WO2011027438A1 - 脈波計測装置 - Google Patents

脈波計測装置 Download PDF

Info

Publication number
WO2011027438A1
WO2011027438A1 PCT/JP2009/065351 JP2009065351W WO2011027438A1 WO 2011027438 A1 WO2011027438 A1 WO 2011027438A1 JP 2009065351 W JP2009065351 W JP 2009065351W WO 2011027438 A1 WO2011027438 A1 WO 2011027438A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
interval
amplitude
threshold
equal
Prior art date
Application number
PCT/JP2009/065351
Other languages
English (en)
French (fr)
Inventor
琢治 鈴木
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2011529729A priority Critical patent/JPWO2011027438A1/ja
Priority to PCT/JP2009/065351 priority patent/WO2011027438A1/ja
Publication of WO2011027438A1 publication Critical patent/WO2011027438A1/ja
Priority to US13/407,002 priority patent/US20120157860A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea

Definitions

  • the present invention relates to pulse wave measurement.
  • Patent Literature 1 and Patent Literature 2 disclose devices that determine apnea from a decrease in amplitude.
  • Patent Document 3 discloses an apparatus that detects respiratory abnormalities based on a ratio of pulse wave amplitude to pulse rate.
  • Patent Documents 4 and 5 disclose devices that detect low cycle fluctuations due to apnea.
  • JP 2002-153432 A JP 2005-27937 A JP 2004-121668 A JP 2005-152328 A JP 2009-95486 A
  • the present invention has been made in view of the above, and an object of the present invention is to provide a pulse wave measuring device capable of determining an apnea event with high accuracy.
  • the present invention includes a pulse wave detection unit that detects a pulse wave of a subject, an amplitude calculation unit that calculates an amplitude of the pulse wave from the pulse wave, and the pulse An interval calculation unit for calculating a pulse wave interval from the wave, an extraction unit for extracting a respiratory fluctuation component that changes in conjunction with the breathing of the subject from the interval, and a decrease in the amplitude at a predetermined first time point Or a determination unit that determines that an apnea event has occurred when the interval has been shortened and the respiratory fluctuation component has decreased at the second time point immediately before the first time point. It is characterized by that.
  • the pulse wave measuring device has an effect that an apnea event can be determined with high accuracy.
  • the block diagram of a pulse-wave measuring apparatus Explanatory drawing of a respiratory property fluctuation
  • the flowchart which shows a pulse wave measurement process. Explanatory drawing of a pulse wave amplitude and a pulse wave space
  • a sensor that detects a pulse wave as biological information of a subject (user) calculates a pulse wave interval and detects an apnea event, and calculates the number of times per hour. Count and memorize.
  • the pulse wave measurement device 10 includes a pulse wave detection unit 100, an amplifier / filter unit 102, a gain adjustment unit 104, an A / D (analog / digital) conversion unit 106, and an analysis unit 110.
  • a storage unit 120 a display unit 122, an operation unit 124, an operating frequency switching unit 126, a communication unit 128, a battery 130, a battery voltage monitoring unit 132, and a control unit 134.
  • the analysis unit 110 includes an amplitude calculation unit 112, an interval calculation unit 114, an extraction unit 116, and a determination unit 118.
  • the pulse wave measuring device can be configured to be used by attaching it to a wrist like a wristwatch.
  • the pulse wave detector 100 measures the pulse wave on the lower surface of the pulse wave measuring device 10.
  • the pulse wave detection unit 100 includes a green LED and a photodiode, irradiates light on the skin surface of the wrist, and measures the pulse wave by capturing the fluctuation of reflected light that changes due to blood flow change in the capillary blood vessel with the photodiode. To do.
  • the amplifier / filter unit 102 amplifies and filters the pulse wave waveform measured by the pulse wave detection unit 100. Specifically, the amplifier / filter unit 102 converts an output current from the photodiode of the pulse wave detection unit 100 into a voltage with a current-voltage converter, amplifies the voltage with an amplifier, and a high-pass filter (for example, a cutoff frequency). : 0.1 Hz) and a low-pass filter (for example, cutoff frequency: 50 Hz).
  • a high-pass filter for example, a cutoff frequency. : 0.1 Hz
  • a low-pass filter for example, cutoff frequency: 50 Hz.
  • the gain adjusting unit 104 adjusts the amplification factor of the amplifier / filter unit 102 according to the measurement state. Specifically, the gain adjusting unit 104 calculates the amplitude of the pulse wave waveform input to the control unit 134, and controls the amplification factor of the amplifier / filter unit 102 from the relationship between this and the set threshold value.
  • the A / D converter 106 A / D converts the output of the pulse wave detector 100.
  • the analysis unit 110 acquires the pulse wave waveform detected by the pulse wave detection unit 100, amplified and filtered by the amplifier / filter unit 102, and then A / D converted by the A / D conversion unit 106, and analyzes this To do.
  • the amplitude calculation unit 112 of the analysis unit 110 calculates a pulse wave amplitude that is an amplitude of the pulse wave based on the pulse wave waveform.
  • the interval calculation unit 114 calculates a pulse wave interval, which is a pulse wave interval, based on the pulse wave waveform.
  • the extraction unit 116 extracts a respiratory variation component included in the pulse wave interval that changes in conjunction with the subject's breathing.
  • the value of aMSSD is calculated as the respiratory fluctuation component.
  • aMSSD calculation of aMSSD will be described. Apnea events occur at a frequency of once every several tens of seconds. For this reason, it is difficult to calculate a respiratory fluctuation component of the pulse wave interval using a conventional frequency analysis method such as conventional FFT. Therefore, in this embodiment, a time axis analysis method is used. Specifically, as shown in FIG. 2, linear regression is performed on the pulse wave intervals of the number of pulses (for example, for 4 beats) sufficiently including one cycle of respiration. Then, the root of the sum of squares of the difference between the estimated value and the observed pulse wave interval (referred to as aMSSD) is calculated. Thereby, after removing the influence of the frequency component slower than the respiratory cycle, the respiratory fluctuation component can be extracted.
  • aMSSD root of the sum of squares of the difference between the estimated value and the observed pulse wave interval
  • aMSSD is calculated by (Equation 1).
  • the first term of (Expression 1) is the observed pulse wave interval value, and the second term is the estimated pulse wave interval value.
  • the aMSSD obtained by (Equation 1) is assumed to be the respiratory fluctuation component at the time when the pulse wave interval RR (4) is obtained.
  • aMSSD obtained by (Equation 1) may be a respiratory fluctuation component at the time when the pulse wave interval RR (1) is obtained.
  • the aMSSD at a certain time may be a value calculated from a plurality of pulse wave intervals including the pulse wave interval at this time.
  • the determination unit 118 determines whether or not an apnea event has occurred based on either the pulse wave amplitude or the pulse wave interval and the respiratory fluctuation component.
  • the graph of FIG. 3 shows the time change of the measured values of the pulse rate (60 times the reciprocal of the pulse wave interval), the pulse wave amplitude, and the respiratory fluctuation component.
  • the pulse rate increases (pulse wave interval is shortened), and the pulse wave amplitude decreases.
  • the respiratory fluctuation component gradually decreases before resuming breathing, and increases as the breathing resumes.
  • the determination unit 118 shortens the pulse wave interval or decreases the pulse wave amplitude at a certain time point (hereinafter referred to as the first time point), and further immediately before that time point (hereinafter referred to as the second time point). It is determined that an apneic event has occurred when the respiratory variation component decreases in.
  • the second time point is a time point before the first time point, and the time length between the first time point and the second time point is shorter than the period of the apnea event.
