WO2011026412A1 - 一种可置换局部反射面的抛物面镜聚光系统 - Google Patents

一种可置换局部反射面的抛物面镜聚光系统 Download PDF

Info

Publication number
WO2011026412A1
WO2011026412A1 PCT/CN2010/076461 CN2010076461W WO2011026412A1 WO 2011026412 A1 WO2011026412 A1 WO 2011026412A1 CN 2010076461 W CN2010076461 W CN 2010076461W WO 2011026412 A1 WO2011026412 A1 WO 2011026412A1
Authority
WO
WIPO (PCT)
Prior art keywords
parabolic mirror
parabolic
mirror
light
focus
Prior art date
Application number
PCT/CN2010/076461
Other languages
English (en)
French (fr)
Inventor
黄建文
Original Assignee
Huang Chien-Wen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Chien-Wen filed Critical Huang Chien-Wen
Publication of WO2011026412A1 publication Critical patent/WO2011026412A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture

Definitions

  • Parabolic mirror concentrating system capable of replacing partial reflection surface
  • the invention relates to a light energy convergence system, in particular to a double parabolic mirror concentrating system, wherein a part of the mirror surface adopts a replaceable structure design, thereby making it convenient for processing, reducing maintenance cost and output.
  • the light energy convergence system with many advantages such as adjustable light intensity belongs to the field of optical equipment technology. Background technique
  • a parabola is a type of conic curve that mathematically refers to a set of points on a plane that are equidistant from a fixed point F and a fixed line 1.
  • the fixed point F is the focus of the parabola
  • the fixed line 1 is the guide line of the parabola.
  • a line on the plane is perpendicular to the alignment 1 and passes through the focal point F, referred to as the axis. This axis is the axis of symmetry of the parabola. The intersection of the parabola and the axis is called the apex.
  • any light parallel to the parabolic axis will illuminate the concave reflecting surface of the mirror.
  • the reflected light converges on the focus of the parabola.
  • the convex surface of the mirror is a parabolic reflecting surface
  • any light parallel to the parabolic axis illuminates the convex reflecting surface of the mirror, and the reflected line of the light is opposite to the line connecting the parabolic focus and the reflecting point. Disperse in the direction of the extension line.
  • any light that is directed in the direction of the focal point of the convex reflecting surface will be reflected by the convex parabolic reflecting surface, and the reflected light will be parallel to the parabolic reflecting surface.
  • the light reflecting characteristic of the above parabolic reflecting surface can be used to design a device for collecting light.
  • the device is characterized by: comprising two parabolic mirrors, wherein the reflecting surface of the first parabolic mirror is a concave or convex parabolic reflecting surface.
  • the reflective surface of the second parabolic mirror is a concave parabolic reflecting surface; the focal length of the second parabolic mirror is greater than the focal length of the first parabolic mirror; the geometrical size of the second parabolic mirror is greater than the first parabolic mirror The geometrical dimensions; the focal points of the two parabolic mirrors coincide with a common focus, the axes of the two parabolic mirrors coincide with a common axis; the second parabolic mirror has a through hole at the apex thereof.
  • the above-mentioned concentrating device may generate a higher temperature at the apex of the two parabolic mirrors due to the concentrated reflection of the light, and the optical coating on the reflecting surface is relatively easy to be damaged, and the underlying material is also relatively easy because of the temperature difference. And the deformation.
  • the size of the parabolic mirror is large, if the entire parabolic mirror is replaced due to damage to the optical coating at the vertex for the above reasons, the maintenance cost is large.
  • Parabolic mirrors are aspherical surfaces. Softer non-ferrous metals such as copper or aluminum alloy are often used in manufacturing. If the size of the second parabolic mirror is large, the precision of the processing dimensions is ensured during the process. The surface accuracy of the reflecting surface, the mirror must maintain a thickness. In this case, if a finer through hole is to be formed at the apex of a thicker parabolic mirror, a very small diameter drill bit must be used. The slenderness ratio of such a small drill is usually about 1 7 ⁇ , assuming that the diameter of the through hole is 0. 05mm, the through hole depth should be within 0.35mm; if the through hole is processed by laser perforation, the surface accuracy of the reflective surface around the through hole will be A large number of reductions must be made by grinding or other methods of secondary processing.
  • the diameter of the light beam and the energy density of the light beam finally emitted from the through hole at the apex of the second parabolic mirror are related to the size of the through hole;
  • the beam emitted by the beam has a larger diameter and a lower energy density; if the diameter of the through hole is smaller, the beam diameter is smaller and the energy density is larger. Therefore, when light is collected by the above-mentioned concentrating means, if a light beam of a different diameter or energy density is to be obtained, the entire second parabolic mirror must be replaced.
  • Another foreseeable problem is: at the apex of the first and second parabolic mirrors, since the concentration of the light height necessarily causes the temperature of the reflecting surface to be higher, it is conceivable to use different materials to create a partial reflecting surface. .
  • the first and second parabolic mirrors may also use different optical coatings to enhance the reflection effect, or to filter light in a specific wavelength range of light;
  • the first and second parabolic mirrors must be made entirely of different optical coatings; as a result, the cost will become very large.
  • the processing of fine through holes at the apex of the second parabolic mirror is difficult,
  • the processing precision is not easy to maintain, the maintenance cost is high, the apex of the two parabolic mirrors is prone to local high temperature damage, the optical coating on the reflective surface, the local temperature deformation at the apex, the output light thickness and the energy density cannot be adjusted; It is necessary to solve all the problems in the above concentrating technology with an innovative concept.
  • the main object of the present invention is to solve the problems in the prior art, and to provide a double parabolic mirror concentrating system, wherein a part of the mirror surface adopts a replaceable structure design, thereby making it easy to process and reduce.
  • Light energy convergence system with many advantages such as maintenance cost and adjustable output light intensity.
  • a parabolic mirror concentrating system capable of replacing a partial reflecting surface, comprising: a first parabolic mirror, a second parabolic mirror and a third parabolic mirror;
  • the first parabolic mirror may be a parabolic concave mirror or a parabolic convex mirror; the second parabolic mirror and the third parabolic mirror are parabolic concave mirrors; the reflective surface of the first parabolic mirror and the second parabolic mirror and the first The reflecting surfaces of the three parabolic mirrors are oppositely disposed; the focal points of the first parabolic mirror, the second parabolic mirror and the third parabolic mirror are coincident, the coincident focus is a common focus; the first parabolic mirror, the second parabolic mirror and the third paraboloid The axes of the mirrors coincide, the axes of the coincidence being a common axis; a through hole is opened at the apex of the second parabolic mirror, the center of the through hole is located on the common axis; at the apex of the third parabolic mirror An aperture is provided, the center of the aperture being located on the common axis.
  • a light source of the system is disposed on an opposite side of the second parabolic mirror reflecting surface; the parallel light emitted by the light source is directed parallel to the common axis to the reflecting surface of the second parabolic mirror.
  • the system includes a plurality of independent light sources; each of the independent light sources is a parallel light source; parallel rays emitted by the respective light sources are collectively directed toward a focus of the first parabolic mirror.
  • the system includes two sets of light sources
  • a first set of light sources disposed on opposite sides of the reflective surface of the second parabolic mirror, the parallel lines of light emitted parallel to the common axis illuminating the reflective surface of the second parabolic mirror;
  • the second group of light sources are composed of a plurality of independent light sources; each of the independent light sources is a parallel light source; and the parallel rays emitted by the respective light sources are collectively directed toward the focus of the first parabolic mirror.
  • a convex lens is disposed at each of the independent light sources; a focus of each of the convex lenses coincides with a focus of the first parabolic mirror.
  • a convex lens is added to each of the independent light sources of the second group of light sources; a focus of each of the convex lenses coincides with a focus of the first parabolic mirror.
  • a fine adjustment mechanism is added to the third parabolic mirror; the position of the third parabolic mirror is finely adjusted by the fine adjustment mechanism.
  • a fine adjustment mechanism is added to each of the convex lenses; the position of each of the convex lenses is finely adjusted by the fine adjustment mechanism, so that the light is more accurately concentrated on the focus of the first parabolic mirror.
  • Cooling means are also provided at the apex of the first and third parabolic mirrors; each of the parabolic mirrors is maintained within a set operating temperature by the cooling means; the cooling means can be implemented using air or water cooling techniques.
  • At least one optical coating is plated on the reflective surfaces of the first, second, and third parabolic mirrors, and the light concentrated in the system is filtered by an optical coating to enhance the reflection effect of the light.
  • a steering movement device is further included; the first, second, and third parabolic mirrors are fixed to the steering movement device such that the concentrating system can rotate and move with the steering movement device.
  • each of the light sources and the first, second, and third parabolic mirrors are fixed to the steering moving device, so that the concentrating system can rotate and move with the steering mobile device .
  • a fourth parabolic mirror is further disposed at an apex of the first parabolic mirror; the fourth parabolic mirror may be a parabolic convex or concave mirror; a focus of the fourth parabolic mirror coincides with the common focus The axis of the fourth parabolic mirror coincides with the common axis.
  • the third parabolic mirror used in the system itself has a small size, and its thickness is much smaller than that of the second parabolic mirror, so that it is easy to process the aperture with a small aperture thereon, thereby realizing high-magnification light. Can aggregate effects;
  • the intensity of the output light can be adjusted by replacing different third parabolic mirrors.
  • FIG. 1 is a structural view of a first embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface
  • FIG. 2 is a structural view of a third embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface
  • FIG. 3 is a replaceable partial reflecting surface
  • Figure 4 is a structural view of a fifth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface
  • Figure 5 is a ninth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface
  • the concentrating system designed by the present invention employs a mirror having a parabolic reflecting surface as a concentrating device for light energy.
  • the invention is further described below in conjunction with the drawings and embodiments.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Fig. 1 is a structural view showing a first embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface according to the present invention.
  • the parabolic mirror concentrating system of the replaceable partial reflecting surface comprises: a first parabolic mirror 1, a second parabolic mirror 2 and a third parabolic mirror 3.
  • the first parabolic mirror 1 can be either a parabolic concave mirror or a parabolic convex mirror.
  • the second parabolic mirror 2 and the third parabolic mirror 3 are parabolic concave mirrors.
  • the reflecting surface of the first parabolic mirror 1 is disposed opposite to the reflecting surfaces of the second parabolic mirror 2 and the third parabolic mirror 3.
  • the focal points of the first parabolic mirror 1, the second parabolic mirror 2 and the third parabolic mirror 3 coincide, and the coincident focus is a common focus.
  • the axes of the first parabolic mirror 1, the second parabolic mirror 2 and the third parabolic mirror 3 coincide, and the axes of the coincidence are common axes.
  • a through hole 21 is formed at the apex of the second parabolic mirror 2. The center of the through hole 21 is located on the common axis.
  • An aperture 31 is provided at the apex of the third parabolic mirror 3, the center of which is located on the common axis.
  • the concentrating system structure of the first embodiment described above is improved on the basis of a parabolic mirror concentrating system composed of a first parabolic mirror 1 and a second parabolic mirror 2.
  • the basic parabolic mirror concentrating system It consists of a pair of oppositely placed confocal, co-axial parabolic mirrors.
  • the system extracts the concentrated light by opening a hole at the apex of the second parabolic mirror 2, thereby forming a concentrated light having a relatively high intensity of light energy.
  • the thickness of the mirror body itself must also increase.
  • the aperture of the aperture is required to be sufficiently small. The processing of apertures with smaller apertures on thicker mirrors is clearly a requirement for their processing.
  • the present invention further designs a third parabolic mirror 3 based on the parabolic mirror concentrating system.
  • the size of the third parabolic mirror 3 is smaller than the size of the second parabolic mirror 2, and its size is mainly used to cover the vicinity of the common axis.
  • the third parabolic mirror 3 has the same reflection effect on the light as the second parabolic mirror 2. Therefore, it does not affect the convergence of light. Since the third parabolic mirror 3 itself is small in size, its thickness is much smaller than that of the second parabolic mirror 2. Therefore, it is easy to process the pores having a small pore diameter thereon, thereby realizing a high-magnification light energy convergence effect. In addition, since the third parabolic mirror 3 is concentrated near the common axis.
  • the parabolic mirror concentrating system designed by the present invention is provided with a completely independent third parabolic mirror 3 near the common axis.
  • the third parabolic mirror 3 is a partial reflecting surface for replacement with respect to the second parabolic mirror 2. Therefore, the user can also use the system structure to achieve a small and small adjustment of the output concentrated light by replacing the third parabolic mirror 3 with different aperture apertures. This also compensates for the shortcomings of the concentrating system previously composed of two parabolic mirrors.
  • the position of the third parabolic mirror 3 is only required to be on the common axis, and is not limited to being disposed between the first and second parabolic mirrors, or the passage of the second parabolic mirror. Inside the hole, or the back axis of the second parabolic mirror reflecting surface. In other words, the focal length of the third parabolic mirror 3 can be less than, equal to, or greater than the focal length of the second parabolic mirror 2.
  • the third parabolic mirror 3 can be fabricated using a material different from the first or second parabolic mirror, for example using a material that is resistant to high temperatures or that is easily thermally conductive.
  • the third parabolic mirror 3 can also use an optical coating different from the first or second parabolic mirror to achieve the special purpose of enhancing the reflection effect or filtering light within a specific wavelength range.
  • the parabolic mirror concentrating system of the replaceable partial reflection surface designed by the invention has a replaceable structure design on the part of the mirror surface by using the double parabolic mirror concentrating system, thereby making it convenient. Processing, reducing maintenance costs, adjustable output light intensity and many other advantages have significant technical effects and should be patented.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this second embodiment is based on the first embodiment, further defining that the light source of this embodiment is disposed on the opposite side of the reflecting surface of the second parabolic mirror 2.
  • the parallel rays emitted by the light source illuminate the reflecting surface of the second parabolic mirror 2 parallel to the common axis.
  • the light emitted by the light source in this embodiment is irradiated on the reflective surface of the second parabolic mirror 2 parallel to the common axis, and the reflected light will converge toward the focus of the second parabolic mirror 2.
  • the first and second parabolic mirrors are confocal, the reflected rays that converge toward the focus are concentrated toward the focus of the first parabolic mirror 1.
  • the concentrated light is reflected by the reflecting surface of the first parabolic mirror 1 to form parallel rays of higher energy density and parallel to the common axis, illuminating the second parabolic mirror 2.
  • the light passes through the repeated reflections between the first and second parabolic mirrors and gradually converges near the common axis. Since the present invention is provided with a third parabolic mirror 3 for replacement on the common axis, the third parabolic mirror 3 is also coaxial and confocal with the other two parabolic mirrors. Therefore, the light concentrating near the common axis continues to be repeatedly reflected between the first and third parabolic mirrors, and finally is emitted by the aperture 31 opened at the apex of the third parabolic mirror 3.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 2 is a structural view showing a third embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface according to the present invention.
  • the third embodiment is based on the first embodiment, further defining that the embodiment includes a plurality of light sources L1, L2, L3, ... Ln.
  • Each of the light sources is a parallel light source.
  • the parallel rays from the respective light sources are collectively directed toward the focus of the first parabolic mirror 1.
  • the parallel rays emitted by the respective light sources in the embodiment are collectively directed to the focus of the first parabolic mirror 1.
  • the parallel rays are reflected by the reflecting surface of the first parabolic mirror 1 to form parallel light parallel to the common axis and are incident on the second parabolic mirror 2.
  • the reflection line of the light is the same as that described in the second embodiment above, and will not be described herein.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 3 is a structural view showing a fourth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflecting surface according to the present invention.
  • This fourth embodiment is a combination of the light source routing structures of the foregoing second and third embodiments.
  • the fourth embodiment includes two sets of light sources. Wherein, the first set of light sources are disposed on opposite sides of the reflecting surface of the second parabolic mirror 2, and the parallel rays emitted therefrom illuminate the reflecting surface of the second parabolic mirror 2 parallel to the common axis.
  • the second set of light sources consists of a number of independent light sources. Each of the independent light sources is a parallel light source. The parallel rays emitted by the respective light sources are collectively directed toward the focus of the first parabolic mirror 1.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 4 is a structural view showing a fifth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflection surface according to the present invention.
  • the fifth embodiment is based on the third embodiment, and further a convex lens Cl, C2, C3, ... Cn is added to each of the light sources.
  • the focal points of the respective convex lenses coincide with the focus of the first parabolic mirror 1.
  • the design is mainly because the light energy concentrating effect of the light energy concentrating system designed in the third embodiment depends on the accurate incidence of the respective light sources. The closer the light incident from the light source is to the focus of the first parabolic mirror 1, the better the effect of light energy convergence. However, the light emitted by each light source must have a certain width, which determines that it is impossible to obtain the most ideal convergence effect by directly illuminating the parabolic mirror with the light source. In view of this, the present embodiment applies a convex lens at each light source and sets the focus of the convex lens at a common focus of each of the parabolic mirrors.
  • the parallel rays incident on the convex lens converge at the focus of the convex lens by the refractive action of the convex lens. This makes the angle of the incident parabolic mirror more ideal, and the light convergence effect of the system is naturally improved.
  • the parabolic mirror concentrating system of the replaceable partial reflecting surface designed by the present invention it can be known from the working principle that the light energy concentrating effect of the system depends on whether the positional relationship between each parabolic mirror and the convex lens is ideal. However, in practical applications, the positional relationship between the parts is often difficult to guarantee.
  • a fine adjustment mechanism 4 at the third parabolic mirror 3. By means of the fine adjustment mechanism 4, we can finely adjust the position of the third parabolic mirror 3 so as to achieve an ideal positional relationship between the first parabolic mirror 1 and the confocal mirror.
  • the fine adjustment mechanism 4 can be added to each of the convex lenses C1, C2, C3, ..., Cn in the fifth embodiment.
  • the position of each convex lens is finely adjusted by the fine adjustment mechanism 4 to achieve a desired positional relationship with the first parabolic mirror 1 in a confocal manner.
  • this embodiment is further provided with a cooling device 5 at the apex of the first and third parabolic mirrors on the basis of the foregoing embodiments, by which the parabolic mirrors are maintained at Within the set operating temperature.
  • the cooling device 5 can be implemented using existing air or water cooling techniques.
  • the eighth embodiment is based on the first embodiment, and further defines that in the embodiment, at least one layer is plated on the reflective surfaces of the first parabolic mirror 1, the second parabolic mirror 2, and the third parabolic mirror 3.
  • Optical coating Through this layer of optical coating, different filtering effects or enhanced light reflection effects can be achieved, thereby controlling the spectral characteristics of the output light or improving the system performance.
  • the structure of the third parabolic mirror that can be replaced is employed in the concentrating system designed by the present invention. Therefore, the system can change the spectral characteristics of the output light by replacing the third parabolic mirror plated with different optical coatings. This makes the concentrating system more widely used in the industry.
  • Fig. 5 is a structural view showing a ninth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflection surface according to the present invention.
  • the ninth embodiment further includes a steering movement device 6 based on the foregoing various embodiments.
  • the first, second, third parabolic mirrors and the light source are both fixed to the steering moving device 6.
  • the concentrating system can be rotated and moved along with the steering moving device 6, thereby controlling the angle of the light output and the irradiation position of the concentrating system, and realizing the illuminating illumination by using the concentrated output light. , the purpose of local heating, cutting, perforation or crushing of the material in the distance.
  • the light source described therein can also be removed, and the first, second, and third parabolic mirrors can be separately fixed to the steering moving device 6. So that the concentrating system can follow The moving device 6 is turned to perform a rotating and moving action, thereby achieving the purpose of capturing and concentrating a moving natural light source (for example, sunlight) or a movable artificial light source.
  • a moving natural light source for example, sunlight
  • a movable artificial light source for example, sunlight
  • Fig. 6 is a structural view showing a tenth embodiment of a parabolic mirror concentrating system capable of replacing a partial reflection surface according to the present invention.
  • a fourth parabolic mirror 7 is also provided at the vertex position of the first parabolic mirror 1.
  • the fourth parabolic mirror 7 can be a parabolic convex or concave mirror.
  • the focus of the fourth parabolic mirror 7 coincides with the common focus; the axis of the fourth parabolic mirror 7 coincides with the common axis.
  • the reflected light finally converges toward the common axis, and the energy density is expected to be huge.
  • the light will cause a high temperature at the apex of the first parabolic mirror 1, which easily deforms or damages the mirror material. Therefore, a replaceable fourth parabolic mirror 7 is provided at the apex of the first parabolic mirror 1, and this fourth parabolic mirror 7 can be made of a material different from the first parabolic mirror 1, or can be used differently as described above.
  • the cooling device 5 may be provided in the fourth parabolic mirror 7 to cool and cool it.
  • Such a design does not require disassembly or modification of the first, second, and third parabolic mirrors for maintenance, so that the accuracy of the system is not greatly affected by the replacement of the fourth parabolic mirror 7.
  • the fourth parabolic mirror 7 can be fabricated using materials different from the first, second or third parabolic mirrors, for example using materials that are resistant to high temperatures or that are easily thermally conductive.
  • the fourth parabolic mirror 7 can also use an optical coating different from the first, second or third parabolic mirror to achieve a special purpose of enhancing the reflection effect or filtering light within a specific wavelength range.
  • the parabolic mirror concentrating system of the replaceable partial reflecting surface designed by the present invention adopts a replaceable structural design on a part of the reflecting mirror surface based on the double parabolic mirror concentrating system, thereby It is easy to process, reduce maintenance costs, and has adjustable output light intensity. Any unconventional modifications made by one of ordinary skill in the art in view of such design are considered to be within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Description

一种可置换局部反射面的抛物面镜聚光系统
技术领域
本发明涉及一种光能汇聚系统, 特别是一种建立在双抛物面镜聚光系统的基 础上, 对其中部分反射镜面采用可置换式结构设计, 从而使其具有便于加工、 降 低维护成本、输出光强可调等诸多优点的光能汇聚系统,属于光学设备技术领域。 背景技术
所谓抛物线是圆锥曲线的一种, 在数学上是指在一平面上, 到一个定点 F和 一条定直线 1距离相等的点的集合。 该定点 F即为抛物线的焦点, 该定直线 1即 为抛物线的准线。 在该平面上有一直线垂直于该准线 1并且通过该焦点 F, 称为 轴线。 该轴线是该抛物线的对称轴。 该抛物线与该轴线的交点称为顶点。
由抛物线的数学推导可知 (此处省略具体推导过程), 如果反射镜的凹面为 抛物线形反射面, 则任何平行于该抛物线轴线的光线, 照射到该反射镜的凹反射 面时, 该光线的反射光线汇聚于抛物线的焦点上。 反之, 如果反射镜的凸面为抛 物线形反射面, 则任何平行于该抛物线轴线的光线, 照射到该反射镜的凸反射面 时, 该光线的反射线沿该抛物线焦点与反射点连线的反向延长线方向分散。 如果 反射镜的凸面为抛物线形反射面, 则任何对准该凸面反射面的焦点方向前进的光 线, 将被该凸面的抛物线形反射面反射, 反射后的光线将会平行于该抛物线形反 射面的轴线。
利用以上抛物线形反射面的光线反射特点可以设计一种汇聚光线的装置,这 种装置的特征是: 包括二个抛物面反射镜, 其中第一抛物面反射镜的反射面是凹 面或凸面的抛物线反射面, 第二抛物面反射镜的反射面是凹面抛物线反射面; 该 第二抛物面反射镜的焦距大于该第一抛物面反射镜的焦距; 该第二抛物面反射镜 的几何尺寸大于该第一抛物面反射镜的几何尺寸; 该两抛物面反射镜的焦点重合 与一公共焦点处, 该两抛物面反射镜的轴线重合与一公共轴线上; 该第二抛物面 反射镜的顶点处开设有一个通孔。 当平行于公共轴线的光线照射到该第二抛物面 反射镜上的时候, 光线将会在该两抛物面反射镜之间来回的反射而逐渐往该公共 轴线靠近, 最后汇聚成为能量密度较大并且平行于该公共轴线的平行光束, 从该 第二抛物面反射镜顶点处的通孔射出。
基于相同的原理, 如果若干个平行光束(例如激光)是朝该第一抛物面反射 镜的焦点方向照射, 则该光束照射到该第一抛物面反射镜的时候, 光线将沿着平 行于该公共轴线的方向反射, 随后反射光将抵达该第二抛物面反射镜, 然后光线 又被该第二抛物面反射镜反射, 反射光再次往该公共焦点的方向前进, 而再次抵 达该第一抛物面反射镜, 光线在该两抛物面反射镜之间来回的反射, 最后将汇聚 成为能量密度较大并且平行于该公共轴线的平行光束, 从该第二抛物面反射镜顶 点处的通孔射出。
可以预见的是上述的聚光装置在该两个抛物面反射镜的顶点处将因为光线 的汇聚反射而可能产生较高的温度, 反射面上的光学镀膜比较容易损坏, 底层材 料也比较容易因为温差而产生变形。 当抛物面反射镜的尺寸较大的时候, 如果因 为上述原因致使顶点处光学镀膜的损坏而要更换整个抛物面反射镜, 则维护成本 很大。
抛物面反射镜是属于非球面曲面,在制造的时候经常使用例如铜或铝合金等 较软的有色金属, 如果该第二抛物面反射镜的尺寸较大的时候, 过程中为了保障 加工尺寸的精度和反射面的面形精度,反射镜必须维持一个厚度。在这种情形下, 如果要在一个较厚的抛物面反射镜的顶点处开设一较细微的通孔, 则必须使用直 径很细小的钻头, 这种细小的钻头的细长比通常大约是 1比 7左右, 假设通孔的 直径是 0. 05mm, 则该通孔深度需在 0. 35mm以内; 如果使用激光穿孔的方式加工 该通孔, 则该通孔四周的反射面的面形精度将会大量的降低, 而必须以研磨或其 他方法进行二级加工。
在另一方面可以预见的是:最终从该第二抛物面反射镜的顶点处的通孔所射 出来的光束, 它的直径和能量密度与该通孔的大小有关; 如果该通孔直径较大, 所射出来的光束直径较大而能量密度较小; 如果该通孔直径较小, 所射出来的光 束直径较小而能量密度较大。 因此, 当利用上述的聚光装置来汇聚光线的时候, 如果要得到不同直径或能量密度的光束, 则必须更换整个第二抛物面反射镜。
另一个可以预见的问题是: 该第一和第二抛物面反射镜的顶点处, 由于光线 高度的集中必然使得反射面所受的温度较高, 因此可以考虑采用不同的材料来制 造局部的反射面。
在另一方面, 为了达到特殊的目的, 该第一和第二抛物面反射镜还可以采用 不同的光学镀膜来增强反射效果, 或是过滤光线中特定波长范围内的光线; 但是 如果要达到这样的特殊目的, 则必须将该第一和第二抛物面反射镜整个使用不同 的光学镀膜; 如此一来成本将会变得非常巨大。
针对上述的种种问题, 例如第二抛物面反射镜顶点处细微通孔的加工困难、 加工精密度不易维持、 维护成本高、 该两个抛物面反射镜顶点处容易产生局部高 温损坏反射面上的光学镀膜、 顶点处局部温度变形、 输出的光线粗细和能量密度 无法调整等等问题; 有必要以一个创新的构想来解决上述聚光技术中存在的所有 问题。
发明内容
本发明的主要目的在于解决现有技术中存在的问题,提供一种建立在双抛物 面镜聚光系统的基础上, 对其中部分反射镜面采用可置换式结构设计, 从而使其 具有便于加工、 降低维护成本、 输出光强可调等诸多优点的光能汇聚系统。
本发明的发明目的是通过下述技术方案予以实现的:
一种可置换局部反射面的抛物面镜聚光系统, 其特征在于: 包括: 第一抛物 面镜、 第二抛物面镜和第三抛物面镜;
所述第一抛物面镜可以是抛物线凹面反射镜或抛物线凸面反射镜; 所述第二 抛物面镜和第三抛物面镜为抛物线凹面反射镜; 该第一抛物面镜的反射面与第二 抛物面镜和第三抛物面镜的反射面相对设置; 该第一抛物面镜、 第二抛物面镜和 第三抛物面镜的焦点重合, 该重合的焦点为公共焦点; 该第一抛物面镜、 第二抛 物面镜和第三抛物面镜的轴线重合, 该重合的轴线为公共轴线; 在所述第二抛物 面镜的顶点处开设有一个通孔, 该通孔的中心位于该公共轴线上; 在所述第三抛 物面镜的顶点处设有一个孔隙, 该孔隙的中心位于该公共轴线上。
该系统的光源设置在所述第二抛物面镜反射面的相对侧; 该光源所发出的平 行光线平行于所述公共轴线照射向第二抛物面镜的反射面上。
该系统包括有若干独立光源; 所述各个独立光源均为平行光光源; 各个光源 所发出的平行光线共同射向所述第一抛物面镜的焦点处。
该系统包括有两组光源;
第一组光源设置在所述第二抛物面镜的反射面的相对侧, 其所发出的平行光 线平行于所述公共轴线照射向第二抛物面镜的反射面上;
第二组光源由若干独立光源构成; 所述各个独立光源均为平行光光源; 各个 光源所发出的平行光线共同射向所述第一抛物面镜的焦点处。
在所述每个独立光源处加设一个凸透镜; 所述各个凸透镜的焦点与所述第一 抛物面镜的焦点相重合。
在所述第二组光源中每个独立光源处加设一个凸透镜; 所述各个凸透镜的焦 点与所述第一抛物面镜的焦点相重合。 在所述第三抛物面镜处加设了微调机构; 通过该微调机构对该第三抛物面镜 的位置进行微调。
在所述各个凸透镜处加设了微调机构; 通过该微调机构对该各个凸透镜的位 置进行微调, 使光线更准确的汇聚在所述第一抛物面镜的焦点上。
在所述第一和第三抛物面镜的顶点处还设有冷却装置; 通过该冷却装置使各 抛物面镜维持在设定的工作温度以内; 所述冷却装置可以采用风冷或水冷技术实 现。
在所述第一、 第二、 第三抛物面镜的反射面上镀有至少一层光学镀膜, 通过 光学镀膜对在该系统中进行汇聚的光线进行滤光或是增强光线的反射效果。
还包括有一个转向移动装置; 所述第一、 第二、 第三抛物面镜均与该转向移 动装置相固定, 使得该聚光系统可以随该转向移动装置进行旋转、 移动动作。
还包括有一个转向移动装置; 所述各光源及所述第一、 第二、 第三抛物面镜 均与该转向移动装置相固定, 使得该聚光系统可以随该转向移动装置进行旋转、 移动动作。
在所述第一抛物面镜的顶点处还设有一个第四抛物面反射镜;该第四抛物面 反射镜可以是抛物线凸面或凹面反射镜; 该第四抛物面反射镜的焦点与所述公共 焦点相重合; 该第四抛物面反射镜的轴线与所述公共轴线相重合。
本发明的有益效果是:
1、 本系统中所采用的第三抛物面镜本身尺寸较小, 其厚度相较于第二抛物 面镜也要小得多, 就便于在其上加工孔径较小的孔隙, 从而实现高倍率的光能汇 聚效果;
2、 本系统由于在高温的公共轴线附近采用了可供置换的第三抛物面镜结构 设计, 使得该系统因镜面高温损坏变形而引起的维护成本大大降低;
3、 本系统由于采用了可供置换的第三抛物面镜结构设计, 因此其输出光线 的强度可通过置换不同的第三抛物面镜进行调控。
附图说明
图 1为可置换局部反射面的抛物面镜聚光系统第一实施例结构图; 图 2为可置换局部反射面的抛物面镜聚光系统第三实施例结构图; 图 3为可置换局部反射面的抛物面镜聚光系统第四实施例结构图; 图 4为可置换局部反射面的抛物面镜聚光系统第五实施例结构图; 图 5为可置换局部反射面的抛物面镜聚光系统第九实施例结构图; 图 6为可置换局部反射面的抛物面镜聚光系统第十实施例结构图。
附图标号:
第一抛物面镜 1
第二抛物面镜 2
第三抛物面镜 3
第二抛物面镜 2的顶点处的通孔 21
第三抛物面镜 3的顶点处的孔隙 31
光源 Ll、 L2、 L3…… Ln
凸透镜 Cl、 C2、 C3…… Cn
微调机构 4
冷却装置 5
转向移动装置 6
第四抛物面反射镜 7
具体实施方式
有关于本发明的结构组成、 技术手段及功效达成方面, 配合图式再予举例进 一步具体说明于后:
本发明所设计的聚光系统采用了具有抛物线形反射面的反射镜作为光能的 汇聚装置。 下面结合附图和实施例对本发明作进一步描述。
实施例一:
图 1为本发明可置换局部反射面的抛物面镜聚光系统第一实施例结构图。如 图所示, 该可置换局部反射面的抛物面镜聚光系统包括: 第一抛物面镜 1、 第二 抛物面镜 2和第三抛物面镜 3。 该第一抛物面镜 1既可以是抛物线凹面反射镜也 可以是抛物线凸面反射镜。 该第二抛物面镜 2和第三抛物面镜 3为抛物线凹面反 射镜。 该第一抛物面镜 1的反射面与第二抛物面镜 2和第三抛物面镜 3的反射面 相对设置。 该第一抛物面镜 1、 第二抛物面镜 2和第三抛物面镜 3的焦点重合, 该重合的焦点为公共焦点。 该第一抛物面镜 1、 第二抛物面镜 2和第三抛物面镜 3的轴线重合, 该重合的轴线为公共轴线。 在所述第二抛物面镜 2的顶点处开设 有一个通孔 21。 该通孔 21的中心位于该公共轴线上。 在所述第三抛物面镜 3的 顶点处设有一个孔隙 31, 该孔隙 31的中心位于该公共轴线上。
上述第一实施例所述聚光系统结构是在由第一抛物面镜 1和第二抛物面镜 2 所构成的抛物面镜聚光系统的基础上改进而成的。 该作为基础的抛物面镜聚光系 统由一对相对设置的共焦点、 共轴线的抛物面反射镜构成的。 根据上述抛物线的 几何原理, 当平行于其公共轴线的平行光入射该第二抛物面镜的反射面后, 该光 线会在第一和第二抛物面镜之间反复反射, 逐渐汇聚于该公共轴线附近。 该系统 通过在第二抛物面镜 2的顶点处开设孔隙, 将该汇聚光线引出, 从而形成光能强 度较大的汇聚光线。
但是如前所述, 当其中第二抛物面镜 2的尺寸比较大时, 其本身镜体的厚度 也必然随之增大。 对于该系统要想得到光能密度较大的输出光线, 又要求该孔隙 的孔径要足够的小。 而在较厚的镜体上加工孔径较小的孔隙, 这显然对其加工工 艺有着较高的要求。
还有, 由于该光能汇聚系统最终将光线汇聚于该公共轴线附近。 因此, 这会 导致在其抛物面镜的顶点附近产生较高的温度。 长期使用很容易造成该部分因高 温而损坏变形。 而如果因此就对该抛物面镜整体进行更换, 则会引起相当巨大的 维护成本。
鉴于以上问题,本发明在该抛物面镜聚光系统的基础上进一步设计了第三抛 物面镜 3。 该第三抛物面镜 3的尺寸小于第二抛物面镜 2的尺寸, 其大小主要用 以覆盖该公共轴线附近。 该第三抛物面镜 3对光线的反射作用与第二抛物面镜 2 完全相同。 因此, 并不影响对光线的汇聚作用。 由于, 第三抛物面镜 3本身尺寸 较小, 其厚度相较于第二抛物面镜 2也要小得多。 因此, 也就便于在其上加工孔 径较小的孔隙, 从而实现高倍率的光能汇聚效果。 另外, 由于该第三抛物面镜 3 集中在公共轴线附近。 依前述分析, 也就是位于该聚光系统中温度较高的部分。 这样, 如果该第三抛物面镜 3因高温而损坏变形, 可以只更换该第三抛物面镜 3, 而无需更换更大的第二抛物面镜 2。 这就大大的降低了该系统的维护成本。
除此之外, 由于本发明所设计的抛物面镜聚光系统在靠近公共轴线附近设置 了完全独立的第三抛物面镜 3。 该第三抛物面镜 3相对于第二抛物面镜 2是一个 可供置换的局部反射面。 因此, 使用者还可以利用本系统结构通过置换不同孔隙 孔径的第三抛物面镜 3实现对输出汇聚光线光强大小的调节。 这也弥补了之前由 两个抛物面镜所构成的聚光系统的不足。
另外,应当指出的是所述第三抛物面镜 3的设置位置只要在该公共轴线上即 可,并不限于设置在所述第一和第二抛物面镜之间,或是第二抛物面镜的通孔内, 或是第二抛物面镜反射面的背向轴线上。 换句话说, 第三抛物面镜 3的焦距可以 小于、 等于或大于第二抛物面镜 2的焦距。 应当指出,该第三抛物面镜 3可以使用不同于第一或第二抛物面反射镜的材 料来加工制造, 例如使用耐高温或是容易导热的材料。 该第三抛物面镜 3可以也 使用不同于第一或第二抛物面反射镜的光学镀膜, 来达到增强反射效果或是过滤 特定波长范围之内的光线的特殊目的。
由上可见, 本发明所设计的可置换局部反射面的抛物面镜聚光系统, 通过在 双抛物面镜聚光系统的基础上, 对其中部分反射镜面采用可置换式结构设计, 从 而使其具有便于加工、 降低维护成本、 输出光强可调等诸多优点, 实具有显著的 技术效果, 应被授予专利权。
实施例二:
参见图 1, 该第二实施例是在第一实施例的基础上, 进一步限定了该实施例 的光源设置在第二抛物面镜 2的反射面的相对侧。 该光源所发出的平行光线平行 于所述公共轴线照射向第二抛物面镜 2的反射面上。
根据上述抛物面镜反射光线的几何原理,本实施例中光源所发出的光线平行 于公共轴线照射在第二抛物面镜 2的反射面上, 所反射的光线会向该第二抛物面 镜 2的焦点汇聚。 由于, 第一、 第二抛物面镜是共焦点的, 所以该向焦点汇聚的 反射光线也就是向第一抛物面镜 1的焦点汇聚。 该汇聚光线经过第一抛物面镜 1 的反射面反射, 形成能量密度更大并且平行于公共轴线的平行光线, 照射向第二 抛物面镜 2。 这样, 光线经过在第一和第二抛物面镜间的反复反射, 逐渐汇聚在 该公共轴线附近。 由于, 本发明在公共轴线上设置有可供置换的第三抛物面镜 3, 且该第三抛物面镜 3也是与另外两个抛物面镜是共轴线、 共焦点的。 因此, 汇聚 于公共轴线附近的光线继续在第一和第三抛物面镜之间反复反射, 最终由第三抛 物面镜 3顶点处开设的孔隙 31射出。
实施例三:
图 2为本发明可置换局部反射面的抛物面镜聚光系统第三实施例结构图。该 第三实施例是在第一实施例的基础上, 进一步限定了该实施例包括有若干光源 Ll、 L2、 L3…… Ln。 所述各个光源均为平行光光源。 各个光源所发出的平行光线 共同射向第一抛物面镜 1的焦点处。
根据上述抛物面镜反射光线的几何原理,本实施例中各个光源所发出的平行 光线共同射向第一抛物面镜 1的焦点处。 该各个平行光线经过第一抛物面镜 1反 射面反射后形成平行于公共轴线的平行光照射向第二抛物面镜 2。 之后, 光线的 反射线路同上述第二实施例中所述, 在此就不再赘述。 通过这样的光源布设形式 同样能够达到汇聚光线的目的。
实施例四:
图 3为本发明可置换局部反射面的抛物面镜聚光系统第四实施例结构图。该 第四实施例是由前述第二和第三实施例的光源布设结构结合而成的。 该第四实施 例中包括有两组光源。 其中, 第一组光源设置在第二抛物面镜 2的反射面的相对 侧,其所发出的平行光线平行于所述公共轴线照射向第二抛物面镜 2的反射面上。 第二组光源由若干独立光源构成。 所述各个独立光源均为平行光光源。 各个光源 所发出的平行光线共同射向第一抛物面镜 1的焦点处。
由于, 无论是这里的第一组光源还是第二组光源, 其所发出的光线通过本发 明所设计的聚光系统的光线汇聚过程已在前述第二、 第三实施例中所描述, 在此 就不再重复叙述。
实施例五:
图 4为本发明可置换局部反射面的抛物面镜聚光系统第五实施例结构图。该 第五实施例是在第三实施例的基础上, 进一步在每个光源处加设一个凸透镜 Cl、 C2、 C3…… Cn。 所述各个凸透镜的焦点与第一抛物面镜 1的焦点相重合。
这样设计主要是因为第三实施例所设计的光能汇聚系统的光能汇聚效果有 赖于各个光源准确地入射。 光源入射的光线越接近第一抛物面镜 1的焦点, 光能 汇聚的效果就越好。 然而, 各个光源所发出的光线必然有一定的宽度, 这就决定 了采用光源直接照射抛物面镜的方式不可能获得最为理想的汇聚效果。 鉴于这一 情况, 本实施例在各个光源处加设凸透镜, 并将凸透镜的焦点设置在各个抛物面 镜的公共的焦点处。 根据凸透镜的光学特性, 入射凸透镜的平行光线经过凸透镜 折射作用汇聚于凸透镜的焦点处。 这样就可以使得入射抛物面镜的光线角度更为 理想, 该系统的光线汇聚效果也自然得到改善。
当然, 本实施例所设计的加设凸透镜的结构也可以应用在第四实施例中。其 具体结构与前述完全一致, 在此就不再重复。
实施例六:
对本发明所设计的可置换局部反射面的抛物面镜聚光系统而言, 由其工作原 理可知, 该系统的光能汇聚效果有赖于其中各个抛物面镜以及凸透镜之间的位置 关系是否理想。 但是, 在实际应用中, 该各部分之间的位置关系往往难以得到保 证。 鉴于此, 参见图 4, 在本实施例中我们在所述第三抛物面镜 3处加设了微调 机构 4。 通过该微调机构 4我们能够对第三抛物面镜 3的位置进行微调, 使其与 第一抛物面镜 1实现共轴线、 共焦点的理想位置关系。 同理, 也可以针对第五实施例中的各个凸透镜 Cl、 C2、 C3…… Cn加设了微 调机构 4。 通过该微调机构 4实现对各个凸透镜的位置进行微调, 使其与第一抛 物面镜 1实现共焦点的理想位置关系。
当然, 作为微调机构 4的实现结构有很多, 由于均为现有技术在此就不再一 一赘述。
实施例七:
由于本专利所设计的可置换局部反射面的抛物面镜聚光系统是通过抛物面 镜的反射作用对光线进行汇聚, 因此如前所述会在抛物面镜的顶点附近集中高强 度的光能从而导致该部位温度过高, 长期使用容易造成抛物面镜表面因高温而变 形, 影响其聚光效果。 鉴于此, 参见图 4, 本实施例在前述各实施例的基础上在 所述第一和第三抛物面镜的顶点处还设有一个冷却装置 5, 通过该冷却装置 5使 各抛物面镜维持在设定的工作温度以内。 所述冷却装置 5可以采用现有的风冷或 水冷技术来实现。
实施例八:
该第八实施例是在第一实施例的基础上, 进一步限定了该实施例中, 在第一 抛物面镜 1、 第二抛物面镜 2、 第三抛物面镜 3的反射面上镀有至少一层光学镀 膜。 通过该层光学镀膜可以达到不同的滤光或是增强光线反射的效果, 从而实现 控制输出光线的光谱特性或是增进系统效能。
可以预见的是, 由于本发明所设计的聚光系统中采用了可供置换的第三抛物 面镜的结构。 因此, 该系统可以通过置换镀有不同光学镀膜的第三抛物面镜, 来 改变其输出光线的光谱特性。 这样就使该聚光系统在工业上具有更广泛的应用范 围。
实施例九:
图 5为本发明可置换局部反射面的抛物面镜聚光系统第九实施例结构图。如 图所示, 该第九实施例在前述各个实施例的基础上, 还进一步包括有一个转向移 动装置 6。 所述第一、 第二、 第三抛物面镜以及光源均与该转向移动装置 6相固 定。 使得该聚光系统可以随该转向移动装置 6而进行旋转、 移动动作, 进而控制 该聚光系统所输出光线的角度和照射位置, 实现利用该汇聚后的输出光线, 来进 行例如定向聚光照明、 远处材料局部加温、 切割、 穿孔或粉碎等等的目的。
在这个实施例中, 当然也可以将其中所述的光源移除, 而单独的把所述的第 一、 第二、 第三抛物面镜与该转向移动装置 6相固定。 使得该聚光系统可以随该 转向移动装置 6而进行旋转、 移动动作, 从而实现捕捉并且汇聚一个移动的自然 光源 (例如太阳光) 或是可移动的人造光源的目的。
实施例十:
图 6为本发明可置换局部反射面的抛物面镜聚光系统第十实施例结构图。如 图所示, 在第一抛物面镜 1的顶点位置还设有一个第四抛物面镜 7。 该第四抛物 面反射镜 7可以是抛物线凸面或凹面反射镜。 该第四抛物面反射镜 7的焦点与所 述公共焦点相重合; 该第四抛物面反射镜 7的轴线与所述公共轴线相重合。
如第一实施例中所述, 光线在第一抛物面镜 1、 第二抛物面镜 2和第三抛物 面镜 3间来回反射后, 反射光最终往所述的公共轴线处汇聚, 可以预见能量密度 巨大的光线将使得第一抛物面镜 1的顶点处产生高温, 很容易使得镜面材料变形 或损坏。 因此在第一抛物面镜 1的顶点处设置一个可以更换的第四抛物面镜 7, 而这个第四抛物面镜 7可以使用不同于第一抛物面镜 1的材料制作, 也可以如前 所述使用不同的光学镀膜。 并且, 还可以在这个第四抛物面镜 7设置前述冷却装 置 5, 以对其进行冷却降温。
这样的设计在维护保养上不必拆装或变动第一、 第二、 第三抛物面镜, 使得 这个系统精度不会因为更换第四抛物面镜 7而受到较大影响。
应当指出, 该第四抛物面镜 7可以使用不同于第一、第二或第三抛物面反射 镜的材料来加工制造, 例如使用耐高温或是容易导热的材料。 该第四抛物面镜 7 也可以使用不同于第一、 第二或第三抛物面反射镜的光学镀膜, 来达到增强反射 效果或是过滤特定波长范围之内的光线的特殊目的。
综上所述, 本发明所设计的可置换局部反射面的抛物面镜聚光系统, 通过在 双抛物面镜聚光系统的基础上, 对其中部分反射镜面采用可置换式结构设计, 从 而使其具有便于加工、 降低维护成本、 输出光强可调等诸多优点。 本领域一般技 术人员在这样的设计思想下, 所做的任何不具有创造性的改造均应视为在本发明 的保护范围之内。

Claims

权利要求
1、 一种可置换局部反射面的抛物面镜聚光系统, 其特征在于: 包括: 第一 抛物面镜、 第二抛物面镜和第三抛物面镜;
所述第一抛物面镜可以是抛物线凹面反射镜或抛物线凸面反射镜; 所述第二 抛物面镜和第三抛物面镜为抛物线凹面反射镜; 该第一抛物面镜的反射面与第二 抛物面镜和第三抛物面镜的反射面相对设置; 该第一抛物面镜、 第二抛物面镜和 第三抛物面镜的焦点重合, 该重合的焦点为公共焦点; 该第一抛物面镜、 第二抛 物面镜和第三抛物面镜的轴线重合, 该重合的轴线为公共轴线; 在所述第二抛物 面镜的顶点处开设有一个通孔, 该通孔的中心位于该公共轴线上; 在所述第三抛 物面镜的顶点处设有一个孔隙, 该孔隙的中心位于该公共轴线上。
2、 如权利要求 1 所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 该系统的光源设置在所述第二抛物面镜反射面的相对侧; 该光源所发出的平 行光线平行于所述公共轴线照射向第二抛物面镜的反射面上。
3、 如权利要求 1 所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 该系统包括有若干独立光源; 所述各个独立光源均为平行光光源; 各个光源 所发出的平行光线共同射向所述第一抛物面镜的焦点处。
4、 如权利要求 1 所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 该系统包括有两组光源;
第一组光源设置在所述第二抛物面镜的反射面的相对侧, 其所发出的平行光 线平行于所述公共轴线照射向第二抛物面镜的反射面上;
第二组光源由若干独立光源构成; 所述各个独立光源均为平行光光源; 各个 光源所发出的平行光线共同射向所述第一抛物面镜的焦点处。
5、 如权利要求 3所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述每个独立光源处加设一个凸透镜; 所述各个凸透镜的焦点与所述第一 抛物面镜的焦点相重合。
6、 如权利要求 4所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述第二组光源中每个独立光源处加设一个凸透镜; 所述各个凸透镜的焦 点与所述第一抛物面镜的焦点相重合。
7、 如权利要求 1 所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述第三抛物面镜处加设了微调机构; 通过该微调机构对该第三抛物面镜 的位置进行微调。
8、 如权利要求 5所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述各个凸透镜处加设了微调机构; 通过该微调机构对该各个凸透镜的位 置进行微调, 使光线更准确的汇聚在所述第一抛物面镜的焦点上。
9、 如权利要求 1 所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述第一和第三抛物面镜的顶点处还设有冷却装置; 通过该冷却装置使各 抛物面镜维持在设定的工作温度以内; 所述冷却装置可以采用风冷或水冷技术实 现。
10、 如权利要求 1所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述第一、 第二、 第三抛物面镜的反射面上镀有至少一层光学镀膜, 通过 光学镀膜对在该系统中进行汇聚的光线进行滤光或是增强光线的反射效果。
11、 如权利要求 1所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 还包括有一个转向移动装置; 所述第一、 第二、 第三抛物面镜均与该转向移 动装置相固定, 使得该聚光系统可以随该转向移动装置进行旋转、 移动动作。
12、 如权利要求 2、 3、 4、 5、 6所述的可置换局部反射面的抛物面镜聚光系 统, 其特征在于: 还包括有一个转向移动装置; 所述各光源及所述第一、 第二、 第三抛物面镜均与该转向移动装置相固定, 使得该聚光系统可以随该转向移动装 置进行旋转、 移动动作。
13、 如权利要求 1所述的可置换局部反射面的抛物面镜聚光系统, 其特征在 于: 在所述第一抛物面镜的顶点处还设有一个第四抛物面反射镜; 该第四抛物面 反射镜可以是抛物线凸面或凹面反射镜; 该第四抛物面反射镜的焦点与所述公共 焦点相重合; 该第四抛物面反射镜的轴线与所述公共轴线相重合。
PCT/CN2010/076461 2009-09-01 2010-08-30 一种可置换局部反射面的抛物面镜聚光系统 WO2011026412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910091889A CN101644828A (zh) 2009-09-01 2009-09-01 一种可置换局部反射面的抛物面镜聚光系统
CN200910091889.8 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011026412A1 true WO2011026412A1 (zh) 2011-03-10

Family

ID=41656778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076461 WO2011026412A1 (zh) 2009-09-01 2010-08-30 一种可置换局部反射面的抛物面镜聚光系统

Country Status (2)

Country Link
CN (1) CN101644828A (zh)
WO (1) WO2011026412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903801A (zh) * 2021-01-27 2021-06-04 南开大学 一种离子光解离方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644828A (zh) * 2009-09-01 2010-02-10 黄建文 一种可置换局部反射面的抛物面镜聚光系统
CN104765061A (zh) * 2015-04-01 2015-07-08 中国人民解放军63921部队 基于组合面镜的闪烁光聚光装置
CN104832877A (zh) * 2015-05-19 2015-08-12 倪屹 阳光导入装置
CN108649345B (zh) * 2018-04-12 2020-08-28 中国科学院电子学研究所 一种共焦双抛物面天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299706A (ja) * 1985-10-28 1987-05-09 Canon Inc 光送信機
JPH1114913A (ja) * 1997-06-23 1999-01-22 Kazuo Kosho 第1面に凹球面反射鏡を使用した望遠鏡。
JP2005076967A (ja) * 2003-08-29 2005-03-24 Sanden Corp 太陽熱集熱装置
CN2702239Y (zh) * 2004-03-25 2005-05-25 郭少白 阳光收集器
CN101644828A (zh) * 2009-09-01 2010-02-10 黄建文 一种可置换局部反射面的抛物面镜聚光系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299706A (ja) * 1985-10-28 1987-05-09 Canon Inc 光送信機
JPH1114913A (ja) * 1997-06-23 1999-01-22 Kazuo Kosho 第1面に凹球面反射鏡を使用した望遠鏡。
JP2005076967A (ja) * 2003-08-29 2005-03-24 Sanden Corp 太陽熱集熱装置
CN2702239Y (zh) * 2004-03-25 2005-05-25 郭少白 阳光收集器
CN101644828A (zh) * 2009-09-01 2010-02-10 黄建文 一种可置换局部反射面的抛物面镜聚光系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903801A (zh) * 2021-01-27 2021-06-04 南开大学 一种离子光解离方法及装置

Also Published As

Publication number Publication date
CN101644828A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
US11931827B2 (en) Laser cutting device and laser cutting method
WO2011026412A1 (zh) 一种可置换局部反射面的抛物面镜聚光系统
CN100580500C (zh) 准双半高斯空心激光束形成装置
CN205309586U (zh) 一种飞秒激光加工航空发动机叶片气膜孔的装置
CN106735876B (zh) 一种激光分能装置
WO2021027658A1 (zh) 基于多个光纤输出激光模块的中心送料激光系统及加工头
CN107065155A (zh) 一种激光清洗用可变焦光学单元及激光清洗装置
CN102401319B (zh) 一种led二次光学透镜
CN114724939A (zh) 一种改善半导体器件激光退火效果的方法及系统
CN107807451B (zh) 一种便携式可变焦点长度光学系统
CN204353650U (zh) 光学聚焦结构及激光加工设备
CN206445359U (zh) 一种单振镜全反射式位移调焦3d扫描光学系统
WO2012045177A1 (en) Parabolic reflector
CN201226051Y (zh) 一种用于材料双面同步辐照的激光均束装置
CN101256276B (zh) 一种激光光束聚焦整型抛物面镜
CN110376748A (zh) 高功率激光器Donut模式整形装置和整形镜
CN203838413U (zh) 一种基于棱镜对和柱面镜的消像散光束整形系统
WO2011012066A1 (zh) 利用抛物面镜的多光源汇聚系统
CN210243948U (zh) 一种新型激光切割镜头
CN114253001A (zh) 一种均匀光斑整形系统
CN207799127U (zh) 反射镜
CN207557589U (zh) 一种便携式可变焦点长度光学系统
CN109251857B (zh) 激光显微切割仪及其工作方法
CN206445360U (zh) 一种基于单振镜与自适应镜3d扫描光学系统
CN211028611U (zh) 一种激光双面切割装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/06/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10813334

Country of ref document: EP

Kind code of ref document: A1