WO2011021512A1 - Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock - Google Patents

Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock Download PDF

Info

Publication number
WO2011021512A1
WO2011021512A1 PCT/JP2010/063313 JP2010063313W WO2011021512A1 WO 2011021512 A1 WO2011021512 A1 WO 2011021512A1 JP 2010063313 W JP2010063313 W JP 2010063313W WO 2011021512 A1 WO2011021512 A1 WO 2011021512A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
shuttlecock
thin
artificial feather
main body
Prior art date
Application number
PCT/JP2010/063313
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 聡
小川 雅央
隆 外村
Original Assignee
美津濃株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美津濃株式会社 filed Critical 美津濃株式会社
Priority to CN2010800372822A priority Critical patent/CN102625724A/en
Priority to EP10809857.5A priority patent/EP2462997A4/en
Publication of WO2011021512A1 publication Critical patent/WO2011021512A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • A63B67/19Shuttlecocks with several feathers connected to each other
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/04Badminton
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials

Definitions

  • the present invention relates to an artificial feather for shuttlecock, a shuttlecock for badminton, and a method for producing them, and more specifically, an artificial feather for shuttlecock, a shuttlecock for badminton, and their production having excellent flight characteristics and durability. Regarding the method.
  • Patent Document 1 discloses that a thin piece is disposed so as to protrude from a side surface of an artificial blade shaft (a shaft having a substantially rectangular cross section) in order to improve the flight characteristics of the artificial shuttlecock.
  • a thin piece is disposed so as to protrude from a side surface of an artificial blade shaft (a shaft having a substantially rectangular cross section) in order to improve the flight characteristics of the artificial shuttlecock.
  • patent document 2 in order to generate the rotational force at the time of flight of a shuttlecock about the axis
  • patent document 3 the structure which makes the state which partially embed
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide artificial feathers for shuttlecocks, shuttlecocks for badminton, and the like that have excellent flight characteristics and high durability. It is to provide a manufacturing method.
  • the artificial feather for a shuttlecock includes a wing part and a shaft connected to the wing part.
  • the cross-sectional shape in a plane perpendicular to the extending direction of the shaft is a cross shape or a T shape.
  • a thin-walled portion that is thinner than the main body that forms a cross-shaped or T-shaped cross-sectional shape on the shaft is formed integrally with the main body so as to protrude from the side surface of the main body.
  • the air resistance of the artificial feather for controlling the flight characteristics of the shuttlecock can be appropriately adjusted by forming the thin portion so as to protrude from the side surface of the main body portion of the shaft. And since such a thin part can make thickness thinner than a main-body part, the increase in the mass of a shaft can be suppressed.
  • an artificial feather that constitutes an artificial shuttlecock with excellent flight characteristics is realized by improving the rigidity of the artificial feather shaft and adjusting the air resistance of the artificial feather while suppressing an increase in the mass of the artificial feather. it can.
  • a shuttlecock for badminton according to the present invention includes a hemispherical base body and the artificial feather for the shuttlecock connected to the base body. In this way, it is possible to realize an artificial shuttlecock having flying characteristics equivalent to those of a natural shuttlecock using natural blades and sufficient durability.
  • the method for manufacturing an artificial feather for a shuttlecock includes a step of preparing a shaft and a step of connecting a wing portion to the shaft.
  • the step of preparing the shaft includes a step of preparing a mold for molding a shaft whose cross-sectional shape in a plane perpendicular to the extending direction of the shaft is a cross shape or a T shape, and the mold is used. Forming a shaft by performing injection molding or injection compression molding.
  • a gap is formed in the mold to form a thin part protruding from the side surface of the main body part that is thinner than the main body part that forms a cross-shaped or T-shaped cross-sectional shape on the shaft. ing.
  • the shaft in which the thin portion protrudes from the side surface of the main body portion is formed by performing injection molding or injection compression molding. In this way, the shuttlecock artificial feather according to the present invention can be manufactured.
  • a badminton shuttlecock manufacturing method includes a step of preparing a hemispherical base body, a step of manufacturing shuttlecock artificial feathers using the shuttlecock artificial feather manufacturing method, and a base body Connecting a shuttlecock artificial feather. In this way, the badminton shuttlecock according to the present invention can be manufactured.
  • FIG. 2 is a schematic top view of the shuttlecock shown in FIG. 1.
  • FIG. 3 is a schematic plan view showing an embodiment of an artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock 1 shown in FIGS. 1 and 2.
  • FIG. 4 is a schematic sectional view taken along line IV-IV in FIG. 3.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 3.
  • FIG. 4 is a schematic cross-sectional view taken along line VI-VI in FIG. 3.
  • FIG. 3 is a partial cross-sectional schematic diagram showing a configuration of a portion where a middle thread of the shuttlecock shown in FIGS. 1 and 2 is arranged.
  • FIG. 6 is a flowchart for explaining a method of manufacturing the artificial feather shown in FIGS. 3 to 5.
  • FIG. It is a flowchart for demonstrating the formation process of the axis
  • a shuttlecock 1 includes a hemispherical base body 2 and a plurality of fixing surfaces connected to a fixing surface portion having a substantially flat surface in the base body 2.
  • the plurality (for example, 16 pieces) of artificial feathers 3 are arranged in an annular shape along the outer peripheral portion of the fixing surface portion in the fixing surface portion of the base body 2.
  • the plurality of artificial feathers 3 are fixed to each other by a string-like member.
  • the plurality of artificial feathers 3 are arranged such that the distance between them increases as the distance from the base body 2 increases (the inner diameter of the cylindrical body formed by the plurality of artificial feathers 3 increases as the distance from the base body 2 increases). Has been.
  • the middle thread 15 acts as a fixing member for maintaining the laminated state of the plurality of artificial feathers 3. That is, the middle thread 15 is disposed so as to define the positional relationship between the plurality of artificial feathers 3 as will be described later.
  • the artificial feather 3 constituting the shuttlecock 1 shown in FIGS. 1 and 2 includes a wing portion 5 and a shaft 7 connected to the wing portion 5.
  • the shaft 7 includes a wing shaft portion 8 arranged so as to protrude from the wing portion 5, and a fixed shaft portion 10 connected to the wing portion 5 at a substantially central portion of the wing portion 5.
  • the wing shaft portion 8 and the fixed shaft portion 10 are arranged so as to extend in the same line, and constitute one continuous shaft 7.
  • the shaft 7 has a cross-shaped cross section in a direction substantially perpendicular to the extending direction of the shaft 7. That is, as shown in FIGS. 4 and 5, in the cross-sectional shape of the shaft 7, a relatively thick thickness from the central shaft portion 11 to the vertical direction in FIG. And a thick rib portion 12a having a thickness in the circumferential direction of the concentric circle.
  • the thin rib portion having a relatively thin thickness (the thickness in the vertical direction in FIG. 4 (or in the circumferential direction of a concentric circle with the central shaft portion 11 as the center)) in the left-right direction in FIG. 4 from the central shaft portion 11.
  • 12b is formed to protrude.
  • the two thick rib portions 12a are formed so as to extend from the central shaft portion 11 in opposite directions.
  • the two thin rib portions 12b are also formed so as to extend from the central shaft portion 11 in opposite directions.
  • the thin rib portion 12b is formed so as to extend in a direction intersecting with the extending direction of the thick rib portion 12a (more specifically, a direction orthogonal).
  • the rib part 12 is comprised from the thick rib part 12a and the thin rib part 12b.
  • the main body 13 of the shaft 7 is constituted by the plurality of rib portions 12 and the central shaft portion 11.
  • the cross-sectional shape of the main body 13 is a so-called cross shape.
  • a thin portion 14 is formed at the outer peripheral end of the thin rib portion 12b as shown in FIGS. 4 and 5 (that is, protruding from the side wall of the main body portion 13).
  • the thickness of the thin portion 14 is further thinner than the thickness of the thin rib portion 12b.
  • the thin portion 14 is formed integrally with the thin rib portion 12b. Further, the thin portion 14 is formed so that the surface of the thin portion 14 is substantially flush with the side surface (upper side surface in FIG. 4) of the thin rib portion 12b.
  • the thickness of the thin portion 14 can be set to, for example, 0.03 mm to 0.1 mm, and more preferably 0.04 mm to 0.07 mm.
  • the widths W1 and W3 of the thin portion 14 can be set to, for example, 0.1 mm or more and 0.5 mm or less, more preferably 0.2 mm or more and 0.3 mm or less.
  • the rigidity of the shaft 7 can be increased while suppressing an increase in the total mass of the shaft 7.
  • the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate.
  • the shuttlecock 1 having excellent flight characteristics is configured by improving the rigidity of the shaft 7 of the artificial feather 3 and adjusting the air resistance of the artificial feather 3 while suppressing an increase in the mass of the artificial feather 3.
  • the artificial feather 3 can be realized.
  • the width W of the shaft 7 in the direction in which the thin rib portion 12b extends is the sum of the widths W1 and W2 of the thin portion 14 and the width W3 of the main body portion 13.
  • the width W of the shaft 7 is larger than the width (height) T of the shaft 7 in the direction in which the thick rib portion 12a extends (the vertical direction in FIG. 4).
  • the width W1 of one (left side) thin portion 14 and the width W2 of the other (right side) thin portion 14 may be the same value, or may be different values.
  • the thin part 14 may be formed in the full length of the axis
  • the thin portion 14 may be formed only on one side, or may be formed partially (for example, intermittently) in the extending direction of the shaft 7 instead of the entire length of the shaft 7.
  • the wing portion 5 includes a foam layer 92 and a shaft fixing layer 91 arranged so as to sandwich the fixing shaft portion 10, and these foam layer 92 and shaft fixing layer 91 are mutually connected. It consists of adhesive layers 93 and 94 for fixing. That is, in the wing part 5, the foam layer 92 and the shaft fixing layer 91 are laminated so as to sandwich the fixed shaft part 10. Further, in the wing portion 5, the adhesive layers 93 and 94 are connected to connect the foam layer 92 and the shaft fixing layer 91 to each other and connect and fix the fixed shaft portion 10 to the foam layer 92 and the shaft fixing layer 91. Is arranged.
  • the adhesive layer 93 is laminated on the foam layer 92 located on the outer peripheral side when the shuttlecock 1 is configured.
  • the fixing shaft portion 10 is disposed so as to be located at a substantially central portion of the adhesive layer 93 and the foam layer 92.
  • the other adhesive layer 94 is arranged so as to extend from the fixed shaft portion 10 to the adhesive layer 93.
  • a shaft fixing layer 91 is disposed on the adhesive layer 94.
  • the shaft 7 is warped toward the foam layer 92 side (that is, the outer peripheral side of the shuttlecock 1). From a different point of view, the shaft 7 is warped so as to be convex toward the shaft fixing layer 91 side.
  • 6 shows a state in which the artificial feather 3 is warped toward the foam layer 92 in the extending direction of the shaft 7, the direction intersecting the extending direction of the shaft 7 (for example, the extending of the shaft 7). In a direction perpendicular to the direction and along the surface of the wing part 5, the wing part 5 is warped toward the foam layer 92 (that is, the wing part 5 protrudes toward the shaft fixing layer 91).
  • the state in which the artificial feather 3 is warped in the extending direction of the shaft 7 and the state in which the wing portion 5 is warped in the direction intersecting with the extending direction of the shaft 7 are simultaneously generated.
  • only one of the warpages may occur.
  • Such warping is realized by a conventionally well-known method such as applying heat treatment to the constituent material of the shaft 7 and the wing portion 5 or forming the constituent material of the shaft 7 and the wing portion 5 in a warped state from the beginning. be able to.
  • a resin foam for example, a polyethylene foam (polyethylene foam) can be used.
  • a resin foam can be used for the shaft fixing layer 91.
  • any material such as a film made of a resin or a non-woven fabric can be used other than polyethylene foam, for example.
  • double-sided tape can be used.
  • polyethylene foam is used as the foam layer 92 and the shaft fixing layer 91.
  • the extrusion direction of the polyethylene foam is preferably the direction shown by the arrow 95 in FIGS.
  • the shaft 7 is connected and fixed to the wing portion 5 so as to intersect the extrusion direction of the polyethylene foam indicated by the arrow 95, the wing portion 5 is torn in the direction along the extending direction of the shaft 7. Defect occurrence probability can be reduced.
  • the middle thread 15 circulates around the shaft 7 of the artificial feather 3 and is a portion of the wing portion 5 in a state of being stacked on the adjacent artificial feather 3.
  • the wings 5 are arranged so as to pass through regions facing each other (that is, pass between the stacked wings 5). Since the middle thread 15 passes between the stacked wings 5 at the portion where the wings 5 are stacked in this way, the stacking order of the wings 5 is changed during use of the shuttlecock 1 (for example, hitting with a racket) The occurrence of such a problem that the stacking order of the wings 5 is changed by the impact of the above can be suppressed.
  • the above-described middle thread 15 is arranged on the circumference so as to fix all of the plurality of artificial feathers 3 arranged in an annular shape to each other.
  • the intermediate thread 15 can be arranged as shown in FIGS. 1 and 2, for example, by an operator sewing it with a needle or the like. In this way, it is possible to obtain the shuttlecock 1 exhibiting excellent durability by suppressing the occurrence of the problem that the stacking order of the wing parts 5 changes during use of the shuttlecock 1.
  • the middle thread 15 arranged on the circumference is connected to one end at the start of sewing and the other end at the end of sewing, and the remaining thread is cut and removed near the knot. It is preferable to form a protective layer on the surface of the knot by applying an adhesive or the like. By forming such a protective layer, it is possible to prevent the knot from being broken when the shuttlecock 1 is hit with a racket.
  • any material such as cotton or resin can be used for the middle thread 15, it is preferable to use a polyester thread. Further, it is preferable to use a middle thread 15 that is as light as possible so as not to affect the center of gravity of the shuttlecock 1 as much as possible.
  • a yarn to be used a 50th polyester yarn may be used.
  • the mass of the yarn used as the middle yarn 15 is about 0.02 g. This mass is considered to have little influence on the flight characteristics although there is some influence on the position of the center of gravity of the shuttlecock 1.
  • yarn 15, the distance from the base main body 2 can be set arbitrarily.
  • wing 3 for shuttlecocks is demonstrated.
  • the component material preparation step S ⁇ b> 10.
  • the shaft 7 constituting the artificial feather 3 the sheet material constituting the foam layer 92 and the shaft fixing layer 91 shown in FIGS. 5 and 6, the double-sided tape to be the adhesive layers 93 and 94 Prepare.
  • the planar shape of these sheet-like members and double-sided tape is larger than the size of the wing
  • the sheet-like member to be the foam layer 92 for example, a polyethylene foam (a polyethylene foam and formed into a sheet) having a thickness of 1.0 mm and a basis weight of 24 g / m 2 is used. Can be used.
  • shaft fixed layer 91 it is a polyethylene foam and can use material with thickness of 0.5 mm and a fabric weight of 20 g / m ⁇ 2 >.
  • the basis weight of the double-sided tape to be the adhesive layers 93 and 94 can be 10 g / m 2 .
  • a mold preparation process (S11) is performed.
  • a mold for forming the shaft 7 is prepared, for example, by injection molding or injection compression molding.
