WO2011026250A1 - Système de génératrice à génératrice directement couplée au réseau et procédé pour surmonter des défaillances du réseau - Google Patents

Système de génératrice à génératrice directement couplée au réseau et procédé pour surmonter des défaillances du réseau Download PDF

Info

Publication number
WO2011026250A1
WO2011026250A1 PCT/CH2010/000213 CH2010000213W WO2011026250A1 WO 2011026250 A1 WO2011026250 A1 WO 2011026250A1 CH 2010000213 W CH2010000213 W CH 2010000213W WO 2011026250 A1 WO2011026250 A1 WO 2011026250A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter
generator
generator system
mains
Prior art date
Application number
PCT/CH2010/000213
Other languages
German (de)
English (en)
Inventor
Alexander Stoev
Original Assignee
Ids Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH01367/09A external-priority patent/CH701753A1/de
Application filed by Ids Holding Ag filed Critical Ids Holding Ag
Publication of WO2011026250A1 publication Critical patent/WO2011026250A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • F05B2270/1071Purpose of the control system to cope with emergencies in particular sudden load loss
    • F05B2270/10711Purpose of the control system to cope with emergencies in particular sudden load loss applying a low voltage ride through method

Definitions

  • the invention relates to generator systems with directly grid-connected generators, in which a winding (stator), apart from start-up, switching and protective devices, connected directly to the feeding network and at least one further (rotor winding) is accessible from the outside.
  • a winding spaced from start-up, switching and protective devices
  • DASM double-fed asynchronous machines
  • Such systems are often used in renewable energy systems, such as wind and hydroelectric power plants.
  • the frequency converter In order to absorb the overcurrents and the additional energy fed into the DC link, the frequency converter would have to be over-dimensioned to a multiple of the rated power, which is economically unacceptable. In addition, the mains circuit breaker can no longer effectively protect the system, since it would also have to tolerate the overcurrents that occur.
  • the patent document EP01651865 also describes a method for controlling network disturbances. Among other things, the temperature of the generator and transmission is monitored with setpoints. This is contrary to hold that a network failure is usually in the ms range and thus a temperature monitoring of components does not bring much, because the necessary sensors detect within seconds and thus only the destruction of the parts can be determined.
  • a control of the turbine blades is not suitable to intercept a transient network disturbance, because enough energy is stored in the rotor at the onset of the fault to cause large destruction in the electronics. It usually takes 5 seconds for the rotor blades of the turbine to be twisted. This means that the response to the power failure comes way too late, because network disturbances are often only about 100 ms long. It is further described that there is a check for network problems every 0.5 seconds. Since such disturbances are usually 100 ms long, the disturbance would not even be able to be detected before it is over and the electronics have already been destroyed.
  • the patent document WO 2007/057480 describes a method in which 4 load resistors can be connected to the DC link + VBUS and -VBUS by means of 4 IGBTs.
  • This version of the connector has the significant disadvantage that not exactly the required load resistor can be connected to the DC bus in order to prevent within a narrow range that the current flow in the DC link causes a voltage increase.
  • this method is very expensive and expensive because multiple resistors and IGBTs are needed to dissipate the energy.
  • the most significant disadvantage of this variant is that the energy can only be destroyed after it has reached the DC link. However, this requires that all components in the converters must be able to conduct the uncontrolled energy supplied into the DC link. Now if problems arise, the converters are destroyed at the same time, because the current must flow through the converter before it can be converted into heat.
  • the object of the invention is to ensure with economically justifiable effort that a generator system with sudden changes in mains voltage up to 0% of the rated voltage can feed energy into the grid continuously or with only a minor interruption. Any transient occurring should be minimized, and it should be possible to continue the feed operation under defined conditions without interruption, regardless of the direction and speed of the voltage change.
  • Another object is to describe a method for operating a correspondingly extended generator system.
  • Fig. 1 Variable speed generator system with DASM generator with electronic voltage limiter
  • Fig. 1 shows a variable speed generator system with DASM generator and electronic voltage limiter.
  • a DASM generator 4 consisting of a stator winding 4.1 and a rotor winding 4.2 and the slip rings 4.3 for tapping the rotor.
  • the tap is connected to a voltage limiter 5.
  • the voltage limiter 5 consists of a connector 5.1 with or without throttle and is connected to a variable resistor 5.2 and a frequency converter or, inverter 7, the latter from a machine-side inverter 7.2 (MFU), a DC link or a DC link 7.3 and a line-side converter 7.1 (NFU).
  • MFU machine-side inverter 7.2
  • NFU line-side converter 7.1
  • the DASM generator 4 is connected to a mains transformer 1 via a stator contactor 3 and a mains circuit breaker 2.
  • the network-side Frequeizumformer 7.1 is connected via a mains choke 9 and a switch 8 to the mains circuit breaker 2.
  • a control unit 10 is connected to the two frequency converters 7.1, 7.2 and the voltage limiter 5 and takes over all control and control tasks.
  • the frequency converter 7 is designed as a bidirectional voltage source converter.
  • the DC link 7.3 can be loaded with a precharge circuit 6 to a specific starting value.
  • the connector 5.1 optionally consists of an inductance or a coil or connecting lines.
  • the coil is used when the voltage limiter 5 in the unit 5.2 (variable resistor) has a time problem with the voltage change (dU / dt), i. when the resistor is turned on. In this case, the coil 5.1 lowers. dU / dt and dl / dt to the required value, so that the switch ES triggers no faulty circuits.
  • FIG. 2 shows the distribution of the currents in the generator system according to the invention corresponding to FIG.
  • the currents lu, Iv and Iw from the mains transformer 1 are divided into the currents Isu, Isv, Isw of the stator and the currents liu, liv and liw of the line-side converter 7.1.
  • the generator currents IGu, IGv, IGu of the rotor 4.2 are divided into the currents IRu, IRv, IRw through the variable resistor 5.2 and the currents lUu, lUv, lUw of the machine-side converter 7.2.
  • the voltages Uu, Uv and Uw are the voltages after the power transformer 1.
  • the voltages Uru, Urv and Urw are the stresses on the machine side Inverter 7.2.
  • Fig. 3A shows a first embodiment of the variable resistor 5.2.
  • a bridge rectifier is connected, which converts the AC voltage into a DC voltage.
  • This DC voltage is connected to a series connection of a resistor R and an electronic switch ES with control input S, which is a capacitor C connected in parallel.
  • variable resistor 5.2 shows a second embodiment of the variable resistor 5.2, in which the variable resistor consists of a series circuit of a varistor V with an electronic switch ES with control input S.
  • Fig. 3C shows a third embodiment of the variable resistor 5.2, wherein the variable resistor consists of a series circuit of a resistor R with an electronic switch ES with control input S.
  • Fig. 4 shows the operating voltage ranges of the machine-side frequency converter 7.2 and the points A, B, C, D and E in which actions are initiated. The following voltage ranges are described:
  • UL0-UL1 Precharge area of the drive that can only be passed through during a precharge or discharge.
  • the main contactor is switched off.
  • the network-side and machine-side inverters (NFU and MFU) are switched off.
  • UL1-UL2 Operating range of the voltage limiter 5.
  • the machine-side converter (MFU) can be synchronized and the line-side converter (NFU) operates.
  • the network side (NFU) and the machine side (MFU) inverter are working.
  • the voltage limiter realizes the safety area in action.
  • UL3-UL4 Normal operating range of the inverter 7. There is no risk of overvoltage within the voltage limits.
  • UL4-UL5 Non-permitted safety area of the DC Link. Upon detection of this operating range, voltage-reducing measures must be initiated, ie the voltage limiter is activated.
  • Fig. 5 shows the current distribution between the machine-side frequency converter 7.2 and the regulated resistance. The stream splits into the following two areas:
  • IL0-IL1 Range of allowed current through the drive
  • IL1-IL2 Range of the non-permitted current range for the inverter.
  • Voltage limiter realizes this area, i. he is active in this area.
  • the DC link 7.3 is charged up to the level UL3 by means of the precharge circuit 6.
  • the Control unit 10 drives the inverters 7.1 and 7.2 to the grid and slowly increases the current (from point A) Then, according to the wind conditions up to point B, the inverter feeds power into the grid.
  • the current shown in Figure 5 is not the current fed into the grid.
  • point B of Figure 4 there is a drop in voltage due to network problems.
  • stator current ISu, ISv and ISw causes a strong current increase IGu, IGv and Igw in the rotor.
  • the rotor current will exceed the allowable maximum value of the machine-side inverter 7.2.
  • the control unit 10 to the voltage limiter 5, which then independently absorbs the entire current of the rotor.
  • the voltage limiter 5 thus ensures that the excessively high current can not reach the inverter 7.2.
  • the currents lUu, lUv to lUw become zero.
  • the voltages UGu, UGv and UGw are regulated in the voltage range UL1-UL2, so that the machine-side converter is protected. If the control unit 10 recognizes that the transient compensation processes have been completed and the current has reached, for example, approximately 60% of the rated current, the controllable resistor 5.2 of the voltage limiter 5 is deactivated at time E and the machine-side converter is started up again. Throughout the period from D to E, the line-side converter from DC-Link 7.3 can continue to feed power into the grid to compensate reactive-current components. So can be achieved by the network disturbance in the interaction of all components passing through the wind turbine.
  • a rotor Crowbar can be integrated into the voltage limiter 5.
  • the control unit 10 is able to shut off the wind turbine targeted by overcurrent overloads of the voltage limiter.
  • 5 so-called fail-safe components are used in the voltage limiter.
  • these parts are designed so that a safe short circuit is realized. This short circuit also protects the inverter from destruction and triggers the main switch 2 of the turbine, so that only in a predefined area of the turbine, a small damage is produced, which prevents a great deal of damage to the cabinet.
  • the main task of the voltage limiter 5 is the control of transient high currents, which could damage the converter.
  • the switch ES used in FIGS. 3A, 3B and 3C may preferably be formed as IGBT, GTO or MOSFETs.
  • the network-side inverter 7.1 (NFU) can be connected to the mains.
  • the network-side converter can be operated independently of the switching state of the voltage limiter 5 and a continuous current flow between network and NFU can be maintained even during the period of a network fault until the DC link 7.3 is discharged.
  • the voltage limiter 5 By activating the voltage limiter 5, all the currents IGu, IGv and Igw are absorbed from the rotor, so that no further energy can reach the intermediate circuit of the converter, which would lead to unacceptably high voltages.
  • Figs. 4 and 5 show the use of the voltage limiter. A particularly advantageous design of such a variable resistor, which forms the voltage limiter 5, is shown here:
  • the currents are for example:
  • the current ratio depends on the ratio of the number of turns.
  • IL1 IL2 / 4, maximum current of the inverter
  • IL1 - IL2 IL1 - 4 * IL1, working range of the voltage limiter
  • a sudden mains voltage change can be detected directly via the detection of the mains voltage itself or indirectly via the detection of overcurrents in the stator circuit or MFU or by detection of an overvoltage in the DC link 7.3. Since overcurrents and overvoltages can have other causes, the sequence for mastering network faults also protects the system in the case of other faults. Interruption via indirect detection has the advantage that network separation actually only takes place if the fault is not countermeasures the control unit 0 and the voltage limiter 5 can be compensated. The detection of said error immediately triggers the activation of the voltage limiter 5.
  • the method according to the invention is able to detect the network disturbances in a few ps and to initiate countermeasures.
  • the method according to the invention is able to initiate the necessary protective measures already after 0.5 ms following a power line interruption, and when the conditions for protection have been removed, the regulating element can be switched off again after 0.5 ms.
  • This is only possible with a thyristor after the current falls below the self-holding current. Since the varistor must have a characteristic in which always flows electricity, because otherwise in case of emergency, the required power can not be accepted, a deletion of the current is not possible, so that the thyristor turns off significantly later and is not directly controlled by the transient.
  • An essential component according to the invention consists in preventing the complete flow of current into the converters when overcurrents occur. As a result, all components of the converter can be made smaller.
  • the inventive idea is to electronically controlled burn exactly the transient energy that can destroy the converter.
  • a real control loop is set up, which compares the setpoint with the actual value.
  • the connector 5.1 may include a throttle, which reduces the increases.
  • the voltage limiter 5 Since the voltage limiter 5 is arranged spatially separated from the inverter, even the inverter can be protected if it comes to destruction in the voltage limiter.
  • the already described fail-safe function of the voltage limiter in this case triggers the protection mechanisms of the generator system, i. the main switch 2 is opened.
  • the provided 'fail-save' construction of the voltage limiter outside the inverter further protects it by a defined short circuit and trigger the necessary safety equipment such as the main switch. Possibly destroyed components can cause no damage due to the spatial separation from the inverter in the inverter, which is particularly advantageous.
  • the generator system is fed with sudden mains voltage changes continuously or with only insignificant interruption of energy into the grid.
  • the feed operation is continued under defined conditions in the shortest time after the voltage change, regardless of the speed of the voltage change or the current change.
  • Such systems are often used in renewable energy systems, such as wind and hydroelectric power plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne un système de génératrice qui comprend un transformateur réseau (1), un disjoncteur de protection réseau (2), une génératrice (4) munie d'un enroulement statorique (4.1) et d'un enroulement rotorique (4.2), un convertisseur (7) à liaison courant continu (7.3), une inductance réseau (9), ainsi qu'une unité de régulation (10). Le système de génératrice selon l'invention comprend un limiteur de tension (5) côté secondaire de la génératrice. La détection d'une variation de la tension réseau d'amplitude correspondante provoque l'activation du limiteur de tension (5), ce qui maintient le niveau de tension à l'entrée du convertisseur (7) à l'intérieur de la plage de tension de service du limiteur de tension (5). Il en résulte qu'aucun courant ne s'écoule plus dans le convertisseur (7). Une fois les phénomènes transitoires passés, le courant décroît et le limiteur de tension est désactivé. Le convertisseur (7.1) côté machine est simultanément réactivé. Pendant la durée d'activation du limiteur de tension (5), le convertisseur (7.2) côté réseau continue à transmettre de l'énergie au réseau pour pouvoir fournir le courant déwatté nécessaire conjointement avec le courant statorique. L'invention concerne également un procédé pour faire fonctionner le système de génératrice. De telles installations sont souvent utilisées dans des installations utilisant des énergies renouvelables, telles que les éoliennes et les centrales hydroélectriques.
PCT/CH2010/000213 2009-09-03 2010-09-01 Système de génératrice à génératrice directement couplée au réseau et procédé pour surmonter des défaillances du réseau WO2011026250A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH01367/09A CH701753A1 (de) 2009-09-03 2009-09-03 Generatorsystem mit direkt netzgekoppeltem Generator und Verfahren zum Durchfahren von Netzstörungen.
CH1367/09 2009-09-03
CH13342010A CH701746A2 (de) 2009-09-03 2010-08-20 Generatorsystem mit direkt netzgekoppeltem Generator und Verfahren zum Durchfahren von Netzstörungen.
CH1334/10 2010-08-20

Publications (1)

Publication Number Publication Date
WO2011026250A1 true WO2011026250A1 (fr) 2011-03-10

Family

ID=43479427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2010/000213 WO2011026250A1 (fr) 2009-09-03 2010-09-01 Système de génératrice à génératrice directement couplée au réseau et procédé pour surmonter des défaillances du réseau

Country Status (2)

Country Link
CH (1) CH701746A2 (fr)
WO (1) WO2011026250A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051732B3 (de) * 2011-07-11 2013-01-17 Pcs Power Converter Solutions Gmbh Windkraftanlage
CN104362674A (zh) * 2014-10-31 2015-02-18 国家电网公司 一种基于安全运行电压的双馈风电机组高电压穿越方法
CN106199428A (zh) * 2016-07-08 2016-12-07 兰州电机股份有限公司 高压大功率双馈型风力发电机试验系统及其测控系统
US10141733B2 (en) 2013-01-17 2018-11-27 Trane International Inc. Variable frequency drive overvoltage protection
DE102017118173A1 (de) * 2017-08-09 2019-02-14 Minebea Mitsumi Inc. Verfahren und Vorrichtung zum Betreiben eines bürstenlosen Gleichstrommotors
US10447040B2 (en) 2014-10-15 2019-10-15 Cummins Power Generation Ip, Inc. Programmable inverter for controllable grid response

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) * 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
JPH0767393A (ja) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The 可変速揚水発電システムの過電圧保護装置
DE19735742A1 (de) * 1997-08-18 1999-02-25 Siemens Ag Über- und untersynchrone Stromrichterkaskade
DE10206828A1 (de) * 2002-01-29 2003-08-14 Lorenz Feddersen Schaltungsanordnung zum Einsatz bei einer Windenergieanlage
EP1499009A1 (fr) 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Commande et protection d'un système générateur à induction à double alimentation
EP1561275A2 (fr) 2002-09-24 2005-08-10 Alexander Stoev Systeme de generateur a generateur a couplage direct au reseau et procede pour maitriser des pannes de secteur
EP1651865A1 (fr) 2003-08-07 2006-05-03 Vestas Wind System A/S Procede de commande d'une eolienne connectee a un reseau electrique public, pendant une defaillance dans ledit reseau, systeme de commande, eolienne et similaire
WO2006069569A1 (fr) * 2004-12-28 2006-07-06 Vestas Wind Systems A/S Procede de commande d’une turbine eolienne connectee a un reseau electrique general
WO2007057480A1 (fr) 2005-11-21 2007-05-24 Ingeteam Technology, S.A. Systeme de commande et de protection contre les defauts symetriques et asymetriques, pour des generateurs de type asynchrone

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) * 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
JPH0767393A (ja) * 1993-08-24 1995-03-10 Tokyo Electric Power Co Inc:The 可変速揚水発電システムの過電圧保護装置
DE19735742A1 (de) * 1997-08-18 1999-02-25 Siemens Ag Über- und untersynchrone Stromrichterkaskade
DE10206828A1 (de) * 2002-01-29 2003-08-14 Lorenz Feddersen Schaltungsanordnung zum Einsatz bei einer Windenergieanlage
EP1561275A2 (fr) 2002-09-24 2005-08-10 Alexander Stoev Systeme de generateur a generateur a couplage direct au reseau et procede pour maitriser des pannes de secteur
EP1499009A1 (fr) 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Commande et protection d'un système générateur à induction à double alimentation
EP1651865A1 (fr) 2003-08-07 2006-05-03 Vestas Wind System A/S Procede de commande d'une eolienne connectee a un reseau electrique public, pendant une defaillance dans ledit reseau, systeme de commande, eolienne et similaire
EP1651865B1 (fr) 2003-08-07 2006-11-29 Vestas Wind Systems A/S Procede de commande d'une eolienne connectee a un reseau electrique public, pendant une defaillance dans ledit reseau, systeme de commande, eolienne et similaire
WO2006069569A1 (fr) * 2004-12-28 2006-07-06 Vestas Wind Systems A/S Procede de commande d’une turbine eolienne connectee a un reseau electrique general
WO2007057480A1 (fr) 2005-11-21 2007-05-24 Ingeteam Technology, S.A. Systeme de commande et de protection contre les defauts symetriques et asymetriques, pour des generateurs de type asynchrone
EP1965075A1 (fr) 2005-11-21 2008-09-03 Ingeteam Technology S.A. Systeme de commande et de protection contre les defauts symetriques et asymetriques, pour des generateurs de type asynchrone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051732B3 (de) * 2011-07-11 2013-01-17 Pcs Power Converter Solutions Gmbh Windkraftanlage
US10141733B2 (en) 2013-01-17 2018-11-27 Trane International Inc. Variable frequency drive overvoltage protection
US10447040B2 (en) 2014-10-15 2019-10-15 Cummins Power Generation Ip, Inc. Programmable inverter for controllable grid response
CN104362674A (zh) * 2014-10-31 2015-02-18 国家电网公司 一种基于安全运行电压的双馈风电机组高电压穿越方法
CN106199428A (zh) * 2016-07-08 2016-12-07 兰州电机股份有限公司 高压大功率双馈型风力发电机试验系统及其测控系统
CN106199428B (zh) * 2016-07-08 2023-04-14 兰州电机股份有限公司 高压大功率双馈型风力发电机试验系统及其测控系统
DE102017118173A1 (de) * 2017-08-09 2019-02-14 Minebea Mitsumi Inc. Verfahren und Vorrichtung zum Betreiben eines bürstenlosen Gleichstrommotors

Also Published As

Publication number Publication date
CH701746A2 (de) 2011-03-15

Similar Documents

Publication Publication Date Title
EP2945242B1 (fr) Éolienne dotée d'une protection améliorée contre les surtensions
EP1921738B1 (fr) Méthode et dispositif de commande pour un onduleur, en particulier pour une éolienne
EP2209205B1 (fr) Procédé pour faire fonctionner une centrale éolienne en cas de surtensions dans le réseau
DE60317183T2 (de) Steuer- und Schutzgerät für ein doppelgespeistes Induktionsgeneratorsystem
DE19600547B4 (de) Schutzschaltung für einen Umrichter für ein elektrisches Netzsytem
EP2878808B1 (fr) Système de pas et procédé de fonctionnement d'un système de pas d'une installation éolienne
WO2011026250A1 (fr) Système de génératrice à génératrice directement couplée au réseau et procédé pour surmonter des défaillances du réseau
EP2169222A2 (fr) Appareil de protection contre la surtension pour éoliennes
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
EP1766771A1 (fr) Dispositif d'extinction pour pont de convertisseur de courant a retour d'alimentation
EP2244372B1 (fr) Dispositif de circuit pour une installation éolienne
EP3386060A1 (fr) Éolienne avec conduite d'alimentation
EP1561275B1 (fr) Systeme de generateur a generateur a couplage direct au reseau et procede pour maitriser des pannes de secteur
CH701753A1 (de) Generatorsystem mit direkt netzgekoppeltem Generator und Verfahren zum Durchfahren von Netzstörungen.
DE102013111869A1 (de) Photovoltaikanlage und Vorrichtung zum Betreiben einer Photovoltaikanlage
WO2013120212A1 (fr) Dispositif de protection pour un générateur triphasé à double alimentation et procédé permettant de faire fonctionner un tel dispositif de protection
WO2012019834A2 (fr) Système convertisseur et procédé de fonctionnement d'un système convertisseur de ce type
DE2924729C2 (de) Schaltungsanordnung zum Schutz des Wechselrichters in einem Zwischenkreisumrichter
EP2417681A2 (fr) Alimentation en énergie d'un réseau électrique
EP2479859A1 (fr) Dispositif de commutation de sécurité
DE102021004437B4 (de) Verfahren und Anordnung zum Schutz vor Überspannung
DE102008064079A1 (de) Verfahren und elektrische Schaltung zur Erzeugung elektrischer Energie
DE102015009741A1 (de) Windenergieanlage mit spannungsgeregelter Eigenbedarfsversorgung
DE102016116093A1 (de) Schaltungsanordnung zum Schutz von an einem mehrphasigen Netz angeschlossenen Verbrauchern mit Unter- und Überspannungsabschaltfunktion
DE102008026621A1 (de) Ein- oder mehrphasige elektrische Schaltung zum Abschalten eines über einen Wechselstrom- oder Drehstromsteller geführten Stroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10765358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10765358

Country of ref document: EP

Kind code of ref document: A1