WO2011022987A1 - 控制铝钛硼合金中TiB2颗粒团平均名义直径的电磁感应熔炼电炉 - Google Patents

控制铝钛硼合金中TiB2颗粒团平均名义直径的电磁感应熔炼电炉 Download PDF

Info

Publication number
WO2011022987A1
WO2011022987A1 PCT/CN2010/072589 CN2010072589W WO2011022987A1 WO 2011022987 A1 WO2011022987 A1 WO 2011022987A1 CN 2010072589 W CN2010072589 W CN 2010072589W WO 2011022987 A1 WO2011022987 A1 WO 2011022987A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
layer
layer coil
electromagnetic induction
alloy
Prior art date
Application number
PCT/CN2010/072589
Other languages
English (en)
French (fr)
Inventor
陈学敏
叶清东
李建国
刘超文
余跃明
Original Assignee
新星化工冶金材料(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新星化工冶金材料(深圳)有限公司 filed Critical 新星化工冶金材料(深圳)有限公司
Priority to EP10763299.4A priority Critical patent/EP2476785B1/en
Priority to US12/867,126 priority patent/US9025636B2/en
Priority to ES10763299.4T priority patent/ES2527992T3/es
Publication of WO2011022987A1 publication Critical patent/WO2011022987A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/367Coil arrangements for melting furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system

