WO2011024648A1 - Mems, and method for manufacturing same - Google Patents

Mems, and method for manufacturing same Download PDF

Info

Publication number
WO2011024648A1
WO2011024648A1 PCT/JP2010/063657 JP2010063657W WO2011024648A1 WO 2011024648 A1 WO2011024648 A1 WO 2011024648A1 JP 2010063657 W JP2010063657 W JP 2010063657W WO 2011024648 A1 WO2011024648 A1 WO 2011024648A1
Authority
WO
WIPO (PCT)
Prior art keywords
device layer
mems
manufacturing
base material
mold
Prior art date
Application number
PCT/JP2010/063657
Other languages
French (fr)
Japanese (ja)
Inventor
進 杉山
諭 天谷
ベト ズン ダオ
Original Assignee
学校法人立命館
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館, Towa株式会社 filed Critical 学校法人立命館
Publication of WO2011024648A1 publication Critical patent/WO2011024648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/052Ink-jet print cartridges

Definitions

  • the present invention relates to a MEMS (Micro Electro Mechanical Systems) and a manufacturing method thereof, and more particularly, to a MEMS capable of achieving high functionality as well as cost reduction and the manufacturing method thereof.
  • MEMS Micro Electro Mechanical Systems
  • MEMS refers to a device in which a device layer including machine element parts, electronic circuits, and the like is integrated on a substrate.
  • MEMS is applied to inkjet printer heads, pressure sensors, acceleration sensors, optical switches, and the like, and its application range is expected to expand further in the future.
  • a MEMS device layer is generally configured by an SOI (Silicon On Insulator) substrate.
  • SOI substrates have been widely used in MEMS device layers because they can be processed using common semiconductor processing processes.
  • Patent Document 1 there is a problem in the MEMS in which the device layer is configured by the SOI substrate.
  • the problem is that a lot of cost is required in manufacturing the MEMS, and that some of the functions of the MEMS are not at a sufficient level.
  • the problem of cost arises because the semiconductor processing process used for processing the SOI substrate requires an expensive apparatus.
  • functional problems occur due to the properties of the SOI substrate. For example, an SOI substrate is poor in flexibility, and a MEMS in which a device layer is configured using the SOI substrate has a problem that sensitivity is not sufficient when applied to a sensor.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a MEMS having a low cost and a high function, and a manufacturing method thereof.
  • a MEMS manufacturing method is a MEMS manufacturing method including a device layer composed of a microstructure and a base material, and a moldable material is molded by a mold.
  • a device layer composed of a microstructure and a base material
  • a moldable material is molded by a mold.
  • the MEMS manufacturing method according to claim 2 is characterized in that the removing step is performed by machining.
  • the MEMS manufacturing method according to claim 3 is characterized in that, in the removing step, a reinforcing material is filled between the device layer and the substrate prior to the removal of the remaining film.
  • the MEMS manufacturing method according to claim 4 is characterized in that the mold has an opening and includes a plurality of grooves used for forming the device layer, and the depth of the groove can be arbitrarily set. It is characterized by. *
  • the MEMS manufacturing method according to claim 5 is characterized in that the side surface of the groove provided in the mold is tilted so that the groove width increases from the bottom surface of the groove to the opening.
  • a MEMS manufacturing method including a coating step of coating a part or all of the device layer with a conductive material prior to the bonding step.
  • the MEMS manufacturing method according to claim 7 is characterized in that in the molding step, at least one of a hole and a protrusion is provided in the device layer.
  • the MEMS manufacturing method according to claim 8 is characterized in that after the removing step, there is a finish coating step of coating a part or all of the device layer with a conductive material.
  • a MEMS according to a ninth aspect is manufactured by the MEMS manufacturing method according to any one of the first to eighth aspects. *
  • one of the device layer and the base material has an alignment hole provided for alignment between the device layer and the base material, the device layer and the base material.
  • the other is provided with an alignment protrusion provided for alignment between the device layer and the substrate, and the alignment protrusion is inserted into the alignment hole.
  • the MEMS according to claim 11 is characterized in that a through-hole provided for electrical connection is provided in at least one of the device layer and the base material.
  • the MEMS of claim 12 is characterized in that the device layer is formed by laminating a plurality of layers.
  • the MEMS according to claim 13 is characterized in that a cap for sealing the device layer is attached to the device layer or the base material.
  • the MEMS manufacturing method wherein a moldable material is molded by a mold to form a device layer, a device layer formed by the molding step, and a substrate that is bonded to the base material. And a removal step of removing the residual film generated in the molding step from the device layer. Unlike the case where a device layer is manufactured using an SOI substrate, the above steps in the MEMS manufacturing method can be performed without using a semiconductor processing process. Therefore, the present MEMS manufacturing method has an effect that the MEMS can be manufactured at low cost.
  • the removing step is performed by machining.
  • the surface of the device layer can be mirror-finished, and further, MEMS that is a mirror device can be easily obtained.
  • the reinforcing material is filled between the device layer and the substrate prior to the removal of the remaining film. This has the effect that the device layer can be prevented from being damaged when the remaining film is removed.
  • the mold has an opening and a plurality of grooves used for forming the device layer, and the depth of the groove can be arbitrarily set.
  • a harmful agent such as hydrofluoric acid may be used to provide a structure having a hollow portion such as a movable structure or a cantilever in the MEMS device layer.
  • a structure having the hollow portion can be provided in the MEMS layer without using harmful chemicals. That is, this method has an effect that MEMS can be manufactured safely.
  • the side surface of the groove provided in the mold is tilted so that the groove width increases from the bottom surface of the groove to the opening.
  • the MEMS manufacturing method according to claim 6 has a coating step of coating part or all of the device layer with a conductive material prior to the bonding step.
  • the side surface of the groove provided in the mold is tilted so that the width of the groove increases from the bottom surface of the groove to the opening. Therefore, the surface formed by the side surface of the groove provided in the mold of the device layer is also tilted, and after the device layer is bonded to the substrate by the bonding process, each surface is coated with a conductive material. It becomes difficult.
  • the coating on each surface is easy before the bonding step. Therefore, this step has an effect that each of the surfaces can be appropriately coated with a conductive material.
  • At least one of a hole and a protrusion is provided in the device layer in the molding step. Since the holes and protrusions can be used for alignment between the device layer and the substrate, providing the holes and protrusions in the device layer has an effect of improving the productivity of MEMS. *
  • the MEMS manufacturing method according to claim 8 has a finish coating step of coating a part or the whole of the device layer with a conductive material after the removing step. Since this step is performed after the removing step, the surface of the device layer formed by removing the remaining film in the removing step can be appropriately coated with a conductive material.
  • the MEMS according to a ninth aspect is manufactured by the MEMS manufacturing method according to any one of the first to eighth aspects.
  • the MEMS manufacturing method according to any one of claims 1 to 8 has a feature of manufacturing a device layer using a molding process or the like. Therefore, in the present MEMS, a device layer is configured by a material to which a molding process, a removal process, and the like can be applied. Specifically, the device layer is configured using resin, glass, rubber, metal, or the like.
  • Each of the materials has properties different from those of SOI used for a device layer in the conventional MEMS. Thereby, it can be set as a high function compared with the conventional MEMS in this MEMS which comprised the device layer with each said material. For example, when the device layer is made of resin, this MEMS has a higher sensitivity than conventional MEMS because of the characteristic that the resin is more flexible than the SOI substrate. it can. *
  • the MEMS according to claim 10 includes an alignment hole provided for alignment between the device layer and the substrate on one of the device layer and the substrate, and a device layer and a substrate on the other of the device layer and the substrate. Alignment protrusions are provided for alignment with the material, and alignment protrusions are inserted into the alignment holes. This configuration has the effect of facilitating the alignment during manufacturing.
  • the alignment hole may be a through hole or a blind hole.
  • a through hole for electrical connection is provided in the device layer.
  • This MEMS has an effect that by using the through hole, electrical connection between the device layer and the electronic substrate, integration of the integrated circuit, electronic circuit, and the like can be easily performed.
  • the MEMS of the twelfth aspect at least one of the device layer and the base material is formed by laminating a plurality of layers. Each layer to be stacked may have a different function. Therefore, the MEMS can be integrated with various functions. This contributes to expanding the application range of the present MEMS. *
  • a cap for sealing the device layer or the substrate is attached to the device layer or the substrate. Attaching the cap has an effect that the MEMS can be vacuum-sealed.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of an A1-A2 plane in FIG. 1.
  • Sectional drawing which shows the cross-section of the B1-B2 surface in FIG.
  • the flowchart which shows the manufacturing method of MEMS of this invention.
  • Sectional drawing which shows the cross-section of a type
  • Explanatory drawing of a formation process Explanatory drawing of a removal process.
  • Explanatory drawing which shows the case where MEMS is mounted in the electronic substrate.
  • Explanatory drawing which shows the case where the device layer of MEMS is comprised in the multilayer. Explanatory drawing which shows the case where a flow path is formed in MEMS. Explanatory drawing which shows the case where a vacuum sealing cap is attached to MEMS. Explanatory drawing seen from the C direction in FIG.
  • the MEMS 1 of the present invention shown in FIGS. 1 to 3 includes a device layer 2 and a substrate 3. Is provided. Note that the MEMS 1 realizes a mirror device, but this is an example, and the MEMS of the present invention can be realized as having various other functions.
  • the device layer 2 includes a first support portion 4 that opposes the Y direction and a second support portion 5 that opposes the X direction.
  • the 1st support part 4 and the 2nd support part 5 are being fixed to the upper surface of the base
  • the first support part 4 and the second support part 5 have the same thickness along the Z direction.
  • the elastic connecting portion 6 connects the first support portion 4 and the rotating plate 7.
  • the surface of the rotating plate 7 (upper surface in the + Z direction) is configured as a mirror surface so that the irradiated light is reflected.
  • the rotating plate 7 is configured to float with a distance from the upper surface of the base 3 together with the elastic connecting portion 6. *
  • the spring portion 8 has a folded spring shape, and one end is connected to the second support portion and the other end is connected to the fixed portion 9.
  • the fixing part 9 is fixed to the upper surface of the base 3.
  • the rotating plate 7, the spring portion 8, and the fixing portion 9 are all configured to have the same thickness along the Z direction. These thicknesses are the same as those of the first support portion 4 and the second support portion 5. Thin compared. Further, since the upper surface of the spring portion 8 is provided without a step difference from the upper surface of the second support portion 5, the spring portion 8 floats with respect to the upper surface of the base 3 as shown in FIG. 3. *
  • the fixed electrode group 10 is provided on the end surface of the fixed portion 9 on the side close to the center portion of the MEMS 1.
  • the fixed electrode group 10 is configured in a comb-like shape, and is fixed to the upper surface of the base 3 as shown in FIGS.
  • the movable electrode group 11 is provided at both ends of the rotating plate 7 along the X direction.
  • the fixed electrode group 10 and the movable electrode group 11 are arranged so as to be engaged with each other with a minute distance in the Y direction. Further, as described above, the fixed portion 9 including the fixed electrode group 10 and the rotating plate 7 including the movable electrode group 11 have the same thickness in the Z direction, and the first support portion 4, 2 Thin compared to the thickness of the support portion 5 in the Z direction.
  • the movable electrode group 11 is positioned in the + Z direction by a predetermined distance with respect to the fixed electrode group 10 fixed above the base 3.
  • the predetermined distance is a distance equal to the difference between the thickness in the Z direction of the rotating plate 7 and the like and the thickness in the Z direction of the first support portion 4 and the like.
  • the width along the Y direction of the individual electrodes of the fixed electrode group 10 and the movable electrode group 11 is, for example, about 3 to 5 ⁇ m.
  • the distance along the Y direction between the individual electrodes of the fixed electrode group 10 and the individual electrodes of the movable electrode group 11 adjacent thereto is about 1.5 to 5 ⁇ m.
  • the positioning portion 14 is configured by a positioning hole 13 provided in the fixing portion 9 and a positioning projection 15 provided in the base 3, and by inserting the positioning projection 15 into the positioning hole 13 as shown in FIG.
  • the device layer 2 and the substrate 3 are positioned.
  • the positioning hole 13 is illustrated as a through hole, it may be a blind hole.
  • the fixing portion 9 is also provided with an opening 12, which may be used as a positioning hole. *
  • the MEMS 1 shown in FIGS. 1 to 3 described above operates by applying electric powers having different polarities to the fixed electrode group 10 and the movable electrode group 11. For example, a positive voltage is applied to the fixed electrode group 10 on the ⁇ X direction side in FIGS. 2 and 3, and a negative voltage is applied to the movable electrode group 11. As a result, an attractive force is generated between the fixed electrode group 10 and the movable electrode group 11 by the electrostatic force.
  • the movable electrode group 11 is configured to be positioned in the + X direction by a predetermined distance with respect to the fixed electrode group 10. Therefore, when the attracting force is generated, the movable electrode group 11 on the ⁇ X direction side is attracted in the ⁇ Z direction toward the fixed electrode group 10.
  • the rotation plate 7 rotates in the + ⁇ direction with the elastic connecting portion 6 as the rotation axis.
  • the rotating plate 7 rotates in the ⁇ direction.
  • the MEMS 1 can reflect the light irradiated on the surface of the rotating plate 7 (upper surface in the + Z direction) and controls the angle of the light within an angle within a predetermined range. be able to. That is, the MEMS 1 functions as a mirror device.
  • the MEMS of the present invention can be realized not only as a mirror device but also as having various functions.
  • This manufacturing method will be described with reference to FIGS.
  • the description will be made on the assumption that the MEMS 101 shown in FIG. 11 simplified compared with FIGS. 1 to 3 is manufactured.
  • FIGS. 5 to 11 show cross sections related to the X-axis and the Z-axis. *
  • the MEMS 1 of the present invention can be manufactured through various processes.
  • a mold as shown in FIG. 5 is prepared. Since the device layer 61 shown in FIG. 6 is configured using a moldable material such as resin, glass, rubber, or metal, it is necessary to prepare a mold for molding them.
  • the mold 51 is provided with grooves 52 to 57 in order to realize the device layer 61 of the MEMS 101. *
  • the surfaces 52a, 52c, and 52e that are the side surfaces of the groove 52 are inclined so that the groove width increases from the surfaces 52b and 52d that are the bottom surfaces to the opening 52f.
  • the grooves 53 to 57 are similarly configured. As described above, the reason is that the surfaces 52a, 52c, 52e and the like which are the side surfaces of the grooves 52 to 57 are configured to improve the release of the device layer 61 from the mold 51 in the subsequent molding process.
  • the tilt angle of the side surfaces of the grooves 52 to 57, such as the surfaces 52a, 52c, and 52e, may be any angle that can smoothly release the device layer 61 from the mold 51 in the molding process.
  • FIG. 5 is exaggerated to clarify that the side surfaces of the surfaces 52a, 52c, and 52e of the grooves 52 to 57 provided in the mold 51 are tilted. *