  • the storage unit 120 is a storage unit that stores measurement data such as a pulse wave interval, a pulse wave amplitude, and a respiratory fluctuation component as a result of analysis by the analysis unit 110 and various data such as a threshold value described later.
  • measurement data such as a pulse wave interval, a pulse wave amplitude, and a respiratory fluctuation component as a result of analysis by the analysis unit 110 and various data such as a threshold value described later.
  • flash memory for example, flash memory.
  • the display unit 122 is a display device that displays a time, a pulse rate, a pulse wave measurement state, a battery state, a memory state, and a communication state, and can be specifically configured by an LCD (Liquid Crystal Display) or the like.
  • LCD Liquid Crystal Display
  • the operation unit 124 is an operation unit including a mode changeover switch such as a time mode and a measurement mode, or a push switch for performing a backlight lighting instruction.
  • the operating frequency switching unit 126 performs switching of the operating frequency according to the set mode. In the time mode, the power consumption is reduced by setting the minimum operating frequency necessary for time management.
  • the communication unit 128 is a communication unit that performs data communication with an external device such as a PC, a PDA terminal, and a mobile phone, and can be specifically configured by a USB or the like. As a result, for example, data for multiple days of sleep can be measured and accumulated, and the data can be stored in a hard disk on a PC in a format that can be connected to a USB port of the PC and analyzed with a predetermined analysis software. Analysis can be performed with software.
  • the battery 130 supplies power to the entire pulse wave measuring apparatus 10.
  • the battery voltage monitoring unit 132 monitors the voltage of the battery 130.
  • the control unit 134 is a control unit that controls the entire pulse wave measuring device 10, and receives requests and instructions from the subject and controls processing requests and data flow to each processing unit. Specifically, it receives a test subject's request and controls various processes relating to power ON / OFF, measurement start, and measurement.
  • the pulse wave detection unit 100 samples pulse wave data (step S101).
  • the amplitude calculator 112 specifies the maximum value and the minimum value of the pulse wave data about 1 second before and after the processing point of the series of sampled pulse wave data (Step S102).
  • the amplitude calculator 112 calculates the pulse wave amplitude from the maximum value and the minimum value. For example, as shown in the upper part of FIG. 5, the amplitude calculator 112 calculates the difference between the maximum value and the minimum value as the pulse wave amplitude (step S103). Next, an internal dividing point (for example, 3: 1) of the calculated pulse wave amplitude is calculated as a reference value (step S104).
  • the interval calculation unit 114 calculates and calculates the time that is the intersection of the pulse waveform and the reference value from the series of pulse wave data from which the DC fluctuation component has been removed.
  • the time interval between the time and the past intersection is calculated as the pulse wave interval (step S105).
  • the extraction unit 116 extracts a respiratory fluctuation component by (Equation 1) based on the pulse wave interval (step S106).
  • the pulse wave amplitude, pulse wave interval, and respiratory variation component obtained at each time point are stored in the storage unit 120 in association with the detection time point.
  • the determination unit 118 calculates a reduction rate of the pulse wave interval (step S107). Specifically, first, each of the plurality of pulse wave intervals obtained in the time window including the first time point to be processed is compared with the average interval.
  • the time window is a time range of a preset time length (hereinafter referred to as a first time range), and is set to 30 seconds, for example.
  • the average interval is an average value of a plurality of pulse wave intervals obtained in a predetermined time range before the time window (hereinafter referred to as a second time range). Note that the second time range is set to 1 minute, for example.
  • the number of pulse wave intervals is counted such that the shortening rate determined by the interval difference that is the difference between the two is equal to or greater than a preset interval threshold.
  • the interval threshold is set to 0.1, for example.
  • the number ratio of the counted pulse wave intervals to all the pulse wave intervals within the time window is calculated, and when this number ratio is equal to or greater than a preset first number threshold, it is determined that there is a pulse wave interval shortening event. to decide.
  • the first number threshold is a value indicating a ratio.
  • the pulse wave interval is shortened (the pulse rate is increased) when resuming breathing during an apneic event. Therefore, it is possible to specify the time of resumption of breathing by capturing such a shortening change in the pulse wave interval.
  • the first number threshold is a value indicating the number.
  • the number of interval differences that are greater than or equal to a predetermined interval threshold may be counted, and the presence or absence of a shortening event may be determined based on this number.
  • the presence / absence of a shortening event may be determined based on the number of pulse wave intervals exceeding the interval threshold that are continuously counted up. That is, if the number of pulse wave intervals that have continuously exceeded the interval threshold among the pulse wave intervals in the time window is equal to or greater than the first number threshold, it is determined that there is a shortening event.
  • the determination unit 118 also calculates a reduction rate of the pulse wave amplitude (step S108). Specifically, first, each of a plurality of pulse wave amplitudes obtained in the time window is compared with the average amplitude.
  • the time window is the same as the time window used in the pulse wave interval reduction ratio calculation process (step S107).
  • the average amplitude is an average value of a plurality of pulse wave amplitudes obtained in the second time range.
  • the number of pulse wave amplitudes is counted such that the phenomenon ratio determined by the amplitude difference that is the difference between the two is equal to or greater than a preset amplitude threshold value.
  • the amplitude threshold is, for example, 0.1.
  • the number ratio of counted pulse wave intervals to all pulse wave amplitudes within the time window is calculated, and when this number ratio is equal to or larger than a preset second number threshold, there is a pulse wave amplitude decrease event. to decide.
  • the second number threshold is a value indicating a ratio.
  • the first number threshold and the second number threshold may be the same value or different.
  • the pulse wave amplitude also decreases at the resumption of breathing during an apneic event, similarly to the pulse wave interval. Therefore, it is possible to specify the time when respiration is resumed by capturing such a decrease in the pulse wave amplitude.
  • the second number threshold is a value indicating the number.
  • the decrease event You may judge that there is.
  • interval threshold value and the amplitude threshold value may be determined from the standard deviation obtained by acquiring data at rest for each subject.
  • the determination unit 118 further calculates the ratio of the respiratory fluctuation component at the time immediately before the first time point (second time point) with respect to the respiratory fluctuation component at each time point (first time point) (step S109).
  • the second time point is a time point that is a predetermined time before the first time point, such as 3 seconds.
  • the respiratory fluctuation component decreases until immediately before resuming breathing at the time of an apnea event. Therefore, it is possible to identify the time when respiration is resumed by capturing the decrease change of the respiratory fluctuation component immediately before the first time point.
  • pulse wave interval reduction ratio calculation process (step S107), the pulse wave amplitude decrease ratio calculation process (step S108), and the respiratory fluctuation component ratio calculation process (step S109) are each performed independently.
  • the processing order is not limited to the embodiment.
  • the determination unit 118 determines that there is a respiration interval shortening event or a respiration amplitude decrease event (step S110, Yes)