Definitions

  • This invention relates to metallurgical industry smelting equipment and, more particularly, to an electromagnetic induction melting furnace for controlling the average nominal diameter of TiB 2 particles in an aluminum titanium boron alloy. Background technique
  • Aluminum-titanium-boron alloys are a class of intermediate alloys that are currently used in aluminum processing worldwide and are the most effective for refining solidified grains of aluminum and aluminum alloys.
  • the addition of the above-mentioned aluminum-titanium-boron alloy to aluminum or aluminum alloy can refine the solidification grain of aluminum or aluminum alloy, and further improve the yield strength, rolling plasticity and ductile-brittle transition temperature.
  • the aluminum-titanium-boron intermediate alloy which is currently widely used worldwide and can effectively realize industrial production is a thermal reduction reaction method using potassium fluorotitanate and potassium fluoroborate and aluminum melt, which produces a large amount of TiB. 2 and as the grain core of the refined aluminum or aluminum alloy.
  • the finer the average of its own nominal diameter the stronger the grain refining ability of solidifying aluminum or aluminum alloy.
  • the above-mentioned aluminothermic reduction reaction is usually carried out in a resistance crucible melting furnace or a single-frequency (usually a power frequency) electromagnetic induction melting electric furnace, and the TiB 2 particle cluster in the produced aluminum titanium boron alloy.
  • the average nominal diameter is large, so that the solidified grain size of the aluminum or aluminum alloy refined by such an aluminum titanium boron alloy having a large TiB 2 particle group is large.
  • the technical problem to be solved by the present invention is to solve the defects that the average nominal diameter of the TiB 2 particles in the aluminum titanium boron alloy in the prior art is large, so that the solidified grain size of the aluminum or aluminum alloy after the refining thereof is large.
  • An electromagnetic induction melting furnace for controlling the average nominal diameter of TiB 2 particles in the above aluminum titanium boron alloy during its reaction is provided.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to construct an electromagnetic induction melting electric furnace for controlling the average nominal diameter of TiB 2 particles in an aluminum titanium boron alloy, which is used for holding a metal or alloy melt.
  • the frequency of the drive current flowing through each of the plurality of coils is different.
  • the coil includes a first layer coil that flows through a first frequency current, a second layer coil that flows through a second frequency current, and a third layer that flows through a third frequency current Coil.
  • the first layer coil, the second layer coil and the third layer coil are respectively centered on the furnace body and surround the furnace body with different diameters;
  • a three-layer coil is adjacent to the outer surface of the furnace, the first layer of coil is away from the outer surface of the furnace, and the second coil is located between the first coil and the third coil.
  • the difference between the radius of the third coil and the furnace body, the difference between the radii of the first coil and the second coil, and the difference between the radii of the second coil and the third coil 5-15 cm respectively.
  • the outer surfaces of the conductors of the three coils are respectively provided with an insulating layer.
  • the first frequency is 50 Hz
  • the second frequency is 500-1200 Hz
  • the third frequency is 1500-2500 Hz.
  • the first compensation capacitor connected to the first layer coil and the second compensation capacitor connected to the second layer coil are connected in parallel
  • the third compensation capacitor on the third layer of coils are connected in parallel
  • the first compensation capacitor value is 40-120 ⁇
  • the second compensation capacitor value is 400-1000 ⁇
  • the third compensation capacitor value is 800-1800 ⁇ .
  • the coil drive control device for controlling the simultaneous energization of the first layer coil, the second layer coil and the third layer coil is further included, and the control device outputs respectively The coil ends are connected and arranged in the same control cabinet.
  • the electromagnetic induction melting furnace for controlling the average nominal diameter of TiB 2 particles in an aluminum titanium boron alloy has the following advantageous effects: Since a plurality of coils are disposed outside the furnace body, and the frequency of current flowing through the coils Different. Thus, there are a plurality of alternating magnetic field superpositions inside the furnace body. The internal parts of the above furnace body are subjected to magnetic force, so that the average nominal diameter of the TiB 2 particles in the obtained aluminum titanium boron alloy is finer, thereby improving the solidification grain refining ability of the aluminum titanium alloy to aluminum or aluminum alloy. . DRAWINGS
  • 1 is a schematic axial sectional view of the present invention is a method of controlling the structure of the Al-Ti-B alloy particles 162 groups the average nominal diameter of the electromagnetic induction melting furnace of the embodiment;
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a flow chart showing the melting of aluminum titanium boron in an electromagnetic induction melting furnace in the embodiment. detailed description
  • the electromagnetic induction melting furnace comprises a furnace body 1 and is disposed in the furnace.
  • the coil 2 on the outer surface of the body 1.
  • the furnace body 1 is used for holding a metal or an alloy to be smelted, and the furnace body 1 includes a furnace wall 11 and a space 12 for containing metal or alloy formed by the furnace wall; the coil is disposed on the furnace wall 11 Externally, the furnace wall 11 is surrounded by different diameters in the axial direction of the furnace body 1 (i.e., the direction in which it is cut in Fig. 1).
  • the coil 2 is subjected to an alternating current under control or driving of a control device (not shown), and the alternating current forms a varying magnetic field in the space 12, in the space 12 of the furnace body 1.
  • the metal or alloy induces a magnetic field generated by the alternating current described above, which cuts the magnetic field lines of the magnetic field and generates eddy currents on the surface of the metal or alloy.
  • the coil 2 includes three separate coils, which are a first coil 21, a second coil 22, and a third coil 23, respectively. Meanwhile, in the present embodiment, the frequency at which the control device outputs the drive current flowing through each of the coils is different.
  • the above coil It is not necessarily 3 layers, but it can be another number, for example, 2 or 4 layers.
  • the number of different coils and the frequency of the current flowing therethrough are different, so that the intensity of the magnetic field in the space 12 in the above-mentioned furnace body 1 and the degree of change thereof are different.
  • the coil 2 includes the first layer coil 21, the second layer coil 22, and the third layer coil 23; wherein, the frequency at which the first layer coil 21 flows current is the first frequency, and the second layer coil 22 flows.
  • the frequency of the overcurrent is the second frequency
  • the frequency of the current flowing through the third layer coil 23 is the third frequency.
  • the first frequency is 50 Hz
  • the second frequency is 1000 Hz
  • the third frequency is 2100 Hz.
  • the second frequency may also be adjusted between 5004200 Hz
  • the third frequency may also be adjusted between 1500-2500 Hz.
  • the average nominal diameter is controlled.
  • the above-described electromagnetic induction melting furnace can reduce the average nominal diameter of TiB 2 particles in the above aluminum titanium boron alloy to 4 to 5 ⁇ m to about 1.8 to 2 ⁇ m.
  • the magnetic field generated by the current of 2100 Hz is similar to the current of about 1000 Hz described above, but its position is closer to the coil.
  • the above-mentioned large force position is not a point but a range on the horizontal plane.