  • the depth from the opening part to the bottom face of the grooves 52 to 57 can be arbitrarily set.
  • the depths of the bottom surfaces (for example, the surfaces 52b and 52d in the groove 52) with respect to the openings (for example, the opening 52f in the groove 52) of the grooves 52 to 57 are set so as to exist in two types.
  • the present invention is not limited to this, and the depth from the opening of the groove to the bottom may be set so that there are three or more types.
  • channel 52 is comprised so that it may have two bottom surfaces (surface 52b, 52d) from which the depth from the opening part 52f differs.
  • bottom surfaces having different depths from two or more types of openings may be provided in a single groove.
  • the MEMS 101 can be provided with the flange 61g, the hollow portion 68, the hole 69, and the like as shown in FIG. *
  • the mold 51 may be made of silicon, but may be made of a material such as nickel, nickel-tungsten, nickel-iron, etc. because it has the property of being easily damaged. Constituting with a material such as nickel increases the strength of the mold 51 and makes it difficult to break.
  • the mold 51 made of a material such as nickel can be obtained by electroforming using silicon or the like, and can be manufactured by laser processing or machining. Further, the mold 51 made of a material such as nickel can be additionally machined by using laser processing or machining after production. As described above, manufacturing and additional machining of the mold 51 using laser processing and machining makes it possible to form a free-form surface on the device layer 61 formed thereby, and reduce its cost. There is an effect such as what can be done. *
  • the base material 91 may be a flat or unprocessed base material or a base material processed by machining, photolithography, or the like. However, like the device layer 61, a material that can be molded is used. It may be configured. When the base material 91 is configured using a moldable material, an unillustrated mold for forming the base material 91 is prepared in the same manner as described above. *
  • the material constituting the device layer 61 is formed.
  • the molding step can be performed using, for example, a hot embossing method. Applying the hot embossing method has an advantage that the types of materials that can be used for the device layer 61 are increased. Further, this step may be performed by applying a transfer molding method, a UV (ultraviolet ray) imprint method, a casting method, an injection molding method, or the like. *
  • the material which comprises the device layer 61 should just be a material which can be shape
  • resin, glass, rubber or the like can be employed.
  • Employing a resin as the material constituting the device layer 61 leads to the realization of a high-sensitivity sensor utilizing the high flexibility that does not exist in the SOI that the device layer 61 has.
  • adopting a highly transparent resin, glass, or the like has an advantage that the MEMS 101 can be applied to a display or the like. *
  • the material constituting the device layer 61 a plate-like shape before molding can be used, but even a liquid material can be used.
  • a resin a material such as thermosetting or thermoplastic can be used.
  • an additive may be added to the material constituting the device layer 61.
  • the additive include a conductive material and a structural reinforcing material.
  • the device layer 61 itself can be made conductive.
  • a structural reinforcing material is added, the strength of the device layer 61 can be increased and the durability thereof can be increased.
  • a material which comprises the device layer 61 a metal and a conductive resin can also be employ
  • the molding step can be performed by arranging a material constituting the device layer 61 and a mold 51. By doing so, the material constituting the device layer 61 is formed into a shape corresponding to the mold 51. Thereafter, the device layer 61 is released from the mold 51.
  • the device layer 61 has portions 62 to 67 formed by the forming process, and has a residual film 61a generated by the forming process.
  • the surface 62 a of the part 62 is a surface formed by the surface 52 a of the mold 51.
  • the surfaces 62b to 62e are surfaces formed by the surfaces 52b to 52e of the mold 51.
  • the surfaces of the parts 63 to 67 are surfaces formed by the surfaces constituting the grooves 52 to 57 of the mold 51.
  • the surfaces 52a, 52c, and 52e that are the surfaces to be molded are configured as inclined surfaces by the surfaces 52a, 52c, and 52e that are the inclined surfaces of the mold 51.
  • the tilting of the surfaces 52a, 52c, 52e, etc. is exaggerated, and it is shown that 62a, 62c, 62e, etc. in FIG. ing. *
  • the base material 91 can also be manufactured by a molding process.
  • the base material 91 is manufactured by the molding process, it is possible to provide the parts 92 to 94 in the molding process.
  • the base material 91 can also set the thickness (thickness t shown in FIG. 11) freely in a formation process. *
  • the surfaces 62a, 62e and the like of the portion 62 are coated with a conductive material to form a coating layer 81.
  • This step is unnecessary when the material forming the device layer 61 is a conductive material, or when the device layer 61 does not need to be coated.
  • the device layer 61 needs to be coated also in the finish coating step of S46 in order to coat the surface 62f shown in FIG.
  • this finish coating process there is a portion that cannot be sufficiently coated. That is, the surfaces 62a, 62e and the like which are inclined by being formed by the surfaces 52a and 52e which are the inclined surfaces provided in the mold 51 described above. These planes are visible when viewed in the + Z direction from ⁇ Z, but are not visible when viewed in the ⁇ Z direction from the + Z direction.
  • the finish coating process of S46 since the coating is performed from the + Z direction to the -Z direction, it is difficult to coat these surfaces.
  • the surfaces such as the surfaces 62a and 62e are previously coated at this stage. This is because the coating can be performed from the ⁇ Z direction to the + Z direction at this stage.
  • the coating material is gold, aluminum, platinum or the like. Further, in order to coat only necessary portions, it is preferable to perform coating using a sputtering method or the like after using a mask. In addition, when this step is performed using a mask, there is an advantage that an electrical wiring layer (not shown) can be formed at the same time. *
  • the device layer 61 is bonded to the base material 91.
  • the surfaces 62 b and 62 d of the device layer 61 are bonded so as to face the base material 91.
  • FIG. 9 shows a state where the bonding is performed.
  • a surface activated bonding method using ultraviolet rays, plasma, or the like can be applied.
  • an adhesive or a non-conductive tape may be used.
  • the non-conductive tape here, a thermosetting tape for die bonding used in a semiconductor element may be used. *
  • the holes such as the hole 69 provided in the device layer 61 and the portions 92 to 94 provided in the base material 91 can be used in alignment when the device layer 61 is joined to the base material 91.
  • the holes 69 and the like used for alignment correspond to the positioning holes 13 in the MEMS 1.
  • the parts 92 to 94 used for alignment correspond to the positioning protrusion 15 in the MEMS 1.
  • the holes such as the hole 69 used in the alignment when the device layer 61 and the substrate 91 are joined may be either a through hole or a blind hole.
  • the remaining film 61a of the device layer 61 is removed by machining.
  • the surface 62f and the like are formed by removing the remaining film 61a as shown in FIG. 10.
  • the surface 62f and the like have a surface accuracy of a level applicable to a mirror device. This can be done by machining.
  • this process can be specifically implemented by applying an elliptical vibration cutting method, a fly cutting method, or the like.
  • a polishing method may be applied to increase the work efficiency of this step.
  • the remaining film 61a can be removed in a non-contact manner by applying a laser processing method, a plasma processing method, an electron beam processing method, or the like instead of the mechanical processing.
  • a reinforcing material may be used to prevent damage to the device layer 61 and the like. Specifically, after the reinforcing material is filled between the device layer 61 and the base material 91, the remaining film 61a is removed. This can prevent the device layer 61 and the like from being damaged when the residual film 61a is removed. However, the reinforcing material needs to be completely removed later, and it should not adversely affect the material constituting the device layer 61 and the like. Therefore, it is necessary to use a material that satisfies those requirements. *
  • the removal of the reinforcing material after the removal of the remaining film 61a needs to be performed by a method suitable for the properties of the reinforcing material.
  • the reinforcing material is dissolved and etched.
  • post-processing may be performed by ashing, laser processing, plasma processing, electron beam processing, or the like to remove them.
  • the surface of the device layer 61 for example, the surface 62f of the part 62
  • the surface of the device layer 61 may be roughened. This is particularly a problem when these surfaces are mirror surfaces. This problem can be solved by performing a mask on the surface of the device layer 61 during the post-processing.
  • the finish coating process of S46 is performed.
  • the finish coating process as with the coating process, coating with a conductive material is performed.
  • the surface to be coated mainly is the surface 62f formed by removing the remaining film 61a in the removing step. This is because the surface 62a and the like are already coated by the coating process. Note that it is not impossible to perform coating of the device layer 61 by omitting the coating process and only in this process. In this case, it is preferable to carry out this step while the device layer 61 is tilted and further rotated so that the coating material also wraps around the surface 62a and the like and appropriate coating can be performed. *
  • the MEMS 101 manufactured by the above process is as shown in FIG.
  • the MEMS 101 includes a flange 61g, a hollow portion 68, a hole 69, and the like. These are formed by arbitrarily setting the depths of the grooves 52 to 57 of the mold 51 (two stages in FIG. 5).
  • the wrinkles such as the wrinkles 61g are provided in order to avoid unnecessary electrical continuity generated by coating even unnecessary portions in the finish coating process.
  • the hollow part 68 is used for structures, such as a flow path, a movable part structure, and a cantilever.
  • the holes such as the hole 69 can be used for electrical wiring, alignment at the time of joining the device layer 61 and the base material 91, and the like.
  • the holes such as the hole 69 are configured as through holes as shown in principle. However, when used for alignment at the time of joining the device layer 61 and the base material 91, the holes such as the holes 69 may be configured as blind holes. *
  • FIGS. 12 to 15 cross sections related to the X axis and the Z axis are shown.
  • the MEMS 201 illustrated in FIG. 12 is designed to be mounted on the electronic substrate 231.
  • FIG. 12 illustrates a state where the MEMS 201 is mounted on the electronic substrate 231.
  • a through hole 204 a is provided in the device layer 202 of the MEMS 201, and a through hole 206 is provided in the base material 203.
  • the MEMS 201 is provided with a through hole 204 that penetrates the device layer 202 and the base material 203 along the Z-axis, and includes a through hole 204 a and a through hole 206.
  • the through hole 206 is filled with a conductive adhesive 205, and the coating layer 81 coated on the wall surface of the through hole 204 a of the device layer 202 is electrically connected to the bump 233.
  • the bump 233 is also connected to the wiring 232 of the electronic substrate 231. Accordingly, the coating layer 81 and the wiring 232 can be easily electrically connected using the through hole 204.
  • this electrical connection can be performed together with the alignment of the device layer 202 and the base material 203 by the through hole 204a, the portion 211, and the like.
  • the through hole 206 can be provided, for example, by punching.
  • the through-hole 206 can also be provided using a drill or a laser.
  • the coating layer 81 and the wiring 232 can be electrically connected by directly bonding the base material 203 and the electronic substrate 231 with the adhesive 205 without using the bump 233.
  • a device layer 302 includes a first layer 302 a and a second layer 302 b, and the device layer 302 is bonded to a base material 303.
  • the first layer 302a and the second layer 302b can have different functions.
  • the connection between the first layer 302a and the second layer 302b and the connection between the second layer 302b and the base material 303 use a through hole such as the through hole 304 provided in the second layer 302b. Has been done. *
  • the device layer 302 is composed of two layers (a first layer 302a and a second layer 302b), but may be composed of more layers.
  • the multilayered device layer 302 enables integration of device functions and control elements (for example, ICs), and contributes to higher functionality and multi-function of the MEMS 301.
  • a MEMS 401 illustrated in FIG. 14 includes a flow path 404 including a device layer 402 and a base material 403.
  • the MEMS manufactured by the above MEMS manufacturing method can be configured not only with a movable part structure such as MEMS 1 but also with a non-movable part structure such as a flow path, and further with a movable part structure and a non-movable part. What is equipped with a structure can also be manufactured easily. Based on this, the MEMS 401 can be realized as a multifunctional MEMS including an unillustrated pump for moving a fluid flowing through the flow path having the opening 405, an unillustrated valve, and the like. *
  • the MEMS 501 shown in FIG. 15 and FIG. 16 assumes vacuum sealing of a device layer not shown.
  • a groove 504 is provided in the base material 503.
  • the cap 521 is provided with a convex portion 522 that can be inserted into the groove 504. Therefore, the device layer can be vacuum-sealed by inserting the convex portion 522 of the cap 521 into the groove 504 of the base material 503.
  • the vacuum sealing of the device layer can also be performed by attaching a cap to the device layer.
  • the cap 221 is attached to the device layer 202 of the MEMS 201, but the device layer can be vacuum-sealed also in this way. *
  • the MEMS manufacturing method according to the present invention can reduce the cost for manufacturing the MEMS 1, 101, and the like.
  • the manufacturing method of this MEMS has a low-cost and high-productivity formation process and removal process.
  • the removing step can be performed by machining or the like. Since the semiconductor processing process is not used in principle, the cost of MEMS can be reduced and the productivity can be improved.
  • mold used at a formation process can set the depth arbitrarily. This leads to the creation of a structure having a hollow part such as a flow path, a movable structure, a cantilever, or a soot in the MEMS.
  • a harmful agent such as hydrofluoric acid may be used in order to provide the above-described structure and wrinkles.
  • the harmful drug is unnecessary, and therefore the MEMS can be manufactured safely.
  • the fact that the process using the harmful agent is unnecessary contributes to the improvement of the productivity of MEMS. *
  • a hole can be utilized when aligning a device layer and a base material, electrical wiring, and configuring the device layer in multiple layers. That is, providing the holes contributes to enhancing the productivity and the like of MEMS.
  • a hole is comprised as a through-hole.
  • the hole may be configured as a blind hole when used for alignment when joining the device layer and the substrate.
  • this manufacturing method can easily manufacture MEMS (for example, MEMS1) which is a mirror device.
  • the MEMS manufactured by the present MEMS manufacturing method as compared with a MEMS manufactured using a conventional SOI.
  • adopting a resin as the material constituting the device layer leads to the realization of a high-sensitivity sensor utilizing the high flexibility not possessed by the SOI of the device layer.
  • the MEMS can be applied to a display or the like.
  • the MEMS manufactured by the present MEMS manufacturing method can be adapted to electrostatic driving, electromagnetic driving, thermal driving, piezoelectric driving, and the like.
  • a piezoelectrically drivable MEMS can be obtained by adopting a piezoelectric plastic as a material constituting the device layer when applying the MEMS manufacturing method.
  • the MEMS manufactured by the present MEMS manufacturing method can have not only a drivable structure such as an actuator but also a non-movable structure such as a microchannel, and is configured as a composite of them. You can also.
  • the MEMS manufactured by the present MEMS manufacturing method can cope with the integration of device functions and control elements (for example, ICs), it can have a wide application range. *
  • MEMS manufacturing method, MEMS 1, 101, and the like shown in the present embodiment are merely a MEMS manufacturing method and a MEMS mode according to the present invention, and various methods can be used without departing from the gist of the present invention. Variations are possible.
  • the MEMS manufacturing method and the MEMS according to the present invention can be applied to a MEMS manufacturing method having a device layer that can be molded and machined, and a MEMS having the device layer.