  • the time point at which one of the events is determined is set as the first time point.
  • the reduction rate of the respiratory fluctuation component obtained in S109 is compared with a preset threshold value of the respiratory fluctuation component.
  • the decreasing rate of the respiratory fluctuation component is calculated by the following formula. For example, the threshold value of the respiratory fluctuation component is 0.1.
  • Decrease rate (average value of respiratory fluctuation component-value of respiratory fluctuation component within time window) / average value of respiratory fluctuation component (Equation 4)
  • the determination unit 118 determines that an apnea event has occurred (step S112).
  • the respiratory fluctuation component decreases immediately before resuming breathing during an apnea event. Therefore, it is possible to determine whether or not a subsequent pulse wave interval shortening event or pulse wave amplitude decreasing event is caused by an apneic event by capturing a decreasing change of the respiratory fluctuation component.
  • an apnea event occurs when there is a breathing interval shortening event or a breathing amplitude decreasing event, and there is a decrease in the proportion of respiratory fluctuation components. It was decided that it was done.
  • step S110 when it is determined in step S110 that there is neither a shortening event nor a decrease event (No in step S110), and in step S111, the decrease rate of the respiratory fluctuation component is greater than the threshold of the respiratory fluctuation component (step S111, In No), the process ends as it is.
  • the pulse wave measurement process of the pulse wave measurement device 10 is completed.
  • the number of apnea events thus obtained is counted, and when the counted number is equal to or greater than a threshold, it is determined that the patient has sleep apnea syndrome.
  • the pulse wave measuring apparatus 10 not only the shortening of the breathing interval or the reduction of the breathing amplitude that appears at the time of resuming breathing during the apnea event, but also the respiratory change that appears immediately before the resuming of breathing.
  • the presence or absence of an apnea event can be determined with high accuracy.
  • the determination unit 118 uses the first time point as a reference in order to determine a decrease in the respiratory fluctuation component immediately before resumption of breathing during an apnea event.
  • the slope corresponding to the change amount of the respiratory fluctuation component in the time range before the first time is calculated, and when the slope is smaller than a preset slope threshold such as “ ⁇ 10”, the first time It may be determined that there is a decrease in the respiratory fluctuation component immediately before.
  • the time range is, for example, a length of time that is about the time during which breathing stops continues and is set in advance.
  • the decrease in the respiratory fluctuation component may be detected from the slope of the respiratory fluctuation component in a predetermined time range immediately before the target time point.
  • the determination unit 118 performs respiration in which the value of the respiratory fluctuation component at the time immediately before the time when the pulse wave interval shortening event or the pulse wave amplitude decreasing event occurs is set in advance. When it is below the sex variation component threshold, it may be determined that there is an apneic event.
  • the presence or absence of a pulse wave interval shortening event may be determined by pattern matching.
  • a typical pulse wave interval pattern in a predetermined time range at the time of resumption of breathing at the time of an apnea event is preset in the storage unit 120 as a standard waveform (template).
  • the determination unit 118 extracts pulse wave interval data having the same time length as the time range of the template from the pulse wave interval data calculated by the interval calculation unit 114, and calculates the correlation between the two pulse wave interval data. If the correlation between the two is larger than a preset correlation threshold, it is determined that there is a pulse wave interval shortening event.
  • the presence or absence of a pulse wave amplitude decrease event may be determined by pattern matching.
  • a typical pulse wave amplitude pattern in a predetermined time range at the time of resumption of breathing at the time of an apnea event is preset in the storage unit 120 as a standard waveform (template).
  • the determination unit 118 cuts out pulse wave amplitude data having the same time length as the time range of the template from the pulse wave amplitude data obtained by the amplitude calculation unit 112, and calculates the correlation between the two pulse wave amplitude data. If the correlation between the two is larger than a preset correlation threshold, it is determined that there is a pulse wave amplitude decrease event.
  • the pulse wave measuring device 10 may make a determination by distinguishing an apnea event from a hypoventilation event.
  • apnea is a state in which breathing has completely stopped
  • hypoventilation is a state in which breathing is difficult, and can be said to be a milder symptom than apnea.
  • the determination of the presence or absence of a hypoventilation event as in the determination of the presence or absence of an apneic event, if there is a reduction in pulse wave interval or a decrease in pulse wave amplitude and a decrease in respiratory fluctuation components, It can be determined that there is an event.
  • the degree of shortening of the pulse wave interval, the decrease of the pulse wave amplitude, and the decrease of the respiratory fluctuation component are different between apnea and hypoventilation.
  • the determination unit 118 includes a first interval threshold for determining the presence or absence of an apnea event, a first amplitude threshold and a first respiratory variation component threshold, and a second interval threshold for determining the presence or absence of a hypoventilation event.
  • the second amplitude threshold value and the second respiratory fluctuation component threshold value are stored in the storage unit 120, and the apnea event and the hypoventilation event are distinguished from each other using each threshold value to determine the presence or absence of each.
  • the second interval threshold is a value smaller than the first interval threshold.
  • the second amplitude threshold is a value smaller than the second amplitude threshold.
  • the second respiratory fluctuation component threshold is a value smaller than the first respiratory fluctuation component threshold.
  • the presence or absence of an apnea event is determined using the first interval threshold, the first amplitude threshold, and the first respiratory fluctuation component threshold by the pulse wave measurement process shown in FIG.
  • the decreasing rate of the respiratory fluctuation component is If it is determined that it is smaller than the first respiratory fluctuation component threshold (No at Step S111), then using the second interval threshold, the second amplitude threshold, and the second respiratory fluctuation component threshold, Step S110, The presence or absence of a hypoventilation event is determined by the process of step S111.
  • the pulse wave measuring device 12 further includes an acceleration measurement unit 130 and simultaneously measures body movements during pulse wave measurement.
  • the acceleration measuring unit 130 measures the body movement of the subject.
  • the determination unit 118 determines that there is an apnea event when the pulse wave interval is shortened or the pulse wave amplitude is decreased, there is further body movement, and the respiratory fluctuation component is decreased. Note that the amount of body movement in this case is less than 0.1 G in order to eliminate error data, as will be described later.
  • the determination unit 118 determines that the amount of body movement during the pulse wave interval detection, the intersection detection time point, and the fixed time (for example, 0.3 seconds) is 0. If it exceeds 1G, it is determined that there is an influence due to body movement, and the detected data is determined to be an error.
  • the time average value or the maximum value of the square root of the sum of squares of the amount of change during sampling of the three-axis acceleration is defined as the amount of body movement.
  • an apnea event can be determined with higher accuracy by considering body movement.

Abstract

 脈波計測装置10は、被験者の脈波を検出する脈波検出部100と、脈波から、脈波の振幅を算出する振幅算出部112と、脈波から、脈波の間隔を算出する間隔算出部114と、間隔から、被験者の呼吸に連動して変化する呼吸性変動成分を抽出する抽出部116と、所定の第1の時点において振幅の減少又は間隔の短縮があり、かつ第1の時点の直前の第2の時点において呼吸性変動成分の減少があった場合に、無呼吸イベントが発生したと判定する判定部118と、を備える。

Description

脈波計測装置
 本発明は、脈波の計測に関する。
 従来、睡眠時無呼吸症候群を検査する各種装置が知られている。このような装置においては、呼吸停止から呼吸停止再開までを無呼吸イベントとし、無呼吸イベントの回数をカウントすることにより、睡眠時無呼吸症候群の検査を行う。例えば、特許文献1及び特許文献2には、振幅の減少から無呼吸を判定する装置が開示されている。特許文献3には、呼吸異常を脈波振幅と脈拍数の比で検知する装置が開示されている。特許文献4及び特許文献5には、無呼吸による低周期の変動を検出する装置が開示されている。
特開2002-153432号公報 特開2005-27937号公報 特開2004-121668号公報 特開2005-152328号公報 特開2009-95486号公報
 しかしながら、従来の技術においては、体動など睡眠時無呼吸症候群以外の要因に起因した被験者の反応と睡眠時無呼吸症候群に起因した反応とを区別するのは困難であった。
 本発明は、上記に鑑みてなされたものであって、高精度に無呼吸イベントの判定を行うことのできる脈波計測装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、被験者の脈波を検出する脈波検出部と、前記脈波から、脈波の振幅を算出する振幅算出部と、前記脈波から、脈波の間隔を算出する間隔算出部と、前記間隔から、被験者の呼吸に連動して変化する呼吸性変動成分を抽出する抽出部と、所定の第1の時点において前記振幅の減少又は前記間隔の短縮があり、かつ前記第1の時点の直前の第2の時点において前記呼吸性変動成分の減少があった場合に、無呼吸イベントが発生したと判定する判定部とを備えたことを特徴とする。
 本発明にかかる脈波計測装置は、高精度に無呼吸イベントの判定を行うことができるという効果を奏する。
脈波計測装置の構成図。 呼吸性変動成分算出処理の説明図。 無呼吸イベント発生時の脈拍数、脈波振幅、呼吸性変動成分を示す図。 脈波計測処理を示すフローチャート。 脈波振幅及び脈波間隔算出処理の説明図。 無呼吸イベント発生時及び低換気イベント発生時の脈拍数、脈波振幅、呼吸性変動成分を示す図。 脈波計測装置の構成図。
 以下に、本発明にかかる脈波計測装置の実施例を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
 第1の実施の形態にかかる脈波計測装置は、被験者(ユーザ)の生体情報として脈波を検出するセンサが、脈波間隔を算出するとともに無呼吸イベントを検出し、1時間毎の回数をカウントし記憶する。
 図1に示すように、脈波計測装置10は、脈波検出部100と、アンプ・フィルタ部102と、ゲイン調節部104と、A/D(アナログ/デジタル)変換部106と、解析部110と、記憶部120と、表示部122と、操作部124と、動作周波数切替部126と、通信部128と、バッテリー130と、バッテリー電圧監視部132と、制御部134とを備えている。解析部110は、振幅算出部112と、間隔算出部114と、抽出部116と、判定部118とを備えている。脈波計測装置は、例えば、腕時計状に手首に装着して使用する形状に構成されうる。
 脈波検出部100は、脈波計測装置10の下側の面で脈波の計測を行う。脈波検出部100は、緑色LEDとフォトダイオードを備え、手首の皮膚表面に光を照射し、毛細血管内の血流変化により変化する反射光の変動をフォトダイオードで捉えることで脈波を計測する。
 アンプ・フィルタ部102は、脈波検出部100により計測された脈波波形の増幅及びフィルタを行う。具体的には、アンプ・フィルタ部102は、脈波検出部100のフォトダイオードからの出力電流を電流電圧変換器で電圧に変換し、増幅器で電圧を増幅して、ハイパスフィルタ(例えばカットオフ周波数:0.1Hz)とローパスフィルタ(例えばカットオフ周波数:50Hz)を実施する。
 ゲイン調節部104は、計測状態に応じてアンプ・フィルタ部102の増幅率を調節する。具体的には、ゲイン調節部104は、制御部134に入力された脈波波形の振幅を算出し、これと設定した閾値との関係からアンプ・フィルタ部102の増幅率を制御する。A/D変換部106は、脈波検出部100の出力をA/D変換する。
 解析部110は、脈波検出部100で検出され、アンプ・フィルタ部102で増幅及びフィルタされた後、A/D変換部106でA/D変換された脈波波形を取得し、これを解析する。解析部110の振幅算出部112は、脈波波形に基づいて、脈波の振幅である脈波振幅を算出する。間隔算出部114は、脈波波形に基づいて、脈波の間隔である脈波間隔を算出する。
 抽出部116は、脈波間隔に含まれる、被験者の呼吸に連動して変化する呼吸性変動成分を抽出する。本実施の形態においては、呼吸性変動成分としてaMSSDの値を算出する。
 ここで、aMSSDの算出について説明する。無呼吸イベントは、数十秒に1回の頻度で発生する。このため、従来の一般的なFFTなどの周波数解析の手法を用いて脈波間隔の呼吸性変動成分を算出することは難しい。そこで、本実施の形態においては、時間軸解析の手法を用いることとする。具体的には、図2に示すように、呼吸の1周期を十分に含む脈拍の個数(例えば4拍分)の脈波間隔について直線回帰を行う。そして、推定した値と、観測した脈波間隔の差の二乗和のルート(aMSSDと呼ぶ)を計算する。これにより呼吸周期より遅い周波数成分の影響を除去した上で、呼吸性変動成分を抽出することができる。さらにこの計算を一拍ごとに行うことで、時間軸での細かい変動も把握することが可能となる。具体的には、(式1)によりaMSSDを算出する。(式1)の第1項は観測した脈波間隔値、第2項は推定した脈波間隔値である。
Figure JPOXMLDOC01-appb-M000001
 なお、本実施の形態においては、(式1)により得られるaMSSDを、脈波間隔RR(4)が得られた時点における呼吸性変動成分とすることとする。なお、他の例としては、(式1)により得られるaMSSDを脈波間隔RR(1)が得られた時点における呼吸性変動成分としてもよい。このように、ある時点におけるaMSSDは、この時点の脈波間隔を含む複数の脈波間隔により算出される値であればよい。
 判定部118は、脈波振幅、脈波間隔のうちいずれか一方と、呼吸性変動成分とに基づいて、無呼吸イベント発生の有無を判定する。図3のグラフは、脈拍数(脈波間隔の逆数の60倍)、脈波振幅、及び呼吸性変動成分の実測値の時間変化を示している。このように、無呼吸イベント(呼吸再開)時に、脈拍数が上昇(脈波間隔の短縮)し、脈波振幅が減少する。また、呼吸性変動成分は、呼吸再開前に徐々に低下し、呼吸再開と共にその値が大きくなる。
 そこで、判定部118は、ある時点(以下、第1の時点と称する)において脈波間隔が短縮し、又は脈波振幅が減少し、さらにその直前の時点(以下、第2の時点と称する)において呼吸性変動成分が減少した場合に、無呼吸イベントが発生したと判定する。なお、第2の時点は、第1の時点よりも前の時点であり、第1の時点と第2の時点の間の時間長は、無呼吸イベントの周期に比べて短い。
 記憶部120は、解析部110が解析した結果としての脈波間隔、脈波振幅及び呼吸性変動成分などの計測データ及び後述の閾値など各種データを記憶する記憶部であり、具体的には、フラッシュメモリなどである。
 表示部122は、時刻、脈拍数、脈波計測状態、バッテリー状態、メモリ状態、通信状態を表示する表示装置であり、具体的には、LCD(Liquid Crystal Display)などにより構成することができる。
 操作部124は、時刻モード、計測モードなどのモード切り替えスイッチ、又はバックライト点灯指示を行うためのプッシュスイッチなどを備えた操作部である。動作周波数切替部126は、設定されたモードに応じて動作周波数の切替えを行うものである。時刻モードの時には時刻管理に必要最小限の動作周波数にして消費電力を低減する。
 通信部128は、PC、PDA端末、及び携帯電話などの外部装置とデータ通信を行う通信部であり、具体的には、USBなどにより構成することができる。これにより、例えば、複数日の睡眠時のデータを計測して蓄積し、PCのUSBポートに接続して所定の解析ソフトウェア上で解析可能な形式でデータをPC上のハードディスクなどに保存し、解析ソフトで解析を行うことが可能となる。バッテリー130は、脈波計測装置10全体の電源供給を行うものである。バッテリー電圧監視部132は、バッテリー130の電圧を監視するものである。
 制御部134は、脈波計測装置10全体を制御する制御部であり、被験者の要求及び指示を受け付けて各処理部に対する処理要求及びデータの流れを制御する。具体的には、被験者の要求を受け付けて電源のON/OFF、計測開始及び計測に関する各種処理などを制御する。
 次に、脈波計測装置10の脈波計測処理を説明する。図4に示すように、まず、脈波検出部100は、脈波データをサンプリングする(ステップS101)。次に、振幅算出部112は、サンプリングした一連の脈波データの処理ポイントを中心とした前後約1秒の脈波データの最大値と最小値を特定する(ステップS102)。
 次に、振幅算出部112は、最大値と最小値とから脈波振幅を算出する。例えば、図5の上段に示すように、振幅算出部112は、最大値と最小値との差を脈波振幅として算出する(ステップS103)。次に、算出した脈波振幅の内分点(例えば3:1)を基準値として算出する(ステップS104)。
 次に、図5の下段に示すように、間隔算出部114は、直流変動成分を除去された一連の脈波データから、脈波波形と基準値との交点となる時刻を算出し、算出した時刻と過去の交点との時間間隔を脈波間隔として算出する(ステップS105)。
 さらに、抽出部116は、脈波間隔に基づいて、(式1)により呼吸性変動成分を抽出する(ステップS106)。こうして得られた各時点における脈波振幅、脈波間隔及び呼吸性変動成分は、検出時点に対応付けて記憶部120に記憶される。
 次に、判定部118は、脈波間隔の短縮割合を算出する(ステップS107)。具体的には、まず、処理対象となる第1の時点を含む時間窓において得られた複数の脈波間隔のそれぞれと、平均間隔とを比較する。ここで、時間窓は、予め設定された時間長の時間範囲(以下、第1時間範囲と称する)であり、例えば30秒に設定される。平均間隔は、時間窓以前の所定の時間範囲(以下、第2時間範囲と称する)において得られた複数の脈波間隔の平均値である。なお、第2時間範囲は、例えば1分に設定される。
 そして、両者の差分である間隔差分により定まる短縮割合が予め設定された間隔閾値以上となるような脈波間隔の個数をカウントする。ここで、間隔閾値は例えば、0.1とする。短縮割合は、(式2)により得られる。
短縮割合=(平均間隔-時間窓内の脈波間隔)/平均間隔・・・(式2)
 時間窓内のすべての脈波間隔に対する、カウントされた脈波間隔の個数割合を算出し、この個数割合が予め設定された第1個数閾値以上である場合に、脈波間隔の短縮イベントありと判断する。なお、第1個数閾値は、割合を示す値である。
 上述のように、脈波間隔は、無呼吸イベント時の呼吸再開時に短縮(脈拍数としては上昇)することが知られている。そこで、このような脈波間隔の短縮変化を捉えることにより、呼吸再開時を特定することができる。
 なお、他の例としては、個数割合ではなく、カウントされた脈波間隔の個数が、第1個数閾値以上である場合に、脈波間隔の短縮イベントありと判断してもよい。なお、この場合の第1個数閾値は個数を示す値である。
 また、他の例としては、短縮割合ではなく、間隔差分が所定の間隔閾値以上である個数をカウントし、この個数に基づいて、短縮イベントの有無を判断してもよい。
 また、他の例としては、間隔閾値を越えた脈波間隔の個数が連続してカウントアップされる個数に基づいて短縮イベントの有無を判断してもよい。すなわち、時間窓内の脈波間隔のうち間隔閾値を連続して越えた脈波間隔の個数が第1個数閾値以上である場合に、短縮イベントありと判断する。
 判定部118はまた、脈波振幅の減少割合を算出する(ステップS108)。具体的には、まず時間窓において得られた複数の脈波振幅のそれぞれと、平均振幅とを比較する。ここで、時間窓は、脈波間隔の短縮割合算出処理(ステップS107)において用いた時間窓と同様である。また、平均振幅は、第2時間範囲において得られた複数の脈波振幅の平均値である。
 そして、両者の差分である振幅差分により定まる現象割合が予め設定された振幅閾値以上となるような脈波振幅の個数をカウントする。ここで、振幅閾値は、例えば0.1とする。減少割合は、(式3)により得られる。
減少割合=(平均振幅-時間窓内の脈波振幅)/平均振幅・・・(式3)
 時間窓内のすべての脈波振幅に対する、カウントされた脈波間隔の個数割合を算出し、この個数割合が予め設定された第2個数閾値以上である場合に、脈波振幅の減少イベントありと判断する。なお、第2個数閾値は、割合を示す値である。第1個数閾値と第2個数閾値は同一値であってもよく、異なっていてもよい。
 上述のように、脈波振幅も脈波間隔と同様に、無呼吸イベント時の呼吸再開時に減少することが知られている。そこで、このような脈波振幅の減少変化を捉えることにより、呼吸再開時を特定することができる。
 なお、他の例としては個数割合ではなく、カウントされた脈波振幅の個数が、第2個数閾値以上である場合に、脈波振幅の減少イベントありと判断してもよい。なお、この場合の第2個数閾値は、個数を示す値である。
 また、他の例としては、減少割合ではなく、振幅差分が所定の振幅閾値以上である個数をカウントし、この個数に基づいて、減少イベントの有無を判断してもよい。
 また、他の例としては、脈波間隔と同様に、時間窓内の脈波振幅のうち振幅閾値を連続して越えた脈波振幅の個数が第2個数閾値以上である場合に、減少イベントありと判断してもよい。
 なお、間隔閾値及び振幅閾値は、被験者毎に安静定常時のデータを取得しこれの標準偏差から決定してもよい。
 判定部118はさらに、各時点(第1の時点)における呼吸性変動成分に対する、第1の時点直前の時点(第2の時点)における呼吸性変動成分の割合を算出する(ステップS109)。ここで、第2の時点は、第1の時点より例えば3秒など所定時間前の時点である。
 上述のように、呼吸性変動成分は、無呼吸イベント時の呼吸再開直前まで減少することが知られている。そこで、このような、第1の時点の直前における呼吸性変動成分の減少変化を捉えることにより、呼吸再開時を特定することができる。
 なお、脈波間隔短縮割合算出処理(ステップS107)、脈波振幅減少割合算出処理(ステップS108)及び呼吸性変動成分の割合算出処理(ステップS109)は、それぞれ独立して行われる処理であり、その処理順番は実施の形態に限定されるものではない。
 次に、判定部118は、呼吸間隔の短縮イベント又は呼吸振幅の減少イベントありと判断した場合には(ステップS110,Yes)、いずれかのイベントありと判断された時点を第1の時点としてステップS109において得られた呼吸性変動成分の減少割合と予め設定された呼吸変動成分の閾値と比較する。呼吸性変動成分の減少割合は、以下の式で計算される。呼吸性変動成分の閾値は例えば0.1とする。
減少割合=(呼吸性変動成分の平均値-時間窓内の呼吸性変動成分の値)/呼吸性変動成分の平均値・・・(式4)
ステップS109において得られた呼吸性変動成分の減少割合が呼吸変動成分の閾値以上場合、すなわち第1の時点直前に呼吸性変動成分の減少が現れた場合には(ステップS111,Yes)、判定部118は、無呼吸イベントが発生したと判定する(ステップS112)。
 上述のように、呼吸性変動成分は、無呼吸イベント時の呼吸再開時の直前に減少することが知られている。そこで呼吸性変動成分の減少変化を捉えることにより、その後の脈波間隔の短縮イベント又は脈波振幅の減少イベントが無呼吸イベントに起因したものか否かを判定することができる。
 無呼吸イベント時の呼吸再開時と推定されるの時点(第1の時点)の呼吸性変動成分に対する、直前の時点(第2の時点)の呼吸性変動成分の割合が小さい場合には、呼吸再開直前の呼吸性変動成分の減少が現れていると考えられる。そこで、本実施の形態にかかる脈波計測装置10においては、呼吸間隔の短縮イベント又は呼吸振幅の減少イベントがあり、かつ呼吸性変動成分の割合の減少があった場合に、無呼吸イベントが発生したと判定することとした。
 一方、ステップS110において短縮イベント及び減少イベントのいずれもないと判断された場合(ステップS110,No)、及びステップS111において呼吸性変動成分の減少割合が呼吸変動成分の閾値より大きい場合(ステップS111,No)には、そのまま処理が終了する。以上で、脈波計測装置10の脈波計測処理が完了する。こうして得られた無呼吸イベントの回数がカウントされ、カウントされた回数が閾値以上となった場合に、睡眠時無呼吸症候群であると判定される。
 以上のように、実施の形態にかかる脈波計測装置10によれば、無呼吸イベント時の呼吸再開時に現れる呼吸間隔の短縮又は呼吸振幅の減少だけではなく、呼吸再開の直前に現れる呼吸性変動成分の減少も考慮することにより、高精度に無呼吸イベントの有無を判定することができる。
 なお、第1の実施の形態の第1の変更例としては、無呼吸イベント時の呼吸再開直前の呼吸性変動成分の減少を判断するために、判定部118は、第1の時点を基準とし、第1の時点より前の時間範囲における呼吸性変動成分の変化量に相当する傾きを算出し、この傾きが「-10」など予め設定された傾き閾値よりも小さい場合に、第1の時点の直前において呼吸性変動成分の減少があったと判断してもよい。なお、時間範囲は例えば、呼吸停止が継続する時間程度の時間長であり、予め設定される。このように、対象となる時点の直前の所定の時間範囲における呼吸性変動成分の傾きから呼吸性変動成分の減少を検出してもよい。
 また、第2の変更例としては、判定部118は、脈波間隔の短縮イベント又は脈波振幅の減少イベントがあった時点の直前の時点における呼吸性変動成分の値が予め設定されている呼吸性変動成分閾値以下である場合に、無呼吸イベントありと判定してもよい。
 第3の変更例としては、パターンマッチングにより脈波間隔の短縮イベントの有無を判断してもよい。具体的には、記憶部120に無呼吸イベント時の呼吸再開時の所定の時間範囲の典型的な脈波間隔のパターンを標準波形(テンプレート)として予め設定しておく。判定部118は、間隔算出部114により算出された脈波間隔データからテンプレートの時間範囲と同一時間長の脈波間隔データを切り出し、両脈波間隔データの相関を算出する。そして、両者の相関が予め設定された相関閾値よりも大きい場合に、脈波間隔の短縮イベントありと判断する。
 第4の変更例としては、第3の変更例と同様に、パターンマッチングにより脈波振幅の減少イベントの有無を判断してもよい。具体的には、記憶部120に無呼吸イベント時の呼吸再開時の所定の時間範囲の典型的な脈波振幅のパターンを標準波形(テンプレート)として予め設定しておく。判定部118は、振幅算出部112により得られた脈波振幅データからテンプレートの時間範囲と同一時間長の脈波振幅データを切り出し、両脈波振幅データの相関を算出する。そして、両者の相関が予め設定された相関閾値よりも大きい場合に、脈波振幅の減少イベントありと判断する。
 第5の変更例としては、脈波計測装置10は、無呼吸イベントと低換気イベントとを区別して判定してもよい。ここで、無呼吸は完全に呼吸が止まった状態であるのに対し、低換気は呼吸がしにくい状態であり、無呼吸よりは軽い症状といえる。低換気イベントの有無の判定においても、無呼吸イベントの有無の判定と同様に、脈波間隔の短縮又は脈波振幅の減少があり、かつ呼吸性変動成分の減少があった場合に、低換気イベントありと判定することができる。ただし、図6に示すように、無呼吸と低換気では、上述の脈波間隔の短縮、脈波振幅の減少及び呼吸性変動成分の減少の程度はそれぞれ異なっている。
 そこで、判定部118は、無呼吸イベントの有無を判定するための第1間隔閾値、第1振幅閾値及び第1呼吸性変動成分閾値と、低換気イベントの有無を判定するための第2間隔閾値、第2振幅閾値及び第2呼吸性変動成分閾値とをそれぞれ記憶部120に記憶しておき、各閾値を用いて、無呼吸イベントと低換気イベントとを区別してそれぞれの有無を判定する。なお、第2間隔閾値は、第1間隔閾値よりも小さい値である。第2振幅閾値は、第2振幅閾値よりも小さい値である。第2呼吸性変動成分閾値は、第1呼吸性変動成分閾値よりも小さい値である。
 具体的には、まず、図4に示した脈波計測処理により、第1間隔閾値、第1振幅閾値及び第1呼吸性変動成分閾値を用いて、無呼吸イベントの有無を判定する。そして、無呼吸イベント無しと判定された場合、すなわちステップS110において、短縮イベントも減少イベントもないと判断された場合(ステップS110,No)、又は、ステップS111において、呼吸性変動成分の減少割合が第1呼吸性変動成分閾値よりも小さいと判断された場合(ステップS111,No)には、続いて第2間隔閾値、第2振幅閾値及び第2呼吸性変動成分閾値を用いて、ステップS110、ステップS111の処理により低換気イベントの有無を判定する。
 次に、第2の実施の形態にかかる脈波計測装置12について説明する。脈波計測装置12は、図7に示すように、加速度計測部130をさらに備え、脈波計測時の体動を同時計測する。加速度計測部130は、被験者の体動を計測する。
 脈波間隔短縮、脈波振幅減少の際に体動があれば、この体動を呼吸再開に伴う反応と考えることができる。そこで、体動の計測結果を考慮することにより、無呼吸イベント有無の判定精度を向上させることができる。具体的には、判定部118は、脈波間隔の短縮また脈波振幅の減少があり、さらに体動があり、呼吸性変動成分が減少している場合に、無呼吸イベントありと判定する。なお、この場合の体動量は、後述の通り、エラーデータを排除すべく0.1G未満とする。
 体動量が大きい場合には、脈波間隔の検出精度が大きく低下してしまう。そこで、比較的大きい体動が検出された場合には、この間の脈波間隔を削除して、ステップS107以降の処理を行なうこととする。具体的には、判定部118は、脈波間隔、脈波振幅の検出後、脈波間隔検出時、交点検出時点及びその一定時間(例えば0.3秒)の間の体動量が、0.1Gを越えた場合に体動による影響があったと判断し、検出データをエラーと判断する。なお、ここで、3軸加速度のサンプリング間の変化量の二乗和の平方根の時間平均値又は最大値を体動量とする。
 以上のように、脈波計測装置12によれば、体動を考慮することにより、より高精度に無呼吸イベントの判定を行うことができる。
 10 脈波計測装置
 100 脈波検出部
 112 振幅算出部
 114 間隔算出部
 116 抽出部
 118 判定部

Claims (5)

  1.  被験者の脈波を検出する脈波検出部と、
     前記脈波の振幅を算出する振幅算出部と、
     前記脈波の間隔を算出する間隔算出部と、
     前記間隔から、被験者の呼吸に連動して変化する呼吸性変動成分を抽出する抽出部と、
     第1の時点において前記振幅の減少又は前記間隔の短縮があり、かつ前記第1の時点の直前の第2の時点において前記呼吸性変動成分の減少があった場合に、無呼吸イベントが発生したと判定する判定部と
    を備えたことを特徴とする脈波計測装置。
  2.  前記判定部は、前記第1の時点の前記呼吸性変動成分に対する、前記第2の時点の前記呼吸性変動成分の減少割合が予め設定された呼吸性変動成分閾値以上である場合に、前記第2の時点の前記呼吸性変動成分が減少したと判断することを特徴とする請求項1に記載の脈波計測装置。
  3.  前記判定部は、前記第1の時点を含む第1時間範囲内の複数の前記間隔のそれぞれと、前記第1時間範囲より前の第2時間範囲内の複数の前記間隔の平均間隔とを比較し、前記平均間隔との間隔差分が予め設定された間隔閾値以上の前記間隔の個数が予め設定された第1個数閾値以上である場合に、前記間隔の短縮と判断することを特徴とする請求項2に記載の脈波計測装置。
  4.  前記判定部は、前記第1時間範囲内の複数の前記振幅のそれぞれと、前記第2時間範囲内の複数の前記振幅の平均振幅とを比較し、前記平均振幅との振幅差分が予め設定された振幅閾値以上である前記振幅の個数が予め設定された第2個数閾値以上である場合に前記振幅の減少と判断することを特徴とする請求項3に記載の脈波計測装置。
  5.  前記判定部は、前記間隔差分が第1間隔閾値以上である前記間隔の個数が前記第1個数閾値以上である場合又は前記振幅差分が第1振幅閾値以上である前記振幅の個数が前記第2個数以上である場合であって、かつ前記呼吸性変動成分の割合が第1呼吸性変動成分閾値以上である場合に、前記無呼吸イベントが発生したと判定し、前記無呼吸イベントが発生したと判定されない場合であって、前記間隔差分が前記第1間隔閾値よりも小さい第2間隔閾値以上である前記間隔の個数が前記第1個数閾値以上である場合又は前記振幅差分が前記第1振幅閾値よりも小さい第2振幅閾値以上である前記振幅の個数が前記第2個数閾値以上である場合であって、かつ前記呼吸性変動成分の割合が前記第1呼吸性変動成分閾値よりも小さい第2呼吸性変動成分閾値以上である場合である場合に、低換気イベントが発生していると判定することを特徴とする請求項4に記載の脈波計測装置。
PCT/JP2009/065351 2009-09-02 2009-09-02 脈波計測装置 WO2011027438A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011529729A JPWO2011027438A1 (ja) 2009-09-02 2009-09-02 脈波計測装置
PCT/JP2009/065351 WO2011027438A1 (ja) 2009-09-02 2009-09-02 脈波計測装置
US13/407,002 US20120157860A1 (en) 2009-09-02 2012-02-28 Pulse measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065351 WO2011027438A1 (ja) 2009-09-02 2009-09-02 脈波計測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/407,002 Continuation US20120157860A1 (en) 2009-09-02 2012-02-28 Pulse measuring device and method

Publications (1)

Publication Number Publication Date
WO2011027438A1 true WO2011027438A1 (ja) 2011-03-10

Family

ID=43649000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065351 WO2011027438A1 (ja) 2009-09-02 2009-09-02 脈波計測装置

Country Status (3)

Country Link
US (1) US20120157860A1 (ja)
JP (1) JPWO2011027438A1 (ja)
WO (1) WO2011027438A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516597A (ja) * 2014-06-06 2017-06-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対象の無呼吸を検出するための装置、システム及び方法
JP2020503933A (ja) * 2017-01-04 2020-02-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者の脈圧変動を決定するための装置、システムおよび方法
JP2020092907A (ja) * 2018-12-13 2020-06-18 ユニオンツール株式会社 無呼吸状態検出システム及び安眠提供システム
JP2020168214A (ja) * 2019-04-03 2020-10-15 帝人株式会社 睡眠状態表示方法及び睡眠状態表示プログラム
JP2020168215A (ja) * 2019-04-03 2020-10-15 帝人株式会社 睡眠状態推定装置、睡眠状態推定方法及び睡眠状態推定プログラム
JP2021023462A (ja) * 2019-08-01 2021-02-22 エーエムイー株式会社 無呼吸状態検出装置、無呼吸状態回避システム、無呼吸状態検出方法及び無呼吸状態検出装置の作動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413574B2 (ja) * 2014-10-01 2018-10-31 セイコーエプソン株式会社 活動状態情報検出装置及び活動状態情報検出装置の制御方法
WO2018167901A1 (ja) * 2017-03-16 2018-09-20 ヤマハ株式会社 ヘッドフォン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000559A (ja) * 2001-06-21 2003-01-07 Fukuda Denshi Co Ltd 生体情報記録装置及び生体情報記録方法
JP2004121668A (ja) * 2002-10-04 2004-04-22 Denso Corp 呼吸異常検出装置及び測定装置並びに呼吸異常検出方法
JP2008006005A (ja) * 2006-06-28 2008-01-17 Toshiba Corp 生体情報計測装置、生体情報計測方法および生体情報計測プログラム
JP2008237574A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 自律神経指標を計測する装置、方法および生体情報を検出する装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000559A (ja) * 2001-06-21 2003-01-07 Fukuda Denshi Co Ltd 生体情報記録装置及び生体情報記録方法
JP2004121668A (ja) * 2002-10-04 2004-04-22 Denso Corp 呼吸異常検出装置及び測定装置並びに呼吸異常検出方法
JP2008006005A (ja) * 2006-06-28 2008-01-17 Toshiba Corp 生体情報計測装置、生体情報計測方法および生体情報計測プログラム
JP2008237574A (ja) * 2007-03-27 2008-10-09 Toshiba Corp 自律神経指標を計測する装置、方法および生体情報を検出する装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIKO OHISA ET AL.: "''Heisokugata Suiminji Mukokyu Teikokyu Shokogun no Jiritsu Shinkei Katsudo'', Jiritsu Shinkei", JAPAN SOCIETY OF NEUROVEGETATIVE RESEARCH, vol. 44, no. 6, 15 December 2007 (2007-12-15), pages 393 - 399 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017516597A (ja) * 2014-06-06 2017-06-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対象の無呼吸を検出するための装置、システム及び方法
JP2020503933A (ja) * 2017-01-04 2020-02-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被験者の脈圧変動を決定するための装置、システムおよび方法
JP2020092907A (ja) * 2018-12-13 2020-06-18 ユニオンツール株式会社 無呼吸状態検出システム及び安眠提供システム
JP7112323B2 (ja) 2018-12-13 2022-08-03 ユニオンツール株式会社 無呼吸状態検出システム及び安眠提供システム
JP2020168214A (ja) * 2019-04-03 2020-10-15 帝人株式会社 睡眠状態表示方法及び睡眠状態表示プログラム
JP2020168215A (ja) * 2019-04-03 2020-10-15 帝人株式会社 睡眠状態推定装置、睡眠状態推定方法及び睡眠状態推定プログラム
JP7288334B2 (ja) 2019-04-03 2023-06-07 帝人株式会社 睡眠状態推定装置、睡眠状態推定装置の作動方法及び睡眠状態推定プログラム
JP7288333B2 (ja) 2019-04-03 2023-06-07 帝人株式会社 睡眠状態表示装置の作動方法及び睡眠状態表示プログラム
JP2021023462A (ja) * 2019-08-01 2021-02-22 エーエムイー株式会社 無呼吸状態検出装置、無呼吸状態回避システム、無呼吸状態検出方法及び無呼吸状態検出装置の作動方法

Also Published As

Publication number Publication date
JPWO2011027438A1 (ja) 2013-01-31
US20120157860A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2011027438A1 (ja) 脈波計測装置
US8608663B2 (en) Pulse wave period measuring apparatus, pulse wave period measuring method, heartbeat period measuring method, and recording medium
JP5336803B2 (ja) 脈波計測装置
US7608046B2 (en) Apparatus for and method of biotic sleep state determining
US7429247B2 (en) Sleep state estimating device and program product
US8292819B2 (en) Sleep analysis system and method for analyzing sleep thereof
JP4469746B2 (ja) 心拍計測装置及び心拍計測装置の作動方法
US9402551B2 (en) Pulse detector with unworn-state detection
US20060189855A1 (en) Device for detecting a sleeping state judging device, method of detecting a sleeping state judging method, and computer program product
US20020143261A1 (en) Apparatus and method for electronically predicting pleural pressure from pulse wave signals
WO2016107217A1 (zh) 一种睡眠监控方法及终端
JP2014171589A (ja) 心房細動解析装置およびプログラム
WO2016104538A1 (ja) 呼吸状態推定装置、携帯機器、装着型デバイス、プログラム、媒体、呼吸状態推定方法及び呼吸状態推定器
US20200008690A1 (en) Blood pressure data processing apparatus, blood pressure data processing method, and program
KR101276973B1 (ko) 맥박수 측정 방법 및 장치
CN112244794A (zh) 基于周期性特征的生命体征检测方法、装置和存储介质
JP2014042547A (ja) 心房細動判定装置、心房細動判定方法およびプログラム
KR102312548B1 (ko) 생체 정보 측정 데이터의 노이즈 처리 방법
WO2018072195A1 (zh) 血压检测信号采样补偿方法和装置以及血压信号采集系统
US8463372B2 (en) Method and apparatus for monitoring a sedated patient
US20220054024A1 (en) Sphygmomanometer, method for controlling sphygmomanometer, and method for detecting effective pulse wave
JP3781956B2 (ja) 脈波検出装置
JP2012095795A (ja) 脈波解析法
CN113080891B (zh) 基于人体微动信号的呼吸率和心率的提取方法
Shoji et al. Robust R-Wave Detection Under Long-Term Measurement Using HRV Sensor System with Automatic Gain Readjustment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529729

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848969

Country of ref document: EP

Kind code of ref document: A1