  • the effect of a certain strength of magnetic force can reduce the tendency of the above TiB 2 particles to aggregate, so that the average nominal diameter of the TiB 2 particles formed in the reaction is controlled.
  • three are respectively surrounded by different diameters.
  • the coil of the furnace body 1 is such that the liquid alloy in the furnace body 1 of the electromagnetic induction melting furnace is subjected to the electromagnetic force generated by the coil at various positions on the cross section thereof, thereby reducing the aggregation tendency of the TiB 2 particles, thereby making it
  • the average nominal diameter is controlled, ie the average nominal diameter of the TiB 2 clusters is still normally distributed, but the center size is controlled to be reduced.
  • the first layer coil 21, the second layer coil 22, and the third layer coil 23 respectively surround the entire axis of the furnace wall 11 in the furnace body 1 with different diameters.
  • the outer surface ie, the direction from top to bottom in FIG. 1
  • the third layer coil 23 is closest to the outer surface of the furnace wall 11 of the furnace body 1, but maintains a set distance from the furnace wall 11 (ie, the third The radius of the layer coil is larger than the radius of the outer surface of the furnace wall 11; and the second layer coil 22 is enclosed outside the third layer coil 23, and the third layer coil 23 and the second layer coil 22 are viewed from a horizontal sectional view.
  • the distance between the two layers is 8 cm.
  • the distance between the coils of each layer may also be adjusted between 5 and 15 cm.
  • the distance between the above three layers of coils and between the coil and the outer surface of the furnace wall 11 on the horizontal plane not only can insulate the coils from each other, but also reduce their mutual coupling (including thermal coupling), and at the same time, Since the distance between the coils is adjusted, the positional relationship between the coil and the furnace body 1 is actually adjusted, thereby changing the position of the electromagnetic field generated by the coil passing through the furnace body 1, so that the furnace body 1 The position of the liquid alloy affected by its electromagnetic force has changed. Therefore, it is also possible to adjust the position of the above coil so that the liquid alloy in the furnace body 1 is more uniformly subjected to the electromagnetic field generated by the coil.
  • Such an arrangement not only allows the coil 2 to sufficiently distribute its magnetic field in the space 12, but also more efficiently heats the metal or alloy in the space 12, and places the coil having the lowest frequency on the outermost side, and can also effectively reduce it.
  • the electromagnetic interference of the coil to the outside is not only allows the coil 2 to sufficiently distribute its magnetic field in the space 12, but also more efficiently heats the metal or alloy in the space 12, and places the coil having the lowest frequency on the outermost side, and can also effectively reduce it. The electromagnetic interference of the coil to the outside.
  • the main body portion of the above-mentioned furnace body 1 is composed of a silicon carbide (SiC) material so that the electromagnetic field generated by the above plurality of coils can effectively act on the liquid alloy contained therein.
  • the electromagnetic induction melting furnace further includes a first (compensated) capacitor (not shown) connected to the first layer coil 21 and a second connected to the second layer coil 22 ( Compensation) A capacitor (not shown) and a third (compensated) capacitor (not shown) connected in parallel to the third layer coil 23.
  • the first compensation capacitor value is 90 F
  • the second compensation capacitor value is 720 F
  • the third compensation capacitor value is 1200 F.
  • the first compensation capacitor value may also be adjusted between 40-120 F
  • the second compensation capacitor value may also be adjusted between 400-1000 ⁇
  • the third compensation capacitor value may also be between 800-1800 ⁇ . Adjustment.
  • the purpose of using the compensation capacitor is to reduce the waveform distortion of the alternating current when passing through the above coils, to improve the power factor, and also to reduce the pollution of the induction electric furnace to the external AC power source.
  • the electromagnetic induction melting furnace further includes a control cabinet (not shown), and is disposed in the control cabinet, respectively, and the first layer coil 21, the second layer coil 22, and the third layer.
  • a coil drive control device (not shown) connected to the end of the coil 23.
  • the three coils working at the same time further strengthen the magnetic field strength in the space 12, and at the same time, the alternating frequency is further increased, the tendency of TiB 2 particles to aggregate is reduced, and the average nominal diameter of the 116 2 particle group is controlled.
  • the above three-layer coils may not be energized at the same time, and the three coils may be operated in a single round flow or two or two rounds.
  • FIG. 3 discloses a preparation process of the aluminum titanium boron alloy in the embodiment, and the process includes the following steps:
  • Step S11 Adding liquid metal aluminum:
  • metal aluminum is placed in the above electromagnetic induction melting furnace to prepare for the next melting.
  • liquid aluminum is added, that is, aluminum is melted in other places or equipment and then placed in the space 12 in the furnace body 1, so that it is not required to be reused in this embodiment.
  • the long time causes the metal aluminum to melt, but only needs to maintain the state of the liquid aluminum described above and bring it to the set temperature.
  • solid aluminum ie, aluminum ingot
  • it is necessary to add a step after the step that is, the added aluminum ingot is melted, and at the same time, the step is further Will last longer.
  • Step S12 heating and heating In this embodiment, the step is to start the operation of the electromagnetic induction melting furnace, and to heat the liquid aluminum to maintain the temperature in the predetermined temperature range, so that the temperature of the liquid in the induction furnace and the liquid aluminum therein is maintained. Within the set range.
  • the added potassium fluorotitanate and potassium fluoroborate are both in powder form.
  • Reaction Step S14 Control group average nominal particle diameter of 1162: When added to the above materials, which begins with the reaction of liquid aluminum alloy to obtain a liquid; also, the period of time the liquid alloy in the electromagnetic induction melting furnace, then Since the electromagnetic field is changed in the induction furnace, and the electromagnetic field is a superposition of a plurality of alternating electromagnetic fields, the liquid alloy in the furnace body is subjected to an electromagnetic field in the electromagnetic induction melting furnace to form a longitudinal section thereof.
  • the liquid level of the plurality of peaks is such that each part thereof is subjected to the combination or individual action of the electromagnetic forces generated by the above three coils, and the average nominal diameter of the TiB 2 particles is controlled while sufficient electromagnetic stirring is obtained.
  • the higher the drive frequency of the coil the closer it generates an electromagnetic field coil; while the higher driving frequency to the coil, to prevent polymerization of the above-described particles D 162 strength will the larger, aluminum alloy, titanium and boron prepared by reaction of butan 162 nominal mean particle diameter of the smaller group.
  • the average nominal diameter of the TiB 2 particles in the obtained aluminum titanium boron alloy is decreased from 5 ⁇ m in the electromagnetic induction melting furnace of the general art to About 2 microns, the grain refining ability of the prepared aluminum titanium boron alloy to aluminum or aluminum alloy is greatly improved.
  • the aluminum titanium boron in the electromagnetic induction melting furnace can be made into an aluminum titanium boron alloy wire by rolling or other processes for addition to other aluminum or aluminum alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Furnace Details (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • General Induction Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

