JP2010082160A - Shuttlecock for badminton and base for shuttlecock - Google Patents

Shuttlecock for badminton and base for shuttlecock Download PDF

Info

Publication number
JP2010082160A
JP2010082160A JP2008254274A JP2008254274A JP2010082160A JP 2010082160 A JP2010082160 A JP 2010082160A JP 2008254274 A JP2008254274 A JP 2008254274A JP 2008254274 A JP2008254274 A JP 2008254274A JP 2010082160 A JP2010082160 A JP 2010082160A
Authority
JP
Japan
Prior art keywords
shuttlecock
shaft
wing
fixing
artificial feather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254274A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshida
聡 吉田
Masao Ogawa
雅央 小川
Takashi Tonomura
隆 外村
Toshimasa Takenaka
寿優 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Corp
Original Assignee
Mizuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Corp filed Critical Mizuno Corp
Priority to JP2008254274A priority Critical patent/JP2010082160A/en
Priority to PCT/JP2009/066594 priority patent/WO2010038657A1/en
Priority to CN2009801382994A priority patent/CN102164641A/en
Publication of JP2010082160A publication Critical patent/JP2010082160A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • A63B67/19Shuttlecocks with several feathers connected to each other

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base for a shuttlecock having sufficient durability and a shuttlecock. <P>SOLUTION: The base 2 for a shuttlecock comprises a fixing surface section (the surface of the base 2 in which insertion holes 63 are formed) to which the shafts 7 of the artificial feathers for the shuttlecock are secured. The plurality of insertion holes 63 for inserting and affixing the shafts 7 therein and a projection 61 which is adjacent to the insertion holes 63 and which projects from the surface of the fixing surface section are formed in and on the fixing surface section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、バドミントン用シャトルコックおよびシャトルコック用ベース本体に関し、より特定的には、高い耐久性を示すバドミントン用シャトルコックおよびシャトルコック用ベース本体に関する。   The present invention relates to a badminton shuttlecock and a shuttlecock base body, and more particularly to a badminton shuttlecock and a shuttlecock base body exhibiting high durability.

従来、バドミントン用シャトルコックとして、その羽根に水鳥の羽根を用いたもの(天然シャトルコック)と、ナイロン樹脂などにより人工的に製造された羽根を用いたもの(人工シャトルコック)とが知られている。また、人工シャトルコックには、羽根が樹脂などにより構成されたスカート状の一体成形品からなるものと、天然シャトルコックのように独立した複数の人工羽根を用いたものとがある。   Conventionally, as badminton shuttlecocks, there are known shuttlecocks that use waterfowl blades (natural shuttlecocks) and artificially manufactured blades made of nylon resin (artificial shuttlecocks). Yes. Artificial shuttlecocks include a skirt-like integral molded product whose blades are made of resin or the like, and an artificial shuttlecock using a plurality of independent artificial feathers like a natural shuttlecock.

天然シャトルコックおよび人工シャトルコックのいずれにおいても、円環状に配置された水鳥の羽根または人工羽根(以下、羽根とも言う)を半球状のベース本体に固定している。   In both of the natural shuttlecock and the artificial shuttlecock, waterfowl blades or artificial blades (hereinafter also referred to as blades) arranged in an annular shape are fixed to a hemispherical base body.

しかし、シャトルコックがバドミントンの試合などで使用される場合、当該シャトルコックが強打されることによってベース本体と羽根との固定部の強度が低下し、ベース本体表面に対する羽根の軸の角度が変化することがあった。この場合、シャトルコックの形状が崩れる(たとえば円環状に配置された羽根の配置の断面形状が楕円形状になる)といった問題が発生する。このようにシャトルコックの形状が崩れると、その飛翔特性(たとえば飛距離や飛翔時の軌跡)に悪影響を及ぼしたり、シャトルコックの打球感が悪化したりする、という問題があった。   However, when the shuttlecock is used in a badminton game or the like, the strength of the fixing portion between the base body and the blades is reduced by slamming the shuttlecock, and the angle of the blade shaft with respect to the surface of the base body changes. There was a thing. In this case, there arises a problem that the shape of the shuttlecock collapses (for example, the sectional shape of the arrangement of the blades arranged in an annular shape becomes an elliptical shape). When the shape of the shuttlecock collapses as described above, there are problems that the flight characteristics (for example, flight distance and flight trajectory) are adversely affected, and the shot feeling of the shuttlecock is deteriorated.

このような問題を解決するため、従来様々な提案が成されている。例えば、実開平4−25771号公報(特許文献1とも呼ぶ)においては、ベース本体と羽根との接合部分の強度を高めるため、ベース本体において羽根の付け根が固定される部分を合成樹脂などの補強体とした構造が提案されている。また、実公昭40−6177号公報(特許文献2とも呼ぶ)においては、ベース本体として羽根を固定する側に天然コルクを配置し、半球状の先端側には人造コルク(天然コルクの粉末と特殊接着剤とを混合し圧縮加工した材料)を配置したものを用い、羽根の根元(ベース本体に挿入固定される側)の端部が人造コルクにまで到達するように羽根をベース本体に差し込むことで、羽根をベース本体に確実に固定する構造が提案されている。また、特公昭29−4312号公報(特許文献3とも呼ぶ)においても、その目的は異なるものの、合成樹脂などからなり、羽根を接合した円盤台を準備し、当該円盤台を中空球体に接合することでベース本体を構成している。また、実公昭35−19921号公報(以下、特許文献4とも呼ぶ)においては、人工の羽根の根元に突起部を形成してベース本体から羽根が抜け落ちることを防止するとともに、円環状に配置された羽根の内周側に2つの固定環を配置することで環状に配置された羽根を連結してそのぐらつきを防止することが提案されている。
実開平4−25771号公報 実公昭40−6177号公報 特公昭29−4312号公報 実公昭35−19921号公報
In order to solve such a problem, various proposals have been conventionally made. For example, in Japanese Utility Model Laid-Open No. 4-25771 (also referred to as Patent Document 1), in order to increase the strength of the joint portion between the base body and the blade, the portion of the base body where the root of the blade is fixed is reinforced with a synthetic resin or the like. A body structure has been proposed. In Japanese Utility Model Publication No. 40-6177 (also referred to as Patent Document 2), a natural cork is arranged on the side where the blades are fixed as the base body, and an artificial cork (natural cork powder and a special one is arranged on the hemispherical tip side. Insert the blade into the base body so that the end of the blade's base (the side that is inserted and fixed to the base body) reaches the artificial cork. And the structure which fixes a blade | wing to a base main body reliably is proposed. Also in Japanese Patent Publication No. 29-4312 (also referred to as Patent Document 3), although the purpose thereof is different, a disk base made of synthetic resin or the like and having blades bonded thereto is prepared, and the disk base is bonded to a hollow sphere. This constitutes the base body. In Japanese Utility Model Publication No. 35-19921 (hereinafter also referred to as Patent Document 4), a protrusion is formed at the base of an artificial blade to prevent the blade from falling off the base body, and is arranged in an annular shape. It has been proposed that two stationary rings are arranged on the inner peripheral side of the blades to connect the blades arranged in a ring and prevent the wobbling.
Japanese Utility Model Publication No. 4-25771 Japanese Utility Model Publication No. 40-6177 Japanese Examined Patent Publication No. 29-4312 Japanese Utility Model Publication No. 35-19921

しかし、上述した従来のベース本体と羽根との結合部は、基本的にベース本体(またはベース本体に接続する部材)の平坦な表面に穴を形成し、当該穴に羽根の根元を挿入、固定するというものである。このような構成の場合、当該穴に羽根の根元が挿入された状態でさらに穴の上部に接着剤などの接着部材を塗布する。しかし、シャトルコックが強打され羽根に大きな力が加わると羽根の軸が屈曲することにより当該接着剤が剥がれてしまい、結果的に羽根とベース本体との接合部の強度が低下することになっていた。この結果、シャトルコックについて十分な耐久性が得られないという問題があった。   However, the conventional base body-blade joint described above basically forms a hole in the flat surface of the base body (or a member connected to the base body), and inserts and fixes the root of the blade into the hole. It is to do. In the case of such a configuration, an adhesive member such as an adhesive is further applied to the upper part of the hole with the blade base inserted in the hole. However, when the shuttlecock is struck and a large force is applied to the blade, the blade shaft is bent, and the adhesive is peeled off. As a result, the strength of the joint between the blade and the base body is reduced. It was. As a result, there is a problem that sufficient durability cannot be obtained for the shuttlecock.

この発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、十分な耐久性を得ることが可能なシャトルコック用ベース本体およびシャトルコックを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a shuttlecock base body and a shuttlecock capable of obtaining sufficient durability. is there.

この発明に従ったシャトルコック用ベース本体は、羽根の軸を固定する固定用表面部を備えるシャトルコック用ベース本体であって、固定用表面部には、シャトルコック用羽根の軸を挿入固定するための複数の挿入穴と、挿入穴に隣接し、固定用表面部の表面から突出する凸部とが形成されている。   A shuttlecock base body according to the present invention is a shuttlecock base body provided with a fixing surface portion for fixing a blade shaft, and the shaft of the shuttlecock blade is inserted and fixed to the fixing surface portion. For this purpose, a plurality of insertion holes and a convex portion that is adjacent to the insertion hole and protrudes from the surface of the fixing surface portion are formed.

このようにすれば、挿入穴に軸を挿入した状態で接着部材を配置するときに、挿入穴内部から挿入穴に隣接する(つまり軸に隣接する)凸部上にまで接着部材を延在させることができる。このため、凸部が存在しない場合に比べて接着部材とベース本体との接着面の面積を大きくできるとともに、接着面の形状が立体的な形状となる。このため、接着部材とベース本体および羽根の軸との接着強度を向上させることができる。この結果、上記ベース本体を適用したシャトルコックの耐久性を向上させることができる。   In this way, when the adhesive member is arranged with the shaft inserted into the insertion hole, the adhesive member extends from the inside of the insertion hole to the convex portion adjacent to the insertion hole (that is, adjacent to the shaft). be able to. For this reason, compared with the case where a convex part does not exist, while the area of the adhesion surface of an adhesion member and a base body can be enlarged, the shape of an adhesion surface turns into a three-dimensional shape. For this reason, the adhesive strength between the adhesive member, the base body, and the blade shaft can be improved. As a result, the durability of the shuttlecock to which the base body is applied can be improved.

この発明に従ったシャトルコック用ベース本体は、羽根の軸を固定する固定用表面部を備えるシャトルコック用ベース本体であって、固定用表面部には、平面形状が円周状の凹部と、凹部の側壁に隣接して円周状に配置され、シャトルコック用羽根の軸を挿入固定するための複数の挿入穴とが形成されている。   A base body for a shuttlecock according to the present invention is a base body for a shuttlecock provided with a fixing surface portion that fixes a shaft of a blade, and the fixing surface portion includes a concave portion having a circumferential shape in plan view, A plurality of insertion holes for inserting and fixing the shaft of the shuttlecock blade are arranged circumferentially adjacent to the side wall of the recess.

このようにすれば、挿入穴に軸を挿入した状態でベース本体に軸を固定するため接着部材を配置するときに、挿入穴内部から挿入穴に隣接する(つまり挿入穴に挿入された軸に隣接する)凹部側壁にまで接着部材を延在させることができる。このため、単に平面に挿入穴を形成した場合に比べて接着部材とベース本体との接着面の面積を大きくできる。さらに、接着面の形状が立体的な形状となるため、軸とベース本体との接着強度を向上させることができる。   In this way, when the adhesive member is arranged to fix the shaft to the base body with the shaft inserted into the insertion hole, the insertion member is adjacent to the insertion hole from the inside of the insertion hole (that is, to the shaft inserted into the insertion hole). The adhesive member can be extended to the side wall of the recess that is adjacent. For this reason, the area of the bonding surface between the bonding member and the base body can be increased as compared with the case where the insertion hole is simply formed in the plane. Furthermore, since the shape of the bonding surface is a three-dimensional shape, the bonding strength between the shaft and the base body can be improved.

この発明に従ったバドミントン用シャトルコックは、上記シャトルコック用ベース本体と、ベース本体の固定用表面部に形成された複数の挿入穴に軸が挿入固定されたシャトルコック用羽根とを備える。   A badminton shuttlecock according to the present invention includes the shuttlecock base body and shuttlecock blades whose shafts are inserted and fixed in a plurality of insertion holes formed in a fixing surface portion of the base body.

このようにすれば、シャトルコックの使用時に、シャトルコック用羽根に外側から応力が加わった場合に、当該シャトルコック用羽根の軸を支える補強部として凸部を利用できる。このため、耐久性に優れたシャトルコックを実現できる。   In this way, when the shuttlecock blade is used, if a stress is applied to the shuttlecock blade from the outside, the convex portion can be used as a reinforcing portion that supports the shaft of the shuttlecock blade. For this reason, the shuttlecock excellent in durability is realizable.

上記バドミントン用シャトルコックにおいて、シャトルコック用羽根は、羽部と、羽部に接続された軸とを備える人工羽根であってもよい。軸は、固着軸部と、固着軸部に連なる羽軸部とを含んでいてもよい。羽部を構成する部材は、固着軸部と接触し固着軸部より幅の広い羽本体部と、羽本体部から羽軸部に突出する突出部とを含んでいてもよい。突出部において羽本体部側と反対側の端部は羽軸部を構成する部材に埋設されていてもよい。   In the badminton shuttlecock, the shuttlecock blade may be an artificial feather including a wing portion and a shaft connected to the wing portion. The shaft may include a fixed shaft portion and a wing shaft portion connected to the fixed shaft portion. The member which comprises a wing | blade part may contain the wing | blade main-body part which contacts the fixed axis | shaft part and is wider than the fixed | fixed shaft part, and the protrusion part which protrudes from a wing | blade main body part to a wing axis | shaft part. The end of the protruding part opposite to the wing body part side may be embedded in a member constituting the wing shaft part.

この場合、固着軸部に羽本体部が接触、固定されるとともに、羽部を構成する部材の突出部が羽軸部を構成する部材に埋設されているため、羽部と軸との接合強度を高めることができる。また、羽軸部に羽部を構成する部材の突出部が埋設された状態になっているので、埋設された当該突出部が羽軸部の補強部材として作用する。したがって、羽本体部と羽軸部との接合部および羽軸部の耐久性を十分高めることができる。また、固着軸部についても羽本体部が補強部材として作用するため、当該固着軸部の耐久性も高めることができる。このため、高い耐久性を有するシャトルコック用人工羽根を用いてシャトルコックを構成することができる。また、人工羽根の軸は、天然のシャトルコック用羽根の軸より強度が劣る場合が多いが、上述したベース本体の凸部を補強部材として利用することで、人工羽根の軸の耐久性を向上させることができる。つまり、本発明のベース本体は人工羽根を用いたシャトルコックにおいて特に有効である。   In this case, since the wing body portion is in contact with and fixed to the fixed shaft portion, and the protruding portion of the member constituting the wing portion is embedded in the member constituting the wing shaft portion, the bonding strength between the wing portion and the shaft Can be increased. Moreover, since the protrusion part of the member which comprises a wing | blade part is embed | buried in the wing shaft part, the said embed | buried protrusion part acts as a reinforcement member of a wing shaft part. Therefore, it is possible to sufficiently enhance the durability of the joint portion between the wing body portion and the wing shaft portion and the wing shaft portion. Moreover, since the wing body part also acts as a reinforcing member for the fixed shaft part, the durability of the fixed shaft part can also be improved. For this reason, a shuttlecock can be comprised using the artificial feather for shuttlecocks which has high durability. In addition, the shaft of the artificial feather is often inferior in strength to the shaft of the natural shuttlecock blade, but the durability of the shaft of the artificial feather is improved by using the convex part of the base body as a reinforcing member. Can be made. That is, the base body of the present invention is particularly effective in a shuttlecock using artificial feathers.

このように、本発明によれば耐久性に優れたバドミントン用シャトルコックおよび当該シャトルコックを構成するシャトルコック用ベース本体を得ることができる。   Thus, according to the present invention, it is possible to obtain a badminton shuttlecock having excellent durability and a shuttlecock base body constituting the shuttlecock.

次に図面を用いて、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。   Next, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明によるシャトルコックの実施の形態1を示す斜視模式図である。図2は、図1に示したシャトルコックにおけるベース本体と人工羽根との接続部を説明するための部分模式図である。図3は、図2に示したベース本体と人工羽根との接続部を示す拡大斜視模式図である。図1〜図3を参照して、本発明によるシャトルコックの実施の形態1を説明する。
(Embodiment 1)
FIG. 1 is a schematic perspective view showing Embodiment 1 of a shuttlecock according to the present invention. FIG. 2 is a partial schematic view for explaining a connection portion between the base main body and the artificial feather in the shuttlecock shown in FIG. 1. FIG. 3 is an enlarged perspective schematic view showing a connection portion between the base body and the artificial feather shown in FIG. A first embodiment of a shuttlecock according to the present invention will be described with reference to FIGS.

図1〜図3を参照して、本発明に従ったシャトルコック1は、半球状のベース本体2と、ベース本体2の凸部61が形成された固定用表面部に接続された複数のシャトルコック用の人工羽根3と、複数の人工羽根3を互いに固定するための固定用紐状部材とからなる。複数(たとえば16枚)の人工羽根3は、ベース本体2の固定用表面部において、凸部61の外周部に円環状に配置されている。また、複数の人工羽根3は、紐状部材によって互いに固定されている。複数の人工羽根3は、ベース本体2から離れるにしたがって、互いの間の距離が大きくなる(複数の人工羽根3によって形成される筒状部の内径がベース本体2から離れるに従って大きくなる)ように配置されている。   1 to 3, a shuttlecock 1 according to the present invention includes a hemispherical base body 2 and a plurality of shuttles connected to a fixing surface portion on which a convex portion 61 of the base body 2 is formed. It consists of a cock artificial feather 3 and a fixing string-like member for fixing a plurality of artificial feathers 3 to each other. A plurality (for example, 16 pieces) of artificial feathers 3 are arranged in an annular shape on the outer peripheral portion of the convex portion 61 in the fixing surface portion of the base body 2. The plurality of artificial feathers 3 are fixed to each other by a string-like member. As the plurality of artificial feathers 3 move away from the base body 2, the distance between them increases (the inner diameter of the cylindrical portion formed by the plurality of artificial feathers 3 increases as the distance from the base body 2 increases). Has been placed.

ベース本体2においては、図2に示すように固定用表面部に凸部61が形成されている。凸部61の平面形状はほぼ円形状(人工羽根3の軸が挿入される挿入穴63の配置に沿った円形状)である。また、凸部61の側壁62は、固定用表面部の外周部における表面に対して傾斜した状態になっている(つまり、固定用表面部の外周部の表面から離れるに従って、凸部61の幅が広がるように当該側壁62は逆バンク状態になっている)。   In the base body 2, as shown in FIG. 2, convex portions 61 are formed on the fixing surface portion. The planar shape of the convex portion 61 is substantially circular (circular along the arrangement of the insertion hole 63 into which the axis of the artificial feather 3 is inserted). Further, the side wall 62 of the convex portion 61 is inclined with respect to the surface at the outer peripheral portion of the fixing surface portion (that is, the width of the convex portion 61 increases as the distance from the outer peripheral surface of the fixing surface portion increases. The side wall 62 is in a reverse bank state so that the

ベース本体2の凸部61の外周部には、図2および図3に示すように人工羽根3の軸7を挿入するための挿入穴63が形成されている。挿入穴63は、凸部61の側壁62の延在方向に沿った方向に延びるように形成されている。当該挿入穴63に軸7が挿入された状態で、図2に示すように接着剤64が塗布されている。接着剤64は、図2に示すように凸部61の上部表面の端部から、側壁62を介して固定用表面部の外周部表面にまで延在するとともに、軸7にも接触するように配置される。接着剤64により、ベース本体2に対して人工羽根3の軸7が強固に固定される。   An insertion hole 63 for inserting the shaft 7 of the artificial feather 3 is formed in the outer peripheral portion of the convex portion 61 of the base body 2 as shown in FIGS. 2 and 3. The insertion hole 63 is formed to extend in a direction along the extending direction of the side wall 62 of the convex portion 61. With the shaft 7 inserted into the insertion hole 63, an adhesive 64 is applied as shown in FIG. As shown in FIG. 2, the adhesive 64 extends from the end portion of the upper surface of the convex portion 61 to the outer peripheral surface of the fixing surface portion via the side wall 62 and also contacts the shaft 7. Be placed. The shaft 7 of the artificial feather 3 is firmly fixed to the base body 2 by the adhesive 64.

つまり、この発明に従ったベース本体2は、人工羽根3の軸7を固定する固定用表面部を備えるシャトルコック用ベース本体であって、固定用表面部(図2のベース本体2の上面)には、シャトルコック用羽根である人工羽根3の軸7を挿入固定するための複数の挿入穴63と、挿入穴63に隣接し、固定用表面部の表面から突出する凸部61とが形成されている。このようにすれば、挿入穴63に軸7を挿入した状態で接着剤を配置するときに、挿入穴63内部から挿入穴63に隣接する(つまり軸7に隣接する)凸部61上にまで接着剤を延在させることができる。このため、凸部61が存在しない場合に比べて接着剤とベース本体2との接着面の面積を大きくできるとともに、接着面の形状が立体的な形状となる。このため、接着剤64とベース本体2および人工羽根3の軸7との接着強度を向上させることができる。   That is, the base body 2 according to the present invention is a shuttlecock base body having a fixing surface portion for fixing the shaft 7 of the artificial feather 3, and is a fixing surface portion (upper surface of the base body 2 in FIG. 2). Are formed with a plurality of insertion holes 63 for inserting and fixing the shaft 7 of the artificial feather 3 which is a shuttlecock blade, and a convex portion 61 which is adjacent to the insertion hole 63 and protrudes from the surface of the fixing surface portion. Has been. In this way, when the adhesive is disposed with the shaft 7 inserted into the insertion hole 63, the inside of the insertion hole 63 extends onto the convex portion 61 adjacent to the insertion hole 63 (that is, adjacent to the shaft 7). The adhesive can be extended. For this reason, compared with the case where the convex part 61 does not exist, while the area of the adhesive surface of an adhesive agent and the base main body 2 can be enlarged, the shape of an adhesive surface becomes a three-dimensional shape. For this reason, the adhesive strength between the adhesive 64 and the base body 2 and the shaft 7 of the artificial feather 3 can be improved.

図4は、図1〜図3に示したシャトルコックを構成する、本発明に従ったシャトルコック用人工羽根の実施の形態を示す平面模式図である。図5は、図4の線分V−Vにおける断面模式図である。図6は、図4の線分VI−VIにおける断面模式図である。図7は、図4の線分VII−VIIにおける断面模式図である。図8は、図4の線分VIII−VIIIにおける断面模式図である。図9は、図4に示したシャトルコック用人工羽根の羽軸部の下端部の外観を示す写真である。図10は、図4に示したシャトルコック用人工羽根の羽軸部の中央部の外観を示す写真である。図11は、図4に示したシャトルコック用人工羽根の羽軸部の先端部の外観を示す写真である。図4〜図11を参照して、本発明に従ったシャトルコックおよびシャトルコック用人工羽根の実施の形態を説明する。   FIG. 4 is a schematic plan view showing an embodiment of an artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock shown in FIGS. 1 to 3. FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. FIG. 6 is a schematic cross-sectional view taken along line VI-VI in FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG. FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. FIG. 9 is a photograph showing an appearance of the lower end portion of the wing shaft portion of the shuttlecock artificial feather shown in FIG. 4. FIG. 10 is a photograph showing the appearance of the central part of the wing shaft part of the shuttlecock artificial feather shown in FIG. FIG. 11 is a photograph showing the appearance of the tip of the wing shaft portion of the shuttlecock artificial feather shown in FIG. With reference to FIGS. 4-11, embodiment of the shuttlecock and artificial feather for shuttlecocks according to this invention is described.

図4〜図11を参照して、図1〜図3に示したシャトルコック1を構成する人工羽根3は、羽本体部5と、当該羽本体部5に接続された軸7とからなる。軸7は、羽本体部5から突出するように配置される羽軸部8と、羽本体部5の略中央部において羽本体部5と接続された固着軸部10とからなる。羽軸部8と固着軸部10とは同一線上に延びるように配置され、1つの連続した軸7を構成している。   With reference to FIGS. 4 to 11, the artificial feather 3 constituting the shuttlecock 1 shown in FIGS. 1 to 3 includes a wing body portion 5 and a shaft 7 connected to the wing body portion 5. The shaft 7 includes a wing shaft portion 8 disposed so as to protrude from the wing body portion 5, and a fixed shaft portion 10 connected to the wing body portion 5 at a substantially central portion of the wing body portion 5. The wing shaft portion 8 and the fixed shaft portion 10 are arranged so as to extend on the same line and constitute one continuous shaft 7.

羽本体部5には、羽軸部8の内部に埋設された状態で保持される突出部12が接続されている。羽本体部5と突出部12とは、1つのシート状部材9を構成する。   The wing body 5 is connected to a protrusion 12 that is held in a state of being embedded in the wing shaft 8. The wing body portion 5 and the protruding portion 12 constitute one sheet-like member 9.

軸7は、図5に示すように根元(図5の右側端部、あるいは羽軸部8において固着軸部10と接続される側と反対側の端部)から先端部(図5の左側端部、あるいは固着軸部10において羽軸部8と接続される側と反対側の端部)に向かうにつれて徐々にその径が小さくなる。また、図6〜図8に示すように、軸7の延在方向に対して交差する方向(直交する方向)における断面形状は四角形状、より具体的には菱形状である。なお、軸7の断面形状は、上述のような四角形状に限らず、任意の形状を採用することができる。たとえば、軸7の断面形状として、シート状部材9の延在方向に交差する方向(図6における縦方向)の長さが、当該シート状部材9の延在方向(図6における横方向)における長さより長くなっているような楕円形状などを採用することもできる。   As shown in FIG. 5, the shaft 7 extends from the root (the right end in FIG. 5 or the end opposite to the side connected to the fixed shaft 10 in the wing shaft 8) to the tip (the left end in FIG. 5). Or the diameter of the fixed shaft portion 10 gradually decreases toward the end of the fixed shaft portion 10 opposite to the side connected to the blade shaft portion 8. Moreover, as shown in FIGS. 6-8, the cross-sectional shape in the direction (perpendicular direction) which cross | intersects with respect to the extension direction of the axis | shaft 7 is a square shape, More specifically, a rhombus shape. The cross-sectional shape of the shaft 7 is not limited to the quadrangular shape as described above, and any shape can be adopted. For example, as the cross-sectional shape of the shaft 7, the length in the direction (vertical direction in FIG. 6) intersecting the extending direction of the sheet-like member 9 is in the extending direction (lateral direction in FIG. 6) of the sheet-like member 9. An elliptical shape that is longer than the length can also be employed.

そして、軸7では、図5、図6および図9に示されるように、軸7の根元側ではシート状部材9が軸7の内部に埋設された状態(シート状部材9が軸7の内部において円弧状の断面形状となるように埋設された状態)であるが、軸7の先端部側に向かうにつれて、図7、図8、図10および図11に示すようにシート状部材9が軸7の表面に露出した状態になっている(シート状部材9が軸7の表面に接触・固定された状態になっている)。なお、図9〜図11に示した写真は光学顕微鏡を用いて撮影したものであり、その倍率は10倍である。   In the shaft 7, as shown in FIGS. 5, 6, and 9, the sheet-like member 9 is embedded in the shaft 7 on the base side of the shaft 7 (the sheet-like member 9 is inside the shaft 7. In FIG. 7, FIG. 8, FIG. 10, and FIG. 11, the sheet-like member 9 is pivoted toward the tip end side of the shaft 7 as it is embedded in an arcuate cross section. 7 is exposed (the sheet-like member 9 is in contact with and fixed to the surface of the shaft 7). In addition, the photograph shown in FIGS. 9-11 was image | photographed using the optical microscope, and the magnification is 10 times.

なお、軸7におけるシート状部材9の配置は、図5〜図11に示すように、軸7の根元側においてシート状部材9が軸7の内部に埋設され、軸7の中央部および先端部側で軸7の表面にシート状部材9が露出した状態になっている場合に限られず、他の形態となっていてもよい。たとえば、軸7の根元側および中央部においてシート状部材9が軸7の内部に埋設される一方、軸7の先端部側でシート状部材9が軸7の表面に露出している状態になっていてもよい。あるいは、軸7の根元側、中央部および先端部側の全ての部分において、シート状部材9が軸7の内部に埋設された状態になっていてもよい。   In addition, as shown in FIGS. 5 to 11, the sheet-like member 9 is arranged on the shaft 7 such that the sheet-like member 9 is embedded in the shaft 7 on the base side of the shaft 7. It is not limited to the case where the sheet-like member 9 is exposed on the surface of the shaft 7 on the side, and may take other forms. For example, the sheet-like member 9 is embedded inside the shaft 7 at the base side and the center of the shaft 7, while the sheet-like member 9 is exposed on the surface of the shaft 7 at the tip end side of the shaft 7. It may be. Alternatively, the sheet-like member 9 may be embedded in the shaft 7 in all the portions on the base side, the center portion, and the tip end side of the shaft 7.

次に、図12〜図17を参照して、図1〜図3に示したシャトルコック1、シャトルコック用の人工羽根3およびシャトルコック用ベース本体2の製造方法を説明する。図12は、図4に示した人工羽根の製造方法を説明するためのフローチャートである。図13は、図1〜図3に示したシャトルコック1の製造方法を説明するためのフローチャートである。図14は、図12に示した人工羽根の製造方法における途中工程を説明するための模式図である。図14は、最終的な人工羽根3に成形される前の中間製品の平面模式図を示している。図15は、図14の線分XV−XVにおける断面模式図である。図16は、図12の線分XVI−XVIにおける断面模式図である。図17は、図14の線分XVII−XVIIにおける断面模式図である。   Next, a method for manufacturing the shuttlecock 1, the artificial feather 3 for the shuttlecock and the base body 2 for the shuttlecock shown in FIGS. 1 to 3 will be described with reference to FIGS. FIG. 12 is a flowchart for explaining a method of manufacturing the artificial feather shown in FIG. FIG. 13 is a flowchart for explaining a method of manufacturing the shuttlecock 1 shown in FIGS. FIG. 14 is a schematic diagram for explaining an intermediate step in the method for manufacturing the artificial feather shown in FIG. FIG. 14 is a schematic plan view of the intermediate product before being formed into the final artificial feather 3. 15 is a schematic cross-sectional view taken along line XV-XV in FIG. 16 is a schematic cross-sectional view taken along line XVI-XVI in FIG. 17 is a schematic cross-sectional view taken along line XVII-XVII in FIG.

まず、図12を参照して、本発明に従ったシャトルコック用の人工羽根3の製造方法を説明する。図12に示すように、人工羽根3の製造方法では、まず不織布準備工程(S10)を実施する。この工程(S10)で準備される不織布は、図14に示すシート状部材9に対応するものであり、図14に示すような平面形状(四隅が丸く成形された概略四角形状)のものを準備する。不織布の厚さは、形成される人工羽根3の空気抵抗や質量バランスなどを考慮して適宜選択することができる。また、不織布としては、ポリエステル繊維、アクリル繊維等の化学繊維からなる不織布を用いることができる。たとえば、不織布として目付が10g/m2以上90g/m2以下のものを用いることができる。また、たとえば不織布としてポリエステル繊維製であり、目付が30g/m2以上80g/m2以下、厚さが0.07mm以上0.13mm以下、といったものを用いることもできる。また、ポリエステル繊維製の不織布として、好ましくは目付が40g/m2以上60g/m2以下、厚さが0.08mm以上0.12mm以下、より好ましくは目付が40g/m2以上50g/m2以下、厚さが0.09mm以上0.11mm以下、といったものを用いてもよい。また、不織布に代えて、絹織物、綿などの天然繊維、セルロース繊維(いわゆる紙)、またそれらに樹脂等をコーティングしたものを用いてもよい。さらに、不織布に代えて、ポリアミド樹脂フィルム、ポリエステル樹脂フィルム、PETフィルム等の樹脂フィルム(肉厚:50〜100μm)を用いることもできる。さらに、不織布として、上述したような任意の不織布の表面に被覆層を形成したものを用いることができる。被覆層の形成方法としては、たとえば樹脂フィルムを不織布にラミネートする(共押出し成形する)といった方法を用いることができる。また、樹脂フィルムなどの被覆層は不織布の片面に形成してもよいし、両面に形成してもよい。また、被覆層を片面または両面の部分的に形成してもよい。 First, with reference to FIG. 12, the manufacturing method of the artificial feather | wing 3 for shuttlecocks according to this invention is demonstrated. As shown in FIG. 12, in the manufacturing method of the artificial feather 3, a nonwoven fabric preparation process (S10) is first implemented. The nonwoven fabric prepared in this step (S10) corresponds to the sheet-like member 9 shown in FIG. 14, and is prepared in a planar shape as shown in FIG. 14 (generally rectangular shape with rounded four corners). To do. The thickness of the nonwoven fabric can be appropriately selected in consideration of the air resistance and mass balance of the artificial feather 3 to be formed. Moreover, as a nonwoven fabric, the nonwoven fabric which consists of chemical fibers, such as a polyester fiber and an acrylic fiber, can be used. For example, a nonwoven fabric having a basis weight of 10 g / m 2 or more and 90 g / m 2 or less can be used. Further, for example, a nonwoven fabric made of polyester fiber, having a basis weight of 30 g / m 2 to 80 g / m 2 and a thickness of 0.07 mm to 0.13 mm can be used. The nonwoven fabric made of polyester fiber preferably has a basis weight of 40 g / m 2 to 60 g / m 2 , a thickness of 0.08 mm to 0.12 mm, more preferably a basis weight of 40 g / m 2 to 50 g / m 2. In the following, a thickness of 0.09 mm to 0.11 mm may be used. Further, instead of the nonwoven fabric, natural fibers such as silk fabric and cotton, cellulose fibers (so-called paper), and those coated with resin or the like may be used. Furthermore, it can replace with a nonwoven fabric and can also use resin films (wall thickness: 50-100 micrometers), such as a polyamide resin film, a polyester resin film, and a PET film. Furthermore, what formed the coating layer on the surface of the arbitrary nonwoven fabrics mentioned above as a nonwoven fabric can be used. As a method for forming the coating layer, for example, a method of laminating a resin film on a nonwoven fabric (coextrusion molding) can be used. Moreover, coating layers, such as a resin film, may be formed in the single side | surface of a nonwoven fabric, and may be formed in both surfaces. Further, the coating layer may be partially formed on one side or both sides.

次に、金型の内部に不織布を配置する工程(S20)を実施する。この工程(S20)では、軸7をたとえば射出成形法などを用いて形成するための金型の内部に、上述した工程(S10)で準備された不織布を配置する。   Next, the process (S20) which arrange | positions a nonwoven fabric inside a metal mold | die is implemented. In this step (S20), the non-woven fabric prepared in the step (S10) described above is placed inside a mold for forming the shaft 7 by using, for example, an injection molding method.

次に、金型セット工程(S30)を実施する。具体的には、内部に不織布が配置された金型を、当該内部に軸7を構成する樹脂を注入可能な状態に配置するとともに、金型の温度条件などを調整する。   Next, a mold setting step (S30) is performed. Specifically, the mold in which the nonwoven fabric is arranged is arranged in a state in which the resin constituting the shaft 7 can be injected, and the temperature condition of the mold is adjusted.

次に、樹脂注入工程(S40)を実施する。具体的には、金型に設けられた樹脂の注入口から、金型内部に樹脂を注入する。この結果、金型内部において不織布からなるシート状部材9と接触・固着した状態で図14に示すような軸7が形成される。   Next, a resin injection step (S40) is performed. Specifically, resin is injected into the mold from a resin injection port provided in the mold. As a result, the shaft 7 as shown in FIG. 14 is formed in a state of being in contact with and adhering to the sheet-like member 9 made of a nonwoven fabric inside the mold.

次に、後処理工程(S50)を実施する。具体的には、金型の内部から軸7が接続・固着されたシート状部材9を取出す。このとき、シート状部材9および軸7の断面は、図15〜図17に示すようになっている。すなわち、軸7はそのほぼ全長に渡ってシート状部材9と接続されている。そして、図15に示すように、軸7の根元側(図14の下側の端部側)では軸7の内部にシート状部材9が埋設された状態になっている。一方、図16および図17に示すように、軸7の先端側(図14の上側の端部側)に向かうにつれて、シート状部材9は軸7の表面に露出した状態になる。当該先端側では、図16や図17に示すように、軸7の表面にシート状部材9が固着した状態になっている。このような構成は、金型の内部の軸7を形成するための溝の形状や、シート状部材9としての不織布の配置などにより実現することができる。   Next, a post-processing step (S50) is performed. Specifically, the sheet-like member 9 to which the shaft 7 is connected and fixed is taken out from the inside of the mold. At this time, the cross sections of the sheet-like member 9 and the shaft 7 are as shown in FIGS. That is, the shaft 7 is connected to the sheet-like member 9 over almost the entire length thereof. As shown in FIG. 15, the sheet-like member 9 is embedded inside the shaft 7 on the base side of the shaft 7 (the end portion on the lower side of FIG. 14). On the other hand, as shown in FIGS. 16 and 17, the sheet-like member 9 is exposed on the surface of the shaft 7 toward the tip end side (the upper end side in FIG. 14) of the shaft 7. On the tip side, as shown in FIGS. 16 and 17, the sheet-like member 9 is fixed to the surface of the shaft 7. Such a configuration can be realized by the shape of a groove for forming the shaft 7 inside the mold, the arrangement of a nonwoven fabric as the sheet-like member 9, and the like.

後処理工程(S50)では、図14に示したシート状部材9の不要部(羽本体部となるべき部分6以外の部分)を切断・除去する。この結果、図4に示したような人工羽根3を得ることが出来る。   In the post-processing step (S50), unnecessary parts (parts other than the part 6 to be the wing body part) of the sheet-like member 9 shown in FIG. 14 are cut and removed. As a result, the artificial feather 3 as shown in FIG. 4 can be obtained.

次に、図13を参照して、図1〜図3に示したシャトルコック1の製造方法を説明する。図13に示すように、まず準備工程(S100)を実施する。この準備工程(S100)では、シャトルコック1のベース本体2(先端部材)および人工羽根3など、シャトルコック1の構成部材を準備する。   Next, with reference to FIG. 13, the manufacturing method of the shuttlecock 1 shown in FIGS. 1-3 is demonstrated. As shown in FIG. 13, a preparatory process (S100) is first implemented. In this preparation step (S100), constituent members of the shuttlecock 1 such as the base body 2 (tip member) and the artificial feather 3 of the shuttlecock 1 are prepared.

ベース本体2の製造方法は、従来公知の任意の方法を用いることができるが、たとえばベース本体2となるべき材料として人工の樹脂を用いる場合、ベース本体2の素材のブロックを準備し、切削加工により概略形状とする。このとき、先端部の半球状部分および凸部の高さを加味して加工を行なう。そして、さらに切削加工により、凸部61の外形や挿入穴63を形成する、といった方法を用いてもよい。また、ベース本体2の材質としては、コルクなど天然の素材を用いてもよいが、人工の樹脂などを用いてもよい。たとえば、アイオノマー樹脂発泡体、あるいはEVA(エチレン酢酸ビニル共重合体)、ポリウレタン、PVC(ポリ塩化ビニル)、ポリエチレン、ポリプロピレンなどを用いることができる。また、人工羽根3の製造方法としては、上述した図12に示した製造方法を用いることができる。   Although any conventionally known method can be used as the method for manufacturing the base body 2, for example, when an artificial resin is used as a material to be the base body 2, a block of the base body 2 is prepared and cut. The approximate shape. At this time, processing is performed in consideration of the height of the hemispherical portion and the convex portion of the tip portion. And you may use the method of forming the external shape of the convex part 61, and the insertion hole 63 by cutting further. Moreover, as a material of the base body 2, a natural material such as cork may be used, but an artificial resin or the like may be used. For example, an ionomer resin foam, EVA (ethylene vinyl acetate copolymer), polyurethane, PVC (polyvinyl chloride), polyethylene, polypropylene, or the like can be used. Moreover, as a manufacturing method of the artificial feather 3, the manufacturing method shown in FIG. 12 mentioned above can be used.

次に、組立工程(S200)を準備する。当該組立工程(S200)では、ベース本体の固定用表面部における挿入穴63に上述した複数の人工羽根3の軸7の根元を挿入、固定する。さらに、当該複数の人工羽根3を互いに紐状部材により固定する。このようにして、図1に示すシャトルコック1を製造することができる。なお、複数の人工羽根3を互いに固定する固定部材としては、上述のような紐状部材に限らず、たとえばリング状部材など任意の部材を用いてもよい。また、上記固定部材の材料としては、たとえば樹脂や繊維など任意の材料を用いることができる。たとえば、紐状部材としてアラミド繊維またはガラス繊維を用い、当該アラミド繊維またはガラス繊維に樹脂(たとえば熱硬化性樹脂)を含浸し、当該樹脂を硬化することでFRP化した固定部材を用いてもよい。このようにFRP化することによって固定部材の強度や剛性を向上させることができる。また、熱硬化性樹脂としてはたとえばエポキシ樹脂やフェノール樹脂を用いることができる。このようにFRP化のために熱硬化性樹脂を用いれば、固定部材を軸7と固定するための加工において加熱工程を行なう場合などに、熱硬化性樹脂により固定部材のFRP化を容易に行なうことができる。   Next, an assembly process (S200) is prepared. In the assembly step (S200), the roots of the shafts 7 of the plurality of artificial feathers 3 described above are inserted and fixed in the insertion holes 63 in the fixing surface portion of the base body. Further, the plurality of artificial feathers 3 are fixed to each other by a string-like member. In this way, the shuttlecock 1 shown in FIG. 1 can be manufactured. The fixing member that fixes the plurality of artificial feathers 3 to each other is not limited to the string-like member as described above, and any member such as a ring-like member may be used. Moreover, as a material of the said fixing member, arbitrary materials, such as resin and a fiber, can be used, for example. For example, an aramid fiber or glass fiber may be used as the string-like member, and the aramid fiber or glass fiber may be impregnated with a resin (for example, a thermosetting resin), and the resin may be cured to form a FRP fixing member. . By using FRP in this way, the strength and rigidity of the fixing member can be improved. Moreover, as a thermosetting resin, an epoxy resin and a phenol resin can be used, for example. If a thermosetting resin is used for FRP in this way, the fixing member can be easily FRP-made with the thermosetting resin when a heating step is performed in the process for fixing the fixing member to the shaft 7. be able to.

図18は、本発明に従ったシャトルコックの実施の形態1の変形例を示す斜視模式図である。図18では、シャトルコックのベース本体側から見た斜視模式図を示している。図19は、図18に示したシャトルコックを構成する、本発明に従ったシャトルコック用人工羽根の実施の形態1の変形例を示す平面模式図である。図18および図19を参照して、本発明に従ったシャトルコックおよびシャトルコック用人工羽根の実施の形態1の変形例を説明する。   FIG. 18 is a schematic perspective view showing a modification of the first embodiment of the shuttlecock according to the present invention. In FIG. 18, the perspective schematic diagram seen from the base main body side of the shuttlecock is shown. FIG. 19 is a schematic plan view showing a modification of the first embodiment of the artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock shown in FIG. A modification of the first embodiment of the shuttlecock and the artificial feather for the shuttlecock according to the present invention will be described with reference to FIGS. 18 and 19.

図18を参照して、本発明に従ったシャトルコック1は、基本的には図1に示したシャトルコック1と同様の構成を備えるが、人工羽根3の構成が一部異なる。具体的には、図18に示したシャトルコック1では、人工羽根3の羽軸部8(図19参照)の側面から外側に突出するフラップ部31が1つ形成されている点、および羽軸部8の側方から一定の幅で突出するように縁部32が形成されている点が、図1に示したシャトルコック1と異なっている。図19に示した人工羽根3は、基本的には図2に示した人工羽根3と同様の構成となっているが、羽軸部8の側方に平面形状が三角形状のフラップ部31が形成されている。より詳しく言えば、フラップ部31の平面形状は、羽軸部8の中心軸に対してほぼ垂直な方向に延びる辺と、当該中心軸に対して斜めに交差する辺とを含む三角形状となっている。なお、フラップ部31の平面形状における頂点(羽軸部8の表面から最も遠い端部)は、図18に示すように羽本体部5側に位置してもよいが、他の位置に配置されていてもよい。このフラップ部31はシート状部材9の一部により構成される。   Referring to FIG. 18, shuttlecock 1 according to the present invention basically has the same configuration as shuttlecock 1 shown in FIG. 1, but the configuration of artificial feather 3 is partially different. Specifically, in the shuttlecock 1 shown in FIG. 18, one flap portion 31 that protrudes outward from the side surface of the wing shaft portion 8 (see FIG. 19) of the artificial feather 3 is formed, and the wing shaft. 1 differs from the shuttlecock 1 shown in FIG. 1 in that the edge portion 32 is formed so as to protrude from the side of the portion 8 with a certain width. The artificial feather 3 shown in FIG. 19 has basically the same configuration as the artificial feather 3 shown in FIG. 2, but a flap portion 31 having a triangular planar shape is formed on the side of the wing shaft portion 8. Is formed. More specifically, the planar shape of the flap portion 31 is a triangular shape including a side extending in a direction substantially perpendicular to the central axis of the wing shaft portion 8 and a side obliquely intersecting the central axis. ing. In addition, although the vertex (end part farthest from the surface of the wing shaft part 8) in the planar shape of the flap part 31 may be located on the wing body part 5 side as shown in FIG. 18, it is arranged at another position. It may be. The flap portion 31 is constituted by a part of the sheet-like member 9.

当該フラップ部31に加えて、図18に示した人工羽根3では上述のように羽軸部8の側面に縁部32が形成されている。縁部32はフラップ部31の両側に連なり、羽軸部8の中心軸に沿って配置されている。また、フラップ部31が形成された側と反対側の羽軸部8の側面にも、縁部32が形成されている。縁部32はそれぞれシート状部材9の一部により構成される。縁部32の幅L2は羽軸部8の中心軸に沿った方向のいずれの位置においてもほぼ一定になっている。幅L2はたとえば0mmを越え3mm以下、より好ましくは0.5mm以上2.5mm以下とすることができる。なお、縁部32を形成せずに、フラップ部31のみを形成してもよい。羽本体部5、フラップ部31、縁部32は実質的に同一平面上に位置する。羽軸部8の両側に位置する縁部32の幅は同じになっている。   In addition to the flap portion 31, the artificial feather 3 shown in FIG. 18 has the edge portion 32 formed on the side surface of the wing shaft portion 8 as described above. The edge portion 32 continues to both sides of the flap portion 31 and is disposed along the central axis of the wing shaft portion 8. Moreover, the edge part 32 is also formed in the side surface of the blade part 8 on the opposite side to the side in which the flap part 31 was formed. The edge portions 32 are each constituted by a part of the sheet-like member 9. The width L2 of the edge portion 32 is substantially constant at any position in the direction along the central axis of the wing shaft portion 8. The width L2 can be, for example, more than 0 mm and 3 mm or less, more preferably 0.5 mm or more and 2.5 mm or less. Note that only the flap portion 31 may be formed without forming the edge portion 32. The wing body part 5, the flap part 31, and the edge part 32 are located on substantially the same plane. The widths of the edge portions 32 located on both sides of the wing shaft portion 8 are the same.

羽軸部8の中心軸に沿った方向におけるフラップ部31の長さL1は、たとえば5mm以上15mm以下、より好ましくは7mm以上12mm以下、さらに好ましくは10mm程度とすることができる。フラップ部31は、図18に示すように、複数の人工羽根3を固定するための固定部材としての2つの固定用紐状部材の間に配置されることが可能なように、2つの紐状部材の間の距離より長さL1を短くすることが好ましい。   The length L1 of the flap portion 31 in the direction along the central axis of the wing shaft portion 8 can be set to, for example, 5 mm to 15 mm, more preferably 7 mm to 12 mm, and still more preferably about 10 mm. As shown in FIG. 18, the flap portion 31 has two string shapes so that it can be disposed between two fixing string members as fixing members for fixing the plurality of artificial feathers 3. The length L1 is preferably shorter than the distance between the members.

また、羽軸部8の中心軸に沿った方向におけるフラップ部31の位置は、任意に決定することができるが、好ましくは羽軸部8の中央より羽本体部5寄りの領域にフラップ部31を形成する。このようにすれば、シャトルコック1が飛翔するときにシャトルコック1のベース本体2の影にフラップ部31が隠れる可能性を低減できる。このため、フラップ部31によるシャトルコック1の回転性能の維持機能を確実に発揮させることができる。   Further, the position of the flap portion 31 in the direction along the central axis of the wing shaft portion 8 can be arbitrarily determined, but preferably the flap portion 31 is in a region closer to the wing body portion 5 than the center of the wing shaft portion 8. Form. If it does in this way, when shuttlecock 1 flies, possibility that flap part 31 will be hidden in the shadow of base body 2 of shuttlecock 1 can be reduced. For this reason, the maintenance function of the rotation performance of the shuttlecock 1 by the flap part 31 can be exhibited reliably.

また、図18に示すシャトルコック1では、半球状のベース本体2側から見てベース本体2より外側に見える位置にフラップ部31が配置されることが好ましい。このようにすれば、シャトルコック1の飛翔時に、ベース本体2に邪魔されることなく空気を直接的にフラップ部31に供給することができる。このため、フラップ部31によるシャトルコック1の回転維持機能を効果的に発揮させることができる。   Moreover, in the shuttlecock 1 shown in FIG. 18, it is preferable that the flap part 31 is arrange | positioned in the position seen from the base body 2 seeing from the hemispherical base body 2 side. In this way, air can be supplied directly to the flap portion 31 without being obstructed by the base body 2 when the shuttlecock 1 flies. For this reason, the rotation maintenance function of the shuttlecock 1 by the flap part 31 can be exhibited effectively.

また、図18に示したシャトルコック1では、円環状に(ベース本体2を通る中心軸を囲むように)配置された複数の人工羽根3において、羽軸部8の側面のうちベース本体2を通る上記中心軸に向かう側の側面(内周側に面する側面)にフラップ部31が形成されていることが好ましい。このようにすれば、シャトルコック1の回転維持機能をより効果的に発揮することができる。   Further, in the shuttlecock 1 shown in FIG. 18, in the plurality of artificial feathers 3 arranged in an annular shape (so as to surround the central axis passing through the base body 2), the base body 2 is disposed on the side surface of the blade shaft portion 8. It is preferable that the flap part 31 is formed in the side surface (side surface facing an inner peripheral side) by the side which goes to the said central axis which passes. If it does in this way, the rotation maintenance function of shuttlecock 1 can be exhibited more effectively.

図20〜図27は、上述したシャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。図20〜図27を参照して、人工羽根3の変形例を説明する。   20 to 27 are schematic plan views showing other modified examples of the artificial feather 3 constituting the shuttlecock 1 described above. A modification of the artificial feather 3 will be described with reference to FIGS.

図20を参照して、人工羽根3の他の変形例は、基本的には図19に示した人工羽根3と同様の構成を備えるが、フラップ部31の平面形状が異なっている。具体的には、図20に示した人工羽根3では、フラップ部31の平面形状が矩形状(四角形状)となっている。このような形状のフラップ部31によっても、図19に示した人工羽根3におけるフラップ部31と同様の効果を得ることができる。なお、フラップ部31の平面形状を、図20に示すような羽軸部8の中心軸と直交する辺を有するような四角形状としてもよいが、他の四角形状(たとえば、台形状や平行四辺形状、菱形状など)もしくは5角形以上の多角形状としてもよい。   Referring to FIG. 20, another modification example of artificial feather 3 basically has the same configuration as artificial feather 3 shown in FIG. 19, but the planar shape of flap portion 31 is different. Specifically, in the artificial feather 3 shown in FIG. 20, the planar shape of the flap portion 31 is a rectangular shape (square shape). Also by the flap part 31 of such a shape, the effect similar to the flap part 31 in the artificial feather | wing 3 shown in FIG. 19 can be acquired. The planar shape of the flap portion 31 may be a quadrangular shape having sides orthogonal to the central axis of the wing shaft portion 8 as shown in FIG. 20, but other quadrangular shapes (for example, trapezoidal shapes and parallel four sides) Shape, rhombus, etc.) or a polygonal shape of pentagon or more.

図21を参照して、人工羽根3の他の変形例は、基本的には図19に示した人工羽根3と同様の構成を備えるが、フラップ部31の平面形状が異なっている。具体的には、図21に示した人工羽根3では、フラップ部31の平面形状の外周が曲線状となっている。このような形状のフラップ部31によっても、図19に示した人工羽根3のフラップ部31と同様の効果を得ることができる。なお、図21に示したフラップ部31では、羽軸部8の中心軸に沿った方向における中央部の外周部分が、羽軸部8の中心から最も遠い最遠部となっている。しかし、シャトルコック1の必要な飛翔特性によっては、フラップ部31において当該最遠部の上記中心軸に沿った方向での位置が、上記中央部から羽本体部5側あるいは羽本体部5が位置する側とは反対側にずれてもよい。   Referring to FIG. 21, another modification of the artificial feather 3 basically has the same configuration as the artificial feather 3 shown in FIG. 19, but the planar shape of the flap portion 31 is different. Specifically, in the artificial feather 3 shown in FIG. 21, the outer periphery of the planar shape of the flap portion 31 is curved. Also by the flap part 31 of such a shape, the effect similar to the flap part 31 of the artificial feather | wing 3 shown in FIG. 19 can be acquired. In the flap portion 31 shown in FIG. 21, the outer peripheral portion of the center portion in the direction along the central axis of the wing shaft portion 8 is the farthest portion farthest from the center of the wing shaft portion 8. However, depending on the required flight characteristics of the shuttlecock 1, the position of the farthest part in the direction along the central axis in the flap part 31 is the position of the wing body part 5 side or the wing body part 5 from the center part. You may shift to the opposite side to the side to do.

図22を参照して、人工羽根3の他の変形例は、基本的には図19に示した人工羽根3と同様の構成を備えるが、フラップ部31の平面形状が異なっている。具体的には、図22に示した人工羽根3では、フラップ部31として羽軸部8の一方の側面から、羽軸部8の中心軸に沿った全長に渡って矩形状のフラップ部31が形成されている。フラップ部31の幅L3は羽軸部8の全長に渡ってほぼ一定になっている。このようにすれば、羽軸部8のほぼ全長に渡ってフラップ部31を形成できるので、フラップ部31が図19などに示すように羽軸部8の中心軸方向の一部領域のみに形成されている場合より、当該フラップ部31によるシャトルコック1の回転力を発生させる効果を大きくすることができる。当該フラップ部31の幅L3は、たとえば0.5mm以上3mm以下、より好ましくは0.5mm以上2.5mm以下とすることができる。なお、フラップ部31および縁部32において、図18に示す紐状部材が固定される部分については、予め切欠き部を形成しておいてもよい。また、上記紐状部材が固定される部分について、紐状部材との接触面積を大きくするため予め凸部(固定用突出部)をフラップ部31および縁部32において形成しておいてもよい。   Referring to FIG. 22, another modification of artificial feather 3 basically has the same configuration as artificial feather 3 shown in FIG. 19, but the planar shape of flap portion 31 is different. Specifically, in the artificial feather 3 shown in FIG. 22, a rectangular flap portion 31 is formed as a flap portion 31 from one side surface of the wing shaft portion 8 over the entire length along the central axis of the wing shaft portion 8. Is formed. The width L3 of the flap portion 31 is substantially constant over the entire length of the wing shaft portion 8. In this way, since the flap portion 31 can be formed over almost the entire length of the wing shaft portion 8, the flap portion 31 is formed only in a partial region in the central axis direction of the wing shaft portion 8 as shown in FIG. The effect of generating the rotational force of the shuttlecock 1 by the flap portion 31 can be increased compared to the case where it is performed. The width L3 of the flap portion 31 can be, for example, 0.5 mm or more and 3 mm or less, more preferably 0.5 mm or more and 2.5 mm or less. In addition, in the flap part 31 and the edge part 32, you may form a notch part beforehand about the part to which the string-like member shown in FIG. 18 is fixed. In addition, a convex portion (fixing protrusion) may be formed in advance in the flap portion 31 and the edge portion 32 in order to increase the contact area with the cord-like member at the portion where the cord-like member is fixed.

図23を参照して、人工羽根3の他の変形例は、基本的には図19に示した人工羽根3と同様の構成を備えるが、フラップ部31に加えて、羽軸部8のフラップ部31が形成された側と反対側に他のフラップ部33が形成されている点が異なる。フラップ部33は、その平面形状が三角形状となっている。また、フラップ部33は、三角形状の平面形状における頂点(羽軸部8から最も遠くに位置する端部)が、羽本体部5が位置する側と反対側に配置されている。つまり、フラップ部33の当該頂点は、フラップ部31における頂点と羽軸部8の中心軸方向において反対側に位置する。このようにすれば、2つのフラップ部31、33を備えることにより、当該フラップ部31、33によるシャトルコック1の回転力を発生させる効果を大きくすることができる。   Referring to FIG. 23, another modification of the artificial feather 3 basically has the same configuration as the artificial feather 3 shown in FIG. 19, but in addition to the flap portion 31, the flap of the wing shaft portion 8 is provided. The difference is that another flap portion 33 is formed on the side opposite to the side on which the portion 31 is formed. The planar shape of the flap part 33 is triangular. Further, the flap portion 33 is arranged such that the apex (the end portion located farthest from the wing shaft portion 8) in the triangular plan shape is opposite to the side where the wing body portion 5 is located. That is, the vertex of the flap portion 33 is located on the opposite side in the central axis direction of the wing shaft portion 8 from the vertex of the flap portion 31. In this way, by providing the two flap portions 31 and 33, the effect of generating the rotational force of the shuttlecock 1 by the flap portions 31 and 33 can be increased.

図24を参照して、人工羽根3の他の変形例は、基本的には図23に示した人工羽根3と同様の構成を備えるが、フラップ部31、33の形状が異なっている。つまり、図24に示した人工羽根3のフラップ部31、33の平面形状は矩形状である。当該フラップ部31、33の平面形状としては、図20に示したフラップ部31の場合と同様に任意の四角形状あるいは五角形以上の多角形状とすることができる。このようにしても、図23に示した人工羽根3をシャトルコック1に適用した場合と同様の効果を得ることができる。   Referring to FIG. 24, another modification of the artificial feather 3 basically has the same configuration as the artificial feather 3 shown in FIG. 23, but the shapes of the flap portions 31 and 33 are different. That is, the planar shapes of the flap portions 31 and 33 of the artificial feather 3 shown in FIG. 24 are rectangular. As the planar shape of the flap portions 31 and 33, as in the case of the flap portion 31 shown in FIG. 20, an arbitrary quadrangular shape or a polygonal shape of pentagon or more can be used. Even if it does in this way, the effect similar to the case where the artificial feather 3 shown in FIG. 23 is applied to the shuttlecock 1 can be acquired.

図25を参照して、人工羽根3の他の変形例は、基本的には図23に示した人工羽根3と同様の構成を備えるが、フラップ部31、33の形状が異なっている。つまり、図25に示した人工羽根3のフラップ部31、33の平面形状は、図21に示したフラップ部31と同様に平面形状の外周が曲線状になっている。また、フラップ部31はフラップ部33に対して相対的に大きな面積を有する。このような構成によっても、図23などに示した人工羽根3をシャトルコック1に適用した場合と同様の効果を得ることができる。   Referring to FIG. 25, another modification of the artificial feather 3 basically has the same configuration as the artificial feather 3 shown in FIG. 23, but the shapes of the flap portions 31 and 33 are different. That is, the planar shape of the flap portions 31 and 33 of the artificial feather 3 shown in FIG. 25 has a curved outer periphery in the planar shape similar to the flap portion 31 shown in FIG. Further, the flap portion 31 has a relatively large area with respect to the flap portion 33. Even with such a configuration, the same effect as that obtained when the artificial feather 3 shown in FIG. 23 or the like is applied to the shuttlecock 1 can be obtained.

図26を参照して、人工羽根3の他の変形例は、基本的には図23に示した人工羽根3と同様の構成を備えるが、フラップ部31、33の形状が異なっている。すなわち、図26に示した人工羽根3では、羽軸部8の中心軸に沿った全長に渡って矩形状のフラップ部31、33が形成されている。フラップ部31、33の幅は互いにほぼ同じになっている。このようにしても、図23に示した人工羽根3をシャトルコック1に適用した場合と同様の効果を得ることができる。なお、フラップ部31、33の互いの幅を異ならせてもよい。   Referring to FIG. 26, another modification of the artificial feather 3 basically has the same configuration as that of the artificial feather 3 shown in FIG. 23, but the shapes of the flap portions 31 and 33 are different. That is, in the artificial feather 3 shown in FIG. 26, rectangular flap portions 31 and 33 are formed over the entire length along the central axis of the wing shaft portion 8. The widths of the flap portions 31 and 33 are substantially the same. Even if it does in this way, the effect similar to the case where the artificial feather 3 shown in FIG. 23 is applied to the shuttlecock 1 can be acquired. In addition, you may vary the width | variety of the flap parts 31 and 33 mutually.

図27を参照して、人工羽根3の他の変形例は、基本的には図19に示した人工羽根3と同様の構成を備えるが、羽本体部5の平面形状が図19の人工羽根3とは異なる。すなわち、図27に示した人工羽根3では、羽本体部5が固着軸部10を中心として左右非対称になっている。このように、羽本体部5の形状も制御することで、シャトルコック1に適用したときに当該シャトルコック1の飛翔特性の制御の自由度を大きくできる。なお、図27のように羽本体部5の形状を左右非対称とした構成において、フラップ部31、33や縁部32を形成しない構成としてもよい。あるいは、羽本体部5の形状を左右非対称とした構成において、図20〜図26に示したような任意の形状のフラップ部31、33や縁部32を形成してもよい。   Referring to FIG. 27, the other modification of the artificial feather 3 basically has the same configuration as the artificial feather 3 shown in FIG. 19, but the planar shape of the wing body 5 is the artificial feather of FIG. Different from 3. That is, in the artificial feather 3 shown in FIG. 27, the wing body 5 is asymmetrical about the fixing shaft 10. In this way, by controlling the shape of the wing body 5, the degree of freedom in controlling the flight characteristics of the shuttlecock 1 when applied to the shuttlecock 1 can be increased. In addition, in the structure which made the shape of the wing | blade main-body part 5 asymmetrical like FIG. 27, it is good also as a structure which does not form the flap parts 31 and 33 and the edge part 32. FIG. Or you may form the flap parts 31 and 33 and the edge part 32 of arbitrary shapes as shown in FIGS. 20-26 in the structure which made the shape of the wing | blade main-body part 5 left-right asymmetric.

また、上述した人工羽根3の変形例では、フラップ部31および/またはフラップ部33に加えて縁部32を形成した構成を示したが、フラップ部31および/またはフラップ部33のみを形成し、縁部32を形成しない構成としてもよい。   Moreover, in the modification of the artificial feather 3 mentioned above, although the structure which formed the edge part 32 in addition to the flap part 31 and / or the flap part 33 was shown, only the flap part 31 and / or the flap part 33 are formed, It is good also as a structure which does not form the edge part 32. FIG.

また、フラップ部31、33を有する人工羽根3を用いたシャトルコック1では、2つの固定部材としての紐状部材が羽軸部8と固着された部分以外の領域(たとえば2つの紐状部材の間の領域、あるいは2つの紐状部材と挟まれた領域以外の領域)にフラップ部31、33が配置される。このようにすれば、紐状部材が羽軸部8と固着された部分に重なるようにフラップ部31が形成されることによりフラップ部31の形状が変形する、といった問題の発生を抑制できる。   Further, in the shuttlecock 1 using the artificial feather 3 having the flap portions 31 and 33, the region other than the portion where the string-like members as the two fixing members are fixed to the wing shaft portion 8 (for example, two string-like members) The flap portions 31 and 33 are arranged in a region between them or a region other than a region sandwiched between two string members. If it does in this way, generation | occurrence | production of the problem that the shape of the flap part 31 deform | transforms by forming the flap part 31 so that a string-like member may overlap with the part fixed to the wing shaft part 8 can be suppressed.

また、上記シャトルコック1では、フラップ部31、33に接着剤などの樹脂を含浸させる、あるいはフラップ部31、33の表面を樹脂やフィルムでコーティングするといった手法により、フラップ部31、33を固化(硬化)してもよい。この場合、シャトルコック1の使用時にフラップ部31、33の形状を長期に渡って維持することが可能になる。また、縁部32についても、同様に固化してもよい。   Moreover, in the said shuttlecock 1, the flap parts 31 and 33 are solidified by the technique of impregnating the flap parts 31 and 33 with resin, such as an adhesive agent, or coating the surface of the flap parts 31 and 33 with resin or a film ( Curing). In this case, it is possible to maintain the shapes of the flap portions 31 and 33 for a long time when the shuttlecock 1 is used. Further, the edge portion 32 may be solidified in the same manner.

また、上記シャトルコック1では、人工羽根3にフラップ部31、33を1箇所または2箇所形成しているが、必要な飛翔特性によってはフラップ部31、33を3箇所以上形成してもよい。このようにフラップ部31、33を複数箇所に形成することで、シャトルコック1の飛翔特性の調整の自由度をより大きくすることができる。   Moreover, in the said shuttlecock 1, although the flap parts 31 and 33 are formed in the artificial feather 3 in one place or two places, you may form the flap parts 31 and 33 more than three places depending on a required flight characteristic. By forming the flap portions 31 and 33 at a plurality of locations in this way, the degree of freedom in adjusting the flight characteristics of the shuttlecock 1 can be further increased.

また、上記シャトルコック1では、羽軸部8の中心軸方向におけるフラップ部31、33の形成位置を互いに異なる位置としてもよい。また、羽軸部8の一方の側面のみに1つまたは複数のフラップ部31を形成してもよいし、羽軸部8の両側面にそれぞれ1つまたは複数のフラップ部31、33を形成してもよい。また、上記シャトルコック1では、フラップ部31とフラップ部33とのサイズや形状を互いに異なるようにしてもよい。   Moreover, in the said shuttlecock 1, it is good also considering the formation position of the flap parts 31 and 33 in the center axis direction of the wing shaft part 8 as a mutually different position. Further, one or a plurality of flap portions 31 may be formed only on one side surface of the wing shaft portion 8, or one or a plurality of flap portions 31, 33 may be formed on both side surfaces of the wing shaft portion 8, respectively. May be. Further, in the shuttlecock 1, the size and shape of the flap portion 31 and the flap portion 33 may be different from each other.

(実施の形態2)
図28は、本発明によるシャトルコックの実施の形態2におけるベース本体と人工羽根との接続部を説明するための部分模式図である。図28は図2に対応する。図28を参照して、本発明によるシャトルコックの実施の形態2を説明する。
(Embodiment 2)
FIG. 28 is a partial schematic view for explaining a connection portion between the base body and the artificial feather in the second embodiment of the shuttlecock according to the present invention. FIG. 28 corresponds to FIG. With reference to FIG. 28, a second embodiment of the shuttlecock according to the present invention will be described.

図28に示したシャトルコックは基本的には図1〜図3に示したシャトルコック1と同様の構造を備えるが、ベース本体2と人工羽根との接続部の構造が図1〜図3に示したシャトルコック1と異なっている。具体的には、図28に示したシャトルコックのベース本体2では、固定用表面部に形成された凸部61の側壁62が、固定用表面部の外周部における表面に対して実質的に垂直に延びる様に形成されている。そして、軸7の挿入穴63は、当該側壁62に対して傾斜して延びるように形成されている。つまり、挿入穴63の延在方向は、固定用表面部の外周部に対して傾斜(ベース本体2の中心に向かう方向に傾斜)している。そして、凸部61の上部表面から側壁62を介して固定用表面部の外周部にまで延在するように、軸7をベース本体2へ固定するための接着剤64が配置されている。接着剤64は、挿入穴63の内部にも入り込み、挿入穴63の側壁と軸7とを互いに固定している。このように、接着剤64とベース本体2との接着部は立体的になり、かつ凸部61が形成されていない状態よりも当該接着部での接着面積を大きくできることから、実施の形態1におけるシャトルコック1と同様に、接着剤64とベース本体2および人工羽根3の軸7との接着強度を向上させることができる。また、たとえば凸部61を、ベース本体2の固定用表面部を切削することにより形成するときには、凸部61の当該側壁62が固定用表面部の外周部に対して傾斜している場合より、当該凸部61の加工を容易に行なうことができる。   The shuttlecock shown in FIG. 28 basically has the same structure as the shuttlecock 1 shown in FIGS. 1 to 3, but the structure of the connecting portion between the base body 2 and the artificial feather is shown in FIGS. It differs from the shuttlecock 1 shown. Specifically, in the shuttlecock base body 2 shown in FIG. 28, the side wall 62 of the convex portion 61 formed on the fixing surface portion is substantially perpendicular to the surface of the outer peripheral portion of the fixing surface portion. It is formed so as to extend. The insertion hole 63 of the shaft 7 is formed so as to extend inclined with respect to the side wall 62. That is, the extending direction of the insertion hole 63 is inclined (inclined in the direction toward the center of the base body 2) with respect to the outer peripheral portion of the fixing surface portion. An adhesive 64 for fixing the shaft 7 to the base body 2 is disposed so as to extend from the upper surface of the convex portion 61 to the outer peripheral portion of the fixing surface portion via the side wall 62. The adhesive 64 also enters the inside of the insertion hole 63 and fixes the side wall of the insertion hole 63 and the shaft 7 to each other. As described above, the bonding portion between the adhesive 64 and the base body 2 is three-dimensional, and the bonding area at the bonding portion can be made larger than the state where the convex portion 61 is not formed. Similar to the shuttlecock 1, the adhesive strength between the adhesive 64 and the base body 2 and the shaft 7 of the artificial feather 3 can be improved. Further, for example, when the convex portion 61 is formed by cutting the fixing surface portion of the base body 2, the side wall 62 of the convex portion 61 is inclined with respect to the outer peripheral portion of the fixing surface portion. The projection 61 can be easily processed.

(実施の形態3)
図29は、本発明によるシャトルコックの実施の形態3におけるベース本体と人工羽根との接続部を説明するための部分模式図である。図29は図2に対応する。図29を参照して、本発明によるシャトルコックの実施の形態3を説明する。
(Embodiment 3)
FIG. 29 is a partial schematic diagram for explaining a connection portion between the base body and the artificial feather in the third embodiment of the shuttlecock according to the present invention. FIG. 29 corresponds to FIG. A third embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図29に示したシャトルコックは基本的には図1〜図3に示したシャトルコック1と同様の構造を備えるが、ベース本体2と人工羽根との接続部の構造が図1〜図3に示したシャトルコック1と異なっている。具体的には、図29に示したシャトルコックのベース本体2では、固定用表面部に形成された凸部61の上部表面に凹部65が形成されている。凹部65は、その平面形状がたとえば円形状である。なお、凹部65の平面形状は、凸部61の平面形状と相似形としてもよいし、凸部61の平面形状と異なる形状としてもよい。挿入穴63は、図2に示すベース本体2と同様に、凸部61の上部表面における外周部から、側壁62に沿って延びるように形成されている。   The shuttlecock shown in FIG. 29 basically has the same structure as the shuttlecock 1 shown in FIGS. 1 to 3, but the structure of the connecting portion between the base body 2 and the artificial feather is shown in FIGS. It differs from the shuttlecock 1 shown. Specifically, in the base body 2 of the shuttlecock shown in FIG. 29, a concave portion 65 is formed on the upper surface of the convex portion 61 formed on the fixing surface portion. The recess 65 has a planar shape, for example, a circular shape. The planar shape of the concave portion 65 may be similar to the planar shape of the convex portion 61, or may be different from the planar shape of the convex portion 61. As with the base body 2 shown in FIG. 2, the insertion hole 63 is formed so as to extend along the side wall 62 from the outer peripheral portion on the upper surface of the convex portion 61.

上述のような構成のベース本体2を用いたシャトルコックによっても、図1〜図3に示したシャトルコック1と同様の効果を得ることができる。さらに、凸部61の上部表面に凹部65が形成されているため、図2に示したベース本体2よりもベース本体2の質量を低減できる。このため、たとえば人工羽根3とベース本体2との質量バランスから、ベース本体2の質量を軽くしたい場合などに、図29に示した構成のベース本体2を利用することができる。   The same effect as the shuttlecock 1 shown in FIGS. 1 to 3 can be obtained by the shuttlecock using the base body 2 having the above-described configuration. Furthermore, since the recessed part 65 is formed in the upper surface of the convex part 61, the mass of the base main body 2 can be reduced rather than the base main body 2 shown in FIG. Therefore, for example, when it is desired to reduce the mass of the base body 2 from the mass balance between the artificial feather 3 and the base body 2, the base body 2 having the configuration shown in FIG. 29 can be used.

(実施の形態4)
図30は、本発明によるシャトルコックの実施の形態4におけるベース本体と人工羽根との接続部を説明するための部分模式図である。図30は図2に対応する。図30を参照して、本発明によるシャトルコックの実施の形態4を説明する。
(Embodiment 4)
FIG. 30 is a partial schematic view for explaining a connection portion between the base body and the artificial feather in the fourth embodiment of the shuttlecock according to the present invention. FIG. 30 corresponds to FIG. A fourth embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図30に示したシャトルコックは基本的には図1〜図3に示したシャトルコック1と同様の構造を備えるが、ベース本体2と人工羽根との接続部の構造が図1〜図3に示したシャトルコック1と異なっている。具体的には、図30に示したシャトルコックのベース本体2では、固定用表面部に凹部75が形成され、当該凹部75の側壁72に沿って挿入穴63が形成されている。この凹部75が形成されることにより、固定用表面部の外周部に平面形状が円環状の凸部61が形成される。側壁72は、凹部75の底壁に対して傾斜している。つまり、側壁72は、凹部75の上部から凹部75の底壁に向かって、凹部75の幅が徐々に狭くなるように傾斜している。凹部75の平面形状は円形状である。挿入穴63は、凹部75の上部に連なる固定用表面部の外周部から、側壁72に沿って斜めに延びるように形成されている。当該挿入穴63に、人工羽根の軸7が挿入されている。軸7の側面が、側壁72より突出した状態になるように、挿入穴63の配置は決定されている。そして、接着剤64は、図30に示すように凹部75の底壁の端部から、側壁72を介して固定用表面部の外周部表面にまで延在するとともに、軸7にも接触するように配置される。接着剤64により、ベース本体2に対して人工羽根3の軸7が強固に固定される。   The shuttlecock shown in FIG. 30 basically has the same structure as the shuttlecock 1 shown in FIGS. 1 to 3, but the structure of the connecting portion between the base body 2 and the artificial feather is shown in FIGS. It differs from the shuttlecock 1 shown. Specifically, in the base body 2 of the shuttlecock shown in FIG. 30, a recess 75 is formed in the fixing surface portion, and an insertion hole 63 is formed along the side wall 72 of the recess 75. By forming the concave portion 75, an annular convex portion 61 having a circular planar shape is formed on the outer peripheral portion of the fixing surface portion. The side wall 72 is inclined with respect to the bottom wall of the recess 75. That is, the side wall 72 is inclined so that the width of the recess 75 gradually becomes narrower from the top of the recess 75 toward the bottom wall of the recess 75. The planar shape of the recess 75 is circular. The insertion hole 63 is formed so as to extend obliquely along the side wall 72 from the outer peripheral portion of the fixing surface portion continuous with the upper portion of the recess 75. The artificial feather shaft 7 is inserted into the insertion hole 63. The arrangement of the insertion hole 63 is determined so that the side surface of the shaft 7 protrudes from the side wall 72. Then, the adhesive 64 extends from the end portion of the bottom wall of the recess 75 to the outer peripheral surface of the fixing surface portion via the side wall 72 as shown in FIG. Placed in. The shaft 7 of the artificial feather 3 is firmly fixed to the base body 2 by the adhesive 64.

上述のような構成のベース本体2を用いたシャトルコックによっても、図1〜図3に示したシャトルコック1と同様の効果を得ることができる。つまり、固定用表面部の外周部表面(凸部61の上部表面)上から、凹部75の側壁を介して凹部75の底壁上まで、接着剤64を配置することができる。このため、凹部75が形成されていないときによりも接着剤64とベース本体2との接着面の面積を大きくできるとともに、接着面の形状が立体的な形状となる。このため、接着剤64とベース本体2および人工羽根3の軸7との接着強度を向上させることができる。   The same effect as the shuttlecock 1 shown in FIGS. 1 to 3 can be obtained by the shuttlecock using the base body 2 having the above-described configuration. That is, the adhesive 64 can be disposed from the outer peripheral surface of the fixing surface portion (the upper surface of the convex portion 61) to the bottom wall of the concave portion 75 through the side wall of the concave portion 75. For this reason, the area of the adhesive surface between the adhesive 64 and the base body 2 can be increased even when the recess 75 is not formed, and the shape of the adhesive surface becomes a three-dimensional shape. For this reason, the adhesive strength between the adhesive 64 and the base body 2 and the shaft 7 of the artificial feather 3 can be improved.

(実施の形態5)
図31は、本発明によるシャトルコックの実施の形態5におけるベース本体と人工羽根との接続部を説明するための部分模式図である。図31は図2に対応する。図31を参照して、本発明によるシャトルコックの実施の形態5を説明する。
(Embodiment 5)
FIG. 31 is a partial schematic view for explaining a connection portion between the base body and the artificial feather in the fifth embodiment of the shuttlecock according to the present invention. FIG. 31 corresponds to FIG. A fifth embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図31に示したシャトルコックは基本的には図1〜図3に示したシャトルコック1と同様の構造を備えるが、ベース本体2と人工羽根との接続部の構造が図1〜図3に示したシャトルコック1と異なっている。具体的には、図31に示したシャトルコックのベース本体2では、固定用表面部に凸部としての弾性体部材71が接続固定されている。この弾性体部材71の側壁72は、図2に示したベース本体2の凸部61における側壁62と同様に固定用表面部に対して傾斜するように形成されている。固定用表面部には円周状に複数の挿入穴63が形成されている。挿入穴63に人工羽根の軸7が挿入固定されている。当該軸7は、円環状に配置されるが、円環状に配置された軸7の内周側に接触するように弾性体部材71は配置されている。つまり、弾性体部材71の側壁72は、軸7の延在方向(挿入穴63の延在方向)に沿って延びるように配置されている。異なる観点から言えば、凸部としての弾性体部材71は、円周状に配置された複数の挿入穴63の内周側に隣接して配置されている。弾性体部材71は、任意の接着部材(たとえば接着剤など)により固定用表面部に固定されている。   The shuttlecock shown in FIG. 31 basically has the same structure as the shuttlecock 1 shown in FIGS. 1 to 3, but the structure of the connecting portion between the base body 2 and the artificial feather is shown in FIGS. It differs from the shuttlecock 1 shown. Specifically, in the base body 2 of the shuttlecock shown in FIG. 31, an elastic member 71 as a convex portion is connected and fixed to the fixing surface portion. The side wall 72 of the elastic body member 71 is formed so as to be inclined with respect to the fixing surface portion in the same manner as the side wall 62 of the convex portion 61 of the base body 2 shown in FIG. A plurality of insertion holes 63 are formed on the fixing surface portion in a circumferential shape. The artificial feather shaft 7 is inserted and fixed in the insertion hole 63. The shaft 7 is arranged in an annular shape, but the elastic member 71 is arranged so as to contact the inner peripheral side of the shaft 7 arranged in an annular shape. That is, the side wall 72 of the elastic member 71 is disposed so as to extend along the extending direction of the shaft 7 (the extending direction of the insertion hole 63). If it says from a different viewpoint, the elastic body member 71 as a convex part will be arrange | positioned adjacent to the inner peripheral side of the some insertion hole 63 arrange | positioned circumferentially. The elastic member 71 is fixed to the fixing surface portion by an arbitrary adhesive member (for example, an adhesive).

上述のような構成のベース本体2を用いたシャトルコックによっても、図1〜図3に示したシャトルコック1と同様の効果を得ることができる。さらに、凸部としての弾性体部材71が固定用表面部(すなわちベース本体2)とは別部材によって構成されるので、ベース本体2の材質とは独立して弾性体部材71の材質を決定することができる。そのため、たとえば軸7に加わる衝撃を緩衝するためにベース本体2とは異なる特性の弾性体など(たとえばゴムやその他の樹脂)を弾性体部材71の材料として用いることができる。このため、ベース本体2の設計の自由度を大きくすることができる。   The same effect as the shuttlecock 1 shown in FIGS. 1 to 3 can be obtained by the shuttlecock using the base body 2 having the above-described configuration. Further, since the elastic body member 71 as the convex portion is constituted by a member different from the fixing surface portion (that is, the base body 2), the material of the elastic body member 71 is determined independently of the material of the base body 2. be able to. Therefore, for example, an elastic body or the like (for example, rubber or other resin) having a characteristic different from that of the base body 2 can be used as the material of the elastic body member 71 in order to buffer an impact applied to the shaft 7. For this reason, the freedom degree of design of the base main body 2 can be enlarged.

(実施の形態6)
図32は、本発明によるシャトルコックの実施の形態6におけるベース本体と人工羽根との接続部を説明するための部分模式図である。図32は図2に対応する。図32を参照して、本発明によるシャトルコックの実施の形態5を説明する。
(Embodiment 6)
FIG. 32 is a partial schematic view for explaining a connection portion between the base body and the artificial feather in the sixth embodiment of the shuttlecock according to the present invention. FIG. 32 corresponds to FIG. A fifth embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図32に示したシャトルコックは基本的には図1〜図3に示したシャトルコック1と同様の構造を備えるが、ベース本体2と人工羽根との接続部の構造が図1〜図3に示したシャトルコック1と異なっている。具体的には、図32に示したシャトルコックのベース本体2では、固定用表面部に凸部61が形成され、当該凸部61の側壁62と固定用表面部の外周部との境界部に隣接する当該外周部側に、挿入穴63が形成されている。この挿入穴63の延在方向は、凸部61の側壁62に沿った方向となっている。このため、挿入穴63に挿入された軸7の表面(環状に配置された軸7の内周側の表面)は凸部61の側壁62に接触した状態となる。そして、凸部61の上部表面から側壁62を介して固定用表面部の外周部にまで延在するように、軸7をベース本体2へ固定するための接着剤64が配置されている。なお、接着剤64は挿入穴63の内部にも侵入し、挿入穴63の側壁と軸7とを互いに固定している。   The shuttlecock shown in FIG. 32 basically has the same structure as the shuttlecock 1 shown in FIGS. 1 to 3, but the structure of the connecting portion between the base body 2 and the artificial feather is shown in FIGS. It differs from the shuttlecock 1 shown. Specifically, in the base body 2 of the shuttlecock shown in FIG. 32, a convex portion 61 is formed on the fixing surface portion, and at the boundary portion between the side wall 62 of the convex portion 61 and the outer peripheral portion of the fixing surface portion. An insertion hole 63 is formed on the adjacent outer peripheral side. The extending direction of the insertion hole 63 is a direction along the side wall 62 of the convex portion 61. For this reason, the surface of the shaft 7 inserted into the insertion hole 63 (the inner peripheral surface of the shaft 7 arranged in an annular shape) is in contact with the side wall 62 of the convex portion 61. An adhesive 64 for fixing the shaft 7 to the base body 2 is disposed so as to extend from the upper surface of the convex portion 61 to the outer peripheral portion of the fixing surface portion via the side wall 62. The adhesive 64 also enters the inside of the insertion hole 63 and fixes the side wall of the insertion hole 63 and the shaft 7 to each other.

上述のような構成のベース本体2を用いたシャトルコックによっても、図1〜図3に示したシャトルコック1と同様の効果を得ることができる。   The same effect as the shuttlecock 1 shown in FIGS. 1 to 3 can be obtained by the shuttlecock using the base body 2 having the above-described configuration.

(実施の形態7)
図33は、本発明によるシャトルコックの実施の形態7における人工羽根を構成する、シャトルコック用人工羽根の構成を示す平面模式図である。図34は、図33の線分XXXIV−XXXIVにおける断面模式図である。図35は、図33の線分XXXV−XXXVにおける断面模式図である。図36は、図33の線分XXXVI−XXXVIにおける断面模式図である。図37は、図33の線分XXXVII−XXXVIIにおける断面模式図である。図33〜図37を参照して、本発明によるシャトルコックの実施の形態7を説明する。
(Embodiment 7)
FIG. 33 is a schematic plan view showing the configuration of an artificial feather for shuttlecock that constitutes the artificial feather in Embodiment 7 of the shuttlecock according to the present invention. 34 is a schematic cross-sectional view taken along line XXXIV-XXXIV in FIG. 35 is a schematic cross-sectional view taken along line XXXV-XXXV in FIG. 36 is a schematic cross-sectional view taken along line XXXVI-XXXVI in FIG. FIG. 37 is a schematic sectional view taken along line XXXVII-XXXVII in FIG. A seventh embodiment of the shuttlecock according to the present invention will be described with reference to FIGS.

図33〜図37に示した人工羽根3を備えるシャトルコックは、基本的には図1〜図3に示したシャトルコック1と同様の構成を備えるが、人工羽根3の構成が図1〜図3に示したシャトルコック1と異なっている。すなわち、図33〜図37に示した人工羽根3は、図4〜図8に示した人工羽根3と同様に、羽本体部5と、当該羽本体部5に接続された軸7とからなる。軸7の構成は図4〜図8に示した人工羽根3と同様である。羽本体部5には、羽軸部8の内部に埋設された状態で保持される突出部12が接続されている。羽本体部5と突出部12とは、1つのシート状部材90を構成する。また、突出部12の一部は、羽軸部8の側方から突出した縁部32となっている。そして、このシート状部材90は、図34〜図37に示すように不織布91と樹脂層92との積層構造(2層構造)となっている。このようにすれば、本発明の実施の形態1におけるシャトルコック1と同様の効果を得られると共に、不織布91のみによりシート状部材を構成する場合より、樹脂層92の材質を適宜選択することよりシート状部材90の強度や形状保持機能を高めることができる。なお、シート状部材90の構成として、他の構成を採用してもよい。たとえば、シート状部材90として、3層以上の積層構造を有するシート状部材を用いてもよい。また、積層構造を構成する層の材質として、不織布と樹脂層という組合せ以外にも、任意の材料の組合せを用いることができる。   The shuttlecock provided with the artificial feather 3 shown in FIGS. 33 to 37 basically has the same configuration as the shuttlecock 1 shown in FIGS. 1 to 3, but the configuration of the artificial feather 3 is as shown in FIGS. This is different from the shuttlecock 1 shown in FIG. That is, the artificial feather 3 shown in FIGS. 33 to 37 is composed of the wing body 5 and the shaft 7 connected to the wing body 5 in the same manner as the artificial feather 3 shown in FIGS. . The configuration of the shaft 7 is the same as that of the artificial feather 3 shown in FIGS. The wing body 5 is connected to a protrusion 12 that is held in a state of being embedded in the wing shaft 8. The wing body 5 and the protrusion 12 constitute one sheet-like member 90. Further, a part of the protruding portion 12 is an edge portion 32 protruding from the side of the wing shaft portion 8. And this sheet-like member 90 has the laminated structure (two-layer structure) of the nonwoven fabric 91 and the resin layer 92, as shown in FIGS. In this way, the same effect as that of the shuttlecock 1 in Embodiment 1 of the present invention can be obtained, and the material of the resin layer 92 can be appropriately selected as compared with the case where the sheet-like member is constituted only by the nonwoven fabric 91. The strength and shape retention function of the sheet-like member 90 can be increased. Note that other configurations may be employed as the configuration of the sheet-like member 90. For example, a sheet-like member having a laminated structure of three or more layers may be used as the sheet-like member 90. In addition to the combination of the nonwoven fabric and the resin layer, any combination of materials can be used as the material of the layers constituting the laminated structure.

次に、図33〜図37に示したシャトルコック用の人工羽根3および当該人工羽根3を用いたバドミントン用シャトルコックの製造方法を簡単に説明する。図38は、図33〜図37に示したシャトルコック用の人工羽根3の製造方法を説明するためのフローチャートである。図38を参照して、図33〜図37に示したような、本発明に従ったシャトルコック用の人工羽根3の製造方法を説明する。   Next, the shuttlecock artificial feather 3 shown in FIGS. 33 to 37 and a method of manufacturing the badminton shuttlecock using the artificial feather 3 will be briefly described. FIG. 38 is a flowchart for explaining a method of manufacturing the shuttlecock artificial feather 3 shown in FIGS. With reference to FIG. 38, the manufacturing method of the artificial feather | wing 3 for shuttlecocks as shown in FIGS. 33-37 according to this invention is demonstrated.

図38に示すように、この人工羽根3の製造方法では、まず積層シート準備工程(S60)を実施する。この工程(S60)で準備されるシート状部材としての積層シートは、任意の形状の積層シートを用いることができるが、たとえば四隅が丸く成形された概略四角形状の平面形状を有する積層シートを準備してもよい。積層シートの厚さは、形成される人工羽根3の空気抵抗や質量バランスなどを考慮して適宜選択することができる。たとえば、図33〜図37に示すような不織布と樹脂層との積層構造を採用する場合、不織布としては、ポリエステル繊維、アクリル繊維などの化学繊維からなる不織布を用いることができる。たとえば、不織布として目付けが10g/m2以上90g/m2以下のものを用いることができる。また、たとえば不織布としてポリエステル繊維製であり、目付けが30g/m2以上80g/m2以下、厚さが0.07mm以上0.13mm以下、といったものを用いることもできる。また、ポリエステル繊維製の不織布として、好ましくは目付けが40g/m2以上60g/m2以下、厚さが0.08mm以上0.12mm以下、より好ましくは目付けが40g/m2以上50g/m2以下、厚さが0.09mm以上0.11mm以下といったものを用いてもよい。また、樹脂層としては、たとえばポリエチレン、ポリプロピレン、EVA、ポリウレタン、PET(ポリエチレンテレフタレート)、ナイロンなどからなるフィルム状の部材またはこれらの材料からなる発泡シートを用いる場合、その厚みは0.01mm以上2mm以下、好ましくは厚みが0.015mm以上1.5mm以下、より好ましくは厚みが0.3mm以上1.2mm以下とすることができる。なお、積層シートの製造方法は、従来周知の任意の方法を採用することができる。 As shown in FIG. 38, in the manufacturing method of this artificial feather 3, a laminated sheet preparation process (S60) is first implemented. As a laminated sheet as a sheet-like member prepared in this step (S60), a laminated sheet having an arbitrary shape can be used. For example, a laminated sheet having a substantially rectangular planar shape with rounded four corners is prepared. May be. The thickness of the laminated sheet can be selected as appropriate in consideration of the air resistance and mass balance of the artificial feather 3 to be formed. For example, when the laminated structure of the nonwoven fabric and the resin layer as shown in FIGS. 33 to 37 is adopted, a nonwoven fabric made of chemical fibers such as polyester fibers and acrylic fibers can be used as the nonwoven fabric. For example, a nonwoven fabric having a basis weight of 10 g / m 2 or more and 90 g / m 2 or less can be used. Further, for example, a nonwoven fabric made of polyester fiber having a basis weight of 30 g / m 2 to 80 g / m 2 and a thickness of 0.07 mm to 0.13 mm can also be used. The nonwoven fabric made of polyester fiber preferably has a basis weight of 40 g / m 2 to 60 g / m 2 , a thickness of 0.08 mm to 0.12 mm, and more preferably a basis weight of 40 g / m 2 to 50 g / m 2. In the following, a thickness of 0.09 mm to 0.11 mm may be used. As the resin layer, for example, when a film-like member made of polyethylene, polypropylene, EVA, polyurethane, PET (polyethylene terephthalate), nylon, or a foamed sheet made of these materials is used, the thickness is 0.01 mm or more and 2 mm. Hereinafter, the thickness is preferably 0.015 mm or more and 1.5 mm or less, more preferably 0.3 mm or more and 1.2 mm or less. In addition, the conventionally well-known arbitrary methods can be employ | adopted for the manufacturing method of a lamination sheet.

次に、金型の内部に積層シートを配置する工程(S70)を実施する。この工程(S70)では、軸7をたとえば射出成形法などを用いて形成するための金型の内部に、上述した工程(S60)で準備された不織布を配置する。   Next, the process (S70) which arrange | positions a lamination sheet inside a metal mold | die is implemented. In this step (S70), the non-woven fabric prepared in the step (S60) described above is placed inside a mold for forming the shaft 7 using, for example, an injection molding method.

次に、金型セット工程(S30)を実施する。具体的には、内部に積層シートが配置された金型を、当該内部に軸7を構成する樹脂を注入可能な状態に配置するとともに、金型の温度条件などを調整する。   Next, a mold setting step (S30) is performed. Specifically, the mold in which the laminated sheet is arranged is arranged in a state where the resin constituting the shaft 7 can be injected therein, and the temperature condition of the mold is adjusted.

次に、樹脂注入工程(S40)を実施する。具体的には、金型に設けられた樹脂の注入孔から、金型内部に樹脂を注入する。この結果、金型内部において積層シートからなるシート状部材90と接触固定した状態で軸7が形成される。   Next, a resin injection step (S40) is performed. Specifically, the resin is injected into the mold through a resin injection hole provided in the mold. As a result, the shaft 7 is formed in a state of being fixed in contact with the sheet-like member 90 made of a laminated sheet inside the mold.

次に、後処理工程(S50)を実施する。具体的には、金型の内部から軸7が接続、固定固着されたシート状部材90を取出す。このとき、軸7の断面は、図35〜図37に示したような状態になっている。すなわち、軸7はそのほぼ全長に亘ってシート状部材90と接続されている。そして、軸7においては、上述のように軸7の根元側では軸7の内部にシート状部材90が埋設された状態になっている。一方、軸7の先端側に向かうにつれて、シート状部材90は軸7の表面に露出した状態になる。特に、軸7の先端側では、軸7の表面にシート状部材90が固着した状態になっている。このような構成は、金型の内部の軸7を形成するための溝の形状や、シート状部材90となる積層シートの配置などにより実現することができる。次に、上述した後処理工程(S50)では、上記積層シートの不要部(羽本体部5および縁部32となるべき部分以外の部分)を切断除去する。この結果、図33に示した人工羽根3を得ることができる。   Next, a post-processing step (S50) is performed. Specifically, the sheet-like member 90 to which the shaft 7 is connected and fixed and fixed is taken out from the inside of the mold. At this time, the cross section of the shaft 7 is in a state as shown in FIGS. That is, the shaft 7 is connected to the sheet-like member 90 over almost the entire length thereof. In the shaft 7, the sheet-like member 90 is embedded in the shaft 7 on the root side of the shaft 7 as described above. On the other hand, the sheet-like member 90 is exposed on the surface of the shaft 7 as it goes to the tip end side of the shaft 7. In particular, at the tip end side of the shaft 7, the sheet-like member 90 is fixed to the surface of the shaft 7. Such a configuration can be realized by the shape of a groove for forming the shaft 7 inside the mold, the arrangement of a laminated sheet serving as the sheet-like member 90, or the like. Next, in the post-processing step (S50) described above, unnecessary portions (portions other than the portions to be the wing body portion 5 and the edge portion 32) of the laminated sheet are cut and removed. As a result, the artificial feather 3 shown in FIG. 33 can be obtained.

次に、図33〜図37に示した人工羽根3を適用したシャトルコックの製造方法を簡単に説明する。当該シャトルコックの製造方法は、基本的に本発明の実施の形態1におけるシャトルコック1の製造方法と同様である。つまり、当該シャトルコックの製造方法では、まず準備工程(S100)(図13参照)を実施する。この準備工程(S100)では、シャトルコック1のベース本体2および人工羽根3など、シャトルコックの構成部材を準備する。ベース本体2の製造方法は、本発明の実施の形態1において説明した方法を用いることができる。また、人工羽根3の製造方法としては、上述した製造方法を用いることができる。   Next, a method for manufacturing a shuttlecock to which the artificial feather 3 shown in FIGS. 33 to 37 is applied will be briefly described. The method for manufacturing the shuttlecock is basically the same as the method for manufacturing the shuttlecock 1 in the first embodiment of the present invention. That is, in the shuttlecock manufacturing method, first, the preparation step (S100) (see FIG. 13) is performed. In this preparation step (S100), the components of the shuttlecock such as the base body 2 and the artificial feather 3 of the shuttlecock 1 are prepared. The method described in Embodiment 1 of the present invention can be used as the method for manufacturing the base body 2. Moreover, as a manufacturing method of the artificial feather 3, the manufacturing method mentioned above can be used.

次に、組立工程(S200)(図13参照)を実施する。当該組立工程(S200)での作業内容は、本発明の実施の形態1において説明した工程(S200)の内容と同様である。このようにして、図33〜図37に示した人工羽根3を用いたシャトルコックを製造することができる。   Next, an assembly process (S200) (see FIG. 13) is performed. The work contents in the assembly process (S200) are the same as the contents of the process (S200) described in the first embodiment of the present invention. In this manner, a shuttlecock using the artificial feather 3 shown in FIGS. 33 to 37 can be manufactured.

(実施の形態8)
図39は、本発明によるシャトルコックの実施の形態8を示す側面模式図である。図40は、図39に示したシャトルコックの上面模式図である。図41は、図39に示したシャトルコックの中糸が配置された部分の構成を示す部分断面模式図である。図39〜図41を参照して、本発明によるシャトルコックの実施の形態8を説明する。
(Embodiment 8)
FIG. 39 is a schematic side view showing an eighth embodiment of the shuttlecock according to the present invention. FIG. 40 is a schematic top view of the shuttlecock shown in FIG. FIG. 41 is a partial cross-sectional schematic diagram showing a configuration of a portion where the middle thread of the shuttlecock shown in FIG. 39 is arranged. An eighth embodiment of the shuttlecock according to the present invention will be described with reference to FIGS.

図39〜図41に示したシャトルコック1は、基本的には図33〜図37に示した人工羽根3を用いたシャトルコックと同様の構造(図1〜図3に示したシャトルコック1において、人工羽根3として図33〜図37に示した人工羽根3を適用した構造)を備えるが、人工羽根3の羽本体部5における積層部(重なり部分)を固定するための固定方法を備えている点が異なっている。すなわち、複数の人工羽根3の積層状態を維持するため中糸15が固定部材として用いられている。この中糸15は、後述するように複数の人工羽根3の位置関係を規定するように配置されている。以下、中糸15の配置を、図41を参照して具体的に説明する。   The shuttlecock 1 shown in FIGS. 39 to 41 is basically the same structure as the shuttlecock using the artificial feather 3 shown in FIGS. 33 to 37 (in the shuttlecock 1 shown in FIGS. 1 to 3). The artificial feather 3 has a structure to which the artificial feather 3 shown in FIGS. 33 to 37 is applied), but includes a fixing method for fixing the laminated portion (overlapping portion) of the artificial feather 3 in the wing body 5. Is different. That is, in order to maintain the laminated state of the plurality of artificial feathers 3, the middle thread 15 is used as a fixing member. The middle thread 15 is arranged so as to define the positional relationship between the plurality of artificial feathers 3 as will be described later. Hereinafter, the arrangement of the middle thread 15 will be specifically described with reference to FIG.

図41に示すように、中糸15は、人工羽根3の軸7の周囲を周回するとともに、隣接する人工羽根3において積層した状態になっている羽本体部5の部分で、隣接する人工羽根3の羽本体部5が互いに対向する領域を通るように(積層した羽本体部5の間を通るように)配置されている。このように羽本体部5が積層した部分で、積層した羽本体部5の間を中糸15が通っているため、羽本体部5の積層順がシャトルコックの使用中に入替わる(たとえばラケットによる打撃の衝撃によって羽本体部5の積層順番が入替わる)といった問題の発生を抑制することができる。   As shown in FIG. 41, the middle thread 15 circulates around the shaft 7 of the artificial feather 3 and is adjacent to the artificial feather in the portion of the wing body 5 that is stacked on the adjacent artificial feather 3. The three wing body portions 5 are arranged so as to pass through regions facing each other (pass between the stacked wing body portions 5). In this way, the middle thread 15 passes between the laminated wing main body portions 5 at the portion where the wing main body portions 5 are laminated, so that the lamination order of the wing main body portions 5 is changed during use of the shuttlecock (for example, a racket). The occurrence of such a problem that the stacking order of the wing main body portions 5 is changed by the impact of the impact of the above can be suppressed.

上述した中糸15は、図39および図40に示すように円環状に並んだ複数の人工羽根3の全てを互いに固定するように、円周状に配置されている。そして、中糸15は、たとえば作業者が針などを用いて縫製することにより図39〜図41に示すような配置とすることができる。このようにすれば、図1〜図3に示したシャトルコック1により得られる効果に加えて、羽本体部5の積層順がシャトルコックの使用中に入替わるという問題の発生を抑制することにより、優れた耐久性を示すシャトルコック1を得ることができる。   As shown in FIGS. 39 and 40, the intermediate thread 15 described above is arranged in a circumferential shape so as to fix all of the plurality of artificial feathers 3 arranged in an annular shape. The middle thread 15 can be arranged as shown in FIGS. 39 to 41, for example, by an operator sewing using a needle or the like. In this way, in addition to the effect obtained by the shuttlecock 1 shown in FIGS. 1 to 3, by suppressing the occurrence of the problem that the stacking order of the wing body 5 is changed during use of the shuttlecock. The shuttlecock 1 exhibiting excellent durability can be obtained.

なお、円周状に配置された中糸15は、その縫い始めの一方端部と縫い終わりの他方端部とが結ばれて、余った糸の部分は結び目近傍でカットされ除去される。当該結び目には接着剤などを塗布することにより、保護層を形成することが好ましい。このような保護層を形成することにより、シャトルコック1がラケットにより打撃されたときに、当該結び目が解けることを防止できる。   The circumferentially arranged middle thread 15 is connected at one end at the start of sewing and the other end at the end of sewing, and the remaining thread is cut and removed in the vicinity of the knot. It is preferable to form a protective layer by applying an adhesive or the like to the knot. By forming such a protective layer, it is possible to prevent the knot from being broken when the shuttlecock 1 is hit with a racket.

また、中糸15は綿や樹脂など任意の材料を用いることができるが、ポリエステル製の糸を用いることが好ましい。また、中糸15はシャトルコック1の重心などに影響を極力与えないために、できるだけ軽量なものを用いることが好ましい。たとえば、用いる糸としては50番のポリエステル製の糸を用いてもよい。この場合、中糸15として使用した糸の質量は約0.02gとなる。この程度の質量であれば、シャトルコック1の重心位置に若干の影響があるものの、飛翔性能にはほとんど影響がないと考えられる。また、中糸15の配置については、ベース本体2からの距離を任意に設定することができる。   The middle thread 15 can be made of any material such as cotton or resin, but is preferably made of polyester. Further, it is preferable to use the middle thread 15 that is as light as possible so as not to affect the center of gravity of the shuttlecock 1 as much as possible. For example, as a yarn to be used, a 50th polyester yarn may be used. In this case, the mass of the yarn used as the middle yarn 15 is about 0.02 g. This mass is considered to have little influence on the flight performance, although there is a slight influence on the position of the center of gravity of the shuttlecock 1. Moreover, about the arrangement | positioning of the middle thread | yarn 15, the distance from the base main body 2 can be set arbitrarily.

図39〜図41に示したシャトルコック1の製造方法は、基本的には図1〜図3に示したシャトルコックの製造方法と同様であるが、上述した組立工程(S200)において中糸15を配置する工程を実施する。中糸15は、たとえば作業者の縫製作業により配置してもよい。なお、中糸15としては任意の材料を用いることができるが、たとえば上述したように綿やポリエステルなどの樹脂を材料として用いることができる。このようにして、図39〜図41に示すシャトルコック1を製造することができる。   The manufacturing method of the shuttlecock 1 shown in FIGS. 39 to 41 is basically the same as the manufacturing method of the shuttlecock shown in FIGS. 1 to 3, but the intermediate thread 15 in the assembly step (S200) described above. The step of arranging is performed. The middle thread 15 may be arranged, for example, by an operator's sewing work. In addition, although arbitrary materials can be used as the middle thread 15, for example, as described above, a resin such as cotton or polyester can be used as the material. In this way, the shuttlecock 1 shown in FIGS. 39 to 41 can be manufactured.

(実施の形態9)
図42は、本発明によるシャトルコックの実施の形態9を示す側面模式図である。図43は、図42に示したシャトルコックの融着固定部を示す部分断面模式図である。図42および図43を参照して、本発明によるシャトルコックの実施の形態9を説明する。
(Embodiment 9)
FIG. 42 is a schematic side view showing Embodiment 9 of the shuttlecock according to the present invention. FIG. 43 is a partial cross-sectional schematic view showing the fusion fixing part of the shuttlecock shown in FIG. 42 and 43, a ninth embodiment of the shuttlecock according to the present invention will be described.

図42および図43を参照して、本発明に従ったシャトルコック1は、基本的には図39〜図41に示したシャトルコック1と同様の構成を備えるが、人工羽根3の積層順が入替わることを防止する固定部として中糸ではなく融着固定部41が形成されている点が異なる。融着固定部41は、平面形状が楕円形状であって、積層した羽本体部5をウェルダなどを用いて部分的に溶融および再凝固させることによって形成されている。つまり、融着固定部41では、羽本体部5を構成する材料が部分的に溶融凝固することにより互いに固着した状態になっている。なお、融着固定部41の平面形状は、後述するように任意の形状とすることができる。   42 and 43, shuttlecock 1 according to the present invention basically has the same configuration as shuttlecock 1 shown in FIGS. 39 to 41, but the stacking order of artificial feathers 3 is the same. The difference is that a fusion fixing portion 41 is formed instead of a middle thread as a fixing portion for preventing the replacement. The fusion fixing part 41 has an elliptical planar shape, and is formed by partially melting and resolidifying the laminated wing body part 5 using a welder or the like. That is, in the fusion fixing part 41, the materials constituting the wing body part 5 are fixed to each other by partially melting and solidifying. The planar shape of the fusion fixing part 41 can be any shape as will be described later.

このようにすれば、図39〜図41に示したシャトルコック1と同様の効果を得ることができる。すなわち、図1〜図3に示したシャトルコック1と同様にベース本体2と人工羽根3の軸7との接着強度を向上させることができるとともに、人工羽根3の積層状態が入替わったり、人工羽根3が変形したりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。また、図42および図43に示したシャトルコック1では、その製造工程において予め接着剤などを羽本体部5の表面に配置するといった工程を実施する必要がないので、製造工程を簡略化することができる。   In this way, the same effect as the shuttlecock 1 shown in FIGS. 39 to 41 can be obtained. That is, the adhesive strength between the base body 2 and the shaft 7 of the artificial feather 3 can be improved similarly to the shuttlecock 1 shown in FIGS. It is possible to suppress the flight performance of the shuttlecock 1 from being deteriorated due to the deformation of the blade 3. Further, in the shuttlecock 1 shown in FIG. 42 and FIG. 43, it is not necessary to carry out a process of arranging an adhesive or the like on the surface of the wing body part 5 in the manufacturing process in advance, so that the manufacturing process is simplified. Can do.

図44は、図42および図43に示した本発明によるシャトルコックの実施の形態9の変形例を示す部分断面模式図である。図44を参照して、本発明によるシャトルコックの実施の形態9の変形例を説明する。   FIG. 44 is a partial cross-sectional schematic diagram showing a modification of the ninth embodiment of the shuttlecock according to the present invention shown in FIGS. 42 and 43. A modification of the ninth embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図44に示したシャトルコック1は、基本的には図42および図43に示したシャトルコック1と同様の構造を備えるが、融着固定部41の構造および製造方法が異なっている。すなわち、図44に示したシャトルコック1では、融着固定部41において積層した羽本体部5の間に補強部材43が配置された状態になっている。この補強部材43は、たとえばポリプロピレンなどの樹脂片を羽本体部5の積層部に配置し、羽本体部5とともに加熱および再凝固させることにより形成され、融着固定部41を補強するものである。たとえば、補強部材43としてポリプロピレン製の樹脂シートであって縦横が4mmの四角形状であり厚みが200μmのものなどを用いることができる。このような補強部材43を配置することで、融着固定部41の強度を向上させることができる。この結果、シャトルコック1の耐久性を向上させることができる。   The shuttlecock 1 shown in FIG. 44 has basically the same structure as the shuttlecock 1 shown in FIGS. 42 and 43, but the structure and manufacturing method of the fusion fixing part 41 are different. That is, in the shuttlecock 1 shown in FIG. 44, the reinforcing member 43 is disposed between the wing body portions 5 stacked in the fusion fixing portion 41. The reinforcing member 43 is formed, for example, by placing a resin piece such as polypropylene in the laminated portion of the wing body 5 and heating and resolidifying it together with the wing body 5 to reinforce the fusion fixing portion 41. . For example, a polypropylene resin sheet having a rectangular shape of 4 mm in length and width and a thickness of 200 μm can be used as the reinforcing member 43. By arranging such a reinforcing member 43, the strength of the fusion fixing part 41 can be improved. As a result, the durability of the shuttlecock 1 can be improved.

上述した補強部材43としては、任意の樹脂を用いることができるが、たとえばポリプロピレン(PP)製のフィルムなどを用いることができる。このようなフィルムを予め積層した羽本体部5の間に挟み込んでおき、ウェルダなどを用いて当該部分を加熱することにより、羽本体部5および補強部材43としてのポリプロピレンフィルムを融着させることができる。   Although any resin can be used as the reinforcing member 43 described above, for example, a film made of polypropylene (PP) or the like can be used. It is possible to fuse the polypropylene film as the wing body part 5 and the reinforcing member 43 by sandwiching such a film between the wing body parts 5 laminated in advance and heating the part using a welder or the like. it can.

このような補強部材43としては、羽本体部5を構成する材料とは異なる材料であって、当該羽本体部5を構成する材料よりも融点の低い材料を用いることが好ましい。このようにすれば、融着固定部41に加える熱量を比較的小さくした状態で融着固定部41を形成することができる。この場合には、羽本体部5を構成する材料自体は完全には溶融することなく、補強部材43が溶融および再凝固することによって融着固定部41が形成されることになる。   As such a reinforcing member 43, it is preferable to use a material that is different from the material constituting the wing body 5 and has a lower melting point than the material constituting the wing body 5. In this way, the fusion fixing part 41 can be formed with a relatively small amount of heat applied to the fusion fixing part 41. In this case, the material itself constituting the wing body 5 is not completely melted, and the fusion fixing portion 41 is formed by melting and re-solidifying the reinforcing member 43.

このような融着固定部41の形成方法としては、たとえば以下のような方法を用いることができる。すなわち、補強部材43として、所定の大きさのフィルム(たとえば4mm×4mm程度の大きさの四角形状のフィルム)を準備し、当該フィルムを羽本体部5の所定の位置に仮留めする。この仮留めには、たとえばごく少量の接着剤、粘着剤などを用いることができる。そして、ハンドタイプの超音波ウェルダ装置などを用いて、羽本体部5、補強部材43および他の羽本体部5と3層構造になった積層部を押圧し加熱する。このようにして、融着固定部41を形成することができる。   As a method for forming such a fusion fixing part 41, for example, the following method can be used. That is, a film having a predetermined size (for example, a quadrangular film having a size of about 4 mm × 4 mm) is prepared as the reinforcing member 43, and the film is temporarily fixed at a predetermined position on the wing body 5. For this temporary fastening, for example, a very small amount of adhesive, pressure-sensitive adhesive, or the like can be used. Then, using a hand-type ultrasonic welder device or the like, the wing body 5, the reinforcing member 43, and the other wing body 5 and the laminated portion having a three-layer structure are pressed and heated. In this way, the fusion fixing part 41 can be formed.

なお、このような補強部材43の質量は、たとえば上述したポリプロピレンフィルムを用いた場合であれば、およそ0.04gと極めて軽量である。したがって、シャトルコックの質量バランスには当該補強部材43はほとんど影響を与えない。   It should be noted that the mass of the reinforcing member 43 is extremely light, for example, approximately 0.04 g when the above-described polypropylene film is used. Therefore, the reinforcing member 43 hardly affects the mass balance of the shuttlecock.

図45は、図42および図43に示した本発明によるシャトルコックの実施の形態9の他の変形例を示す側面模式図である。図46は、図45に示したシャトルコックの上面模式図である。図45および図46を参照して、本発明によるシャトルコックの実施の形態9の他の変形例を説明する。   FIG. 45 is a schematic side view showing another modification of the ninth embodiment of the shuttlecock according to the present invention shown in FIGS. 42 and 43. 46 is a schematic top view of the shuttlecock shown in FIG. 45 and 46, another modification of the ninth embodiment of the shuttlecock according to the present invention will be described.

図45および図46に示したシャトルコック1は、基本的には図42および図43に示したシャトルコック1と同様の構造を備えるが、融着固定部41に加えて人工羽根3の羽部が内側へ屈曲する(カールする)ことを防止するための内糸17が配置されている。   The shuttlecock 1 shown in FIGS. 45 and 46 basically has the same structure as the shuttlecock 1 shown in FIGS. 42 and 43, but in addition to the fusion fixing part 41, the wing part of the artificial feather 3. An inner thread 17 is disposed to prevent the inner thread from bending (curling).

内糸17は、人工羽根3の軸の周囲を周回する。そして、内糸17は、円環状に並んだ複数の人工羽根3の内周側から隣接する他の人工羽根3の軸にまで到達し、当該軸の周囲を順次周回していくように配置されている。このようにすれば、図45および図46からもわかるように、内糸17は円環状に並んだ人工羽根3の内周側に沿って配置される。このため、シャトルコック1の使用時に、人工羽根3の羽本体部が内周側(内糸17が位置する側)に屈曲することを抑制できる。この結果、シャトルコック1の空気抵抗などの特性が大きく変わるといった問題の発生をより確実に抑制できる。   The inner thread 17 circulates around the axis of the artificial feather 3. The inner thread 17 is arranged so as to reach the axis of the other artificial feather 3 adjacent from the inner circumference side of the plurality of artificial feathers 3 arranged in an annular shape and sequentially circulate around the axis. ing. In this way, as can be seen from FIGS. 45 and 46, the inner thread 17 is arranged along the inner peripheral side of the artificial feather 3 arranged in an annular shape. For this reason, at the time of use of the shuttlecock 1, it can suppress that the wing | blade main-body part of the artificial feather | wing 3 is bent to the inner peripheral side (side in which the inner thread | yarn 17 is located). As a result, it is possible to more reliably suppress the occurrence of a problem that characteristics such as air resistance of the shuttlecock 1 are greatly changed.

図47〜図51は、図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。以下、本発明によるシャトルコック1の融着固定部41の変形例について説明する。   47 to 51 are schematic diagrams for explaining modifications of the fusion fixing portion in the ninth embodiment of the shuttlecock according to the present invention shown in FIGS. 42 and 43. Hereinafter, modifications of the fusion fixing portion 41 of the shuttlecock 1 according to the present invention will be described.

図47に示したシャトルコックの融着固定部41は、平面形状が四角形状となっている。当該融着固定部41では角部が丸くなっている。また、人工羽根3における融着固定部41は、軸7に沿った方向で長さがL0である羽本体部5の、軸7に沿った方向での中央部からベース本体2(図示せず)側の領域に配置される。融着固定部41が配置される領域の軸7に沿った方向の長さL1は、上記長さL0の40%以上65%以下、より好ましくは40%以上50%以下とする。また、融着固定部41の少なくとも一部は、人工羽根3の軸7に垂直な方向である幅方向において、軸7と羽本体部5の端部(図47の羽本体部5において軸7と対向する外周部のうちもっとも軸7から離れた部分)との間の中間点より軸7寄りの領域に形成される。すなわち、図47に示した軸7の中心軸22と、羽本体部5において幅方向にて軸7から最も離れた端部を通り、当該中心軸22に平行な線分23とを考える。そして、この中心軸22と線分23との間の中間点を通り、中心軸22に平行な線分24を規定すると、融着固定部41の少なくとも一部は羽本体部5において線分24と軸7とで囲まれる領域に位置することが好ましい。   47 has a quadrangular planar shape. As shown in FIG. In the fusion fixing part 41, the corner part is rounded. Further, the fusion fixing portion 41 in the artificial feather 3 has a base body 2 (not shown) from the central portion in the direction along the shaft 7 of the wing body portion 5 having a length L0 in the direction along the shaft 7. ) Side area. The length L1 in the direction along the axis 7 of the region where the fusion fixing part 41 is arranged is 40% or more and 65% or less, more preferably 40% or more and 50% or less of the length L0. In addition, at least a part of the fusion fixing portion 41 has a shaft 7 and an end portion of the wing body portion 5 (the shaft 7 in the wing body portion 5 in FIG. Is formed in a region closer to the shaft 7 than an intermediate point between the outer peripheral portion and the portion farthest from the shaft 7). That is, consider the central axis 22 of the shaft 7 shown in FIG. 47 and the line segment 23 that passes through the end portion farthest from the shaft 7 in the width direction in the wing body 5 and is parallel to the central axis 22. When a line segment 24 passing through an intermediate point between the central axis 22 and the line segment 23 and parallel to the central axis 22 is defined, at least a part of the fusion fixing portion 41 is separated from the line segment 24 in the wing body 5. It is preferably located in a region surrounded by the shaft 7.

図48に示したシャトルコックの融着固定部41は、平面形状が長方形状(あるいは線状)となっている。融着固定部41は軸7に沿った方向に延在している。このような形状とすれば、軸7に沿った方向における広い範囲について羽本体部5の重なり状態を維持することができる。   48 has a rectangular planar shape (or a linear shape). The fusion fixing portion 41 extends in a direction along the axis 7. With such a shape, the overlapping state of the wing body 5 can be maintained over a wide range in the direction along the axis 7.

図49に示したシャトルコックの融着固定部41は、平面形状が三角形状となっている。融着固定部41の外周の1つの辺は軸7に沿った方向に延在し、また、融着固定部41の当該軸7に沿った方向に延在する辺に対向する角部は、当該辺の中央部よりベース本体2(図示せず)側に寄った位置に配置されている。このような形状とすることで融着固定部41に加えられる負荷の分散を図る、といった効果を得ることができる。   49 has a triangular plane shape in the fusion fixing part 41 of the shuttlecock shown in FIG. One side of the outer periphery of the fusion fixing part 41 extends in the direction along the axis 7, and the corner part of the fusion fixing part 41 facing the side extending in the direction along the axis 7 is It arrange | positions in the position which approached the base main body 2 (not shown) side from the center part of the said side. By adopting such a shape, it is possible to obtain an effect that the load applied to the fusion fixing portion 41 is distributed.

図50に示したシャトルコックの融着固定部41は、複数のドット状の固定部から構成されている。個々の固定部の平面形状は、円形状であるが、他の任意の形状としてもよい。また、固定部の配置された領域は軸7に沿った方向に延びる長方形状あるいは楕円形状の領域としてもよい。このようにすれば、実際に融着されている部分の面積(ドット状の固定部の合計面積)を小さくした状態で、広い領域(ドット状の固定部が分布している領域)について羽本体部5の重なり状態を維持することができる。   The shuttlecock fusion fixing portion 41 shown in FIG. 50 includes a plurality of dot-like fixing portions. The planar shape of each fixed portion is a circular shape, but may be any other shape. In addition, the area where the fixing portion is arranged may be a rectangular or elliptical area extending in the direction along the axis 7. In this way, with the area of the part actually fused (the total area of the dot-like fixing parts) being reduced, the wing body for a wide area (area where the dot-like fixing parts are distributed) The overlapping state of the part 5 can be maintained.

図51に示したシャトルコックの融着固定部41は、2つの四角形状の固定部から構成されている。個々の固定部の平面形状は、四角形状であるが、他の任意の形状(たとえば円、楕円、多角形、など)としてもよい。また、個々の固定部のサイズは同じにせず、サイズに差のある固定部を2つ、あるいは3つ以上と複数配置してもよい。このような形状とすることで、たとえば個々の固定部のうちの1つが外れても他の固定部が機能し、シャトルコックの形状を維持することができる。また、シャトルコックの質量の増加を抑制しつつ、羽本体部5の広い範囲に融着固定部41を配置することもできる。   The shuttlecock fusion fixing portion 41 shown in FIG. 51 includes two rectangular fixing portions. The planar shape of each of the fixed portions is a square shape, but may be any other shape (for example, a circle, an ellipse, a polygon, etc.). Moreover, the size of each fixing | fixed part may not be made the same, but you may arrange | position two or more and three or more fixing | fixed parts with a difference in size. By adopting such a shape, for example, even if one of the individual fixing portions is removed, the other fixing portion functions and the shape of the shuttlecock can be maintained. Further, the fusion fixing part 41 can be arranged in a wide range of the wing body part 5 while suppressing an increase in the mass of the shuttlecock.

なお、上述した融着固定部41の形状は例示であり、融着固定部41の形状は他の任意の形状とすることができる。また、図47で説明した融着固定部41の配置される領域の条件は図48〜図51に示した融着固定部41についても適用可能である。   The shape of the fusion fixing part 41 described above is an example, and the shape of the fusion fixing part 41 may be any other shape. Moreover, the conditions of the area | region where the fusion fixing part 41 demonstrated in FIG. 47 is applicable also to the fusion fixing part 41 shown in FIGS. 48-51.

(実施の形態10)
図52は、本発明によるシャトルコックの実施の形態10を示す側面模式図である。図53は、図52に示したシャトルコックの接着部材によって固定された接着固定部を示す部分断面模式図である。図52および図53を参照して、本発明によるシャトルコックの実施の形態10を説明する。
(Embodiment 10)
FIG. 52 is a schematic side view showing a tenth embodiment of the shuttlecock according to the present invention. 53 is a partial schematic cross-sectional view showing an adhesive fixing portion fixed by an adhesive member of the shuttlecock shown in FIG. 52 and 53, a tenth embodiment of the shuttlecock according to the present invention will be described.

図52および図53に示すように、シャトルコック1は基本的には図42および図43に示したシャトルコック1と同様の構造を備えるが、人工羽根3の積層状態を維持するための機構として融着固定部41ではなく接着固定部51を形成している点が異なる。すなわち、図52に示すように、円環状に配置された人工羽根3の羽本体部5の積層した部分において、羽本体部5の中央部よりもベース本体2に近い側に、積層した羽本体部5の間に接着部材53を配置した接着固定部51が形成されている。この接着固定部51では、図53に示すように接着部材53を介して積層された羽本体部5が接着固定されている。このようにしても、図42および図43に示したシャトルコック1と同様の効果を得ることができる。   As shown in FIGS. 52 and 53, the shuttlecock 1 basically has the same structure as the shuttlecock 1 shown in FIGS. 42 and 43, but as a mechanism for maintaining the laminated state of the artificial feathers 3. The difference is that the adhesive fixing portion 51 is formed instead of the fusion fixing portion 41. That is, as shown in FIG. 52, in the laminated part of the wing body part 5 of the artificial feather 3 arranged in an annular shape, the wing body laminated on the side closer to the base body 2 than the center part of the wing body part 5 An adhesive fixing portion 51 in which an adhesive member 53 is disposed between the portions 5 is formed. In the adhesive fixing part 51, the wing body parts 5 stacked via the adhesive member 53 are adhesively fixed as shown in FIG. Even if it does in this way, the effect similar to the shuttlecock 1 shown to FIG. 42 and FIG. 43 can be acquired.

なお、上述した接着固定部51の平面形状は、実施の形態9における融着固定部41と同様に任意の形状(たとえば図47〜図51に示したような形状)とすることができる。また、図52および図53に示したシャトルコック1の製造方法は、基本的には図42および図43に示したシャトルコックの製造方法と同様であるが、上述した組立工程(S200)において融着固定部41を形成するかわりに人工羽根3の所定の位置に接着部材53を配置し、人工羽根3同士を当該接着部材53によって接着固定することにより接着固定部51を形成する。このようにすれば、図52および図53に示したシャトルコックを得ることができる。   In addition, the planar shape of the above-described adhesive fixing portion 51 can be an arbitrary shape (for example, the shape shown in FIGS. 47 to 51) similarly to the fusion fixing portion 41 in the ninth embodiment. The manufacturing method of the shuttlecock 1 shown in FIGS. 52 and 53 is basically the same as the manufacturing method of the shuttlecock shown in FIGS. 42 and 43. However, the manufacturing method of the shuttlecock 1 shown in FIGS. Instead of forming the fixing / fixing portion 41, the adhesive member 53 is arranged at a predetermined position of the artificial feather 3, and the artificial feather 3 is bonded and fixed by the adhesive member 53 to form the adhesive fixing portion 51. In this way, the shuttlecock shown in FIGS. 52 and 53 can be obtained.

(実施の形態11)
図54は、本発明に従ったシャトルコックの実施の形態11を示す側面模式図である。図55は、図54に示したシャトルコックの上面模式図である。図56は、図54に示したシャトルコックの内糸が配置された部分の構成を示す部分断面模式図である。図54〜図56を参照して、本発明に従ったシャトルコックの実施の形態11を説明する。
(Embodiment 11)
FIG. 54 is a schematic side view showing Embodiment 11 of the shuttlecock according to the present invention. 55 is a schematic top view of the shuttlecock shown in FIG. FIG. 56 is a partial cross-sectional schematic view showing the configuration of the portion where the inner thread of the shuttlecock shown in FIG. 54 is arranged. With reference to FIGS. 54 to 56, an eleventh embodiment of the shuttlecock according to the present invention will be described.

図54〜図56に示したシャトルコック1は、基本的には図39〜図41に示したシャトルコック1と同様の構造を備えるが、人工羽根3の羽本体部5における積層部(重なり部分)を固定するための固定方法が異なっている。すなわち、複数の人工羽根3の積層状態を維持するため中糸15に加えて内糸17が用いられている。この中糸15および内糸17は、後述するように複数の人工羽根3の位置関係を規定するように配置されている。以下、図56を参照して内糸17の配置を具体的に説明する。なお、中糸15の配置は図41に示した中糸15の配置と同様である。   The shuttlecock 1 shown in FIGS. 54 to 56 basically has the same structure as that of the shuttlecock 1 shown in FIGS. 39 to 41, but the stacked portion (overlapping portion) of the wing body 5 of the artificial feather 3. ) Is fixed differently. That is, the inner thread 17 is used in addition to the middle thread 15 in order to maintain the laminated state of the plurality of artificial feathers 3. The middle thread 15 and the inner thread 17 are arranged so as to define the positional relationship between the plurality of artificial feathers 3 as described later. Hereinafter, the arrangement of the inner thread 17 will be described in detail with reference to FIG. The arrangement of the middle thread 15 is the same as the arrangement of the middle thread 15 shown in FIG.

図56に示すように、内糸17は、図41に示した中糸15と同様に人工羽根3の軸7の周囲を周回する。そして、内糸17は、円環状に並んだ複数の人工羽根3の内周側から隣接する他の人工羽根3の軸7にまで到達し、当該軸7の周囲を順次周回していくように配置されている。このようにすれば、図55および図56からもわかるように、内糸17は円環状に並んだ人工羽根3の内周側に沿って配置される。このため、シャトルコック1の使用時に、人工羽根3の羽本体部5が内周側(内糸17が位置する側)に屈曲することを抑制できる。この結果、シャトルコック1の空気抵抗などの特性が大きく変わるといった問題の発生を抑制できる。   As shown in FIG. 56, the inner thread 17 circulates around the shaft 7 of the artificial feather 3 in the same manner as the middle thread 15 shown in FIG. The inner thread 17 reaches the shaft 7 of the other artificial feather 3 adjacent from the inner peripheral side of the plurality of artificial feathers 3 arranged in an annular shape, and sequentially circulates around the shaft 7. Has been placed. In this way, as can be seen from FIGS. 55 and 56, the inner thread 17 is arranged along the inner peripheral side of the artificial feather 3 arranged in an annular shape. For this reason, at the time of use of the shuttlecock 1, it can suppress that the wing | blade main-body part 5 of the artificial feather | wing 3 is bent to the inner peripheral side (side in which the inner thread | yarn 17 is located). As a result, it is possible to suppress the occurrence of a problem that characteristics such as air resistance of the shuttlecock 1 are greatly changed.

上述した中糸15および内糸17は、図54および図55に示すように円環状に並んだ複数の人工羽根3の全てを互いに固定するように、円周状に配置されている。そして、これらの中糸15および内糸17は、たとえば作業者が針などを用いて縫製することにより図54〜図56および図41に示すような配置とすることができる。円周状に配置された内糸17は、図41に示された中糸15と同様に、その縫い始めの一方端部と縫い終わりの他方端部とが結ばれて、余った糸の部分は結び目近傍でカットされ除去される。当該結び目には接着剤などを塗布することにより、保護層を形成することが好ましい。このような保護層を形成することにより、シャトルコック1がラケットにより打撃されたときに、当該結び目が解けることを防止できる。   As shown in FIGS. 54 and 55, the above-described middle thread 15 and inner thread 17 are arranged circumferentially so as to fix all of the plurality of artificial feathers 3 arranged in an annular shape. The middle thread 15 and the inner thread 17 can be arranged as shown in FIGS. 54 to 56 and FIG. 41, for example, by an operator sewing using a needle or the like. As with the middle thread 15 shown in FIG. 41, the circumferentially arranged inner thread 17 is formed by connecting one end portion at the start of sewing and the other end portion at the end of sewing so that the remaining thread portion Is cut and removed near the knot. It is preferable to form a protective layer by applying an adhesive or the like to the knot. By forming such a protective layer, it is possible to prevent the knot from being broken when the shuttlecock 1 is hit with a racket.

また、中糸15と同様に、内糸17は綿や樹脂など任意の材料を用いることができるが、ポリエステル製の糸を用いることが好ましい。また、中糸15および内糸17はシャトルコック1の重心などに影響を極力与えないために、できるだけ軽量なものを用いることが好ましい。たとえば、用いる糸としては50番のポリエステル製の糸を用いてもよい。   As with the middle thread 15, the inner thread 17 can be made of any material such as cotton or resin, but is preferably made of a polyester thread. Further, it is preferable to use the middle thread 15 and the inner thread 17 that are as light as possible so as not to affect the center of gravity of the shuttlecock 1 as much as possible. For example, as a yarn to be used, a 50th polyester yarn may be used.

また、中糸15および内糸17の配置は、図54および図55に示したようにベース本体2からの距離が異なる位置に配置してもよいが、ベース本体2からの距離が実質的に同じ位置にこれらの中糸15および内糸17を配置してもよい。ただし、人工羽根3の積層順を固定するとともに強度部材としても中糸15および内糸17を利用する場合には、中糸15および内糸17のベース本体2からの距離は異なっているほうが好ましい。また、人工羽根3の羽本体部5が内側へ屈曲する(カールする)ことを防止することを考えると、中糸15より内糸17をベース本体2から離れた位置に配置することがより効果的である。   Further, as shown in FIGS. 54 and 55, the middle thread 15 and the inner thread 17 may be arranged at different distances from the base body 2, but the distance from the base body 2 is substantially different. These middle thread 15 and inner thread 17 may be arranged at the same position. However, in the case where the stacking order of the artificial feathers 3 is fixed and the middle thread 15 and the inner thread 17 are used as strength members, it is preferable that the distance between the middle thread 15 and the inner thread 17 from the base body 2 is different. . In consideration of preventing the wing body 5 of the artificial feather 3 from bending (curling) inward, it is more effective to dispose the inner thread 17 at a position farther from the base body 2 than the middle thread 15. Is.

図54〜図56に示したシャトルコック1の製造方法は、基本的には図39〜図41に示したシャトルコックの製造方法と同様であるが、上述した組立工程(S200)において中糸15を配置する工程に加えて内糸17を配置する工程を実施する。中糸15および内糸17は、たとえば作業者の縫製作業により配置してもよい。なお、内糸17の材料としては、上述した中糸15と同じ材料や太さの糸を用いることができる。このようにして、図18および図19に示すシャトルコック1を製造することができる。   The manufacturing method of the shuttlecock 1 shown in FIGS. 54 to 56 is basically the same as the manufacturing method of the shuttlecock shown in FIGS. 39 to 41. However, in the assembly step (S200) described above, the middle thread 15 In addition to the step of arranging the inner yarn 17, the step of arranging the inner thread 17 is performed. The middle thread 15 and the inner thread 17 may be arranged, for example, by an operator's sewing work. In addition, as a material of the inner thread 17, the thread | yarn of the same material and thickness as the middle thread 15 mentioned above can be used. In this way, the shuttlecock 1 shown in FIGS. 18 and 19 can be manufactured.

図57は、図54および図55に示した本発明によるシャトルコックの実施の形態11の変形例を示す側面模式図である。図58は、図57に示したシャトルコックの外糸が設置された部分の構成を示す部分断面模式図である。図57および図58を参照して、本発明によるシャトルコック1の実施の形態11の変形例を説明する。   FIG. 57 is a schematic side view showing a modification of the eleventh embodiment of the shuttlecock according to the present invention shown in FIGS. 54 and 55. FIG. 58 is a partial cross-sectional schematic diagram showing a configuration of a portion where the outer thread of the shuttlecock shown in FIG. 57 is installed. 57 and 58, a modification of the eleventh embodiment of shuttlecock 1 according to the present invention will be described.

図57および図58に示したシャトルコック1は、基本的には図54および図55に示したシャトルコック1と同様の構造を備えるが、中糸15、内糸17に加えて、さらに外糸19が人工羽根3の積層状態および形状を保持するために設置されている点が異なる。すなわち、外糸19は、図58からもわかるように人工羽根3の軸7の周りを周回するとともに、図57などに示すように人工羽根3の外周側を通って隣接する人工羽根3の軸7の周囲を再び周回するように配置されている。このようにすれば、人工羽根3の羽本体部5が外周側に屈曲するといった問題の発生を抑制することができる。   The shuttlecock 1 shown in FIGS. 57 and 58 basically has the same structure as the shuttlecock 1 shown in FIGS. 54 and 55, but in addition to the middle thread 15 and the inner thread 17, an outer thread is further provided. 19 differs in that 19 is installed to maintain the laminated state and shape of the artificial feather 3. That is, the outer thread 19 circulates around the axis 7 of the artificial feather 3 as can be seen from FIG. 58, and the axis of the adjacent artificial feather 3 through the outer peripheral side of the artificial feather 3 as shown in FIG. It arrange | positions so that the circumference | surroundings of 7 may go around again. If it does in this way, generation | occurrence | production of the problem that the wing | blade main-body part 5 of the artificial feather | wing 3 will bend to an outer peripheral side can be suppressed.

この外糸19は、上述した中糸15などの同じ材料や太さの糸を用いることができる。また、外糸19の設置方法も、上述した中糸15などと同様に作業者による縫製作業などによるものである。   The outer yarn 19 can be made of the same material or the same thickness as the above-described middle yarn 15. Further, the installation method of the outer thread 19 is also based on the sewing work by the operator as in the case of the above-described middle thread 15 and the like.

(実施の形態12)
図59は、本発明によるシャトルコックの実施の形態12を示す側面模式図である。図59を参照して、本発明によるシャトルコックの実施の形態12を説明する。
(Embodiment 12)
FIG. 59 is a schematic side view showing Embodiment 12 of a shuttlecock according to the present invention. With reference to FIG. 59, a twelfth embodiment of a shuttlecock according to the present invention will be described.

図59に示すシャトルコック1は、基本的には図39〜図41に示したシャトルコック1と同様の構造を備えるが、人工羽根3の積層状態を維持するための部材の構成が異なる。すなわち、図39〜図41に示したシャトルコック1においては、人工羽根3の羽本体部5の積層状態や形状を維持するために中糸15が配置されていたが、図59に示すシャトルコック1では、羽本体部5のベース本体2側の位置において複数の人工羽根3が固定用糸81によって円周状に縫い合わされた状態になっている。このような固定用糸81により複数の人工羽根3を互いに縫い合わせることにより、当該人工羽根3の積層状態を容易に維持することができる。この結果、図39〜図41に示したシャトルコック1と同様の効果を得ることができる。   The shuttlecock 1 shown in FIG. 59 basically has the same structure as the shuttlecock 1 shown in FIGS. 39 to 41, but the configuration of members for maintaining the laminated state of the artificial feather 3 is different. That is, in the shuttlecock 1 shown in FIGS. 39 to 41, the middle thread 15 is arranged to maintain the laminated state and shape of the wing body 5 of the artificial feather 3, but the shuttlecock shown in FIG. 1, a plurality of artificial feathers 3 are sewn in a circumferential shape by a fixing thread 81 at a position on the base body 2 side of the wing body 5. By stitching the plurality of artificial feathers 3 together with such a fixing thread 81, the laminated state of the artificial feathers 3 can be easily maintained. As a result, the same effect as the shuttlecock 1 shown in FIGS. 39 to 41 can be obtained.

図60は、図59に示したシャトルコックの実施の形態12の変形例を示す側面模式図である。図61は、図60に示したシャトルコックの固定用糸が配置された部分の構成を示す部分断面模式図である。図60および図61を参照して、本発明によるシャトルコックの実施の形態12の変形例を説明する。   FIG. 60 is a schematic side view showing a modification of the twelfth embodiment of the shuttlecock shown in FIG. 61 is a partial cross-sectional schematic diagram showing the configuration of a portion where the fixing thread of the shuttlecock shown in FIG. 60 is arranged. A modification of the twelfth embodiment of the shuttlecock according to the present invention will be described with reference to FIGS.

図60および図61を参照して、本発明のシャトルコックの実施の形態12の変形例は、基本的には図59に示したシャトルコック1と同様の構造を備えるが、固定用糸81の配置が異なっている。すなわち、図60および図61に示したシャトルコック1では、隣接する人工羽根3について積層した状態になっている羽本体部5の部分において、軸7の延在方向に沿った方向に延びるように、固定用糸81が積層された2つの羽本体部5を縫い合わせている。この固定用糸81が縫い付けられた領域は、軸7の延在方向にほぼ沿うように延びている。このようにしても、シャトルコック1において人工羽根3の羽本体部5の積層状態を維持することができる。   Referring to FIGS. 60 and 61, the modified example of the embodiment 12 of the shuttlecock of the present invention basically has the same structure as the shuttlecock 1 shown in FIG. The arrangement is different. That is, in the shuttlecock 1 shown in FIG. 60 and FIG. 61, in the portion of the wing main body portion 5 in a state where the adjacent artificial feathers 3 are stacked, the shuttlecock 1 extends in the direction along the extending direction of the shaft 7. The two wing body parts 5 on which the fixing thread 81 is laminated are sewn together. The region where the fixing thread 81 is sewn extends so as to be substantially along the extending direction of the shaft 7. Even in this manner, the laminated state of the wing body 5 of the artificial feather 3 can be maintained in the shuttlecock 1.

(実施の形態13)
図62は、本発明によるシャトルコックの実施の形態13を示す上面模式図である。図63は、図62に示したシャトルコックを構成する、シャトルコック用人工羽根の構成を示す平面模式図である。図62および図63を参照して、本発明によるシャトルコックの実施の形態13を説明する。
(Embodiment 13)
FIG. 62 is a top schematic view showing Embodiment 13 of the shuttlecock according to the present invention. 63 is a schematic plan view showing the configuration of the shuttlecock artificial feather constituting the shuttlecock shown in FIG. 62. FIG. 62 and 63, a thirteenth embodiment of the shuttlecock according to the present invention will be described.

図62および図63を参照して、シャトルコック1は基本的には図42および図43に示したシャトルコックと同様の構造を備えるが、人工羽根3の形状および隣接する人工羽根3同士の融着固定部41の配置が図42および図43に示したシャトルコックと異なる。すなわち、図63に示すように、本実施の形態におけるシャトルコック1を構成する人工羽根3は、基本的には図33に示した人工羽根3と同様の構成を備えるが、羽本体部5の形状が異なる。具体的には、図63に示すように、図62に示したシャトルコック1を構成する人工羽根3では、羽本体部5において外周側に突出する延在部50が形成されている。延在部50は軸7から離れる方向(具体的には軸7と交差する方向、より具体的には軸7と直交する方向)に延在する。図62に示したシャトルコック1では、人工羽根3の当該延在部50が、隣接する他の人工羽根3の内周側において、当該他の人工羽根3の軸7を越える位置にまで延在している。そして、当該軸7を越えた位置で、延在部50と他の人工羽根3の羽本体部5とは融着固定部41により接続固定されている。なお、融着固定部41においては、図44に示すように補強部材43を延在部50と他の人工羽根3の羽本体部5との間に配置してもよい。また、融着固定部41の平面形状は、たとえば図47〜図51に示すような任意の形状としてもよい。   62 and 63, shuttlecock 1 basically has the same structure as the shuttlecock shown in FIGS. 42 and 43, but the shape of artificial feather 3 and the fusion between adjacent artificial feathers 3 are the same. The arrangement of the landing fixing portion 41 is different from that of the shuttlecock shown in FIGS. That is, as shown in FIG. 63, the artificial feather 3 constituting the shuttlecock 1 in the present embodiment basically has the same configuration as the artificial feather 3 shown in FIG. The shape is different. Specifically, as shown in FIG. 63, in the artificial feather 3 constituting the shuttlecock 1 shown in FIG. 62, an extending portion 50 that protrudes to the outer peripheral side is formed in the wing body portion 5. The extending portion 50 extends in a direction away from the shaft 7 (specifically, a direction crossing the shaft 7, more specifically, a direction orthogonal to the shaft 7). In the shuttlecock 1 shown in FIG. 62, the extending portion 50 of the artificial feather 3 extends to a position beyond the shaft 7 of the other artificial feather 3 on the inner peripheral side of the other adjacent artificial feather 3. is doing. The extending portion 50 and the wing body portion 5 of the other artificial feather 3 are connected and fixed by a fusion fixing portion 41 at a position beyond the shaft 7. In the fusion fixing part 41, a reinforcing member 43 may be disposed between the extension part 50 and the wing body part 5 of another artificial feather 3 as shown in FIG. Further, the planar shape of the fusion fixing part 41 may be an arbitrary shape as shown in FIGS. 47 to 51, for example.

また、融着固定部41の配置については、少なくとも一部が、人工羽根3の軸7(図63参照)に垂直な方向である幅方向において、軸7と羽本体部5(図63参照)の端部(図62の羽本体部において軸7と対向する外周部のうちもっとも軸7から離れた部分)との間の中間点より軸7寄りの領域に形成される。すなわち、図62に示した軸7の中心軸22と、羽本体部において幅方向にて軸7から最も離れた端部を通り、当該中心軸22に平行な線分23とを考える。そして、この中心軸22と線分23との間の中間点を通り、中心軸22に平行な線分24を規定すると、融着固定部41の少なくとも一部は羽本体部5において線分24と軸7とで囲まれる領域に位置することが好ましい。なお、上述した羽本体部において軸7と対向する外周部とは、羽本体部5において延在部50を含まない領域の外周部を意味する。   As for the arrangement of the fusion fixing portion 41, at least a part of the shaft 7 and the wing body portion 5 (see FIG. 63) in the width direction which is a direction perpendicular to the shaft 7 of the artificial feather 3 (see FIG. 63). 62 (in the wing body portion of FIG. 62, the outermost portion facing the shaft 7, the portion farthest from the shaft 7) is formed in a region closer to the shaft 7. That is, consider the central axis 22 of the shaft 7 shown in FIG. 62 and the line segment 23 that passes through the end portion farthest from the shaft 7 in the width direction in the wing body and is parallel to the central axis 22. When a line segment 24 passing through an intermediate point between the central axis 22 and the line segment 23 and parallel to the central axis 22 is defined, at least a part of the fusion fixing portion 41 is separated from the line segment 24 in the wing body 5. It is preferably located in a region surrounded by the shaft 7. In addition, the outer peripheral part facing the shaft 7 in the above-described wing main body part means an outer peripheral part of a region that does not include the extending part 50 in the wing main body part 5.

このような構成としても、図42および図43に示したシャトルコック1と同様に、人工羽根3の羽本体部5の積層状態を維持することができる。さらに、融着固定部41が隣接する他の人工羽根3の軸7を越えた位置に配置されているため、図42および図43に示したように融着固定部41が他の人工羽根3の軸7より手前側に配置されている場合より、人工羽根3の形状の自由度や融着固定部41の配置の自由度が大きくなる。このため、図62に示した構成とすれば、羽本体部5の中央から先端側(ベース本体2から離れる方向の端部側)においても人工羽根3の捻り角を所定の大きさに維持することができる。また、融着固定部41が羽本体部5の外周から突出した延在部50に形成されているので、隣接する人工羽根3について、軸7の延在方向から見た羽本体部5同士のなす角度(捻り角)を十分大きくすることができる。つまり、天然シャトルコックの形状に近い形状を実現できる。   Even in such a configuration, the laminated state of the wing body 5 of the artificial feather 3 can be maintained as in the shuttlecock 1 shown in FIGS. 42 and 43. Furthermore, since the fusion fixing part 41 is disposed at a position beyond the axis 7 of the other artificial feather 3 adjacent to the fusion fixing part 41, the fusion fixing part 41 is arranged in the other artificial feather 3 as shown in FIGS. The degree of freedom of the shape of the artificial feather 3 and the degree of freedom of the arrangement of the fusion fixing part 41 are larger than the case of being disposed on the near side of the shaft 7. For this reason, with the configuration shown in FIG. 62, the twist angle of the artificial feather 3 is maintained at a predetermined size even from the center of the wing body 5 to the tip side (the end side in the direction away from the base body 2). be able to. In addition, since the fusion fixing part 41 is formed in the extending part 50 protruding from the outer periphery of the wing body part 5, the adjacent artificial feathers 3 are arranged between the wing body parts 5 viewed from the extending direction of the shaft 7. The formed angle (twist angle) can be made sufficiently large. That is, a shape close to that of a natural shuttlecock can be realized.

なお、延在部50の形状は、図63に示したような形状に限られず、他の任意の形状とすることができる。たとえば、融着固定部41のサイズを十分に大きくするため、延在部50の先端部(軸7から離れる方向の端部)の幅が、延在部50における他の部分の幅より大きくなっていてもよい。また、羽本体部5において軸7から見て一方側の部分が他方側の部分より全体として大きくなっている(軸7に交差する方向における一方側の部分の幅が、他方側の部分の幅より大きくなっている)構成として、一方側の部分のうち隣接する他の人工羽根3の軸7を越えた位置にまで延びている部分を延在部50としてもよい。また、融着固定部41を図42および図43に示すシャトルコック1と同様に軸7を越えない位置に配置してもよい。   In addition, the shape of the extension part 50 is not restricted to a shape as shown in FIG. 63, It can be set as other arbitrary shapes. For example, in order to sufficiently increase the size of the fusion fixing portion 41, the width of the distal end portion (the end portion in the direction away from the shaft 7) of the extending portion 50 is larger than the width of other portions in the extending portion 50. It may be. Further, in the wing body portion 5, the one side portion as viewed from the shaft 7 is larger than the other side portion as a whole (the width of the one side portion in the direction intersecting the shaft 7 is the width of the other side portion). As a configuration (which is larger), a portion extending to a position beyond the axis 7 of another adjacent artificial feather 3 in the one side portion may be used as the extending portion 50. Further, the fusion fixing portion 41 may be arranged at a position not exceeding the shaft 7 as in the shuttlecock 1 shown in FIGS. 42 and 43.

図64は、図62に示した本発明によるシャトルコックの実施の形態13の変形例を示す上面模式図である。図64を参照して、本発明によるシャトルコックの実施の形態13の変形例を説明する。   64 is a schematic top view showing a modification of the thirteenth embodiment of the shuttlecock according to the present invention shown in FIG. A modification of the thirteenth embodiment of the shuttlecock according to the present invention will be described with reference to FIG.

図64に示したシャトルコック1は、基本的には図62に示したシャトルコック1と同様の構成を備えるが、内糸17が設置されている点が異なる。内糸17は、図45および図46に示したシャトルコック1に設置された内糸17と同様の配置とすることができる。このようにすれば、図62に示したシャトルコック1による効果に加えて、人工羽根3の羽本体部が内周側(内糸17が位置する側)に屈曲することを抑制できる。この結果、シャトルコック1の空気抵抗などの特性が大きく変わるといった問題の発生をより確実に抑制できる。なお、図64では図62に示したシャトルコック1に内糸17を適用した例を示したが、図62に示したシャトルコック1に、図54などに示した中糸15や図57に示した外糸19などを設置してもよい。また、これら中糸15、内糸17、外糸19は任意の組合せで図62に示したシャトルコック1に適用してもよい。   The shuttlecock 1 shown in FIG. 64 basically has the same configuration as the shuttlecock 1 shown in FIG. 62, except that an inner thread 17 is installed. The inner thread 17 can be arranged in the same manner as the inner thread 17 installed in the shuttlecock 1 shown in FIGS. 45 and 46. If it does in this way, in addition to the effect by the shuttlecock 1 shown in FIG. 62, it can suppress that the wing | blade main-body part of the artificial feather 3 bends to the inner peripheral side (side in which the inner thread | yarn 17 is located). As a result, it is possible to more reliably suppress the occurrence of a problem that characteristics such as air resistance of the shuttlecock 1 are greatly changed. 64 shows an example in which the inner thread 17 is applied to the shuttlecock 1 shown in FIG. 62. However, the shuttlecock 1 shown in FIG. 62 is shown in the middle thread 15 shown in FIG. An outer thread 19 or the like may be installed. Further, these middle thread 15, inner thread 17 and outer thread 19 may be applied to the shuttlecock 1 shown in FIG. 62 in any combination.

また、図62および図64に示したシャトルコック1では、延在部50と他の人工羽根3の羽本体部5との固定部として融着固定部41を形成したが、当該固定部として図53に示すような接着部材53を用いた接着固定部51を形成してもよい。   Further, in the shuttlecock 1 shown in FIGS. 62 and 64, the fusion fixing part 41 is formed as a fixing part between the extension part 50 and the wing body part 5 of the other artificial feather 3; An adhesive fixing portion 51 using an adhesive member 53 as shown in 53 may be formed.

なお、上述した実施の形態7〜実施の形態13については、ベース本体2の構成を実施の形態1におけるベース本体2の構成としているが、これらの実施の形態7〜実施の形態13について実施の形態2〜実施の形態6に示したベース本体2のいずれかを適用していもよい。   In addition, about Embodiment 7-Embodiment 13 mentioned above, although the structure of the base main body 2 is made into the structure of the base main body 2 in Embodiment 1, implementation of these Embodiment 7-Embodiment 13 is implemented. Any one of the base main bodies 2 shown in the second to sixth embodiments may be applied.

(実施例)
以下のように、本発明に従ったシャトルコックを作製し、その飛翔性能と耐久性について評価を行なった。
(Example)
A shuttlecock according to the present invention was produced as follows, and its flight performance and durability were evaluated.

(試料の作成)
人工羽根の作製:
まず、図38に示した製造方法と同様に、積層シート準備工程(S60)を実施した。具体的には、シート状部材としてポリエステル製の不織布(目付けが30g/m2、厚みが0.2mm)にポリエチレン製発泡シート(厚み1.0mm)を貼り合わせたものを準備した。このようにシート状部材を積層構造とすることで、不織布がシート状部材と軸との密着性を高める効果を有し、発泡シートといった樹脂層が羽根の形状保持機能(変形防止機能)を高める効果を有する。また、不織布は発泡シートを貼り合わせる基材としての役割も有する。そして、このシート状部材を金型の内部に設置した。そして、内部にシート状部材が配置された金型を、当該内部に軸を構成する樹脂を注入可能な状態に配置した。その後、軸となる樹脂としてナイロン樹脂を金型内部に注入した。この結果、金型内部において積層シートからなるシート状部材と接触固定した状態で軸が形成された。次に、金型の内部から軸が接続固定されたシート状部材を取出した。そして、当該シート状部材の不要部を裁断し、図33に示したような人工羽根を得た。なお、人工羽根の長さは74mm、羽本体部5の最大幅は18mmとした。ここで、羽本体部5の最大幅とは、羽本体部5において軸に垂直な方向(図33における横方向)での最大幅を意味する。
(Sample preparation)
Fabrication of artificial feathers:
First, similarly to the manufacturing method shown in FIG. 38, a laminated sheet preparation step (S60) was performed. Specifically, a polyester non-woven fabric (weighing 30 g / m 2 , thickness 0.2 mm) and a polyethylene foam sheet (thickness 1.0 mm) were prepared as a sheet-like member. Thus, by making a sheet-like member into a laminated structure, a nonwoven fabric has the effect which improves the adhesiveness of a sheet-like member and an axis | shaft, and resin layers, such as a foam sheet, improve the shape retention function (deformation prevention function) of a blade | wing. Has an effect. The nonwoven fabric also has a role as a base material on which the foam sheet is bonded. And this sheet-like member was installed in the inside of a metal mold | die. And the metal mold | die with which the sheet-like member was arrange | positioned inside was arrange | positioned in the state which can inject | pour the resin which comprises a shaft into the said inside. Thereafter, nylon resin was injected into the mold as the shaft resin. As a result, the shaft was formed in a state in which it was fixed in contact with a sheet-like member made of a laminated sheet inside the mold. Next, the sheet-like member with the shaft connected and fixed was taken out from the inside of the mold. And the unnecessary part of the said sheet-like member was cut | judged, and the artificial feather | wing as shown in FIG. 33 was obtained. The length of the artificial feather was 74 mm, and the maximum width of the feather body 5 was 18 mm. Here, the maximum width of the wing body portion 5 means the maximum width in the direction perpendicular to the axis (lateral direction in FIG. 33) in the wing body portion 5.

次に、ベース本体としては、アイオノマー発泡体からなり、図1〜図3などに示した凸部61を有するベース本体を準備した。なお、凸部61の高さ(固定用表面部の外周部表面からの高さ)は2mmとし、当該凸部61の外周部に人工羽根の軸を挿入するための複数の挿入穴をドリルで形成した。挿入穴の配置は図2に示したベース本体における挿入穴の配置と同様とした。   Next, a base body made of an ionomer foam and having the convex portions 61 shown in FIGS. 1 to 3 was prepared as the base body. The height of the convex portion 61 (height from the outer peripheral surface of the fixing surface portion) is 2 mm, and a plurality of insertion holes for inserting the artificial feather shaft into the outer peripheral portion of the convex portion 61 are drilled. Formed. The arrangement of the insertion holes was the same as the arrangement of the insertion holes in the base body shown in FIG.

そして、準備したベース本体の挿入穴に人工羽根の軸を挿入した。この結果、複数の人工羽根が環状に配置された。なお、このとき人工羽根においては、羽本体部の発泡シートがシャトルコックの外周側に向くように、人工羽根を配置した。そして、人工羽根の軸が挿入された挿入穴の近傍において、凸部61の上部表面から凸部の側壁および軸表面を介して固定用表面部の外周部にまで延在するように接着剤を塗布した。接着剤としては硝化綿を用いた。   And the axis | shaft of the artificial feather | wing was inserted in the insertion hole of the prepared base main body. As a result, a plurality of artificial feathers were arranged in an annular shape. At this time, in the artificial feather, the artificial feather was arranged so that the foam sheet of the feather main body portion was directed to the outer peripheral side of the shuttlecock. Then, in the vicinity of the insertion hole in which the shaft of the artificial feather is inserted, the adhesive is extended from the upper surface of the convex portion 61 to the outer peripheral portion of the fixing surface portion through the side wall of the convex portion and the shaft surface. Applied. Nitrified cotton was used as the adhesive.

次に、環状に配置された人工羽根の軸を互いに固定するようにかがり糸を配置した。かがり糸は図39に示したシャトルコックと同様に2段配置した。当該かがり糸としてはアラミド繊維からなる糸を用いた。なお、かがり糸としてポリエステル糸を用いてもよい。そして、当該かがり糸に熱硬化性樹脂を塗布し、加熱することで当該熱硬化性樹脂を硬化した。この結果、かがり糸と上記熱硬化性樹脂とによりFRP化した固定用紐状体が形成された。なお、熱硬化性樹脂としてはエポキシ樹脂を用いた。   Next, the yarn was arranged so that the shafts of the artificial feathers arranged in an annular shape were fixed to each other. As with the shuttlecock shown in FIG. As the warp yarn, a yarn made of aramid fiber was used. A polyester yarn may be used as the warp yarn. And the thermosetting resin was apply | coated to the said thread, and the said thermosetting resin was hardened by heating. As a result, a fixing string-like body formed into FRP by the warp yarn and the thermosetting resin was formed. An epoxy resin was used as the thermosetting resin.

また、この加熱により、人工羽根を構成するシート状部材の発泡シートが収縮した。この結果、発泡シートはシャトルコックの外周側に向くように配置されていたことから、人工羽根(軸や羽本体部)がシャトルコックの外周側にむけて反った状態となった。この人工羽根の形状は、天然の水鳥の羽根の形状に近似したものであり、シャトルコックの形状としてはより好ましいものとなった。   Moreover, the foamed sheet of the sheet-like member constituting the artificial feather contracted by this heating. As a result, since the foam sheet was disposed so as to face the outer peripheral side of the shuttlecock, the artificial feathers (shaft and wing body part) were warped toward the outer peripheral side of the shuttlecock. The shape of the artificial feather is similar to the shape of a natural waterfowl feather, and the shape of the shuttlecock is more preferable.

その後、FRP化した固定用紐状体の表面にさらにコーティング剤を塗布した。このコーティング剤としては硝化綿を用いた。この結果、FRP化した固定用紐状体の強度をより高めることができる。   Thereafter, a coating agent was further applied to the surface of the FRP-formed fixing string. Nitrified cotton was used as the coating agent. As a result, it is possible to further increase the strength of the FRP-fixed fixing string.

その後、図39〜図41に示したシャトルコック1と同様に、人工羽根3の交錯を防止するための中糸15(図41参照)を設置した。なお、中糸としてはポリエステル製の糸(50番手)を用いた。   Thereafter, similarly to the shuttlecock 1 shown in FIGS. 39 to 41, a middle thread 15 (see FIG. 41) for preventing the artificial feathers 3 from intermingling was installed. A polyester yarn (50 count) was used as the middle yarn.

(試験)
準備した実施例としてのシャトルコックについて、打撃試験を行ない、飛翔特性および耐久性について試験者による官能評価を行なった。
(test)
The prepared shuttlecock as an example was subjected to a striking test and subjected to a sensory evaluation by a tester for flight characteristics and durability.

(結果)
実施例としてのシャトルコックの飛翔特性は、水鳥の羽根を用いた天然シャトルコックの飛翔特性とほぼ同等であった。また、耐久性についても、ハイクリアを250回、スマッシュを20回を交えた耐久テストを行なった結果、形状の顕著な変化や飛翔特性の大幅な変化はほとんど無く、十分高い耐久性を示した。
(result)
The flight characteristics of the shuttlecock as an example were almost the same as the flight characteristics of a natural shuttlecock using waterfowl feathers. As for durability, as a result of endurance test with high clear 250 times and smash 20 times, there was almost no noticeable change in shape and drastic change in flight characteristics, and it showed sufficiently high durability. .

上述した実施の形態と一部重複する部分もあるが、本願発明の特徴的な構成を以下に列挙する。   Although there is a part which overlaps with embodiment mentioned above, the characteristic structure of this invention is enumerated below.

この発明に従ったシャトルコック用ベース本体2は、シャトルコック用羽根としての人工羽根3の軸7を固定する固定用表面部(ベース本体2において挿入穴63が形成された側の面)を備えるシャトルコック用ベース本体であって、固定用表面部には、軸7を挿入固定するための複数の挿入穴63と、挿入穴63に隣接し、固定用表面部の表面から突出する凸部(凸部61または弾性体部材71)とが形成されている。   The shuttlecock base body 2 according to the present invention includes a fixing surface portion (a surface on the side where the insertion hole 63 is formed in the base body 2) for fixing the shaft 7 of the artificial feather 3 as a shuttlecock blade. In the shuttlecock base body, the fixing surface portion includes a plurality of insertion holes 63 for inserting and fixing the shaft 7, and convex portions that are adjacent to the insertion holes 63 and project from the surface of the fixing surface portion ( A convex portion 61 or an elastic member 71) is formed.

このようにすれば、挿入穴63に軸7を挿入した状態で接着部材としての接着剤64を配置するときに、挿入穴63内部から挿入穴63に隣接する(つまり軸7に隣接する)凸部61上にまで接着剤64を延在させることができる。このため、凸部61が存在しない場合に比べて接着剤64とベース本体2との接着面の面積を大きくできるとともに、接着面の形状が立体的な形状となる。このため、接着剤64とベース本体2および人工羽根3の軸7との接着強度を向上させることができる。   In this way, when the adhesive 64 as the adhesive member is disposed in a state where the shaft 7 is inserted into the insertion hole 63, the protrusion adjacent to the insertion hole 63 from the inside of the insertion hole 63 (that is, adjacent to the shaft 7). The adhesive 64 can be extended onto the portion 61. For this reason, compared with the case where the convex part 61 does not exist, while the area of the adhesive surface of the adhesive 64 and the base main body 2 can be enlarged, the shape of an adhesive surface becomes a three-dimensional shape. For this reason, the adhesive strength between the adhesive 64 and the base body 2 and the shaft 7 of the artificial feather 3 can be improved.

上記シャトルコック用ベース本体2において、複数の挿入穴63は、固定用表面部において円周状に配置されていてもよい。凸部61または弾性体部材71は、図1および図2に示すように円周状に配置された複数の挿入穴63の内周側に隣接して形成されていてもよい。   In the shuttlecock base body 2, the plurality of insertion holes 63 may be arranged circumferentially on the fixing surface portion. As shown in FIGS. 1 and 2, the convex portion 61 or the elastic member 71 may be formed adjacent to the inner peripheral side of the plurality of insertion holes 63 arranged circumferentially.

この場合、挿入穴63に軸7を挿入した状態で接着剤64を配置するときに、挿入穴63内部から挿入穴63の内周側に隣接する(つまり軸7の外周側面に隣接する)凸部61または弾性体部材71上にまで接着剤64を延在させることができる。このため、挿入穴63に軸7が挿入されることで環状に配置された人工羽根3に、外周側から応力が加わった場合、軸7が内周側に大きく変形することを抑制する補強部材として凸部61または弾性体部材71が作用する。このため、シャトルコック1の耐久性をより向上させることができる。   In this case, when the adhesive 64 is disposed in a state where the shaft 7 is inserted into the insertion hole 63, the convex adjacent from the inside of the insertion hole 63 to the inner peripheral side of the insertion hole 63 (that is, adjacent to the outer peripheral side surface of the shaft 7). The adhesive 64 can be extended to the part 61 or the elastic member 71. Therefore, when stress is applied from the outer peripheral side to the artificial feather 3 arranged annularly by inserting the shaft 7 into the insertion hole 63, a reinforcing member that suppresses the shaft 7 from being greatly deformed to the inner peripheral side. The convex part 61 or the elastic body member 71 acts. For this reason, the durability of the shuttlecock 1 can be further improved.

上記シャトルコック用ベース本体2において、図2や図28などに示すように、凸部61は固定用表面部と一体となっていてもよい。この場合、凸部61が固定用表面部(すなわちベース本体2)と一体となっているので、凸部61を後からベース本体2の固定用表面部に接着するような場合に比べて、ベース本体2の製造工程を簡略化できる。また、固定用表面部と凸部61とが一体となっているので、後で固定用表面部に貼り合せて形成された凸部より、凸部61の強度(当該凸部61と固定用表面部との間の強度)を十分高めることができる。   In the shuttlecock base body 2, as shown in FIGS. 2 and 28, the convex portion 61 may be integrated with the fixing surface portion. In this case, since the convex portion 61 is integrated with the fixing surface portion (that is, the base main body 2), the base portion is compared with the case where the convex portion 61 is adhered to the fixing surface portion of the base main body 2 later. The manufacturing process of the main body 2 can be simplified. Further, since the fixing surface portion and the convex portion 61 are integrated, the strength of the convex portion 61 (the convex portion 61 and the fixing surface are compared with the convex portion that is formed by bonding to the fixing surface portion later). Strength between the two parts) can be sufficiently increased.

上記シャトルコック用ベース本体2において、凸部は、図31に示すように、固定用表面部に凸部となるべき部材(弾性体部材71)を接合することにより形成されていてもよい。   In the shuttlecock base body 2, as shown in FIG. 31, the convex portion may be formed by joining a member (elastic body member 71) to be the convex portion to the fixing surface portion.

この場合、凸部としての弾性体部材71が固定用表面部(すなわちベース本体2)とは別部材によって構成されるので、ベース本体2の材質とは独立して凸部(弾性体部材71)の材質を決定することができる。そのため、たとえば軸7に加わる衝撃を緩衝するためにベース本体2とは異なる特性の弾性体などを凸部の材料として用いることができる。このため、ベース本体2の設計の自由度を大きくすることができる。   In this case, since the elastic member 71 as the convex portion is constituted by a member different from the fixing surface portion (that is, the base main body 2), the convex portion (elastic member 71) is independent of the material of the base main body 2. The material can be determined. Therefore, for example, an elastic body having a characteristic different from that of the base body 2 can be used as the material of the convex portion in order to buffer the impact applied to the shaft 7. For this reason, the freedom degree of design of the base main body 2 can be enlarged.

上記シャトルコック用ベース本体2において、凸部(弾性体部材71)は弾性体によって構成されてもよい。この場合、凸部が弾性体により構成されるので、軸7に加わる衝撃を緩衝するための緩衝材として凸部としての弾性体部材71が効果的に作用する。このため、上記ベース本体2を用いたシャトルコック1の耐久性をより向上させることができる。   In the shuttlecock base body 2, the convex portion (elastic member 71) may be formed of an elastic body. In this case, since the convex portion is constituted by an elastic body, the elastic body member 71 as the convex portion effectively acts as a buffer material for buffering the impact applied to the shaft 7. For this reason, the durability of the shuttlecock 1 using the base body 2 can be further improved.

上記シャトルコック用ベース本体2では、凸部61または弾性体部材71において、挿入穴63に面する表面(側壁62、72)は、挿入穴63の延在方向に沿った方向に延びるように形成されていてもよい。   In the shuttlecock base body 2, the surface (side walls 62, 72) facing the insertion hole 63 in the convex portion 61 or the elastic member 71 is formed to extend in a direction along the extending direction of the insertion hole 63. May be.

この場合、人工羽根3の軸7を挿入穴63に挿したときに、凸部61または弾性体部材71の側壁62、72が軸7に沿った状態になる。このため、接着剤64などで軸7をベース本体2に固定する場合、軸7に沿った凸部61または弾性体部材71の側壁62、72と当該軸7との間を接着剤64により容易に固定することができる。このため、軸7の固定強度をより高めることができる。   In this case, when the shaft 7 of the artificial feather 3 is inserted into the insertion hole 63, the convex portions 61 or the side walls 62 and 72 of the elastic member 71 are in a state along the shaft 7. For this reason, when the shaft 7 is fixed to the base body 2 with the adhesive 64 or the like, the adhesive 64 can easily connect the convex portion 61 along the shaft 7 or the side walls 62 and 72 of the elastic member 71 and the shaft 7. Can be fixed to. For this reason, the fixing strength of the shaft 7 can be further increased.

上記シャトルコック用ベース本体2では、凸部61または弾性体部材71において、挿入穴63に面する表面(側壁62、72)は、たとえば図28に示すように固定用表面部の表面に対して垂直な方向に延びるように形成されていてもよい。なお、ここで固定用表面部の表面に対して垂直な方向とは、固定用表面の中心を通り、かつ固定用表面の表面に対して垂直な方向となる断面において、挿入穴に面する凸部の表面が、固定用表面の表面に対して垂直な方向となる場合だけではなく、当該垂直な方向に対して当該凸部の表面の傾き角が絶対値で5°以下の場合も含む。   In the shuttlecock base body 2, the surface (side walls 62, 72) facing the insertion hole 63 in the convex portion 61 or the elastic member 71 is, for example, as shown in FIG. 28 with respect to the surface of the fixing surface portion. You may form so that it may extend in a perpendicular direction. Here, the direction perpendicular to the surface of the fixing surface means the convexity that faces the insertion hole in a cross section that passes through the center of the fixing surface and is perpendicular to the surface of the fixing surface. This includes not only the case where the surface of the portion is in the direction perpendicular to the surface of the fixing surface, but also the case where the inclination angle of the surface of the convex portion is 5 ° or less in absolute value relative to the perpendicular direction.

この場合、たとえば凸部61をベース本体2の固定用表面部を切削することにより形成するときには、凸部61の当該表面が固定用表面部に対して傾斜している場合より、当該凸部61の加工を容易に行なうことができる。また、弾性体部材71を準備する場合にも、弾性体部材71の側壁72が傾斜している場合より、当該弾性体部材71の加工を容易に行なうことができる。   In this case, for example, when the convex portion 61 is formed by cutting the fixing surface portion of the base body 2, the convex portion 61 is more than the case where the surface of the convex portion 61 is inclined with respect to the fixing surface portion. Can be easily processed. Also, when the elastic member 71 is prepared, the elastic member 71 can be processed more easily than when the side wall 72 of the elastic member 71 is inclined.

この発明に従ったシャトルコック用ベース本体2は、人工羽根3の軸7を固定する固定用表面部を備えるシャトルコック用ベース本体であって、固定用表面部(たとえば図2の挿入穴63が形成された側の表面)には、平面形状が円周状の凹部(凸部61または弾性体部材71の周囲に位置するベース本体2の凹部)と、凹部の側壁(凸部61の側壁62または弾性体部材71の側壁72)に隣接して円周状に配置され、シャトルコック用羽根である人工羽根3の軸7を挿入固定するための複数の挿入穴63とが形成されている。   The shuttlecock base main body 2 according to the present invention is a shuttlecock base main body having a fixing surface portion for fixing the shaft 7 of the artificial feather 3, and includes a fixing surface portion (for example, the insertion hole 63 in FIG. On the formed surface), the planar shape is a circumferential recess (the protrusion 61 or the recess of the base body 2 positioned around the elastic member 71), and the side wall of the recess (the side wall 62 of the protrusion 61). Alternatively, a plurality of insertion holes 63 for inserting and fixing the shaft 7 of the artificial feather 3 which is a shuttlecock blade are arranged circumferentially adjacent to the side wall 72) of the elastic member 71.

このようにすれば、挿入穴63に軸7を挿入した状態でベース本体2に軸7を固定するため接着剤64を配置するときに、挿入穴63内部から挿入穴63に隣接する(つまり挿入穴63に挿入された軸7に隣接する)凹部側壁(凸部61または弾性体部材71の側壁62、72)にまで接着剤64を延在させることができる。このため、単に平面に挿入穴63を形成した場合に比べて接着剤64とベース本体2との接着面の面積を大きくできる。さらに、接着面の形状が立体的な形状となるため、軸7とベース本体2との接着強度を向上させることができる。   In this way, when the adhesive 64 is disposed to fix the shaft 7 to the base body 2 with the shaft 7 inserted into the insertion hole 63, the insertion hole 63 is adjacent to the insertion hole 63 (that is, the insertion hole 63 is inserted). The adhesive 64 can be extended to the concave side wall (the convex portion 61 or the side walls 62 and 72 of the elastic member 71) adjacent to the shaft 7 inserted into the hole 63. For this reason, the area of the bonding surface between the adhesive 64 and the base body 2 can be increased as compared with the case where the insertion hole 63 is simply formed in the plane. Furthermore, since the shape of the bonding surface is a three-dimensional shape, the bonding strength between the shaft 7 and the base body 2 can be improved.

この発明に従ったバドミントン用シャトルコック1は、上記シャトルコック用ベース本体2と、ベース本体2の固定用表面部に形成された複数の挿入穴63に軸7が挿入固定されたシャトルコック用羽根である人工羽根3とを備える。   A shuttlecock 1 for badminton according to the present invention includes a shuttlecock blade in which a shaft 7 is inserted and fixed in the shuttlecock base body 2 and a plurality of insertion holes 63 formed in a fixing surface portion of the base body 2. And an artificial feather 3.

このようにすれば、シャトルコック1の使用時に、人工羽根3に外側から応力が加わった場合に、当該人工羽根3の軸7を支える補強部として凸部61または弾性体部材71を利用できる。このため、耐久性に優れたシャトルコック1を実現できる。   In this way, when the shuttlecock 1 is used, when stress is applied to the artificial feather 3 from the outside, the convex portion 61 or the elastic member 71 can be used as a reinforcing portion that supports the shaft 7 of the artificial feather 3. For this reason, the shuttlecock 1 excellent in durability is realizable.

上記バドミントン用シャトルコック1において、シャトルコック用羽根は、羽部と、羽部に接続された軸7とを備える人工羽根3であってもよい。軸7は、固着軸部10と、固着軸部10に連なる羽軸部8とを含んでいてもよい。羽部を構成する部材であるシート状部材9、90は、固着軸部10と接触し固着軸部10より幅の広い羽本体部5と、羽本体部5から羽軸部8に突出する突出部12とを含んでいてもよい。突出部12において羽本体部5側と反対側の端部は羽軸部8を構成する部材に埋設されていてもよい。   In the badminton shuttlecock 1, the shuttlecock blade may be an artificial feather 3 including a wing portion and a shaft 7 connected to the wing portion. The shaft 7 may include a fixed shaft portion 10 and a wing shaft portion 8 connected to the fixed shaft portion 10. The sheet-like members 9 and 90 which are members constituting the wing part are in contact with the fixed shaft part 10 and wider than the fixed shaft part 10, and the protrusion protruding from the wing main body part 5 to the wing shaft part 8. Part 12 may be included. The end of the protruding part 12 opposite to the wing body part 5 side may be embedded in a member constituting the wing shaft part 8.

この場合、固着軸部10に羽本体部5が接触、固定されるとともに、羽部を構成する部材であるシート状部材9、90の突出部12が羽軸部8を構成する部材に埋設されているため、羽部と軸7との接合強度を高めることができる。また、羽軸部8に羽部を構成する部材であるシート状部材9、90の突出部12が埋設された状態になっているので、埋設された当該突出部12が羽軸部8の補強部材として作用する。したがって、羽本体部5と羽軸部8との接合部および羽軸部8の耐久性を十分高めることができる。また、固着軸部10についても羽本体部5が補強部材として作用するため、当該固着軸部10の耐久性も高めることができる。このため、高い耐久性を有するシャトルコック用人工羽根3を用いてシャトルコック1を構成することができる。また、人工羽根3の軸7は、天然のシャトルコック用羽根の軸より強度が劣る場合が多いが、上述したベース本体2の凸部61または弾性体部材71を補強部材として利用することで、人工羽根3の軸7の耐久性を向上させることができる。つまり、本発明のベース本体2は人工羽根を用いたシャトルコックにおいて特に有効である。   In this case, the wing body 5 is brought into contact with and fixed to the fixed shaft 10, and the protrusions 12 of the sheet-like members 9 and 90 that are members constituting the wing are embedded in the member constituting the wing shaft 8. Therefore, the joint strength between the wing portion and the shaft 7 can be increased. In addition, since the projecting portions 12 of the sheet-like members 9 and 90 that are members constituting the wing portion are embedded in the wing shaft portion 8, the embedded projecting portions 12 are used to reinforce the wing shaft portion 8. Acts as a member. Therefore, the junction between the wing body 5 and the wing shaft portion 8 and the durability of the wing shaft portion 8 can be sufficiently enhanced. Moreover, since the wing body part 5 also acts as a reinforcing member for the fixed shaft part 10, the durability of the fixed shaft part 10 can also be improved. For this reason, the shuttlecock 1 can be comprised using the artificial feather | wing 3 for shuttlecocks which has high durability. Further, the shaft 7 of the artificial feather 3 is often inferior in strength to the shaft of the natural shuttlecock blade, but by using the convex portion 61 or the elastic member 71 of the base body 2 described above as a reinforcing member, The durability of the shaft 7 of the artificial feather 3 can be improved. That is, the base body 2 of the present invention is particularly effective in a shuttlecock using artificial feathers.

なお、突出部12は羽軸部8の下端(羽軸部8において羽本体部5側とは反対側の端部)にまで延在していてもよいが、当該下端に到達する前の途中の領域まで存在するようにしていてもよい。たとえば、羽軸部8の全長の50%以上、より好ましくは80%以上の範囲に突出部12が存在していればよい。   The protruding portion 12 may extend to the lower end of the wing shaft portion 8 (the end portion of the wing shaft portion 8 on the side opposite to the wing body portion 5 side), but halfway before reaching the lower end. It may be possible to exist up to the region. For example, the protrusion 12 may be present in a range of 50% or more, more preferably 80% or more of the entire length of the wing shaft part 8.

上記シャトルコック用の人工羽根3において、羽部を構成するシート状部材9、90では、羽本体部5と突出部12とが一連の部材により構成されている。このようにすれば、シート状部材9、90によって軸7の補強をより確実に行なうことができる。特に、軸7の羽軸部8と固着軸部10の境界部について、一連の部材であるシート状部材9、90が配置されていることから、当該境界部の強度を確実に補強できる。   In the artificial feather 3 for the shuttlecock, in the sheet-like members 9 and 90 constituting the wing part, the wing body part 5 and the protruding part 12 are constituted by a series of members. In this way, the shaft 7 can be more reliably reinforced by the sheet-like members 9 and 90. In particular, since the sheet-like members 9 and 90, which are a series of members, are arranged at the boundary portion between the blade shaft portion 8 and the fixed shaft portion 10 of the shaft 7, the strength of the boundary portion can be reliably reinforced.

上記人工羽根3において、羽部を構成するシート状部材9、90は、軸7との接続部において軸7の内部または表層に配置されるとともに、図6〜図8に示すように、軸7と接触する部分(軸7に埋設された部分または軸7の表層に接触固定された部分)が屈曲または湾曲していてもよい。このようにすれば、シート状部材9、90と軸7を構成する部材との接触面積を大きくできるので、シート状部材9、90と軸7との接続強度を向上させることができる。したがって、人工羽根3の強度や耐久性を向上させることができる。ここで、シート状部材9、90の軸7と接触する部分が屈曲又は湾曲しているとは、図8などに示すようにシート状部材9、90の軸7と接触する部分がカーブを描くように曲がっている(湾曲している)場合のみではなく、シート状部材9、90の当該部分が明確な角部を有するように折れ曲がっている(屈曲している)状態を含み、さらに、当該部分でのシート状部材9、90の曲がる部分(角部)の数は1つに限られず2つ以上であってもよい。   In the artificial feather 3, the sheet-like members 9 and 90 constituting the wing part are disposed inside or on the surface layer of the shaft 7 at the connection portion with the shaft 7, and as shown in FIGS. The portion in contact with the shaft (the portion embedded in the shaft 7 or the portion fixed in contact with the surface layer of the shaft 7) may be bent or curved. In this way, the contact area between the sheet-like members 9 and 90 and the members constituting the shaft 7 can be increased, so that the connection strength between the sheet-like members 9 and 90 and the shaft 7 can be improved. Therefore, the strength and durability of the artificial feather 3 can be improved. Here, the portion of the sheet-like members 9 and 90 that contacts the shaft 7 is bent or curved, as shown in FIG. 8 and the like, the portion of the sheet-like members 9 and 90 that contacts the shaft 7 draws a curve. Not only in the case of being bent (curved) as described above, but also including a state where the portions of the sheet-like members 9, 90 are bent (bent) so as to have clear corners, The number of bent portions (corner portions) of the sheet-like members 9 and 90 at the portion is not limited to one, and may be two or more.

上記人工羽根3において、羽部のうち軸7に接触している接触部分は、図5に示すように、軸7における羽軸部8側の端部である根元部側から固着軸部10側の端部である先端部側に向けて、軸7の内部に埋設された状態から徐々に軸7の表層に露出するように、軸7中での接触部分の位置が変化してもよい。このようにすれば、上記接触部分の全体が軸7の内部に埋設された状態よりも、軸7とシート状部材9、90との接触部分の面積を大きくすることができる。このため、シート状部材9、90と軸7との接続強度を向上させることができる。この結果、人工羽根3の強度をより向上させるとともに、シート状部材9、90が軸7から剥離することを極力防止できる(耐久性を向上させることができる)。   In the artificial feather 3, the contact portion of the wing portion that is in contact with the shaft 7 is, as shown in FIG. 5, the root portion side of the shaft 7 on the wing shaft portion 8 side to the fixed shaft portion 10 side. The position of the contact portion in the shaft 7 may change so as to be gradually exposed to the surface layer of the shaft 7 from the state embedded in the shaft 7 toward the tip portion side which is the end portion of the shaft 7. In this way, the area of the contact portion between the shaft 7 and the sheet-like members 9 and 90 can be made larger than in the state where the entire contact portion is embedded in the shaft 7. For this reason, the connection strength between the sheet-like members 9 and 90 and the shaft 7 can be improved. As a result, the strength of the artificial feather 3 can be further improved, and the sheet-like members 9 and 90 can be prevented from peeling off from the shaft 7 as much as possible (durability can be improved).

上記人工羽根3において、固着軸部10は、羽本体部5において固着軸部10が羽軸部8と接続された側である一方端部から、一方端部と反対側に位置する他方端部にまで延在していてもよい。この場合、羽本体部5の他方端部(人工羽根3の先端側)においては、当該固着軸部10の内部に羽本体部5を構成するシート状部材9、90が埋設された状態よりも、羽本体部5を構成するシート状部材9、90において固着軸部10と接触する領域の面積を大きくできる。このため、固着軸部10と羽本体部5との接続部のうち特に強度が問題となる、固着軸部10の他方端部(先端部)において、羽本体部5を構成するシート状部材9、90が固着軸部10の内部に埋設された状態よりも、羽本体部5と固着軸部10との接続強度をより高めることができる。   In the artificial feather 3, the fixing shaft portion 10 is the other end portion located on the side opposite to the one end portion from the one end portion on the wing body portion 5 where the fixing shaft portion 10 is connected to the wing shaft portion 8. It may extend to. In this case, at the other end of the wing body part 5 (the tip side of the artificial feather 3), the sheet-like members 9 and 90 constituting the wing body part 5 are embedded in the fixed shaft part 10. The area of the sheet-like members 9 and 90 constituting the wing main body 5 in contact with the fixed shaft portion 10 can be increased. For this reason, the sheet-like member 9 constituting the wing body portion 5 at the other end portion (tip portion) of the fixing shaft portion 10, in which the strength is a problem in the connection portion between the fixing shaft portion 10 and the wing body portion 5. , 90 can be further enhanced in connection strength between the wing body 5 and the fixed shaft 10 than in the state where the fixed shaft 10 is embedded in the fixed shaft 10.

また、上述した人工羽根3は、一連のシート状部材9、90によって軸7を補強していることから、軸7において応力が集中しやすいノッチ部などが形成されず、耐久性に優れる。また、軸7全体にシート状部材9、90が配置された構成により、軸7全体が自然な曲げ撓みの状態を呈するため、当該人工羽根3を用いたシャトルコック1は飛翔性に優れる。さらに、羽本体部5を構成するシート状部材9、90の一部である突出部12が羽軸部8に埋設された状態になるため、羽本体部5と羽軸部8との接続強度も向上する。   Further, since the artificial feather 3 described above reinforces the shaft 7 by the series of sheet-like members 9 and 90, a notch portion where stress tends to concentrate on the shaft 7 is not formed, and is excellent in durability. Moreover, since the whole shaft 7 exhibits a state of natural bending and bending due to the configuration in which the sheet-like members 9 and 90 are disposed on the entire shaft 7, the shuttlecock 1 using the artificial feather 3 is excellent in flight performance. Further, since the protruding portion 12 which is a part of the sheet-like members 9 and 90 constituting the wing main body portion 5 is embedded in the wing shaft portion 8, the connection strength between the wing main body portion 5 and the wing shaft portion 8 is increased. Will also improve.

上記人工羽根3は、羽軸部8の側面から突出するフラップ部31、33をさらに備えていてもよい。このようにすれば、羽本体部5に加えて、フラップ部31、33においてもシャトルコック1の飛翔特性を制御することが可能になる。具体的には、フラップ部31、33の形状やサイズなどを制御することで、シャトルコック1の羽本体部5がラケットによる打撃により変形した場合であっても、ある程度まではシャトルコック1の飛翔時の回転性能を維持することができる。   The artificial feather 3 may further include flap portions 31 and 33 protruding from the side surface of the wing shaft portion 8. In this way, it is possible to control the flight characteristics of the shuttlecock 1 not only in the wing body 5 but also in the flaps 31 and 33. Specifically, by controlling the shapes and sizes of the flap portions 31 and 33, even when the wing body portion 5 of the shuttlecock 1 is deformed by a racket, the shuttlecock 1 flies to a certain extent. The rotation performance at the time can be maintained.

上記人工羽根3において、フラップ部31、33は突出部12の一部であってもよい。この場合、フラップ部を別部材として人工羽根3に後から設置する場合より、突出部12の形成と同時に当該フラップ部31、33を形成できるので、人工羽根3の製造工程を簡略化できる。   In the artificial feather 3, the flap portions 31 and 33 may be a part of the protruding portion 12. In this case, since the flap portions 31 and 33 can be formed simultaneously with the formation of the protruding portion 12, the manufacturing process of the artificial feather 3 can be simplified as compared with the case where the flap portion is separately installed on the artificial feather 3 later.

この発明に従ったシャトルコック用人工羽根の製造方法は、図12に示すように、シート状部材を準備する工程(不織布準備工程(S10)または積層シート準備工程(S60))と、シート状部材の表面上に、シート状部材と固着するように線状の弾性体を形成する工程(樹脂注入工程(S40))と、切断工程(後処理工程(S50)に含まれる、シート状部材9、90の不要部(羽本体部となるべき部分6以外の部分)を切断・除去する工程)とを備える。切断工程では、シート状部材9、90を切断することにより、線状に形成された弾性体からなる軸7の羽軸部8と、当該軸7に連なりシート状部材9、90からなる羽本体部5とを形成する。このようにすれば、本発明に従った人工羽根3を容易に形成できる。   As shown in FIG. 12, the method for manufacturing an artificial feather for a shuttlecock according to the present invention includes a step of preparing a sheet-like member (nonwoven fabric preparation step (S10) or laminated sheet preparation step (S60)), and a sheet-like member. A sheet-like member 9 included in a step (resin injection step (S40)) for forming a linear elastic body so as to adhere to the sheet-like member on the surface of the sheet, and a cutting step (post-treatment step (S50)), 90 unnecessary portions (steps of cutting and removing the portions other than the portion 6 to be the wing body portion). In the cutting step, by cutting the sheet-like members 9 and 90, the wing shaft portion 8 of the shaft 7 made of an elastic body formed in a linear shape, and the wing body consisting of the sheet-like members 9 and 90 connected to the shaft 7 Part 5 is formed. In this way, the artificial feather 3 according to the present invention can be easily formed.

この発明に従ったバドミントン用シャトルコック1の製造方法は、図13に示すように、準備工程(S100)に含まれる半球状のベース本体2を準備する工程と、同様に準備工程(S100)に含まれ、上記シャトルコック用人工羽根の製造方法を用いてシャトルコック用人工羽根3を製造する工程と、ベース本体2にシャトルコック用人工羽根を接続する工程(組立工程(S200))とを供える。このようにすれば、本発明に従ったバドミントン用シャトルコック1を容易に得ることができる。   As shown in FIG. 13, the badminton shuttlecock 1 according to the present invention includes a hemispherical base body 2 included in the preparation step (S100) and a preparation step (S100). A step of manufacturing the shuttlecock artificial feather 3 using the method for manufacturing the shuttlecock artificial feather, and a step of connecting the shuttlecock artificial feather to the base body 2 (an assembly step (S200)). . In this way, the badminton shuttlecock 1 according to the present invention can be easily obtained.

なお、羽本体部5などを構成するシート状部材9の材質としては、任意の繊維を用いることができる。また、軸7の材料としても、任意の樹脂を用いることができる。たとえば、軸7の材料として、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリスルフォン樹脂等またそれらにガラス繊維、炭素繊維などを混ぜた複合プラスチックなどを用いることができる。   In addition, as a material of the sheet-like member 9 which comprises the wing | blade main-body part 5 grade | etc., Arbitrary fibers can be used. Also, any resin can be used as the material of the shaft 7. For example, as the material of the shaft 7, polyamide resin, polyester resin, polycarbonate resin, polyimide resin, polysulfone resin, or a composite plastic obtained by mixing glass fiber, carbon fiber, or the like can be used.

また、羽軸部8において埋設された状態の突出部12は、その端部が羽軸部8の側面から部分的に突出した状態になっていてもよい。このような構成を採用すれば、羽軸部8においても人工羽根3の空気抵抗を調整することが可能となる。さらに、固定用紐状部材により隣接する人工羽根3の軸7を縛って連結する場合、たとえば図19〜図27に示すようなフラップ部31、33や縁部32が存在していれば、当該固定用紐状部材により軸7を縛ったときに、縁部32などが固定用紐状部材により変形され、結果的に固定用紐状部材と縁部32などを含む軸7との接触面積を増やすことになる。この結果、固定用紐状部材により軸7を確実に固定することができる。さらに、固定用紐状部材に樹脂を含浸、硬化させて固定用紐状部材をFRP化する場合、当該樹脂が縁部32などにも含浸するので、より固定用紐状部材と軸7との接続を強固にできる。   Further, the protruding portion 12 embedded in the wing shaft portion 8 may be in a state in which the end portion thereof partially protrudes from the side surface of the wing shaft portion 8. By adopting such a configuration, it is possible to adjust the air resistance of the artificial feather 3 also in the wing shaft portion 8. Furthermore, when connecting the shaft 7 of the artificial feather 3 which adjoins by the string-like member for fixation, if the flap parts 31, 33 and the edge part 32 as shown, for example in FIGS. When the shaft 7 is tied by the fixing string-like member, the edge 32 or the like is deformed by the fixing string-like member, and as a result, the contact area between the fixing string-like member and the shaft 7 including the edge 32 or the like is increased. Will increase. As a result, the shaft 7 can be reliably fixed by the fixing string-like member. Further, when the fixing string-like member is impregnated and cured to make the fixing string-like member into FRP, since the resin also impregnates the edge portion 32 and the like, the fixing string-like member and the shaft 7 are more Connection can be strengthened.

上記バドミントン用シャトルコック1において、羽部を構成する部材は、多層構造を有するシート状部材90からなっていてもよい。この場合、たとえば図34〜図37に示すように、多層構造を構成する層の材料として不織布91および樹脂フィルムなどの樹脂層92を用いることで、たとえば羽部を構成するシート状部材9として不織布のみを用いた場合よりも羽部の強度を上げることができる。つまり、多層構造とすることで羽部を構成するシート状部材90の設計の自由度を大きくできる。   In the badminton shuttlecock 1, the member constituting the wing portion may be a sheet-like member 90 having a multilayer structure. In this case, for example, as shown in FIGS. 34 to 37, by using a non-woven fabric 91 and a resin layer 92 such as a resin film as the material of the layer constituting the multilayer structure, for example, the non-woven fabric as the sheet-like member 9 constituting the wing portion The strength of the wings can be increased as compared with the case of using only. That is, the multi-layer structure can increase the degree of freedom in designing the sheet-like member 90 constituting the wing portion.

また、上述のように多層構造を構成する層の材料として不織布91と樹脂層92とを用いた場合、羽部を不織布のみで形成した場合より、シャトルコックの人工羽根3の耐久性を向上させることができる。また、羽部の変形も抑制でき、耐久性を向上させることができる。   Moreover, when the nonwoven fabric 91 and the resin layer 92 are used as a material of the layer which comprises a multilayer structure as mentioned above, durability of the artificial feather | wing 3 of a shuttlecock is improved rather than the case where a feather | wing part is formed only with a nonwoven fabric. be able to. Further, deformation of the wing portion can be suppressed, and durability can be improved.

また、上述した実施の形態7〜実施の形態13に示すように羽部を構成するシート状部材90として多層構造の部材(たとえば不織布91などの比較的強度の低い膜材料に、樹脂層92などの比較的強度が高い材料を被覆した部材など)を用いる場合であって、樹脂層92を構成する材料が熱を加えられることにより収縮する場合を考える。このとき、シャトルコック1において外周側に人工羽根3の羽部の樹脂層92が向くように、人工羽根をベース本体2に固定する。そして、当該人工羽根3に所定の熱を加えることにより、樹脂層92が収縮する。この結果、人工羽根3が外側に反ることになり、その人工羽根3の形状は比較的天然の羽根に近くなる。このような熱を加える工程としては、人工羽根3の軸7を固定する固定用紐状体をFRP化する場合などの樹脂の硬化のための加熱工程などが利用できる。この場合、特別な工程を追加することなく、人工羽根3の形状をより天然の羽根に近づけることができる。   Further, as shown in the above-described seventh to thirteenth embodiments, the sheet-like member 90 constituting the wing portion is a multi-layered member (for example, a relatively low-strength film material such as a nonwoven fabric 91, a resin layer 92, etc. A member coated with a material having a relatively high strength is used, and the material constituting the resin layer 92 contracts when heated. At this time, the artificial feather is fixed to the base body 2 so that the resin layer 92 of the wing portion of the artificial feather 3 faces the outer peripheral side in the shuttlecock 1. The resin layer 92 contracts by applying predetermined heat to the artificial feather 3. As a result, the artificial feather 3 is warped outward, and the shape of the artificial feather 3 is relatively close to a natural feather. As the step of applying such heat, a heating step for curing the resin, for example, when the fixing string-like body for fixing the shaft 7 of the artificial feather 3 is made into FRP can be used. In this case, the shape of the artificial feather 3 can be made closer to a natural feather without adding a special process.

上記バドミントン用シャトルコック1は、複数の人工羽根3における羽部の相対的な移動または変形を規制する紐状体(中糸15、内糸17、外糸19)をさらに備えていてもよい。この場合、羽部の交錯を防止することができる。   The badminton shuttlecock 1 may further include a string-like body (medium thread 15, inner thread 17, outer thread 19) that regulates relative movement or deformation of the wings of the plurality of artificial feathers 3. In this case, crossing of the wings can be prevented.

また、この発明に従ったバドミントン用シャトルコック1は、上述した半球状のベース本体2と、複数の人工羽根3とを備える。複数の人工羽根3は、羽部および当該羽部に接続された軸7を含む。また、複数の人工羽根3は、環状に配置されるとともに部分的に重なるように、ベース本体2に固定される。人工羽根3の羽部における互いに重なった部分の少なくとも一部を溶融させた後凝固させることにより、図42や図43に示すように羽部の重なった部分を固定する融着部としての融着固定部41が形成されている。   A badminton shuttlecock 1 according to the present invention includes the above-described hemispherical base body 2 and a plurality of artificial feathers 3. The plurality of artificial feathers 3 include a wing part and a shaft 7 connected to the wing part. The plurality of artificial feathers 3 are fixed to the base body 2 so as to be arranged in an annular shape and partially overlap. Fusion as a fusion part for fixing the overlapping part of the wings as shown in FIGS. 42 and 43 by melting and then solidifying at least a part of the overlapping parts of the wings of the artificial feather 3 A fixing portion 41 is formed.

このようにすれば、ベース本体2の形状に起因する上述した効果に加えて、天然シャトルコックを構成する水鳥の羽根(天然の羽根)より軸7の剛性や強度が低い人工羽根3を用いる場合であっても、融着部として作用する融着固定部41を形成することにより、当該人工羽根3の積層状態や形状を当初のまま維持できる。このため、人工羽根3の積層状態が入替わったり、人工羽根3が変形したりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。   In this case, in addition to the above-described effects due to the shape of the base body 2, the artificial feather 3 having the shaft 7 having lower rigidity and strength than the waterfowl feather (natural feather) constituting the natural shuttlecock is used. Even so, the laminated state and shape of the artificial feather 3 can be maintained as they are by forming the fusion fixing portion 41 that acts as the fusion portion. For this reason, it can suppress that the flight performance of the shuttlecock 1 deteriorates resulting from the laminated state of the artificial feather 3 being switched or the artificial feather 3 being deformed.

また、融着固定部41は、複数の人工羽根3の積層状態を維持するため、隣接する人工羽根3を互いに固定するので、強度部材としても作用する。このため、シャトルコック1の強度が向上し、結果的にシャトルコック1の耐久性を向上させることができる。   In addition, since the fusion fixing portion 41 maintains the laminated state of the plurality of artificial feathers 3, the adjacent artificial feathers 3 are fixed to each other, and thus act as a strength member. For this reason, the strength of the shuttlecock 1 is improved, and as a result, the durability of the shuttlecock 1 can be improved.

また、人工羽根3の積層された部分の少なくとも一部を溶融・再凝固させることで、接着剤などの事前配置などを行なうことなく融着固定部41を形成できる。このため、シャトルコック1の製造工程を簡略化できる。   In addition, by melting and re-solidifying at least a part of the laminated portion of the artificial feather 3, the fusion fixing portion 41 can be formed without performing prior arrangement of an adhesive or the like. For this reason, the manufacturing process of the shuttlecock 1 can be simplified.

上記バドミントン用シャトルコック1において、融着固定部41の少なくとも一部は、図47や図62に示すように、羽部の軸7に垂直な方向である幅方向において軸7と羽部の端部との間の中間点より軸7寄りの領域に形成されていてもよい。具体的には、図47などに示すように羽本体部5に図62に示すような延在部50が形成されていない場合、融着固定部41の少なくとも一部は羽本体部5において図47に示す線分24と軸7とで囲まれる領域に形成されることが好ましい。また、図62に示すように羽本体部5に延在部50が形成されている場合には、延在部50に形成される融着固定部41の少なくとも一部は羽本体部5において図62に示す線分24と軸7とで囲まれる領域に位置することが好ましい。また、融着固定部41は当該軸7と線分24とで囲まれる領域の内部に形成されることがより好ましい。この場合、人工羽根3において融着固定部41より外側の羽部の部分が十分な広さを有することになり、人工羽根3の捻り角を維持することができる。   In the badminton shuttlecock 1, at least a part of the fusion fixing portion 41 has an end of the shaft 7 and the end of the wing portion in the width direction which is a direction perpendicular to the shaft 7 of the wing portion, as shown in FIGS. 47 and 62. You may form in the area | region near the axis | shaft 7 from the intermediate point between parts. Specifically, as shown in FIG. 47 and the like, when the extension part 50 as shown in FIG. 62 is not formed in the wing body part 5, at least a part of the fusion fixing part 41 is shown in the wing body part 5. 47 is preferably formed in a region surrounded by the line segment 24 and the shaft 7. 62, when the extension part 50 is formed in the wing body part 5, at least a part of the fusion fixing part 41 formed in the extension part 50 is not shown in the wing body part 5. It is preferable to be located in a region surrounded by the line segment 24 and the shaft 7 shown in 62. Further, it is more preferable that the fusion fixing portion 41 is formed inside a region surrounded by the shaft 7 and the line segment 24. In this case, the portion of the wing portion outside the fusion fixing portion 41 in the artificial feather 3 has a sufficient width, and the twist angle of the artificial feather 3 can be maintained.

上記バドミントン用シャトルコック1において、融着固定部41は、隣接する羽本体部5における互いに重なった部分にて羽本体部5の間に位置するとともに羽本体部5と固着している補強部材43を含んでいてもよい。この場合、人工羽根3の積層された部分の厚みが薄くても、補強部材43を配置することで融着固定部41の強度を十分高めることができる。   In the badminton shuttlecock 1, the fusion fixing portion 41 is positioned between the wing body portions 5 at the overlapping portions of the adjacent wing body portions 5 and is fixed to the wing body portion 5. May be included. In this case, even if the thickness of the laminated portion of the artificial feather 3 is thin, the strength of the fusion fixing portion 41 can be sufficiently increased by arranging the reinforcing member 43.

上記バドミントン用シャトルコック1において、補強部材43は溶融した後凝固することにより前記羽本体部5と固着していてもよい。   In the badminton shuttlecock 1, the reinforcing member 43 may be fixed to the wing body 5 by being melted and then solidified.

上記バドミントン用シャトルコック1において、融着固定部41の平面形状は多角形状、円形状、長円形状、楕円形状からなる群から選択される1つであってもよい。また、バドミントン用シャトルコック1では、融着固定部41の平面形状は四角形状、台形状、三角形状、五角形以上の多角形状、その他任意の形状であってもよい。また、平面形状が多角形状の融着固定部41において、角部は曲面状になっていてもよい。また、長円形状とは、矩形の対向する2つの辺にそれぞれ半円を接続したような形状(陸上競技のトラックのような形状)を意味し、上記矩形が屈曲しているような形状も含む。   In the badminton shuttlecock 1, the planar shape of the fusion fixing portion 41 may be one selected from the group consisting of a polygonal shape, a circular shape, an oval shape, and an elliptical shape. In the badminton shuttlecock 1, the planar shape of the fusion fixing portion 41 may be a quadrilateral shape, a trapezoidal shape, a triangular shape, a polygonal shape of pentagon or more, or any other shape. Further, in the fusion fixing portion 41 having a polygonal planar shape, the corner portion may be a curved surface. The oval shape means a shape in which a semicircle is connected to two opposite sides of the rectangle (a shape like a track in an athletics), and a shape in which the rectangle is bent. Including.

上記バドミントン用シャトルコック1において、融着固定部41は、複数の融着部部分からなっていてもよい。また、上記バドミントン用シャトルコック1では、融着固定部41が複数のドット状の融着部部分からなっていてもよい。   In the badminton shuttlecock 1, the fusion fixing portion 41 may be composed of a plurality of fusion portion portions. In the badminton shuttlecock 1, the fusion fixing portion 41 may be composed of a plurality of dot-like fusion portion portions.

上記バドミントン用シャトルコック1は、複数の人工羽根3における羽本体部5の相対的な移動または変形を規制する紐状体(中糸15、内糸17、および外糸19)をさらに含んでいてもよい。この場合、紐状体(中糸15、内糸17、および外糸19)により人工羽根3の相対的な移動または変形を規制することにより、複数の人工羽根3の積層状態を確実に維持することができる。また、紐状体として極めて細い糸(たとえば綿の糸やポリエステルなどの樹脂製の糸)などを利用することができるので、質量や占有体積の小さな紐状体を用いることができる。このため、当該紐状体を配置することによるシャトルコック1の重心位置やバランスなどの変化を極力小さくすることができる。   The badminton shuttlecock 1 further includes string-like bodies (medium thread 15, inner thread 17, and outer thread 19) that regulate relative movement or deformation of the wing body 5 in the plurality of artificial feathers 3. Also good. In this case, by restricting the relative movement or deformation of the artificial feather 3 by the string-like bodies (the middle thread 15, the inner thread 17, and the outer thread 19), the laminated state of the plurality of artificial feathers 3 is reliably maintained. be able to. Further, since a very thin thread (for example, a cotton thread or a resin thread such as polyester) can be used as the string-like body, a string-like body having a small mass or occupied volume can be used. For this reason, the change of the gravity center position, balance, etc. of the shuttlecock 1 by arrange | positioning the said string-like body can be made small as much as possible.

上記バドミントン用シャトルコック1において、紐状体は、複数の人工羽根3のそれぞれの軸7(好ましくは固着軸部10)の周囲を周回するとともに、環状に配置された複数の人工羽根3の羽本体部5の内周側に配置されている他の紐部材としての内糸17を含む。この場合、複数の人工羽根3の内周側に沿って内糸17が配置されることになるので、シャトルコック1を使用している間に人工羽根3の羽本体部5が内周側に折れ曲がることを当該内糸17により抑制することができる。このため、シャトルコック1の飛翔性能が羽部の折れ曲がりに起因して変化することを防止できる。この結果、人工羽根3を用いたシャトルコック1の飛翔性能を安定させるとともに、耐久性を向上させることができる。   In the badminton shuttlecock 1, the string-like body circulates around the respective shafts 7 (preferably the fixing shaft portions 10) of the plurality of artificial feathers 3, and the feathers of the plurality of artificial feathers 3 arranged in an annular shape. An inner thread 17 as another string member disposed on the inner peripheral side of the main body 5 is included. In this case, since the inner thread 17 is arranged along the inner peripheral side of the plurality of artificial feathers 3, the wing body portion 5 of the artificial feather 3 is placed on the inner peripheral side while the shuttlecock 1 is being used. Bending can be suppressed by the inner thread 17. For this reason, it is possible to prevent the flight performance of the shuttlecock 1 from being changed due to bending of the wings. As a result, the flight performance of the shuttlecock 1 using the artificial feather 3 can be stabilized and the durability can be improved.

上記バドミントン用シャトルコック1において、人工羽根3の羽部(具体的には羽部を構成する羽本体部5)は、図62〜図64に示すように、羽部の外周部から外側に突出するとともに、環状に配置された他の人工羽根3の羽部(具体的には他の人工羽根3の羽本体部5)と重なる位置にまで延在する延在部50を含んでいてもよい。融着固定部41は、延在部50に形成されていてもよい。この場合、人工羽根3の積層状態や形状を当初のまま維持できるとともに、人工羽根3の変形の自由度を大きくすることができる。そのため、耐久性を確保しつつ、天然シャトルコックにおける羽根の捻り角に近い捻り角を実現できるので、飛翔特性を天然シャトルコックに近づけることができる。   In the badminton shuttlecock 1, the wing part of the artificial feather 3 (specifically, the wing body part 5 constituting the wing part) protrudes outward from the outer peripheral part of the wing part as shown in FIGS. In addition, it may include an extending portion 50 that extends to a position where it overlaps with a wing portion of the other artificial feather 3 arranged in a ring shape (specifically, a wing body portion 5 of the other artificial feather 3). . The fusion fixing part 41 may be formed in the extending part 50. In this case, the laminated state and shape of the artificial feather 3 can be maintained as they are, and the degree of freedom of deformation of the artificial feather 3 can be increased. Therefore, it is possible to realize a twist angle close to the twist angle of the blades in the natural shuttlecock while ensuring durability, so that the flight characteristics can be brought close to those of the natural shuttlecock.

上記バドミントン用シャトルコック1において、図62または図64に示すように、延在部50は、羽部の外周部から他の人工羽根の軸7を越えた位置にまで延在してもよい。融着固定部41は、延在部50において他の人工羽根3の軸7を越えた位置に形成されていてもよい。   In the badminton shuttlecock 1, as shown in FIG. 62 or 64, the extending portion 50 may extend from the outer peripheral portion of the wing portion to a position beyond the axis 7 of another artificial feather. The fusion fixing part 41 may be formed in the extended part 50 at a position beyond the axis 7 of the other artificial feather 3.

また、上記バドミントン用シャトルコック1において、人工羽根3の羽部は、環状に配置された他の人工羽根の軸7を越えた位置にまで延在する延在部50を含んでいてもよい。融着固定部41は、延在部50において他の人工羽根3の軸7を越えた位置に形成されていてもよい。この場合、隣接する人工羽根3の捻り角を、天然シャトルコックにおける捻り角と同程度に十分大きくすることができる。   In the badminton shuttlecock 1, the wing portion of the artificial feather 3 may include an extending portion 50 that extends to a position beyond the axis 7 of another artificial feather arranged in a ring shape. The fusion fixing part 41 may be formed in the extended part 50 at a position beyond the axis 7 of the other artificial feather 3. In this case, the twist angle of the adjacent artificial feather 3 can be made sufficiently large as much as the twist angle in the natural shuttlecock.

この発明に従ったバドミントン用シャトルコック1は、上述した半球状のベース本体2と、複数の人工羽根3とを備える。複数の人工羽根3は、羽部および当該羽部に接続された軸7を含んでいる。複数の人工羽根3は、環状に配置されるとともに隣接する羽部が部分的に重なるように、ベース本体2に固定される。人工羽根3の羽部における互いに重なった部分の少なくとも一部を接着層(接着部材53)により接続した接着部としての接着固定部51が形成されている。   A badminton shuttlecock 1 according to the present invention includes the above-described hemispherical base body 2 and a plurality of artificial feathers 3. The plurality of artificial feathers 3 include a wing part and a shaft 7 connected to the wing part. The plurality of artificial feathers 3 are arranged in an annular shape and are fixed to the base body 2 so that adjacent wings partially overlap. An adhesive fixing portion 51 is formed as an adhesive portion in which at least a part of overlapping portions of the wing portion of the artificial feather 3 is connected by an adhesive layer (adhesive member 53).

このようにすれば、上述したベース本体2の形状に起因する効果に加えて、天然シャトルコックを構成する水鳥の羽根(天然の羽根)より軸7の剛性や強度が低い人工羽根3を用いる場合であっても、接着固定部51を形成することにより、当該人工羽根3の積層状態や形状を当初のまま維持できる。このため、人工羽根3の積層状態が入替わったり、人工羽根3が変形したりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。   In this case, in addition to the effect resulting from the shape of the base body 2 described above, the artificial feather 3 having the shaft 7 having lower rigidity and strength than the waterfowl feather (natural feather) constituting the natural shuttlecock is used. Even so, by forming the adhesive fixing portion 51, the laminated state and shape of the artificial feather 3 can be maintained as they are. For this reason, it can suppress that the flight performance of the shuttlecock 1 deteriorates resulting from the laminated state of the artificial feather 3 being switched or the artificial feather 3 being deformed.

また、接着固定部51は、複数の人工羽根3の積層状態を維持するため、隣接する人工羽根3を互いに固定するので、強度部材としても作用する。このため、シャトルコック1の強度が向上し、結果的にシャトルコック1の耐久性を向上させることができる。   Moreover, since the adhesion fixing | fixed part 51 fixes the artificial feather 3 which adjoins mutually in order to maintain the lamination | stacking state of the some artificial feather 3, it acts also as a strength member. For this reason, the strength of the shuttlecock 1 is improved, and as a result, the durability of the shuttlecock 1 can be improved.

また、接着部材53を所定の位置に配置して、複数の人工羽根3の一部が重なるように配置することで、簡単に人工羽根3の積層状態を維持するための接着固定部51を形成することができる。このため、シャトルコック1の製造工程を簡略化できる。   Moreover, the adhesive fixing part 51 for easily maintaining the laminated state of the artificial feather 3 is formed by arranging the adhesive member 53 at a predetermined position and arranging the plurality of artificial feathers 3 to overlap each other. can do. For this reason, the manufacturing process of the shuttlecock 1 can be simplified.

上記バドミントン用シャトルコック1において、接着固定部51の少なくとも一部は、羽部の軸7に垂直な方向である幅方向において軸7と羽部の端部との間の中間点より軸7寄りの領域に形成されていてもよい。この場合、人工羽根3において接着固定部51より外側の羽部の部分が十分な広さを有することになり、人工羽根3の捻り角を維持することができる。   In the badminton shuttlecock 1, at least a part of the adhesive fixing portion 51 is closer to the shaft 7 than an intermediate point between the shaft 7 and the end portion of the wing portion in the width direction that is a direction perpendicular to the shaft 7 of the wing portion. It may be formed in this area. In this case, the portion of the wing portion outside the adhesive fixing portion 51 in the artificial feather 3 has a sufficient width, and the twist angle of the artificial feather 3 can be maintained.

上記バドミントン用シャトルコック1において、人工羽根3の羽部(具体的には羽部を構成する羽本体部5)は、図62〜図64に示すように、羽部の外周部から外側に突出するとともに、環状に配置された他の人工羽根3の羽部(具体的には他の人工羽根3の羽本体部5)と重なる位置にまで延在する延在部50を含んでいてもよい。接着固定部51は、延在部50に形成されていてもよい。この場合、耐久性を確保しつつ、天然シャトルコックにおける羽根の捻り角に近い捻り角を実現できるので、飛翔特性を天然シャトルコックに近づけることができる。   In the badminton shuttlecock 1, the wing part of the artificial feather 3 (specifically, the wing body part 5 constituting the wing part) protrudes outward from the outer peripheral part of the wing part as shown in FIGS. In addition, it may include an extending portion 50 that extends to a position where it overlaps with a wing portion of the other artificial feather 3 arranged in a ring shape (specifically, a wing body portion 5 of the other artificial feather 3). . The adhesive fixing part 51 may be formed in the extending part 50. In this case, a torsion angle close to the torsion angle of the blades in the natural shuttlecock can be realized while ensuring durability, so that the flight characteristics can be made closer to the natural shuttlecock.

上記バドミントン用シャトルコック1において、図62または図64に示すように、延在部50は、羽部の外周部から他の人工羽根の軸7を越えた位置にまで延在してもよい。接着固定部51は、延在部50において他の人工羽根3の軸7を越えた位置に形成されていてもよい。   In the badminton shuttlecock 1, as shown in FIG. 62 or 64, the extending portion 50 may extend from the outer peripheral portion of the wing portion to a position beyond the axis 7 of another artificial feather. The adhesive fixing portion 51 may be formed at a position beyond the axis 7 of the other artificial feather 3 in the extending portion 50.

また、上記バドミントン用シャトルコック1において、人工羽根3の羽部は、環状に配置された他の人工羽根の軸7を越えた位置にまで延在する延在部50を含んでいてもよい。接着固定部51は、延在部50において他の人工羽根3の軸7を越えた位置に形成されていてもよい。この場合、隣接する人工羽根3の捻り角を、天然シャトルコックにおける捻り角と同程度に十分大きくすることができる。   In the badminton shuttlecock 1, the wing portion of the artificial feather 3 may include an extending portion 50 that extends to a position beyond the axis 7 of another artificial feather arranged in a ring shape. The adhesive fixing portion 51 may be formed at a position beyond the axis 7 of the other artificial feather 3 in the extending portion 50. In this case, the twist angle of the adjacent artificial feather 3 can be made sufficiently large as much as the twist angle in the natural shuttlecock.

この発明に従ったバドミントン用シャトルコックは、上述した半球状のベース本体2と、複数の人工羽根3と、紐状体(中糸15、内糸17、および外糸19のうちの少なくともいずれか1つ)とを備える。複数の人工羽根3は、羽部および当該羽部に接続された軸7を含む。複数の人工羽根3は、環状に配置されるとともに隣接する羽部が部分的に重なるように、ベース本体2に固定される。紐状体(中糸15、内糸17、および外糸19)は、複数の人工羽根3における羽部の相対的な移動または変形を規制する。   The shuttlecock for badminton according to the present invention includes a hemispherical base body 2, a plurality of artificial feathers 3, and a string-like body (medium thread 15, inner thread 17, and outer thread 19. 1). The plurality of artificial feathers 3 include a wing part and a shaft 7 connected to the wing part. The plurality of artificial feathers 3 are arranged in an annular shape and are fixed to the base body 2 so that adjacent wings partially overlap. The string-like bodies (medium thread 15, inner thread 17, and outer thread 19) regulate relative movement or deformation of the wings in the plurality of artificial feathers 3.

このようにすれば、上述したベース本体2の形状に起因する効果に加えて、天然シャトルコックを構成する水鳥の羽根(天然の羽根)より軸7の剛性や強度が低い人工羽根3を用いる場合であっても、紐状体としての中糸15や内糸17などを配置することにより、当該人工羽根3の積層状態や形状を当初のまま維持できる。たとえば、中糸15が人工羽根3の積層された部分の間に配置されることで、人工羽根3の積層順番が入替わることを防止できる。また、複数の人工羽根3の内周側に沿って内糸17が配置されることにより、シャトルコック1を使用している間に人工羽根3の羽部が内周側に折れ曲がることを内糸17により抑制することができる。このため、人工羽根3の積層状態が入替わったり、人工羽根3が変形したりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。   In this case, in addition to the effect resulting from the shape of the base body 2 described above, the artificial feather 3 having the shaft 7 having lower rigidity and strength than the waterfowl feather (natural feather) constituting the natural shuttlecock is used. Even so, the laminated state and shape of the artificial feather 3 can be maintained as they are by arranging the middle thread 15 and the inner thread 17 as string-like bodies. For example, it is possible to prevent the stacking order of the artificial feathers 3 from being changed by arranging the middle thread 15 between the stacked portions of the artificial feathers 3. Further, by arranging the inner thread 17 along the inner peripheral side of the plurality of artificial feathers 3, it is understood that the wing portion of the artificial feather 3 is bent toward the inner peripheral side while the shuttlecock 1 is used. 17 can be suppressed. For this reason, it can suppress that the flight performance of the shuttlecock 1 deteriorates resulting from the laminated state of the artificial feather 3 being switched or the artificial feather 3 being deformed.

また、紐状体としての中糸15および内糸17は、複数の人工羽根3の積層状態を維持するため、隣接する人工羽根3の軸7を互いに固定するので、強度部材としても作用する。このため、シャトルコック1の強度が向上し、結果的にシャトルコック1の耐久性を向上させることができる。また、紐状体として極めて細い糸などを利用することができるので、中糸15や内糸17などを配置することによるシャトルコック1の重心位置やバランス、総質量などの変化を極力小さくすることができる。   Further, the middle thread 15 and the inner thread 17 as the string-like body also act as strength members because the shafts 7 of the adjacent artificial feathers 3 are fixed to each other in order to maintain the laminated state of the plurality of artificial feathers 3. For this reason, the strength of the shuttlecock 1 is improved, and as a result, the durability of the shuttlecock 1 can be improved. In addition, since extremely thin threads can be used as the string-like body, changes in the center of gravity position, balance, total mass, etc. of the shuttlecock 1 due to the arrangement of the middle thread 15 and the inner thread 17 are minimized. Can do.

上記バドミントン用シャトルコック1において、紐状体は、人工羽根3の羽部における互いに重なった部分の少なくとも一部を縫着することにより縫着部(固定用糸81で固定された部分)を構成してもよい。この場合、人工羽根3を互いに縫着する(固定用糸81で縫付ける)ことにより、人工羽根3の積層順番や配置が変わることを抑制できる。つまり、複数の人工羽根3の積層状態を確実に維持することができる。   In the badminton shuttlecock 1, the string-like body constitutes a sewn portion (a portion fixed by the fixing thread 81) by sewing at least a part of the overlapping portion of the wing portion of the artificial feather 3. May be. In this case, it is possible to suppress a change in the stacking order and arrangement of the artificial feathers 3 by sewing the artificial feathers 3 together (sewing with the fixing thread 81). That is, the laminated state of the plurality of artificial feathers 3 can be reliably maintained.

上記バドミントン用シャトルコック1において、縫着部(固定用糸81で固定された部分)の少なくとも一部は、羽部の軸7に垂直な方向である幅方向において軸7と羽部の端部との間の中間点より軸7寄りの領域に形成されていてもよい。この場合、人工羽根3において縫着部より外側の羽部の部分が十分な広さを有することになり、人工羽根3の捻り角を維持することができる。   In the badminton shuttlecock 1, at least a part of the sewn portion (the portion fixed by the fixing thread 81) is the shaft 7 and the end portion of the wing portion in the width direction that is a direction perpendicular to the shaft 7 of the wing portion. It may be formed in a region closer to the axis 7 than the intermediate point between them. In this case, the portion of the wing portion outside the sewing portion in the artificial feather 3 has a sufficient width, and the twist angle of the artificial feather 3 can be maintained.

この発明に従ったバドミントン用シャトルコック1は、半球状のベース本体としてのベース本体2と、複数の人工羽根3と、積層状態固定部(中糸15、内糸17、外糸19、固定用糸81、接着固定部51、融着固定部41)とを備える。複数の人工羽根3は、羽部および当該羽部に接続された軸7とを含む。また、複数の人工羽根3は、環状に配置されるとともに部分的に積層されるように、ベース本体2に固定される。積層状態固定部(中糸15、内糸17、外糸19、固定用糸81、接着固定部51、融着固定部41)は、人工羽根3の積層状態を維持するためのものである。   A shuttlecock 1 for badminton according to the present invention includes a base body 2 as a hemispherical base body, a plurality of artificial feathers 3, a laminated state fixing portion (medium thread 15, inner thread 17, outer thread 19, and fixing A thread 81, an adhesive fixing portion 51, and a fusion fixing portion 41). The plurality of artificial feathers 3 include a wing part and a shaft 7 connected to the wing part. The plurality of artificial feathers 3 are fixed to the base body 2 so as to be arranged in a ring shape and partially stacked. The laminated state fixing portions (medium yarn 15, inner yarn 17, outer yarn 19, fixing yarn 81, adhesive fixing portion 51, fusion fixing portion 41) are for maintaining the laminated state of the artificial feather 3.

このようにすれば、上述したベース本体2の形状に起因する効果に加えて、天然シャトルコックを構成する水鳥の羽根(天然の羽根)より軸7の剛性や強度が低い人工羽根3を用いる場合であっても、積層状態固定部を形成することにより当該人工羽根3の積層状態を当初のまま維持できるので、人工羽根3の積層状態が入替わったりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。また、積層状態固定部は、複数の人工羽根3の積層状態を維持するため、隣接する人工羽根3の位置を相対的に固定することになるので、補強部材としても作用する。このため、シャトルコック1の強度が向上し、結果的にシャトルコック1の耐久性を向上させることができる。   In this case, in addition to the effect resulting from the shape of the base body 2 described above, the artificial feather 3 having the shaft 7 having lower rigidity and strength than the waterfowl feather (natural feather) constituting the natural shuttlecock is used. Even so, since the laminated state of the artificial feather 3 can be maintained as it is by forming the laminated state fixing part, the flight of the shuttlecock 1 is caused by the laminated state of the artificial feather 3 being switched. It can suppress that performance deteriorates. Further, since the laminated state fixing portion maintains the laminated state of the plurality of artificial feathers 3 and relatively fixes the positions of the adjacent artificial feathers 3, it also functions as a reinforcing member. For this reason, the strength of the shuttlecock 1 is improved, and as a result, the durability of the shuttlecock 1 can be improved.

上記バドミントン用シャトルコック1において、積層状態固定部は、複数の人工羽根3の羽部の相対的な移動または変形を規制する紐状体(中糸15および内糸17、あるいは外糸19)を含む。この場合、紐状体(中糸15、内糸17、および外糸19)により人工羽根3の相対的な移動または変形を規制することにより、複数の人工羽根3の積層状態を確実に維持することができる。また、紐状体として極めて細い糸(たとえば綿の糸やポリエステルなどの樹脂製の糸)などを利用することができるので、質量や占有体積の小さな紐状体を用いることができる。このため、当該紐状体を配置することによるシャトルコック1の重心位置やバランスなどの変化を極力小さくすることができる。   In the badminton shuttlecock 1, the stacked state fixing portion is a string-like body (medium yarn 15 and inner yarn 17 or outer yarn 19) that regulates relative movement or deformation of the wings of the plurality of artificial feathers 3. Including. In this case, by restricting the relative movement or deformation of the artificial feather 3 by the string-like bodies (the middle thread 15, the inner thread 17, and the outer thread 19), the laminated state of the plurality of artificial feathers 3 is reliably maintained. be able to. Further, since a very thin thread (for example, a cotton thread or a resin thread such as polyester) can be used as the string-like body, a string-like body having a small mass or occupied volume can be used. For this reason, the change of the gravity center position, balance, etc. of the shuttlecock 1 by arrange | positioning the said string-like body can be made small as much as possible.

上記バドミントン用シャトルコック1において、紐状体は、図41に示すように、複数の人工羽根3のそれぞれの軸7(好ましくは固着軸部10)の周囲を周回するとともに、人工羽根3の羽部の互いに重なった部分(羽本体部5において隣接する他の人工羽根3と重なる部分)において対向する羽本体部5の間を通るように配置されている紐部材としての中糸15を含む。この場合、中糸15が人工羽根3の積層された部分の間に配置されることで、人工羽根3の積層順番が入替わることを防止できる。   In the badminton shuttlecock 1, as shown in FIG. 41, the string-like body circulates around the respective shafts 7 (preferably the fixing shaft portions 10) of the plurality of artificial feathers 3 and the feathers of the artificial feathers 3 A middle thread 15 as a string member disposed so as to pass between the opposing wing body parts 5 in the part of the part overlapping each other (the part overlapping the other artificial feather 3 adjacent in the wing body part 5). In this case, it is possible to prevent the stacking order of the artificial feathers 3 from being changed by arranging the middle thread 15 between the stacked portions of the artificial feathers 3.

上記バドミントン用シャトルコック1において、紐状体は、図56に示すように、複数の人工羽根3のそれぞれの軸7(好ましくは固着軸部10)の周囲を周回するとともに、環状に配置された複数の人工羽根3の内周側に配置されている他の紐部材としての内糸17を含む。この場合、複数の人工羽根3の内周側(人工羽根3の羽本体部5の内周側)に沿って内糸17が配置されることになるので、シャトルコック1を使用している間に人工羽根3の羽部(羽本体部5)が内周側に折れ曲がることを当該内糸17により抑制することができる。このため、シャトルコック1の飛翔性能が羽部の折れ曲がりに起因して変化することを防止できる。この結果、人工羽根3を用いたシャトルコック1の飛翔性能を安定させるとともに、耐久性を向上させることができる。   In the badminton shuttlecock 1, as shown in FIG. 56, the string-like body circulates around the shafts 7 (preferably the fixing shaft portions 10) of the plurality of artificial feathers 3 and is arranged in an annular shape. An inner thread 17 as another string member arranged on the inner peripheral side of the plurality of artificial feathers 3 is included. In this case, since the inner thread 17 is disposed along the inner peripheral side of the plurality of artificial feathers 3 (the inner peripheral side of the wing body 5 of the artificial feather 3), the shuttlecock 1 is being used. Further, the inner yarn 17 can suppress the wing portion (wing main body portion 5) of the artificial feather 3 from being bent toward the inner peripheral side. For this reason, it is possible to prevent the flight performance of the shuttlecock 1 from being changed due to bending of the wings. As a result, the flight performance of the shuttlecock 1 using the artificial feather 3 can be stabilized and the durability can be improved.

上記バドミントン用シャトルコック1において、積層状態固定部は、図59〜図61に示すように、人工羽根3の羽本体部5における互いに重なった部分の少なくとも一部を縫着した縫着部(固定用糸81で固定された部分)を含んでいてもよい。この場合、人工羽根3を互いに縫着する(固定用糸81で縫付ける)ことにより、人工羽根3の積層順番や配置が変わることを抑制できる。つまり、複数の人工羽根3の積層状態を確実に維持することができる。   In the badminton shuttlecock 1, as shown in FIGS. 59 to 61, the stacked state fixing portion is a sewn portion (fixed) in which at least a part of the overlapping portion of the wing body portion 5 of the artificial feather 3 is sewn. The portion fixed with the thread 81 may be included. In this case, it is possible to suppress a change in the stacking order and arrangement of the artificial feathers 3 by sewing the artificial feathers 3 together (sewing with the fixing thread 81). That is, the laminated state of the plurality of artificial feathers 3 can be reliably maintained.

上記バドミントン用シャトルコック1において、図60に示すように、固定用糸81で固定された部分は人工羽根3の軸7に沿って延在するように形成されていてもよい。この場合、積層した人工羽根3を互いに固定する固定用糸81が、軸7に沿って伸びるように配置されることから、軸7に沿って伸びる羽本体部5の広い範囲について縫着部を形成することになる。このため、人工羽根3の積層順番や配置が変わることを抑制する効果をより確実に得ることができる。   In the badminton shuttlecock 1, as shown in FIG. 60, the portion fixed by the fixing thread 81 may be formed so as to extend along the axis 7 of the artificial feather 3. In this case, since the fixing thread 81 for fixing the laminated artificial feathers 3 to each other is arranged so as to extend along the shaft 7, the sewn portion is arranged over a wide range of the wing body portion 5 extending along the shaft 7. Will form. For this reason, the effect which suppresses that the stacking order and arrangement | positioning of the artificial feather 3 change can be acquired more reliably.

上記バドミントン用シャトルコック1において、図59に示すように、縫着部(固定用糸81で固定された部分)は人工羽根3の軸7と交差する方向に延びるように形成されていてもよい。また、縫着部は、環状に配置された複数の人工羽根3のうちの少なくとも2枚以上、好ましくは全ての人工羽根3を連結するように、円周状に形成されることが好ましい。また、縫着部は、環状に配置された複数の人工羽根3のすべてを連結するように、2重または3重以上の円周状に形成されていてもよい。この場合、2枚以上の(好ましくは全ての)人工羽根3を所定の積層順番で連結する縫着部を、ミシンなどを用いて簡単に形成することができる。   In the badminton shuttlecock 1, as shown in FIG. 59, the sewing portion (the portion fixed by the fixing thread 81) may be formed so as to extend in a direction intersecting the axis 7 of the artificial feather 3. . Moreover, it is preferable that the sewing part is formed in a circumferential shape so as to connect at least two of the plurality of artificial feathers 3 arranged in an annular shape, preferably all the artificial feathers 3 are connected. Further, the sewn portion may be formed in a double or triple circumferential shape so as to connect all of the plurality of artificial feathers 3 arranged in an annular shape. In this case, a sewn portion that connects two or more (preferably all) artificial feathers 3 in a predetermined stacking order can be easily formed using a sewing machine or the like.

上記バドミントン用シャトルコック1において、縫着部は、図59に示すように、羽部(羽本体部5)での軸7の延在方向における中央部よりベース本体2に近い位置に形成されていてもよい。この場合、ラケットによるシャトルコック1の打撃時に、比較的変形量が大きくなる羽本体部5の後端部(羽本体部5での軸7の延在方向における中央部よりベース本体2から遠い領域)ではなく、上記のような位置に固定用糸81による縫着部を形成することで、打撃時の衝撃によって縫着部が破損する可能性を低減できる。また、打撃時における羽本体部5の後端部の変形が、縫着部の形成により必要以上に制限されることを防止できるので、シャトルコック1の飛翔性能を天然のシャトルコックに近いものにすることができる。   In the badminton shuttlecock 1, as shown in FIG. 59, the sewing portion is formed at a position closer to the base body 2 than the central portion in the extending direction of the shaft 7 at the wing portion (wing body portion 5). May be. In this case, when the shuttlecock 1 is struck by the racket, the rear end portion of the wing body portion 5 where the amount of deformation is relatively large (the region farther from the base body 2 than the center portion in the extending direction of the shaft 7 in the wing body portion 5) Instead of forming the sewn portion by the fixing thread 81 at the position as described above, the possibility that the sewn portion is damaged due to impact at the time of impact can be reduced. Further, since the deformation of the rear end portion of the wing body portion 5 at the time of striking can be prevented from being restricted more than necessary due to the formation of the sewn portion, the flight performance of the shuttlecock 1 is close to that of a natural shuttlecock. can do.

上記バドミントン用シャトルコック1において、積層状態固定部は、図52および図53に示すように、人工羽根3の羽本体部5の互いに重なった部分の少なくとも一部を接着層(接着部材53)により接続した接着部(接着固定部51)を含んでいてもよい。接着固定部51は、環状に配置された複数の人工羽根3の積層された部分のすべてについて形成されていてもよい。この場合、接着部材53を所定の位置に配置して、複数の人工羽根3の一部が重なるように配置することで、簡単に人工羽根3の積層状態を維持するための接着固定部51を形成することができる。このため、シャトルコック1の製造工程を簡略化できる。   In the badminton shuttlecock 1, as shown in FIG. 52 and FIG. 53, the stacking state fixing portion is formed by adhering at least part of the overlapping portions of the wing body portion 5 of the artificial feather 3 with an adhesive layer (adhesive member 53). The connected adhesion part (adhesion fixing part 51) may be included. The adhesive fixing portion 51 may be formed for all of the stacked portions of the plurality of artificial feathers 3 arranged in an annular shape. In this case, the adhesive fixing portion 51 for easily maintaining the laminated state of the artificial feathers 3 can be provided by arranging the adhesive member 53 at a predetermined position and arranging the plurality of artificial feathers 3 to overlap each other. Can be formed. For this reason, the manufacturing process of the shuttlecock 1 can be simplified.

上記バドミントン用シャトルコック1において、接着固定部51は人工羽根3の軸7に沿って延在するように形成されていてもよい。この場合、積層した人工羽根3を互いに固定する接着固定部51が、軸7に沿って伸びるように配置されることから、軸7に沿って伸びる羽本体部5の広い範囲について接着固定部51を形成することになる。このため、人工羽根3の積層順番や配置が変わることを抑制する効果をより確実に得ることができる。   In the badminton shuttlecock 1, the adhesive fixing portion 51 may be formed to extend along the axis 7 of the artificial feather 3. In this case, since the adhesive fixing portion 51 that fixes the laminated artificial feathers 3 to each other is arranged to extend along the shaft 7, the adhesive fixing portion 51 over a wide range of the wing body portion 5 extending along the shaft 7. Will be formed. For this reason, the effect which suppresses that the stacking order and arrangement | positioning of the artificial feather 3 change can be acquired more reliably.

上記バドミントン用シャトルコック1において、接着固定部51は、羽本体部5での軸7の延在方向における中央部よりベース本体2に近い位置に形成されている。この場合、ラケットによるシャトルコック1の打撃時に、比較的変形量が大きくなる羽本体部5の後端部ではなく、上記のような位置に接着固定部51を形成することで、打撃時の衝撃によって接着固定部51が破損する可能性を低減できる。また、打撃時における羽本体部5の後端部の変形が、接着固定部51の形成により必要以上に制限されることを防止できるので、シャトルコック1の飛翔性能を天然のシャトルコックに近いものにすることができる。   In the badminton shuttlecock 1, the adhesive fixing portion 51 is formed at a position closer to the base body 2 than the central portion in the extending direction of the shaft 7 in the wing body portion 5. In this case, when the shuttlecock 1 is hit by a racket, the impact at the time of hitting is formed by forming the adhesive fixing portion 51 at the position as described above instead of the rear end portion of the wing body portion 5 where the deformation amount is relatively large. Therefore, the possibility that the adhesive fixing part 51 is damaged can be reduced. In addition, since the deformation of the rear end portion of the wing body portion 5 at the time of impact can be prevented from being restricted more than necessary due to the formation of the adhesive fixing portion 51, the flight performance of the shuttlecock 1 is close to that of a natural shuttlecock. Can be.

上記バドミントン用シャトルコック1において、積層状態固定部は、図42〜図44に示すように、人工羽根3の羽部(羽本体部5)における互いに重なった部分の少なくとも一部を溶融させた後凝固させることにより、人工羽根3の羽部の重なった部分を固定した融着部としての融着固定部41を含んでいてもよい。この場合、人工羽根3の積層された部分の少なくとも一部を溶融・再凝固させることで、接着剤などの事前配置などを行なうことなく人工羽根3の積層状態を維持するための融着固定部41を形成できる。このため、シャトルコック1の製造工程を簡略化できる。   In the badminton shuttlecock 1, as shown in FIGS. 42 to 44, the stacked state fixing portion is obtained by melting at least a part of the overlapping portion of the wing portion (wing body portion 5) of the artificial feather 3. By solidifying, a fusion fixing part 41 as a fusion part in which the overlapping part of the wing part of the artificial feather 3 is fixed may be included. In this case, a fusion fixing part for maintaining the laminated state of the artificial feather 3 without performing prior arrangement of an adhesive or the like by melting and re-solidifying at least a part of the laminated part of the artificial feather 3 41 can be formed. For this reason, the manufacturing process of the shuttlecock 1 can be simplified.

上記バドミントン用シャトルコック1において、図42に示すように、融着固定部41は人工羽根3の軸7に沿って延在するように形成されていてもよい。この場合、積層した人工羽根3を互いに固定する融着固定部41が、軸7に沿って伸びるように配置されることから、軸7に沿って伸びる羽本体部5の広い範囲について融着固定部41を形成することになる。このため、人工羽根3の積層順番や配置が変わることを抑制する効果をより確実に得ることができる。   In the badminton shuttlecock 1, as shown in FIG. 42, the fusion fixing part 41 may be formed to extend along the axis 7 of the artificial feather 3. In this case, since the fusion fixing portion 41 that fixes the laminated artificial feathers 3 to each other is arranged so as to extend along the shaft 7, the fusion fixing of a wide range of the wing body portion 5 extending along the shaft 7 is performed. The part 41 is formed. For this reason, the effect which suppresses that the stacking order and arrangement | positioning of the artificial feather 3 change can be acquired more reliably.

上記バドミントン用シャトルコックにおいて、融着固定部41は、図42に示すように羽本体部5での軸7の延在方向における中央部よりベース本体2に近い位置に形成されている。この場合、ラケットによるシャトルコック1の打撃時に、比較的変形量が大きくなる羽本体部5の後端部ではなく、上記のような位置に融着固定部41を形成することで、打撃時の衝撃によって融着固定部41が破損する可能性を低減できる。また、打撃時における羽本体部5の後端部の変形が、融着固定部41の形成により必要以上に制限されることを防止できるので、シャトルコック1の飛翔性能を天然のシャトルコックに近いものにすることができる。   In the badminton shuttlecock, the fusion fixing part 41 is formed at a position closer to the base body 2 than the center part in the extending direction of the shaft 7 in the wing body part 5 as shown in FIG. In this case, when the shuttlecock 1 is struck by the racket, the fusion fixing portion 41 is formed at the position as described above instead of the rear end portion of the wing main body portion 5 where the deformation amount is relatively large. The possibility that the fusion fixing part 41 is damaged by an impact can be reduced. Further, since the deformation of the rear end portion of the wing body portion 5 at the time of impact can be prevented from being restricted more than necessary due to the formation of the fusion fixing portion 41, the flight performance of the shuttlecock 1 is close to that of a natural shuttlecock. Can be a thing.

この発明に従ったバドミントン用シャトルコック1は、半球状のベース本体としてのベース本体2と、複数の人工羽根3と、紐部材としての中糸15および他の紐部材としての内糸17とを備える。複数の人工羽根3は、羽部および当該羽部に接続された軸7とを含む。複数の人工羽根3は、環状に配置されるとともに部分的に積層されるように、ベース本体2に固定される。中糸15は、図41に示すように複数の人工羽根3のそれぞれの軸7(好ましくは固着軸部10)の周囲を周回するとともに、人工羽根3の互いに積層された部分において対向する人工羽根3の間を通るように配置されている。内糸17は、図56に示すように複数の人工羽根3のそれぞれの軸7の周囲を周回するとともに、環状に配置された複数の人工羽根3の内周側に配置されている。   A badminton shuttlecock 1 according to the present invention includes a base body 2 as a hemispherical base body, a plurality of artificial feathers 3, a middle thread 15 as a string member, and an inner thread 17 as another string member. Prepare. The plurality of artificial feathers 3 include a wing part and a shaft 7 connected to the wing part. The plurality of artificial feathers 3 are fixed to the base body 2 so as to be annularly arranged and partially stacked. As shown in FIG. 41, the middle thread 15 circulates around the shaft 7 (preferably the fixing shaft portion 10) of each of the plurality of artificial feathers 3 and faces the artificial feathers 3 facing each other at the portions where the artificial feathers 3 are stacked. 3 are arranged so as to pass between the three. As shown in FIG. 56, the inner thread 17 circulates around the shaft 7 of each of the plurality of artificial feathers 3 and is disposed on the inner peripheral side of the plurality of artificial feathers 3 arranged in an annular shape.

このようにすれば、上述したベース本体2の形状に起因する効果に加えて、天然シャトルコックを構成する水鳥の羽根(天然の羽根)より軸7の剛性や強度が低い人工羽根3を用いる場合であっても、積層状態固定部として作用する中糸15および内糸17を配置することにより、当該人工羽根3の積層状態や形状を当初のまま維持できる。つまり、中糸15が人工羽根3の積層された部分の間に配置されることで、人工羽根3の積層順番が入替わることを防止できる。また、複数の人工羽根3の内周側に沿って内糸17が配置されることになるので、シャトルコック1を使用している間に人工羽根3の羽部が内周側に折れ曲がることを内糸17により抑制することができる。このため、人工羽根3の積層状態が入替わったり、人工羽根3が変形したりすることに起因してシャトルコック1の飛翔性能が劣化することを抑制できる。   In this case, in addition to the effect resulting from the shape of the base body 2 described above, the artificial feather 3 having the shaft 7 having lower rigidity and strength than the waterfowl feather (natural feather) constituting the natural shuttlecock is used. Even so, by arranging the middle yarn 15 and the inner yarn 17 that act as the laminated state fixing portion, the laminated state and shape of the artificial feather 3 can be maintained as they are. That is, it is possible to prevent the stacking order of the artificial feathers 3 from being changed by arranging the middle thread 15 between the stacked portions of the artificial feathers 3. Moreover, since the inner thread | yarn 17 will be arrange | positioned along the inner peripheral side of the several artificial feather | wing 3, while using the shuttlecock 1, the wing | blade part of the artificial feather | wing 3 will bend to the inner peripheral side. It can be suppressed by the inner thread 17. For this reason, it can suppress that the flight performance of the shuttlecock 1 deteriorates resulting from the laminated state of the artificial feather 3 being switched or the artificial feather 3 being deformed.

また、中糸15および内糸17は、複数の人工羽根3の積層状態を維持するため、隣接する人工羽根3の軸7を互いに固定するので、強度部材としても作用する。このため、シャトルコック1の強度が向上し、結果的にシャトルコック1の耐久性を向上させることができる。また、中糸15および内糸17として極めて細い糸などを利用することができるので、中糸15や内糸17を配置することによるシャトルコック1の重心位置やバランス、総質量などの変化を極力小さくすることができる。   Further, since the intermediate thread 15 and the inner thread 17 maintain the laminated state of the plurality of artificial feathers 3 and fix the shafts 7 of the adjacent artificial feathers 3 to each other, they also act as strength members. For this reason, the strength of the shuttlecock 1 is improved, and as a result, the durability of the shuttlecock 1 can be improved. Further, since very thin threads can be used as the middle thread 15 and the inner thread 17, changes in the center of gravity position, balance, total mass, etc. of the shuttlecock 1 due to the arrangement of the middle thread 15 and the inner thread 17 are minimized. Can be small.

上記バドミントン用シャトルコック1では、融着固定部41が、図44に示すように人工羽根3の積層された部分と異なる材質からなり、人工羽根3の積層された部分の間に配置される補強部材43を含んでいてもよい。この場合、人工羽根3の積層された部分の厚みが薄くても、補強部材43を配置することで融着固定部41の強度を十分高めることができる。   In the badminton shuttlecock 1, the fusion fixing portion 41 is made of a material different from the laminated portion of the artificial feather 3 as shown in FIG. 44, and is disposed between the laminated portions of the artificial feather 3. The member 43 may be included. In this case, even if the thickness of the laminated portion of the artificial feather 3 is thin, the strength of the fusion fixing portion 41 can be sufficiently increased by arranging the reinforcing member 43.

今回開示された各実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Each embodiment and example disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、水鳥の羽根を用いたバトミントン用シャトルコックと同等の飛翔特性および耐久性を有する、人工羽根を用いたバドミントン用シャトルコックに有利に適用される。   The present invention is advantageously applied to a badminton shuttlecock using artificial feathers having flying characteristics and durability equivalent to those of a badminton shuttlecock using waterfowl feathers.

本発明によるシャトルコックの実施の形態1を示す斜視模式図である。It is a perspective schematic diagram which shows Embodiment 1 of the shuttlecock by this invention. 図1に示したシャトルコックにおけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in the shuttlecock shown in FIG. 図2に示したベース本体と人工羽根との接続部を示す拡大斜視模式図である。It is an expansion perspective schematic diagram which shows the connection part of the base main body and artificial feather | wing shown in FIG. 図1〜図3に示したシャトルコックを構成する、本発明に従ったシャトルコック用人工羽根の実施の形態を示す平面模式図である。4 is a schematic plan view showing an embodiment of an artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock shown in FIGS. 1 to 3. FIG. 図4の線分V−Vにおける断面模式図である。It is a cross-sectional schematic diagram in line segment VV of FIG. 図4の線分VI−VIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment VI-VI of FIG. 図4の線分VII−VIIにおける断面模式図である。It is a cross-sectional schematic diagram in the line segment VII-VII of FIG. 図4の線分VIII−VIIIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment VIII-VIII of FIG. 図4に示したシャトルコック用人工羽根の羽軸部の下端部の外観を示す写真である。It is a photograph which shows the external appearance of the lower end part of the wing shaft part of the artificial feather for shuttlecocks shown in FIG. 図4に示したシャトルコック用人工羽根の羽軸部の中央部の外観を示す写真である。It is a photograph which shows the external appearance of the center part of the wing shaft part of the artificial feather for shuttlecocks shown in FIG. 図4に示したシャトルコック用人工羽根の羽軸部の先端部の外観を示す写真である。It is a photograph which shows the external appearance of the front-end | tip part of the wing shaft part of the artificial feather for shuttlecocks shown in FIG. 図4に示した人工羽根の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the artificial feather | wing shown in FIG. 図1〜図3に示したシャトルコック1の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the shuttlecock 1 shown in FIGS. 図12に示した人工羽根の製造方法における途中工程を説明するための模式図である。It is a schematic diagram for demonstrating the intermediate process in the manufacturing method of the artificial feather shown in FIG. 図14の線分XV−XVにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XV-XV of FIG. 図12の線分XVI−XVIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XVI-XVI of FIG. 図14の線分XVII−XVIIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XVII-XVII of FIG. 本発明に従ったシャトルコックの実施の形態1の変形例を示す斜視模式図である。It is a perspective schematic diagram which shows the modification of Embodiment 1 of the shuttlecock according to this invention. 図18に示したシャトルコックを構成する、本発明に従ったシャトルコック用人工羽根の実施の形態1の変形例を示す平面模式図である。FIG. 20 is a schematic plan view showing a modification of the first embodiment of the artificial feather for a shuttlecock according to the present invention, which constitutes the shuttlecock shown in FIG. 18. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. シャトルコック1を構成する人工羽根3の他の変形例を示す平面模式図である。It is a plane schematic diagram which shows the other modification of the artificial feather | wing 3 which comprises the shuttlecock 1. FIG. 本発明によるシャトルコックの実施の形態2におけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in Embodiment 2 of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態3におけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in Embodiment 3 of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態4におけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in Embodiment 4 of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態5におけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in Embodiment 5 of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態6におけるベース本体と人工羽根との接続部を説明するための部分模式図である。It is a partial schematic diagram for demonstrating the connection part of the base main body and artificial feather | wing in Embodiment 6 of the shuttlecock by this invention. 本発明によるシャトルコックの実施の形態7における人工羽根を構成する、シャトルコック用人工羽根の構成を示す平面模式図である。It is a plane schematic diagram which shows the structure of the artificial feather for shuttlecocks which comprises the artificial feather in Embodiment 7 of the shuttlecock by this invention. 図33の線分XXXIV−XXXIVにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XXXIV-XXXIV of FIG. 図33の線分XXXV−XXXVにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XXXV-XXXV of FIG. 図33の線分XXXVI−XXXVIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XXXVI-XXXVI of FIG. 図33の線分XXXVII−XXXVIIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XXXVII-XXXVII of FIG. 図33〜図37に示したシャトルコック用の人工羽根3の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the artificial feather | wing 3 for shuttlecocks shown in FIGS. 本発明によるシャトルコックの実施の形態8を示す側面模式図である。It is a side surface schematic diagram which shows Embodiment 8 of the shuttlecock by this invention. 図39に示したシャトルコックの上面模式図である。FIG. 40 is a schematic top view of the shuttlecock shown in FIG. 39. 図39に示したシャトルコックの中糸が配置された部分の構成を示す部分断面模式図である。FIG. 40 is a partial schematic cross-sectional view showing a configuration of a portion where a middle thread of the shuttlecock shown in FIG. 39 is arranged. 本発明によるシャトルコックの実施の形態9を示す側面模式図である。It is a side surface schematic diagram which shows Embodiment 9 of the shuttlecock by this invention. 図42に示したシャトルコックの融着固定部を示す部分断面模式図である。FIG. 43 is a partial cross-sectional schematic view showing a fusion fixing part of the shuttlecock shown in FIG. 42. 図42および図43に示した本発明によるシャトルコックの実施の形態9の変形例を示す部分断面模式図である。FIG. 44 is a partial schematic cross-sectional view showing a modification of the ninth embodiment of the shuttlecock according to the present invention shown in FIGS. 42 and 43. 図42および図43に示した本発明によるシャトルコックの実施の形態9の他の変形例を示す側面模式図である。FIG. 44 is a schematic side view showing another modification of the ninth embodiment of the shuttlecock according to the present invention shown in FIGS. 42 and 43. 図45に示したシャトルコックの上面模式図である。It is a top schematic diagram of the shuttlecock shown in FIG. 図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the fusion fixing part in Embodiment 9 of the shuttlecock by this invention shown in FIG.42 and FIG.43. 図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the fusion fixing part in Embodiment 9 of the shuttlecock by this invention shown in FIG.42 and FIG.43. 図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the fusion fixing part in Embodiment 9 of the shuttlecock by this invention shown in FIG.42 and FIG.43. 図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the fusion fixing part in Embodiment 9 of the shuttlecock by this invention shown in FIG.42 and FIG.43. 図42および図43に示した本発明によるシャトルコックの実施の形態9における融着固定部の変形例を説明するための模式図である。It is a schematic diagram for demonstrating the modification of the fusion fixing part in Embodiment 9 of the shuttlecock by this invention shown in FIG.42 and FIG.43. 本発明によるシャトルコックの実施の形態10を示す側面模式図である。It is a side surface schematic diagram which shows Embodiment 10 of the shuttlecock by this invention. 図52に示したシャトルコックの接着部材によって固定された接着固定部を示す部分断面模式図である。FIG. 53 is a partial schematic cross-sectional view showing an adhesive fixing portion fixed by an adhesive member of the shuttlecock shown in FIG. 52. 本発明に従ったシャトルコックの実施の形態11を示す側面模式図である。It is a side surface schematic diagram which shows Embodiment 11 of the shuttlecock according to this invention. 図54に示したシャトルコックの上面模式図である。FIG. 55 is a schematic top view of the shuttlecock shown in FIG. 54. 図54に示したシャトルコックの内糸が配置された部分の構成を示す部分断面模式図である。FIG. 57 is a partial schematic cross-sectional view showing a configuration of a portion where an inner thread of the shuttlecock shown in FIG. 54 is arranged. 図54および図55に示した本発明によるシャトルコックの実施の形態11の変形例を示す側面模式図である。FIG. 56 is a schematic side view showing a modification of the eleventh embodiment of the shuttlecock according to the present invention shown in FIGS. 54 and 55. 図57に示したシャトルコックの外糸が設置された部分の構成を示す部分断面模式図である。FIG. 58 is a partial schematic cross-sectional view showing a configuration of a portion where an outer thread of the shuttlecock shown in FIG. 57 is installed. 本発明によるシャトルコックの実施の形態12を示す側面模式図である。It is a side surface schematic diagram which shows Embodiment 12 of the shuttlecock by this invention. 図59に示したシャトルコックの実施の形態12の変形例を示す側面模式図である。60 is a schematic side view showing a modification of the twelfth embodiment of the shuttlecock shown in FIG. 59. FIG. 図60に示したシャトルコックの固定用糸が配置された部分の構成を示す部分断面模式図である。FIG. 61 is a partial schematic cross-sectional view showing a configuration of a portion where a fixing thread of the shuttlecock shown in FIG. 60 is arranged. 本発明によるシャトルコックの実施の形態13を示す上面模式図である。It is a top schematic diagram which shows Embodiment 13 of the shuttlecock by this invention. 図62に示したシャトルコックを構成する、シャトルコック用人工羽根の構成を示す平面模式図である。FIG. 63 is a schematic plan view showing the configuration of an artificial feather for shuttlecock that constitutes the shuttlecock shown in FIG. 62. 図62に示した本発明によるシャトルコックの実施の形態13の変形例を示す上面模式図である。FIG. 63 is a schematic top view showing a modification of the thirteenth embodiment of the shuttlecock according to the present invention shown in FIG. 62.

符号の説明Explanation of symbols

1 シャトルコック、2 ベース本体、3 人工羽根、5 羽本体部、6 羽本体部となるべき部分、7 軸、8 羽軸部、9,90 シート状部材、10 固着軸部、12 突出部、15 中糸、17 内糸、19 外糸、22 中心軸、23,24 線分、31,33 フラップ部、32 縁部、41 融着固定部、43 補強部材、50 延在部、51 接着固定部、53 接着部材、61 凸部、62,72 側壁、63 挿入穴、64 接着剤、65,75 凹部、71 弾性体部材、81 固定用糸、91 不織布、92 樹脂層。   DESCRIPTION OF SYMBOLS 1 Shuttle cock, 2 base main body, 3 artificial feather, 5 wing main body part, 6 part which should become wing main body part, 7 axis | shaft, 8 wing shaft part, 9,90 sheet-like member, 10 adhering shaft part, 12 protrusion part, 15 Middle thread, 17 Inner thread, 19 Outer thread, 22 Center axis, 23, 24 line segment, 31, 33 Flap part, 32 Edge part, 41 Fusion fixing part, 43 Reinforcement member, 50 Extension part, 51 Adhesive fixing Part, 53 adhesive member, 61 convex part, 62, 72 side wall, 63 insertion hole, 64 adhesive, 65, 75 concave part, 71 elastic body member, 81 fixing thread, 91 nonwoven fabric, 92 resin layer.

Claims (11)

シャトルコック用羽根の軸を固定する固定用表面部を備えるシャトルコック用ベース本体であって、
前記固定用表面部には、
前記軸を挿入固定するための複数の挿入穴と、
前記挿入穴に隣接し、前記固定用表面部の表面から突出する凸部とが形成されている、シャトルコック用ベース本体。
A shuttlecock base body having a fixing surface portion for fixing a shaft of a shuttlecock blade,
In the fixing surface portion,
A plurality of insertion holes for inserting and fixing the shaft;
A shuttlecock base main body formed with a convex portion that is adjacent to the insertion hole and protrudes from the surface of the fixing surface portion.
前記複数の挿入穴は、前記固定用表面部において円周状に配置され、
前記凸部は、前記円周状に配置された複数の前記挿入穴の内周側に隣接して形成されている、請求項1に記載のシャトルコック用ベース本体。
The plurality of insertion holes are arranged circumferentially on the fixing surface portion,
The base body for a shuttlecock according to claim 1, wherein the convex portion is formed adjacent to an inner peripheral side of the plurality of insertion holes arranged in the circumferential shape.
前記凸部は前記固定用表面部と一体となっている、請求項1又は2に記載のシャトルコック用ベース本体。   The shuttlecock base body according to claim 1, wherein the convex portion is integrated with the fixing surface portion. 前記凸部は、前記固定用表面部に前記凸部となるべき部材を接合することにより形成されている、請求項1または2に記載のシャトルコック用ベース本体。   The shuttlecock base body according to claim 1, wherein the convex portion is formed by joining a member to be the convex portion to the fixing surface portion. 前記凸部は弾性体によって構成される、請求項4に記載のシャトルコック用ベース本体。   The base body for a shuttlecock according to claim 4, wherein the convex portion is constituted by an elastic body. 前記凸部において、前記挿入穴に面する表面は、前記挿入穴の延在方向に沿った方向に延びるように形成されている、請求項1〜5のいずれか1項に記載のシャトルコック用ベース本体。   In the said convex part, the surface which faces the said insertion hole is formed so that it may extend in the direction along the extension direction of the said insertion hole, The shuttlecock of any one of Claims 1-5 Base body. 前記凸部において、前記挿入穴に面する表面は、前記固定用表面部の表面に対して垂直な方向に延びるように形成されている、請求項1〜5のいずれか1項に記載のシャトルコック用ベース本体。   The shuttle according to any one of claims 1 to 5, wherein a surface of the convex portion facing the insertion hole is formed to extend in a direction perpendicular to the surface of the fixing surface portion. Base body for cock. 請求項1〜7のいずれか1項に記載のシャトルコック用ベース本体と、
前記ベース本体の前記固定用表面部に形成された複数の前記挿入穴に軸が挿入固定されたシャトルコック用羽根とを備える、バドミントン用シャトルコック。
A base body for a shuttlecock according to any one of claims 1 to 7,
A shuttlecock for badminton, comprising shuttlecock blades having shafts inserted and fixed in the plurality of insertion holes formed in the fixing surface portion of the base body.
前記シャトルコック用羽根は、
羽部と、
前記羽部に接続された前記軸とを備える人工羽根であり、
前記軸は、固着軸部と、前記固着軸部に連なる羽軸部とを含み、
前記羽部を構成する部材は、前記固着軸部と接触し前記固着軸部より幅の広い羽本体部と、前記羽本体部から前記羽軸部に突出する突出部とを含み、
前記突出部において前記羽本体部側と反対側の端部は前記羽軸部を構成する部材に埋設される、請求項8に記載のバドミントン用シャトルコック。
The shuttlecock blades are:
Habe,
An artificial feather comprising the shaft connected to the wing,
The shaft includes a fixed shaft portion and a wing shaft portion connected to the fixed shaft portion,
The member constituting the wing part includes a wing body part that is in contact with the fixed shaft part and wider than the fixed shaft part, and a protruding part that protrudes from the wing body part to the wing shaft part,
The shuttlecock for badminton according to claim 8, wherein an end of the protruding portion opposite to the wing body portion side is embedded in a member constituting the wing shaft portion.
前記羽部を構成する部材は、多層構造を有するシート状部材からなる、請求項9に記載のバドミントン用シャトルコック。   The badminton shuttlecock according to claim 9, wherein the member constituting the wing portion is a sheet-like member having a multilayer structure. 複数の前記人工羽根における前記羽部の相対的な移動または変形を規制する紐状体をさらに備える、請求項9または10に記載のバドミントン用シャトルコック。   The shuttlecock for badminton according to claim 9 or 10, further comprising a string-like body that regulates relative movement or deformation of the wing portion in the plurality of artificial feathers.
JP2008254274A 2008-09-30 2008-09-30 Shuttlecock for badminton and base for shuttlecock Pending JP2010082160A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008254274A JP2010082160A (en) 2008-09-30 2008-09-30 Shuttlecock for badminton and base for shuttlecock
PCT/JP2009/066594 WO2010038657A1 (en) 2008-09-30 2009-09-25 Shuttlecock for badminton and base for shuttlecock
CN2009801382994A CN102164641A (en) 2008-09-30 2009-09-25 Shuttlecock for badminton and base for shuttlecock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254274A JP2010082160A (en) 2008-09-30 2008-09-30 Shuttlecock for badminton and base for shuttlecock

Publications (1)

Publication Number Publication Date
JP2010082160A true JP2010082160A (en) 2010-04-15

Family

ID=42073421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254274A Pending JP2010082160A (en) 2008-09-30 2008-09-30 Shuttlecock for badminton and base for shuttlecock

Country Status (3)

Country Link
JP (1) JP2010082160A (en)
CN (1) CN102164641A (en)
WO (1) WO2010038657A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033068A1 (en) * 2010-09-06 2012-03-15 ヨネックス株式会社 Artificial shuttlecock feather and shuttlecock
WO2012133520A1 (en) * 2011-03-30 2012-10-04 美津濃株式会社 Artificial feather for shuttlecock, shuttlecock for badminton and manufacturing method for artificial feather and shuttlecock
JP2013039317A (en) * 2011-08-19 2013-02-28 Yonex Co Ltd Artificial feather for shuttlecock, shuttlecock, and method for producing artificial feather for shuttlecock
JP5976907B1 (en) * 2015-08-17 2016-08-24 株式会社コスモ精機 Badminton shuttle
JP2017202001A (en) * 2016-05-09 2017-11-16 ヨネックス株式会社 Artificial feather for shuttlecock and shuttlecock

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947249B2 (en) * 2013-06-28 2016-07-06 美津濃株式会社 Badminton shuttlecock
CN106914004B (en) * 2015-12-25 2023-10-20 戴见霖 Shuttlecock manufacturing equipment and application thereof
CN108245859B (en) * 2018-03-12 2024-02-20 安徽玩就玩吧新零售有限责任公司 Badminton with guide member
JP7267035B2 (en) * 2019-02-28 2023-05-01 ヨネックス株式会社 shuttlecock
CN111729272A (en) * 2020-07-07 2020-10-02 安徽三才体育用品有限公司 Artificial feather connecting structure of badminton

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2359726A (en) * 1942-06-22 1944-10-03 Charles G Jansky Bird or shuttlecock
JPS5969086A (en) * 1982-10-14 1984-04-19 ヤマハ株式会社 Blade for shuttle cock
JP2000042157A (en) * 1998-07-31 2000-02-15 Mizuno Corp Manufacture of shuttlecock
JP2001252383A (en) * 2000-03-14 2001-09-18 Mizuno Corp Shuttlecock, and method of manufacturing the same
WO2008093649A1 (en) * 2007-02-02 2008-08-07 Mizuno Corporation Shuttlecock for badminton, artificial vane for shuttlecock, and methods of manufacturing them
JP2008206970A (en) * 2007-02-02 2008-09-11 Mizuno Corp Shuttlecock for badminton, artificial vane for shuttlecock and method of manufacturing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2359726A (en) * 1942-06-22 1944-10-03 Charles G Jansky Bird or shuttlecock
JPS5969086A (en) * 1982-10-14 1984-04-19 ヤマハ株式会社 Blade for shuttle cock
JP2000042157A (en) * 1998-07-31 2000-02-15 Mizuno Corp Manufacture of shuttlecock
JP2001252383A (en) * 2000-03-14 2001-09-18 Mizuno Corp Shuttlecock, and method of manufacturing the same
WO2008093649A1 (en) * 2007-02-02 2008-08-07 Mizuno Corporation Shuttlecock for badminton, artificial vane for shuttlecock, and methods of manufacturing them
JP2008206970A (en) * 2007-02-02 2008-09-11 Mizuno Corp Shuttlecock for badminton, artificial vane for shuttlecock and method of manufacturing them

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033068A1 (en) * 2010-09-06 2012-03-15 ヨネックス株式会社 Artificial shuttlecock feather and shuttlecock
JPWO2012033068A1 (en) * 2010-09-06 2014-01-20 ヨネックス株式会社 Artificial feather for shuttlecock and shuttlecock
KR20140027951A (en) * 2011-03-30 2014-03-07 미즈노 가부시키가이샤 Artificial feather for shuttlecock, shuttlecock for badminton and manufacturing method for artificial feather and shuttlecock
WO2012133520A1 (en) * 2011-03-30 2012-10-04 美津濃株式会社 Artificial feather for shuttlecock, shuttlecock for badminton and manufacturing method for artificial feather and shuttlecock
JP2012205842A (en) * 2011-03-30 2012-10-25 Mizuno Corp Artificial feather for shuttlecock, shuttlecock for badminton, and method for manufacturing them
KR101702174B1 (en) 2011-03-30 2017-02-13 미즈노 가부시키가이샤 Artificial feather for shuttlecock, shuttlecock for badminton and manufacturing method for artificial feather and shuttlecock
JP2013039317A (en) * 2011-08-19 2013-02-28 Yonex Co Ltd Artificial feather for shuttlecock, shuttlecock, and method for producing artificial feather for shuttlecock
WO2013027535A1 (en) * 2011-08-19 2013-02-28 ヨネックス株式会社 Artificial feather for shuttlecock, shuttlecock, and method for producing artificial feather for shuttlecock
JP5976907B1 (en) * 2015-08-17 2016-08-24 株式会社コスモ精機 Badminton shuttle
JP2017038634A (en) * 2015-08-17 2017-02-23 株式会社コスモ精機 Badminton shuttlecock
JP2017202001A (en) * 2016-05-09 2017-11-16 ヨネックス株式会社 Artificial feather for shuttlecock and shuttlecock
WO2017195618A1 (en) * 2016-05-09 2017-11-16 ヨネックス株式会社 Synthetic shuttlecock feather and shuttlecock
US10576346B2 (en) 2016-05-09 2020-03-03 Yonex Kabushiki Kaisha Artificial shuttlecock feather and shuttlecock
TWI705841B (en) * 2016-05-09 2020-10-01 日商優乃克股份有限公司 Artificial feathers used in badminton, and badminton

Also Published As

Publication number Publication date
WO2010038657A1 (en) 2010-04-08
CN102164641A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2010038657A1 (en) Shuttlecock for badminton and base for shuttlecock
JP4651051B2 (en) Shuttlecock for badminton, artificial feather for shuttlecock, and method for producing them
KR101552743B1 (en) Shuttlecock for badminton
KR20110056501A (en) Badminton shuttlecock
JP5661535B2 (en) Artificial feather for shuttlecock, shuttlecock for badminton, and manufacturing method thereof
JP5170459B2 (en) Artificial feather for shuttlecock, shuttlecock for badminton, and manufacturing method thereof
US20130210564A1 (en) Artificial feather for shuttlecock and shuttlecock
TWI713740B (en) Artificial feathers used in badminton, and badminton
JP6161381B2 (en) Artificial feather for shuttlecock and shuttlecock for badminton
KR101357416B1 (en) Artificial feather for shuttlecock and badminton shuttlecock
JP5947249B2 (en) Badminton shuttlecock
JP5577280B2 (en) Tubular body
EP2769754A1 (en) Shuttlecock
JP2015029845A (en) Shuttlecock and artificial feather for the same
JP5989035B2 (en) Shuttlecock
WO2017213039A9 (en) Shuttlecock
JP2017217353A (en) Artificial feather and shuttlecock
JP2019136185A (en) Ball for exercise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311