Abstract

Provided are an MEMS having a low cost and a high functionality and a method for manufacturing the MEMS. A method for manufacturing an MEMS (101) comprised of a device layer (61) composed of a fine structure and a substrate (91) comprises a mold step (S42) in which a moldable material is molded by a die (51) to form the device layer (61) and the substrate (91); an adhesion step (S44) in which the device layer (61) and the substrate (91), formed by the molding step are adhered to each other; and a removal step (S45) in which a residual film (61a) produced in the mold step is removed from the device layer (61).

Description

MEMS、及びその製造方法MEMS and manufacturing method thereof
本発明は、MEMS(Micro Electro Mechanical Systems)、及びその製造方法に関し、特に、低コスト化等とともに、高機能化を図ることができるMEMS、及びその製造方法に関する。 The present invention relates to a MEMS (Micro Electro Mechanical Systems) and a manufacturing method thereof, and more particularly, to a MEMS capable of achieving high functionality as well as cost reduction and the manufacturing method thereof.
MEMSとは、機械要素部品、電子回路等を含み構成されるデバイス層を、基材の上に集積化したデバイスを指す。現在、MEMSは、インクジェットプリンターヘッド、圧力センサ、加速度センサ、光スイッチ等に応用されており、今後もその応用範囲が、益々拡大することが期待されている。  MEMS refers to a device in which a device layer including machine element parts, electronic circuits, and the like is integrated on a substrate. Currently, MEMS is applied to inkjet printer heads, pressure sensors, acceleration sensors, optical switches, and the like, and its application range is expected to expand further in the future. *
従来、MEMSのデバイス層は、特許文献1に開示されるように、SOI(Silicon On Insulator)基板により構成することが一般的であった。SOI基板は、一般的な半導体加工プロセスを使用して加工することができることから、MEMSのデバイス層に広く使用されてきた。 Conventionally, as disclosed in Patent Document 1, a MEMS device layer is generally configured by an SOI (Silicon On Insulator) substrate. SOI substrates have been widely used in MEMS device layers because they can be processed using common semiconductor processing processes.
特開2009-154215号公報JP 2009-154215 A
しかしながら、特許文献1に開示されるような、SOI基板によりデバイス層を構成したMEMSには問題も有った。その問題とは、MEMSを製造する際に多くのコストを要すること、及びMEMSの有する機能の幾つかが十分なレベルでは無いこと等である。まず、コストの問題は、SOI基板の加工に用いる半導体加工プロセスが、高価な装置を必要とすることにより発生する。また、機能の問題は、SOI基板の有する性質により発生する。例えば、SOI基板は柔軟性に乏しく、それを使用してデバイス層を構成したMEMSは、センサに応用した場合、感度が十分でないという問題を有している。  However, as disclosed in Patent Document 1, there is a problem in the MEMS in which the device layer is configured by the SOI substrate. The problem is that a lot of cost is required in manufacturing the MEMS, and that some of the functions of the MEMS are not at a sufficient level. First, the problem of cost arises because the semiconductor processing process used for processing the SOI substrate requires an expensive apparatus. In addition, functional problems occur due to the properties of the SOI substrate. For example, an SOI substrate is poor in flexibility, and a MEMS in which a device layer is configured using the SOI substrate has a problem that sensitivity is not sufficient when applied to a sensor. *
本発明は、上記のような課題に鑑みなされたものであり、低コスト、且つ、高い機能を有するMEMS、及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a MEMS having a low cost and a high function, and a manufacturing method thereof.
上記目的を達成するために、請求項1のMEMSの製造方法は、微細構造体からなるデバイス層と、基材とにより構成されるMEMSの製造方法であって、成形可能な材料を型により成形することにより、前記デバイス層を成形する成形工程と、前記成形工程により成形された前記デバイス層と、前記基材とを接合する接合工程と、前記成形工程で生じた残膜を、前記デバイス層より除去する除去工程と、を有することを特徴とする。  In order to achieve the above object, a MEMS manufacturing method according to claim 1 is a MEMS manufacturing method including a device layer composed of a microstructure and a base material, and a moldable material is molded by a mold. By forming the device layer, the device layer formed by the molding step, the joining step for joining the base material, and the residual film generated in the molding step are used as the device layer. And a removal step for further removal. *
請求項2に記載のMEMSの製造方法は、前記除去工程が、機械加工により行われることを特徴とする。  The MEMS manufacturing method according to claim 2 is characterized in that the removing step is performed by machining. *
請求項3に記載のMEMSの製造方法は、前記除去工程において、前記残膜の除去に先立ち、前記デバイス層と前記基材との間に補強材を充填することを特徴とする。  The MEMS manufacturing method according to claim 3 is characterized in that, in the removing step, a reinforcing material is filled between the device layer and the substrate prior to the removal of the remaining film. *
また、請求項4のMEMSの製造方法は、前記型が、開口部を有するとともに、前記デバイス層の成形に使用される溝を複数備え、前記溝の深さは、任意に設定可能であることを特徴とする。  The MEMS manufacturing method according to claim 4 is characterized in that the mold has an opening and includes a plurality of grooves used for forming the device layer, and the depth of the groove can be arbitrarily set. It is characterized by. *
また、請求項5のMEMSの製造方法は、前記型に具備される溝の側面が、該溝の底面から開口部にかけて、溝幅が拡大するように傾倒されていることを特徴とする。  The MEMS manufacturing method according to claim 5 is characterized in that the side surface of the groove provided in the mold is tilted so that the groove width increases from the bottom surface of the groove to the opening. *
また、請求項6のMEMSの製造方法は、前記接合工程に先立ち、導電性材料により前記デバイス層の一部、または全部をコーティングするコーティング工程、を有することを特徴とする。  According to a sixth aspect of the present invention, there is provided a MEMS manufacturing method including a coating step of coating a part or all of the device layer with a conductive material prior to the bonding step. *
また、請求項7のMEMSの製造方法は、前記成形工程において、前記デバイス層に孔、または突起のうち少なくとも一つが、設けられることを特徴とする。  The MEMS manufacturing method according to claim 7 is characterized in that in the molding step, at least one of a hole and a protrusion is provided in the device layer. *
また、請求項8のMEMSの製造方法は、前記除去工程後に、導電性材料により前記デバイス層の一部、または全部をコーティングする仕上コーティング工程、を有することを特徴とする。  The MEMS manufacturing method according to claim 8 is characterized in that after the removing step, there is a finish coating step of coating a part or all of the device layer with a conductive material. *
また、請求項9のMEMSは、請求項1乃至8の何れか1項記載のMEMSの製造方法により製造されることを特徴とする。  A MEMS according to a ninth aspect is manufactured by the MEMS manufacturing method according to any one of the first to eighth aspects. *
また、請求項10のMEMSは、前記デバイス層と前記基材とのうち一方に、該デバイス層と該基材とのアライメントに供されるアライメント用孔が、前記デバイス層、及び前記基材のうち他方に、該デバイス層と該基材とのアライメントに供されるアライメント用突起が、夫々設けられており、前記アライメント用孔には、前記アライメント用突起が挿入されていることを特徴とする。  Further, in the MEMS of claim 10, one of the device layer and the base material has an alignment hole provided for alignment between the device layer and the base material, the device layer and the base material. The other is provided with an alignment protrusion provided for alignment between the device layer and the substrate, and the alignment protrusion is inserted into the alignment hole. . *
また、請求項11のMEMSは、前記デバイス層と前記基材との少なくとも一方に、電気的接続に供される貫通孔が設けられることを特徴とする。  The MEMS according to claim 11 is characterized in that a through-hole provided for electrical connection is provided in at least one of the device layer and the base material. *
また、請求項12のMEMSは、前記デバイス層が、複数の層を積層することにより構成されることを特徴とする。  The MEMS of claim 12 is characterized in that the device layer is formed by laminating a plurality of layers. *
また、請求項13のMEMSは、前記デバイス層、又は前記基材に、前記デバイス層を封止するキャップが取付けられることを特徴とする。 The MEMS according to claim 13 is characterized in that a cap for sealing the device layer is attached to the device layer or the base material.
請求項1に記載のMEMSの製造方法は、成形可能な材料を型により成形することにより、デバイス層を成形する成形工程と、成形工程により成形されたデバイス層と、基材とを接合する接合工程と、成形工程で生じた残膜を、デバイス層より除去する除去工程とを有している。本MEMSの製造方法における上記工程は、SOI基板により、デバイス層を製造する場合と異なり、半導体加工プロセスを用いず行うことができる。そのため、本MEMSの製造方法は、安価にMEMSを製造できるという効果を有する。  The MEMS manufacturing method according to claim 1, wherein a moldable material is molded by a mold to form a device layer, a device layer formed by the molding step, and a substrate that is bonded to the base material. And a removal step of removing the residual film generated in the molding step from the device layer. Unlike the case where a device layer is manufactured using an SOI substrate, the above steps in the MEMS manufacturing method can be performed without using a semiconductor processing process. Therefore, the present MEMS manufacturing method has an effect that the MEMS can be manufactured at low cost. *
請求項2に記載のMEMSの製造方法は、除去工程が、機械加工により行われる。機械加工により、除去工程を行うことは、デバイス層の表面を鏡面化できることにつながり、延いては、容易にミラーデバイスであるMEMSを得ることができることにつながる。  In the MEMS manufacturing method according to the second aspect, the removing step is performed by machining. By performing the removal process by machining, the surface of the device layer can be mirror-finished, and further, MEMS that is a mirror device can be easily obtained. *
請求項3に記載のMEMSの製造方法は、除去工程において、残膜の除去に先立ち、デバイス層と基材との間に補強材を充填する。このことは、残膜を除去する際に、デバイス層が破損することを防止できるという効果を有する。  In the MEMS manufacturing method according to the third aspect, in the removing step, the reinforcing material is filled between the device layer and the substrate prior to the removal of the remaining film. This has the effect that the device layer can be prevented from being damaged when the remaining film is removed. *
請求項4に記載のMEMSの製造方法は、型が、開口部を有するとともに、デバイス層の成形に使用される溝を複数備えており、溝の深さは、任意に設定することができる。SOI基板によりデバイス層を得る場合においては、MEMSのデバイス層に可動構造、カンチレバー等中空部を有する構造を設けるためにフッ酸等の有害な薬剤を使用する場合があった。しかしながら、本方法においては、上記構成により、有害な薬剤を使用することなく、MEMS層に前記中空部を有する構造を設けることができる。即ち、本方法は、MEMSの製造を安全に行うことができるという効果を有する。  In the MEMS manufacturing method according to the fourth aspect, the mold has an opening and a plurality of grooves used for forming the device layer, and the depth of the groove can be arbitrarily set. In the case of obtaining a device layer from an SOI substrate, a harmful agent such as hydrofluoric acid may be used to provide a structure having a hollow portion such as a movable structure or a cantilever in the MEMS device layer. However, in this method, according to the above configuration, a structure having the hollow portion can be provided in the MEMS layer without using harmful chemicals. That is, this method has an effect that MEMS can be manufactured safely. *
請求項5に記載のMEMSの製造方法は、型に具備される溝の側面が、溝の底面から開口部にかけて、溝幅が拡大するように傾倒されている。このことは、成形工程において、型をデバイス層から取り外すことを容易にするという効果を有し、延いては、MEMSの生産効率を高める効果を有する。  In the MEMS manufacturing method according to the fifth aspect, the side surface of the groove provided in the mold is tilted so that the groove width increases from the bottom surface of the groove to the opening. This has the effect of facilitating removal of the mold from the device layer in the molding process, and thus has the effect of increasing the production efficiency of MEMS. *
請求項6に記載のMEMSの製造方法は、接合工程に先立ち、導電性材料によりデバイス層の一部、または全部をコーティングするコーティング工程を有している。上記のように、型に具備される溝の側面は、溝の底面から開口部にかけて、溝の幅が拡大するように傾倒されている。そのため、デバイス層の前記型に具備される溝の側面により成形される面も傾倒しており、接合工程によりデバイス層を基材に接合した後においては、前記各面を導電性材料によりコーティングすることが難しくなる。一方で、前記各面のコーティングは、接合工程前であれば容易である。従って、本工程は、前記各面を適切に導電性材料によりコーティングすることができるという効果を有する。  The MEMS manufacturing method according to claim 6 has a coating step of coating part or all of the device layer with a conductive material prior to the bonding step. As described above, the side surface of the groove provided in the mold is tilted so that the width of the groove increases from the bottom surface of the groove to the opening. Therefore, the surface formed by the side surface of the groove provided in the mold of the device layer is also tilted, and after the device layer is bonded to the substrate by the bonding process, each surface is coated with a conductive material. It becomes difficult. On the other hand, the coating on each surface is easy before the bonding step. Therefore, this step has an effect that each of the surfaces can be appropriately coated with a conductive material. *