控制铝钛硼合金中 118颗粒团平均名义直径的
电磁感应熔炼电炉 技术领域
本发明涉及冶金工业熔炼设备,更具体地说,涉及一种控制铝钛硼合金中 TiB2颗粒团平均名义直径的电磁感应熔炼电炉。 背景技术
铝钛硼合金是一类目前在全球范围内铝材加工中普遍使用并最为有效的 细化铝及铝合金凝固晶粒的中间合金。 在铝或铝合金中加入上述铝钛硼合金, 可以使得铝或铝合金凝固晶粒细化,进而使其屈服强度、压延塑性及韧脆转变 温度等性能都有很大改善。目前在全球范围内普遍使用并且能有效实现工业化 生产的铝钛硼中间合金的制造方法是用氟钛酸钾和氟硼酸钾与铝熔体进行的 热还原反应法, 这种方法产生大量的 TiB2并作为细化后的铝或铝合金的晶粒 核心。在铝钛硼合金中, 丁162以颗粒团的形式存在, 其本身的平均名义直径越 细小, 其对铝或铝合金的凝固晶粒细化能力就越强。 但是, 在现有技术中, 通 常是在电阻坩埚熔炼炉或单频(通常是工频)电磁感应熔炼电炉中进行上述铝 热还原反应的, 其生产出来的铝钛硼合金中 TiB2颗粒团平均名义直径较大, 从而使得被这种具有较大 TiB2颗粒团的铝钛硼合金细化后的铝或铝合金的凝 固晶粒尺寸较大。 发明内容
本发明要解决的技术问题在于, 针对现有技术中铝钛硼合金中的 TiB2颗 粒团平均名义直径较大从而使得由其细化后的铝或铝合金的凝固晶粒尺寸较 大的缺陷, 提供一种在其反应过程中控制上述铝钛硼合金中 TiB2颗粒团平均 名义直径的电磁感应熔炼电炉。
本发明解决其技术问题所采用的技术方案是:构造一种控制铝钛硼合金中 TiB2颗粒团平均名义直径的电磁感应熔炼电炉,包括用于盛放金属或合金熔体 的炉体及设置在所述炉体外表面的线圈,所述线圈中通过交变电流,所述炉体 内的金属或合金感应到所述电流产生的磁场而发热,所述线圈为多层,所述多 层线圈中每个线圈流过的驱动电流的频率各不相同。
在本发明所述的电磁感应熔炼电炉中,所述线圈包括流过第一频率电流的 第一层线圈、流过第二频率电流的第二层线圈和流过第三频率电流的第三层线 圈。
在本发明所述的电磁感应熔炼电炉中,所述第一层线圈、第二层线圈和第 三层线圈分别以所述炉体为圆心并以不同的直径包围所述炉体;所述第三层线 圈靠近所述炉体外表面,所述第一层线圈远离所述炉体外表面,所述第二线圈 位于所述第一线圈和第三线圈之间。
在本发明所述的电磁感应熔炼电炉中,所述第三线圈与所述炉体的半径之 差、第一线圈和第二线圈的半径之差以及第二线圈和第三线圈的半径之差分别 为 5-15厘米。
在本发明所述的电磁感应熔炼电炉中,所述三个线圈的导体外表面分别设 置有绝缘层。
在本发明所述的电磁感应熔炼电炉中, 所述第一频率为 50Hz, 所述第二 频率为 500- 1200HZ , 所述第三频率为 1500-2500Hz。
在本发明所述的电磁感应熔炼电炉中,还包括并接在所述第一层线圈上的 第一补偿电容、并接在所述第二层线圈上的第二补偿电容和并接在所述第三层 线圈上的第三补偿电容。
在本发明所述的电磁感应熔炼电炉中, 所述第一补偿电容值为 40-120μΡ, 第二补偿电容值为 400-1000μΡ, 第三补偿电容值为 800-1800 F。
在本发明所述的电磁感应熔炼电炉中, 还包括用于控制所述第一层线圈、 第二层线圈和第三层线圈同时通电工作的线圈驱动控制装置,所述控制装置输 出分别与所述各线圈端点连接, 并设置在同一控制柜中。
实施本发明的控制铝钛硼合金中 TiB2颗粒团平均名义直径的电磁感应熔 炼电炉, 具有以下有益效果: 由于在所述炉体外部设置有多层线圈, 而且这些 线圈流过的电流的频率各不相同。于是,在上述炉体内部有多个交变磁场叠加, 使得上述炉体内部各部分均受到磁力的作用, 使得得到的铝钛硼合金中 TiB2 颗粒团平均名义直径更为细小,进而提高了铝钛硼合金对铝或铝合金凝固晶粒 细化能力。 附图说明
图 1是本发明一种控制铝钛硼合金中 1 62颗粒团平均名义直径的电磁感 应熔炼电炉实施例的轴向剖面结构示意图;
图 2是图 1中的 A-A向剖面图;
图 3是所述实施例中铝钛硼在电磁感应熔炼电炉中的熔炼流程图。 具体实施方式
下面将结合附图 (及) 和实施例对本发明作进一步说明。
如图 1和图 2所示, 在本发明的一种控制铝钛硼合金中 TiB2颗粒团平均 名义直径的电磁感应熔炼电炉实施例中,该电磁感应熔炼电炉包括炉体 1以及 设置在炉体 1外表面的线圈 2。 其中, 上述炉体 1用于盛放需要熔炼的金属或 合金, 炉体 1包括一个炉壁 11及该炉壁所形成的一个盛放金属或合金的空间 12; 上述线圈设置在炉壁 11的外部, 并在炉体 1的轴向 (即图 1中剖开方向) 上以不同的直径包围上述炉壁 11。 在工作时, 上述线圈 2在控制装置 (图中 未示出) 的控制或驱动下, 流过交变电流, 该交变电流在上述空间 12内形成 变化的磁场, 炉体 1的空间 12内的金属或合金感应到上述交变电流产生的磁 场, 其切割上述磁场的磁力线并在该金属或合金表面产生涡电流。 由于金属或 合金具有一定的电阻, 电流流过电阻而发热, 并使该金属或合金发热或熔化; 同时上述磁场还对其中的的物体产生一定的作用力,由于在本实施例中上述合 金为熔体, 在上述磁场的作用下, 该熔体的受力部分将会产生一定的位移, 当 这种移动的位置较大时, 会在熔体表面形成波峰和波谷。在本实施例中, 如图 1所示, 上述线圈 2中包括了 3层单独的线圈, 其分别为第一线圈 21、第二线 圈 22以及第三线圈 23。 同时, 在本实施例中, 上述控制装置输出到上述每个 线圈流过的驱动电流的频率是各不相同的。 当然, 在其它实施例中, 上述线圈 也不一定就是 3层, 也可以是别的数目, 例如, 2层或 4层。 不同的线圈数量 及其中流过电流的频率不一样, 使得上述炉体 1中的空间 12中磁场的强度及 其变化程度不一样。
如上所述, 上述线圈 2包括第一层线圈 21、 第二层线圈 22和第三层线圈 23; 其中, 上述第一层线圈 21 流过电流的频率为第一频率, 第二层线圈 22 流过电流的频率为第二频率, 第三层线圈 23流过电流的频率为第三频率。 在 本实施例中,上述第一频率为 50Hz,第二频率为 1000Hz,第三频率为 2100Hz。 而在其它实施例中, 上述第二频率也可以在 5004200Hz之间调整, 第三频率 也可以在 1500-2500HZ之间调整。这样的频率选取使得上述线圈 2在上述炉体 1 内的交变磁场及其磁力较为有利于减小铝钛硼合金中 1 62颗粒之间的凝聚 力, 使在反应中形成的 TiB2颗粒团的平均名义直径得到控制。 在第一实施例 中,通过试验得知,采用上述设置的电磁感应熔炼电炉可以将上述铝钛硼合金 中 TiB2颗粒团平均名义直径 4-5微米降低到 1.8-2微米左右。
由电磁感应原理可以知道, 在线圈中通过电流时会产生穿过该线圈的磁 场, 变化的电流将产生变化的磁场; 这些磁场的分布及强度不仅与线圈的形状 相关, 还与其中流过的电流频率相关。通常, 流过线圈的电流频率越高, 其靠 近线圈位置产生的磁力线就越密集,相应而言,这些位置所受到的磁力就越大。 对于 50Hz的工频而言, 其线圈中受到上述磁力作用较大的位置是在线圈的中 心位置, 而对于 1000Hz左右的电流产生的磁场, 其作用力较大的部分 (即磁 力线较为密集部分) 就不在其线圈的中心部分, 而在以该线圈中心位置为轴、 更加靠近线圈的对称位置(由水平面来看, 就是对称于线圈中心轴的左右的位 置); 2100Hz的电流产生的磁场, 其作用力较大的部分(即磁力线较为密集部 分) 与上述 1000Hz左右的电流相似, 不过其位置更加靠近该线圈。 而且, 上 述作用力较大位置在水平面上来看也不是一个点, 而是一个范围。这样, 在上 述通过不同频率电流的三个线圈的作用下,上述炉体 1内的任何位置基本上均 可受到一定强度的磁力的作用。 而一定强度的磁力的作用可以减少上述 TiB2 颗粒的聚集趋势, 从而使得在反应中形成的 TiB2颗粒团平均名义直径受到控 制。通过上面的描述可以得知,在本实施例中采用三个以不同的直径分别包围 上述炉体 1的线圈,使得上述电磁感应熔炼电炉的炉体 1内的液态合金在其横 截面上的各个位置都受到上述线圈产生的电磁力作用, 减少 TiB2颗粒的聚集 趋势, 从而使得其平均名义直径受到控制, 即 TiB2颗粒团的平均名义直径仍 然呈正态分布, 但其中心的尺寸因受到控制而降低。
如图 1、 2所示, 在第一实施例中, 上述第一层线圈 21、 第二层线圈 22 和第三层线圈 23以不同的直径分别包围上述炉体 1中炉壁 11的整个轴向外表 面(即图 1中由上至下的方向); 其中, 第三层线圈 23最为靠近炉体 1的炉壁 11的外表面, 但与炉壁 11保持一设定距离(即第三层线圈的半径大于炉壁 11 外表面的半径); 而第二层线圈 22包围在上述第三层线圈 23的外部, 由水平 剖面图来看, 上述第三层线圈 23与第二层线圈 22之间存在一设定的距离(即 第二层线圈的半径大于第三层线圈的半径);而第一层线圈 21围绕在上述第二 层线圈 22外部, 同样, 由水平剖面图来看, 上述第一层线圈 21与第二层线圈 22之间存在一设定的距离 (即第一层线圈的半径大于第二层线圈的半径)。 同 时, 上述三层线圈分别被固定在上述炉体 1上, 每层线圈的导线或铜线外部分 别设置有防止线圈之间短路的绝缘层。在本实施例中, 上述每层线圈在水平面 上的距离为 8厘米, 在其它实施例中, 每层线圈之间的距离也可以在 5-15厘 米之间调整。 具体而言, 上述三层线圈之间及线圈与炉壁 11外表面之间在水 平面上的距离设置不仅可以使得线圈之间相互绝缘, 减少其相互之间的耦合 (包括热耦合), 同时, 由于调整了上述线圈之间的距离, 实际上也调整了上 述线圈与炉体 1之间的位置关系,从而改变了该线圈产生的电磁场穿过上述炉 体 1的位置, 使得炉体 1中的液态合金受到其电磁力作用的位置有所改变。因 此,也可以通过调整上述线圈的位置以便在一定程度上使得上述炉体 1内的液 态合金受到上述线圈产生的电磁场的作用力更加均匀。这样的设置不仅使得上 述线圈 2可以充分地将其磁场分布在上述空间 12内, 更加有效地加热上述空 间 12内的金属或合金, 而且将频率最低的线圈放在最外面, 也可以有效地减 少线圈对外部的电磁干扰。
在本实施例中, 上述炉体 1的主体部分由碳化硅 (SiC) 材料构成, 以便 于上述多个线圈产生的电磁场可以有效地作用于盛放在其中的液态合金上。 在本实施例中, 该电磁感应熔炼电炉还包括并接在第一层线圈 21上的第 一(补偿) 电容(图中未示出)、 并接在第二层线圈 22上的第二(补偿) 电容 (图中未示出)和并接在第三层线圈 23上的第三(补偿)电容(图中未示出)。 其中, 所述第一补偿电容值为 90 F, 第二补偿电容值为 720 F, 第三补偿电 容值为 1200 F。 在其它实施例中, 上述第一补偿电容值也可以在 40-120 F之 间调整, 第二补偿电容值也可以 400-1000μΡ之间调整, 第三补偿电容值也可 以在 800-1800μΡ之间调整。 采用补偿电容的目的在于减少交流电流在通过上 述各线圈时的波形畸变, 提高功率因数, 同时也减少了该感应电炉对外部交流 电源的污染。
在本实施例中, 该电磁感应熔炼电炉还包括一个控制柜 (图中未示出), 以及设置在上述控制柜中、 分别与上述第一层线圈 21、 第二层线圈 22及第三 层线圈 23端点连接的线圈驱动控制装置(图中未示出)。 同时工作的三个线圈 使得上述空间 12内的磁场强度得到进一步的加强, 同时其交变频率进一步加 大, 减少了 TiB2颗粒聚集的趋势, 控制了 1162颗粒团平均名义直径。 此外, 在其它实施例中, 上述三层线圈也可以不是同时通电工作的, 该三个线圈可以 单个轮流通电工作或两两轮流通电工作。
此外, 图 3揭示了本实施例中铝钛硼合金的制备流程,该流程包括如下步 骤:
步骤 S11 加入液态金属铝: 在本步骤中, 将金属铝放入上述电磁感应熔 炼电炉中, 准备进行下一步的熔炼。 在本实施例中, 加入的是液态的铝, 即在 其它地方或设备中将铝熔化后再放入上述炉体 1内的空间 12中, 这样, 在本 实施例中就不需要再用较长的时间使得金属铝熔化,而是只需要保持上述液态 铝的状态并使其达到设定的温度即可。 当然, 在其它实施例中, 也可以加入固 态的铝 (即铝锭) , 不过此时, 就需要在本步骤之后, 再加上一个步骤, 即使 得加入的铝锭熔化, 同时, 该步骤还会持续较长时间。
步骤 S12 升温加热: 在本实施例中, 本步骤就是使得上述电磁感应熔炼 电炉开始工作, 加热上述液态铝, 使其保持在规定的温度范围内, 使上述感应 电炉及其中的液态铝的温度保持在设定的范围内。 步骤 S13 加入合金化原料: 在本步骤中, 加入需要加入的合金成分, 在 本实施例中, 按照事先设定, 加入上述的氟钛酸钾和氟硼酸钾, 充分搅拌, 并 在上述电磁感应熔炼电炉中保持一段时间, 以便使上述材料与铝液充分反应, 得到液态合金。 在本实施例中, 加入的氟钛酸钾和氟硼酸钾都是粉状的。
步骤 S14 反应: 控制 1162颗粒团平均名义直径: 当加入上述材料后, 这 些材料与铝液开始反应, 得到液态合金; 同时, 将上述液态合金在上述电磁感 应熔炼电炉内保持一段时间,此时,由于在上述感应电炉中存在变化的电磁场, 且该电磁场是多个交变电磁场的叠加,所以, 上述处于炉体中的液态合金在上 述电磁感应熔炼电炉中受到电磁场的作用而形成其纵截面为多个波峰的液面, 从而使得其每一部分都受到上述三个线圈产生的电磁力的组合或单独的作用, 在得到充分的电磁搅拌的同时使其中 TiB2颗粒团平均名义直径受到控制。 值 得一提的是, 在上述电磁感应熔炼电炉中, 其线圈的驱动频率越高, 其产生的 电磁场就越靠近线圈; 同时线圈上的驱动频率越高, 防止上述丁162颗粒聚合 的力量就越大, 反应中制备的铝钛硼合金中丁162颗粒团平均名义直径就越小。 正如前面所述,在采用本发明上述实施例描述的电磁感应熔炼电炉后,得到的 铝钛硼合金中 TiB2颗粒团平均名义直径由采用一般技术中的电磁感应熔炼电 炉时的 5微米下降到 2微米左右,极大地提高了制备的铝钛硼合金对铝或铝合 金的晶粒细化能力。
在完成上述步骤 S14 后, 电磁感应熔炼电炉中的铝钛硼就可以通过轧制 或其它工序制成铝钛硼合金线, 用于添加在其它铝或铝合金中。
在上述实施例中, 具体描述了控制铝钛硼合金中 TiB2颗粒团平均名义直 径的方法。
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详 细, 但并不能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变 形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以 所附权利要求为准。

Claims

权利要求书
1、一种控制铝钛硼合金中丁162颗粒团平均名义直径的电磁感应熔炼电炉, 包括用于盛放合金熔体的炉体和设置在所述炉体外表面的线圈,所述线圈中通 过交变电流,所述炉体内的合金感应到所述电流产生的磁场而发热, 其特征在 于,所述线圈为多层,所述多层线圈中每层线圈流过的驱动电流的频率各不相 同。
2、 根据权利要求 1所述的电磁感应熔炼电炉, 其特征在于, 所述线圈包 括流过第一频率电流的第一层线圈、流过第二频率电流的第二层线圈和流过第 三频率电流的第三层线圈。
3、 根据权利要求 2所述的电磁感应熔炼电炉, 其特征在于, 所述第一层 线圈、第二层线圈和第三层线圈分别以所述炉体为圆心并以不同的直径包围所 述炉体; 所述第三层线圈靠近所述炉体外表面,所述第一层线圈远离所述炉体 外表面, 所述第二层线圈位于所述第一层线圈和第三层线圈之间。
4、 根据权利要求 3所述的电磁感应熔炼电炉, 其特征在于, 所述第三层 线圈与所述炉体的半径之差、第一层线圈和第二层线圈的半径之差以及第二层 线圈和第三层线圈的半径之差分别为 5-15厘米。
5、 根据权利要求 4所述的电磁感应熔炼电炉, 其特征在于, 所述三层线 圈的导体外表面分别设置有绝缘层。
6、 根据权利要求 5所述的电磁感应熔炼电炉, 其特征在于, 所述第一频 率为 50Hz, 所述第二频率为 500-1200HZ, 所述第三频率为 1500-2500Hz。
7、 根据权利要求 6所述的电磁感应熔炼电炉, 其特征在于, 还包括并接 在所述第一层线圈上的第一补偿电容、并接在所述第二层线圈上的第二补偿电 容和并接在所述第三层线圈上的第三补偿电容。
8、 根据权利要求 7所述的电磁感应熔炼电炉, 其特征在于, 所述第一补 偿电容值为 40-120 F, 第二补偿电容值为 400-1000 F, 第三补偿电容值为 800-1800 F。
9、 根据权利要求 8所述的电磁感应熔炼电炉, 其特征在于, 还包括用于 控制所述第一层线圈、第二层线圈和第三层线圈同时通电工作的线圈驱动控制 装置,所述控制装置输出分别与所述各线圈端点连接,并设置在同一控制柜中。
PCT/CN2010/072589 2010-02-05 2010-05-11 控制铝钛硼合金中TiB2颗粒团平均名义直径的电磁感应熔炼电炉 WO2011022987A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10763299.4A EP2476785B1 (en) 2010-02-05 2010-05-11 Electromagnetic induction electric melting furnace used for controlling average nominal diameter of tib2 aggregates in al-ti-b alloy
US12/867,126 US9025636B2 (en) 2010-02-05 2010-05-11 Electromagnetic induction melting furnace to control an average nominal diameter of the TiB2 cluster of the Al-Ti-B alloy
ES10763299.4T ES2527992T3 (es) 2010-02-05 2010-05-11 Horno de fusión eléctrico por inducción electromagnética utilizado para controlar el diámetro nominal promedio de agregados de TiB2 en una aleación de Al-Ti-B

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010110166.0 2010-02-05
CN 201010110166 CN101782324B (zh) 2010-02-05 2010-02-05 控制铝钛硼(碳)合金中TiB2(TiC)颗粒团平均名义直径的电磁感应熔炼电炉

Publications (1)

Publication Number Publication Date
WO2011022987A1 true WO2011022987A1 (zh) 2011-03-03

Family

ID=42522422

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/072592 WO2011022988A1 (zh) 2010-02-05 2010-05-11 控制铝钛碳合金中TiC颗粒团平均名义直径的电磁感应熔炼电炉
PCT/CN2010/072589 WO2011022987A1 (zh) 2010-02-05 2010-05-11 控制铝钛硼合金中TiB2颗粒团平均名义直径的电磁感应熔炼电炉

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072592 WO2011022988A1 (zh) 2010-02-05 2010-05-11 控制铝钛碳合金中TiC颗粒团平均名义直径的电磁感应熔炼电炉

Country Status (5)

Country Link
US (2) US9025636B2 (zh)
EP (2) EP2476785B1 (zh)
CN (1) CN101782324B (zh)
ES (2) ES2527992T3 (zh)
WO (2) WO2011022988A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387621A (zh) * 2010-08-30 2012-03-21 台达电子工业股份有限公司 具有线圈结构的电器设备及其线圈结构和制法
WO2013165442A1 (en) * 2012-05-04 2013-11-07 Apple Inc. Inductive coil designs for the melting and movement of amorphous metals
US10197335B2 (en) 2012-10-15 2019-02-05 Apple Inc. Inline melt control via RF power
CN103952602B (zh) * 2014-05-04 2018-03-16 遵义智鹏高新铝材有限公司 一种铝钛硼生产工艺
US9873151B2 (en) 2014-09-26 2018-01-23 Crucible Intellectual Property, Llc Horizontal skull melt shot sleeve
WO2016089376A1 (en) * 2014-12-02 2016-06-09 Halliburton Energy Services, Inc. Mold assemblies that actively heat infiltrated downhole tools
US10760179B2 (en) * 2017-10-30 2020-09-01 Raytheon Technologies Corporation Method for magnetic flux compensation in a directional solidification furnace utilizing a stationary secondary coil
US10589351B2 (en) * 2017-10-30 2020-03-17 United Technologies Corporation Method for magnetic flux compensation in a directional solidification furnace utilizing an actuated secondary coil
AT521904B1 (de) * 2018-12-11 2022-07-15 Engel Austria Gmbh Formgebungsmaschine
CN111692616B (zh) * 2019-03-12 2022-05-27 泰科电子(上海)有限公司 多灶头电磁炉
CN112325641B (zh) * 2020-10-28 2024-02-20 江苏威拉里新材料科技有限公司 一种真空熔炼感应线圈装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005676A2 (fr) * 1978-05-23 1979-11-28 C E M COMPAGNIE ELECTRO MECANIQUE Société Anonyme Procédé de brassage électromagnétique de billettes ou blooms coulés en continu
US4321958A (en) * 1979-01-30 1982-03-30 Cem Compagnie Electro-Mecanique Electromagnetic inductor for generating a helical field
US4437885A (en) * 1981-09-03 1984-03-20 Compagnie Generale Des Matieres Nucleaires (Cogema) Method for the physical separation of a metallic phase and scoriae in an induction furnace
US5275229A (en) * 1992-03-25 1994-01-04 Inductotherm Corp. Magnetic suspension melting apparatus
CN2377793Y (zh) * 1999-06-14 2000-05-10 应建平 一种感应加热器
CN1609258A (zh) * 2004-09-09 2005-04-27 山东大学 一种铝合金的细化工艺
CN2812481Y (zh) * 2005-04-01 2006-08-30 株洲弗拉德科技有限公司 一种新型中频感应加热线圈
US20090129429A1 (en) * 2007-11-17 2009-05-21 Fishman Oleg S Melting and mixing of materials in a crucible by electric induction heel process

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE540994C (de) * 1926-07-30 1932-01-08 Siemens & Halske Akt Ges Hochfrequenz-Induktionsofen
US1822539A (en) * 1929-03-09 1931-09-08 Ajax Electrothermic Corp Induction electric furnace
CA1266094A (en) * 1986-01-17 1990-02-20 Patrick Earl Burke Induction heating and melting systems having improved induction coils
DE3910777C2 (de) * 1989-04-04 2001-08-09 Ald Vacuum Techn Ag Induktionsofen mit einem metallischen Tiegel
ATE168517T1 (de) * 1994-03-25 1998-08-15 Junker Gmbh O Induktionstiegelofen mit mindestens zwei parallel an einen schwingkreisumrichter angeschlossenen spulen
CN1146006A (zh) * 1995-09-19 1997-03-26 山东省新泰市铜材研究所 金属铸造用熔化电炉
US5708845A (en) * 1995-09-29 1998-01-13 Wistendahl; Douglass A. System for mapping hot spots in media content for interactive digital media program
US6570587B1 (en) * 1996-07-26 2003-05-27 Veon Ltd. System and method and linking information to a video
JP2954892B2 (ja) * 1996-11-22 1999-09-27 核燃料サイクル開発機構 放射性雑固体廃棄物の溶融処理方法
US6169573B1 (en) * 1997-07-03 2001-01-02 Hotv, Inc. Hypervideo system and method with object tracking in a compressed digital video environment
US6154771A (en) * 1998-06-01 2000-11-28 Mediastra, Inc. Real-time receipt, decompression and play of compressed streaming video/hypervideo; with thumbnail display of past scenes and with replay, hyperlinking and/or recording permissively intiated retrospectively
US6121592A (en) * 1998-11-05 2000-09-19 Inductotherm Corp. Induction heating device and process for the controlled heating of a non-electrically conductive material
US7089579B1 (en) * 1998-12-20 2006-08-08 Tvworks, Llc System for transporting MPEG video as streaming video in an HTML web page
GB9902235D0 (en) * 1999-02-01 1999-03-24 Emuse Corp Interactive system
US6999496B2 (en) * 1999-11-12 2006-02-14 Inductotherm Corp. High efficiency induction heating and melting systems
CN1136428C (zh) * 2000-03-16 2004-01-28 冶金工业部钢铁研究总院 悬浮熔炼水冷坩埚
US7725812B1 (en) * 2000-03-31 2010-05-25 Avid Technology, Inc. Authoring system for combining temporal and nontemporal digital media
US8122236B2 (en) * 2001-10-24 2012-02-21 Aol Inc. Method of disseminating advertisements using an embedded media player page
US20020083469A1 (en) * 2000-12-22 2002-06-27 Koninklijke Philips Electronics N.V. Embedding re-usable object-based product information in audiovisual programs for non-intrusive, viewer driven usage
US20020161909A1 (en) * 2001-04-27 2002-10-31 Jeremy White Synchronizing hotspot link information with non-proprietary streaming video
FR2857522A1 (fr) * 2003-07-10 2005-01-14 Centre Nat Rech Scient Installation de traitement par induction d'un fluide faiblement conducteur
US6993061B2 (en) * 2003-11-07 2006-01-31 Battelle Energy Alliance, Llc Operating an induction melter apparatus
US20070250775A1 (en) * 2006-04-19 2007-10-25 Peter Joseph Marsico Methods, systems, and computer program products for providing hyperlinked video
CN100560772C (zh) * 2007-04-24 2009-11-18 西安交通大学 颗粒碳化物增强铁素体钢的制备方法
US8108257B2 (en) * 2007-09-07 2012-01-31 Yahoo! Inc. Delayed advertisement insertion in videos
DE102007051666A1 (de) * 2007-10-26 2009-04-30 Otto Junker Gmbh Stromversorgungseinrichtung für Induktionsöfen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005676A2 (fr) * 1978-05-23 1979-11-28 C E M COMPAGNIE ELECTRO MECANIQUE Société Anonyme Procédé de brassage électromagnétique de billettes ou blooms coulés en continu
US4321958A (en) * 1979-01-30 1982-03-30 Cem Compagnie Electro-Mecanique Electromagnetic inductor for generating a helical field
US4437885A (en) * 1981-09-03 1984-03-20 Compagnie Generale Des Matieres Nucleaires (Cogema) Method for the physical separation of a metallic phase and scoriae in an induction furnace
US5275229A (en) * 1992-03-25 1994-01-04 Inductotherm Corp. Magnetic suspension melting apparatus
CN2377793Y (zh) * 1999-06-14 2000-05-10 应建平 一种感应加热器
CN1609258A (zh) * 2004-09-09 2005-04-27 山东大学 一种铝合金的细化工艺
CN2812481Y (zh) * 2005-04-01 2006-08-30 株洲弗拉德科技有限公司 一种新型中频感应加热线圈
US20090129429A1 (en) * 2007-11-17 2009-05-21 Fishman Oleg S Melting and mixing of materials in a crucible by electric induction heel process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ZUOGUI ET AL.: "Electromagnetic Stirring and the Cleanness of AlTiB Master Alloys", FOUNDRY, vol. 49, no. 2, February 2000 (2000-02-01), pages 70 - 73, XP008145417 *

Also Published As

Publication number Publication date
ES2528944T3 (es) 2015-02-13
EP2522765A4 (en) 2013-01-16
EP2522765B1 (en) 2015-01-14
US20110164650A1 (en) 2011-07-07
EP2476785A1 (en) 2012-07-18
WO2011022988A1 (zh) 2011-03-03
EP2522765A1 (en) 2012-11-14
US20110194584A1 (en) 2011-08-11
CN101782324A (zh) 2010-07-21
EP2476785B1 (en) 2014-12-24
EP2476785A4 (en) 2013-04-03
CN101782324B (zh) 2011-09-28
US9025636B2 (en) 2015-05-05
ES2527992T3 (es) 2015-02-03
US9025637B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
WO2011022987A1 (zh) 控制铝钛硼合金中TiB2颗粒团平均名义直径的电磁感应熔炼电炉
CN104550960B (zh) 应用冷床熔炼的金属增材制造方法及金属零件和应用
CN106807907B (zh) 低径向温度梯度的冷坩埚真空感应熔炼定向凝固装置
TW201243261A (en) Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
CN101020230A (zh) 钢结硬质合金多流连铸工艺及设备
CN113061741B (zh) 外加磁场改善渣池温度分布的电渣重熔复合装置及方法
WO2014177052A1 (zh) 一种钢锭冒口感应加热及电磁搅拌装置
CN107262686A (zh) 一种制备复合钢锭的设备及方法
CN101804446A (zh) 一种交变磁场强化过流冷却制备金属半固态浆料的方法及其装置
CN102554165A (zh) 金属熔体螺旋电磁搅拌装置
CN101838751B (zh) 控制TiB2颗粒团平均名义直径的铝钛硼合金制备方法
CN111842821B (zh) 一种铝合金流盘铸造的熔体电磁处理方法
TWI411708B (zh) 非金屬熔融物凝固之方法
WO2006088037A1 (ja) シリコン鋳造装置およびシリコン基板の製造方法
CN108436047A (zh) 复合磁场制备大规格细晶均质铝合金铸锭的装置及方法
Kennedy et al. Electromagnetically enhanced filtration of aluminum melts
CN114749634A (zh) 一种差压铸造坩埚炉
CN101782323A (zh) 一种锌及合金丝牵引机组感应炉
CN2889551Y (zh) 钢结硬质合金线、棒材多流连铸设备
CN101775510B (zh) 控制TiC颗粒团平均名义直径的铝钛碳合金制备方法
CN1560314A (zh) 一种工业用铝晶粒细化的工艺方法
CN103952602B (zh) 一种铝钛硼生产工艺
RU2163269C1 (ru) Способ получения многослойных слитков электрошлаковым переплавом
CN114231751A (zh) 一种多功能梯度金属复合材料电渣熔焊法制备装置及使用方法
CN118237696A (zh) 基于难成形的多元镁稀土合金的异质双丝电弧增材制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010763299

Country of ref document: EP

Ref document number: 2010723470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12867126

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE