擠壓單元送出之第一組分材料及由該等擠壓單元中之一對應擠壓單元送出之該第二組分材料的狹縫型擠壓模,因此形成各該等第一與第二組分之多數交替堆疊之重覆層單元的二或二以上之多層複合體,且該等多層複合體之該等重覆層單元具有不同平均光學厚度,以便反射所欲波長之多數橫波(S波);一收集塊,用以積層由該旋轉塊送出之該等二或二以上之多層複合體,因此形成該核心層;及一流動控制單元,用以擴展由該收集塊送出之該核心層。According to another aspect of the present invention, an apparatus for manufacturing a multilayer reflective polarizing plate is provided, and the multilayer reflective polarizing plate comprises a core layer having one of a first component and a second component alternately stacked, and further, the device The method comprises: two or more extrusion units, and one of the first component materials and one of the second components are respectively supplied to the two or more extrusion units; a rotating block, including a majority a slit type squeezing for accommodating a first component material sent from a corresponding one of the pressing units and a second component material sent from a corresponding one of the pressing units Stamping, thus forming two or more multilayer composites of a plurality of overlapping layer units of each of the first and second components, and having different averages of the overlapping layers of the multilayer composites Optical thickness, in order to reflect a majority of the transverse wave (S wave) of the desired wavelength; a collecting block for laminating the two or more multilayer composites sent out by the rotating block, thereby forming the core layer; and a flow control Unit to expand by Feeding agglomerates of the core layer.

該裝置更包含:一擠壓單元,且一表面層材料分 別地供給至該擠壓單元;及一進給塊,係與被供給該表面層材料之該擠壓單元連通,以在包括由該旋轉塊送出之多層複合體之一結構之至少一表面上積層一表面層。The device further comprises: an extrusion unit, and a surface layer material Provided separately to the extrusion unit; and a feed block in communication with the extrusion unit supplied to the surface layer material for at least one surface of a structure comprising one of the multilayer composites fed by the rotary block Laminating a surface layer.

或者,該裝置可更包括一擠壓單元,且一表面層材料分別地供給至該擠壓單元。該擠壓模可與該收集塊連通,以在該核心層之至少一表面上積層一表面層。Alternatively, the apparatus may further comprise a pressing unit, and a surface layer material is separately supplied to the pressing unit. The extrusion die can be in communication with the collection block to laminate a surface layer on at least one surface of the core layer.

該旋轉塊可包括:一第一加壓單元,用以供給由以該第一組分材料供給之擠壓單元送出之第一組分材料至該等狹縫型擠壓模中之一對應狹縫型擠壓模;及一第二加壓單元,用以供給由以該第二組分材料供給之擠壓單元送出之第二組分材料至該等狹縫型擠壓模中之一對應狹縫型擠壓模。The rotating block may include: a first pressing unit for supplying a first component material sent from the pressing unit supplied with the first component material to one of the slit type extrusion dies a slit type extrusion die; and a second pressurizing unit for supplying a second component material sent from the extrusion unit supplied by the second component material to one of the slit type extrusion dies Slot type extrusion die.

依據本發明之製造方法,具有不同平均光學厚度之多數多層複合體係透過多數狹縫型擠壓模製造,且接著在一熔融狀態中積層。因此,不必在該核心層中提供另一黏著層及/或保護邊界層(PBL)。又,因為該表面層係以一熔融狀態形成在該核心層之一至少一表面上,該表面層不進行另一黏合程序。因此,可以明顯地降低製造成本。又,對在一有限厚度中使光學性質最大化亦有大好處。According to the manufacturing method of the present invention, a plurality of multilayer composite systems having different average optical thicknesses are produced through a plurality of slit-type extrusion dies, and then laminated in a molten state. Therefore, it is not necessary to provide another adhesive layer and/or a protective boundary layer (PBL) in the core layer. Further, since the surface layer is formed on at least one surface of one of the core layers in a molten state, the surface layer is not subjected to another bonding process. Therefore, the manufacturing cost can be significantly reduced. Also, there is a great advantage in maximizing optical properties in a finite thickness.

1,2,3,4‧‧‧層組1,2,3,4‧‧ ‧ layer group

5,6,7‧‧‧黏著層5,6,7‧‧‧Adhesive layer

8‧‧‧核心層8‧‧‧ core layer

9,10‧‧‧表面層9,10‧‧‧ surface layer

11,12‧‧‧黏著層11,12‧‧‧Adhesive layer

20‧‧‧反射式偏光板20‧‧‧Reflective polarizer

21‧‧‧基質21‧‧‧Material

22‧‧‧雙折射聚合物22‧‧‧Birefringent polymer

50,52,53,60,61,62,63,67,68,69,70‧‧‧第一組分供給通道50,52,53,60,61,62,63,67,68,69,70‧‧‧first component supply channel

51,54,55,56,57,58,59,64,65,66,71,72,73‧‧‧第二組分供給通道51,54,55,56,57,58,59,64,65,66,71,72,73‧‧‧second component supply channel

74‧‧‧第一通道74‧‧‧First Passage

75‧‧‧第二通道75‧‧‧second channel

76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93‧‧‧通道76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93‧‧

94‧‧‧出口94‧‧‧Export

100,102‧‧‧第一組分100,102‧‧‧First component

101,103‧‧‧第二組分101,103‧‧‧ second component

130,131‧‧‧第一加壓單元130,131‧‧‧First pressurizing unit

132,133‧‧‧狹縫型擠壓模132,133‧‧‧Slit extrusion die

140,141‧‧‧第二加壓單元140,141‧‧‧Second pressurizing unit

142,143‧‧‧狹縫型擠壓模142,143‧‧‧Slit extrusion die

161,162,163,164‧‧‧多層複合體161,162,163,164‧‧‧Multilayer complex

165‧‧‧核心層165‧‧‧ core layer

180‧‧‧核心層180‧‧‧ core layer

181,183,185,187‧‧‧第一層181,183,185,187‧‧‧ first floor

182,184,186,188‧‧‧第二層182,184,186,188‧‧‧ second floor

189,190‧‧‧表面層189,190‧‧‧ surface layer

220‧‧‧第一擠壓單元220‧‧‧First extrusion unit

221‧‧‧第二擠壓單元221‧‧‧Second extrusion unit

222‧‧‧第三擠壓單元222‧‧‧ Third extrusion unit

223,224,225,226‧‧‧狹縫型擠壓模223,224,225,226‧‧‧Slit extrusion die

227‧‧‧收集塊227‧‧‧Collection block

228‧‧‧進給塊228‧‧‧feed block

229‧‧‧流動控制單元229‧‧‧Flow Control Unit

233,234,235,236‧‧‧第一加壓單元233,234,235,236‧‧‧First pressurizing unit

237,238,239,240‧‧‧第二加壓單元237,238,239,240‧‧‧second pressurizing unit

241,242,243,244‧‧‧狹縫型擠壓模241,242,243,244‧‧‧Slit extrusion die

245‧‧‧偏光吸收薄膜245‧‧‧ polarized light absorbing film

250,251‧‧‧狹縫型擠壓模250,251‧‧‧Slit extrusion die

258,259,260,261‧‧‧第一積層單元258, 259, 260, 261 ‧ ‧ first laminated unit

262‧‧‧第二積層單元262‧‧‧Second layered unit

270‧‧‧框架270‧‧‧Frame

280‧‧‧反射板280‧‧‧reflector

290‧‧‧冷陰極螢光燈290‧‧‧Cold Cathode Fluorescent Lamp

300‧‧‧模框架300‧‧‧Mold frame

310‧‧‧液晶顯示器面板310‧‧‧LCD panel

320‧‧‧光學薄膜320‧‧‧Optical film

321‧‧‧擴散板321‧‧‧Diffuser

322‧‧‧光擴散薄膜322‧‧‧Light diffusing film

323‧‧‧稜鏡薄膜323‧‧‧稜鏡film

324‧‧‧反射式偏光板324‧‧‧Reflective polarizer

325‧‧‧偏光吸收薄膜325‧‧‧ polarized light absorbing film

A,B,C,D‧‧‧層組A, B, C, D‧‧‧ layer

C‧‧‧旋轉塊C‧‧‧ rotating block

R1,R2‧‧‧重覆層單元R1, R2‧‧‧ resurfacing unit

S1‧‧‧第一分配板S1‧‧‧ first distribution board

S2‧‧‧第二分配板S2‧‧‧Second distribution board

S3‧‧‧第三分配板S3‧‧‧ third distribution board

S4‧‧‧第四分配板S4‧‧‧ fourth distribution board

S5‧‧‧第五分配板S5‧‧‧ fifth distribution board

S6‧‧‧第六分配板S6‧‧‧ sixth distribution board

T1-T6‧‧‧分配板T1-T6‧‧‧ distribution board

本發明之上述及其他目的、特徵及其他優點將由以下詳細說明配合附圖更清楚地了解,其中:圖1是顯示一習知反射式偏光板之一光學原理之圖; 圖2是顯示一習知多層反射式偏光板(例如,一雙亮度增強薄膜(DBFE))之截面圖;圖3是一包括桿狀聚合物之反射式偏光板之立體圖;圖4是投射在於一反射式偏光板中使用之雙折射海-島紗上之光之移動路徑的截面圖;圖5是顯示可在本發明中使用之一狹縫型擠壓模之分配板之立體圖;圖6是對應圖5之立體仰視圖;圖7是顯示圖5所示之狹縫型擠壓模之一耦合狀態之立體圖;圖8是顯示本發明一較佳實施例之一多層複合體之截面圖;圖9是顯示依據本發明一較佳實施例之用以形成兩多層複合體之兩第一加壓單元的示意圖;圖10是顯示依據本發明一較佳實施例之用以形成兩多層複合體之兩第一加壓單元的示意圖;圖11是顯示依據本發明一較佳實施例之用以積層多層複合體及表面層之一積層單元的示意圖;圖12是顯示依據本發明一較佳實施例之一衣架模之截面圖;圖13是對應於圖15之側視圖;圖14是依據本發明一較佳實施例之一多層反射式偏光板之截面圖;圖15是依據本發明另一較佳實施例之一多層反射式偏 光板之截面圖;圖16是依據本發明另一較佳實施例之一多層反射式偏光板之截面圖;圖17是依據本發明一較佳實施例之用以製造一多層反射式偏光板之一裝置的示意圖;圖18是依據本發明另一較佳實施例之用以製造一多層反射式偏光板之一裝置的示意圖;圖19是依據本發明另一較佳實施例之用以製造一多層反射式偏光板之一裝置的示意圖;及圖20是顯示使用本發明之反射式偏光板之一液晶顯示器(LCD)裝置之分解立體圖。The above and other objects, features and other advantages of the present invention will become more apparent from 2 is a cross-sectional view showing a conventional multilayer reflective polarizing plate (for example, a double brightness enhancement film (DBFE)); FIG. 3 is a perspective view of a reflective polarizing plate including a rod-shaped polymer; A cross-sectional view of a path of movement of light on a birefringent sea-island yarn used in a reflective polarizing plate; and FIG. 5 is a perspective view showing a distribution plate of a slit type extrusion die which can be used in the present invention; 3 is a perspective view showing a coupled state of a slit type extrusion die shown in FIG. 5; and FIG. 8 is a cross-sectional view showing a multilayer composite body according to a preferred embodiment of the present invention; Figure 9 is a schematic view showing two first pressurizing units for forming a two-layer composite according to a preferred embodiment of the present invention; Figure 10 is a view showing the formation of two layers in accordance with a preferred embodiment of the present invention. 2 is a schematic view showing two first pressurizing units of a composite; FIG. 11 is a schematic view showing a laminated unit for laminating a multilayer composite and a surface layer according to a preferred embodiment of the present invention; FIG. 12 is a view showing a laminate according to the present invention; A cross-sectional view of a hanger mold of a preferred embodiment; Figure 13 The side view corresponding to FIG. 15; FIG. 14 is a cross-sectional view of one embodiment of a multilayer based reflective polarizer of a preferred embodiment of the present invention; FIG. 15 is one embodiment according to the present invention, a further preferred embodiment of the multilayer reflective polarizer Figure 16 is a cross-sectional view of a multilayer reflective polarizer in accordance with another preferred embodiment of the present invention; and Figure 17 is a perspective view of a multilayer reflective polarizer in accordance with a preferred embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 18 is a schematic view of an apparatus for manufacturing a multilayer reflective polarizing plate according to another preferred embodiment of the present invention; FIG. 19 is a view of another preferred embodiment of the present invention. A schematic view of a device for manufacturing a multilayer reflective polarizing plate; and FIG. 20 is an exploded perspective view showing a liquid crystal display (LCD) device using the reflective polarizing plate of the present invention.

最佳模式Best mode

以下,將參照附圖詳細說明本發明之實施例。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

依據本發明之一較佳實施例,提供一種用於製造多層反射式偏光板的方法,且該多層反射式偏光板包括一核心層,該核心層包括交替地堆疊之第一組分及第二組分。該製造方法包括以下步驟:(1)供給一第一組分材料及一第二組分材料至各個擠壓單元;(2)將由該等擠壓單元送出之該等第一與第二組分材料注入多數狹縫型擠壓模,因此形成各包括交替堆疊之第一與第二組分之多數重覆層單元的二或二以上之多層複合體,且各重覆層單元包括一第一組分及一第二組分,並且就該等重覆層單元之一平均光學厚度而言,該等二或二以上之多層複合體是不同的,以 分別反射具有不同波長之多數橫波(S波);(3)積層該等二或二以上之多層複合體,以形成一核心層;及(4)透過一流動控制單元擴展該核心層。According to a preferred embodiment of the present invention, a method for manufacturing a multilayer reflective polarizing plate is provided, and the multilayer reflective polarizing plate includes a core layer including a first component and a second stacked alternately Component. The manufacturing method comprises the steps of: (1) supplying a first component material and a second component material to respective extrusion units; (2) feeding the first and second components by the extrusion units The material is injected into the plurality of slit-type extrusion dies, thereby forming two or more multilayer composites each including a plurality of overlapping layer units of the first and second components alternately stacked, and each of the repeated layer units includes a first a component and a second component, and the two or more multilayer composites are different in terms of an average optical thickness of one of the repeating layer units, Reflecting a plurality of transverse waves (S waves) having different wavelengths respectively; (3) laminating the two or more multilayer composites to form a core layer; and (4) expanding the core layer through a flow control unit.

依據本發明之一較佳實施例,該製造方法可更包括在該步驟3與該步驟4之間,當由在該步驟1被供給一表面層材料之一擠壓單元送出該表面層材料時,在該步驟3形成之核心層之至少一表面上積層該表面層材料的步驟。According to a preferred embodiment of the present invention, the manufacturing method may further include between the step 3 and the step 4, when the surface layer material is fed by one of the surface layer materials supplied by the extrusion unit at the step 1. And the step of laminating the surface layer material on at least one surface of the core layer formed in the step 3.

依據本發明之另一較佳實施例,該製造方法可更包括當由在該步驟1被供給一表面層材料之一擠壓單元送出該表面層材料時,在該步驟3在該核心層之至少一表面上積層該表面層材料的步驟。According to another preferred embodiment of the present invention, the manufacturing method may further include, when the surface layer material is fed by one of the surface layer materials supplied in the step 1, the step 3 is in the core layer. The step of laminating the surface layer material on at least one surface.