  • the mold prepared here is, for example, a mold divided into an upper mold and a lower mold, and concave portions corresponding to the shape of the shaft 7 are formed on the mold surfaces facing each other.
  • the concave portion includes a gap for forming a thin portion 14 in a portion where the main body portion 13 of the shaft 7 is formed and an outer peripheral portion of the portion where the main body portion 13 is formed.
  • a molding step (S12) is performed.
  • the mold prepared as described above is set in an apparatus such as an injection molding machine for injecting resin into the inside (concave portion) of the mold (mold setting step).
  • a resin injection step is performed. That is, the resin is injected from the resin injection port provided in the mold into the recess inside the mold.
  • the resin for example, a thermoplastic resin can be used.
  • a shaft is formed inside the mold. Since the gap for forming the thin portion 14 is formed in the recess of the mold as described above, the thin portion 14 protruding from the side surface is formed on the obtained shaft 7. In this way, the molding step (S12) is performed. Thereafter, the shaft 7 is taken out from the inside of the mold. As a result, the shaft 7 constituting the artificial feather 3 can be obtained.
  • a bonding step (S20) is performed as shown in FIG.
  • a double-sided tape to be the adhesive layer 93 is stuck on the main surface of the sheet-like member to be the foam layer 92.
  • the fixing shaft portion 10 of the shaft 7 is disposed on the double-sided tape.
  • a sheet-like member to be the shaft fixing layer 91 in which a double-sided tape to be the adhesive layer 94 is attached to the surface facing the fixing shaft portion 10 is laminated and bonded.
  • a post-processing step (S30) is performed. Specifically, an unnecessary portion (that is, a region other than the portion to be the wing portion 5) of the laminated sheet-like member to be the wing portion 5 is cut and removed. As a result, the artificial feather 3 as shown in FIGS. 3 to 6 can be obtained. Then, the artificial feather 3 is subjected to a heat treatment such as applying heat from the foam layer 92 side to shrink the foam layer 92 or the like. As a result, a state in which the shaft 7 and the wing part 5 are warped as shown in FIG. 6 can be realized. In addition, in order to implement
  • a preparatory process (S100) is first implemented.
  • constituent members of the shuttlecock 1 such as the base body 2 (tip member) of the shuttlecock 1 and the artificial feather 3 described above are prepared.
  • the base body 2 can be produced by any known method.
  • a natural material such as cork can be used as a material to be the base body 2.
  • an artificial resin or the like may be used as the material of the base body 2.
  • the base body 2 can be formed using any conventionally known processing method. For example, first, a block of a material to be the base body 2 is prepared, and a rough shape is formed by cutting. At this time, processing is performed in consideration of the height of the hemispherical portion of the tip portion. And you may use the method of forming the insertion hole for inserting the artificial feather
  • an ionomer resin foam EVA (ethylene vinyl acetate copolymer), polyurethane, PVC (polyvinyl chloride), polyethylene, a polypropylene etc.
  • EVA ethylene vinyl acetate copolymer
  • PVC polyvinyl chloride
  • polyethylene a polypropylene etc.
  • a manufacturing method of the artificial feather 3 the manufacturing method shown in FIG. 8 mentioned above can be used.
  • an assembly process (S200) is performed.
  • the roots of the shafts 7 of the plurality of artificial feathers 3 described above are inserted and fixed in the insertion holes in the fixing surface portion of the base body.
  • the plurality of artificial feathers 3 are fixed to each other by a string-like member.
  • the sewing is performed so that the middle thread 15 for maintaining the overlapping state of the wings is arranged as shown in FIG. In this way, the shuttlecock 1 shown in FIGS. 1 and 2 can be manufactured.
  • the fixing member that fixes the plurality of artificial feathers 3 to each other is not limited to the string-like member as described above, and any member such as a ring-like member may be used.
  • any material such as resin or fiber can be used.
  • an aramid fiber or glass fiber may be used as the string-like member, and the aramid fiber or glass fiber may be impregnated with a resin (for example, a thermosetting resin), and the resin may be cured to form a FRP fixing member.
  • a resin for example, a thermosetting resin
  • FRP thermosetting resin
  • an epoxy resin and a phenol resin can be used, for example. If a thermosetting resin is used for FRP in this way, when a heating process is performed in the process for fixing the fixing member to the shaft 7, the fixing member can be easily made FRP with the thermosetting resin at the same time. Can be done.
  • FIGS. 10 to 14 first to fourth modifications of the artificial feather constituting the embodiment of the shuttlecock according to the present invention will be described. 10 to 14 correspond to FIG. 4, respectively.
  • the main body portion 13 of the shaft 7 shown in FIG. 11 has two thin rib portions 12b extending from the central shaft portion 11 in the left-right direction, while the thick rib is formed only on one side from the lower side of the central shaft portion 11.
  • the part 12a extends.
  • the thin part 14 is formed in the outer peripheral edge part of the thin rib part 12b.
  • the artificial feather having the shaft shown in FIG. 12 basically has the same structure as the artificial feather 3 shown in FIG. 11, but is above the central shaft portion 11 (perpendicular to the direction in which the thin rib portion 12b extends).
  • the protrusion 16 is different in that it extends in the direction or the direction opposite to the direction in which the thick rib portion 12a extends.
  • the artificial feather provided with the shaft shown in FIG. 13 basically has the same structure as the artificial feather 3 shown in FIGS. 3 to 6, but two thin-walled portions 14 formed on both sides of the body portion 13 of the shaft 7.
  • the widths W1 and W2 are different from the artificial feathers shown in FIGS. Specifically, the width W1 of the thin portion 14 formed on the left side of the main body 13 of the shaft 7 shown in FIG. 13 is wider than the width W2 of the thin portion 14 formed on the right side of the drawing. Yes.
  • the same effect as the artificial feather 3 shown in FIGS. 3 to 6 can be obtained, and the difference in air resistance between the right side and the left side of the shaft 7 when viewed from the central shaft portion 11 of the shaft can be obtained. Since it can be provided, the variation of the air resistance pattern in the artificial feather can be enriched. For this reason, in the shuttlecock using the artificial feather 3, the control range of the flight characteristics can be further widened.
  • the artificial feather having the shaft shown in FIG. 14 basically has the same structure as the artificial feather 3 shown in FIGS. 3 to 6, but two thin-walled portions 14 formed on both sides of the main body portion 13 of the shaft 7. Is different from the artificial feather shown in FIGS. Specifically, the thin portion 14 formed on the side surface of the main body portion 13 of the shaft 7 shown in FIG. 14 is flush with the side surface of the thin rib portion 12b (the flat side surface of the thin rib portion 12b in FIG. 14). Not arranged to compose. The thin wall portion 14 of the shaft shown in FIG. 14 is disposed at a position where it is connected to the side surface of the thin rib portion 12b via a step. Even with such a configuration, the same type of effect as the artificial feather 3 shown in FIGS. 3 to 6 can be obtained.
  • the shuttlecock artificial feather 3 includes a wing portion 5 and a shaft 7 connected to the wing portion 5.
  • a cross-sectional shape in a plane perpendicular to the extending direction of the shaft 7 is a cross shape (see FIG. 4) or a T shape (see FIG. 11).
  • a thin-walled portion 14 that is thinner than the main body 13 that forms a cross-shaped or T-shaped cross-section on the shaft 7 is formed integrally with the main body 13 so as to protrude from the side surface of the main body 13.
  • the rigidity of the shaft 7 can be increased while suppressing the increase in the total mass of the shaft 7 by making the cross-sectional shape of the shaft 7 a cross shape or a T-shape. Furthermore, by forming the thin portion 14 so as to protrude from the side surface of the main body portion 13 of the shaft 7, the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate. And since such a thin part 14 can make thickness thinner than the main-body part 13, the increase in the mass of the axis
  • the main body 13 may include a central shaft portion 11 and a plurality of rib portions 12 protruding from the side surface of the central shaft portion 11.
  • the plurality of rib portions 12 are thick rib portions 12a that are relatively thick in a direction perpendicular to the radial direction from the central shaft portion 11 to the outside in a plane perpendicular to the extending direction of the shaft 7.
  • the thin rib portion 12b having a relatively small thickness may be included.
  • the thin portion 14 may be formed so as to protrude from the outer peripheral side surface of the thin rib portion 12b.
  • the rigidity of the shaft 7 in the protruding direction of the thick rib portion 12a can be particularly improved.
  • the thin rib portion 12b of the main body portion 13 of the shaft 7 is disposed in the direction in which the thin portion 14 protrudes (left and right direction in FIG. 4), the thickness of all the rib portions 12 included in the main body portion 13 is disposed.
  • the thickness of the shaft 7 can be reduced as compared with the case where the thickness of the shaft 7 is uniformly increased. For this reason, the width
  • the thin portion 14 may be formed so as to protrude along the surface extending in the radial direction in the thin rib portion 12b.
  • the thin portion 14 and the thin rib portion 12b can be regarded as a continuous integral resistor.
  • the shaft 7 having the thin part 14 can be easily formed using a mold. Can be formed.
  • the total width W of the main body portion 13 and the thin portion 14 along the protruding direction of the thin rib portion 12b in the plane perpendicular to the extending direction of the shaft 7 is the thick rib. It may be larger than the width (height T in FIG. 4) of the main body 13 along the protruding direction of the portion 12a.
  • the air resistance of the shaft 7 is increased in a direction different from the protruding direction of the thick rib portion 12a (that is, the direction in which the rigidity of the shaft 7 is relatively high) (that is, the protruding direction of the thin rib portion 12b).
  • the substantial width W of the shaft 7 for generating the air resistance can be ensured widely.
  • the shaft having the same diameter as the width W in the protruding direction of the thin rib portion 12b is used, or when the thickness of the thin rib portion 12b is set to be equal to the thickness of the thick rib portion 12a, the shaft 7 Increase in mass can be suppressed.
  • the main body portion 13 may include a central shaft portion 11 and a plurality of rib portions 12 protruding from the side surface of the central shaft portion 11. As shown in FIGS. 4, 5, 11 to 13, etc., the thin-walled portion 14 protrudes along a surface extending radially outward from the central shaft portion 11 in at least one of the plurality of rib portions 12. It may be formed.
  • the substantial width W of the shaft 7 can be changed by forming the thin portion 14 so as to protrude from at least one of the plurality of rib portions 12.
  • the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate.
  • the air resistance of the shaft 7 in the projecting direction of the rib portion 12 in which the thin-walled portion 14 is formed (for example, the horizontal direction in FIGS. 4 and 11 to 13), the air resistance is generated.
  • a substantial width W of the shaft 7 can be secured.
  • a badminton shuttlecock 1 according to the present invention includes a hemispherical base body 2 and the shuttlecock artificial feather 3 connected to the base body 2. In this way, it is possible to realize an artificial shuttlecock 1 having a flight characteristic equivalent to that of a natural shuttlecock using natural blades and sufficient durability.
  • the method for manufacturing an artificial feather for a shuttlecock includes a step of preparing a shaft (S10, S11, S12) and a step of connecting a wing portion to the shaft (S20).
  • the step of preparing the shaft (S10, S11, S12) is a step of preparing a mold for molding a shaft having a cross-shaped or T-shaped cross section in a plane perpendicular to the extending direction of the shaft. (S11) and a step (S12) of forming a shaft by performing injection molding or injection compression molding using the mold.
  • the shaft 7 is formed with a thin portion 14 that is thinner than the main body portion 13 that forms a cross-shaped or T-shaped cross section and protrudes from the side surface of the main body portion 13. A gap is formed in the mold.
  • the shaft 7 in which the thin portion 14 protrudes from the side surface of the main body portion 13 is formed by performing injection molding or injection compression molding. In this way, the shuttlecock artificial feather 3 according to the present invention can be manufactured.
  • the badminton shuttlecock manufacturing method includes a step of preparing a hemispherical base body (S100), and a step of manufacturing the shuttlecock artificial feather using the shuttlecock artificial feather manufacturing method ( S100) and a step (S200) of connecting the shuttlecock artificial feather to the base body. In this way, the badminton shuttlecock 1 according to the present invention can be manufactured.
  • a shuttlecock using the artificial feather 3 shown in FIGS. 3 to 6 was prepared as a sample of the example of the present invention.
  • the width W3 (see FIG. 4) of the body portion 13 of the shaft 7 of the artificial feather 3 is 2.5 mm
  • the height T is 2.5 mm
  • the thickness of the central portion of the upper thick rib portion 12a in FIG. 4 is 0.8 mm
  • the thickness of the central portion of the lower thick rib portion 12a in FIG. 4 is 0.55 mm.
  • the thickness of the thin rib portion 12b was 0.4 mm
  • the widths W1 and W2 of the thin wall portion 14 were each 0.3 mm.
  • the thickness of the thin part 14 was 0.05 mm.
  • the shaft fixing layer 91 constituting the wing part 5 of the artificial feather 3 is made of polyethylene foam, and has a thickness of 0.5 mm and a basis weight of 20 g / m 2 .
  • the material of the foam layer 92 was polyethylene foam, the thickness was 1.0 mm, and the basis weight was 24 g / m 2 .
  • double-sided tape was used as the adhesive layers 93 and 94. As the characteristics of the double-sided tape, those having a thickness of 10 ⁇ m and a basis weight of 10 g / m 2 were used. And the shuttlecock of the structure shown in FIG. 1 and FIG. 2 was prepared using such an artificial feather.
  • an artificial feather 3 was manufactured using a processed shaft obtained by scraping the thin portion 14 from a shaft having the same configuration as the shaft used for the sample of the above example. Except for the processed shaft, the configuration was the same as that of the artificial feather 3 used for the sample of the above-described example. And the shuttlecock provided with the structure similar to the sample of an Example was prepared using the artificial feather
  • an artificial feather and a shuttlecock were prepared using a shaft having a configuration in which the thin portion 14 was removed from the shaft used in the sample of the above-described example.
  • shaft prepared here as a metal mold
  • the average rotational speed of the sample of the example was 477 rpm.
  • the flight trajectory of the shuttlecock was also relatively close to that of the natural shuttlecock.
  • the average rotational speed of the sample of Comparative Example 1 was 317 rpm
  • the average rotational speed of the sample of Comparative Example 2 was 252 rpm.
  • the trajectory at the time of flight of the shuttlecock of the comparative example was different from the trajectory at the time of flight of the shuttlecock of the example, and different from the trajectory at the time of flight of the natural shuttlecock.
  • the rotational speed was less than 300 rpm, the shuttlecock easily sways during flight, and the trajectory during flight tended to be unstable.
  • the present invention is advantageously applied to a badminton shuttlecock using artificial feathers having flying characteristics and durability equivalent to those of a badminton shuttlecock using waterfowl feathers.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Toys (AREA)

Abstract

Provided are: an artificial feather for a shuttlecock, having excellent flight performance and high durability; a badminton shuttle cock; and a method for manufacturing the artificial feather and the badminton shuttlecock. An artificial feather for a shuttlecock is provided with a vane section and a shaft which is connected to the vane section. A cross-section along a plane perpendicular to the direction in which the shaft extends has a cross-like or T-like shape. Thin-walled sections (14) which form the cross-section having the cross-like or T-like shape and have a smaller thickness than the body section (13) are formed integrally with the body section (13) so as to protrude from the side surfaces thereof.

Description

シャトルコック用人工羽根、バドミントン用シャトルコックおよびそれらの製造方法Artificial feather for shuttlecock, shuttlecock for badminton, and manufacturing method thereof
 この発明は、シャトルコック用人工羽根、バドミントン用シャトルコックおよびそれらの製造方法に関し、より特定的には、優れた飛翔特性および耐久性を有するシャトルコック用人工羽根、バドミントン用シャトルコックおよびそれらの製造方法に関する。 The present invention relates to an artificial feather for shuttlecock, a shuttlecock for badminton, and a method for producing them, and more specifically, an artificial feather for shuttlecock, a shuttlecock for badminton, and their production having excellent flight characteristics and durability. Regarding the method.
 従来、バドミントン用シャトルコックとして、その羽根に水鳥の羽根を用いたもの(天然シャトルコック)と、ナイロン樹脂などにより人工的に製造された羽根を用いたもの(人工シャトルコック)とが知られている。そして、天然シャトルコックは、そのような天然の羽根について一定の品質のものを入手することに手間が掛かることから、人工の羽根を用いたシャトルコックより高価である。また、近年水鳥の羽根の供給国の食糧事情の変化や、鳥インフルエンザの流行に起因する水鳥の大量処分などにより、水鳥の羽根の供給量が激減しており、天然シャトルコックはますます高価なものとなってきている。そのため、安価で安定した品質の人工の羽根を用いたシャトルコックが提案されている(たとえば、実開昭54-136060号公報(特許文献1)、実公平2-29974号公報(特許文献2)、および特開2008-206970号公報(特許文献3)参照)。 Conventionally, as badminton shuttlecocks, there are known shuttlecocks that use waterfowl blades (natural shuttlecocks) and artificially manufactured blades made of nylon resin (artificial shuttlecocks). Yes. A natural shuttlecock is more expensive than a shuttlecock using artificial feathers because it takes time to obtain a certain quality of such natural feathers. In addition, the supply of waterfowl feathers has been drastically reduced in recent years due to changes in the food situation of waterfowl feather supply countries and the large-scale disposal of waterfowl caused by the bird flu epidemic. It has become a thing. Therefore, shuttlecocks using artificial blades of inexpensive and stable quality have been proposed (for example, Japanese Utility Model Publication No. 54-136060 (Patent Document 1), Japanese Utility Model Publication No. 2-29974 (Patent Document 2)). And Japanese Patent Application Laid-Open No. 2008-206970 (Patent Document 3)).
 特許文献1では、人工シャトルコックの飛翔特性を改善するため、人工の羽根の軸(断面がほぼ矩形状の軸)の側面から突出するように薄肉片を配置することが開示されている。また、特許文献2では、人工シャトルコックの羽根の軸について、シャトルコックの飛翔時における回転力を発生させるため、当該軸の断面形状を変形した菱形状とし、当該菱形の長軸が人工の羽根の配置された円周に対して傾斜した構成が開示されている。また、特許文献3では、人工シャトルコックの人工の羽根について、羽根となる不織布を軸の内部に部分的に埋設した状態とする構成が開示されている。 Patent Document 1 discloses that a thin piece is disposed so as to protrude from a side surface of an artificial blade shaft (a shaft having a substantially rectangular cross section) in order to improve the flight characteristics of the artificial shuttlecock. Moreover, in patent document 2, in order to generate the rotational force at the time of flight of a shuttlecock about the axis | shaft of the shuttlecock of an artificial shuttlecock, it is set as the rhombus shape which deform | transformed the cross-sectional shape of the said axis | shaft, An arrangement that is inclined with respect to the circumference of the arrangement is disclosed. Moreover, in patent document 3, the structure which makes the state which partially embed | buried the nonwoven fabric used as a blade | wing with respect to the artificial blade | wing of an artificial shuttlecock is disclosed.
実開昭54-136060号公報Japanese Utility Model Publication No. 54-136060 実公平2-29974号公報Japanese Utility Model Publication No. 2-29974 特開2008-206970号公報JP 2008-206970 A
 しかし、上記特許文献1~特許文献3に示した人工シャトルコックでは、やはり天然の羽根に対して人工羽根の強度が不十分であった。一方、人工羽根の軸形状はシャトルコックの飛翔特性(特に飛翔時の回転特性)に大きな影響を与えるため、その形状は当該飛翔特性を考慮して決定する必要がある。そして、強度を向上させるため、単に人工羽根の軸の太さを太くするといった対応をとると、シャトルコック全体の質量が増え、結果的に人工シャトルコックの飛翔特性を天然シャトルコックと同等のものとすることが困難になっていた。 However, in the artificial shuttlecock shown in Patent Documents 1 to 3, the strength of the artificial feather was still insufficient with respect to the natural feather. On the other hand, the shaft shape of the artificial feather has a great influence on the flight characteristics (especially the rotation characteristics at the time of flight) of the shuttlecock, so that the shape needs to be determined in consideration of the flight characteristics. In order to improve the strength, simply increasing the shaft thickness of the artificial feather increases the overall mass of the shuttlecock, resulting in the flight characteristics of the artificial shuttlecock equivalent to those of a natural shuttlecock. It was difficult to do.
 この発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、優れた飛翔特性とともに高い耐久性を備えるシャトルコック用人工羽根、バドミントン用シャトルコックおよびこれらの製造方法を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide artificial feathers for shuttlecocks, shuttlecocks for badminton, and the like that have excellent flight characteristics and high durability. It is to provide a manufacturing method.
 この発明に従ったシャトルコック用人工羽根は、羽部と、羽部に接続された軸とを備える。軸の延在方向に対して垂直な平面における断面形状は十字状またはT字状である。軸において十字状またはT字状の断面形状を構成する本体部より厚みの薄い薄肉部が、本体部の側面から突出するように本体部と一体に形成されている。 The artificial feather for a shuttlecock according to the present invention includes a wing part and a shaft connected to the wing part. The cross-sectional shape in a plane perpendicular to the extending direction of the shaft is a cross shape or a T shape. A thin-walled portion that is thinner than the main body that forms a cross-shaped or T-shaped cross-sectional shape on the shaft is formed integrally with the main body so as to protrude from the side surface of the main body.
 このようにすれば、軸の断面形状を十字状またはT字状とすることにより、軸の総質量の増加を抑制しつつ軸の剛性を高めることができる。さらに、薄肉部を軸の本体部側面から突出するように形成することで、シャトルコックの飛翔特性を制御するための人工羽根の空気抵抗を適宜調整することができる。そして、このような薄肉部は本体部より厚みを薄くすることができるため、軸の質量の増加を抑制することができる。この結果、人工羽根の質量の増加を抑制しつつ、人工羽根の軸の剛性を向上させるとともに人工羽根の空気抵抗を調整することにより、優れた飛翔特性の人工シャトルコックを構成する人工羽根を実現できる。 In this way, by setting the cross-sectional shape of the shaft to a cross shape or a T-shape, it is possible to increase the shaft rigidity while suppressing an increase in the total mass of the shaft. Furthermore, the air resistance of the artificial feather for controlling the flight characteristics of the shuttlecock can be appropriately adjusted by forming the thin portion so as to protrude from the side surface of the main body portion of the shaft. And since such a thin part can make thickness thinner than a main-body part, the increase in the mass of a shaft can be suppressed. As a result, an artificial feather that constitutes an artificial shuttlecock with excellent flight characteristics is realized by improving the rigidity of the artificial feather shaft and adjusting the air resistance of the artificial feather while suppressing an increase in the mass of the artificial feather. it can.
 この発明に従ったバドミントン用シャトルコックは、半球状のベース本体と、当該ベース本体に接続された、上記シャトルコック用人工羽根とを備える。このようにすれば、天然の羽根を用いた天然シャトルコックと同等の飛翔特性を備えるとともに十分な耐久性を有する人工シャトルコックを実現できる。 A shuttlecock for badminton according to the present invention includes a hemispherical base body and the artificial feather for the shuttlecock connected to the base body. In this way, it is possible to realize an artificial shuttlecock having flying characteristics equivalent to those of a natural shuttlecock using natural blades and sufficient durability.
 この発明に従ったシャトルコック用人工羽根の製造方法は、軸を準備する工程と、軸に羽部を接続する工程とを備える。軸を準備する工程は、軸の延在方向に対して垂直な平面における断面形状が十字状またはT字状となる軸をモールド成形するための金型を準備する工程と、当該金型を用いて射出成形または射出圧縮成形を行なうことにより軸を形成する工程とを含む。金型を準備する工程では、軸において十字状またはT字状の断面形状を構成する本体部より厚みが薄く、本体部の側面から突出する薄肉部を形成するための隙間が金型に形成されている。軸を形成する工程では、射出成形または射出圧縮成形を行なうことにより薄肉部が本体部の側面から突出した軸が形成される。このようにすれば、本発明に従ったシャトルコック用人工羽根を製造することができる。 The method for manufacturing an artificial feather for a shuttlecock according to the present invention includes a step of preparing a shaft and a step of connecting a wing portion to the shaft. The step of preparing the shaft includes a step of preparing a mold for molding a shaft whose cross-sectional shape in a plane perpendicular to the extending direction of the shaft is a cross shape or a T shape, and the mold is used. Forming a shaft by performing injection molding or injection compression molding. In the step of preparing the mold, a gap is formed in the mold to form a thin part protruding from the side surface of the main body part that is thinner than the main body part that forms a cross-shaped or T-shaped cross-sectional shape on the shaft. ing. In the step of forming the shaft, the shaft in which the thin portion protrudes from the side surface of the main body portion is formed by performing injection molding or injection compression molding. In this way, the shuttlecock artificial feather according to the present invention can be manufactured.
 この発明に従ったバドミントン用シャトルコックの製造方法は、半球状のベース本体を準備する工程と、上記シャトルコック用人工羽根の製造方法を用いてシャトルコック用人工羽根を製造する工程と、ベース本体にシャトルコック用人工羽根を接続する工程とを備える。このようにすれば、本発明に従ったバドミントン用シャトルコックを製造することができる。 A badminton shuttlecock manufacturing method according to the present invention includes a step of preparing a hemispherical base body, a step of manufacturing shuttlecock artificial feathers using the shuttlecock artificial feather manufacturing method, and a base body Connecting a shuttlecock artificial feather. In this way, the badminton shuttlecock according to the present invention can be manufactured.
 この発明によれば、優れた飛翔特性とともに高い耐久性を備えるシャトルコック用人工羽根およびバドミントン用シャトルコックを得ることができる。 According to the present invention, it is possible to obtain an artificial feather for shuttlecock and a shuttlecock for badminton that have excellent flight characteristics and high durability.
本発明によるシャトルコックの実施の形態を示す側面模式図である。It is a side surface schematic diagram which shows embodiment of the shuttlecock by this invention. 図1に示したシャトルコックの上面模式図である。FIG. 2 is a schematic top view of the shuttlecock shown in FIG. 1. 図1および図2に示したシャトルコック1を構成する、本発明に従ったシャトルコック用人工羽根の実施の形態を示す平面模式図である。FIG. 3 is a schematic plan view showing an embodiment of an artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock 1 shown in FIGS. 1 and 2. 図3の線分IV-IVにおける断面模式図である。FIG. 4 is a schematic sectional view taken along line IV-IV in FIG. 3. 図3の線分V-Vにおける断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 3. 図3の線分VI-VIにおける断面模式図である。FIG. 4 is a schematic cross-sectional view taken along line VI-VI in FIG. 3. 図1および図2に示したシャトルコックの中糸が配置された部分の構成を示す部分断面模式図である。FIG. 3 is a partial cross-sectional schematic diagram showing a configuration of a portion where a middle thread of the shuttlecock shown in FIGS. 1 and 2 is arranged. 図3~図5に示した人工羽根の製造方法を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining a method of manufacturing the artificial feather shown in FIGS. 3 to 5. FIG. 図8に示した構成材準備工程(S10)に含まれる軸の形成工程を説明するためのフローチャートである。It is a flowchart for demonstrating the formation process of the axis | shaft included in the structural material preparation process (S10) shown in FIG. 図1および図2に示したシャトルコック1の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the shuttlecock 1 shown in FIG. 1 and FIG. 本発明によるシャトルコックの実施の形態を構成する人工羽根の第1の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st modification of the artificial feather | wing which comprises embodiment of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態を構成する人工羽根の第2の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd modification of the artificial feather | wing which comprises embodiment of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態を構成する人工羽根の第3の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 3rd modification of the artificial feather | wing which comprises embodiment of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態を構成する人工羽根の第4の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 4th modification of the artificial feather | wing which comprises embodiment of the shuttlecock by this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 図1および図2を参照して、本発明によるシャトルコックの実施の形態を説明する。
 図1および図2を参照して、本発明に従ったシャトルコック1は、半球状のベース本体2と、ベース本体2において表面がほぼ平坦に成形された固定用表面部に接続された複数のシャトルコック用の人工羽根3と、複数の人工羽根3を互いに固定するための固定用紐状部材と、複数の人工羽根3の積層状態を維持するための中糸15とからなる。複数(たとえば16枚)の人工羽根3は、ベース本体2の固定用表面部において、当該固定用表面部の外周部に沿って円環状に配置されている。また、複数の人工羽根3は、紐状部材によって互いに固定されている。複数の人工羽根3は、ベース本体2から離れるに従って、互いの間の距離が大きくなる(複数の人工羽根3によって形成される筒状体の内径がベース本体2から離れるに従って大きくなる)ように配置されている。
An embodiment of a shuttlecock according to the present invention will be described with reference to FIGS.
1 and 2, a shuttlecock 1 according to the present invention includes a hemispherical base body 2 and a plurality of fixing surfaces connected to a fixing surface portion having a substantially flat surface in the base body 2. An artificial feather 3 for the shuttlecock, a fixing string-like member for fixing the plurality of artificial feathers 3 to each other, and a middle thread 15 for maintaining the laminated state of the plurality of artificial feathers 3. The plurality (for example, 16 pieces) of artificial feathers 3 are arranged in an annular shape along the outer peripheral portion of the fixing surface portion in the fixing surface portion of the base body 2. The plurality of artificial feathers 3 are fixed to each other by a string-like member. The plurality of artificial feathers 3 are arranged such that the distance between them increases as the distance from the base body 2 increases (the inner diameter of the cylindrical body formed by the plurality of artificial feathers 3 increases as the distance from the base body 2 increases). Has been.
 中糸15は、複数の人工羽根3の積層状態を維持するための固定部材として作用している。すなわち、中糸15は、後述するように複数の人工羽根3の位置関係を規定するように配置されている。 The middle thread 15 acts as a fixing member for maintaining the laminated state of the plurality of artificial feathers 3. That is, the middle thread 15 is disposed so as to define the positional relationship between the plurality of artificial feathers 3 as will be described later.
 次に、図3~図6を参照して、本発明に従ったシャトルコック用人工羽根の実施の形態を説明する。 Next, an embodiment of the artificial feather for a shuttlecock according to the present invention will be described with reference to FIGS.
 図3~図6を参照して、図1および図2に示したシャトルコック1を構成する人工羽根3は、羽部5と、当該羽部5に接続された軸7とからなる。軸7は、羽部5から突出するように配置された羽軸部8と、羽部5のほぼ中央部において羽部5に接続された固着軸部10とからなる。羽軸部8と固着軸部10とは同一線状に延びるように配置され、1つの連続した軸7を構成している。軸7は、図4および図5に示すように、軸7の延在方向にほぼ垂直な方向における断面形状が十字状となっている。つまり、図4および図5に示すように、軸7の断面形状では、中心軸部11から図4の上下方向に、相対的に厚い厚み(図4における左右方向(あるいは中心軸部11を中心とした同心円の円周方向)における厚み)を有する厚肉リブ部12aが突出するように形成されている。 Referring to FIGS. 3 to 6, the artificial feather 3 constituting the shuttlecock 1 shown in FIGS. 1 and 2 includes a wing portion 5 and a shaft 7 connected to the wing portion 5. The shaft 7 includes a wing shaft portion 8 arranged so as to protrude from the wing portion 5, and a fixed shaft portion 10 connected to the wing portion 5 at a substantially central portion of the wing portion 5. The wing shaft portion 8 and the fixed shaft portion 10 are arranged so as to extend in the same line, and constitute one continuous shaft 7. As shown in FIGS. 4 and 5, the shaft 7 has a cross-shaped cross section in a direction substantially perpendicular to the extending direction of the shaft 7. That is, as shown in FIGS. 4 and 5, in the cross-sectional shape of the shaft 7, a relatively thick thickness from the central shaft portion 11 to the vertical direction in FIG. And a thick rib portion 12a having a thickness in the circumferential direction of the concentric circle.
 また、中心軸部11から、図4の左右方向に、相対的に薄い厚み(図4における上下方向(あるいは中心軸部11を中心とした同心円の円周方向)における厚み)を有する薄肉リブ部12bが突出するように形成されている。上記2つの厚肉リブ部12aは、中心軸部11からそれぞれ反対方向に延びるように形成されている。また、上記2つの薄肉リブ部12bも、中心軸部11からそれぞれ反対方向に延びるように形成されている。薄肉リブ部12bは、厚肉リブ部12aの延在方向と交差する方向(より詳しくは直交する方向)に延びるように形成されている。厚肉リブ部12aと薄肉リブ部12bとからリブ部12が構成される。また、複数のリブ部12と中心軸部11とから、軸7の本体部13が構成される。本体部13の断面形状はいわゆる十字状となっている。 Further, the thin rib portion having a relatively thin thickness (the thickness in the vertical direction in FIG. 4 (or in the circumferential direction of a concentric circle with the central shaft portion 11 as the center)) in the left-right direction in FIG. 4 from the central shaft portion 11. 12b is formed to protrude. The two thick rib portions 12a are formed so as to extend from the central shaft portion 11 in opposite directions. The two thin rib portions 12b are also formed so as to extend from the central shaft portion 11 in opposite directions. The thin rib portion 12b is formed so as to extend in a direction intersecting with the extending direction of the thick rib portion 12a (more specifically, a direction orthogonal). The rib part 12 is comprised from the thick rib part 12a and the thin rib part 12b. Further, the main body 13 of the shaft 7 is constituted by the plurality of rib portions 12 and the central shaft portion 11. The cross-sectional shape of the main body 13 is a so-called cross shape.
 また、薄肉リブ部12bの外周端部には、図4および図5に示すように(つまり本体部13の側壁から突出するように)薄肉部14が形成されている。薄肉部14の厚みは、薄肉リブ部12bの上記厚みよりさらに薄くなっている。薄肉部14は、薄肉リブ部12bと一体に形成されている。また、薄肉部14は、当該薄肉部14の表面が、薄肉リブ部12bの側面(図4における上方の側面)とほぼ同一平面を構成するように形成されている。薄肉部14の厚みは、たとえば0.03mm以上0.1mm以下、より好ましくは0.04mm以上0.07mm以下とすることができる。また、薄肉部14の幅W1、W3は、たとえば0.1mm以上0.5mm以下、より好ましくは0.2mm以上0.3mm以下とすることができる。 Further, a thin portion 14 is formed at the outer peripheral end of the thin rib portion 12b as shown in FIGS. 4 and 5 (that is, protruding from the side wall of the main body portion 13). The thickness of the thin portion 14 is further thinner than the thickness of the thin rib portion 12b. The thin portion 14 is formed integrally with the thin rib portion 12b. Further, the thin portion 14 is formed so that the surface of the thin portion 14 is substantially flush with the side surface (upper side surface in FIG. 4) of the thin rib portion 12b. The thickness of the thin portion 14 can be set to, for example, 0.03 mm to 0.1 mm, and more preferably 0.04 mm to 0.07 mm. The widths W1 and W3 of the thin portion 14 can be set to, for example, 0.1 mm or more and 0.5 mm or less, more preferably 0.2 mm or more and 0.3 mm or less.
 このように、軸7の本体部13の断面形状をほぼ十字状とすることにより、軸7の総質量の増加を抑制しつつ軸7の剛性を高めることができる。さらに、薄肉部14を軸7の本体部13側面から突出するように形成することで、シャトルコック1の飛翔特性を制御するための人工羽根3の空気抵抗を適宜調整することができる。そして、このような薄肉部14は本体部13より厚みを薄くしているため、軸7の質量の増加を抑制することができる。この結果、人工羽根3の質量の増加を抑制しつつ、人工羽根3の軸7の剛性を向上させるとともに人工羽根3の空気抵抗を調整することにより、優れた飛翔特性のシャトルコック1を構成する人工羽根3を実現できる。 Thus, by making the cross-sectional shape of the main body 13 of the shaft 7 substantially cross-shaped, the rigidity of the shaft 7 can be increased while suppressing an increase in the total mass of the shaft 7. Further, by forming the thin portion 14 so as to protrude from the side surface of the main body portion 13 of the shaft 7, the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate. And since such a thin part 14 is made thinner than the main-body part 13, the increase in the mass of the axis | shaft 7 can be suppressed. As a result, the shuttlecock 1 having excellent flight characteristics is configured by improving the rigidity of the shaft 7 of the artificial feather 3 and adjusting the air resistance of the artificial feather 3 while suppressing an increase in the mass of the artificial feather 3. The artificial feather 3 can be realized.
 薄肉リブ部12bが延びる方向(図4の左右方向)における軸7の幅Wは、薄肉部14の幅W1、W2と本体部13の幅W3との合計である。そして、軸7の当該幅Wは、厚肉リブ部12aが延びる方向(図4の上下方向)における軸7の幅(高さ)Tより大きくなっている。 The width W of the shaft 7 in the direction in which the thin rib portion 12b extends (left and right direction in FIG. 4) is the sum of the widths W1 and W2 of the thin portion 14 and the width W3 of the main body portion 13. The width W of the shaft 7 is larger than the width (height) T of the shaft 7 in the direction in which the thick rib portion 12a extends (the vertical direction in FIG. 4).
 図4における一方(左側)の薄肉部14の幅W1と、他方(右側)の薄肉部14の幅W2とは同じ値でもよいが、異なる値となっていてもよい。また、薄肉部14は、軸7の全長に形成されていてもよいが、少なくとも外部に露出する部分である羽軸部8に形成されることが好ましい。また、薄肉部14は片側のみに形成されていてもよいし、軸7の全長ではなく、軸7の延在方向において部分的に(たとえば間欠的に)形成されていてもよい。 4, the width W1 of one (left side) thin portion 14 and the width W2 of the other (right side) thin portion 14 may be the same value, or may be different values. Moreover, although the thin part 14 may be formed in the full length of the axis | shaft 7, it is preferable to be formed in the wing shaft part 8 which is a part exposed to the exterior at least. The thin portion 14 may be formed only on one side, or may be formed partially (for example, intermittently) in the extending direction of the shaft 7 instead of the entire length of the shaft 7.
 羽部5は、図5および図6に示すように、固着軸部10を挟むように配置された発泡体層92と軸固定層91、およびこれらの発泡体層92および軸固定層91を互いに固定するための接着層93、94とからなる。すなわち、羽部5では、発泡体層92と軸固定層91とが固着軸部10を挟むように積層されている。さらに、羽部5では、発泡体層92と軸固定層91とを互いに接続するとともに固着軸部10とこれらの発泡体層92および軸固定層91とを接続固定するため、接着層93、94が配置されている。また、異なる観点でいえば、羽部5においては、シャトルコック1を構成した場合において外周側に位置する発泡体層92上に接着層93が積層されている。この接着層93上には、当該接着層93および発泡体層92のほぼ中央部に位置するように固着軸部10が配置されている。そして、この固着軸部10上から接着層93上にまで延在するように、もう一方の接着層94が配置されている。そして、この接着層94上に軸固定層91が配置されている。 As shown in FIG. 5 and FIG. 6, the wing portion 5 includes a foam layer 92 and a shaft fixing layer 91 arranged so as to sandwich the fixing shaft portion 10, and these foam layer 92 and shaft fixing layer 91 are mutually connected. It consists of adhesive layers 93 and 94 for fixing. That is, in the wing part 5, the foam layer 92 and the shaft fixing layer 91 are laminated so as to sandwich the fixed shaft part 10. Further, in the wing portion 5, the adhesive layers 93 and 94 are connected to connect the foam layer 92 and the shaft fixing layer 91 to each other and connect and fix the fixed shaft portion 10 to the foam layer 92 and the shaft fixing layer 91. Is arranged. From a different point of view, in the wing portion 5, the adhesive layer 93 is laminated on the foam layer 92 located on the outer peripheral side when the shuttlecock 1 is configured. On the adhesive layer 93, the fixing shaft portion 10 is disposed so as to be located at a substantially central portion of the adhesive layer 93 and the foam layer 92. The other adhesive layer 94 is arranged so as to extend from the fixed shaft portion 10 to the adhesive layer 93. A shaft fixing layer 91 is disposed on the adhesive layer 94.
 図6からもわかるように、人工羽根3においては、発泡体層92側(すなわちシャトルコック1における外周側)に向けて、軸7が反った状態になっている。異なる観点からいえば、軸7は、軸固定層91側に凸となるように反った状態となっている。また、図6では人工羽根3が軸7の延在方向において発泡体層92側に反った状態を示しているが、軸7の延在方向に対して交差する方向(たとえば軸7の延在方向に対して垂直であって羽部5の表面に沿った方向である幅方向)において、羽部5が発泡体層92側に反った状態(つまり羽部5が軸固定層91側に凸となるように反った状態)となっていてもよい。この場合、軸7の延在方向において人工羽根3が反った状態と、上記のように羽部5が軸7の延在方向に対して交差する方向において反った状態とが同時に発生していてもよいし、いずれか一方の反りのみが発生していてもよい。このような反りは、軸7や羽部5の構成材料に対して熱処理を施す、あるいは軸7や羽部5の構成材料を最初から反った状態で形成するなど、従来周知の方法で実現することができる。 As can be seen from FIG. 6, in the artificial feather 3, the shaft 7 is warped toward the foam layer 92 side (that is, the outer peripheral side of the shuttlecock 1). From a different point of view, the shaft 7 is warped so as to be convex toward the shaft fixing layer 91 side. 6 shows a state in which the artificial feather 3 is warped toward the foam layer 92 in the extending direction of the shaft 7, the direction intersecting the extending direction of the shaft 7 (for example, the extending of the shaft 7). In a direction perpendicular to the direction and along the surface of the wing part 5, the wing part 5 is warped toward the foam layer 92 (that is, the wing part 5 protrudes toward the shaft fixing layer 91). It may be warped so that In this case, the state in which the artificial feather 3 is warped in the extending direction of the shaft 7 and the state in which the wing portion 5 is warped in the direction intersecting with the extending direction of the shaft 7 are simultaneously generated. Alternatively, only one of the warpages may occur. Such warping is realized by a conventionally well-known method such as applying heat treatment to the constituent material of the shaft 7 and the wing portion 5 or forming the constituent material of the shaft 7 and the wing portion 5 in a warped state from the beginning. be able to.
 ここで、発泡体層92を構成する材料としては、たとえば樹脂の発泡体、より具体的にはたとえばポリエチレンフォーム(ポリエチレンの発泡体)を用いることができる。また、軸固定層91についても、同様に樹脂発泡体を用いることができる。また、軸固定層91については、たとえばポリエチレンフォーム以外に、樹脂などからなるフィルム、あるいは不織布など任意の材料を用いることができる。 Here, as a material constituting the foam layer 92, for example, a resin foam, more specifically, a polyethylene foam (polyethylene foam) can be used. Similarly, a resin foam can be used for the shaft fixing layer 91. For the shaft fixing layer 91, any material such as a film made of a resin or a non-woven fabric can be used other than polyethylene foam, for example.
 また、接着層93、94については、たとえば両面テープを用いることができる。図3~図6に示した人工羽根3においては、発泡体層92および軸固定層91としてポリエチレンフォームを用いている。このポリエチレンフォームの押出方向は図3および図5の矢印95に示す方向となっていることが好ましい。この場合、矢印95に示すポリエチレンフォームの押出方向に対して交差するように軸7が羽部5と接続固定されているため、羽部5が軸7の延在方向に沿った方向に裂けるといった不具合の発生確率を低減できる。 For the adhesive layers 93 and 94, for example, double-sided tape can be used. In the artificial feather 3 shown in FIGS. 3 to 6, polyethylene foam is used as the foam layer 92 and the shaft fixing layer 91. The extrusion direction of the polyethylene foam is preferably the direction shown by the arrow 95 in FIGS. In this case, since the shaft 7 is connected and fixed to the wing portion 5 so as to intersect the extrusion direction of the polyethylene foam indicated by the arrow 95, the wing portion 5 is torn in the direction along the extending direction of the shaft 7. Defect occurrence probability can be reduced.
 次に、図7を参照して、中糸15の配置を具体的に説明する。
 図7に示すように、中糸15は、人工羽根3の軸7の周囲を周回するとともに、隣接する人工羽根3において積層した状態になっている羽部5の部分で、隣接する人工羽根3の羽部5が互いに対向する領域を通るように(すなわち積層した羽部5の間を通るように)配置されている。このように羽部5が積層した部分で、積層した羽部5の間を中糸15が通っているため、羽部5の積層順がシャトルコック1の使用中に入替わる(たとえばラケットによる打撃の衝撃によって羽部5の積層順番が入替わる)といった問題の発生を抑制することができる。
Next, the arrangement of the middle thread 15 will be specifically described with reference to FIG.
As shown in FIG. 7, the middle thread 15 circulates around the shaft 7 of the artificial feather 3 and is a portion of the wing portion 5 in a state of being stacked on the adjacent artificial feather 3. The wings 5 are arranged so as to pass through regions facing each other (that is, pass between the stacked wings 5). Since the middle thread 15 passes between the stacked wings 5 at the portion where the wings 5 are stacked in this way, the stacking order of the wings 5 is changed during use of the shuttlecock 1 (for example, hitting with a racket) The occurrence of such a problem that the stacking order of the wings 5 is changed by the impact of the above can be suppressed.
 上述した中糸15は、図1および図2に示すように、円環状に並んだ複数の人工羽根3のすべてを互いに固定するように、円周上に配置されている。そして、中糸15は、たとえば作業者が針などを用いて縫製することにより、図1および図2に示すような配置とすることができる。このようにすれば、羽部5の積層順がシャトルコック1の使用中に入替わるという問題の発生を抑制することにより、優れた耐久性を示すシャトルコック1を得ることができる。 1 and 2, the above-described middle thread 15 is arranged on the circumference so as to fix all of the plurality of artificial feathers 3 arranged in an annular shape to each other. The intermediate thread 15 can be arranged as shown in FIGS. 1 and 2, for example, by an operator sewing it with a needle or the like. In this way, it is possible to obtain the shuttlecock 1 exhibiting excellent durability by suppressing the occurrence of the problem that the stacking order of the wing parts 5 changes during use of the shuttlecock 1.
 なお、円周上に配置された中糸15は、その縫い始めの一方端部と縫い終わりの他方端部とが結ばれて、余った糸の部分は結び目近傍でカットされて除去される。当該結び目には、接着剤などを塗布することにより表面に保護層を形成することが好ましい。このような保護層を形成することにより、シャトルコック1がラケットにより打撃されたときに、当該結び目が解けることを防止できる。 The middle thread 15 arranged on the circumference is connected to one end at the start of sewing and the other end at the end of sewing, and the remaining thread is cut and removed near the knot. It is preferable to form a protective layer on the surface of the knot by applying an adhesive or the like. By forming such a protective layer, it is possible to prevent the knot from being broken when the shuttlecock 1 is hit with a racket.
 また、中糸15は、綿や樹脂など任意の材料を用いることができるが、ポリエステル製の糸を用いることが好ましい。また、中糸15は、シャトルコック1の重心などに影響を極力与えないようにするため、できるだけ軽量なものを用いることが好ましい。たとえば、用いる糸としては、50番のポリエステル製の糸を用いてもよい。この場合、中糸15として使用した糸の質量は約0.02gとなる。この程度の質量であれば、シャトルコック1の重心位置に若干の影響はあるものの、飛翔特性にはほとんど影響がないと考えられる。また、中糸15の配置については、ベース本体2からの距離を任意に設定することができる。 Further, although any material such as cotton or resin can be used for the middle thread 15, it is preferable to use a polyester thread. Further, it is preferable to use a middle thread 15 that is as light as possible so as not to affect the center of gravity of the shuttlecock 1 as much as possible. For example, as a yarn to be used, a 50th polyester yarn may be used. In this case, the mass of the yarn used as the middle yarn 15 is about 0.02 g. This mass is considered to have little influence on the flight characteristics although there is some influence on the position of the center of gravity of the shuttlecock 1. Moreover, about the arrangement | positioning of the middle thread | yarn 15, the distance from the base main body 2 can be set arbitrarily.
 次に、図8~図10を参照して、図1および図2に示したシャトルコック1、シャトルコック用の人工羽根3の製造方法を説明する。 Next, a method for manufacturing the shuttlecock 1 and the artificial feather 3 for the shuttlecock shown in FIGS. 1 and 2 will be described with reference to FIGS.
 まず、図8を参照して、本発明に従ったシャトルコック用の人工羽根3の製造方法を説明する。図8に示すように、人工羽根3の製造方法では、まず構成材準備工程(S10)を実施する。この工程(S10)では、人工羽根3を構成する軸7、図5および図6に示した発泡体層92および軸固定層91を構成するシート状材料、接着層93、94となるべき両面テープを準備する。なお、これらのシート状部材および両面テープの平面形状は、図3に示した羽部5のサイズよりも大きければ任意の形状とすることができる。発泡体層92となるべきシート状部材としては、たとえばポリエチレンフォーム(ポリエチレンの発泡体であってシート状に成形されたもの)であって厚みが1.0mm、目付けが24g/m2といった材料を用いることができる。また、軸固定層91となるべきシート状部材としては、ポリエチレンフォームであって厚みが0.5mm、目付けが20g/m2といった材料を用いることができる。また、接着層93、94となる両面テープの目付けは10g/m2とすることができる。 First, with reference to FIG. 8, the manufacturing method of the artificial feather | wing 3 for shuttlecocks according to this invention is demonstrated. As shown in FIG. 8, in the method for manufacturing the artificial feather 3, first, the component material preparation step (S <b> 10) is performed. In this step (S10), the shaft 7 constituting the artificial feather 3, the sheet material constituting the foam layer 92 and the shaft fixing layer 91 shown in FIGS. 5 and 6, the double-sided tape to be the adhesive layers 93 and 94 Prepare. In addition, if the planar shape of these sheet-like members and double-sided tape is larger than the size of the wing | blade part 5 shown in FIG. 3, it can be made into arbitrary shapes. As the sheet-like member to be the foam layer 92, for example, a polyethylene foam (a polyethylene foam and formed into a sheet) having a thickness of 1.0 mm and a basis weight of 24 g / m 2 is used. Can be used. Moreover, as a sheet-like member which should become the axis | shaft fixed layer 91, it is a polyethylene foam and can use material with thickness of 0.5 mm and a fabric weight of 20 g / m < 2 >. Further, the basis weight of the double-sided tape to be the adhesive layers 93 and 94 can be 10 g / m 2 .
 また、上述した軸7の製造工程としては、図9に示すように、まず金型準備工程(S11)を実施する。この工程(S11)では、たとえば射出成形あるいは射出圧縮成形により軸7を形成するための金型を準備する。ここで準備する金型としては、たとえば上型と下型とに分割された金型であって、互いに対向する金型表面には、軸7の形状に対応した凹部が形成されている。また、当該凹部は、軸7の本体部13を形成する部分と、当該本体部13を形成する部分の外周部において、薄肉部14を形成するための隙間を含んでいる。 In addition, as a manufacturing process of the shaft 7 described above, as shown in FIG. 9, first, a mold preparation process (S11) is performed. In this step (S11), a mold for forming the shaft 7 is prepared, for example, by injection molding or injection compression molding. The mold prepared here is, for example, a mold divided into an upper mold and a lower mold, and concave portions corresponding to the shape of the shaft 7 are formed on the mold surfaces facing each other. In addition, the concave portion includes a gap for forming a thin portion 14 in a portion where the main body portion 13 of the shaft 7 is formed and an outer peripheral portion of the portion where the main body portion 13 is formed.
 次に、成形工程(S12)を実施する。この工程(S12)では、まず上記のように準備した金型を、射出成形機など金型の内部(凹部)に樹脂を注入するための装置にセットする(金型セット工程)。次に、樹脂注入工程を実施する。すなわち、金型に設けられた樹脂の注入口から、金型内部の凹部に樹脂を注入する。樹脂としては、たとえば熱可塑性樹脂を用いることができる。この結果、金型内部において軸が形成される。また、上述のように金型の凹部には薄肉部14を形成するための隙間が形成されているので、得られた軸7には側面から突出する薄肉部14が形成されている。このようにして、成形工程(S12)を実施する。その後、金型内部から軸7を取出す。この結果、人工羽根3を構成する軸7を得ることができる。 Next, a molding step (S12) is performed. In this step (S12), first, the mold prepared as described above is set in an apparatus such as an injection molding machine for injecting resin into the inside (concave portion) of the mold (mold setting step). Next, a resin injection step is performed. That is, the resin is injected from the resin injection port provided in the mold into the recess inside the mold. As the resin, for example, a thermoplastic resin can be used. As a result, a shaft is formed inside the mold. Since the gap for forming the thin portion 14 is formed in the recess of the mold as described above, the thin portion 14 protruding from the side surface is formed on the obtained shaft 7. In this way, the molding step (S12) is performed. Thereafter, the shaft 7 is taken out from the inside of the mold. As a result, the shaft 7 constituting the artificial feather 3 can be obtained.
 次に、図8に示すように貼り合わせ工程(S20)を実施する。この工程(S20)においては、発泡体層92となるべきシート状部材の主表面上に接着層93となるべき両面テープを貼付する。そして、当該両面テープの上に軸7の固着軸部10を配置する。さらに、その上から、固着軸部10に対向する面に接着層94となるべき両面テープが貼付された軸固定層91となるべきシート状部材を積層配置して貼り合わせる。この結果、軸7の固着軸部10を、発泡体層92となるべきシート状部材と軸固定層91となるべきシート状部材とで挟んで固定した構造を得ることができる。 Next, a bonding step (S20) is performed as shown in FIG. In this step (S20), a double-sided tape to be the adhesive layer 93 is stuck on the main surface of the sheet-like member to be the foam layer 92. Then, the fixing shaft portion 10 of the shaft 7 is disposed on the double-sided tape. Further, a sheet-like member to be the shaft fixing layer 91 in which a double-sided tape to be the adhesive layer 94 is attached to the surface facing the fixing shaft portion 10 is laminated and bonded. As a result, it is possible to obtain a structure in which the fixed shaft portion 10 of the shaft 7 is sandwiched and fixed between the sheet-like member to be the foam layer 92 and the sheet-like member to be the shaft fixing layer 91.
 次に、後処理工程(S30)を実施する。具体的には、羽部5となるべき積層配置されたシート状部材の不要部(つまり羽部5となるべき部分以外の領域)を切断除去する。この結果、図3~図6に示したような人工羽根3を得ることができる。そして、当該人工羽根3に対して、たとえば発泡体層92側から熱を加えるなどの熱処理を行なうことにより、発泡体層92などを収縮させる。この結果、図6に示したように軸7および羽部5が反った状態を実現できる。なお、図6に示したような軸7および羽部5の反った状態を実現するため、他の方法を用いてもよい。たとえば、最初から反った形状の軸7を用いるといった方法を採用してもよい。 Next, a post-processing step (S30) is performed. Specifically, an unnecessary portion (that is, a region other than the portion to be the wing portion 5) of the laminated sheet-like member to be the wing portion 5 is cut and removed. As a result, the artificial feather 3 as shown in FIGS. 3 to 6 can be obtained. Then, the artificial feather 3 is subjected to a heat treatment such as applying heat from the foam layer 92 side to shrink the foam layer 92 or the like. As a result, a state in which the shaft 7 and the wing part 5 are warped as shown in FIG. 6 can be realized. In addition, in order to implement | achieve the state which the axis | shaft 7 and the wing | blade part 5 curved as shown in FIG. 6, you may use another method. For example, a method of using a shaft 7 that is warped from the beginning may be employed.
 次に、図10を参照して図1および図2に示したシャトルコック1の製造方法を説明する。図10に示すように、まず準備工程(S100)を実施する。この準備工程(S100)では、シャトルコック1のベース本体2(先端部材)および上述した人工羽根3など、シャトルコック1の構成部材を準備する。 Next, a method for manufacturing the shuttlecock 1 shown in FIGS. 1 and 2 will be described with reference to FIG. As shown in FIG. 10, a preparatory process (S100) is first implemented. In this preparation step (S100), constituent members of the shuttlecock 1 such as the base body 2 (tip member) of the shuttlecock 1 and the artificial feather 3 described above are prepared.
 ベース本体2の製造方法は、従来公知の任意の方法を用いることができるが、たとえばベース本体2となるべき材料としてコルクなどの天然の素材を用いることができる。また、ベース本体2の材料として人工の樹脂などを用いてもよい。ベース本体2の材料として人工の樹脂を用いる場合、従来周知の任意の加工方法を用いてベース本体2を形成することができる。たとえば、まずベース本体2となる素材のブロックを準備し、切削加工により概略形状とする。このとき、先端部の半球状部分の高さを加味して加工を行なう。そして、さらに切削加工により、人工羽根3を挿入するための挿入穴を形成するといった方法を用いてもよい。また、上述した人工樹脂を用いる場合には、たとえば、アイオノマー樹脂発泡体、あるいはEVA(エチレン酢酸ビニル共重合体)、ポリウレタン、PVC(ポリ塩化ビニル)、ポリエチレン、ポリプロピレンなどを用いることができる。また、人工羽根3の製造方法としては、上述した図8に示した製造方法を用いることができる。 The base body 2 can be produced by any known method. For example, a natural material such as cork can be used as a material to be the base body 2. Further, an artificial resin or the like may be used as the material of the base body 2. When an artificial resin is used as the material of the base body 2, the base body 2 can be formed using any conventionally known processing method. For example, first, a block of a material to be the base body 2 is prepared, and a rough shape is formed by cutting. At this time, processing is performed in consideration of the height of the hemispherical portion of the tip portion. And you may use the method of forming the insertion hole for inserting the artificial feather | wing 3 further by cutting. Moreover, when using the artificial resin mentioned above, an ionomer resin foam, EVA (ethylene vinyl acetate copolymer), polyurethane, PVC (polyvinyl chloride), polyethylene, a polypropylene etc. can be used, for example. Moreover, as a manufacturing method of the artificial feather 3, the manufacturing method shown in FIG. 8 mentioned above can be used.
 次に、組立工程(S200)を実施する。当該組立工程(S200)では、ベース本体の固定用表面部における挿入穴に上述した複数の人工羽根3の軸7の根元を挿入固定する。さらに、当該複数の人工羽根3を互いに紐状部材により固定する。また、羽部の重なり状態を維持するための中糸15が図7に示すような配置となるよう縫製を行なう。このようにして、図1および図2に示すシャトルコック1を製造することができる。なお、複数の人工羽根3を互いに固定する固定部材としては、上述のような紐状部材に限らず、たとえばリング状部材など任意の部材を用いてもよい。 Next, an assembly process (S200) is performed. In the assembly step (S200), the roots of the shafts 7 of the plurality of artificial feathers 3 described above are inserted and fixed in the insertion holes in the fixing surface portion of the base body. Further, the plurality of artificial feathers 3 are fixed to each other by a string-like member. Further, the sewing is performed so that the middle thread 15 for maintaining the overlapping state of the wings is arranged as shown in FIG. In this way, the shuttlecock 1 shown in FIGS. 1 and 2 can be manufactured. The fixing member that fixes the plurality of artificial feathers 3 to each other is not limited to the string-like member as described above, and any member such as a ring-like member may be used.
 また、上記固定部材の材料としては、たとえば樹脂や繊維など任意の材料を用いることができる。たとえば、紐状部材としてアラミド繊維またはガラス繊維を用い、当該アラミド繊維またはガラス繊維に樹脂(たとえば熱硬化性樹脂)を含浸し、当該樹脂を硬化することでFRP化した固定部材を用いてもよい。このようにFRP化することによって、固定部材の強度や剛性を向上させることができる。また、熱硬化性樹脂としてはたとえばエポキシ樹脂やフェノール樹脂を用いることができる。このようにFRP化のために熱硬化性樹脂を用いれば、固定部材を軸7と固定するための加工において加熱工程を行なう場合などに、同時に熱硬化性樹脂により固定部材のFRP化を容易に行なうことができる。 Also, as the material of the fixing member, for example, any material such as resin or fiber can be used. For example, an aramid fiber or glass fiber may be used as the string-like member, and the aramid fiber or glass fiber may be impregnated with a resin (for example, a thermosetting resin), and the resin may be cured to form a FRP fixing member. . By using FRP in this way, the strength and rigidity of the fixing member can be improved. Moreover, as a thermosetting resin, an epoxy resin and a phenol resin can be used, for example. If a thermosetting resin is used for FRP in this way, when a heating process is performed in the process for fixing the fixing member to the shaft 7, the fixing member can be easily made FRP with the thermosetting resin at the same time. Can be done.
 図10~図14を参照して、本発明によるシャトルコックの実施の形態を構成する人工羽根の第1~第4の変形例を説明する。なお、図10~図14はそれぞれ図4に対応する。 Referring to FIGS. 10 to 14, first to fourth modifications of the artificial feather constituting the embodiment of the shuttlecock according to the present invention will be described. 10 to 14 correspond to FIG. 4, respectively.
 図11に示した軸を備える人工羽根は、基本的に図3~図6に示す人工羽根3と同様の構造を備えるが、軸7の本体部13の断面形状が異なっている。具体的には、図11に示した軸7の本体部13は、中心軸部11から左右方向に2つの薄肉リブ部12bが延びる一方、中心軸部11の下側から一方のみに厚肉リブ部12aが延在している。なお、薄肉リブ部12bの外周端部には薄肉部14が形成されている。このような、いわゆる断面がT字状の本体部13となっている軸を用いた人工羽根によっても、図3~図6に示した人工羽根3と同様の効果を得ることができる。 11 has basically the same structure as the artificial feather 3 shown in FIGS. 3 to 6, but the cross-sectional shape of the main body 13 of the shaft 7 is different. Specifically, the main body portion 13 of the shaft 7 shown in FIG. 11 has two thin rib portions 12b extending from the central shaft portion 11 in the left-right direction, while the thick rib is formed only on one side from the lower side of the central shaft portion 11. The part 12a extends. In addition, the thin part 14 is formed in the outer peripheral edge part of the thin rib part 12b. The effect similar to that of the artificial feather 3 shown in FIGS. 3 to 6 can also be obtained by using the artificial feather using the shaft whose main body section 13 has a so-called T-shaped cross section.
 図12に示した軸を備える人工羽根は、基本的に図11に示した人工羽根3と同様の構造を備えるが、中心軸部11から上方(薄肉リブ部12bが延びる方向に対して垂直な方向、あるいは厚肉リブ部12aの延びる方向と逆方向)に延びるように突出部16が形成されている点が異なる。このようなリブ部12に含まれる突出部16を形成することで、図11に示した軸を用いた人工羽根による効果と同様の効果を得られるとともに、図12の上下方向(厚肉リブ部12aおよび突出部16が延びる方向)において軸7の剛性をより高めることができる。 The artificial feather having the shaft shown in FIG. 12 basically has the same structure as the artificial feather 3 shown in FIG. 11, but is above the central shaft portion 11 (perpendicular to the direction in which the thin rib portion 12b extends). The protrusion 16 is different in that it extends in the direction or the direction opposite to the direction in which the thick rib portion 12a extends. By forming the protruding portion 16 included in such a rib portion 12, the same effect as that obtained by the artificial feather using the shaft shown in FIG. 11 can be obtained, and the vertical direction (thick rib portion in FIG. 12) can be obtained. 12a and the direction in which the protrusion 16 extends), the rigidity of the shaft 7 can be further increased.
 図13に示した軸を備える人工羽根は、基本的に図3~図6に示す人工羽根3と同様の構造を備えるが、軸7の本体部13の両側に形成された2つの薄肉部14の幅W1、W2が互いに異なっている点が、図3~図6に示した人工羽根とは異なっている。具体的には、図13に示した軸7の本体部13の図中左側に形成された薄肉部14の幅W1は、図中右側に形成されている薄肉部14の幅W2より広くなっている。このようにすれば、図3~図6に示した人工羽根3と同様の効果を得ることができるとともに、軸の中心軸部11から見て軸7の右側と左側とで空気抵抗の差を設けることができるので、人工羽根における空気抵抗パターンのバリエーションを豊富にすることができる。このため、当該人工羽根3を用いたシャトルコックにおいて、飛翔特性の制御範囲をより広くすることができる。 The artificial feather provided with the shaft shown in FIG. 13 basically has the same structure as the artificial feather 3 shown in FIGS. 3 to 6, but two thin-walled portions 14 formed on both sides of the body portion 13 of the shaft 7. The widths W1 and W2 are different from the artificial feathers shown in FIGS. Specifically, the width W1 of the thin portion 14 formed on the left side of the main body 13 of the shaft 7 shown in FIG. 13 is wider than the width W2 of the thin portion 14 formed on the right side of the drawing. Yes. In this way, the same effect as the artificial feather 3 shown in FIGS. 3 to 6 can be obtained, and the difference in air resistance between the right side and the left side of the shaft 7 when viewed from the central shaft portion 11 of the shaft can be obtained. Since it can be provided, the variation of the air resistance pattern in the artificial feather can be enriched. For this reason, in the shuttlecock using the artificial feather 3, the control range of the flight characteristics can be further widened.
 図14に示した軸を備える人工羽根は、基本的に図3~図6に示す人工羽根3と同様の構造を備えるが、軸7の本体部13の両側に形成された2つの薄肉部14の配置が図3~図6に示した人工羽根とは異なっている。具体的には、図14に示した軸7の本体部13の側面に形成された薄肉部14は、薄肉リブ部12bの側面(図14における薄肉リブ部12bの平坦な側面)と同一平面を構成するように配置されていない。図14に示した軸の薄肉部14は、上記薄肉リブ部12bの側面と段差を介して連なった位置に配置されている。このような構成であっても、図3~図6に示した人工羽根3と同種の効果を得ることができる。 The artificial feather having the shaft shown in FIG. 14 basically has the same structure as the artificial feather 3 shown in FIGS. 3 to 6, but two thin-walled portions 14 formed on both sides of the main body portion 13 of the shaft 7. Is different from the artificial feather shown in FIGS. Specifically, the thin portion 14 formed on the side surface of the main body portion 13 of the shaft 7 shown in FIG. 14 is flush with the side surface of the thin rib portion 12b (the flat side surface of the thin rib portion 12b in FIG. 14). Not arranged to compose. The thin wall portion 14 of the shaft shown in FIG. 14 is disposed at a position where it is connected to the side surface of the thin rib portion 12b via a step. Even with such a configuration, the same type of effect as the artificial feather 3 shown in FIGS. 3 to 6 can be obtained.
 上述した実施の形態と一部重複する部分もあるが、本願発明の特徴的な構成を以下に列挙する。 Although there are portions that partially overlap the above-described embodiment, the characteristic configurations of the present invention are listed below.
 この発明に従ったシャトルコック用人工羽根3は、羽部5と、羽部5に接続された軸7とを備える。軸7の延在方向に対して垂直な平面における断面形状(たとえば図4参照)は十字状(図4参照)またはT字状(図11参照)である。軸7において十字状またはT字状の断面形状を構成する本体部13より厚みの薄い薄肉部14が、本体部13の側面から突出するように本体部13と一体に形成されている。 The shuttlecock artificial feather 3 according to the present invention includes a wing portion 5 and a shaft 7 connected to the wing portion 5. A cross-sectional shape (see, for example, FIG. 4) in a plane perpendicular to the extending direction of the shaft 7 is a cross shape (see FIG. 4) or a T shape (see FIG. 11). A thin-walled portion 14 that is thinner than the main body 13 that forms a cross-shaped or T-shaped cross-section on the shaft 7 is formed integrally with the main body 13 so as to protrude from the side surface of the main body 13.
 このようにすれば、軸7の断面形状を十字状またはT字状とすることにより、軸7の総質量の増加を抑制しつつ軸7の剛性を高めることができる。さらに、薄肉部14を軸7の本体部13の側面から突出するように形成することで、シャトルコック1の飛翔特性を制御するための人工羽根3の空気抵抗を適宜調整することができる。そして、このような薄肉部14は本体部13より厚みを薄くすることができるため、軸7の質量の増加を抑制することができる。この結果、人工羽根3の質量の増加を抑制しつつ、人工羽根3の軸7の剛性を向上させるとともに人工羽根3の空気抵抗を調整することにより、優れた飛翔特性の人工シャトルコック1を構成する人工羽根3を実現できる。 In this way, the rigidity of the shaft 7 can be increased while suppressing the increase in the total mass of the shaft 7 by making the cross-sectional shape of the shaft 7 a cross shape or a T-shape. Furthermore, by forming the thin portion 14 so as to protrude from the side surface of the main body portion 13 of the shaft 7, the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate. And since such a thin part 14 can make thickness thinner than the main-body part 13, the increase in the mass of the axis | shaft 7 can be suppressed. As a result, the artificial shuttlecock 1 having excellent flight characteristics is formed by improving the rigidity of the shaft 7 of the artificial feather 3 and adjusting the air resistance of the artificial feather 3 while suppressing an increase in the mass of the artificial feather 3. The artificial feather 3 can be realized.
 上記シャトルコック用人工羽根3において、本体部13は、中心軸部11と当該中心軸部11の側面から突出する複数のリブ部12とを含んでいてもよい。複数のリブ部12は、軸7の延在方向に対して垂直な平面において、中心軸部11から外側へ向かう径方向に対して垂直な方向における厚みが相対的に厚い厚肉リブ部12aと、当該厚みが相対的に薄い薄肉リブ部12bとを含んでいてもよい。薄肉部14は薄肉リブ部12bの外周側面から突出するように形成されていてもよい。 In the shuttlecock artificial feather 3, the main body 13 may include a central shaft portion 11 and a plurality of rib portions 12 protruding from the side surface of the central shaft portion 11. The plurality of rib portions 12 are thick rib portions 12a that are relatively thick in a direction perpendicular to the radial direction from the central shaft portion 11 to the outside in a plane perpendicular to the extending direction of the shaft 7. The thin rib portion 12b having a relatively small thickness may be included. The thin portion 14 may be formed so as to protrude from the outer peripheral side surface of the thin rib portion 12b.
 この場合、厚肉リブ部12aの突出方向における軸7の剛性を特に向上させることができる。また、薄肉部14が突出する方向(図4の左右方向)においては、軸7の本体部13の薄肉リブ部12bを配置しているので、本体部13に含まれるすべてのリブ部12の厚みを一律に厚くする場合より、軸7の質量を低減できる。このため、軸7の質量を所定の範囲に制限しつつ、薄肉部14が突出する方向(薄肉リブ部12bが突出する方向)における軸7の幅(図4における幅W)を十分に大きくできる。 In this case, the rigidity of the shaft 7 in the protruding direction of the thick rib portion 12a can be particularly improved. Further, since the thin rib portion 12b of the main body portion 13 of the shaft 7 is disposed in the direction in which the thin portion 14 protrudes (left and right direction in FIG. 4), the thickness of all the rib portions 12 included in the main body portion 13 is disposed. The thickness of the shaft 7 can be reduced as compared with the case where the thickness of the shaft 7 is uniformly increased. For this reason, the width | variety (width | variety W in FIG. 4) in the direction in which the thin part 14 protrudes (direction where the thin rib part 12b protrudes) can fully be enlarged, restrict | limiting the mass of the axis | shaft 7 to a predetermined range. .
 上記シャトルコック用人工羽根3において、図4に示すように、薄肉部14は、薄肉リブ部12bにおいて径方向に延びる表面に沿って突出するように形成されていてもよい。 In the shuttlecock artificial feather 3, as shown in FIG. 4, the thin portion 14 may be formed so as to protrude along the surface extending in the radial direction in the thin rib portion 12b.
 この場合、空気に対する抵抗体という観点から、薄肉部14と薄肉リブ部12bとを連続した一体の抵抗体とみなすことができる。また、薄肉部14を形成する場合に、薄肉リブ部12bの上記表面に沿わないように当該薄肉部14を形成する場合より、たとえば金型を用いて上記薄肉部14を有する軸7を容易に形成することができる。 In this case, from the viewpoint of a resistor against air, the thin portion 14 and the thin rib portion 12b can be regarded as a continuous integral resistor. Moreover, when forming the thin part 14, compared with the case where the thin part 14 is formed so as not to follow the surface of the thin rib part 12b, for example, the shaft 7 having the thin part 14 can be easily formed using a mold. Can be formed.
 上記シャトルコック用人工羽根3において、軸7の延在方向に対して垂直な平面における、薄肉リブ部12bの突出方向に沿った本体部13と薄肉部14との合計幅Wは、厚肉リブ部12aの突出方向に沿った本体部13の幅(図4における高さT)より大きくなっていてもよい。 In the shuttlecock artificial feather 3, the total width W of the main body portion 13 and the thin portion 14 along the protruding direction of the thin rib portion 12b in the plane perpendicular to the extending direction of the shaft 7 is the thick rib. It may be larger than the width (height T in FIG. 4) of the main body 13 along the protruding direction of the portion 12a.
 この場合、厚肉リブ部12aの突出方向(つまり軸7の剛性が相対的に高くなっている方向)と異なる方向(つまり薄肉リブ部12bの突出方向)において、軸7の空気抵抗を大きくするように、空気抵抗を発生させるための軸7の実質的な幅Wを広く確保することができる。また、薄肉リブ部12bの突出方向における幅Wと同等の径を有する軸を用いる場合や、薄肉リブ部12bの厚みを上記厚肉リブ部12aの厚みと同等に設定する場合より、軸7の質量増加を抑制できる。 In this case, the air resistance of the shaft 7 is increased in a direction different from the protruding direction of the thick rib portion 12a (that is, the direction in which the rigidity of the shaft 7 is relatively high) (that is, the protruding direction of the thin rib portion 12b). Thus, the substantial width W of the shaft 7 for generating the air resistance can be ensured widely. Further, when the shaft having the same diameter as the width W in the protruding direction of the thin rib portion 12b is used, or when the thickness of the thin rib portion 12b is set to be equal to the thickness of the thick rib portion 12a, the shaft 7 Increase in mass can be suppressed.
 上記シャトルコック用人工羽根3において、本体部13は、中心軸部11と前記中心軸部11の側面から突出する複数のリブ部12とを含んでいてもよい。薄肉部14は、図4、図5、図11~図13などに示すように複数のリブ部12の少なくとも1つにおいて中心軸部11から外側へ向かう径方向に延びる表面に沿って突出するように形成されていてもよい。 In the shuttlecock artificial feather 3, the main body portion 13 may include a central shaft portion 11 and a plurality of rib portions 12 protruding from the side surface of the central shaft portion 11. As shown in FIGS. 4, 5, 11 to 13, etc., the thin-walled portion 14 protrudes along a surface extending radially outward from the central shaft portion 11 in at least one of the plurality of rib portions 12. It may be formed.
 この場合、薄肉部14を複数のリブ部12の少なくとも1つから突出するように形成することで、軸7の実質的な幅Wを変更できる。この結果、シャトルコック1の飛翔特性を制御するための人工羽根3の空気抵抗を適宜調整することができる。 In this case, the substantial width W of the shaft 7 can be changed by forming the thin portion 14 so as to protrude from at least one of the plurality of rib portions 12. As a result, the air resistance of the artificial feather 3 for controlling the flight characteristics of the shuttlecock 1 can be adjusted as appropriate.
 上記シャトルコック用人工羽根3において、軸7の延在方向に対して垂直な平面における、薄肉部14が形成されたリブ部12の突出方向に沿った本体部13と薄肉部14との合計幅Wは、薄肉部14が形成されていない他のリブ部12の突出方向に沿った本体部13の幅(図4の高さT)より大きくなっていてもよい。 In the shuttlecock artificial feather 3, the total width of the main body portion 13 and the thin portion 14 along the protruding direction of the rib portion 12 in which the thin portion 14 is formed in a plane perpendicular to the extending direction of the shaft 7. W may be larger than the width (height T in FIG. 4) of the main body 13 along the protruding direction of the other ribs 12 where the thin part 14 is not formed.
 この場合、薄肉部14が形成されたリブ部12の突出方向(たとえば図4や図11~図13の左右方向)において、軸7の空気抵抗を大きくするように、空気抵抗を発生させるための軸7の実質的な幅Wを広く確保することができる。 In this case, in order to increase the air resistance of the shaft 7 in the projecting direction of the rib portion 12 in which the thin-walled portion 14 is formed (for example, the horizontal direction in FIGS. 4 and 11 to 13), the air resistance is generated. A substantial width W of the shaft 7 can be secured.
 この発明に従ったバドミントン用シャトルコック1は、半球状のベース本体2と、当該ベース本体2に接続された、上記シャトルコック用人工羽根3とを備える。このようにすれば、天然の羽根を用いた天然シャトルコックと同等の飛翔特性を備えるとともに十分な耐久性を有する人工シャトルコック1を実現できる。 A badminton shuttlecock 1 according to the present invention includes a hemispherical base body 2 and the shuttlecock artificial feather 3 connected to the base body 2. In this way, it is possible to realize an artificial shuttlecock 1 having a flight characteristic equivalent to that of a natural shuttlecock using natural blades and sufficient durability.
 この発明に従ったシャトルコック用人工羽根の製造方法は、軸を準備する工程(S10、S11、S12)と、軸に羽部を接続する工程(S20)とを備える。軸を準備する工程(S10、S11、S12)は、軸の延在方向に対して垂直な平面における断面形状が十字状またはT字状となる軸をモールド成形するための金型を準備する工程(S11)と、当該金型を用いて射出成形または射出圧縮成形を行なうことにより軸を形成する工程(S12)とを含む。金型を準備する工程(S11)では、軸7において十字状またはT字状の断面形状を構成する本体部13より厚みが薄く、本体部13の側面から突出する薄肉部14を形成するための隙間が金型に形成されている。軸を形成する工程(S12)では、射出成形または射出圧縮成形を行なうことにより薄肉部14が本体部13の側面から突出した軸7が形成される。このようにすれば、本発明に従ったシャトルコック用人工羽根3を製造することができる。 The method for manufacturing an artificial feather for a shuttlecock according to the present invention includes a step of preparing a shaft (S10, S11, S12) and a step of connecting a wing portion to the shaft (S20). The step of preparing the shaft (S10, S11, S12) is a step of preparing a mold for molding a shaft having a cross-shaped or T-shaped cross section in a plane perpendicular to the extending direction of the shaft. (S11) and a step (S12) of forming a shaft by performing injection molding or injection compression molding using the mold. In the step of preparing the mold (S11), the shaft 7 is formed with a thin portion 14 that is thinner than the main body portion 13 that forms a cross-shaped or T-shaped cross section and protrudes from the side surface of the main body portion 13. A gap is formed in the mold. In the step of forming the shaft (S12), the shaft 7 in which the thin portion 14 protrudes from the side surface of the main body portion 13 is formed by performing injection molding or injection compression molding. In this way, the shuttlecock artificial feather 3 according to the present invention can be manufactured.
 この発明に従ったバドミントン用シャトルコックの製造方法は、半球状のベース本体を準備する工程(S100)と、上記シャトルコック用人工羽根の製造方法を用いてシャトルコック用人工羽根を製造する工程(S100)と、ベース本体にシャトルコック用人工羽根を接続する工程(S200)とを備える。このようにすれば、本発明に従ったバドミントン用シャトルコック1を製造することができる。 The badminton shuttlecock manufacturing method according to the present invention includes a step of preparing a hemispherical base body (S100), and a step of manufacturing the shuttlecock artificial feather using the shuttlecock artificial feather manufacturing method ( S100) and a step (S200) of connecting the shuttlecock artificial feather to the base body. In this way, the badminton shuttlecock 1 according to the present invention can be manufactured.
 次に、本発明によるシャトルコック用人工羽根およびシャトルコックの効果を確認するため、以下のような実験を行なった。 Next, in order to confirm the effect of the shuttlecock artificial feather and the shuttlecock according to the present invention, the following experiment was conducted.
 (実験内容)
 本発明の実施例の人工羽根を用いたシャトルコックと、比較例としてのシャトルコック2種類とを準備し、円筒の下方から送風機により空気を流し、シャトルコックを浮遊回転させ、無接触回転数測定器を用いて、シャトルコックの回転速度(回転数)を測定した。
(Experiment contents)
A shuttlecock using artificial feathers according to an embodiment of the present invention and two types of shuttlecocks as comparative examples were prepared, air was blown from below the cylinder by a blower, the shuttlecock was floated and rotated, and contactless rotational speed measurement was performed. The rotational speed (number of rotations) of the shuttlecock was measured using a vessel.
 (準備した試料)
 本発明の実施例の試料として、図3~図6に示した人工羽根3を用いたシャトルコックを準備した。人工羽根3の軸7の本体部13の幅W3(図4参照)は2.5mm、高さTは2.5mm、厚肉リブ部12aの中央部(中心軸部11から見た径方向での中央部)での厚みについて、図4の上側の厚肉リブ部12aでの中央部の厚みは0.8mm、図4の下側の厚肉リブ部12aの中央部の厚みは0.55mm、薄肉リブ部12bの厚みは0.4mm、薄肉部14の幅W1、W2はそれぞれ0.3mmとした。また、薄肉部14の厚みは0.05mmとした。
(Prepared sample)
A shuttlecock using the artificial feather 3 shown in FIGS. 3 to 6 was prepared as a sample of the example of the present invention. The width W3 (see FIG. 4) of the body portion 13 of the shaft 7 of the artificial feather 3 is 2.5 mm, the height T is 2.5 mm, and the central portion (in the radial direction viewed from the central shaft portion 11) of the thick rib portion 12a. 4), the thickness of the central portion of the upper thick rib portion 12a in FIG. 4 is 0.8 mm, and the thickness of the central portion of the lower thick rib portion 12a in FIG. 4 is 0.55 mm. The thickness of the thin rib portion 12b was 0.4 mm, and the widths W1 and W2 of the thin wall portion 14 were each 0.3 mm. Moreover, the thickness of the thin part 14 was 0.05 mm.
 また、人工羽根3の羽部5を構成する軸固定層91の材質はポリエチレンフォームを用い、厚みを0.5mm、目付け量を20g/m2とした。また、発泡体層92の材質はポリエチレンフォームを用い、厚みを1.0mm、目付け量を24g/m2とした。また、接着層93、94としては両面テープを用いた。両面テープの特性としては、厚さ10μm、目付け10g/m2といったものを用いた。そして、このような人工羽根を用いて、図1および図2に示した構成のシャトルコックを準備した。 The shaft fixing layer 91 constituting the wing part 5 of the artificial feather 3 is made of polyethylene foam, and has a thickness of 0.5 mm and a basis weight of 20 g / m 2 . The material of the foam layer 92 was polyethylene foam, the thickness was 1.0 mm, and the basis weight was 24 g / m 2 . Further, double-sided tape was used as the adhesive layers 93 and 94. As the characteristics of the double-sided tape, those having a thickness of 10 μm and a basis weight of 10 g / m 2 were used. And the shuttlecock of the structure shown in FIG. 1 and FIG. 2 was prepared using such an artificial feather.
 また、比較例1の試料として、上記実施例の試料に用いた軸と同様の構成の軸から、薄肉部14を削り取った加工済み軸を用いて人工羽根3を製造した。加工済み軸以外は、上述した実施例の試料に用いた人工羽根3と同様の構成とした。そして、このような比較例としての人工羽根3を用いて、実施例の試料と同様の構成を備えるシャトルコックを準備した。 Further, as a sample of Comparative Example 1, an artificial feather 3 was manufactured using a processed shaft obtained by scraping the thin portion 14 from a shaft having the same configuration as the shaft used for the sample of the above example. Except for the processed shaft, the configuration was the same as that of the artificial feather 3 used for the sample of the above-described example. And the shuttlecock provided with the structure similar to the sample of an Example was prepared using the artificial feather | wing 3 as such a comparative example.
 また、比較例2の試料として、上述した実施例の試料に用いた軸から薄肉部14を除いた構成の軸を用いて人工羽根およびシャトルコックを準備した。なお、ここで準備した軸については、射出成形に用いる金型として、実施例の人工羽根における軸とは異なる構成の金型(つまり、薄肉部14のための隙間を形成していない構成の金型)を用いた。 Further, as a sample of Comparative Example 2, an artificial feather and a shuttlecock were prepared using a shaft having a configuration in which the thin portion 14 was removed from the shaft used in the sample of the above-described example. In addition, about the axis | shaft prepared here, as a metal mold | die used for injection molding, the metal mold | die of a structure different from the axis | shaft in the artificial feather of an Example (that is, the metal mold | die of the structure which has not formed the clearance gap for the thin part 14) Type).
 (結果)
 各試料のシャトルコックについて、円筒の下方から送風機により空気を7m/秒で流し、シャトルコックを浮遊回転させ、無接触回転数測定器を用いてシャトルコックの回転数を測定した。計測は、各試料ごとに5個のシャトルコックを用意し、当該5個の平均回転数を算出した。
(result)
About the shuttlecock of each sample, air was flowed from the lower part of the cylinder with a blower at 7 m / second, the shuttlecock was floated and rotated, and the number of revolutions of the shuttlecock was measured using a non-contact revolution meter. For the measurement, five shuttlecocks were prepared for each sample, and the average number of rotations of the five was calculated.
 その結果、実施例の試料については平均回転数が477rpmであった。また、シャトルコックの飛翔の軌跡なども、天然シャトルコックに比較的近いものとなっていた。 As a result, the average rotational speed of the sample of the example was 477 rpm. The flight trajectory of the shuttlecock was also relatively close to that of the natural shuttlecock.
 一方、比較例1の試料については、平均回転数が317rpmであり、また、比較例2の試料については、平均回転数が252rpmであった。また、このような回転数の差に起因して、比較例のシャトルコックの飛翔時の軌跡は実施例のシャトルコックの飛翔時の軌跡と異なり、また天然シャトルコックの飛翔時軌跡とも異なっていた。また、回転数が300rpm未満ではシャトルコックが飛翔中に揺れやすくなり、飛行時軌跡が安定しない傾向が見られた。 On the other hand, the average rotational speed of the sample of Comparative Example 1 was 317 rpm, and the average rotational speed of the sample of Comparative Example 2 was 252 rpm. In addition, due to such a difference in the number of revolutions, the trajectory at the time of flight of the shuttlecock of the comparative example was different from the trajectory at the time of flight of the shuttlecock of the example, and different from the trajectory at the time of flight of the natural shuttlecock. . In addition, when the rotational speed was less than 300 rpm, the shuttlecock easily sways during flight, and the trajectory during flight tended to be unstable.
 なお、いずれの試料も今回の試験中には形状の崩れなど発生することなく、十分な耐久性を示していた。 In addition, all the samples showed sufficient durability without any shape collapse during the test.
 この結果、本発明の実施例の試料が十分な耐久性を示すと共に、比較的天然のシャトルコックに近い飛翔特性を示すことがわかった。 As a result, it was found that the samples of the examples of the present invention showed sufficient durability and flight characteristics relatively close to those of a natural shuttlecock.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、水鳥の羽根を用いたバトミントン用シャトルコックと同等の飛翔特性および耐久性を有する、人工羽根を用いたバドミントン用シャトルコックに有利に適用される。 The present invention is advantageously applied to a badminton shuttlecock using artificial feathers having flying characteristics and durability equivalent to those of a badminton shuttlecock using waterfowl feathers.
 1 シャトルコック、2 ベース本体、3 人工羽根、5 羽部、7 軸、8 羽軸部、10 固着軸部、11 中心軸部、12 リブ部、12a 厚肉リブ部、12b 薄肉リブ部、13 本体部、14 薄肉部、15 中糸、16 突出部、91 軸固定層、92 発泡体層、93,94 接着層、95 矢印。 1 shuttlecock, 2 base body, 3 artificial feather, 5 wings, 7 shafts, 8 wing shafts, 10 fixed shafts, 11 central shafts, 12 ribs, 12a thick ribs, 12b thin ribs, 13 Body part, 14 thin part, 15 middle thread, 16 projecting part, 91 shaft fixing layer, 92 foam layer, 93, 94 adhesive layer, 95 arrows.

Claims (9)

  1.  羽部(5)と、
     前記羽部(5)に接続された軸(7)とを備え、
     前記軸(7)の延在方向に対して垂直な平面における断面形状は十字状またはT字状であり、
     前記軸(7)において前記十字状またはT字状の断面形状を構成する本体部(13)より厚みの薄い薄肉部(14)が、前記本体部(13)の側面から突出するように前記本体部(13)と一体に形成されている、シャトルコック用人工羽根。
    Feather (5),
    A shaft (7) connected to the wing (5),
    The cross-sectional shape in a plane perpendicular to the extending direction of the axis (7) is a cross shape or a T shape,
    The main body so that a thin-walled portion (14) that is thinner than the main body portion (13) constituting the cross-shaped or T-shaped cross-sectional shape on the shaft (7) protrudes from a side surface of the main body portion (13). A shuttlecock artificial feather formed integrally with the portion (13).
  2.  前記本体部(13)は、中心軸部(11)と前記中心軸部(11)の側面から突出する複数のリブ部(12)とを含み、
     前記複数のリブ部(12)は、前記軸(7)の延在方向に対して垂直な平面において、前記中心軸部(11)から外側へ向かう径方向に対して垂直な方向における厚みが相対的に厚い厚肉リブ部(12a)と、前記厚みが相対的に薄い薄肉リブ部(12b)とを含み、
     前記薄肉部(14)は前記薄肉リブ部(12b)の外周側面から突出するように形成されている、請求の範囲第1項に記載のシャトルコック用人工羽根。
    The main body (13) includes a central shaft portion (11) and a plurality of rib portions (12) protruding from the side surface of the central shaft portion (11).
    The plurality of rib portions (12) have a relative thickness in a direction perpendicular to the radial direction from the central shaft portion (11) to the outside in a plane perpendicular to the extending direction of the shaft (7). A thick rib portion (12a) that is thick and a thin rib portion (12b) that is relatively thin,
    The artificial feather for a shuttlecock according to claim 1, wherein the thin portion (14) is formed so as to protrude from an outer peripheral side surface of the thin rib portion (12b).
  3.  前記薄肉部(14)は、前記薄肉リブ部(12b)において前記径方向に延びる表面に沿って突出するように形成されている、請求の範囲第2項に記載のシャトルコック用人工羽根。 The shuttlecock artificial feather according to claim 2, wherein the thin wall portion (14) is formed so as to protrude along a surface extending in the radial direction in the thin rib portion (12b).
  4.  前記軸(7)の延在方向に対して垂直な平面における、前記薄肉リブ部(12b)の突出方向に沿った前記本体部(13)と前記薄肉部(14)との合計幅(W)は、前記厚肉リブ部(12a)の突出方向に沿った前記本体部(13)の幅より大きくなっている、請求の範囲第2項に記載のシャトルコック用人工羽根。 Total width (W) of the main body portion (13) and the thin portion (14) along the protruding direction of the thin rib portion (12b) in a plane perpendicular to the extending direction of the shaft (7). The artificial feather for a shuttlecock according to claim 2, which is larger than the width of the main body portion (13) along the protruding direction of the thick rib portion (12a).
  5.  前記本体部(13)は、中心軸部(11)と前記中心軸部(11)の側面から突出する複数のリブ部(12)とを含み、
     前記薄肉部(14)は、前記複数のリブ部(12)の少なくとも1つにおいて前記中心軸部(11)から外側へ向かう径方向に延びる表面に沿って突出するように形成されている、請求の範囲第1項に記載のシャトルコック用人工羽根。
    The main body (13) includes a central shaft portion (11) and a plurality of rib portions (12) protruding from the side surface of the central shaft portion (11).
    The thin-walled portion (14) is formed so as to protrude along a surface extending in a radial direction from the central shaft portion (11) outward in at least one of the plurality of rib portions (12). The artificial feather for a shuttlecock according to claim 1,
  6.  前記軸(7)の延在方向に対して垂直な平面における、前記薄肉部(14)が形成されたリブ部(12)の突出方向に沿った前記本体部(13)と前記薄肉部(14)との合計幅(W)は、前記薄肉部(14)が形成されていない他のリブ部(12)の突出方向に沿った前記本体部(13)の幅より大きくなっている、請求の範囲第5項に記載のシャトルコック用人工羽根。 The main body part (13) and the thin part (14) along the protruding direction of the rib part (12) in which the thin part (14) is formed in a plane perpendicular to the extending direction of the shaft (7). ) And the total width (W) is larger than the width of the main body portion (13) along the protruding direction of the other rib portion (12) where the thin-walled portion (14) is not formed. The artificial feather for a shuttlecock according to claim 5.
  7.  半球状のベース本体(2)と、
     前記ベース本体(2)に接続された、請求の範囲第1項に記載のシャトルコック用人工羽根(3)とを備える、バドミントン用シャトルコック。
    A hemispherical base body (2);
    The shuttlecock for badminton provided with the artificial feather (3) for shuttlecocks of Claim 1 connected to the said base main body (2).
  8.  軸(7)を準備する工程(S10、S11、S12)と、
     前記軸(7)に羽部を接続する工程(S20)とを備え、
     前記軸(7)を準備する工程(S10、S11、S12)は、
     前記軸の延在方向に対して垂直な平面における断面形状が十字状またはT字状となる軸をモールド成形するための金型を準備する工程(S11)と、
     前記金型を用いて射出成形または射出圧縮成形を行なうことにより前記軸を形成する工程(S12)とを含み、
     前記金型を準備する工程(S11)では、前記軸(7)において前記十字状またはT字状の断面形状を構成する本体部(13)より厚みが薄く、前記本体部(13)の側面から突出する薄肉部(14)を形成するための隙間が前記金型に形成され、
     前記軸を形成する工程(S12)では、前記射出成形または射出圧縮成形を行なうことにより前記薄肉部(14)が前記本体部(13)の側面から突出した軸(7)が形成される、シャトルコック用人工羽根の製造方法。
    Preparing the shaft (7) (S10, S11, S12);
    Connecting the wings to the shaft (7) (S20),
    The step of preparing the shaft (7) (S10, S11, S12)
    Preparing a mold for molding a shaft whose cross-sectional shape in a plane perpendicular to the extending direction of the shaft is a cross shape or a T shape (S11);
    Forming the shaft by performing injection molding or injection compression molding using the mold (S12),
    In the step of preparing the mold (S11), the shaft (7) is thinner than the main body (13) constituting the cross-shaped or T-shaped cross-section, and from the side surface of the main body (13). A gap for forming the protruding thin part (14) is formed in the mold,
    In the step of forming the shaft (S12), the shaft (7) in which the thin wall portion (14) protrudes from the side surface of the main body portion (13) is formed by performing the injection molding or the injection compression molding. Manufacturing method of artificial feather for cock.
  9.  半球状のベース本体(2)を準備する工程(S100)と、
     請求の範囲第8項に記載のシャトルコック用人工羽根の製造方法を用いてシャトルコック用人工羽根(3)を製造する工程(S100)と、
     前記ベース本体(2)に前記シャトルコック用人工羽根(3)を接続する工程(S200)とを備える、バドミントン用シャトルコックの製造方法。
    Preparing a hemispherical base body (2) (S100);
    A step (S100) of manufacturing the shuttlecock artificial feather (3) using the shuttlecock artificial feather manufacturing method according to claim 8;
    And a step (S200) of connecting the shuttlecock artificial feather (3) to the base body (2).
PCT/JP2010/063313 2009-08-18 2010-08-05 Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock WO2011021512A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800372822A CN102625724A (en) 2009-08-18 2010-08-05 Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock
EP10809857.5A EP2462997A4 (en) 2009-08-18 2010-08-05 Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-189139 2009-08-18
JP2009189139A JP5170459B2 (en) 2009-08-18 2009-08-18 Artificial feather for shuttlecock, shuttlecock for badminton, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011021512A1 true WO2011021512A1 (en) 2011-02-24

Family

ID=43606967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063313 WO2011021512A1 (en) 2009-08-18 2010-08-05 Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock

Country Status (5)

Country Link
EP (1) EP2462997A4 (en)
JP (1) JP5170459B2 (en)
KR (1) KR20120043105A (en)
CN (1) CN102625724A (en)
WO (1) WO2011021512A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077183A1 (en) * 2011-11-22 2013-05-30 株式会社ゴーセン Badminton shuttlecock and method of manufacturing same
EP2845631A1 (en) 2013-08-06 2015-03-11 Yonex Kabushiki Kaisha Joint-stock company of Japan Shuttlecock, and artificial feather for shuttlecock

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941633B2 (en) * 2011-08-19 2016-06-29 ヨネックス株式会社 Artificial feather for shuttlecock, shuttlecock, and method for manufacturing shuttlecock artificial feather
CN108905132A (en) * 2012-11-20 2018-11-30 戴见霖 Process the method and system of natural feather
JP6161381B2 (en) * 2013-04-22 2017-07-12 美津濃株式会社 Artificial feather for shuttlecock and shuttlecock for badminton
CN103933715A (en) * 2014-04-04 2014-07-23 安徽华翎羽毛制品有限公司 Manufacturing technique of grafting type shuttlecock
CN108042992B (en) * 2017-11-28 2020-05-19 安徽省蓝翔体育用品有限公司 Badminton feather shape selection system
CN108014473B (en) * 2017-11-28 2020-05-19 安徽省蓝翔体育用品有限公司 Intelligent feather shape die selection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313543A (en) * 1963-06-25 1967-04-11 William C Carlton Shuttlecock with blade-like stems
JPS54136060U (en) 1979-01-30 1979-09-20
JPS6052865U (en) * 1983-08-19 1985-04-13 劉 懋滉 shuttlecock for badminton
JPH0229974U (en) 1988-08-11 1990-02-26
JP2008206970A (en) 2007-02-02 2008-09-11 Mizuno Corp Shuttlecock for badminton, artificial vane for shuttlecock and method of manufacturing them

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK173581A (en) * 1981-04-15 1982-10-16 J E Rasmussen ARTIFICIAL FOR BADMINTON BALLS
GB2333970A (en) * 1998-02-10 1999-08-11 Dunlop Slazenger Group Ltd Shuttlecock
CN2858002Y (en) * 2005-11-22 2007-01-17 张伯嘉 Composite shuttlecock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313543A (en) * 1963-06-25 1967-04-11 William C Carlton Shuttlecock with blade-like stems
JPS54136060U (en) 1979-01-30 1979-09-20
JPS6052865U (en) * 1983-08-19 1985-04-13 劉 懋滉 shuttlecock for badminton
JPH0229974U (en) 1988-08-11 1990-02-26
JP2008206970A (en) 2007-02-02 2008-09-11 Mizuno Corp Shuttlecock for badminton, artificial vane for shuttlecock and method of manufacturing them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2462997A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077183A1 (en) * 2011-11-22 2013-05-30 株式会社ゴーセン Badminton shuttlecock and method of manufacturing same
JPWO2013077183A1 (en) * 2011-11-22 2015-04-27 株式会社ゴーセン Badminton shuttlecock and method of manufacturing the same
EP2845631A1 (en) 2013-08-06 2015-03-11 Yonex Kabushiki Kaisha Joint-stock company of Japan Shuttlecock, and artificial feather for shuttlecock

Also Published As

Publication number Publication date
JP5170459B2 (en) 2013-03-27
JP2011036591A (en) 2011-02-24
EP2462997A4 (en) 2013-05-22
KR20120043105A (en) 2012-05-03
CN102625724A (en) 2012-08-01
EP2462997A1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2011021512A1 (en) Artificial feather for shuttlecock, badminton shuttle cock, and method for manufacturing the artificial feather and the badminton shuttlecock
JP4651051B2 (en) Shuttlecock for badminton, artificial feather for shuttlecock, and method for producing them
JP5661535B2 (en) Artificial feather for shuttlecock, shuttlecock for badminton, and manufacturing method thereof
JP6161381B2 (en) Artificial feather for shuttlecock and shuttlecock for badminton
JP2010082160A (en) Shuttlecock for badminton and base for shuttlecock
EP2338576B1 (en) Badminton shuttlecock
JP6748995B2 (en) Artificial feather for shuttlecock and shuttlecock
JP4623434B2 (en) Badminton shuttlecock
JP5947249B2 (en) Badminton shuttlecock
WO2010074234A1 (en) Artificial feather for shuttlecock and badminton shuttlecock
JP5230835B1 (en) Method for manufacturing shaft used in badminton racket
JP6329396B2 (en) Shuttlecock
EP2769754A1 (en) Shuttlecock
CA3056460C (en) Hockey stick with nanofiber reinforcement
JP5989035B2 (en) Shuttlecock
JP2015029845A (en) Shuttlecock and artificial feather for the same
JP2020124640A (en) Artificial feather for shuttlecock, and shuttlecock
WO2019190307A1 (en) Shuttlecock and method of manufacturing a shuttlecock

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037282.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010809857

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127006506

Country of ref document: KR

Kind code of ref document: A