請求項7に記載のMEMSの製造方法は、成形工程において、デバイス層に孔、または突起のうち少なくとも一つが、設けられる。孔、突起は、デバイス層と基材とのアライメント等に利用することができるため、孔、突起をデバイス層に設けることは、MEMSの生産性等を向上させる効果を有する。  In the MEMS manufacturing method according to claim 7, at least one of a hole and a protrusion is provided in the device layer in the molding step. Since the holes and protrusions can be used for alignment between the device layer and the substrate, providing the holes and protrusions in the device layer has an effect of improving the productivity of MEMS. *
請求項8に記載のMEMSの製造方法は、除去工程後に、導電性材料によりデバイス層の一部、または全部をコーティングする仕上コーティング工程を有している。本工程は、除去工程後に行われるため、除去工程により残膜を除去することにより形成されるデバイス層の面を適切に導電性材料によりコーティングすることができるという効果を有する。  The MEMS manufacturing method according to claim 8 has a finish coating step of coating a part or the whole of the device layer with a conductive material after the removing step. Since this step is performed after the removing step, the surface of the device layer formed by removing the remaining film in the removing step can be appropriately coated with a conductive material. *
請求項9に記載のMEMSは、請求項1乃至8の何れか1項に記載のMEMSの製造方法により製造されたものである。上記の通り、請求項1乃至8の何れか1項記載のMEMSの製造方法は、成形工程等を用いてデバイス層を製造するという特徴を有している。従って、本MEMSは、成形工程、除去工程等を適用できる材料により、デバイス層が構成され、具体的には、デバイス層が、樹脂、ガラス、ゴム、金属等を使用して構成されている。前記各材料は、従来のMEMSにおいてのデバイス層に使用されてきたSOIと異なる性質を有している。これにより、前記各材料によりデバイス層を構成した本MEMSには、従来のMEMSと比較して高機能とすることができる。例えば、樹脂を使用してデバイス層を構成した場合の本MEMSは、樹脂がSOI基板と比較して柔軟性に富んでいるという特徴から、従来のMEMSと比較して、高感度のセンサを実現できる。   The MEMS according to a ninth aspect is manufactured by the MEMS manufacturing method according to any one of the first to eighth aspects. As described above, the MEMS manufacturing method according to any one of claims 1 to 8 has a feature of manufacturing a device layer using a molding process or the like. Therefore, in the present MEMS, a device layer is configured by a material to which a molding process, a removal process, and the like can be applied. Specifically, the device layer is configured using resin, glass, rubber, metal, or the like. Each of the materials has properties different from those of SOI used for a device layer in the conventional MEMS. Thereby, it can be set as a high function compared with the conventional MEMS in this MEMS which comprised the device layer with each said material. For example, when the device layer is made of resin, this MEMS has a higher sensitivity than conventional MEMS because of the characteristic that the resin is more flexible than the SOI substrate. it can. *
請求項10のMEMSは、デバイス層と基材とのうち一方に、デバイス層と基材とのアライメントに供されるアライメント用孔が、デバイス層と基材とのうち他方に、デバイス層と基材とのアライメントに供されるアライメント用突起が夫々設けられ、アライメント用孔には、アライメント用突起が挿入されている。この構成は、製造時のアライメントを容易にするという効果を有する。なお、上記アライメント用孔は、貫通孔、止まり孔何れであってもよい。  The MEMS according to claim 10 includes an alignment hole provided for alignment between the device layer and the substrate on one of the device layer and the substrate, and a device layer and a substrate on the other of the device layer and the substrate. Alignment protrusions are provided for alignment with the material, and alignment protrusions are inserted into the alignment holes. This configuration has the effect of facilitating the alignment during manufacturing. The alignment hole may be a through hole or a blind hole. *
請求項11のMEMSは、デバイス層に、電気的接続に供される貫通孔が設けられている。本MEMSは、前記貫通孔を利用することにより、デバイス層と電子基板との電気的接続、集積回路、電子回路との集積等を容易に行うことができるという効果を有する。  In the MEMS of the eleventh aspect, a through hole for electrical connection is provided in the device layer. This MEMS has an effect that by using the through hole, electrical connection between the device layer and the electronic substrate, integration of the integrated circuit, electronic circuit, and the like can be easily performed. *
請求項12のMEMSは、デバイス層と基材との少なくとも一方が、複数の層を積層することにより構成されている。積層する各層は、夫々異なる機能を有するものであってよい。そのため、本MEMSは、多様な機能を集積したものとすることができる。このことは、本MEMSの応用範囲を拡大することに寄与する。  In the MEMS of the twelfth aspect, at least one of the device layer and the base material is formed by laminating a plurality of layers. Each layer to be stacked may have a different function. Therefore, the MEMS can be integrated with various functions. This contributes to expanding the application range of the present MEMS. *
請求項13のMEMSは、デバイス層、又は基材に、該デバイス層、又は該基材を封止するキャップが取り付けられる。キャップを取り付けることには、本MEMSを真空封止できるという効果がある。 In the MEMS of the thirteenth aspect, a cap for sealing the device layer or the substrate is attached to the device layer or the substrate. Attaching the cap has an effect that the MEMS can be vacuum-sealed.
本発明のMEMSの一例を示す説明図。Explanatory drawing which shows an example of MEMS of this invention. 図1におけるA1-A2面の断面構造を示す断面図。FIG. 2 is a cross-sectional view showing a cross-sectional structure of an A1-A2 plane in FIG. 1. 図1におけるB1-B2面の断面構造を示す断面図。Sectional drawing which shows the cross-section of the B1-B2 surface in FIG. 本発明のMEMSの製造方法を示すフローチャート。The flowchart which shows the manufacturing method of MEMS of this invention. 型の断面構造を示す断面図。Sectional drawing which shows the cross-section of a type | mold. 成形工程の説明図。Explanatory drawing of a formation process. 除去工程の説明図。Explanatory drawing of a removal process. コーティング工程の説明図。Explanatory drawing of a coating process. 接合工程の説明図。Explanatory drawing of a joining process. 除去工程の説明図。Explanatory drawing of a removal process. 仕上コーティング工程後のMEMSを示す説明図。Explanatory drawing which shows MEMS after a finish coating process. MEMSを電子基板に実装した場合を示す説明図。Explanatory drawing which shows the case where MEMS is mounted in the electronic substrate. MEMSのデバイス層を多層に構成した場合を示す説明図。Explanatory drawing which shows the case where the device layer of MEMS is comprised in the multilayer. MEMSに流路を形成した場合を示す説明図。Explanatory drawing which shows the case where a flow path is formed in MEMS. MEMSに真空封止キャップを取付けた場合を示す説明図。Explanatory drawing which shows the case where a vacuum sealing cap is attached to MEMS. 図15におけるC方向から見た説明図。Explanatory drawing seen from the C direction in FIG.
以下、図面を参照しつつ、本発明の実施の形態の説明を行う。図1乃至3に示す本発明のMEMS1は、デバイス層2、基体3
を備える。なお、MEMS1は、ミラーデバイスを実現するものであるが、これは一例であって、その他多様な機能を有するものとして本発明のMEMSは実現できる。 
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The MEMS 1 of the present invention shown in FIGS. 1 to 3 includes a device layer 2 and a substrate 3.
Is provided. Note that the MEMS 1 realizes a mirror device, but this is an example, and the MEMS of the present invention can be realized as having various other functions.
図1に示されるように、デバイス層2は、Y方向に相対向する第1支持部4と、X方向に相対向する第2支持部5とを備える。第1支持部4、第2支持部5は、図2、3に示されるように、夫々基体3の上面に固定されている。また、第1支持部4及び第2支持部5は、Z方向に沿った厚みが互いに同じである。弾性連結部6は、第1支持部4と、回動板7とを接続している。回動板7の表面(+Z方向の上面)は、照射された光が反射されるよう鏡面として構成される。なお、回動板7は、弾性連結部6とともに基体3の上面から距離を隔てて浮いて構成される。  As shown in FIG. 1, the device layer 2 includes a first support portion 4 that opposes the Y direction and a second support portion 5 that opposes the X direction. The 1st support part 4 and the 2nd support part 5 are being fixed to the upper surface of the base | substrate 3, respectively, as FIG. 2, 3 shows. The first support part 4 and the second support part 5 have the same thickness along the Z direction. The elastic connecting portion 6 connects the first support portion 4 and the rotating plate 7. The surface of the rotating plate 7 (upper surface in the + Z direction) is configured as a mirror surface so that the irradiated light is reflected. The rotating plate 7 is configured to float with a distance from the upper surface of the base 3 together with the elastic connecting portion 6. *
バネ部8は、折り返しバネ形状を有しており、一端が第2支持部に、他端が固定部9に夫々接続されている。固定部9は、基体3の上面に固定されている。なお、回動板7、バネ部8、及び固定部9は、Z方向に沿った厚みが、全て同じであるよう構成され、これらの厚みは、第1支持部4、第2支持部5と比較して薄い。また、バネ部8の上面は、第2支持部5の上面と段差無く設けられるため、図3に示すように、バネ部8は、基体3の上面に対し浮いた状態となる。  The spring portion 8 has a folded spring shape, and one end is connected to the second support portion and the other end is connected to the fixed portion 9. The fixing part 9 is fixed to the upper surface of the base 3. The rotating plate 7, the spring portion 8, and the fixing portion 9 are all configured to have the same thickness along the Z direction. These thicknesses are the same as those of the first support portion 4 and the second support portion 5. Thin compared. Further, since the upper surface of the spring portion 8 is provided without a step difference from the upper surface of the second support portion 5, the spring portion 8 floats with respect to the upper surface of the base 3 as shown in FIG. 3. *
固定電極群10は、固定部9におけるMEMS1の中心部に近い側の端面に設けられる。固定電極群10は、櫛歯状に構成され、図2、3に示すように、基体3の上面に固定されている。可動電極群11は、回動板7のX方向に沿った両端部に設けられている。固定電極群10と、可動電極群11とは、Y方向に微小な距離を隔てて噛み合わされるように配置される。また、固定電極群10を含む固定部9と、可動電極群11を含む回動板7とは、上記の通り、Z方向に同じ厚さを有しており、また第1支持部4、第2支持部5のZ方向の厚みと比較して薄い。これらによって、図2、3に示すように、基体3の上方に固定された固定電極群10に対して、可動電極群11は、所定距離だけ+Z方向に位置することになる。この所定距離とは、回動板7等のZ方向の厚みと、第1支持部4等のZ方向の厚みとの差と等しい距離である。  The fixed electrode group 10 is provided on the end surface of the fixed portion 9 on the side close to the center portion of the MEMS 1. The fixed electrode group 10 is configured in a comb-like shape, and is fixed to the upper surface of the base 3 as shown in FIGS. The movable electrode group 11 is provided at both ends of the rotating plate 7 along the X direction. The fixed electrode group 10 and the movable electrode group 11 are arranged so as to be engaged with each other with a minute distance in the Y direction. Further, as described above, the fixed portion 9 including the fixed electrode group 10 and the rotating plate 7 including the movable electrode group 11 have the same thickness in the Z direction, and the first support portion 4, 2 Thin compared to the thickness of the support portion 5 in the Z direction. 2 and 3, the movable electrode group 11 is positioned in the + Z direction by a predetermined distance with respect to the fixed electrode group 10 fixed above the base 3. The predetermined distance is a distance equal to the difference between the thickness in the Z direction of the rotating plate 7 and the like and the thickness in the Z direction of the first support portion 4 and the like. *
なお、固定電極群10及び可動電極群11の個別の電極のY方向に沿った幅は、例えば、3乃至5μm程度である。固定電極群10の個別の電極とこれに隣接する可動電極群11の個別の電極とのY方向に沿った距離は、1.5乃至5μm程度である。  The width along the Y direction of the individual electrodes of the fixed electrode group 10 and the movable electrode group 11 is, for example, about 3 to 5 μm. The distance along the Y direction between the individual electrodes of the fixed electrode group 10 and the individual electrodes of the movable electrode group 11 adjacent thereto is about 1.5 to 5 μm. *
位置決め部14は、固定部9に設けられる位置決め孔13と、基体3に設けられる位置決め突起15により構成され、図2に示すように、位置決め孔13に、位置決め突起15が挿入されることにより、デバイス層2と基体3との位置決めが行われる。なお、位置決め孔13は、貫通孔として図示しているが、止まり孔であってもよい。また、固定部9には、開口12も設けられており、これを位置決め孔として使用しても良い。  The positioning portion 14 is configured by a positioning hole 13 provided in the fixing portion 9 and a positioning projection 15 provided in the base 3, and by inserting the positioning projection 15 into the positioning hole 13 as shown in FIG. The device layer 2 and the substrate 3 are positioned. Although the positioning hole 13 is illustrated as a through hole, it may be a blind hole. Further, the fixing portion 9 is also provided with an opening 12, which may be used as a positioning hole. *
上記説明した図1乃至3に示すMEMS1は、固定電極群10と可動電極群11とに異なる極性の電力を印加することにより、動作を行う。例えば、図2、3の-X方向側の固定電極群10には正の電圧を、可動電極群11には負の電圧を、夫々印加する。このことにより、静電気力によって固定電極群10と可動電極群11との間には、互いに引き合う力が発生する。ここで、固定電極群10に対して可動電極群11は、所定の距離だけ+X方向に位置して構成されている。従って、前記引き合う力が発生することにより、-X方向側の可動電極群11は、固定電極群10に向かって、-Z方向にひきつけられる。このことにより、弾性連結部6を回動軸として回動板7が+θ方向に回動する。また、同様に、+X方向側の固定電極群10には正の電圧を、可動電極群11には負の電圧を、夫々印加した場合には、回動板7は、-θ方向に回動する。  The MEMS 1 shown in FIGS. 1 to 3 described above operates by applying electric powers having different polarities to the fixed electrode group 10 and the movable electrode group 11. For example, a positive voltage is applied to the fixed electrode group 10 on the −X direction side in FIGS. 2 and 3, and a negative voltage is applied to the movable electrode group 11. As a result, an attractive force is generated between the fixed electrode group 10 and the movable electrode group 11 by the electrostatic force. Here, the movable electrode group 11 is configured to be positioned in the + X direction by a predetermined distance with respect to the fixed electrode group 10. Therefore, when the attracting force is generated, the movable electrode group 11 on the −X direction side is attracted in the −Z direction toward the fixed electrode group 10. As a result, the rotation plate 7 rotates in the + θ direction with the elastic connecting portion 6 as the rotation axis. Similarly, when a positive voltage is applied to the fixed electrode group 10 on the + X direction side and a negative voltage is applied to the movable electrode group 11, the rotating plate 7 rotates in the −θ direction. To do. *
以上説明した動作により、MEMS1は、回動板7の表面(+Z方向の上面)に照射された光を反射させることができ、且つ、所定の範囲の角度内に置いて光の角度を制御することができる。即ち、MEMS1は、ミラーデバイスとして機能する。  Through the operation described above, the MEMS 1 can reflect the light irradiated on the surface of the rotating plate 7 (upper surface in the + Z direction) and controls the angle of the light within an angle within a predetermined range. be able to. That is, the MEMS 1 functions as a mirror device. *
ここで、上記にも述べたように、本発明のMEMSはミラーデバイスだけでなく多様な機能を有するものとして実現できる。この製造方法について、図4乃至11を用いて説明する。なお、ここでは、説明を容易とするために、図1乃至3と比較して簡略化した図11に示すMEMS101を製造するものとして説明を行う。また、やはり説明を容易とすることを目的として、図5乃至11においては、X軸、及びZ軸に係る断面を示すこととする。  Here, as described above, the MEMS of the present invention can be realized not only as a mirror device but also as having various functions. This manufacturing method will be described with reference to FIGS. Here, for ease of explanation, the description will be made on the assumption that the MEMS 101 shown in FIG. 11 simplified compared with FIGS. 1 to 3 is manufactured. Further, for the sake of easy explanation, FIGS. 5 to 11 show cross sections related to the X-axis and the Z-axis. *
図4に示すように、本発明のMEMS1は、種々の工程を経て製造することができる。まず、S41の型作成工程においては、図5に示すような型を用意する。図6に示す、デバイス層61は、樹脂、ガラス、ゴム、金属等成形可能な材料を用いて構成されるため、それらを成形する型を予め用意しておく必要がある。型51には、MEMS101のデバイス層61を実現するために、溝52乃至57が設けられている。  As shown in FIG. 4, the MEMS 1 of the present invention can be manufactured through various processes. First, in the mold creation step of S41, a mold as shown in FIG. 5 is prepared. Since the device layer 61 shown in FIG. 6 is configured using a moldable material such as resin, glass, rubber, or metal, it is necessary to prepare a mold for molding them. The mold 51 is provided with grooves 52 to 57 in order to realize the device layer 61 of the MEMS 101. *
溝52の側面である面52a、52c、52eは、その底面である面52b、52dから、その開口部52fにかけて溝幅が広がるように傾倒している。溝53乃至57においても、同様に構成されている。このように、溝52乃至57の側面である面52a、52c、52e等を構成する理由であるが、後の成形工程におけるデバイス層61の型51からの離型を良くするためである。なお、溝52乃至57の面52a、52c、52e等の側面の傾倒角度であるが、成形工程におけるデバイス層61の型51からの離型をスムーズにできる角度であれば良い。また、図5は、型51に設けられる溝52乃至57の面52a、52c、52e等の側面が傾倒していることを明確とするため誇張して示している。  The surfaces 52a, 52c, and 52e that are the side surfaces of the groove 52 are inclined so that the groove width increases from the surfaces 52b and 52d that are the bottom surfaces to the opening 52f. The grooves 53 to 57 are similarly configured. As described above, the reason is that the surfaces 52a, 52c, 52e and the like which are the side surfaces of the grooves 52 to 57 are configured to improve the release of the device layer 61 from the mold 51 in the subsequent molding process. The tilt angle of the side surfaces of the grooves 52 to 57, such as the surfaces 52a, 52c, and 52e, may be any angle that can smoothly release the device layer 61 from the mold 51 in the molding process. FIG. 5 is exaggerated to clarify that the side surfaces of the surfaces 52a, 52c, and 52e of the grooves 52 to 57 provided in the mold 51 are tilted. *
また、溝52乃至57のその開口部から底面までの深さは、任意に設定することができる。図5においては、溝52乃至57の開口部(例えば、溝52における開口部52f)に対する底面(例えば、溝52における面52b、52d)の深さは、2種類存在するように設定している。なお、これに限定されず、溝の開口部から底面までの深さは、3種類以上存在するように設定しても良い。また、溝52は、その開口部52fからの深さが異なる2つの底面(面52b、52d)を有するように構成されている。即ち、単一の溝の中に2種以上の開口部からの深さが異なる底面を設けても良い。上記のように、溝52乃至57を構成することにより、MEMS101には、図11に示すような、鍔61g、中空部68、孔69等を設けることが可能となる。  Moreover, the depth from the opening part to the bottom face of the grooves 52 to 57 can be arbitrarily set. In FIG. 5, the depths of the bottom surfaces (for example, the surfaces 52b and 52d in the groove 52) with respect to the openings (for example, the opening 52f in the groove 52) of the grooves 52 to 57 are set so as to exist in two types. . However, the present invention is not limited to this, and the depth from the opening of the groove to the bottom may be set so that there are three or more types. Moreover, the groove | channel 52 is comprised so that it may have two bottom surfaces ( surface 52b, 52d) from which the depth from the opening part 52f differs. That is, bottom surfaces having different depths from two or more types of openings may be provided in a single groove. As described above, by forming the grooves 52 to 57, the MEMS 101 can be provided with the flange 61g, the hollow portion 68, the hole 69, and the like as shown in FIG. *
また、型51は、シリコンにより構成してよいが、破損し易いという性質を有することから、ニッケル、ニッケル-タングステン、ニッケル-鉄等の材質にて構成してもよい。ニッケル等の材料により構成することは、型51の強度を高め、破損しにくいものとすることにつながる。また、ニッケル等の材料により構成した型51は、シリコン等を使用した電鋳により得ることができる他、レーザ加工、機械加工により製造することができる。また、ニッケル等の材料により構成した型51は、製作後において、レーザ加工、機械加工を用いて、追加工することも可能である。このように、レーザ加工、機械加工を使用して型51を製造、追加工することは、それにより成形されるデバイス層61に自由曲面を形成することが可能になること、及びそのコストを低減できること等の効果がある。  The mold 51 may be made of silicon, but may be made of a material such as nickel, nickel-tungsten, nickel-iron, etc. because it has the property of being easily damaged. Constituting with a material such as nickel increases the strength of the mold 51 and makes it difficult to break. In addition, the mold 51 made of a material such as nickel can be obtained by electroforming using silicon or the like, and can be manufactured by laser processing or machining. Further, the mold 51 made of a material such as nickel can be additionally machined by using laser processing or machining after production. As described above, manufacturing and additional machining of the mold 51 using laser processing and machining makes it possible to form a free-form surface on the device layer 61 formed thereby, and reduce its cost. There is an effect such as what can be done. *
なお、基材91は、平らな、又は未加工の基材や機械加工やフォトリソグラフィ等で加工した基材により構成してもよいが、デバイス層61と同様に、成形可能な材料を用いて構成してもよい。基材91を成形可能な材料を用いて構成する場合は、基材91を成形する図外の型も、上記同様に用意する。  The base material 91 may be a flat or unprocessed base material or a base material processed by machining, photolithography, or the like. However, like the device layer 61, a material that can be molded is used. It may be configured. When the base material 91 is configured using a moldable material, an unillustrated mold for forming the base material 91 is prepared in the same manner as described above. *
次に、S42の成形工程では、デバイス層61を構成する材料の成形が行われる。成形工程は、例えば、ホットエンボス法を用いて行うことができる。ホットエンボス法を適用することには、デバイス層61に採用できる材料の種類が多くなるというメリットがある。また、本工程は、トランスファー成形法、UV(紫外線)インプリント法、キャスティング法、射出成形法等を適用して行ってもよい。  Next, in the forming step of S42, the material constituting the device layer 61 is formed. The molding step can be performed using, for example, a hot embossing method. Applying the hot embossing method has an advantage that the types of materials that can be used for the device layer 61 are increased. Further, this step may be performed by applying a transfer molding method, a UV (ultraviolet ray) imprint method, a casting method, an injection molding method, or the like. *
なお、デバイス層61を構成する材料は、成形工程にて成形を行うことができる材料であればよく、機械加工により加工可能な材料であればなお良い。具体的には、上記でも述べたように、樹脂、ガラス、ゴム等を採用することができる。デバイス層61を構成する材料に、樹脂を採用することは、それの有するSOIに無い高い柔軟性を活かした高感度なセンサを実現すること等につながる。また、透明性の高い樹脂、ガラス等を採用することには、ディスプレイ等へMEMS101を応用することが可能となるというメリットがある。  In addition, the material which comprises the device layer 61 should just be a material which can be shape | molded in a formation process, and should just be a material which can be processed by machining. Specifically, as described above, resin, glass, rubber or the like can be employed. Employing a resin as the material constituting the device layer 61 leads to the realization of a high-sensitivity sensor utilizing the high flexibility that does not exist in the SOI that the device layer 61 has. In addition, adopting a highly transparent resin, glass, or the like has an advantage that the MEMS 101 can be applied to a display or the like. *
また、デバイス層61を構成する材料は、成形前の様態が、板状のものを使用できるが、液状のものであっても使用可能である。例えば、デバイス層61を構成する材料として、樹脂を採用する場合には、熱硬化性、熱可塑性等のものを使用することができる。また、デバイス層61を構成する材料には、添加物を加えてもよい。前記添加物としては、導電性材料、構造補強材料等が考えられる。導電性材料を添加した場合は、デバイス層61そのものに導電性を持たせることができる。また構造補強材料を添加した場合には、デバイス層61の強度を高め、その耐久性等を高めることができる。なお、デバイス層61を構成する材料としては、金属、導電性樹脂を採用することもでき、この場合には、添加物を加えることなく、デバイス層61に導電性を持たせることができる。  Further, as the material constituting the device layer 61, a plate-like shape before molding can be used, but even a liquid material can be used. For example, when a resin is used as the material constituting the device layer 61, a material such as thermosetting or thermoplastic can be used. In addition, an additive may be added to the material constituting the device layer 61. Examples of the additive include a conductive material and a structural reinforcing material. When a conductive material is added, the device layer 61 itself can be made conductive. In addition, when a structural reinforcing material is added, the strength of the device layer 61 can be increased and the durability thereof can be increased. In addition, as a material which comprises the device layer 61, a metal and a conductive resin can also be employ | adopted. In this case, without adding an additive, the device layer 61 can be made conductive. *
成形工程は、例えば、図6に示すように、デバイス層61を構成する材料と、型51とを配置することにより行うことができる。このようにすることにより、デバイス層61を構成する材料は、型51に対応した形状に成形される。デバイス層61は、その後、型51から離型される。  For example, as shown in FIG. 6, the molding step can be performed by arranging a material constituting the device layer 61 and a mold 51. By doing so, the material constituting the device layer 61 is formed into a shape corresponding to the mold 51. Thereafter, the device layer 61 is released from the mold 51. *
デバイス層61には、図7に示すように、成形工程により成形された部位62乃至67が形成されていると共に、成形工程により生ずる残膜61aを有している。部位62の面62aは、型51の面52aにより成形される面である。同様に、面62b乃至62eは、型51の面52b乃至52eにより成形される面である。同様に、部位63乃至67の各面は、型51の溝52乃至57を構成する各面により成形される面である。なお、型51の傾倒した面である面52a、52c、52e等により、成形される面である面62a、62c、62e等は、傾倒した面として構成される。ただし、図5においては、面52a、52c、52e等の傾倒を誇張して示しており、図7等における62a、62c、62e等も、それに対応して誇張して傾倒していることを示している。  As shown in FIG. 7, the device layer 61 has portions 62 to 67 formed by the forming process, and has a residual film 61a generated by the forming process. The surface 62 a of the part 62 is a surface formed by the surface 52 a of the mold 51. Similarly, the surfaces 62b to 62e are surfaces formed by the surfaces 52b to 52e of the mold 51. Similarly, the surfaces of the parts 63 to 67 are surfaces formed by the surfaces constituting the grooves 52 to 57 of the mold 51. The surfaces 52a, 52c, and 52e that are the surfaces to be molded are configured as inclined surfaces by the surfaces 52a, 52c, and 52e that are the inclined surfaces of the mold 51. However, in FIG. 5, the tilting of the surfaces 52a, 52c, 52e, etc. is exaggerated, and it is shown that 62a, 62c, 62e, etc. in FIG. ing. *
なお、上記のように、基材91も成形工程により製造することもできる。成形工程により、基材91を製造した場合には、該成形工程の際に、部位92乃至94の部位等を設けることが可能である。また、基材91は、成形工程において、その厚み(図11に示す、厚みt)を自在に設定することもできる。  As described above, the base material 91 can also be manufactured by a molding process. When the base material 91 is manufactured by the molding process, it is possible to provide the parts 92 to 94 in the molding process. Moreover, the base material 91 can also set the thickness (thickness t shown in FIG. 11) freely in a formation process. *
次に、S43のコーティング工程では、図8に示すように、部位62の面62a、62e等を、導電性材料によりコーティングし、コーティング層81を形成する。なお、本工程は、デバイス層61を形成する材料が導電性材料であった場合、或いはデバイス層61が、コーティングをする必要がないものである場合等においては不要である。  Next, in the coating step of S43, as shown in FIG. 8, the surfaces 62a, 62e and the like of the portion 62 are coated with a conductive material to form a coating layer 81. This step is unnecessary when the material forming the device layer 61 is a conductive material, or when the device layer 61 does not need to be coated. *
デバイス層61のコーティングは、図11に示す面62fなどをコーティングするために、S46の仕上コーティング工程にても行う必要がある。しかしながら、この仕上コーティング工程では、十分にコーティングができない部分が存在する。それは、上記に説明した型51に設けられる傾倒した面である面52a、52e等
により成形されることにより、傾倒している面62a、62e等である。-Zから、+Z方向を見た場合に、これらの面は見えるが、+Z方向から、-Z方向に見た場合は、これらの面は見えなくなる。S46の仕上コーティング工程においては、+Z方向から-Z方向に向けてコーティングを行うものであるため、これらの面をコーティングすることは難しくなる。 
The device layer 61 needs to be coated also in the finish coating step of S46 in order to coat the surface 62f shown in FIG. However, in this finish coating process, there is a portion that cannot be sufficiently coated. That is, the surfaces 62a, 62e and the like which are inclined by being formed by the surfaces 52a and 52e which are the inclined surfaces provided in the mold 51 described above. These planes are visible when viewed in the + Z direction from −Z, but are not visible when viewed in the −Z direction from the + Z direction. In the finish coating process of S46, since the coating is performed from the + Z direction to the -Z direction, it is difficult to coat these surfaces.
そこで、面62a、62e等の面を予めこの段階で、コーティングする。この段階では、-Z方向から+Z方向にコーティングを行うことができるからである。なお、コーティングの材料は、金、アルミニウム、白金等を使用する。また、必要な部分のみをコーティングするため、マスクを使用した上で、スパッタ法等を使用してコーティングを行うことが好ましい。また、マスクを使用して本工程を行う際には、図外の電気的配線層も同時に形成できるというメリットもある。  Therefore, the surfaces such as the surfaces 62a and 62e are previously coated at this stage. This is because the coating can be performed from the −Z direction to the + Z direction at this stage. The coating material is gold, aluminum, platinum or the like. Further, in order to coat only necessary portions, it is preferable to perform coating using a sputtering method or the like after using a mask. In addition, when this step is performed using a mask, there is an advantage that an electrical wiring layer (not shown) can be formed at the same time. *
次に、S44の接合工程では、デバイス層61を基材91に接合する。この際、デバイス層61の面62b、62d等が、基材91に対向するように接合する。接合を行った状態を図9に示すが、デバイス層61の基材91への接合にあたっては、紫外線、プラズマ等による表面活性化接合法を適用することができる。また、デバイス層61の材料や構造により、適用できる場面は限られるが、接着剤や非導通性のテープなどを使用しても良い。ここで言う非導電性テープとしては、半導体素子において利用されるダイボンディング用の熱硬化性テープを使用してよい。  Next, in the bonding step of S44, the device layer 61 is bonded to the base material 91. At this time, the surfaces 62 b and 62 d of the device layer 61 are bonded so as to face the base material 91. FIG. 9 shows a state where the bonding is performed. In bonding the device layer 61 to the base material 91, a surface activated bonding method using ultraviolet rays, plasma, or the like can be applied. Although applicable scenes are limited depending on the material and structure of the device layer 61, an adhesive or a non-conductive tape may be used. As the non-conductive tape here, a thermosetting tape for die bonding used in a semiconductor element may be used. *
なお、デバイス層61に設けられる孔69等の孔、基材91に設けられる部位92乃至94は、デバイス層61を基材91に接合する際のアライメントにおいて使用することができる。即ち、アライメントに使用する孔69等の孔は、MEMS1における位置決め孔13に相当する。また、同様にアライメントに使用する部位92乃至94は、MEMS1における位置決め突起15に相当する。なお、デバイス層61と基材91とを接合する際のアライメントにおいて使用する孔69等の孔は、貫通孔、止まり孔いずれであってもよい。また、デバイス層61にアライメントに使用する部位(突起)を設け、基材91にアライメントに使用する孔を設けても、上記同様に、デバイス層61を基材91に接合する際のアライメントにおいて使用することができる。  The holes such as the hole 69 provided in the device layer 61 and the portions 92 to 94 provided in the base material 91 can be used in alignment when the device layer 61 is joined to the base material 91. In other words, the holes 69 and the like used for alignment correspond to the positioning holes 13 in the MEMS 1. Similarly, the parts 92 to 94 used for alignment correspond to the positioning protrusion 15 in the MEMS 1. Note that the holes such as the hole 69 used in the alignment when the device layer 61 and the substrate 91 are joined may be either a through hole or a blind hole. Further, even if a portion (projection) used for alignment is provided in the device layer 61 and a hole used for alignment is provided in the base material 91, it is used in alignment when the device layer 61 is joined to the base material 91 in the same manner as described above. can do. *
なお、孔69等の孔と、前記部位92乃至94とを嵌合させることは、デバイス層61が、基材91から脱離しにくくすることに対し有効である。さらに、デバイス層61と基材91とが接する面の面積を大きくなるように、基材91等を構成することも、デバイス層61が、基材91から脱離しにくくすることに対し有効である。  Note that fitting the holes such as the hole 69 with the portions 92 to 94 is effective for making it difficult for the device layer 61 to be detached from the base material 91. Furthermore, it is effective for the base material 91 and the like to be configured to increase the area of the surface where the device layer 61 and the base material 91 are in contact with each other. . *
次に、S45の除去工程では、機械加工により、デバイス層61の残膜61aを除去する。除去工程を行った後のものは、図10に示すようなものとなり、残膜61aを除去することにより面62f等が形成されるが、面62f等はミラーデバイスに適用できるレベルの面精度に当該機械加工によりすることが可能である。なお、本工程は、具体的に、楕円振動切削法、フライカット法等を適用して、実施することができる。また、本工程の生産性向上のために、研磨加工法を適用して、本工程の作業効率を高めても良い。また、残膜61aの除去は、機械加工に換えて、レーザ加工法、プラズマ加工法、電子ビーム加工法等を適用して、非接触に行うことも可能である。  Next, in the removing step of S45, the remaining film 61a of the device layer 61 is removed by machining. After the removal process, the surface 62f and the like are formed by removing the remaining film 61a as shown in FIG. 10. However, the surface 62f and the like have a surface accuracy of a level applicable to a mirror device. This can be done by machining. In addition, this process can be specifically implemented by applying an elliptical vibration cutting method, a fly cutting method, or the like. Further, in order to improve the productivity of this step, a polishing method may be applied to increase the work efficiency of this step. In addition, the remaining film 61a can be removed in a non-contact manner by applying a laser processing method, a plasma processing method, an electron beam processing method, or the like instead of the mechanical processing. *
なお、本工程においては、デバイス層61等の破損を防止するため補強材を使用してもよい。具体的には、デバイス層61と基材91との間に補強材を充填してから、残膜61aの除去を行う。これにより、残膜61aの除去を行う際に、デバイス層61等が破損することを防止することができる。ただし、補強材は、後に完全に除去する必要があり、またデバイス層61等を構成する材料に悪影響を及ぼしてはならないため、それらの要件を満たすものを使用する必要がある。  In this step, a reinforcing material may be used to prevent damage to the device layer 61 and the like. Specifically, after the reinforcing material is filled between the device layer 61 and the base material 91, the remaining film 61a is removed. This can prevent the device layer 61 and the like from being damaged when the residual film 61a is removed. However, the reinforcing material needs to be completely removed later, and it should not adversely affect the material constituting the device layer 61 and the like. Therefore, it is necessary to use a material that satisfies those requirements. *
残膜61aの除去を終えた後の補強材の除去は、補強材の性質に適合する方法により行う必要があるが、例えば、該補強材を溶解、エッチングすること等より行う。また、残膜61aを除去した後、その切屑や、バリが生じる場合には、アッシング法、レーザ加工法、プラズマ加工法、電子ビーム加工法等により後処理を行い、それらを除去してもよい。ただし、前記後処理を行う際に、デバイス層61の表面(例えば、部位62の面62f)が荒れる可能性がある。特にこれらの面がミラー面などである場合には、特に問題となる。この問題は、該後処理の際に、デバイス層61の表面にマスクを行うこと等により、解消することができる。  The removal of the reinforcing material after the removal of the remaining film 61a needs to be performed by a method suitable for the properties of the reinforcing material. For example, the reinforcing material is dissolved and etched. Further, if chips or burrs are generated after the remaining film 61a is removed, post-processing may be performed by ashing, laser processing, plasma processing, electron beam processing, or the like to remove them. . However, when the post-processing is performed, the surface of the device layer 61 (for example, the surface 62f of the part 62) may be roughened. This is particularly a problem when these surfaces are mirror surfaces. This problem can be solved by performing a mask on the surface of the device layer 61 during the post-processing. *
次に、S46の仕上コーティング工程を行う。仕上コーティング工程では、コーティング工程と同様に、導電性材料によるコーティングを行う。本工程で、主にコーティングを行う面は、除去工程により、残膜61aを除去することにより形成された面62f等である。コーティング工程により面62a等は、既にコーティングされているためである。なお、コーティング工程を省略し、本工程のみで、デバイス層61のコーティングを行うことも不可能ではない。この場合には、面62a等にもコーティング材料が回り込み、適切なコーティングができるよう、デバイス層61等を傾け、更に回転させながら本工程を行うことが好ましい。  Next, the finish coating process of S46 is performed. In the finish coating process, as with the coating process, coating with a conductive material is performed. In this step, the surface to be coated mainly is the surface 62f formed by removing the remaining film 61a in the removing step. This is because the surface 62a and the like are already coated by the coating process. Note that it is not impossible to perform coating of the device layer 61 by omitting the coating process and only in this process. In this case, it is preferable to carry out this step while the device layer 61 is tilted and further rotated so that the coating material also wraps around the surface 62a and the like and appropriate coating can be performed. *
以上のような工程により、製造されるMEMS101は、図11に示すとおりである。MEMS101には、鍔61g、中空部68、孔69等が備えられている。これらは、型51の溝52乃至57の深さが、任意に(図5においては2段階)に設定されることにより形成される。鍔61g等の鍔は、仕上コーティング工程において、不要な部分までコーティングされることにより発生する不必要な電気的導通をさけるために設けられる。また、中空部68は、流路、可動部構造、カンチレバー等の構造に使用されるものである。孔69等の孔は、電気的配線、デバイス層61と基材91との接合の際のアライメント等に使用することができる。なお、孔69等の孔は、原則として図示するように貫通孔として構成する。ただし、デバイス層61と基材91との接合の際のアライメントに使用する場合において、孔69等の孔は、止まり孔として構成してもよい。  The MEMS 101 manufactured by the above process is as shown in FIG. The MEMS 101 includes a flange 61g, a hollow portion 68, a hole 69, and the like. These are formed by arbitrarily setting the depths of the grooves 52 to 57 of the mold 51 (two stages in FIG. 5). The wrinkles such as the wrinkles 61g are provided in order to avoid unnecessary electrical continuity generated by coating even unnecessary portions in the finish coating process. Moreover, the hollow part 68 is used for structures, such as a flow path, a movable part structure, and a cantilever. The holes such as the hole 69 can be used for electrical wiring, alignment at the time of joining the device layer 61 and the base material 91, and the like. In addition, the holes such as the hole 69 are configured as through holes as shown in principle. However, when used for alignment at the time of joining the device layer 61 and the base material 91, the holes such as the holes 69 may be configured as blind holes. *
次に、上記説明したMEMSの製造工程を適用して得られる、各種機能を有するMEMSについて、図12乃至16を用いて説明する。なお、ここでは、説明を容易とすることを目的として、図12乃至15において、X軸、及びZ軸に係る断面を示すこととする。図12に示すMEMS201は、電子基板231への実装を考慮したものであり、同図は、電子基板231にMEMS201を実装した状態を示している。MEMS201のデバイス層202に貫通孔204aが、基材203に貫通孔206が夫々設けられている。このことにより、MEMS201には、Z軸に沿ってデバイス層202、及び基材203を貫通し、貫通孔204a、貫通孔206とにより構成されるスルーホール204が設けられている。  Next, MEMS having various functions obtained by applying the above-described MEMS manufacturing process will be described with reference to FIGS. Here, for the purpose of facilitating the description, in FIGS. 12 to 15, cross sections related to the X axis and the Z axis are shown. The MEMS 201 illustrated in FIG. 12 is designed to be mounted on the electronic substrate 231. FIG. 12 illustrates a state where the MEMS 201 is mounted on the electronic substrate 231. A through hole 204 a is provided in the device layer 202 of the MEMS 201, and a through hole 206 is provided in the base material 203. As a result, the MEMS 201 is provided with a through hole 204 that penetrates the device layer 202 and the base material 203 along the Z-axis, and includes a through hole 204 a and a through hole 206. *
貫通孔206には、導電性を有する接着剤205が充填され、デバイス層202の貫通孔204aの壁面にコーティングされているコーティング層81と、バンプ233とは、電気的に接続される。バンプ233は、電子基板231の配線232にも接続されている。従って、コーティング層81層と、配線232とは、スルーホール204を利用して電気的に容易に接続できる。  The through hole 206 is filled with a conductive adhesive 205, and the coating layer 81 coated on the wall surface of the through hole 204 a of the device layer 202 is electrically connected to the bump 233. The bump 233 is also connected to the wiring 232 of the electronic substrate 231. Accordingly, the coating layer 81 and the wiring 232 can be easily electrically connected using the through hole 204. *
なお、この電気的接続は、貫通孔204aと、部位211と等による、デバイス層202と、基材203とのアライメントと合わせて行うことができる。また、貫通孔206は、基材203を、上記説明した成形工程を使用して形成する場合において、当該工程時に設けることが好ましい。その理由は、MEMS201の生産効率を向上することができるからである。貫通孔206は、例えば、打ち抜き成形を行うことにより設けることができる。また、貫通孔206は、ドリルやレーザを利用して、設けることもできる。  Note that this electrical connection can be performed together with the alignment of the device layer 202 and the base material 203 by the through hole 204a, the portion 211, and the like. Moreover, when forming the base material 203 using the shaping | molding process demonstrated above, it is preferable to provide the through-hole 206 at the said process. The reason is that the production efficiency of the MEMS 201 can be improved. The through hole 206 can be provided, for example, by punching. Moreover, the through-hole 206 can also be provided using a drill or a laser. *
また、コーティング層81と、配線232は、バンプ233を使用せず、接着剤205により基材203と電子基板231とを直接接着することによっても電気的に接続できる。  In addition, the coating layer 81 and the wiring 232 can be electrically connected by directly bonding the base material 203 and the electronic substrate 231 with the adhesive 205 without using the bump 233. *
図13に示すMEMS301は、デバイス層302を、第1の層302a、及び第2の層302bにより構成し、当該デバイス層302を、基材303に接合している。なお、第1の層302a、及び第2の層302bは、互いに異なる機能を有するものとすることができる。また、第1の層302a、及び第2の層302bとの接続、及び第2の層302bと基材303との接続は、第2の層302bに設けられる貫通孔304等の貫通孔を利用して行われている。  In the MEMS 301 illustrated in FIG. 13, a device layer 302 includes a first layer 302 a and a second layer 302 b, and the device layer 302 is bonded to a base material 303. Note that the first layer 302a and the second layer 302b can have different functions. Further, the connection between the first layer 302a and the second layer 302b and the connection between the second layer 302b and the base material 303 use a through hole such as the through hole 304 provided in the second layer 302b. Has been done. *
なお、同図におけるMEMS301は、デバイス層302を、2つの層(第1の層302a、及び第2の層302b)により構成しているが、より多くの層により構成してもよい。このように、デバイス層302を多層化することは、デバイス機能、及び制御用素子(例えばIC)等の集積化を図ることを可能とし、MEMS301の高機能化、多機能化に寄与する。  Note that in the MEMS 301 in the figure, the device layer 302 is composed of two layers (a first layer 302a and a second layer 302b), but may be composed of more layers. As described above, the multilayered device layer 302 enables integration of device functions and control elements (for example, ICs), and contributes to higher functionality and multi-function of the MEMS 301. *
図14に示すMEMS401は、デバイス層402及び基材403から構成される流路404を備えるものである。上記MEMSの製造方法により製造されるMEMSは、MEMS1のような可動部構造のものだけでなく、流路等、非可動部構造のものも構成することができ、更に可動部構造、非可動部構造共に備えるものも容易に製造することができる。このことに基づき、MEMS401は、開口部405を有する流路を流れる流体を移動させる図外のポンプや、図外のバルブなども備えた多機能なMEMSとして実現することができる。  A MEMS 401 illustrated in FIG. 14 includes a flow path 404 including a device layer 402 and a base material 403. The MEMS manufactured by the above MEMS manufacturing method can be configured not only with a movable part structure such as MEMS 1 but also with a non-movable part structure such as a flow path, and further with a movable part structure and a non-movable part. What is equipped with a structure can also be manufactured easily. Based on this, the MEMS 401 can be realized as a multifunctional MEMS including an unillustrated pump for moving a fluid flowing through the flow path having the opening 405, an unillustrated valve, and the like. *
図15、及び図16に示すMEMS501は図外のデバイス層の真空封止を想定したものである。MEMS501においては、基材503に溝504を設けている。キャップ521には、溝504に挿入可能な凸部522が設けられている。従って、キャップ521の凸部522を基材503の溝504に挿入することにより、デバイス層の真空封止を実現できる。なお、デバイス層の真空封止は、デバイス層にキャップを取り付けることによっても、行うことができる。図12においては、MEMS201のデバイス層202に、キャップ221を取り付けているが、このようにすることによっても、デバイス層の真空封止を実現することができる。  The MEMS 501 shown in FIG. 15 and FIG. 16 assumes vacuum sealing of a device layer not shown. In the MEMS 501, a groove 504 is provided in the base material 503. The cap 521 is provided with a convex portion 522 that can be inserted into the groove 504. Therefore, the device layer can be vacuum-sealed by inserting the convex portion 522 of the cap 521 into the groove 504 of the base material 503. The vacuum sealing of the device layer can also be performed by attaching a cap to the device layer. In FIG. 12, the cap 221 is attached to the device layer 202 of the MEMS 201, but the device layer can be vacuum-sealed also in this way. *
以上説明したように、本発明に係るMEMSの製造方法は、MEMS1、101等の製造に係るコストを削減することができる。具体的には、本MEMSの製造方法は、安価且つ生産性が高い成形工程、除去工程を有している。また、除去工程は、機械加工等により行うことができる。半導体加工プロセスは、原則的に使用されないため、MEMSの低コスト化、生産性の向上を図ることができる。また、複数個のMEMSを同時に製造ことも、本MEMSの製造方法を適用することにより可能である。これは、複数個のデバイス層を同時に成形できる型を使用して成形工程を行うこと等により実現できる。  As described above, the MEMS manufacturing method according to the present invention can reduce the cost for manufacturing the MEMS 1, 101, and the like. Specifically, the manufacturing method of this MEMS has a low-cost and high-productivity formation process and removal process. Further, the removing step can be performed by machining or the like. Since the semiconductor processing process is not used in principle, the cost of MEMS can be reduced and the productivity can be improved. Moreover, it is also possible to manufacture several MEMS simultaneously by applying the manufacturing method of this MEMS. This can be realized by performing a molding process using a mold capable of molding a plurality of device layers simultaneously. *
また、成形工程にて使用する型に設けられる溝は、深さを任意に設定することができる。このことは、MEMS内に、流路、可動構造、カンチレバー等の中空部を有する構造、或いは鍔等を作成できることにつながる。SOI基板を使用してデバイス層を作成する場合には、上記のような構造、鍔を設けるために、フッ酸等の有害な薬剤を使用する場合があった。本MEMSの製造方法においては、前記有害な薬剤が不要であるため、MEMSの製造を安全に行うことができる。さらに、前記有害な薬剤を使用した工程が不要になることは、MEMSの生産性の向上にも寄与する。  Moreover, the groove | channel provided in the type | mold used at a formation process can set the depth arbitrarily. This leads to the creation of a structure having a hollow part such as a flow path, a movable structure, a cantilever, or a soot in the MEMS. When a device layer is formed using an SOI substrate, a harmful agent such as hydrofluoric acid may be used in order to provide the above-described structure and wrinkles. In the present MEMS manufacturing method, the harmful drug is unnecessary, and therefore the MEMS can be manufactured safely. Furthermore, the fact that the process using the harmful agent is unnecessary contributes to the improvement of the productivity of MEMS. *
また、孔は、デバイス層と基材とのアライメント、電気的配線、デバイス層を多層に構成する際等に利用できる。即ち、孔を設けることは、MEMSの生産性等を高めるとともに、その機能を向上させることにも寄
与する。なお、孔は、貫通孔として構成する。ただし、デバイス層と基材との接合の際のアライメントに使用する場合において、孔は、止まり孔として構成してもよい。 
Moreover, a hole can be utilized when aligning a device layer and a base material, electrical wiring, and configuring the device layer in multiple layers. That is, providing the holes contributes to enhancing the productivity and the like of MEMS. In addition, a hole is comprised as a through-hole. However, the hole may be configured as a blind hole when used for alignment when joining the device layer and the substrate.
また、除去工程を機械加工により行うことは、容易に、デバイス層の表面を鏡面化できることにつながる。即ち、本製造方法は、容易にミラーデバイスであるMEMS(例えば、MEMS1)を製造することができるものである。  In addition, performing the removal process by machining leads to easily mirroring the surface of the device layer. That is, this manufacturing method can easily manufacture MEMS (for example, MEMS1) which is a mirror device. *
さらに、成形可能な材料を使用するため、本MEMSの製造方法により製造されたMEMSには、従来のSOIを使用して製造されるMEMSと比較して高い機能が付加されている。例えば、デバイス層を構成する材料に、樹脂を採用することは、それの有するSOIに無い高い柔軟性を活かした高感度なセンサを実現することにつながる。また、透明性の高い樹脂、ガラス等でデバイス層を製造した場合は、該MEMSをディスプレイ等へ応用することが可能となる。  Further, since a moldable material is used, a high function is added to the MEMS manufactured by the present MEMS manufacturing method as compared with a MEMS manufactured using a conventional SOI. For example, adopting a resin as the material constituting the device layer leads to the realization of a high-sensitivity sensor utilizing the high flexibility not possessed by the SOI of the device layer. In addition, when the device layer is manufactured from a highly transparent resin, glass, or the like, the MEMS can be applied to a display or the like. *
また、本MEMSの製造方法により製造されたMEMSは、静電駆動、電磁駆動、熱駆動、圧電駆動等に対応できるものとすることができる。たとえば、圧電駆動可能なMEMSは、上記MEMSの製造方法を適用する際に、デバイス層を構成する材料として圧電プラスティックを採用することで得ることができる。また、本MEMSの製造方法により製造されたMEMSは、アクチュエータなど駆動可能構造だけでなく、マイクロ流路等の非可動構造も有するものとすることができ、さらに、それらを複合したものとして構成することもできる。また、本MEMSの製造方法により製造されたMEMSは、デバイス機能、及び制御用素子(例えばIC)等の集積化にも対応可能であるため、応用範囲の広いものとすることができる。  Further, the MEMS manufactured by the present MEMS manufacturing method can be adapted to electrostatic driving, electromagnetic driving, thermal driving, piezoelectric driving, and the like. For example, a piezoelectrically drivable MEMS can be obtained by adopting a piezoelectric plastic as a material constituting the device layer when applying the MEMS manufacturing method. Further, the MEMS manufactured by the present MEMS manufacturing method can have not only a drivable structure such as an actuator but also a non-movable structure such as a microchannel, and is configured as a composite of them. You can also. In addition, since the MEMS manufactured by the present MEMS manufacturing method can cope with the integration of device functions and control elements (for example, ICs), it can have a wide application range. *
なお、本実施の形態で示したMEMSの製造方法、及びMEMS1、101等は、本発明に係るMEMSの製造方法、及びMEMS一態様にすぎず、本発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 Note that the MEMS manufacturing method, MEMS 1, 101, and the like shown in the present embodiment are merely a MEMS manufacturing method and a MEMS mode according to the present invention, and various methods can be used without departing from the gist of the present invention. Variations are possible.
本発明に係るMEMSの製造方法及びMEMSは、成形及び機械加工可能なデバイス層を有するMEMSの製造方法、及び前記デバイス層を有するMEMSに適用することができる。 The MEMS manufacturing method and the MEMS according to the present invention can be applied to a MEMS manufacturing method having a device layer that can be molded and machined, and a MEMS having the device layer.
1、101 MEMS

51 型

61 デバイス層

61a 残膜

81 コーティング層

91 基材

S41 型作成工程

S42 成形工程

S43 コーティング工程

S44 接合工程

S45 除去工程

S46 仕上コーティング工程
1, 101 MEMS

51 type

61 Device layer

61a Remaining film

81 Coating layer

91 Base material

S41 mold making process

S42 Molding process

S43 Coating process

S44 Joining process

S45 removal process

S46 Finish coating process

Claims (13)

  1. 微細構造体からなるデバイス層と、基材とにより構成されるMEMSの製造方法であって、成形可能な材料を型により成形することにより、前記デバイス層を成形する成形工程と、前記成形工程により成形された前記デバイス層と、前記基材とを接合する接合工程と、前記成形工程で生じた残膜を、前記デバイス層より除去する除去工程と、を有することを特徴とするMEMSの製造方法。 A method for manufacturing a MEMS comprising a device layer composed of a microstructure and a base material, wherein a molding process for molding the device layer by molding a moldable material with a mold, and the molding process A method for producing MEMS, comprising: a joining step for joining the molded device layer and the base material; and a removing step for removing a residual film generated in the shaping step from the device layer. .
  2. 前記除去工程は、機械加工により行われることを特徴とする請求項1記載のMEMSの製造方法。 The method for manufacturing a MEMS according to claim 1, wherein the removing step is performed by machining.
  3. 前記除去工程においては、前記残膜の除去に先立ち、前記デバイス層と前記基材との間に補強材を充填することを特徴とする請求項1又は2に記載のMEMS。 3. The MEMS according to claim 1, wherein in the removing step, a reinforcing material is filled between the device layer and the base material prior to the removal of the residual film.
  4. 前記型が、開口部を有するとともに、前記デバイス層の成形に使用される溝を複数備え、前記溝の深さは、任意に設定可能であることを特徴とする請求項1乃至3の何れか記載のMEMSの製造方法 The mold according to any one of claims 1 to 3, wherein the mold has an opening and includes a plurality of grooves used for forming the device layer, and the depth of the groove can be arbitrarily set. Manufacturing method of MEMS as described
  5. 前記型に具備される溝の側面が、該溝の底面から開口部にかけて、溝幅が拡大するように傾倒されていることを特徴とする請求項4記載のMEMSの製造方法。 5. The method for manufacturing a MEMS according to claim 4, wherein a side surface of the groove provided in the mold is tilted so that the groove width increases from the bottom surface of the groove to the opening.
  6. 前記接合工程に先立ち、導電性材料により前記デバイス層の一部、または全部をコーティングするコーティング工程、を有することを特徴とする請求項5記載のMEMSの製造方法。 The MEMS manufacturing method according to claim 5, further comprising a coating step of coating a part or all of the device layer with a conductive material prior to the bonding step.
  7. 前記成形工程において、前記デバイス層に孔、または突起のうち少なくとも一つが、設けられることを特徴とする請求項1乃至6いずれか記載のMEMSの製造方法。 The method for manufacturing a MEMS according to claim 1, wherein at least one of a hole and a protrusion is provided in the device layer in the forming step.
  8. 前記除去工程後に、導電性材料により前記デバイス層の一部、または全部をコーティングする仕上コーティング工程、を有することを特徴とする請求項1乃至7何れか記載のMEMSの製造方法。 The method for manufacturing a MEMS according to claim 1, further comprising a finish coating step of coating a part or all of the device layer with a conductive material after the removing step.
  9. 請求項1乃至8の何れか1項記載のMEMSの製造方法により製造されることを特徴とするMEMS。 A MEMS manufactured by the method for manufacturing a MEMS according to any one of claims 1 to 8.
  10. 前記デバイス層と前記基材とのうち一方には、該デバイス層と該基材とのアライメントに供されるアライメント用孔が、前記デバイス層、及び前記基材のうち他方には、該デバイス層と該基材とのアライメントに供されるアライメント用突起が、夫々設けられており、前記アライメント用孔には、前記アライメント用突起が挿入されていることを特徴とする請求項9記載のMEMS。 One of the device layer and the substrate has an alignment hole for alignment between the device layer and the substrate, and the other of the device layer and the substrate has the device layer. 10. The MEMS according to claim 9, wherein alignment protrusions provided for alignment with the substrate are provided, and the alignment protrusions are inserted into the alignment holes.
  11. 前記デバイス層と前記基材との少なくとも一方には、電気的接続に供される貫通孔が設けられることを特徴とする請求項9又は10記載のMEMS。 The MEMS according to claim 9 or 10, wherein a through-hole provided for electrical connection is provided in at least one of the device layer and the base material.
  12. 前記デバイス層が、複数の層を積層することにより構成されることを特徴とする請求項9乃至11の何れか1項記載のMEMS。 The MEMS according to claim 9, wherein the device layer is configured by stacking a plurality of layers.
  13. 前記デバイス層、又は前記基材には、前記デバイス層を封止するキャップが取付けられることを特徴とする請求項9乃至12何れか1項記載のMEMS。 The MEMS according to claim 9, wherein a cap that seals the device layer is attached to the device layer or the base material.
PCT/JP2010/063657 2009-08-28 2010-08-11 Mems, and method for manufacturing same WO2011024648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197924 2009-08-28
JP2009197924A JP2011045981A (en) 2009-08-28 2009-08-28 Mems and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2011024648A1 true WO2011024648A1 (en) 2011-03-03

Family

ID=43627754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063657 WO2011024648A1 (en) 2009-08-28 2010-08-11 Mems, and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2011045981A (en)
TW (1) TW201107229A (en)
WO (1) WO2011024648A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178139B2 (en) * 2013-07-10 2017-08-09 日本電信電話株式会社 Spring, microstructure and spring manufacturing method
JP7247778B2 (en) * 2019-06-20 2023-03-29 株式会社リコー Optical deflection device, laser radar device, and image forming device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079500A (en) * 2000-06-23 2002-03-19 Randox Lab Ltd Manufacture of diaphragm
JP2004200577A (en) * 2002-12-20 2004-07-15 Fuji Photo Film Co Ltd Method for forming microstructure
JP2005125447A (en) * 2003-10-23 2005-05-19 Hitachi Ltd Electronic component and its manufacturing method
JP2005519784A (en) * 2002-08-30 2005-07-07 サムスン エレクトロニクス カンパニー リミテッド MEMS comb actuator embodied in insulating material and manufacturing method thereof
JP2005342808A (en) * 2004-05-31 2005-12-15 Oki Electric Ind Co Ltd Manufacturing method of mems device
JP2006305655A (en) * 2005-04-27 2006-11-09 Shinko Electric Ind Co Ltd Electronic component mounting structure, and method for manufacturing the same
JP2008265028A (en) * 2007-04-16 2008-11-06 Dainippon Printing Co Ltd Method of manufacturing imprint mold
JP2009160673A (en) * 2007-12-28 2009-07-23 Yamaha Corp Manufacturing method of micro device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658413A (en) * 1994-10-19 1997-08-19 Hewlett-Packard Company Miniaturized planar columns in novel support media for liquid phase analysis
JP2006349613A (en) * 2005-06-20 2006-12-28 Micro Precision Kk Capacitive detection type acceleration sensor
JP3942621B2 (en) * 2005-07-07 2007-07-11 マイクロプレシジョン株式会社 Electrostatic drive type optical deflection element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079500A (en) * 2000-06-23 2002-03-19 Randox Lab Ltd Manufacture of diaphragm
JP2005519784A (en) * 2002-08-30 2005-07-07 サムスン エレクトロニクス カンパニー リミテッド MEMS comb actuator embodied in insulating material and manufacturing method thereof
JP2004200577A (en) * 2002-12-20 2004-07-15 Fuji Photo Film Co Ltd Method for forming microstructure
JP2005125447A (en) * 2003-10-23 2005-05-19 Hitachi Ltd Electronic component and its manufacturing method
JP2005342808A (en) * 2004-05-31 2005-12-15 Oki Electric Ind Co Ltd Manufacturing method of mems device
JP2006305655A (en) * 2005-04-27 2006-11-09 Shinko Electric Ind Co Ltd Electronic component mounting structure, and method for manufacturing the same
JP2008265028A (en) * 2007-04-16 2008-11-06 Dainippon Printing Co Ltd Method of manufacturing imprint mold
JP2009160673A (en) * 2007-12-28 2009-07-23 Yamaha Corp Manufacturing method of micro device

Also Published As

Publication number Publication date
TW201107229A (en) 2011-03-01
JP2011045981A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US20150171313A1 (en) Forming a Device Having a Curved Piezoelectric Membrane
JP2006305655A (en) Electronic component mounting structure, and method for manufacturing the same
KR100465444B1 (en) Narrow-pitch connector, electrostatic actuator, piezoelectric actuator, ink-jet head, ink-jet printer, micromachine, liquid crystal panel, and electronic apparatus
US20090122379A1 (en) Optical Deflecting Element
JP2002139691A (en) Method for manufacturing galvanomirror and the galvanomirror
JP2002218771A (en) Actuator and manufacture of the same
US8807713B2 (en) Liquid ejection head
US8828750B2 (en) Highly integrated wafer bonded MEMS devices with release-free membrane manufacture for high density print heads
WO2011024648A1 (en) Mems, and method for manufacturing same
US7487678B2 (en) Z offset MEMS devices and methods
US20060261035A1 (en) Liquid discharge head and producing method therefor
US10048286B2 (en) Wafer level package of MEMS sensor and method for manufacturing the same
JP3577693B2 (en) Micro movable device and manufacturing method thereof
JP2009122155A (en) Micro-device manufacturing method and micro--device
JP3942621B2 (en) Electrostatic drive type optical deflection element
CN101663165B (en) Print head laminate
JP4174761B2 (en) Mechanism device manufacturing method and mechanism device
US11518170B2 (en) Method of manufacturing liquid discharge head and liquid discharge head in which a plurality of substrates including a liquid flow passage are satisfactorily stuck together with an adhesive agent
CN112158795B (en) Preparation method of silicon wafer with rough surface and silicon wafer
JP2008183768A (en) Liquid discharge head and manufacturing method of liquid discharge head
JP2011139267A (en) Piezoelectric type sounding device
JP2006137060A (en) Electrostatic attraction type liquid ejection head and its manufacturing method
JP2006142451A (en) Micro-actuator, optical device and optical switch using it, and microswitch
JPH11285275A (en) Electrostatic actuator, ink-jet head, silicon substrate, etching mask, and manufacture of the silicon substrate
JP2005129626A (en) Lamination structure of semiconductor chip or electric component and ink jet recording head provided therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811698

Country of ref document: EP

Kind code of ref document: A1