依據這方法,首先,在步驟1,將該等第一組分之一材料、該等第二組分之一材料及該等表面層之一材料供給至各個擠壓單元。當該反射式偏光板只包括該核心層時,可省略該表面層材料。該等第一組分之材料是欲分散在將形成一基質之該等第二組分中之一聚合物。作為該聚合物材料,可在不受限之情形下使用可在一般聚合物分散反射式偏光板中使用之聚合物材料。較佳地,該聚合物材料可以是聚2,6萘二甲酸乙二酯(PEN)、共聚2,6萘二甲酸乙二酯(co-PEN)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚碳酸酯(PC)合金、聚苯乙烯(PS)、耐熱聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯(ABS)、聚胺基甲酸酯(PU)、聚醯亞胺(PI)、聚氯乙烯(PVC)、苯乙烯丙 烯腈(SAN)混合物、乙烯乙酸乙烯酯(EVA)、聚醯胺(PA)、聚縮醛(聚甲醛:POM)、酚、環氧樹脂(EP)、尿素(UF)、黑色素(MF)、不飽和聚酯(UP)、矽(Si)或環烯烴聚合物(COP)。更佳地,該聚合物材料可以是聚2,6萘二甲酸乙二酯。According to this method, first, in step 1, one of the first component materials, one of the second component materials, and one of the surface layers is supplied to each of the extrusion units. When the reflective polarizer includes only the core layer, the surface layer material may be omitted. The material of the first component is one of the second components to be dispersed in a matrix which will form a matrix. As the polymer material, a polymer material which can be used in a general polymer-dispersed reflective polarizing plate can be used without limitation. Preferably, the polymer material may be polyethylene 2,6 naphthalate (PEN), copolymerized 2,6 naphthalate (co-PEN), polyethylene terephthalate (PET) ), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polyimine (PI), polyvinyl chloride (PVC) Styrene C Alkyne (SAN) mixture, ethylene vinyl acetate (EVA), polydecylamine (PA), polyacetal (polyoxymethylene: POM), phenol, epoxy resin (EP), urea (UF), melanin (MF) , unsaturated polyester (UP), cerium (Si) or cyclic olefin polymer (COP). More preferably, the polymeric material may be polyethylene 2,6 naphthalate.

該第二組分材料形成該基質。作為第二組分材料,可在一般聚合物分散反射式偏光板中作為基質材料使用之材料可在不受限之情形下使用。較佳地,該第二組分材料可以是聚2,6萘二甲酸乙二酯(PEN)、共聚2,6萘二甲酸乙二酯(co-PEN)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚碳酸酯(PC)合金、聚苯乙烯(PS)、耐熱聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯(ABS)、聚胺基甲酸酯(PU)、聚醯亞胺(PI)、聚氯乙烯(PVC)、苯乙烯丙烯腈(SAN)混合物、乙烯乙酸乙烯酯(EVA)、聚醯胺(PA)、聚縮醛(聚甲醛:POM)、酚、環氧樹脂(EP)、尿素(UF)、黑色素(MF)、不飽和聚酯(UP)、矽(Si)及環烯烴聚合物(COP)中之一材料或一混合物。更佳地,該第二組分材料可以是其中二甲基-2,6-二羧基萘、乙二醇或環己烷二甲醇(CHDM)之單體適當聚合之共聚2,6萘二甲酸乙二酯。The second component material forms the matrix. As the second component material, a material which can be used as a matrix material in a general polymer-dispersed reflective polarizing plate can be used without limitation. Preferably, the second component material may be polyethylene 2,6 naphthalate (PEN), copolymerized 2,6 naphthalate (co-PEN), polyethylene terephthalate. (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate Diester (PBT), Polypropylene (PP), Polyethylene (PE), Acrylonitrile Butadiene Styrene (ABS), Polyurethane (PU), Polyimine (PI), Polyvinyl Chloride (PVC), styrene acrylonitrile (SAN) mixture, ethylene vinyl acetate (EVA), polyamine (PA), polyacetal (polyoxymethylene: POM), phenol, epoxy resin (EP), urea (UF a material or a mixture of melanin (MF), unsaturated polyester (UP), cerium (Si), and cyclic olefin polymer (COP). More preferably, the second component material may be a copolymerized 2,6 naphthalenedicarboxylic acid in which a monomer of dimethyl-2,6-dicarboxynaphthalene, ethylene glycol or cyclohexanedimethanol (CHDM) is appropriately polymerized. Ethylene glycol ester.

作為該表面層材料,可在一般聚合物分散反射式偏光板中使用之材料可在不受限之情形下使用。較佳地,該表面層材料可以是聚2,6萘二甲酸乙二酯(PEN)、共聚2,6萘二甲酸乙二酯(co-PEN)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚碳酸酯(PC)合金、聚苯乙烯(PS)、耐熱聚苯 乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸丁二酯(PBT)、聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯(ABS)、聚胺基甲酸酯(PU)、聚醯亞胺(PI)、聚氯乙烯(PVC)、苯乙烯丙烯腈(SAN)混合物、乙烯乙酸乙烯酯(EVA)、聚醯胺(PA)、聚縮醛(聚甲醛:POM)、酚、環氧樹脂(EP)、尿素(UF)、黑色素(MF)、不飽和聚酯(UP)、矽(Si)或環烯烴聚合物(COP)。較佳地,該聚碳酸酯合金可包括聚碳酸酯及變性乙二醇聚對苯二甲酸伸環己二甲酯(PCTG)。更佳地,該聚碳酸酯合金可以一5:95至95:5之重量比包含聚碳酸酯及變性乙二醇聚對苯二甲酸伸環己二甲酯(PCTG)。同時,可使用在擴展及拉伸程序時折射率具有一小變化之一材料,作為該表面層材料。更佳地,該表面層材料可以是聚碳酸酯(PC)或聚碳酸酯合金。As the surface layer material, a material which can be used in a general polymer-dispersed reflective polarizing plate can be used without limitation. Preferably, the surface layer material may be polyethylene 2,6 naphthalate (PEN), copolymerized 2,6 naphthalate (co-PEN), polyethylene terephthalate (PET) ), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polyphenylene Ethylene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), Polyurethane (PU), polyimine (PI), polyvinyl chloride (PVC), styrene acrylonitrile (SAN) mixture, ethylene vinyl acetate (EVA), polyamine (PA), poly Acetal (polyoxymethylene: POM), phenol, epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), cerium (Si) or cyclic olefin polymer (COP). Preferably, the polycarbonate alloy may comprise polycarbonate and denatured ethylene glycol terephthalate (PCTG). More preferably, the polycarbonate alloy may comprise polycarbonate and denatured ethylene glycol terephthalate (PCTG) in a weight ratio of from 5:95 to 95:5. At the same time, a material having a small change in refractive index during the expansion and stretching process can be used as the surface layer material. More preferably, the surface layer material may be polycarbonate (PC) or a polycarbonate alloy.

同時,可將該第一組分材料、第二組分材料及表面層材料分別供給至獨立之擠壓單元。在這情形下,可使用三或三以上之擠壓單元。或者,可將該等材料供給至一包括多數分開供給通道及多數分開分配口之單一擠壓單元,以防止該等材料,即,聚合物材料混合。這實施例亦在本發明之範疇內。各擠壓單元可以是一擠壓機。該擠壓單元可更包括一加熱器以將一固體聚合物材料轉變成一液相。At the same time, the first component material, the second component material, and the surface layer material may be separately supplied to separate extrusion units. In this case, three or more extrusion units can be used. Alternatively, the materials may be supplied to a single extrusion unit comprising a plurality of separate supply channels and a plurality of separate dispensing ports to prevent mixing of the materials, i.e., polymeric materials. This embodiment is also within the scope of the invention. Each extrusion unit can be an extruder. The extrusion unit can further include a heater to convert a solid polymeric material into a liquid phase.

然後,在步驟2中,形成二或二以上之多層複合體。在各多層複合體中,該等第一與第二組分係以多數重覆層單元之形式交替地堆疊。即,由各個擠壓單元送出之 該等第一與第二組分材料被注入多數複合體擠壓模中,以形成二或二以上之多層複合體,且就用以反射具有不同波長之橫波(S波)之重覆層單元之平均光學厚度而言,該二或二以上之多層複合體是不同的。Then, in step 2, two or more multilayer composites are formed. In each of the multilayer composites, the first and second components are alternately stacked in the form of a plurality of overlapping layer units. That is, sent by each extrusion unit The first and second component materials are injected into a plurality of composite extrusion dies to form two or more multilayer composites, and are used to reflect repetitive layers of transverse waves (S waves) having different wavelengths. The two or more multilayer composites are different in terms of the average optical thickness.

詳而言之,圖5至7是分別顯示可在本發明中使用之一狹縫型擠壓模之分配板之分解及耦合狀態的立體圖。特別地,圖5是一俯視圖,且圖6是一仰視圖。該等狹縫型擠壓模包括配置在該狹縫型擠壓模之一頂部之一第一分配板S1。該第一分配板S1包括一第一組分供給通道50及一第二組分供給通道51。由對應擠壓單元送出之第一組分材料被注入該第一組分供給通道50,而由對應擠壓單元送出之第二組分材料被注入該第二組分供給通道51。如果需要,該第一分配板S1可包含三或三以上之供給通道。由該第一分配板S1排出之部份材料之聚合物材料被送至一配置於該第一分配板S1下方之第二分配板S2。在該第二分配板S2中,注入該第一組分供給通道50之第一組分材料沿著一通道以一分支方式進給通過多數形成在該第二分配板S2中之第一組分供給通道52與53。又,注入該第二組分供給通道51之第二組分材料沿著在該第二分配板S2中之另一通道以一分支方式進給通過多數形成在該第二分配板S2中之第二組分供給通道54、55與56。由該第二分配板S2排出之聚合物材料接著被送至一配置於該第二分配板S2下方之第三分配板S3。In detail, Figs. 5 to 7 are perspective views respectively showing the disassembled and coupled state of the distribution plate which can be used in one slit type extrusion die in the present invention. In particular, Figure 5 is a top view and Figure 6 is a bottom view. The slit type extrusion die includes a first distribution plate S1 disposed at one of the tops of the slit type extrusion die. The first distribution plate S1 includes a first component supply passage 50 and a second component supply passage 51. The first component material sent from the corresponding extrusion unit is injected into the first component supply passage 50, and the second component material sent from the corresponding extrusion unit is injected into the second component supply passage 51. The first distribution plate S1 may include three or more supply channels if necessary. The polymer material of the portion of the material discharged from the first distribution plate S1 is sent to a second distribution plate S2 disposed below the first distribution plate S1. In the second distribution plate S2, the first component material injected into the first component supply passage 50 is fed in a branch along a passage through a plurality of first components formed in the second distribution plate S2. Supply channels 52 and 53. Further, the second component material injected into the second component supply passage 51 is fed in a branch manner along another passage in the second distribution plate S2 through a plurality of portions formed in the second distribution plate S2. Two component supply channels 54, 55 and 56. The polymer material discharged from the second distribution plate S2 is then sent to a third distribution plate S3 disposed below the second distribution plate S2.

在該第三分配板S3中,供給通過各第一組分供給 通道52與53之第一組分材料係沿著一通道以一分支方式進給通過形成在該第三分配板S3中之第一組分供給通道60、61、62、63、67、68、69與70中之對應第一組分供給通道。又,供給通過各第二組分供給通道54、55與56之第二組分材料係沿著在該第三分配板S3中之另一通道以一分支方式進給通過形成在該第三分配板S3中之第二組分供給通道57、58、59、64、65、66、71、72與73中之對應第二組分供給通道。供給至形成在該第三分配板S3中之第一組分供給通道之一部份,即,該等第一組分供給通道60與67,的該第一組分材料被進給至一包括多數通道之第四分配板S4。詳而言之,供給至該等第一組分供給通道60與67之第一組分材料被進給該第四分配板S4之一第一通道74。類似地,供給至形成在該第三分配板S3中之第二組分供給通道之一部份,即,該等第一組分供給通道57、64與71,的該第二組分材料被進給至該第四分配板S4之一第二通道75。依此方式,進給通過該第三分配板S3之第一組分供給通道之第一組分材料被分配至該第四分配板S4之通道中之奇數符號通道,即,該等通道74、76、78與80,而進給通過該第三分配板S3之第二組分供給通道之第二組分材料被分配至該第四分配板S4之通道中之偶數符號通道,即,該等通道75、77與79。因此,該等第一組分及第二組分係交替地堆疊。發明所屬技術領域中具有通常知識者應了解的是,依據上述原理,具有以垂直於在該第四分配板S4中之配置方向之一方向之較多數目之通道的一分配板可配置在該第 四分配板S4下方,且該配置可重覆以增加通道數使得該等通道數對應於所欲層數。同時,依據上述原理,進給通過該第四分配板S4之奇數符號通道74、76、78與80之第一組分材料被進給至一第五分配板S5,詳而言之,該第五分配板S5之偶數符號通道81、83、85、87、89、91與93。又,進給通過該第四分配板S4之偶數符號通道75、77與79之第二組分材料被進給至該第五分配板S5,詳而言之,該第五分配板S5之偶數符號通道82、84、86、88、90與92。圖6是圖5之狹縫型擠壓模之立體仰視圖。如圖6所示,該第五分配板S5之各通道不採用包括多數分開孔之一結構,而是採用一狹縫結構。當該等第一與第二組分材料通道該等通道中之對應通道,即,狹縫時,它們形成各自之層。因此,在一多層複合體中之層數可依據在該第五分配板S5中之狹縫數決定。該等層數可為等於或大於100,較佳的是等於或大於150,更佳的是等於或大於200,且最佳的是等於或大於300。然後,通過一第六分配板S6之一出口94排出一多層複合體。圖8是顯示一多層複合體之截面圖。請參閱圖8,第一組分100與102及第二組分101與103係交替地堆疊。在這情形下,一第一組分100與接觸該第一組分100之該第二組分101可定義為一重覆層單元。一複合體包括多數重覆層單元。In the third distribution plate S3, the supply is supplied through each of the first components The first component materials of the passages 52 and 53 are fed in a branch along a passage through the first component supply passages 60, 61, 62, 63, 67, 68 formed in the third distribution plate S3, Corresponding to the first component supply channel of 69 and 70. Further, the second component material supplied through each of the second component supply passages 54, 55 and 56 is fed in a branch manner along the other passage in the third distribution plate S3 to form a third distribution. The second component of the plate S3 is supplied to a corresponding second component supply passage of the passages 57, 58, 59, 64, 65, 66, 71, 72 and 73. Supplying to a portion of the first component supply passage formed in the third distribution plate S3, that is, the first component supply passages 60 and 67, the first component material is fed to include The fourth distribution plate S4 of most channels. In detail, the first component material supplied to the first component supply channels 60 and 67 is fed to one of the first channels 74 of the fourth distribution plate S4. Similarly, the second component material supplied to a portion of the second component supply passage formed in the third distribution plate S3, that is, the first component supply passages 57, 64 and 71, is Feeding to one of the second channels 75 of the fourth distribution plate S4. In this manner, the first component material fed through the first component supply channel of the third distribution plate S3 is distributed to the odd-numbered symbol channels in the channel of the fourth distribution plate S4, that is, the channels 74, 76, 78 and 80, and the second component material fed through the second component supply passage of the third distribution plate S3 is distributed to the even symbol passages in the passage of the fourth distribution plate S4, that is, Channels 75, 77 and 79. Therefore, the first component and the second component are alternately stacked. It will be appreciated by those of ordinary skill in the art that, in accordance with the principles described above, a distribution plate having a greater number of passages in a direction perpendicular to one of the configuration directions in the fourth distribution plate S4 can be disposed therein. First Below the four distribution plates S4, and the configuration can be repeated to increase the number of channels such that the number of channels corresponds to the desired number of layers. Meanwhile, according to the above principle, the first component material fed through the odd-numbered symbol passages 74, 76, 78 and 80 of the fourth distribution plate S4 is fed to a fifth distribution plate S5, in detail, the Five even-numbered symbol channels 81, 83, 85, 87, 89, 91 and 93 of the distribution plate S5. Further, the second component material fed through the even symbol channels 75, 77 and 79 of the fourth distribution plate S4 is fed to the fifth distribution plate S5, in detail, the even number of the fifth distribution plate S5 Symbol channels 82, 84, 86, 88, 90 and 92. Figure 6 is a perspective bottom view of the slit type extrusion die of Figure 5. As shown in FIG. 6, each channel of the fifth distribution plate S5 does not adopt a structure including one of the plurality of divided holes, but adopts a slit structure. When the first and second component materials channel corresponding passages in the channels, i.e., slits, they form respective layers. Therefore, the number of layers in a multilayer composite can be determined depending on the number of slits in the fifth distribution plate S5. The number of layers may be equal to or greater than 100, preferably equal to or greater than 150, more preferably equal to or greater than 200, and most preferably equal to or greater than 300. Then, a multilayer composite is discharged through one of the outlets 94 of a sixth distribution plate S6. Figure 8 is a cross-sectional view showing a multilayer composite. Referring to FIG. 8, first components 100 and 102 and second components 101 and 103 are alternately stacked. In this case, a first component 100 and the second component 101 contacting the first component 100 can be defined as a re-coating unit. A composite includes a plurality of resurfacing units.

圖5至7顯示可在可在本發明中使用之一狹縫型擠壓模中使用的多數分配板。發明所屬技術領域中具有通常知識者應了解的是分配板之數目及結構及分配通道之尺 寸及形狀可由發明所屬技術領域中具有通常知識者決定以製造多數第一與第二組分交替地堆疊之一多層複合體。在該第五分配板中且在該第五分配板之一下表面之各狹縫寬度可為0.17至0.6mm,且該出口之寬度可為5至50mm,但是本發明不限於此。又,發明所屬技術領域中具有通常知識者亦應了解的是各狹縫之寬度可考慮欲後續地實施之擴展與拉伸程序來決定。Figures 5 through 7 show a plurality of distribution plates that can be used in one of the slit type extrusion dies that can be used in the present invention. What should be understood by those of ordinary skill in the art of the invention is the number and structure of the distribution plates and the dimensions of the distribution channels. The size and shape can be determined by one of ordinary skill in the art to make a plurality of first and second components alternately stacked one multilayer composite. The slit width in the fifth distribution plate and on the lower surface of one of the fifth distribution plates may be 0.17 to 0.6 mm, and the width of the outlet may be 5 to 50 mm, but the invention is not limited thereto. Moreover, it should be understood by those of ordinary skill in the art that the width of each slit can be determined in consideration of the expansion and stretching procedures to be subsequently performed.

同時,為了使該等多數多層複合體可涵蓋光之不同波長範圍,就交替堆疊之第一與第二組分之各重覆層單元之光學厚度及該等重覆層單元之數目而言,該等多層複合體中不同之多層複合體可為不同。為達此目的,就該等通道之尺寸、該等狹縫之厚度及形狀或層數而言,分別對應於不同多層複合體之多層擠壓模可為不同。完全透過擴展及拉伸程序製造之反射式偏光板包括形成於其中之多數層組,同時包括多數重覆層單元。該等層組可設定為具有不同光學厚度。Meanwhile, in order to allow the plurality of multilayer composites to cover different wavelength ranges of light, the optical thicknesses of the overlapping layer units of the first and second components alternately stacked and the number of the overlapping layer units are The different multilayer composites in the multilayer composites can be different. To this end, the multilayer extrusion dies corresponding to different multilayer composites may be different in terms of the dimensions of the channels, the thickness and shape or the number of layers of the slits. Reflective polarizers made entirely through expansion and stretching procedures include a majority of the layers formed therein, including a plurality of repeater units. The layers can be set to have different optical thicknesses.

如上所述,“光學厚度”表示“n(折射率)×d(物理厚度)”。因此,當形成第一與第二組分之材料相同之多層複合體,即,在兩多層複合體之間沒有折射率差時,藉調整包含在各多層複合體中之該等第一與第二組分之各重覆層單元之物理厚度d之平均值使得在該等多層複合體中之平均物理厚度值不同,可在該等多層複合體之間產生一光學厚度差。依此方式,可藉設計具有不同狹縫寬度之狹縫型擠壓模來製造具有不同光學厚度之多層複合體。As described above, "optical thickness" means "n (refractive index) x d (physical thickness)". Therefore, when the multilayer composite having the same material as the first component is formed, that is, when there is no refractive index difference between the two multilayer composites, the first and the first inclusions included in each multilayer composite are adjusted The average of the physical thicknesses d of the respective overlapping layer units of the two components is such that the average physical thickness values in the multilayer composites are different, and an optical thickness difference can be produced between the multilayer composites. In this manner, multilayer composites having different optical thicknesses can be fabricated by designing slit-type extrusion dies having different slit widths.

同時,為涵蓋可見光之全部波長範圍,必須決定該等多層複合體之平均光學厚度使得該等平均光學厚度對應於光之各種不同波長。例如,當在三多層複合體中之重覆層單元之平均光學厚度係設定為分別對應450mm、550nm與650nm之波長時,它們可具有一至少5%,更佳的是等於或大於10%之偏差。藉由該厚度偏差,可反射在可見光之全部波長範圍中之S波。在這情形下,構成該重覆層單元之該等第一與第二組分之厚度可相等。At the same time, to cover the entire range of wavelengths of visible light, the average optical thickness of the multilayer composites must be determined such that the average optical thickness corresponds to various wavelengths of light. For example, when the average optical thickness of the repeated layer units in the three-layer composite is set to correspond to wavelengths of 450 mm, 550 nm, and 650 nm, respectively, they may have at least 5%, more preferably equal to or greater than 10%. Deviation. By this thickness deviation, S waves in the entire wavelength range of visible light can be reflected. In this case, the thicknesses of the first and second components constituting the repeating layer unit may be equal.

在用以形成一多層複合體之一狹縫型擠壓模中,通道之數目、橫截面積與形狀及狹縫之寬度可相同或不同。此外,形成一多層複合體之該等重覆層單元之光學厚度可具有一偏離其平均值之佳地等於或小於20%,更佳地等於或小於15%之偏差。例如,當該多層複合體之重覆層單元之平均光學厚度為200nm時,該等第一組分可具有一大約等於或小於20%之光學厚度偏差。同時,如上所述,光之波長及光學厚度係依據以下公式1定義:[公式1]λ=4ndIn the slit type extrusion die for forming a multilayer composite, the number of channels, the cross-sectional area and shape, and the width of the slits may be the same or different. Further, the optical thicknesses of the repeating layer units forming a multilayer composite may have a deviation from the average value of preferably equal to or less than 20%, more preferably equal to or less than 15%. For example, when the average optical thickness of the resurfacing units of the multilayer composite is 200 nm, the first components may have an optical thickness deviation of about 20% or less. Meanwhile, as described above, the wavelength of light and the optical thickness are defined according to the following formula 1: [Formula 1] λ = 4 nd

其中,“λ”表示光之波長(nm),“n”表示一折射率,且“d”表示一物理厚度(nm)。Wherein "λ" represents the wavelength (nm) of light, "n" represents a refractive index, and "d" represents a physical thickness (nm).

因此,當光學厚度(nd)有一偏差時,不僅可涵蓋一光之目標波長,亦可涵蓋包括該目標波長之某波長範圍。因此,在這情形下,可輕易地促進均一光學性質。同時,該厚度“d”表示一層之厚度。在此,由於各重覆層單元 係藉分別由該等第一與第二組分形成之兩層構成,故在該等重覆層單元與光波長之間的關係可依據以下公式2定義。Therefore, when there is a deviation in the optical thickness (nd), it can cover not only the target wavelength of a light but also a certain wavelength range including the target wavelength. Therefore, in this case, uniform optical properties can be easily promoted. Meanwhile, the thickness "d" represents the thickness of one layer. Here, due to the various overlapping units The two layers formed by the first and second components are respectively formed, so the relationship between the overlapping layer units and the wavelength of light can be defined according to the following formula 2.

[公式2]λ=2(n1 d1 +n2 d2 )[Formula 2] λ = 2 (n 1 d 1 + n 2 d 2 )

其中,“λ”表示光之波長(nm),“n1 ”表示一第一層之折射率,“d1 ”表示一第一層之物理厚度(nm),“n2 ”表示一第二層之折射率,“d2 ”表示一第二層之物理厚度(nm)。Wherein, "λ" represents the wavelength of light (nm), "n 1 " represents the refractive index of a first layer, "d 1 " represents the physical thickness (nm) of a first layer, and "n 2 " represents a second The refractive index of the layer, "d 2 ", represents the physical thickness (nm) of a second layer.

藉使用一在通道之數目、橫截面積與形狀及狹縫之寬度方面具有偏差之狹縫型擠壓模,可獲得上述光學厚度偏差。亦可藉在一擴展程序時自然產生之分開壓力之微小差異自然地獲得上述光學厚度偏差。The above optical thickness deviation can be obtained by using a slit-type extrusion die having a deviation in the number of channels, the cross-sectional area and shape, and the width of the slit. The above optical thickness deviation can also be naturally obtained by a small difference in the separation pressure naturally generated in an extended program.

因此,透過設定在該等多層複合體中之重覆層單元之平均光學厚度使得該等平均光學厚度不同,本發明之多數多層複合體可涵蓋可見光之全部波長範圍。又,當各多層複合體之重覆層單元具有一適當厚度偏差,該多層複合體可反射一大波長範圍之S波。同時,雖然透過一狹縫型擠壓模產生一多層複合體已配合圖5至7說明過了,但是可將該狹縫型擠壓模分成多數段,以產生多層複合體,且接著積層所產生之多層複合體。這擠壓模亦被視為一整體狹縫型擠壓模且,因此,它在本發明之範疇內。藉設計多數狹縫型擠壓模使得就包括在該等狹縫型擠壓模中之狹縫寬度而言,該等狹縫型擠壓模為不同,亦可產生具有不同光學厚度之多層複合體。Thus, most of the multilayer composites of the present invention can encompass the full range of wavelengths of visible light by the average optical thickness of the repeating layer units disposed in the multilayer composites such that the average optical thicknesses are different. Further, when the overlapping layer unit of each of the multilayered composites has a proper thickness deviation, the multilayered composite can reflect S waves of a large wavelength range. Meanwhile, although a multilayer composite produced by a slit type extrusion die has been described with reference to Figs. 5 to 7, the slit type extrusion die can be divided into a plurality of segments to produce a multilayer composite, and then laminated. The resulting multilayer composite. This extrusion die is also considered to be an integral slit type extrusion die and, therefore, it is within the scope of the present invention. By designing a plurality of slit-type extrusion dies, the slit-type extrusion dies are different in terms of slit widths included in the slit-type extrusion dies, and multilayer composites having different optical thicknesses can also be produced. body.

依據本發明之另一較佳實施例,該製造方法可更 包括在步驟1與步驟2之間,分別透過多數具有不同排量之第一加壓單元,供應由對應擠壓單元送出之第一組分材料至不同狹縫型擠壓模之步驟,以形成具有不同平均光學厚度之多層複合體。詳而言之,圖9是顯示用以形成兩多層複合體之多數第一加壓單元之示意圖。將由對應擠壓單元(未圖示)送出之第一組分材料以一分支方式供給至第一加壓單元130與131。接著將來自該等第一加壓單元130與131之組分材料分別供給至狹縫型擠壓模132與133。在這情形下,該等第一加壓單元130與131具有不同排量。因此,即使在該等狹縫型擠壓模132與133具有相同規格(就狹縫之寬度而言)時,就平均光學厚度而言,透過各個狹縫型擠壓模132與133形成之第一與第二多層複合體可不同。According to another preferred embodiment of the present invention, the manufacturing method can be further Included between step 1 and step 2, respectively, through a plurality of first pressurizing units having different displacements, supplying the first component material sent from the corresponding extrusion unit to different slit-type extrusion dies to form A multilayer composite having different average optical thicknesses. In detail, Figure 9 is a schematic view showing a plurality of first pressurizing units for forming a two-layer composite. The first component material sent out by the corresponding pressing unit (not shown) is supplied to the first pressurizing units 130 and 131 in a branched manner. The constituent materials from the first pressurizing units 130 and 131 are then supplied to the slit-type extrusion dies 132 and 133, respectively. In this case, the first pressurizing units 130 and 131 have different displacements. Therefore, even when the slit-type extrusion dies 132 and 133 have the same specifications (in terms of the width of the slit), the average optical thickness is formed by the respective slit-type extrusion dies 132 and 133. One can be different from the second multilayer composite.

為達此目的,該等第一加壓單元130與131之排量可為1至100kg/h。當然,本發明不限於該值。To this end, the first pressurizing units 130 and 131 may have a displacement of 1 to 100 kg/h. Of course, the invention is not limited to this value.

同時,亦可一第一加壓單元進給該第一組分材料至兩狹縫型擠壓模,且積層透過該等兩狹縫型擠壓模分別形成之兩多層複合體以形成一層組。在此情形下,完成之反射式偏光板可具有透過四第一加壓單元及八狹縫型擠壓模形成之四層組。亦可使用一第一加壓單元進給該第一組分材料至三或三以上之狹縫型擠壓模。Meanwhile, the first component material may be fed to the two slit type extrusion die by a first pressing unit, and the two multilayer composite bodies respectively formed by the two slit type extrusion dies are laminated to form a layer group. . In this case, the completed reflective polarizer may have a four-layer group formed by four first pressurizing units and eight slit type extrusion dies. It is also possible to feed the first component material to three or more slit type extrusion dies using a first pressurizing unit.

依據本發明之另一較佳實施例,該製造方法可更包括在步驟1與步驟2之間,分別透過多數具有不同排量之第二加壓單元,供應由對應擠壓單元送出之第二組分材料至不同狹縫型擠壓模之步驟,以形成具有不同平均光學厚 度之多層複合體。詳而言之,圖10是顯示用以形成兩多層複合體之多數第二加壓單元之示意圖。將由對應擠壓單元(未圖示)送出之第二組分材料以一分支方式供給至第二加壓單元140與141。接著將來自該等第二加壓單元140與141之組分材料分別供給至狹縫型擠壓模142與143。在這情形下,該等第二加壓單元140與141具有不同排量。因此,即使在該等狹縫型擠壓模142與143具有相同規格(就第二組分供給通道之形狀、直徑等而言)時,就該第二組分之平均光學厚度而言,透過各個狹縫型擠壓模142與143形成之第一與第二多層複合體可不同。為達此目的,該等第二加壓單元140與141之排量可為1至100kg/hr。當然,本發明不限於該值。According to another preferred embodiment of the present invention, the manufacturing method may further include, between step 1 and step 2, respectively, supplying a second pressing unit having a different displacement, and supplying the second unit sent by the corresponding pressing unit. The steps of the component materials to different slit-type extrusion dies to form different average optical thicknesses Multi-layer composite. In detail, Figure 10 is a schematic diagram showing a plurality of second pressurizing units for forming a two-layer composite. The second component material sent out by the corresponding pressing unit (not shown) is supplied to the second pressurizing units 140 and 141 in a branched manner. The constituent materials from the second pressurizing units 140 and 141 are then supplied to the slit-type extrusion dies 142 and 143, respectively. In this case, the second pressurizing units 140 and 141 have different displacements. Therefore, even when the slit-type extrusion dies 142 and 143 have the same specifications (in terms of the shape, diameter, etc. of the second component supply passage), the average optical thickness of the second component is transmitted through The first and second multilayer composites formed by the respective slit-type extrusion dies 142 and 143 may be different. To this end, the second pressurizing units 140 and 141 may have a displacement of 1 to 100 kg/hr. Of course, the invention is not limited to this value.

同時,亦可一第二加壓單元進給該第二組分材料至兩狹縫型擠壓模,且積層透過該等兩狹縫型擠壓模分別形成之兩多層複合體以形成一層組。在此情形下,完成之反射式偏光板可具有透過四第二加壓單元及八狹縫型擠壓模形成之四層組。亦可使用一第二加壓單元進給該第二組分材料至三或三以上之狹縫型擠壓模。At the same time, the second component material can be fed to the two-slit extrusion die by a second pressing unit, and the two-layer composite formed by the two slit-type extrusion dies can be laminated to form a layer. . In this case, the completed reflective polarizer may have a four-layer group formed by four second pressurizing units and eight slit type extrusion dies. It is also possible to feed the second component material to three or more slit type extrusion dies using a second pressurizing unit.

然後,在步驟3,積層二或二以上之多層複合體以形成該核心層。詳而言之,圖11是顯示一用以積層多層複合體之積層單元之示意圖。該積層單元積層透過各個狹縫型擠壓模製造之多層複合體161、162、163與164,以形成一核心層165。同時,該積層步驟可在另一地方實行。或者,當使用一整體狹縫型擠壓模時,該積層步驟可使用一 另外之通道分組之分配板。當多層複合體之數目大時,可實行多階段積層以便達成容易之積層。即,該等多層複合體被分成供各多層複合體組積層,且接著積層該等積層之多層複合體組。同時,為積層該表面層材料,該方法可更包括在步驟3將由一擠壓單元送出之一表面層材料積層在該核心層之至少一表面上,或在實施步驟4之前將該表面層材料積層在步驟3形成之核心層上的步驟。該表面層材料可積層在該核心層之相對表面上。當表面層分別積層在該核心層之相對表面上時,就材料及厚度而言,該等表面層可以是相同或不同的。Then, in step 3, two or more layers of the composite are laminated to form the core layer. In detail, FIG. 11 is a schematic view showing a laminated unit for laminating a multilayer composite. The build-up unit laminates the multilayer composites 161, 162, 163 and 164 manufactured by the respective slit-type extrusion dies to form a core layer 165. At the same time, the lamination step can be carried out in another place. Alternatively, when an integral slit type extrusion die is used, the lamination step may use one In addition, the distribution board of the channel grouping. When the number of multilayer composites is large, multi-stage lamination can be carried out in order to achieve an easy lamination. That is, the multilayer composites are divided into a multi-layer composite group in which the multilayer composites are laminated, and then the laminates are laminated. Meanwhile, in order to laminate the surface layer material, the method may further include, in step 3, laminating a surface layer material from an extrusion unit on at least one surface of the core layer, or the surface layer material before performing step 4. The step of laminating on the core layer formed in step 3. The surface layer material can be laminated on opposite surfaces of the core layer. When the surface layers are respectively laminated on the opposite surfaces of the core layer, the surface layers may be the same or different in terms of material and thickness.

同時,可在步驟2與步驟3之間或在步驟3與步驟4之間更實施另一預擴展步驟以輕易地達成該等重覆層單元之擴展,這將在稍後說明。At the same time, another pre-expansion step can be implemented between step 2 and step 3 or between step 3 and step 4 to easily achieve the expansion of the repeating layer units, as will be explained later.

接著,在步驟4,藉一流動控制單元擴展該表面層積層之核心層。詳而言之,圖12是顯示依據本發明可較佳地作為該流動控制單元之一衣架模的截面圖。圖13是對應於圖12之側視圖。使用該衣架模,可適當地調整該核心層之擴展程度使得該等重覆層單元具有適合反射一所欲光波長之一光學厚度。該調整可考慮該光學厚度將在後續拉伸程中再減少之事實來設計。詳而言之,由於透過某通道進給至該衣架模之該表面層積層核心層係側向地廣泛擴展在該衣架模中,如圖12所示,故包含在該核心層中之第一組分亦側向地廣泛擴展。又,如圖13之側視圖所示,該衣架模具有一狹縫結構,且該狹縫結構具有一向下縮減橫截 面積同時具有一大縱向寬度且,因此該表面層積層核心層以其一寬度方向擴展同時厚度減少。即,帕斯卡(Pascal)原理應用在該核心層上。在一受限系統中,依據流體壓力傳送至包括多數細小部份之受限系統之所有部份之一原理,一流體以一寬度方向方向擴展。依據該原理,該衣架模具有,與一入口比較,一出口在一寬度方向上加寬而在一厚度方向上縮減之結構。即,該衣架模使用帕斯卡原理以藉在一受限系統中之一壓力來控制一熔融材料之流動及形狀。就此而言,需要產生一聚合物之所欲流速及一聚合物之所欲黏度以便產生具有一宜等於或小於2,500之雷諾數(Reynolds number)之一層流。當產生具有超過2,500之雷諾數之一聚合物之渦流時,產生一均一板形狀是不可能的。在這情形下,有可能產生光學性質之偏差。該衣架模之出口可具有一800至2,500mm之縱向寬度。在這情形下,需要控制該聚合物流之壓力以便防止該聚合物流之雷諾數超過2,500。這是因為,當該聚合物流之雷諾數超過2,500時,它會變成渦流,因此使該核心層之聚合物配置紊亂。此外,該核心層之內溫度可為265至310℃。Next, in step 4, the core layer of the surface layer is expanded by a flow control unit. In detail, Figure 12 is a cross-sectional view showing a hanger mold which is preferably one of the flow control units in accordance with the present invention. Figure 13 is a side view corresponding to Figure 12. Using the hanger mold, the extent of expansion of the core layer can be suitably adjusted such that the repeating layer units have an optical thickness suitable for reflecting one of the desired wavelengths of light. This adjustment can be designed in consideration of the fact that the optical thickness will be further reduced in the subsequent stretching process. In detail, since the surface layer core layer fed to the hanger mold through a certain passage is widely spread laterally in the hanger mold, as shown in FIG. 12, it is included in the core layer. The components are also extensively expanded laterally. Moreover, as shown in the side view of FIG. 13, the hanger mold has a slit structure, and the slit structure has a downwardly reduced cross section. The area has a large longitudinal width at the same time, and thus the surface layered core layer is expanded in one width direction while the thickness is reduced. That is, the Pascal principle is applied to the core layer. In a constrained system, a fluid expands in a width direction based on the principle that fluid pressure is transmitted to all portions of a constrained system that includes a plurality of fine portions. According to this principle, the hanger mold has a structure in which an outlet is widened in a width direction and reduced in a thickness direction as compared with an inlet. That is, the hanger mold uses the Pascal principle to control the flow and shape of a molten material by one of the pressures in a constrained system. In this regard, it is desirable to produce a desired flow rate of a polymer and a desired viscosity of a polymer to produce a laminar flow having a Reynolds number equal to or less than 2,500. When a vortex of a polymer having one of the Reynolds numbers of more than 2,500 is produced, it is impossible to produce a uniform plate shape. In this case, it is possible to produce a deviation in optical properties. The exit of the hanger mold can have a longitudinal width of 800 to 2,500 mm. In this case, it is necessary to control the pressure of the polymer stream in order to prevent the Reynolds number of the polymer stream from exceeding 2,500. This is because when the Reynolds number of the polymer stream exceeds 2,500, it becomes eddy current, thus displacing the polymer configuration of the core layer. In addition, the temperature within the core layer can range from 265 to 310 °C.

該流動控制單元可為可產生該等重覆層單元之擴展之一T形膜或一分歧型衣架模。當然,本發明不限於該衣架模。可在沒有限制之情形下使用各種不同衣架模,只要它們可產生該核心層之擴展即可。The flow control unit can be a T-shaped film or a split-type hanger mold that can produce an extension of the overlapping layer units. Of course, the invention is not limited to the hanger mold. A variety of different hanger molds can be used without limitation, as long as they produce an extension of the core layer.

依據本發明之製造方法,因為使用多數狹縫型擠壓模製造平均光學厚度不同之多數多層複合體,且接著在 一熔融狀態積層,故不需要另一黏著層及/或一保護邊界層(PBL)。亦可完全反射在可見光之全部波長範圍內之S波。又,依據本發明之製造方法,在一熔融狀態中在該核心層之至少一表面上形成一表面層且因此,該核心層進行另一黏合程序。因此,可明顯地降低製造成本。又,對在一有限厚度中使光學性質最大化亦有大好處。According to the manufacturing method of the present invention, since a plurality of slit-type extrusion dies are used to manufacture a plurality of multilayer composites having different average optical thicknesses, and then A layer is laminated in a molten state, so no additional adhesive layer and/or a protective boundary layer (PBL) is required. It is also possible to completely reflect the S wave in the entire wavelength range of visible light. Further, according to the manufacturing method of the present invention, a surface layer is formed on at least one surface of the core layer in a molten state and, therefore, the core layer undergoes another bonding process. Therefore, the manufacturing cost can be remarkably reduced. Also, there is a great advantage in maximizing optical properties in a finite thickness.

依據本發明之一較佳實施例,該製造方法可更包括冷卻及平坦化在步驟4後由該流動控制單元送出之擴展偏光板之步驟(5),拉伸進行該平坦化步驟後之偏光板之步驟(6),及硬化該拉伸之偏光板之步驟(7)。According to a preferred embodiment of the present invention, the manufacturing method may further comprise the step (5) of cooling and planarizing the extended polarizing plate sent by the flow control unit after the step 4, and stretching the polarizing after the planarizing step. Step (6) of the plate, and step (7) of hardening the stretched polarizing plate.

首先,在步驟5,即,在冷卻及平坦化由該流動控制單元送出之擴展偏光板之步驟,可以與一般反射式偏光板製造方法相同之方式實施。即,該擴展偏光板被冷卻而固化,且接著透過一鑄造軋輥程序被平坦化。First, in step 5, that is, the step of cooling and planarizing the extended polarizing plate sent out by the flow control unit can be carried out in the same manner as the general reflective polarizing plate manufacturing method. That is, the expanded polarizing plate is cooled and solidified, and then planarized by a casting roll program.

然後,進行該平坦化步驟後之偏光板進行一拉伸程序。該拉伸可使用一般反射式偏光板拉伸程序實施。透過該拉伸程序,在該等第一組分與該第二組分之間產生一折射率差。因此,光調變可在該等第一組分與該第二組分之間之界面產生。透過該拉伸,該等擴展重覆層單元最後具有對應於一所欲波長範圍之一光學厚度。因此,考慮該狹縫型擠壓模之寬度、產生擴展之條件及拉伸比,可適當地設定在完成反射式偏光板中之重覆層單元之一所欲光學厚度。因此,為了獲得一所欲縱橫比,該拉伸程序可透過單軸拉伸或雙軸拉伸來實施。更佳地,可實施單軸拉伸。 在單軸拉伸中,其拉伸方向可為一縱向。又,該拉伸比可為3或12。同時,轉換一等向性材料使得該材料具有雙折射性之一方法在所屬技術領域中是習知的。例如,當在一適當溫度拉伸一聚合物時,該聚合物之分子可對齊且,因此,該聚合物具有雙折射性。Then, the polarizing plate after the planarization step is subjected to a stretching process. This stretching can be carried out using a general reflection type polarizing plate stretching program. A refractive index difference is produced between the first component and the second component by the stretching procedure. Thus, light modulation can occur at the interface between the first component and the second component. Through the stretching, the extended repeating unit finally has an optical thickness corresponding to one of a desired wavelength range. Therefore, in consideration of the width of the slit-type extrusion die, the conditions for the expansion, and the stretching ratio, the desired optical thickness of one of the overlapping layer units in the reflective polarizing plate can be appropriately set. Therefore, in order to obtain an intended aspect ratio, the stretching procedure can be carried out by uniaxial stretching or biaxial stretching. More preferably, uniaxial stretching can be carried out. In uniaxial stretching, the stretching direction may be a longitudinal direction. Also, the draw ratio may be 3 or 12. At the same time, one method of converting an isotropic material such that the material has birefringence is well known in the art. For example, when a polymer is stretched at a suitable temperature, the molecules of the polymer can be aligned and, therefore, the polymer has birefringence.

然後,在步驟7,硬化該拉伸之偏光板。因此,製造一完成之反射式偏光板。該硬化可使用一般之方法實施。較佳地,該硬化可使用一紅外線(IR)加熱器,在180至200℃實施0.1至3分鐘。Then, in step 7, the stretched polarizing plate is hardened. Therefore, a completed reflective polarizer is fabricated. This hardening can be carried out using a general method. Preferably, the hardening can be carried out at 180 to 200 ° C for 0.1 to 3 minutes using an infrared (IR) heater.

同時,當在各層組中之重覆層單元之所欲平均光學厚度決定時,考慮該等決定值,可適當地控制該等狹縫之標準、該流動控制單元之標準、該拉伸比等,且因此製造本發明之反射式偏光板。Meanwhile, when the desired average optical thickness of the repeated layer units in each layer group is determined, the criteria of the slits, the standard of the flow control unit, the stretching ratio, etc. can be appropriately controlled in consideration of the determination values. And thus the reflective polarizing plate of the present invention is fabricated.

依據上述方法製造之多層反射式偏光板包括一核心層,且該核心層包括具有一面內雙折射性之多數第一層及與該等第一層交替地堆疊之多數第二層,以透射由該反射式偏光板之外側照射之光之第一偏光組分同時反射該光之第二偏光組分。該等第一與第二層在至少一軸向具有一折射率差。該等第一與第二層係以至少一軸向拉伸。該等第一與第二層形成各包括一第一層及一第二層之多數重覆層單元。該等重覆層單元被分成用以分別反射所欲波長之多數橫波(S波)之多數組。該等重覆層單元之組數係二或二以上。該等組係結合成一體。不同組之該等重覆層單元具有不同平均光學厚度。一表面層可一體地形成在該核心 層之至少一表面上。在這情形下,沒有黏著層形成在該核心層與該表面層之間。The multilayer reflective polarizing plate manufactured according to the above method comprises a core layer, and the core layer comprises a plurality of first layers having an inner birefringence and a plurality of second layers alternately stacked with the first layers to transmit The first polarizing component of the light irradiated on the outer side of the reflective polarizing plate simultaneously reflects the second polarizing component of the light. The first and second layers have a refractive index difference in at least one axial direction. The first and second layers are stretched in at least one axial direction. The first and second layers form a plurality of repeating layer units each including a first layer and a second layer. The overlapping layer elements are divided into a plurality of arrays for reflecting a plurality of transverse waves (S waves) of a desired wavelength, respectively. The number of sets of the repeated layer units is two or more. These groups are combined into one. The different sets of such re-coating units have different average optical thicknesses. a surface layer can be integrally formed at the core On at least one surface of the layer. In this case, no adhesive layer is formed between the core layer and the surface layer.

圖14是依據本發明一實施例之一多層反射式偏光板之截面圖。在該反射式偏光板中,表面層189與190係分別形成在一核心層180之相對表面上。該核心層180被分成兩層組A與B。用以將該核心層180分成該等層組A與B之圖5中之虛線是一假想線。該層組A包括第一組分之第一層181與183,及第二組分之第二層182與184。該等第一層181與183及該等第二層182與184係交替地堆疊。在此,各第一層及在該層組A中之第二層中之一對應第二層,例如,該第一層181及第二層182係定義為一重覆層單元R1。該層組A可包括至少25重覆層單元。類似地,該層組B包括第一組分之第一層185與187,及第二組分之第二層186與188。該等第一層185與187及該等第二層186與188係交替地堆疊。在此,各第一層及在該層組B中之第二層中之一對應第二層,例如,該第一層185及第二層186係定義為一重覆層單元R2。該層組B可包括至少25重覆層單元。重覆層單元之數目宜為等於或大於50,更佳的是等於或大於100,且最佳的是等於或大於150。各第一層及各第二層可具有相同厚度。Figure 14 is a cross-sectional view showing a multilayer reflective polarizing plate in accordance with an embodiment of the present invention. In the reflective polarizing plate, surface layers 189 and 190 are formed on the opposite surfaces of a core layer 180, respectively. The core layer 180 is divided into two layers A and B. The dashed line in Fig. 5 for dividing the core layer 180 into the layer groups A and B is an imaginary line. This layer group A comprises first layers 181 and 183 of the first component and second layers 182 and 184 of the second component. The first layers 181 and 183 and the second layers 182 and 184 are alternately stacked. Here, one of the first layer and the second layer in the layer group A corresponds to the second layer. For example, the first layer 181 and the second layer 182 are defined as a double layer unit R1. This layer group A can comprise at least 25 overlapping layer units. Similarly, layer group B includes first layers 185 and 187 of the first component, and second layers 186 and 188 of the second component. The first layers 185 and 187 and the second layers 186 and 188 are alternately stacked. Here, one of the first layer and the second layer in the layer group B corresponds to the second layer. For example, the first layer 185 and the second layer 186 are defined as a double layer unit R2. This layer group B may comprise at least 25 overlapping layer units. The number of the recoat units is preferably equal to or greater than 50, more preferably equal to or greater than 100, and most preferably equal to or greater than 150. Each of the first layers and each of the second layers may have the same thickness.

又,該層組A之各重覆層單元R1及該層組B之各重覆層單元R2具有不同平均光學厚度。因此,該等重覆層單元R1與R2分別反射不同波長範圍之S橫波。該層組A之各重覆層單元R1之光學厚度可相對該層組A之該等重覆層單元R1之平均光學厚度,具有一較佳地等於或小於20%,且 更佳地等於或小於15%之偏差。因此,當該層組A之重覆層單元R1具有一200nm之平均光學厚度時,依據公式2,該層組A可反射具有一400nm之波長之橫波(S波)。當該層組A之重覆層單元R1在這情形下具有一20%之厚度偏差時,該層組A可涵蓋一320至480nm之波長範圍。另一方面,當該層組B之重覆層單元R2具有一130nm之平均光學厚度時,依據公式2,該層組B可反射具有一520nm之波長之橫波(S波)。當該層組B之該等重覆層單元R2在這情形下具有一20%之厚度偏差時,該層組B可涵蓋一420至620nm之波長範圍。在此情形下,該層組B之波長範圍與該層組A之波長範圍部份地重疊且,因此,可以使光學調變效果最大化。又,因為該等板形聚合物應透射P波而反射S波,故當該等第一層具有雙折射性時,必須設定在一光透射方向,即,一厚度方向,上之該等重覆層單元之一折射率n,(z軸折射率),及計算該等重覆層單元之一平均光學厚度。Moreover, each of the overlapping layer units R1 of the layer group A and the respective overlapping layer units R2 of the layer group B have different average optical thicknesses. Therefore, the overlapping layer units R1 and R2 respectively reflect S transverse waves of different wavelength ranges. The optical thickness of each of the overlapping layer units R1 of the layer group A may have a preferred optical thickness equal to or less than 20% with respect to the average optical thickness of the overlapping layer units R1 of the layer group A, and More preferably equal to or less than 15% deviation. Therefore, when the re-coating unit R1 of the layer group A has an average optical thickness of 200 nm, according to the formula 2, the layer group A can reflect a transverse wave (S-wave) having a wavelength of 400 nm. When the re-coating unit R1 of the layer group A has a thickness deviation of 20% in this case, the layer group A can cover a wavelength range of 320 to 480 nm. On the other hand, when the re-coating unit R2 of the layer group B has an average optical thickness of 130 nm, according to the formula 2, the layer group B can reflect a transverse wave (S-wave) having a wavelength of 520 nm. When the repeating layer units R2 of the layer B have a thickness deviation of 20% in this case, the layer group B may cover a wavelength range of 420 to 620 nm. In this case, the wavelength range of the layer group B partially overlaps with the wavelength range of the layer group A, and therefore, the optical modulation effect can be maximized. Moreover, since the plate-shaped polymers should transmit P waves and reflect S waves, when the first layers have birefringence, they must be set in a light transmission direction, that is, a thickness direction, and the same weight. One of the cladding units has a refractive index n, (z-axis refractive index), and calculates an average optical thickness of one of the overlapping layer units.

圖15是依據本發明另一較佳實施例之一多層反射式偏光板之截面圖。這反射式偏光板將主要連同與圖14之反射式偏光板之不同一起說明。在圖15之反射式偏光板中,有三層組A、B與C形成在一核心層中。就重覆層單元之平均光學厚度而言,該等層組A、B與C是不同的。Figure 15 is a cross-sectional view showing a multilayer reflective polarizing plate in accordance with another preferred embodiment of the present invention. This reflective polarizing plate will be mainly explained together with the difference from the reflective polarizing plate of Fig. 14. In the reflective polarizing plate of Fig. 15, three layers A, B and C are formed in a core layer. The layer groups A, B and C are different in terms of the average optical thickness of the repeating unit.

圖16是依據本發明另一較佳實施例之一多層反射式偏光板之截面圖。詳而言之,該反射式偏光板包括一分成四層組之核心層。各個層組可具有平均光學厚度,且該等平均光學厚度係調整成涵蓋分別包括350nm、450nm、 550nm與650nm之光波長範圍。在這情形下,形成為該核心層之外層部份之層組可具有一大平均光學厚度,而形成為該核心層之內層部份之層組可具有一小平均光學厚度。同時,為了涵蓋可見光之全部波長範圍,在各層組中之聚合物之平均光學厚度應決定為對應於各種不同光波長。當在該核心層中之各個層組之該等重覆層單元之平均光學厚度決定為對應於分別包括350nm、450nm、550nm與650nm之光波長範圍時,這些平均光學厚度可在該等層組之間具有一至少5%,更佳的是等於或大於10%之偏差。因此,可反射在可見光之全部波長範圍內之S波。Figure 16 is a cross-sectional view showing a multilayer reflective polarizing plate in accordance with another preferred embodiment of the present invention. In detail, the reflective polarizing plate comprises a core layer divided into four layers. Each layer set may have an average optical thickness, and the average optical thicknesses are adjusted to cover 350 nm, 450 nm, respectively. The wavelength range of light at 550 nm and 650 nm. In this case, the layer group formed as the outer layer portion of the core layer may have a large average optical thickness, and the layer group formed as the inner layer portion of the core layer may have a small average optical thickness. Meanwhile, in order to cover the entire wavelength range of visible light, the average optical thickness of the polymer in each layer group should be determined to correspond to various light wavelengths. When the average optical thickness of the overlapping layer units of each layer group in the core layer is determined to correspond to optical wavelength ranges including 350 nm, 450 nm, 550 nm, and 650 nm, respectively, the average optical thickness may be in the layer group There is a deviation of at least 5%, more preferably equal to or greater than 10%. Therefore, S waves in the entire wavelength range of visible light can be reflected.

同時,該核心層之層組可在不在相鄰層組之間形成一黏著層之情形下一體地形成。又,該核心層及該等表面層係一體地形成。因此,不僅可避免由一黏著層造成之光學性質之劣化,亦可在具有一有限厚度之核心層中形成更多層數。因此,可明顯地提升光學性質。此外,該等表面層在與該核心層一起形成後進行一拉伸程序。因此,與該核心層在被拉伸後與非拉伸表面層黏合之習知情形不同,本發明之該等表面層可以至少一方向拉伸。因此,與非拉伸表面層比較,本發明之表面層具有較高之表面硬度。因此,達成抗刮擦性之改良及耐熱性之提高。At the same time, the layer stack of the core layer can be integrally formed without forming an adhesive layer between adjacent layer groups. Further, the core layer and the surface layers are integrally formed. Therefore, not only the deterioration of the optical properties caused by an adhesive layer but also the formation of more layers in the core layer having a finite thickness can be avoided. Therefore, the optical properties can be remarkably improved. Further, the surface layers are subjected to a stretching process after being formed together with the core layer. Thus, unlike the conventional case where the core layer is bonded to the non-stretched surface layer after being stretched, the surface layers of the present invention can be stretched in at least one direction. Therefore, the surface layer of the present invention has a higher surface hardness than the non-stretched surface layer. Therefore, improvement in scratch resistance and improvement in heat resistance are achieved.

依據本發明之一較佳實施例,一雙折射界面可形成在形成該核心層之各重覆層單元之第一層與第二層之間。詳而言之,在第一與第二層交替堆疊之一多層反射式偏光板中,在某空間中該等第一與第二層之間之一X、Y或 Z軸之折射率之實質相等或不相等會影響在對應軸中偏振之光之散射程度。通常,散射功率與折射率不相等程度之平方成正比。因此,當沿一特定軸之折射率不相等程度增加時,沿該軸偏振之光更強地散射。相反地,當沿一特定軸之折射率不相等程度減少時,沿該軸偏振之光之散射程度減少。當在一軸中之第二層之折射率係實質等於該第一層之折射率時,不論該第一層之尺寸、形狀或密度為何,藉一平行於該軸之電場偏振之入射光將在不散射之情形下通過該第一層。更詳而言之,第一偏光(P波)在不受到形成在該等第一與第二層之間之一邊界之一雙折射界面影響之情形下通過該反射式偏光板,而第二偏光(S波)受到形成在該等第一與第二層之間之邊界之該雙折射界面影響,而將被調變。因此,該等P波係透射通過該反射式偏光板,而該等S波進行例如散射或反射之調變。因此,該等P與S偏光光束是分開的。In accordance with a preferred embodiment of the present invention, a birefringent interface can be formed between the first layer and the second layer of each of the repeating layer units forming the core layer. In detail, in one of the first and second layers of the multilayer reflective polarizing plate, one of the first and second layers X, Y or The fact that the refractive indices of the Z-axis are substantially equal or unequal affects the degree of scattering of the polarized light in the corresponding axis. Generally, the scattering power is proportional to the square of the degree of unequal refractive index. Thus, as the refractive indices along a particular axis increase unequally, the light polarized along that axis scatters more strongly. Conversely, when the refractive indices along a particular axis decrease unequally, the degree of scattering of light polarized along the axis decreases. When the refractive index of the second layer in one axis is substantially equal to the refractive index of the first layer, regardless of the size, shape or density of the first layer, incident light polarized by an electric field parallel to the axis will The first layer is passed without scattering. More specifically, the first polarized light (P wave) passes through the reflective polarizer without being affected by a birefringent interface formed at one of the boundaries between the first and second layers, and the second The polarized light (S wave) is affected by the birefringent interface formed at the boundary between the first and second layers, and will be modulated. Therefore, the P waves are transmitted through the reflective polarizer, and the S waves are modulated by, for example, scattering or reflection. Therefore, the P and S polarized beams are separated.

因此,當一雙折射界面形成在該等第一與第二層之間時,可產生光調變效果。因此,當該第二層係光學等向性時,該第一層必須具有雙折射性。相反地,當該第二層是光學雙折射時,該第一層必須是光學等向性的。詳而言之,當該第一層具有一x軸折射率nX1,一y軸折射率nY1及一z軸折射率nZ1,且該第二層具有一x軸折射率nX2,一y軸折射率nY2及一z軸折射率nZ2時,在nX1與nY1之間會產生面內雙折射。更佳地,就其x、y與z軸折射率之至少一折射率而言,該等第一與第二層可互相不同。更佳地,當拉 伸之軸是x軸時,該等第一與第二層具有在y軸與z軸方向上之一等於或小於0.05之折射率差,及在一x軸方向上之一等於或大於0.1之折射率差。通常,當該等第一與第二層具有一等於或小於0.05之折射率差時,它們被視為是相似的。Therefore, when a birefringent interface is formed between the first and second layers, a light modulation effect can be produced. Therefore, when the second layer is optically isotropic, the first layer must have birefringence. Conversely, when the second layer is optically birefringent, the first layer must be optically isotropic. In detail, when the first layer has an x-axis refractive index nX1, a y-axis refractive index nY1 and a z-axis refractive index nZ1, and the second layer has an x-axis refractive index nX2, a y-axis refractive index In the case of nY2 and a z-axis refractive index nZ2, in-plane birefringence occurs between nX1 and nY1. More preferably, the first and second layers may differ from each other in terms of at least one refractive index of their x, y and z axis refractive indices. Better, when When the axis of extension is the x-axis, the first and second layers have a refractive index difference equal to or less than 0.05 in the y-axis and z-axis directions, and a refraction equal to or greater than 0.1 in one of the x-axis directions Rate difference. Generally, when the first and second layers have a refractive index difference equal to or less than 0.05, they are considered to be similar.

依據本發明之一較佳實施例,在該多層反射式偏光板之核心層中之層之總數可為100至2,000。各重覆層單元之厚度範圍可依據一所欲光之波長範圍及一所欲折射率適當地設計。構成各重覆層單元之該等第一與第二層之厚度可實質相同或不同。同時,在本發明中,該核心層之厚度可為10至300μm,且各表面層之厚度可為50至190μm。當然,本發明不限於該厚度。According to a preferred embodiment of the present invention, the total number of layers in the core layer of the multilayer reflective polarizing plate may be from 100 to 2,000. The thickness range of each of the overlapping layer units can be appropriately designed according to a wavelength range of a desired light and a desired refractive index. The thicknesses of the first and second layers constituting each of the overlapping layer units may be substantially the same or different. Meanwhile, in the present invention, the core layer may have a thickness of 10 to 300 μm, and each surface layer may have a thickness of 50 to 190 μm. Of course, the invention is not limited to this thickness.

依據本發明之一較佳實施例,提供一種用以製造一多層反射式偏光板之裝置,且該多層反射式偏光板包括具有交替堆疊之第一與第二組分之一核心層,該裝置包括:二或二以上之擠壓單元,且該等第一組分之材料及該等第二組分之材料分別供給至該等二或二以上之擠壓單元;一旋轉塊,包括多數用以收納由該等擠壓單元中之一對應擠壓單元送出之第一組分材料及由該等擠壓單元中之一對擠壓單元送出之第二組分材料的狹縫型擠壓模,因此形成各包括該等第一與第二組分之交替堆疊重覆層單元之二或二以上之多層複合體,且該等多層複合體之重覆層單元具有不同平均光學厚度,以便反射所欲波長之橫波(S波);一收集塊,用以積層由該旋轉塊送出之二或二以上之多層複合體,因此形成該核心層;及一流動控制單元,用 以擴展由該收集塊送出之表面層積層核心層。According to a preferred embodiment of the present invention, there is provided an apparatus for manufacturing a multilayer reflective polarizing plate, the multi-layer reflective polarizing plate comprising a core layer having first and second components alternately stacked, The device comprises: two or more extrusion units, and the materials of the first component and the materials of the second components are respectively supplied to the two or more extrusion units; a rotating block, including a majority a slit type extrusion for accommodating a first component material sent from a corresponding one of the extrusion units and a second component material sent from the extrusion unit to the extrusion unit a mold, thus forming a multilayer composite comprising two or more alternating stacked repeating unit units of the first and second components, and the overlapping layer units of the multilayer composites have different average optical thicknesses so that a transverse wave (S wave) reflecting a desired wavelength; a collecting block for stacking two or more multilayer composites sent out by the rotating block, thereby forming the core layer; and a flow control unit for To expand the surface layer core layer sent by the collection block.

當欲在該核心層之至少一表面上積層一表面層時,該裝置可更包括與被分別地注入一表面層材料之一擠壓單元連通之一進給塊,以在包括由該旋轉塊送出之多層複合體之一結構之至少一表面上積層一表面層。或者,依據本發明之一較佳實施例,該裝置可更包括一擠壓單元,且一表面層材料分別地注入該擠壓單元,並且該擠壓模可與該收集塊連通,以在該核心層之至少一表面上積層一表面層。When a surface layer is to be laminated on at least one surface of the core layer, the apparatus may further include a feed block in communication with one of the extrusion units that are separately injected into the surface layer material, to include the rotating block A surface layer is laminated on at least one surface of one of the structures of the multi-layered composite. Alternatively, in accordance with a preferred embodiment of the present invention, the apparatus may further include an extrusion unit, and a surface layer material is separately injected into the extrusion unit, and the extrusion mold is connectable to the collection block to A surface layer is laminated on at least one surface of the core layer.

圖17是用以製造依據本發明一較佳實施例之包括一核心層及與該核心層一體結合之多數表面層之一多層反射式偏光板之一裝置的示意圖。詳而言之,該裝置包括一供給第一組分材料之第一擠壓單元220,一供給第二組分材料之第二擠壓單元221,及一供給一表面層材料之第三擠壓單元222。該第一擠壓單元220與包括四狹縫型擠壓模223、224、225與226之一旋轉塊C連通。在這情形下,該第一擠壓單元220以一熔融狀態供給該第一組分材料至該等四狹縫型擠壓模223、224、225與226。又,該第二擠壓單元221與該旋轉塊C連通,且以一熔融狀態供給該第二組分材料至該等四狹縫型擠壓模223、224、225與226。透過該等四狹縫型擠壓模223、224、225與226,產生具有不同平均光學厚度之四多層複合體。各多層複合體具有該等第一與第二組分之重覆層單元交替地堆疊之一結構。就該等重覆層單元之平均光學厚度而言,該等多層複合體是不同 的。因此四狹縫型擠壓模223、224、225與226中之各狹縫型擠壓模可以是圖8所示之狹縫型擠壓模。雖然顯示的是該等四狹縫型擠壓模,但是可了解的是一整體狹縫型擠壓模亦在本發明之範疇內。透過該等狹縫型擠壓模223、224、225與226產生之該等四多層複合體係在一收集塊227中積層,以形成一核心層。在這情形下,該收集塊227可具有一分開結構。或者,當使用一整體狹縫型擠壓模時,該收集塊227可採用一配置在該狹縫型擠壓模中之通道分組分配板之形式,以積層該等多層複合體。透過在該收集塊227中積層而形成之核心層被進給至一進給塊228。在該進給塊228中,由該第三擠壓單元222送出之該表面層材料係積層在該核心層上。為達此目的,該第三擠壓單元222與該進給塊228連通。該表面層積層核心層被送至一流動控制單元229,且該流動控制單元229再產生在該核心層中之第一組分之擴展。該流動控制單元可以是一T形模或一衣架模使得該等第一組分可成形為一板形狀。同時,當該核心層與該表面層之積層係在該收集塊227中實行時,該進給塊228可省略。Figure 17 is a schematic diagram of an apparatus for fabricating a multilayer reflective polarizer comprising a core layer and a plurality of surface layers integrated with the core layer in accordance with a preferred embodiment of the present invention. In detail, the apparatus includes a first extrusion unit 220 for supplying a first component material, a second extrusion unit 221 for supplying a second component material, and a third extrusion for supplying a surface layer material. Unit 222. The first pressing unit 220 is in communication with a rotating block C including one of the four slit type extrusion dies 223, 224, 225 and 226. In this case, the first pressing unit 220 supplies the first component material to the four slit type extrusion dies 223, 224, 225 and 226 in a molten state. Further, the second pressing unit 221 is in communication with the rotating block C, and supplies the second component material to the four slit type extrusion dies 223, 224, 225 and 226 in a molten state. Through the four slit type extrusion dies 223, 224, 225 and 226, four multilayer composites having different average optical thicknesses are produced. Each of the multilayer composites has a structure in which the overlapping layer units of the first and second components are alternately stacked. The multilayer composites are different in terms of the average optical thickness of the resurfacing units of. Therefore, each of the slit-type extrusion dies of the four-slot type extrusion dies 223, 224, 225, and 226 may be the slit-type extrusion die shown in Fig. 8. Although the four-slot extrusion die is shown, it will be appreciated that an integral slit extrusion die is also within the scope of the present invention. The four-layer composite system produced by the slit-type extrusion dies 223, 224, 225 and 226 is laminated in a collecting block 227 to form a core layer. In this case, the collection block 227 can have a separate structure. Alternatively, when an integral slit type extrusion die is used, the collection block 227 may take the form of a channel grouping distribution plate disposed in the slit type extrusion die to laminate the multilayer composites. The core layer formed by laminating in the collection block 227 is fed to a feed block 228. In the feed block 228, the surface layer material fed from the third extrusion unit 222 is layered on the core layer. To this end, the third pressing unit 222 is in communication with the feed block 228. The surface layer core layer is sent to a flow control unit 229, and the flow control unit 229 regenerates the expansion of the first component in the core layer. The flow control unit can be a T-die or a hanger mold such that the first components can be formed into a plate shape. Meanwhile, when the layer of the core layer and the surface layer are implemented in the collecting block 227, the feeding block 228 may be omitted.

圖18是用以製造依據本發明另一較佳實施例之一多層反射式偏光板之一裝置的示意圖。這裝置將主要連同其與圖17之裝置之差異一起說明。該第一擠壓單元220進給該第一組分材料至四第一加壓單元233、234、235與236。該等第一加壓單元233、234、235與236具有不同排量,且分別排放該第一組分材料至多數狹縫型擠壓模241、242、 243與244。該第二擠壓單元221進給該第二組分材料至四第二加壓單元237、238、239與240。該等第二加壓單元237、238、239與240具有不同排量,且分別排放該第二組分材料至多數狹縫型擠壓模241、242、243與244。透過該等四狹縫型擠壓模241、242、243與244,產生具有不同平均光學厚度之四多層複合體。該第一加壓單元、第二加壓單元及多數狹縫型擠壓模構成一旋轉塊C。Figure 18 is a schematic view of an apparatus for manufacturing a multilayer reflective polarizing plate in accordance with another preferred embodiment of the present invention. This device will be explained primarily in conjunction with its differences from the device of Figure 17. The first pressing unit 220 feeds the first component material to the four first pressurizing units 233, 234, 235 and 236. The first pressurizing units 233, 234, 235 and 236 have different displacements, and respectively discharge the first component material to the plurality of slit-type extrusion dies 241, 242, 243 and 244. The second pressing unit 221 feeds the second component material to the fourth second pressurizing units 237, 238, 239 and 240. The second pressurizing units 237, 238, 239 and 240 have different displacements and discharge the second component material to the plurality of slit-type extrusion dies 241, 242, 243 and 244, respectively. Through the four slit type extrusion dies 241, 242, 243 and 244, four multilayer composites having different average optical thicknesses are produced. The first pressurizing unit, the second pressurizing unit, and the plurality of slit-type extrusion dies constitute a rotating block C.

圖19是用以製造依據本發明另一較佳實施例之一多層反射式偏光板之一裝置的示意圖。這裝置將主要連同其與圖18之裝置之差異一起說明。與使用四狹縫型擠壓模之情形不同,這裝置具有使用8狹縫型擠壓模實施多階段積層,以製造一包含四層組之多層反射式偏光板的特徵。詳而言之,該第一加壓單元233排放該第一組分材料至兩狹縫型擠壓模250與251。該第二加壓單元234亦排放該第二組分材料至該等兩狹縫型擠壓模250與251。在這情形下,該等第一與第二加壓單元233與234是相等的,且該等兩狹縫型擠壓模250與251是相等的。因此,透過該等狹縫型擠壓模250與251形成之多層複合體具有相同之平均光學厚度。以上述方式,形成8多層複合體,且接著在第一積層單元258、259、260與261中積層該等8多層複合體之每兩個多層複合體,使得具有相同平均光學厚度之每兩個多層複合體在該等第一積層單元258、259、260與261中之一對應第一積層單元中積層,以形成四多層複合體。接著在一第二積層單元262中積層該等多層複合體,以形成一核心層。Figure 19 is a schematic view of an apparatus for manufacturing a multilayer reflective polarizing plate in accordance with another preferred embodiment of the present invention. This device will be explained primarily in conjunction with its differences from the device of Figure 18. Unlike the case of using a four-slot type extrusion die, this apparatus has a feature of performing a multi-stage laminate using an 8-slot type extrusion die to fabricate a multilayer reflection type polarizing plate comprising a four-layer group. In detail, the first pressurizing unit 233 discharges the first component material to the two slit type extrusion dies 250 and 251. The second pressurizing unit 234 also discharges the second component material to the two slit-type extrusion dies 250 and 251. In this case, the first and second pressurizing units 233 and 234 are equal, and the two slit-type extrusion dies 250 and 251 are equal. Therefore, the multilayer composite formed by the slit-type extrusion dies 250 and 251 has the same average optical thickness. In the above manner, an 8-layer composite is formed, and then each of the two multilayer composites of the eight-layer composite is laminated in the first laminate units 258, 259, 260, and 261 so that each of the two average optical thicknesses has two The multilayer composite is laminated in one of the first laminate units 258, 259, 260, and 261 corresponding to the first laminate unit to form a four-layer composite. The multilayer composites are then laminated in a second buildup unit 262 to form a core layer.

同時,雖然已配合圖19說明各第一加壓單元進給該第一組分材料至兩狹縫型擠壓模,但是發明所屬技術領域中具有通常知識者應了解各第一加壓單元可進給該第一組分材料至三或三以上之狹縫型擠壓模。這亦可應用於該等第二加壓單元。Meanwhile, although the first pressurizing unit feeds the first component material to the two slit type extrusion die in conjunction with FIG. 19, those having ordinary knowledge in the art to which the invention pertains should understand that each of the first pressurizing units can be The first component material is fed to three or more slit type extrusion dies. This can also be applied to the second pressurizing units.

又,依據本發明之一較佳實施例,提供一種包括本發明之反射式偏光板之液晶顯示器(LCD)裝置。詳而言之,圖20顯示使用本發明之反射式偏光板之一液晶顯示器裝置之一例子。請參閱圖20,一反射板280嵌入一框架270中,且多數冷陰極螢光燈(CCFL)290設置在該反射板280之一上表面上。一光學薄膜320設置在該冷陰極螢光燈290之一上表面上。該光學薄膜320包括依序堆疊之一擴散板321、一光擴散薄膜322、一稜鏡薄膜323、一反射式偏光板324及一偏光吸收薄膜325。該堆疊順序可依據所欲目的改變,且該光學薄膜320之某些元件可省略或可設置複數個。例如,該擴散板321、光擴散薄膜322、或稜鏡薄膜323可由該光學薄膜320省略,或其堆疊順序或位置可改變。此外,一延遲光程薄膜(未圖示)等可設置在該液晶顯示器裝置中之一適當位置。又,一液晶顯示器(LCD)面板310可在該液晶顯示器面板310嵌入一模框架300之狀態下,設置在該光學薄膜320之一上表面上。Further, in accordance with a preferred embodiment of the present invention, a liquid crystal display (LCD) device including the reflective polarizing plate of the present invention is provided. In detail, Fig. 20 shows an example of a liquid crystal display device using one of the reflective polarizers of the present invention. Referring to FIG. 20, a reflector 280 is embedded in a frame 270, and a plurality of cold cathode fluorescent lamps (CCFLs) 290 are disposed on an upper surface of the reflector 280. An optical film 320 is disposed on an upper surface of the cold cathode fluorescent lamp 290. The optical film 320 includes a diffusion plate 321 , a light diffusion film 322 , a film 323 , a reflective polarizer 324 , and a polarizing absorption film 325 . The stacking sequence can be varied depending on the intended purpose, and certain elements of the optical film 320 can be omitted or a plurality of components can be provided. For example, the diffusion plate 321, the light diffusion film 322, or the tantalum film 323 may be omitted from the optical film 320, or its stacking order or position may be changed. Further, a retardation film (not shown) or the like may be disposed at an appropriate position in the liquid crystal display device. Further, a liquid crystal display (LCD) panel 310 may be disposed on an upper surface of the optical film 320 in a state in which the liquid crystal display panel 310 is embedded in a mold frame 300.

以下,該液晶顯示器裝置將主要連同一光之移動路徑一起說明。由該等冷陰極螢光燈290發射之光到達該光學薄膜320之擴散板321。接著,由該擴散板321射出之光通 過該光擴散薄膜322使得它可以一垂直於該光學薄膜320之方向傳送。接著,由該光擴散薄膜322射出之光在通過該稜鏡薄膜323後到達該反射式偏光板324且,因此,產生該光之光學調變。詳而言之,該光之P波組分在沒有光損失之情形下通過該反射式偏光板324,而在進行光學調變(反射、散射、折射等)後,該光之S波組分被配置在該冷陰極螢光燈290之後側之反射板280反射。該光之S波組分接著隨機地轉變成P或S波且通過該反射式偏光板324。在通過該偏光吸收薄膜245後,該光到達該液晶顯示器面板310。因此,可預期的是,當在一液晶顯示器裝置中使用本發明之反射式偏光板時,與一般反射式偏光板比較,依據上述原理達成亮度之大幅增強。同時,該等冷陰極螢光燈290可以發光二極體(LED)取代。Hereinafter, the liquid crystal display device will be mainly explained together with the movement path of the same light. Light emitted from the cold cathode fluorescent lamps 290 reaches the diffusion plate 321 of the optical film 320. Then, the light emitted by the diffusion plate 321 The light diffusing film 322 is passed through such that it can be transported in a direction perpendicular to the optical film 320. Then, the light emitted from the light-diffusing film 322 passes through the tantalum film 323 and reaches the reflective polarizing plate 324, thereby generating optical modulation of the light. In detail, the P wave component of the light passes through the reflective polarizing plate 324 without optical loss, and after performing optical modulation (reflection, scattering, refraction, etc.), the S wave component of the light The reflection plate 280 disposed on the rear side of the cold cathode fluorescent lamp 290 is reflected. The S-wave component of the light is then randomly converted into a P or S wave and passed through the reflective polarizer 324. After passing through the polarizing absorbing film 245, the light reaches the liquid crystal display panel 310. Therefore, it is expected that when the reflective polarizing plate of the present invention is used in a liquid crystal display device, a substantial increase in brightness is achieved in accordance with the above principle as compared with a general reflective polarizing plate. At the same time, the cold cathode fluorescent lamps 290 can be replaced by light emitting diodes (LEDs).

雖然已主要連同該液晶顯示器裝置一起說明依據本發明之反射式偏光板之使用,但是本發明不限於此。該反射式偏光板可廣泛地使用在與投影顯示器、電漿顯示面板(PDP)、電致發光顯示器(ELD)等相關之平面顯示器技術中。Although the use of the reflective polarizing plate according to the present invention has been mainly described together with the liquid crystal display device, the present invention is not limited thereto. The reflective polarizer can be widely used in flat panel display technology related to projection displays, plasma display panels (PDPs), electroluminescent displays (ELDs) and the like.

發明之形態Form of invention

以下,將配合多數例子及實驗例詳細說明本發明。以下例子及實驗例只是用以說明且不是要限制本發明之範疇。Hereinafter, the present invention will be described in detail with reference to a plurality of examples and experimental examples. The following examples and experimental examples are intended to illustrate and not to limit the scope of the invention.

例1example 1

實施圖17所示之程序。詳而言之,一第一組分材 料、一第二組分材料及一表面層材料被分別注入該等第一、第二及第三擠壓單元。該第一組分材料是具有一1.65之折射率之聚2,6萘二甲酸乙二酯(PEN)。該第二組分材料是具有一1.64之折射率之共聚2,6萘二甲酸乙二酯(co-PEN)。該共聚2,6萘二甲酸乙二酯係藉使對苯二甲酸二甲酯及二甲基-2,6-二羧基萘以一6:4之莫耳比混合之一材料與乙二醇(EG)以一1:2之莫耳比反應而產生。該表面層材料是具有一1.58之折射率之聚碳酸酯合金,且該聚碳酸酯合金中聚合90wt%之聚碳酸酯與10wt%之聚對苯二甲酸伸環己二甲酯(PCTG)。該等第一與第二組分材料係在一295℃之溫度擠壓且聚合物流係使用一毛細流變計檢查,且接著依據檢查之結果透過I.V.調整修正。用於該表面層材料之擠壓程序係在一280℃之溫度實施。The procedure shown in Fig. 17 is implemented. In detail, a first component A second component material and a surface layer material are separately injected into the first, second and third extrusion units. The first component material is polyethylene 2,6 naphthalate (PEN) having a refractive index of 1.65. The second component material is copolymerized ethylene 2,6 naphthalate (co-PEN) having a refractive index of 1.64. The copolymerized ethylene glycol 2,6 naphthalate is obtained by mixing dimethyl terephthalate and dimethyl-2,6-dicarboxynaphthalene with a molar ratio of 6:4 to ethylene glycol. (EG) is produced by a molar ratio of 1:2. The surface layer material is a polycarbonate alloy having a refractive index of 1.58, and the polycarbonate alloy is polymerized with 90% by weight of polycarbonate and 10% by weight of poly(ethylene terephthalate) (PCTG). The first and second component materials were extruded at a temperature of 295 ° C and the polymer flow system was examined using a capillary rheometer, and then corrected by I.V. adjustment according to the results of the inspection. The extrusion process for the surface layer material was carried out at a temperature of 280 °C.

使用如圖6與7所示之四狹縫型擠壓模,產生具有不同平均光學厚度之四複合體。詳而言之,由該第一加壓單元送出之第一組分材料及由該第二加壓單元送出之第二組分材料供給至該等四狹縫型擠壓模。各狹縫型擠壓模形成300層。在第五分配板中在該第五分配板之下表面之狹縫厚度在該第一狹縫型擠壓模之情形中是0.26mm,在該第二狹縫型擠壓模之情形中是0.21mm,在該第三狹縫型擠壓模情形中是0.17mm,且在該第四狹縫型擠壓模情形中是0.30mm。在各狹縫型擠壓模之第六分配板之出口具有一15mm×15mm之尺寸。由該等四狹縫型擠壓模排出之四複合體係分別沿分開之通道進給,且接著在一收集塊中積層, 以形成一單一核心層聚合物。來自該第三擠壓單元之表面層材料係供給至具有一三層結構之進給塊,以在該核心層聚合物之上與下表面上形成表面層。形成有該等表面層之該核心層係透過調整流速及壓力梯度在一如圖15與16所示之衣架模中擴展。詳而言之,該衣架模在其入口具有一200mm之縱向寬度及一20mm之側向寬度而在其出口具有一960mm之縱向寬度及一2.4mm之側向寬度。又,該衣架模具有一1m/分之流速。然後,實施一冷卻程序及一平坦化程序。該平坦化程序係使用鑄造軋輥實施。接著,該擴展核心層聚合物係以一機器方向(MD方向)以6倍之拉伸速度拉伸。因此,各第一組分之縱向垂直橫截面具有一縮短較短軸長度且較長軸長度沒有變化。接著使用一紅外線加熱器在180℃實施硬化2分鐘。因此,製造如圖7所示之一多層反射式偏光板。在該反射式偏光板中,其第一組分具有一1.88之x軸折射率nx,一1.64之y軸折射率ny及一1.64之z軸折射率nz,且其第二組分具有一1.64之折射率。又,在包括層組A至D之該反射式偏光板之一層組A中,層數是300(150重覆層單元),各重覆層單元之厚度是168nm,該平均光學厚度是275.5nm,且該光學厚度偏差是大約20%。在層組B中,層數是300(150重覆層單元),各重覆層單元之厚度是138nm,該平均光學厚度是226.3nm,且該光學厚度偏差是大約20%。在層組C中,層數是300(150重覆層單元),各重覆層單元之厚度是110nm,該平均光學厚度是180.4nm,且該光學厚度偏差是大約20%。在層組D中,層數是300(150 重覆層單元),各重覆層單元之厚度是200nm,該平均光學厚度是328nm,且該光學厚度偏差是大約20%。該製成之多層反射式偏光板之核心層具有一92.4μm之厚度。各表面層具有一153.8μm之厚度使得該多層反射式偏光板具有一400μm之總厚度。A four-slit extrusion die as shown in Figures 6 and 7 was used to produce four composites having different average optical thicknesses. In detail, the first component material sent from the first pressurizing unit and the second component material sent from the second pressurizing unit are supplied to the four slit type extrusion dies. Each slit type extrusion die was formed into 300 layers. The thickness of the slit in the lower surface of the fifth distribution plate in the fifth distribution plate is 0.26 mm in the case of the first slit type extrusion die, and in the case of the second slit type extrusion die 0.21 mm is 0.17 mm in the case of the third slit type extrusion die, and is 0.30 mm in the case of the fourth slit type extrusion die. The outlet of the sixth distribution plate of each slit type extrusion die has a size of 15 mm × 15 mm. The four composite systems discharged from the four-slot extrusion die are fed along separate channels and then laminated in a collection block. To form a single core layer polymer. The surface layer material from the third extrusion unit is supplied to a feed block having a three-layer structure to form a surface layer on the lower layer polymer and on the lower surface polymer. The core layer formed with the surface layers is expanded in a hanger mold as shown in Figs. 15 and 16 by adjusting the flow rate and pressure gradient. In detail, the hanger mold has a longitudinal width of 200 mm and a lateral width of 20 mm at its inlet and a longitudinal width of 960 mm and a lateral width of 2.4 mm at its outlet. Further, the hanger mold has a flow rate of 1 m/min. Then, a cooling process and a flattening process are implemented. This flattening procedure is carried out using a casting roll. Next, the expanded core layer polymer was stretched at a stretching speed of 6 times in a machine direction (MD direction). Thus, the longitudinal vertical cross-section of each of the first components has a shortened shorter axial length and no change in longer axial length. The hardening was then carried out at 180 ° C for 2 minutes using an infrared heater. Therefore, a multilayer reflective polarizing plate as shown in Fig. 7 was produced. In the reflective polarizing plate, the first component has an x-axis refractive index nx of 1.88, a y-axis refractive index ny of 1.64, and a z-axis refractive index nz of 1.64, and the second component has a 1.64. Refractive index. Further, in the layer group A of the reflective polarizing plate including the layer groups A to D, the number of layers is 300 (150 overlapping layer units), the thickness of each of the overlapping layer units is 168 nm, and the average optical thickness is 275.5 nm. And the optical thickness deviation is about 20%. In the layer group B, the number of layers is 300 (150 overlapping layer units), the thickness of each of the overlapping layer units is 138 nm, the average optical thickness is 226.3 nm, and the optical thickness deviation is about 20%. In the layer group C, the number of layers is 300 (150 overlapping layer units), the thickness of each of the overlapping layer units is 110 nm, the average optical thickness is 180.4 nm, and the optical thickness deviation is about 20%. In layer D, the number of layers is 300 (150 The recoat unit) has a thickness of 200 nm, the average optical thickness is 328 nm, and the optical thickness deviation is about 20%. The core layer of the prepared multilayer reflective polarizer has a thickness of 92.4 μm. Each of the surface layers has a thickness of 153.8 μm such that the multilayer reflective polarizing plate has a total thickness of 400 μm.

例2Example 2

藉實施與例1相同之程序製造一800層反射式偏光板,但是在該等四狹縫型擠壓模中之各狹縫型擠壓模中之層數是200。該製成之多層反射式偏光板之核心層具有一61.6μm之厚度。各表面層具有一169.2μm之厚度使得該多層反射式偏光板具有一400μm之總厚度。An 800-layer reflective polarizing plate was produced by the same procedure as in Example 1, except that the number of layers in each of the slit-type extrusion dies in the four-slot type extrusion die was 200. The core layer of the resulting multilayer reflective polarizer has a thickness of 61.6 μm. Each of the surface layers has a thickness of 169.2 μm such that the multilayer reflective polarizing plate has a total thickness of 400 μm.

例3Example 3

藉實施與例2相同之程序製造一600層反射式偏光板,但是未使用該第三狹縫型擠壓模。A 600-layer reflective polarizing plate was fabricated by the same procedure as in Example 2, but the third slit-type extrusion die was not used.

比較例1Comparative example 1

藉實施與例2相同之程序製造一包括相同層組之800層反射式偏光板,但是未該等四擠壓模具有相同狹縫寬度。An 800-layer reflective polarizing plate comprising the same layer set was fabricated by the same procedure as in Example 2, but none of the four extrusion dies had the same slit width.

比較例2Comparative example 2

使用例1之四狹縫型擠壓模,製備對應在例1中製造之四組多層反射式偏光板之各個多層反射式偏光板的多數板片,且接著個別地拉伸該等板片。使用一壓感膠黏合該等四組之板片以形成一核心層。然後,分別將多數表面層黏合在該核心層之相對表面上。因此,製成一800層反射 式偏光板。該製成之多層反射式偏光板之核心層具有一83.2μm之厚度。各表面層具有一158.4μm之厚度使得該多層反射式偏光板具有一400μm之總厚度。該壓感膠層之厚度係包括在該核心層及多數表面層中之各層的厚度。Using the four slit type extrusion die of Example 1, a plurality of sheets corresponding to the respective multilayer reflective polarizing plates of the four sets of multilayer reflective polarizing plates manufactured in Example 1 were prepared, and then the sheets were individually stretched. The four sets of sheets are bonded using a pressure sensitive adhesive to form a core layer. Then, a plurality of surface layers are respectively bonded to the opposite surfaces of the core layer. So make an 800 layer reflection Polarizer. The core layer of the prepared multilayer reflective polarizer has a thickness of 83.2 μm. Each of the surface layers has a thickness of 158.4 μm such that the multilayer reflective polarizing plate has a total thickness of 400 μm. The thickness of the pressure sensitive adhesive layer includes the thickness of each of the core layer and a plurality of surface layers.

實驗例Experimental example

如下地測量在上述例1至3及比較例1與2中製造之反射式偏光板之性質。又,該等測量之結果係顯示在表1中。The properties of the reflective polarizing plates manufactured in the above Examples 1 to 3 and Comparative Examples 1 and 2 were measured as follows. Again, the results of these measurements are shown in Table 1.

1.透射率Transmittance

使用由在日本之NIPPON DENSHOKU公司購得之COH300A分析設備,依據一ASTM D1003方法測量透射軸透射率及反射軸透射率。Transmission axis transmittance and reflection axis transmittance were measured according to an ASTM D1003 method using a COH300A analysis apparatus available from NIPPON DENSHOKU Co., Ltd., Japan.

2.偏光度2. Polarization

使用由OTSKA公司購得之RETS-100分析設備測量偏光度。The degree of polarization was measured using a RETS-100 analytical device purchased by OTSKA.

3.相對亮度3. Relative brightness

對如上所述地製造之各反射式偏光板,如下地實施亮度測量。在將一面板組裝在具有一擴散板及該反射式偏光板之一32”直接式背光單元上,且使用由Topcon公司購得之BM-7計測量9點。該等測量值之一平均值係以一相對亮度表示。For each of the reflective polarizing plates manufactured as described above, luminance measurement was performed as follows. A panel was assembled on a 32" direct type backlight unit having a diffusing plate and the reflective polarizing plate, and 9 points were measured using a BM-7 meter purchased by Topcon Corporation. One of the measured values is an average value. It is expressed as a relative brightness.

當例1之反射式偏光板之亮度設定為100(參考值)時,在該等例及比較例中之各例之反射式偏光板亮度對例1之反射式偏光板亮度的相對值係以一相對亮度表示。When the brightness of the reflective polarizing plate of Example 1 is set to 100 (reference value), the relative values of the brightness of the reflective polarizing plate of each of the examples and the comparative examples to the brightness of the reflective polarizing plate of Example 1 are A relative brightness representation.

如表1可知,可看出本發明之例1至3之反射式偏光板具有明顯優於比較例1與2之反射式偏光板之光學性質的光學性質。又,與沒有黏著層同時包括與比較例2之層數相同之層數的例2比較,包括黏著層之比較例2呈現光學性質之劣化。這是因為光學性質因該等黏著層與光波長之偏移干涉而劣化。As can be seen from Table 1, it can be seen that the reflective polarizing plates of Examples 1 to 3 of the present invention have optical properties which are significantly superior to those of the reflective polarizing plates of Comparative Examples 1 and 2. Further, in Comparative Example 2 including the same number of layers as in Comparative Example 2, the comparative example 2 including the adhesive layer exhibited deterioration in optical properties. This is because the optical properties deteriorate due to the interference of the adhesion layers with the wavelength of the light.

工業可應用性Industrial applicability

依據本發明之反射式偏光板具有一極佳光調變效能,且因此可廣泛地應用於需要光調變之領域。詳而言之,本發明之反射式偏光板可廣泛地使用在與例如,行動 顯示器、液晶顯示器及發光二極體、投影顯示器、電漿顯示器、場發射顯示器、電致發光顯示器(ELD)等需要高亮度之液晶顯示器裝置相關的平面顯示器技術。The reflective polarizing plate according to the present invention has an excellent light modulation performance, and thus can be widely applied to the field requiring light modulation. In detail, the reflective polarizing plate of the present invention can be widely used in, for example, action Display, liquid crystal display and light-emitting diodes, projection displays, plasma displays, field emission displays, electroluminescent displays (ELD) and other flat panel display technologies that require high brightness liquid crystal display devices.

雖然已為說明揭露了本發明之多數較佳實施例,但是在不偏離如揭露在附加申請專利範圍之本發明範疇與精神之情形下,發明所屬技術領域中具有通常知識者應了解各種修改、增加及替換是可能的。While the invention has been described in connection with the preferred embodiments of the present invention, it should be understood that Additions and replacements are possible.

50,52,53,60,61,62,63,67,68,69,70‧‧‧第一組分供給通道50,52,53,60,61,62,63,67,68,69,70‧‧‧first component supply channel

51,54,55,56,57,58,59,64,65,66,71,72,73‧‧‧第二組分供給通道51,54,55,56,57,58,59,64,65,66,71,72,73‧‧‧second component supply channel

74‧‧‧第一通道74‧‧‧First Passage

75‧‧‧第二通道75‧‧‧second channel

76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93‧‧‧通道76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93‧‧

94‧‧‧出口94‧‧‧Export

S1‧‧‧第一分配板S1‧‧‧ first distribution board

S2‧‧‧第二分配板S2‧‧‧Second distribution board

S3‧‧‧第三分配板S3‧‧‧ third distribution board

S4‧‧‧第四分配板S4‧‧‧ fourth distribution board

Claims (14)

一種用於製造多層反射式偏光板的方法,且該多層反射式偏光板包括一核心層,該核心層包括交替地堆疊之第一組分及第二組分,又,該製造方法包含以下步驟:(1)供給一第一組分材料、一第二組分材料及一表面層材料至各個擠壓單元;(2)將由該等擠壓單元送出之該等第一與第二組分材料注入多數狹縫型擠壓模,其具有大於等於100層之組分供給通道,從而形成各包括交替堆疊之第一與第二組分之多數重覆層單元的二或二以上之多層複合體,且各重覆層單元包括一第一組分及一第二組分,並且就該等重覆層單元之一平均光學厚度而言,該等二或二以上之多層複合體是不同的,以分別反射具有不同波長之多數橫波(S波);(3)積層該等二或二以上之多層複合體,以形成一核心層;及(4)透過一流動控制單元擴展該核心層,其中該方法更包含以下步驟:在該步驟(3)與該步驟(4)之間,在該步驟(3)形成之核心層之至少一表面上積層該表面層材料;或者,該方法更包含以下步驟:在該步驟(3)時,於核心層之至少一表面上積層該表面層材料。 A method for manufacturing a multilayer reflective polarizing plate, comprising: a core layer comprising a first component and a second component which are alternately stacked, and further, the manufacturing method comprises the following steps (1) supplying a first component material, a second component material, and a surface layer material to each of the extrusion units; (2) the first and second component materials to be sent by the extrusion units Injecting a plurality of slit-type extrusion dies having a component supply passage of 100 or more layers, thereby forming two or more multilayer composites each including a plurality of overlapping layer units of the first and second components alternately stacked And each of the overlapping layer units includes a first component and a second component, and the two or more multilayer composites are different in terms of an average optical thickness of the one of the plurality of overlapping layer units, To respectively reflect a plurality of transverse waves (S waves) having different wavelengths; (3) stacking the two or more multilayer composites to form a core layer; and (4) expanding the core layer through a flow control unit, wherein The method further includes the following steps: at this step (3) Between the step (4), laminating the surface layer material on at least one surface of the core layer formed in the step (3); or, the method further comprises the following step: in the step (3), The surface layer material is laminated on at least one surface of the core layer. 如申請專利範圍第1項之方法,其中在該步驟(2)形成四或四以上之海-島型複合體。 The method of claim 1, wherein four or more sea-island type complexes are formed in the step (2). 如申請專利範圍第1項之方法,其中該等多數狹縫型擠壓模係結合成一體。 The method of claim 1, wherein the plurality of slit-type extrusion molding systems are integrated. 如申請專利範圍第1項之方法,更包含以下步驟:在該步驟(1)與該步驟(2)之間,將由該等擠壓單元中之一對應擠壓單元送出之第一組分材料透過具有不同排量之多數第一加壓單元注入該等狹縫型擠壓模中之不同狹縫型擠壓模,以使該等多層型複合體具有不同平均光學厚度。 The method of claim 1, further comprising the step of: between the step (1) and the step (2), the first component material sent by the corresponding one of the pressing units The different slit-type extrusion dies in the slit-type extrusion dies are injected through a plurality of first pressing units having different displacements so that the multi-layered composites have different average optical thicknesses. 如申請專利範圍第1項之方法,更包含以下步驟:在該步驟(1)與該步驟(2)之間,將由該等擠壓單元中之一對應擠壓單元送出之第二組分材料透過具有不同排量之多數第二加壓單元注入該等狹縫型擠壓模中之不同狹縫型擠壓模,以使該等多層型複合體具有不同平均光學厚度。 The method of claim 1, further comprising the step of: between the step (1) and the step (2), feeding a second component material corresponding to one of the extrusion units to the extrusion unit The different slit-type extrusion dies in the slit-type extrusion dies are injected through a plurality of second pressing units having different displacements so that the multi-layered composites have different average optical thicknesses. 如申請專利範圍第1項之方法,其中各狹縫型擠壓模包括至少一分配板,且該至少一分配板具有多數狹縫以供給及分配該等第一與第二組分材料,並且該等狹縫型擠壓模之該等分配板之該等狹縫具有不同寬度,用以透過該等狹縫型擠壓模製造不同多層複合體。 The method of claim 1, wherein each slit-type extrusion die comprises at least one distribution plate, and the at least one distribution plate has a plurality of slits for supplying and dispensing the first and second component materials, and The slits of the distribution plates of the slit-type extrusion dies have different widths for producing different multilayer composites through the slit-type extrusion dies. 如申請專利範圍第1項之方法,其中各狹縫型擠壓模包括多數層等於或大於200組分供給通道。 The method of claim 1, wherein each slit-type extrusion die comprises a plurality of layers equal to or greater than 200 component supply channels. 如申請專利範圍第1項之方法,其中各狹縫型擠壓模包 括多數層等於或大於300組分供給通道。 Such as the method of claim 1, wherein each slit type extrusion die package The majority of the layers are equal to or greater than the 300 component supply channels. 如申請專利範圍第1項之方法,其中包含在各多層複合體之該等重覆層單元之光學厚度具有相對該等重覆層單元之平均光學厚度一等於或小於20%之厚度偏差。 The method of claim 1, wherein the optical thickness of the repeating layer units included in each of the multilayer composites has a thickness deviation equal to or less than 20% with respect to an average optical thickness of the overlapping layer units. 如申請專利範圍第1項之方法,其中包含在各多層複合體之該等重覆層單元之光學厚度具有相對該等重覆層單元之平均光學厚度一等於或小於15%之厚度偏差。 The method of claim 1, wherein the optical thickness of the repeating layer units included in each of the multilayer composites has a thickness deviation of equal to or less than 15% with respect to an average optical thickness of the overlapping layer units. 如申請專利範圍第1項之方法,其中在該等多層複合體中之該等重覆層單元之平均光學厚度具有一等於或大於10%之厚度偏差。 The method of claim 1, wherein the average optical thickness of the repeating unit in the multilayer composite has a thickness deviation equal to or greater than 10%. 一種用於製造多層反射式偏光板的裝置,且該多層反射式偏光板包括:具有交替堆疊第一組分一第二組分之一核心層,以及積層在該核心層至少一表面上之一表面層,又,該裝置包含:三或三以上之擠壓單元,且該等第一組分之一材料及該第二組分之一材料以及一表面層材料分別供給至該等三或三以上之擠壓單元;一旋轉塊,包含多數用以收納由該等擠壓單元中之一對應擠壓單元送出之第一組分材料及由該等擠壓單元中之一對應擠壓單元送出之第二組分材料的狹縫型擠壓模,其具有大於等於100層之組分供給通道,從而形成各包括交替堆疊之第一與第二組分之多數重覆層單元的二或二以上之多層複合體,且該等多層複合體之該等重覆層單元具有不同平均光學厚度,以反射具有所 欲波長之多數橫波(S波);一收集塊,用以積層由該旋轉塊送出之該等二或二以上之多層複合體,因此形成該核心層;及一流動控制單元,用以擴展由該收集塊送出之該核心層,其中該裝置更包含:一擠壓單元,且一表面層材料分別地供給至該擠壓單元;及一進給塊,係與被供給該表面層材料之該擠壓單元連通,以在包括由該旋轉塊送出之多層複合體之一結構之至少一表面上積層一表面層。 An apparatus for manufacturing a multilayer reflective polarizing plate, comprising: a core layer having one of a first component and a second component alternately stacked, and one of laminating at least one surface of the core layer a surface layer, in addition, the apparatus comprises: three or more extrusion units, and one of the first component materials and one of the second component materials and a surface layer material are respectively supplied to the three or three The above extrusion unit; a rotating block comprising a plurality of materials for receiving the first component material sent by the corresponding one of the pressing units and being sent by the corresponding one of the pressing units a slit type extrusion die of a second component material having a component supply passage of 100 or more layers, thereby forming two or two of a plurality of overlapping layer units each including the first and second components alternately stacked The above multilayer composites, and the repeating layer units of the multilayer composites have different average optical thicknesses to reflect a plurality of transverse waves (S-waves) of a desired wavelength; a collecting block for stacking the two or more multi-layered composites sent by the rotating block, thereby forming the core layer; and a flow control unit for expanding The collecting layer sends out the core layer, wherein the device further comprises: an extrusion unit, and a surface layer material is separately supplied to the pressing unit; and a feeding block is supplied to the surface layer material The pressing unit is in communication to laminate a surface layer on at least one surface including a structure of one of the multilayer composites fed from the rotating block. 一種用於製造多層反射式偏光板的裝置,且該多層反射式偏光板包括:具有交替堆疊第一組分一第二組分之一核心層,以及積層在該核心層至少一表面上之一表面層,該裝置包含:三或三以上之擠壓單元,且該等第一組分之一材料及該第二組分之一材料以及一表面層材料分別供給至該等三或三以上之擠壓單元;一旋轉塊,包含多數用以收納由該等擠壓單元中之一對應擠壓單元送出之第一組分材料及由該等擠壓單元中之一對應擠壓單元送出之第二組分材料的狹縫型擠壓模,其具有大於等於100層之組分供給通道,從而形成各包括交替堆疊之第一與第二組分之多數重覆層單元的二或二以上之多層複合體,且該等多層複合體之 該等重覆層單元具有不同平均光學厚度,以反射具有所欲波長之多數橫波(S波);一收集塊,用以積層由該旋轉塊送出之該等二或二以上之多層複合體,因此形成該核心層;及一流動控制單元,用以擴展由該收集塊送出之該核心層其中該裝置更包含:一擠壓單元,且一表面層材料分別地供給至該擠壓單元,且該擠壓模可與該收集塊連通,以在該核心層之至少一表面上積層一表面層。 An apparatus for manufacturing a multilayer reflective polarizing plate, comprising: a core layer having one of a first component and a second component alternately stacked, and one of laminating at least one surface of the core layer a surface layer, the device comprising: three or more extrusion units, and one of the first component materials and one of the second component materials and a surface layer material are respectively supplied to the three or more a rotating unit; a rotating block comprising a plurality of first component materials for receiving the corresponding one of the pressing units and a corresponding one of the pressing units a slit type extrusion die of a two-component material having a component supply passage of 100 or more layers, thereby forming two or more of a plurality of overlapping layer units each including the first and second components alternately stacked Multi-layer composite, and the multi-layer composite The re-coating units have different average optical thicknesses for reflecting a plurality of transverse waves (S-waves) having a desired wavelength; and a collecting block for laminating the two or more multi-layered composites sent by the rotating block, Forming the core layer; and a flow control unit for expanding the core layer sent by the collecting block, wherein the device further comprises: a pressing unit, and a surface layer material is separately supplied to the pressing unit, and The extrusion die can be in communication with the collection block to laminate a surface layer on at least one surface of the core layer. 如申請專利範圍第12或13項之裝置,其中該旋轉塊包含:一第一加壓單元,用以供給由以該第一組分材料供給之擠壓單元送出之第一組分材料至該等狹縫型擠壓模中之一對應狹縫型擠壓模;及一第二加壓單元,用以供給由以該第二組分材料供給之擠壓單元送出之第二組分材料至該等狹縫型擠壓模中之一對應狹縫型擠壓模。 The apparatus of claim 12 or 13, wherein the rotating block comprises: a first pressurizing unit for supplying the first component material sent from the pressing unit supplied with the first component material to the One of the slit-type extrusion dies corresponding to the slit-type extrusion die; and a second pressing unit for supplying the second component material sent from the extrusion unit supplied by the second component material to One of the slit type extrusion dies corresponds to a slit type extrusion die.
TW101151199A 2011-12-28 2012-12-28 Method and apparatus for manufacturing multilayer reflective polarizer TWI509298B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110145132A KR101354284B1 (en) 2011-12-28 2011-12-28 Manufacturing method of multilayer reflective polizer and device thereof
KR1020110145854A KR101354373B1 (en) 2011-12-29 2011-12-29 Manufacturing method of multilayer reflective polizer and device thereof
KR1020110145853A KR101354360B1 (en) 2011-12-29 2011-12-29 Manufacturing method of multilayer reflective polizer and device thereof

Publications (2)

Publication Number Publication Date
TW201333555A TW201333555A (en) 2013-08-16
TWI509298B true TWI509298B (en) 2015-11-21

Family

ID=48698006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101151199A TWI509298B (en) 2011-12-28 2012-12-28 Method and apparatus for manufacturing multilayer reflective polarizer

Country Status (2)

Country Link
TW (1) TWI509298B (en)
WO (1) WO2013100664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917121B2 (en) * 2019-06-28 2024-02-27 Interdigital Madison Patent Holdings, Sas Optical method and system for light field (LF) displays based on tunable liquid crystal (LC) diffusers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
CN101495890A (en) * 2005-08-31 2009-07-29 3M创新有限公司 Methods of producing multilayer reflective polarizer
TW201107801A (en) * 2009-04-10 2011-03-01 Konica Minolta Opto Inc Optical film, polarizing plate using same, and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2148115A1 (en) * 1992-10-29 1994-05-11 Walter J. Schrenk Formable reflective multilayer body
US20070047080A1 (en) * 2005-08-31 2007-03-01 3M Innovative Properties Company Methods of producing multilayer reflective polarizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (en) * 1997-08-19 1999-03-05 Seiko Epson Corp Polarized light separator and liquid crystal display device as well as electronic apparatus using the same
CN101495890A (en) * 2005-08-31 2009-07-29 3M创新有限公司 Methods of producing multilayer reflective polarizer
TW201107801A (en) * 2009-04-10 2011-03-01 Konica Minolta Opto Inc Optical film, polarizing plate using same, and liquid crystal display device

Also Published As

Publication number Publication date
TW201333555A (en) 2013-08-16
WO2013100664A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5200709B2 (en) Polarized reflector and method for manufacturing the same
EP2674794A2 (en) Reflective polarizer having a dispersed polymer
TWI519833B (en) Method and apparatus for manufacturing polymer-dispersed reflective polarizer
KR101354297B1 (en) Multilayer reflective polizer
TWI543865B (en) Polymer-dispersed reflective polarizer
TWI509298B (en) Method and apparatus for manufacturing multilayer reflective polarizer
TWI510823B (en) Multilayer reflective polarizer
KR101931378B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101315003B1 (en) Reflective polizer dispered polymer
KR101354360B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101340243B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
KR101354364B1 (en) Multilayer reflective polizer
KR101930960B1 (en) Integrated optical film
KR101940322B1 (en) Integrated optical film
KR101930547B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101906251B1 (en) Multilayer reflective polizer and Manufacturing method thereof
KR20140021233A (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101354284B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101940321B1 (en) Multilayer reflective polizer
KR101354373B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930552B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
KR101340107B1 (en) Reflective polizer dispered polymer
KR101930548B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101354271B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
KR101930549B1 (en) Manufacturing method of multilayer reflective polizer and device thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees