WO2011018014A1 - 可调节磁场气隙间距和耦合面积的筒型传动轴永磁耦合器 - Google Patents
可调节磁场气隙间距和耦合面积的筒型传动轴永磁耦合器 Download PDFInfo
- Publication number
- WO2011018014A1 WO2011018014A1 PCT/CN2010/075792 CN2010075792W WO2011018014A1 WO 2011018014 A1 WO2011018014 A1 WO 2011018014A1 CN 2010075792 W CN2010075792 W CN 2010075792W WO 2011018014 A1 WO2011018014 A1 WO 2011018014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turntable
- coupling
- permanent magnet
- shaft
- assembly
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/104—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
- H02K49/108—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/104—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
- H02K49/106—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/09—Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
Definitions
- the invention relates to the technical field of drive shaft coupling drive, the field of load speed regulation technology and the field of power drag, in particular to a cylindrical drive shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area.
- the system adjustment mode is backward. Most fans and pumps are regulated by mechanical throttling, and the efficiency is about 30% lower than the speed control mode. the above.
- the efficiency is about 30% lower than the speed control mode. the above.
- Cascade speed control technology can recover the slip power, but it is not suitable for squirrel cage type asynchronous motor, the motor must be replaced; soft start can not be realized, the starting process is very complicated; the starting current is large; the speed regulation range is limited; The response is slow, and it is difficult to achieve closed-loop control; the power factor and efficiency are low, and it drops sharply with the decrease of the rotational speed; it is difficult to achieve the same PLC, DCS
- the coordination of the control system is not beneficial to improve the overall automation of the device and to achieve optimal control. At the same time, because the control device is more complicated and the harmonic pollution has greater interference to the power grid, it further restricts its use, which is backward technology.
- the electromagnetic slip clutch speed control technology realizes the speed adjustment of the magnetic pole by controlling the excitation current of the electromagnetic clutch.
- This system generally also adopts the closed loop control of the speed. All the differential power of the speed control system is consumed, and the consumption of the differential power is increased in exchange for the decrease of the rotational speed, the slip rate is increased, the slip power is also increased, and the heat is consumed in the rotor circuit, so that The system efficiency also decreases.
- This kind of speed control system has the problem that the wider the speed regulation range, the larger the slip power, and the lower the system efficiency, the control device is also more complicated, so it is not worth promoting.
- the hydraulic coupling speed control technology is an inefficient speed regulation mode with limited speed range.
- the high speed drop is about 5%--10%, and the low speed slip loss is large, up to 30% of the rated power.
- the frequency conversion speed regulation technology is a relatively common and relatively advanced technology at present.
- the power electronic technology is used to realize the speed adjustment of the motor, which can be automatically controlled according to the actual working conditions to achieve a certain energy saving effect.
- the frequency conversion equipment is easy to generate harmonics.
- the high-power inverter has a very large harmonic pollution to the power grid. It is more expensive and more demanding on the environment. It requires an air-conditioning environment.
- the failure rate is high, the safety is poor, and the frequency conversion is adjusted.
- the speed system requires professional maintenance, and the vulnerable parts often need to be replaced, the maintenance cost is high, and the speed regulation range is small, especially when the motor is damaged at low speed, and the corresponding frequency conversion motor is needed, for the commonly used high voltage of 6000V or higher. 50 kW --- For 10,000 kW models, the price is expensive and the total cost of ownership is very large.
- the permanent magnet coupling and speed control technology is the most advanced drive shaft coupling drive and speed control technology which is being further researched and developed.
- the main advantages are as follows: 1 energy saving, stepless adjustment of speed, speed range is 0-- -98%; 2 simple structure; 3 high reliability, easy to install, not afraid of harsh environment, Long life up to 25 More than 4 years; 4 soft start, power equipment is completely started under no load; 5 is not afraid of blocking, not afraid of pulse type load, mechanical seal; 6 tolerate shaft eccentricity, with load isolation, reduce vibration and noise; 7 extend equipment life, increase fault cycle, Reduce maintenance requirements; 8 no harmonic hazard, no damage to power equipment, does not affect grid safety, no power supply except actuator and controller, suitable for various industrial grade motor systems and explosion-proof occasions; 9 no electromagnetic interference; 10
- the total cost of ownership is relatively low. Another important feature is that there are no requirements for the power source equipment, as long as the output shaft of the power source equipment rotates to work.
- the permanent magnet coupling and governor seen on the market have been recognized and praised by users.
- the related products of Magna Drive Company of the United States are also the only ones in the global market that are suitable for motor dragging.
- There are high-power models of permanent magnet coupling and governor products and there are common transmission shaft double permanent magnet couplings or couplers that cannot be adjusted. Due to the limitations of their structural and technical solutions, the technical performance of their products has many deficiencies, which need to be improved and overcome. It mainly has the following shortcomings: 1 using only a single dual permanent magnet coupling component or an axial metal conductor.
- the important technical guarantee of the speed control device is one of the technical support for the long-term safe operation of the super-high-power permanent magnet coupling and governor.
- the air-cooled power can only be achieved at the maximum.
- About 130 kW, at 1500 rpm, the air-cooled power can only be about 300 kW, and its promotion and application is greatly limited.
- the main reason is related to the heat dissipation problem;
- the permanent magnet coupling technology of the armature winding formed by coupling the armature winding disc and the permanent magnet disc disclosed in the prior patent of the present inventor is divided into two structural forms, one of which is the axial direction disclosed in Patent No. 200910148103.1
- the armature winding permanent magnet coupling technology of the air gap magnetic field achieves the purpose of adjusting the load rotation speed by adjusting the air gap spacing axially; another structural form is the radial direction disclosed in the inventor's prior patent 200910148102.7.
- the armature winding permanent magnet coupling technology scheme of the air gap magnetic field achieves the purpose of adjusting the load speed by adjusting the coupling area of the air gap magnetic field to adjust the magnetic torque.
- the present invention combines axial and radial air gap magnetic field armature winding permanent magnet coupling technology, adopting advanced permanent magnet coupling Air gap spacing and air gap coupling area adjustment mechanism and advanced sensor technology, automatic control and intelligent technology to create an advanced, new, easy to install and safe, series of adjustable air gap magnetic field coupling spacing and area Technical scheme of cylindrical drive shaft permanent magnet coupler.
- a series of products having different uses or different functions can be fabricated to perfect and overcome the above-mentioned shortcomings, defects and related technical bottlenecks of the permanent magnet coupling and governor products, and the permanent magnet coupling can be greatly improved.
- the present invention has been innovatively designed in the following aspects: 1 a cylindrical drive shaft permanent magnet coupler with adjustable air gap magnetic field coupling pitch and area The structural fusion and integrated design of the axial and radial air gap magnetic field armature winding permanent magnet coupling components are utilized to take advantage of the axial and radial permanent magnet coupling components, and to complement the length and increase the unit volume magnetic torque of the device of the present invention.
- the technical solution has a turntable limit mechanism component, a torque transmission mechanism component, a turntable linkage mechanism component, and a departure Type adjustment mechanism components, stepless adjustment mechanism components, automatic stepless adjustment mechanism components, etc., which can be implemented separately, or can be combined and implemented according to the actual function and technical needs, and the designed transmission shaft is designed.
- Permanent magnet coupling drive and speed control products provide technical support; 4 using advanced embedded micro-processing technology, automatic control technology and non-contact displacement, speed, temperature sensor technology and coolant liquid level monitoring technology, given system operation monitoring, Intelligent controller technology solution for soft start mode control, load stall event processing and speed intelligent adjustment function, intelligent controller and automatic adjustment mechanism components are matched, making permanent magnet coupling transmission and speed control device become fully automated and intelligent system Not only the product's maneuverability has made rapid progress, but also greatly improved the real-time follow-up performance of the system, achieving full-process monitoring and intelligent control functions during system operation, and can be carried out for different load characteristics and operating conditions.
- a cylindrical drive shaft permanent magnet coupler capable of adjusting an air gap magnetic field coupling pitch and area characterized in that it is a rotary drum type or a rotary drum composite structure, and is composed of at least one set of axial magnetic field permanent magnet coupling components or / and a radial magnetic field permanent magnet coupling assembly, at least one pair of active permanent magnet coupling turntable coupling mechanisms matched with the active turntable in the permanent magnet coupling assembly, and corresponding main shaft couplings, at least one pair and permanent magnet coupling Passive permanent magnet coupling turntable with passive permanent magnet coupling turntable coupling mechanism and corresponding passive shaft coupling, a pair of permanent magnet coupling turntable air gap spacing and coupling area adjustment mechanism and a system for integration
- the integrated structure is composed of an integrated assembly mechanism for packaging transportation and installation.
- the axial magnetic field permanent magnet coupling assembly is an axial magnetic field armature winding permanent magnet coupling assembly
- the radial magnetic field permanent magnet coupling assembly is a radial magnetic field armature winding forever.
- the magnetic coupling component, the active rotating disc in the permanent magnet coupling assembly is coupled with the corresponding driving shaft coupling by the adapted active permanent magnet coupling dial coupling mechanism, and the passive coupling in the permanent magnet coupling assembly
- the permanent magnet coupling turntable is coupled to the corresponding passive shaft coupling by a suitable passive turntable coupling mechanism, on the active turntable and its associated coupling mechanism or on the passive turntable and its associated coupling mechanism Set the matching permanent magnet coupling turntable air gap spacing and coupling area adjustment mechanism, between the active turntable and its associated coupling mechanism and the passive turntable and its associated coupling mechanism during factory packaging, transportation and installation Set up an integrated assembly mechanism.
- a cylindrical transmission shaft permanent magnet coupler capable of adjusting an air gap magnetic field coupling pitch and area as described above, characterized in that two mutually adapted air gap magnetic field coupling disks in the axial magnetic field permanent magnet coupling assembly a circular or circular disk planar opposite structure, wherein the axial magnetic field permanent magnet disk is composed of a disk or a circular disk-shaped permanent magnet mounting disk and at least one permanent magnet or permanent magnet group, one forever Adjacent permanent magnets in the magnet group are arranged alternately in the axial N and S polarities on the circumference of the disc or circular disc-shaped mounting disc, the axial magnetic field permanent magnet disc and the adapted axial magnetic field
- the armature winding plate is coupled to form an axial magnetic field armature winding permanent magnet coupling assembly, and two mutually adapted air gap magnetic field coupling disks in the radial magnetic field permanent magnet coupling assembly are nested in a cylindrical disk or a circular tube disk a radial structure magnetic disk permanent magnet disk consisting of a cylindrical disk or a circular disk
- a cylindrical drive shaft permanent magnet coupler capable of adjusting an air gap magnetic field coupling pitch and area as described above, wherein the active permanent magnet coupling turntable coupling mechanism is actively engaged for mounting a permanent magnet coupling assembly
- At least one of the cage wall of the magnetic coupling turntable, the end wall of the cage, the wall of the drum, and the end wall of the rotating drum, and the components or joint components that are matched with the corresponding driving shaft couplings, are actively
- the connection, support, torque transmission and transmission structure are formed by the active permanent magnet coupling turntable coupling mechanism between the magnetic coupling turntable and the drive shaft coupling, and the passive permanent magnet coupling turntable coupling mechanism is used for mounting the permanent magnet coupling component
- a cylindrical drive shaft permanent magnet coupler capable of adjusting an air gap magnetic field coupling pitch and area as described above, wherein the passive permanent magnet coupling turntable coupling mechanism is passively used for mounting a permanent magnet coupling assembly
- At least one of the cage wall of the magnetic coupling turntable, the end wall of the cage, the wall of the drum, and the end wall of the drum, and the components or joint components that are matched with the corresponding passive shaft coupling, are passively
- the connection, support, torque transmission and transmission structure are formed by the passive permanent magnet coupling turntable coupling mechanism between the magnetic coupling turntable and the passive shaft coupling
- the active permanent magnet coupling turntable coupling mechanism is used for mounting the permanent magnet coupling component
- the cylindrical transmission shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area as described above, wherein the permanent magnet coupling turntable air gap spacing and the coupling area adjusting mechanism are centrifugal adjustment mechanisms, which have Four structures for separate implementation, one of which is a non-circular shaft hole bushing on at least one pair of latch-type spring centrifugal lock mechanism, a passive permanent magnet coupling turntable/rotary end wall, and a matching limited position mechanism
- the non-circular center short-axis assembly is composed of at least one pair of latch-type spring centrifugal lock mechanism, a central short-axis assembly, a center turntable and a passive permanent magnet coupling turntable torque transmission slide assembly, and the third is composed of at least one a secondary spring centrifugal pin, a non-circular shaft hole bushing on the end wall of the passive permanent magnet coupling turntable/rotary drum, and an adapted non-circular center short shaft assembly with a limit mechanism
- the fourth is composed of at least one pair The spring centrifug
- the cylindrical transmission shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area as described above, wherein the permanent magnet coupling turntable air gap spacing and the coupling area adjusting mechanism are stepless adjustment mechanisms, which have Six structures for separate implementation, one of which is the linkage mechanism of the back-to-back adjacent permanent magnet coupling turntable/reel, the central short shaft, the turntable/reel isolation bearing, and the matching turntable/reel end wall
- the cam sleeve of the adjusting rod or the adjusting handle, the shaft isolating bearing of the cam sleeve and the adapted swing bracket assembly and/or the adapted fixing bracket assembly, and the second is by the back-to-back adjacent permanent magnet coupling turntable
- the cam linear displacement transmission mechanism and the linear displacement transmission mechanism of the rack are arranged.
- a screw nut linear displacement transmission mechanism and a drive mechanism assembly and an adapted swing bracket assembly and/or an adapted fixing bracket assembly adapted thereto and the sixth is a permanent magnet coupling turntable/turn Non-circular shaft hole and bushing on the end wall of the cylinder, non-circular center short shaft, turntable/reel isolation bearing, turntable coupled with the corresponding turntable/rotor end wall or the non-circular bushing thereon / rotatory isolation bearing shell or inner sleeve, turntable / drum isolated bearing with cam, rack or screw nut corresponding to the inner sleeve or jacket, laid on one side of the drive shaft and isolated from the turntable / drum bearing inner sleeve or jacket
- the cylindrical drive shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area as described above, wherein the permanent magnet coupling turntable air gap spacing and the coupling area adjusting mechanism are automatic stepless adjusting mechanisms, Consisting of a stepless adjustment structure, a servo motor and its associated mechanism, a controller and an adapted oscillating bracket assembly and/or an adapted fixed bracket assembly, there are nine structures for separate implementation, one of which is adjacent to the back to back
- the screw hole is coupled with the linear motion tube for linear displacement transmission, the cylindrical or disk ring linear servo motor for driving the cylinder shaft for linear motion, the linear servo motor barrel shaft and the central short shaft isolation bearing, the controller and
- the matched swing bracket assembly and/or the adapted fixed bracket assembly are constructed, and the seventh is a linkage mechanism of the back-to-back adjacent permanent magnet coupling turntable/reel, the center short shaft, the turntable isolation bearing, and the matching turntable/turn cylinder
- the controller is a dial type controller, a digital display controller or an intelligent controller.
- the dial type controller is controlled by a dial, a control knob or a button, a controller input/output interface, a motor power supply unit, a motor control unit, and a PLC programmable.
- the controller interface unit and its matching control circuit and the peripheral single circuit, the power switch, the power insurance and the controller casing are composed of the embedded microprocessor unit, the display unit, the operating keyboard unit, and the controller input and output.
- the interface, the motor power unit, the controller power circuit unit, the power switch, the power fuse and the controller casing, the intelligent controller comprises an embedded microprocessor, a display unit, an operating keyboard unit, at least one way and at least one sensor and an adaptation thereof Input interface, at least one digital input/output interface unit, at least one analog input/output connection Port unit, at least one or at least one general or non-standard data communication interface unit, motor power unit, controller power circuit unit, power switch, power fuse and controller housing, etc.
- the sensor has four types for use, first The displacement sensor is used to directly or indirectly detect the permanent magnet coupling air gap spacing and coupling area, the second is to detect the speed of the active or passive transmission shaft, and the third is to sense the temperature of the permanent magnet coupling assembly.
- the temperature sensor, the fourth is the liquid level sensor for sensing the cooling water level.
- the universal or non-standard data communication interface unit has 485 interface, field bus interface, internet interface, LAN interface, wireless communication interface or special non-standard interface. , for collecting and processing state information acquired by the various sensors, operating keyboard input command processing, display output information processing, servo motor power supply timing and amplitude processing, and processing and inputting information of the various interface units and completing system data Embedded microprocessor units for computation, event analysis processing, and data storage are respectively passed According to the bus and the corresponding corresponding unit port, the controller power circuit provides working power for each circuit unit in the controller and is connected to the power input end of the corresponding unit, controlled by the embedded microprocessor unit and The control line for the servo motor that supplies the servo motor power supply to the servo motor is connected to the corresponding port of the embedded microprocessor unit via the data bus.
- Heat treatment, heat sink, radiator or water-cooled components are arranged on the cooling duct cooling section.
- the combined integrated technology heat-dissipating component uses at least two of the three air-cooled technical components, the rotating heat pipe technology component and the water-cooling technology system.
- the cylindrical transmission shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area as described above, wherein the integrated assembly mechanism is installed after the device is debugged and tested, and is in the device
- the structure for separately implementing one of which is an integrated assembly screw assembly disposed between the active turntable/rotary end wall on one side of the drive shaft and the passive turntable/reel end wall assembly, and the second is disposed on the drive shaft
- the integrated assembly screw assembly between the turntable/drum wall assembly and the active turntable/reel wall, the fourth is the passive turntable/rotating end wall assembly and the active turntable/reel end wall disposed on one side of the passive shaft
- the fifth is the central assembly of the short shaft assembly on the side of the passive shaft or the non-circular central short shaft and the active turntable/rotary end wall or the wall of the cylinder "Component", which is connected and fixed by the integrated assembly mechanism between the input coupling and its connected components and the output coupling and its connected components, during the
- the cylindrical transmission shaft permanent magnet coupler capable of adjusting the air gap magnetic field coupling pitch and area as described above is characterized in that the outside of the device is provided with a dust cover or a cage or machine provided with safety protection and preventing magnetic field leakage Shells, which are only coupled to the outermost components of the unit, the active turntable portion and the passive turntable portion, or to an integrated heat sink or heat sink system, or to a cage or machine
- the casing or dust cover is placed or integrated into a base or base frame, bracket or support that is otherwise provided for the device, motor or load.
- the bracket or support is a horizontal structure or a vertical structure.
- this case is mainly to construct a technical scheme in which two kinds of permanent magnet coupling components are integrated or integrated with each other, a technical scheme of air gap spacing and coupling area adjustment mechanism of a permanent magnet coupling air gap magnetic field, an automatic adjustment control and an intelligent control technical scheme,
- the system heat dissipation technical solution and the technical solution of the integrated assembly mechanism for facilitating the overall packaging, transportation and installation of the device of the invention, and the specific technical solutions of some typical, representative or specific design ideas that can explain the design idea are carried out. Description.
- FIG. 1 is a schematic cross-sectional view showing the working principle and structure of the embodiment 1 when an integrated assembly mechanism is installed;
- FIG. 2 is a schematic cross-sectional view showing the working principle and structure of the embodiment 1 in the state in which the integrated assembly mechanism is removed and in the state of blocking and unloading;
- Figure 3 is a right side view of the non-circular center short axis of Embodiment 1;
- FIG. 4 is a schematic view showing the working principle and structure of the embodiment 2 in a soft start state
- FIG. 5 is a schematic diagram showing the working principle and structure of the second embodiment in the state of passive shaft blocking and unloading
- Figure 6 is a schematic diagram of the working principle and structure of the embodiment 3 when the integrated assembly mechanism is installed and the minimum air gap spacing and the maximum coupling area are at a minimum;
- Figure 7 is a schematic diagram of the working principle and structure of the embodiment 3 when the integrated assembly mechanism is removed and at the maximum air gap spacing and the minimum coupling area;
- FIG. 8 is a schematic cross-sectional view showing the working principle and structure of the embodiment 4 when an integrated assembly mechanism is installed;
- Figure 9 is a right side view of the non-circular center short axis of Embodiment 4.
- FIG. 10 is a schematic cross-sectional view showing the working principle and structure of the embodiment 5 when the integrated assembly mechanism is installed and at the minimum air gap spacing and the maximum coupling area;
- FIG. 11 is a schematic cross-sectional view showing the working principle and structure of the embodiment 5 after the integrated assembly mechanism is removed, and the turntable is rotated 90 degrees and at the maximum air gap spacing and the minimum coupling area after the state shown in FIG. 10;
- Figure 13 is a right side view of the center short axis of Embodiment 6;
- Embodiment 16 is a schematic cross-sectional view showing the working principle and structure of Embodiment 8.
- Figure 17 is a right side view of the non-circular center short axis of Embodiment 8.
- Embodiment 18 is a schematic cross-sectional view showing the working principle and structure of Embodiment 9;
- Figure 19 is a right side view of the non-circular center short axis of Embodiment 9;
- Embodiment 20 is a schematic cross-sectional view showing the working principle and structure of Embodiment 10.
- Figure 21 is a top plan view showing the horizontal rotary table interlocking cam groove lever pair of Figure 20;
- Figure 22 is a schematic cross-sectional view showing the working principle and structure of the embodiment 11;
- Embodiment 23 is a schematic cross-sectional view showing the working principle and structure of Embodiment 12;
- Figure 24 is a right side elevational view of the non-circular center of the embodiment 12;
- Figure 25 is a schematic cross-sectional view showing the working principle and structure of the embodiment 13;
- Figure 26 is a right side elevational view of the non-circular center of the embodiment 13.
- Fig. 1 Fig. 2 and Fig. 3
- it is a propeller-type transmission shaft permanent magnet coupler composed of two inner drums (50, 51) and one outer drum (70).
- the end walls (80, 81) of the outer drum are respectively provided with axial magnetic field armature winding disks (1, 2)
- the end walls (60, 61) of the inner rotating drum are respectively provided with axial magnetic field permanent magnet disks ( 35, 36), they respectively correspond to two axial magnetic field armature winding permanent magnet coupling assemblies (401, 402)
- the inner circumferential surface (77) of the outer rotating cylinder wall (72) is provided with a radial magnetic field armature winding
- the outer circumferential surfaces of the discs (320, 321) and the inner rotating cylinder walls (50, 51) are provided with corresponding radial magnetic field permanent magnet disks (355, 356), and respectively coupled to form two radial magnetic field armature windings forever Magnetic coupling assembly (441, 442); air gap spacing and coup
- the active permanent magnet coupling turntable coupling mechanism is composed of the outer rotating cylinder wall (72) or the cage wall ( 280), the outer drum end wall (82, 70) or the cage end wall (284), the outer drum end wall (82, 70 or 284) is coupled with the drive shaft coupling (310); passive permanent magnet
- the coupling turntable coupling mechanism is composed of an inner rotating cylinder end wall (60, 61), a square shaft shaft hole on the end wall (60, 61), a bushing (135, 136), a square center short shaft (125), and
- the turntable limit pin (180, 181, 182) is formed thereon, and the outer end of the square center short axis (125) is coupled with the adapted passive shaft coupling (311).
- the turntable will be Repulsive force is generated, and both inner drums (50, 51) push the inner rotating cylinder end wall (60, 61) under the action of the repulsive force between the rotating discs in the respective axial permanent magnet coupling assemblies (401, 402)
- the axial air gap spacing is increased, but is limited by the spring centrifugal pin (172, 173), forming an air gap spacing limited or automatic grading limit disengagement, with the continuation of the starting process, in the permanent magnet coupling assembly
- the difference in rotational speed between the turntables is gradually reduced, the repulsive force becomes attractive, and the two inner drums (50, 51) are pulled by the attraction between the turntables in the respective axial permanent magnet coupling assemblies (401, 402).
- Inner drum end wall (60, 61) The axial air gap spacing becomes smaller, and the limit of the limit pin (180, 182) or the set air gap distance and the coupling area are always running at the set speed. At this time, the spring centrifugal pin (172, 173) is The large speed makes the centrifugal pin in the non-limit state, and the composite buffer delay spring (300, 301) made of the compression spring and the tension spring between the inner end wall (60, 61) of the inner rotating cylinder can also delay the gas.
- the adjustment speed of the gap spacing and the coupling area achieves the purpose of slow soft start; as shown in Fig.
- the system When turning, the repulsive force will gradually become sucked Force, the system will automatically perform a soft start process to achieve the purpose of allowing the stall or tolerate the pulse load; in addition, the radial repulsive force generated by the radial permanent magnet coupling components (441, 442) during start and stall Or radial attractive force and magnetic torque force, which are perpendicular to the axial thrust and tensile force acting on the inner end wall (60, 61) of the inner drum and they are symmetrically opposed to each other in the axial direction, without affecting the air gap adjustment. process.
- the natural air-cooled turntable radiators (260, 261) are arranged for heat dissipation processing of the axial magnetic field armature winding disks (1, 2) to ensure that the system can work normally; it should be noted that this embodiment also includes implementation In the example, the active shaft and the passive shaft are used in reverse or interchangeably, and the inverted or interchanged transmitting device can work normally, which is applicable to all the technical solutions and embodiments of the present invention.
- the non-circular center stub axis in the present invention may be a square, a pentagon, a hexagon, a flower shaft or a spline shaft (the spline shaft is also a conventional name for a non-circular drive shaft), and any Axis that slid and transmits torque, axisymmetric, edged geometry can be used as a non-circular center stub.
- the spline shaft is also a conventional name for a non-circular drive shaft
- any Axis that slid and transmits torque, axisymmetric, edged geometry can be used as a non-circular center stub.
- only the simplest square center stub is used as an example.
- FIG. 4 and 5 it is a propeller-type transmission shaft permanent magnet coupler composed of two inner drums (550, 551) and one outer drum (570).
- the end walls (580, 581) of the outer drum are respectively provided with axial magnetic field armature winding disks (510, 511), and the end walls (560, 561) of the inner rotating drum are respectively provided with axial magnetic field permanent magnet disks ( 535, 536), respectively corresponding to form two axial magnetic field armature winding permanent magnet coupling assembly
- the inner circumferential surface (577) of the outer rotating cylinder wall (572) is provided with a radial magnetic field armature winding disc (850, 851)
- the outer circumferential surface of the inner rotating cylinder wall (552, 551) is provided with radial magnetic field permanent magnet disks (855, 856), and respectively coupled to form a radial magnetic field armature winding permanent magnet coupling assembly; air gap spacing and coupling
- the area adjustment mechanism is a centrifugal adjustment mechanism, which is provided
- An integrated assembly mechanism consisting of fitted screw holes and long bolts, before packaging after system commissioning Mounting, in the final stage of the equipment installation process, replace the replacement of the short screws one by one to complete the mission of the integrated assembly mechanism, it does not affect the system structure and system functions; of course, the inner drum end wall (560, 561)
- a composite buffer delay spring made of a compression spring and a tension spring can also be installed to delay the adjustment of the air gap spacing and the coupling area to achieve a slow soft start.
- This embodiment provides two kinds of spring centrifugal pins (672, 673) and a latch-type spring centrifugal lock mechanism (674, 675), which are two kinds of centrifugal grooves for adjusting air gap spacing and coupling area adjustment.
- the adjustment mechanism can only use one structure in the product design.
- the main purpose is to illustrate the diversity of the technical solutions. They all use the different centrifugal force in the starting state or the locked state, so that they automatically have two The air gap spacing and the coupling area limit position, the working principle is the same as that of the embodiment 1.
- One is the passive permanent magnet coupling turntable coupling mechanism using the "turntable torque transmission slide---center turntable---center short axis" structure; The components and positions of the assembly mechanism are different.
- Embodiment 2 is a rotating shaft permanent magnet coupler of a drum type structure composed of two inner rotating drums and one outer rotating cylinder, and is composed of an axial magnetic field armature winding disk ( 1001, 1002) and the axial magnetic field permanent magnet disk (1035, 1036) are respectively coupled to form an axial magnetic field armature winding permanent magnet coupling assembly (1001 and 1035, 1002 and 1036), and are arranged back to back, in addition, there are
- the inner circumferential surface of the rotating drum wall (1072) is provided with a radial magnetic field armature winding disk (1350, 1351), and the outer circumferential surface of the inner rotating cylinder wall (1050, 1051) is provided with a radial magnetic field permanent magnet disk (1355, 1356).
- the active permanent magnet coupling turntable coupling mechanism is composed of the cage wall (1280) and the cage end wall (1284), the cage end wall (1284) Coupling with the drive shaft coupling (1310);
- the passive permanent magnet coupling turntable coupling mechanism consists of the turntable end wall (1060, 1061), the rolling screw nut on the turn end wall (1154, 1155), the rolling screw pair Screw (1152, 1153), on the end wall (1060, 1061) of the turntable not shown
- the slider hole and its sleeve and the turntable torque transmission slide bar the center turntable (1090), the center turntable coupling (1093) and the central short axis (1120), the outer end of the center short shaft (1120) and the adapted
- the passive shaft coupling (1311) is connected;
- the air gap spacing and the coupling area adjustment mechanism is a stepless adjustment mechanism, which is composed of a linkage mechanism of the back-to-back adjacent permanent magnet coupling turntable, a central short
- the inner sleeve (1203) is a linear displacement transmission cam (1206) and a cam sleeve (1205) for pivoting the adjustment rod (1207), a shaft isolation bearing (1208) of the cam sleeve (1205), and a turntable mounted on the turntable
- the working principle of the present example is different from the working principles of Embodiments 1 and 2 in that the air gap spacing and the coupling area adjusting mechanism adopt a stepless adjusting mechanism instead of the working principle of the centrifugal adjusting mechanism in Embodiments 1 and 2. Variety.
- the cam sleeve (1205) When the adjustment lever (1207) is rotated, the cam sleeve (1205) is rotated, and the cam (1206) on the cam sleeve (1205) cooperates with the cam groove (1204) on the dial isolation bearing inner sleeve (1203) and the turntable
- the inner sleeve of the isolation bearing (1203) is used for linear displacement transmission, and the inner sleeve of the rotary isolation bearing (1203) drives the rotary isolation bearing (1201), the rotary isolation bearing jacket (1202) and the end wall of the turntable (1060) for linear displacement transmission.
- the rolling screw nut (1154) on (1060) drives the rolling screw pair screw (1152) to rotate, because the two screws (1152, 1153) on each pair of rolling screws are reverse threaded, scrolling
- the lead screw (1152, 1153) is supported by the rolling screw auxiliary bearing (1101) on the center turntable (1090), and the rolling lead screw (1153) drives the rolling on the turntable end wall (1061).
- the screw nut (1155) and its turntable end wall (1061) are linearly displaced in opposite or opposite directions, so that the air gap magnetic field spacing in the back-to-back permanent magnet coupling assembly is simultaneously adjusted to achieve the stepless adjustment. Objective of the magnetic torque and load speed.
- the oscillating bracket (1477) on the one hand positions the air gap adjusting mechanism to prevent rotation and follows the rotary cover inner bearing sleeve (1203) for linear displacement swing, and on the other hand supports the passive turntable system.
- the cam groove (1204) on the inner sleeve (1203) of the rotary table is similarly matched with the cam (1206) on the cam sleeve (1205), and is disposed in the rotary bearing.
- a plurality of "cam groove---cam” transmission mechanisms can be arranged axially symmetrically on the sleeve (1203) and the cam sleeve (1205) for reliable and smooth operation.
- the axial magnetic field armature winding permanent magnet coupling assembly consists of an axial magnetic field armature winding disk (1510) on the end wall (1580) of the outer drum and an axial magnetic field permanent magnet disk on the inner drum end wall (1561) ( 1535) constituting; two sets of radial magnetic field armature winding permanent magnet coupling assembly by radial magnetic field armature winding discs (1820, 1821) and inner rotating cylinder wall on inner circumferential surface (1577) of outer rotating cylinder wall (1572) The corresponding radial magnetic field permanent magnet disk (1855, 1856) on the outer circumferential surface (1554) is coupled; the active permanent magnet coupling turntable coupling mechanism is composed of the outer rotating cylinder wall (1572) and the outer wall of the outer rotating cylinder (1580) is constructed, the end wall (1580) of the outer drum is coupled with the driving shaft coup
- drum radiator (1770) is disposed on the wall (1580) and on the outer surface thereof.
- the working principle of this example differs from that of the implementation 3 in that one of them is a tumbler type structure, which makes the system structure simpler.
- the second is that the stepless adjustment mechanism adopts a non-circular center short axis structure, which also makes the gas
- the structure of the gap spacing and coupling area adjustment mechanism is simpler and more reliable.
- the cam groove (1704) on the inner ring sleeve (1703) of the turntable isolation bearing on the circular section (1626) cooperates with the linear displacement transmission of the turntable isolation bearing inner sleeve (1703) on the circular section (1626).
- the inner sleeve (1703) drives the rotary disc isolation bearing (1701) and the rotary disc isolation bearing outer casing (1702) to perform corresponding linear displacement transmission, and drives the rotating end wall (1560, 1561) and the inner rotating cylinder (1550) to be short in the center of the square.
- the corresponding linear displacement sliding on the square section (1627) of the shaft (1625), the air gap magnetic field spacing and the coupling area in the permanent magnet coupling assembly are simultaneously adjusted accordingly, thereby achieving the purpose of steplessly adjusting the magnetic torque and the load speed.
- the limit pin (1682) can be used to set and limit the minimum air gap spacing and maximum coupling area.
- Embodiment 3 differs in the air gap spacing and the coupling area of the rotating shaft isolation bearing in the coupling area adjusting mechanism and the linear displacement transmission thereof.
- the mechanism of the air gap and the coupling area adjustment mechanism of the embodiment is an automatic stepless adjustment mechanism, and the inner sleeve of the turntable isolating bearing is designed as an inner sleeve of the isolated bearing with a screw hole and a screw (2214) (2213).
- the mechanism for linearly dissipating the inner sleeve of the isolation bearing (2213) is designed as a disc type linear servo motor (2215) and a cylindrical output shaft (2216), which are fitted on the central short shaft (2120), and a cylindrical output.
- the inner sleeve (2219) of the shaft (2216), the isolating bearing (2217, 2218) of the inner sleeve (2219) of the cylindrical output shaft (2216), and the linear servo motor (2215) controller (2480) are formed in the isolated bearing.
- the sleeve (2213) is coupled to the cylindrical output shaft (2216) of the disc type linear servo motor (2215) by a mounting screw hole and a screw (2214); and is fixed between the linear servo motor (2215) and the foundation of the device.
- Branch Bracket (2478), fixed support frame (2478) can support the air gap spacing and coupling area adjustment mechanism, and does not affect the permanent magnet coupling assembly, air gap spacing and coupling area adjustment mechanism and center short axis or non-circle The short center of the shape center works normally.
- the fixed support frame (2478) also supports and fixes the mechanism of the passive turntable system; the controller (2480) is provided on the support frame (2478), and the controller (2480) is controlled by the scale.
- Disk (2481), control knob (2482), controller input and output interface (2483), the controller also contains motor power unit, motor control unit or PLC programmable controller and its compatible peripheral devices and components
- the embodiment is a fully automatic dial type permanent magnet coupling speed regulating device, and the controller (2480) provides power and control signals for the linear servo motor (2215) under the setting operation, and the linear servo motor (2215) drives the output.
- the cylindrical shaft (2216) is used for linear displacement transmission, which drives the inner sleeve of the isolated bearing (2213) to perform linear displacement transmission, thereby achieving the stepless adjustment of magnetic torque and load speed. .
- Figure 11 also shows the turntable torque transmission sliders (2166 and 2167) mounted on the turntables (2060, 2061) and their corresponding turntables (2165), the slide shaft holes and their bushings (2169, 2168)
- a design set to the center turntable (2090), and its length can be designed according to requirements.
- Embodiment 3 differs in the air gap spacing and the coupling area adjustment mechanism of the turntable isolation bearing inner sleeve and the linear displacement transmission thereof.
- the mechanism of the air gap and the coupling surface adjustment mechanism of the embodiment is an automatic stepless adjustment mechanism, and the inner sleeve of the turntable isolation bearing is designed as an inner sleeve of the isolated bearing with the inner rolling wire cylinder (2724) (2713).
- the mechanism for linearly dissipating the inner sleeve of the isolated bearing (2713) is designed as a disc-type rotary servo motor (2725) and its output cylindrical shaft (2726), which is assembled on the central short shaft (2620), and an output cylindrical shaft
- the outer end of (2726) is provided with an outer ball bobbin (2729) and a cylindrical output shaft (2726) isolation bearing (2727) adapted to the inner rolling bobbin (2724) on the isolating bearing inner sleeve (2713).
- the cylinder (2729) is meshed and coupled; a fixed support frame (2978) is disposed between the rotary servo motor (2725) and the foundation of the device, and a rotary servo motor (2725) controller is provided on the support frame (2978) (2980)
- the controller (2980) is composed of a digital display unit (2984), a keyboard unit (2985), a controller input/output interface (2983), a controller housing, etc., and the controller (2980) further includes a motor power supply unit and motor control.
- this embodiment is a fully automatic digital permanent magnet coupling speed regulating device, and the controller (2980) provides power and control signals for the rotating servo motor (2725) under the setting operation, and rotates The servo motor (2725) drives the output cylindrical shaft (2726) for rotary transmission.
- the rolling bearing sleeve (2729, 2724) drives the inner sleeve of the isolation bearing (2723) for linear displacement transmission, thereby achieving stepless adjustment of magnetic torque and load speed.
- the purpose of the fixed support frame (2978) also supports and fixes the passive turntable system.
- the rotary rack linkage cylindrical rack gear pair structure is adopted, which is composed of two pairs of racks (3153 and 3154, 3155 and 3156) which are relatively fixed on the back end adjacent rotating disc end walls (3060, 3061), correspondingly adapted teeth.
- the through-hole (3157, 3158) and the rack-gear sub-transmission gear (3115, 3116) on the center turntable (3090) are composed of a turntable isolation bearing outer casing (3212) and a turntable end wall (3060) in a linear servo motor ( 3215)
- the rack (3153, 3155) on the end wall (3060) of the turntable is also driven by the corresponding linear displacement.
- the racks (3153, 3155) drive the transmission gears (3115, 3116) respectively.
- the embodiment is a fully automatic intelligent permanent magnet speed regulating device.
- a fixed support frame (3478) is disposed between the linear servo motor (3215) and the foundation of the device, and an intelligent controller (3480) is disposed on the support frame (3478), and the intelligent controller (3480) is viewed from the outside. It consists of a graphic display unit (3484), a keyboard unit (3485), an input/output interface unit (3492), a sensor and a control terminal (3494), etc., as shown in Fig.
- the circuit configuration of the intelligent controller (3480) and Working principle block diagram which is composed of embedded microprocessor unit, graphic display unit, keyboard unit, displacement sensor and its interface unit, active shaft speed sensor and its interface unit, passive shaft speed sensor and its interface unit, used to monitor the heating turntable Or component temperature sensor and its interface unit, coolant level sensor interface unit, multi-channel digital input and output interface unit, multi-channel analog input and output interface unit, general or non-standard data communication interface components, sensors and control terminals Unit, motor power unit, controller power circuit and controller housing, etc., controller power supply
- the circuit provides operating power for each of the circuit units in the controller, the motor power unit provides drive power and control signals for the adapted servo motor;
- the embedded microprocessor senses signals by operating the direct or indirect system Data collection, calculation and analysis, combined with stored system parameters and historical data, real-time operating commands and interface communication data, enable intelligent controllers to have system self-test, work state self-learning and adaptive, real-time monitoring of working status, event acquisition and Emergency handling, fault alarm and user-friendly man-
- Fig. 16 and Fig. 17 it is composed of three sets of axial magnetic field armature winding permanent magnet coupling components (3501 and 3535) in the order of "axial magnetic field armature winding disk---axial magnetic field permanent magnet disk”. , 3502 and 3536, 3503 and 3537) and three sets of radial magnetic field armature winding permanent magnet coupling assemblies of the drum type transmission shaft permanent magnet coupler.
- the active permanent magnet coupling turntable coupling mechanism is composed of an outer rotating cylinder wall (3572) and an outer rotating cylinder end wall (3570), and the outer rotating cylinder end wall (3570) is coupled with the driving shaft coupling (3810); passive permanent magnet
- the coupling turntable coupling mechanism consists of the end wall of the turntable (3560, 3561, 3562), the square shaft hole (3630, 3631, 3632) on the end wall of the turntable and its integrated turntable square shaft bushing (3638) and the center of the square.
- the shaft (3625) is formed, and the outer end of the square central short shaft (3625) is coupled with the adapted passive shaft coupling (3811); the air gap spacing and the coupling area adjustment mechanism are automatic stepless adjustment mechanisms, which are made by the square The center short shaft (3625), the turntable isolation bearing (3711), and the turntable square shaft bushing (3638, 3712) are integrated and set on the square center short shaft (3625) square section (3627) with motor
- the inner sleeve (3713) is connected, the linear servo motor (3715) is mounted on the fixed support frame (3978), and the left and right swing support frame/rod (3977) is arranged between the isolation bearing outer casing (3712) and the foundation
- the intelligent support controller (3980) is disposed at the appropriate position in the middle of the fixed support frame (3978).
- the principle and composition of the intelligent controller (3980) is the same as that in the embodiment 7; a fan radiator (3760) is disposed on the end wall (3503) of the leftmost outer drum, and the outer wall of the outer drum (3501) 3502)
- the back side is equipped with a rotary combined integrated technical heat dissipation component (3775, 3776), which is composed of a rotating heat pipe (3777, 3778) and a matching heat sink, and the heat absorbing sections of each rotating heat pipe are respectively set.
- FIG 16 is a cutaway schematic view of an integrated embodiment of the present embodiment is assembled off mechanism disassembled.
- the working principle of the air gap spacing and the coupling area adjustment mechanism the controller controls and drives the linear servo motor (3715) to work, the output shaft of the servo motor (3716) moves linearly to the left and right, and the output shaft (3716) drives the inner sleeve of the isolated bearing (3713). ) slides left and right on the center short-axis circular section (3626), and simultaneously drives the turntable isolation bearing (3711) and the integrated isolated bearing outer casing (3712) to slide left and right on the square short axis (3625) square section (3627).
- the isolated bearing casing (3712) drives the permanent magnet turntable (3535, 3536, 3537) to perform corresponding left and right displacement, and the air gap magnetic field spacing in the permanent magnet coupling assembly is adjusted accordingly to achieve stepless adjustment of the magnetic torque and load shaft or
- the purpose of the load speed; during operation, the permanent magnet turntable (3535, 3536, 3537) is adapted to the magnetic torque transmission by the integrated isolating bearing housing (3712) and the square segment (3625) of the quadrilateral center short shaft (3625).
- a cylindrical structure of a drive shaft permanent magnet coupler which is formed by nesting an inner drum (4050) and an outer drum (4070).
- a set of axial magnetic field armature winding discs (4020) and an axial magnetic field permanent magnet disc (4035) are coupled to form an axial magnetic field armature winding permanent magnet coupling assembly, and a radial magnetic field armature winding disc is also provided ( 4340, 4341, 4342, 4343) four sets of radial magnetic field armature winding permanent magnet coupling assemblies respectively coupled with the inner and outer sides of the radial magnetic field permanent magnet disks (4355, 4356); due to the three inner drum end walls (4060 , 4061, 4062) is an integral rigid connection, the two non-circular shaft shaft sleeves (4131, 4132) on the left side may not be with the non-circular shaft shaft sleeve of the inner drum end wall (4060) (4130) and the inner sleeve of the isolation
- Ground embedding and setting drum combined integrated technology heat dissipation components (4276, 4275), which are rotated
- the duct (4276) and the matching heat sink (4275) are formed, and the heat absorbing sections of each of the rotating heat pipes are respectively embedded in the heat generating inner drum wall (4054), and the heat is guided to the outside of the inner drum through the conveying section.
- a heat sink (4275) is arranged in the cooling section of the rotating heat pipe; the air gap spacing of the air gap magnetic field and the working principle of the coupling area adjusting mechanism: the controller controls and drives the rotating servo motor (4215) to work, and the rolling/sliding wire of the servo motor
- the bar output shaft (4216) is rotated forward and backward, and the rolling/screw output shaft (4216) is matched with the rolling/sliding screw nut provided on the isolated bearing casing (4213) to drive the isolated bearing casing (4213) to slide left and right.
- the turntable isolation bearing (4211) and the isolation bearing inner sleeve (4212) are slid left and right on the square short axis (4125) square section (4127), and the isolation bearing inner sleeve (4212) drives the inner rotating cylinder (4050).
- the corresponding left and right displacements, the air gap magnetic field spacing and the coupling area in the permanent magnet coupling assembly are adjusted accordingly to achieve the purpose of steplessly adjusting the magnetic torque and the load shaft or load speed.
- the inner drum is fitted with a non-circular shaft shaft sleeve (4131, 4132) and an isolated bearing inner sleeve (4212) to fit the square segment (4127) of the square center short shaft (4125) to complete the magnetic torque transmission.
- the present embodiment has the same permanent magnet coupling assembly structure and structure as that of the embodiment 2, except that the air gap spacing and the coupling area adjustment mechanism are automatic stepless adjustment mechanisms.
- the composition and working mechanism are: two sets of horizontal rotary disc linkage cam groove lever pairs (4662, 4618, 4664, 4665, 4565, 4566 and 4663, 4619) which can link the back-to-back turntable in opposite or opposite directions, and the turntable torque transmission slip Bar (4666, 4667), sliding hole bushings (4595, 4596), central short shaft (4620), turntable isolation bearing (4711), and end wall (4560) on the end wall (4560, 4561) of the inner drum
- the cam sleeve (4721) and the cam (4716) are rotated in any reverse direction, and the cam (4716) drives the isolated bearing inner sleeve (4713) provided with the cam groove (4714), the turntable isolation bearing (4711) and associated therewith.
- the turntable (4560) performs linear displacement movement to the left and right, and the turntable (4560) links the corresponding back-to-back set turntables (4561) through opposite directions in the opposite direction to make the permanent magnet coupling through the horizontal turntable linkage cam groove lever pair.
- the air gap magnetic field spacing and coupling area in the assembly are adjusted accordingly to achieve the purpose of stepless adjustment of magnetic torque and load shaft or load speed.
- the embodiment is basically the same as the embodiment 10, except that the air gap spacing and the coupling area adjusting mechanism are two sets of vertical rotary table linkage slider forks which can interlock the opposite or opposite directions of the back-to-back turntable.
- the pair 5065, 5066, 5118, 5067, 5068) replaces the horizontal rotary table linkage cam groove lever pair, and the working mechanism is as described in the above embodiments and the embodiment 10.
- the permanent magnet assembly and the structure of the present embodiment are basically the same as those of the embodiment 9, except that the end wall and the outer rotating cylinder of the inner rotating cylinder (6050) of the embodiment are the same.
- a set is added between the ends (6086) of the wall (6072), the end of the cylinder wall (6053) of the inner drum (6050) and the outer edge (6088) of the outer drum end wall (6080).
- the axial magnetic field armature winding permanent magnet coupling assembly (6011 and 6036, 6010 and 6035) replaces the parallel in the embodiment 9 with the cross shaft motor (6215)---gear (6220) rack (6219) transmission adjustment assembly.
- the working mechanism refers to the above various embodiments.
- the permanent magnet component layout and the structure of the present embodiment are substantially the same as those of the embodiment 8, except that the disc type linear servo motor structure introduced in the embodiment 5 is used in the embodiment.
- the adjustment assembly that is, the disc type linear servo motor (7215), the cylindrical output shaft (7216) inner sleeve (7219) isolation bearing (7217, 7218) and the linear servo motor (7215) controller (7480) replaced the implementation
- the linear servo motor (3715) and the output pull rod shaft (3716) assembly in Example 8 the cylindrical output shaft (7216) is coupled to the isolated bearing inner sleeve (7213); another difference is that Figure 25 of the present embodiment
- An integrated assembly mechanism (7312, 7313, 7314) is disposed between the wall of the active carousel (7282) and the isolated bearing casing of the passive carousel (7212), and the integrated assembly mechanism is removed during the installation of the device. (7312, 7313, 7314) can be.
- the working mechanism refers
- the application embodiment in which the bracket is formed in a horizontal or vertical installation manner; the application embodiment in which the heat dissipation component is added, or even the upper water cooling system is added, can be given according to the technical solution of the present invention; for example, various types are adopted. Different system state sensors can also be derived from many embodiments, and there are many types of displacement sensors, or a built-in grating displacement sensor or Servo motor of displacement encoder and so on. In addition, in order to illustrate or indicate the diversity of design schemes of a certain structure or component and the convenience of explanation, the punctuation marks "/" are used in many places in the "Instructions" and the "Responses” of this case, which means “or "the meaning of.
- the present invention is not limited to the embodiments given, but they can serve the purpose of inference, and can provide technical solutions for the design of more specific product series models, as long as any other technical solutions are not deviated from the present invention. Changes, modifications, substitutions, combinations and simplifications made by the substance of the invention are to be limited and protected by the rights of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Description
技术领域
本发明涉及传动轴耦合驱动技术领域、负载调速技术领域及动力拖动领域,特别是一种可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器。
背景技术
在我们身边,涉及到传动轴耦合驱动和调速的领域比比皆是,汽车、火车、轮船和飞机等各种运输工具中、几乎各种工业场合中以及人们生产生活中用到的有动力(常见的有电机、内燃机)拖动的设备中大都会用到传动轴耦合驱动和调速技术,相关的技术方案也林林总总。由于应用领域非常广泛和繁杂,本发明所涉及的背景技术只侧重电机拖动领域作重点介绍,但不是说其它方面不适用本发明技术方案。
当前,节能降耗已成为全社会关注的重点内容之一,而电机系统用电量约占全球用电量的60%,其中风机、泵类、压缩机和空调制冷机的用电量分别占全球用电量的10.4%、20.9%、9.4%和6%。电机系统量大、面广,节电潜力巨大。从国内来讲,现有各类电机系统总装机容量约4.2亿千瓦,运行效率比国外先进水平低10---20个百分点,相当于每年浪费电能约1500亿千瓦时。系统匹配不合理,“大马拉小车”现象严重,设备长期低负荷运行;系统调节方式落后,大部分风机、泵类采用机械节流方式调节,效率比调速方式约低30%
以上。在实际工程设计与应用中,为了保证负荷最大时风机或水泵系统满足输出要求,通常需要按系统的最大输出能力配备风机水泵系统,而真正实用中,绝大多数情况下并非需要系统在满负荷下使用。可以通过调节气隙实现流量和/或压力的连续控制,取代原系统中控制流量和/或压力的阀门,在电机转速不变的情况下,调节风机或水泵的转速,符合离心负载的比例定律。当输出流量和/或压力减少时,电机功率急剧下降,减少了能源需求,从而大大地节约了能源。目前电机拖动领域常用的技术都存在着很多方面的缺点和不足,随着永磁耦合及调速技术的发展,将在许许多多应用领域逐渐退出市场或失去竞争能力。举例来说:串级调速技术,可以回收转差功率,但它不适合于鼠笼型异步电机,必须更换电机;不能实现软启动,启动过程非常复杂;启动电流大;调速范围有限;响应慢,不易实现闭环控制;功率因数和效率低,并随转速的调低急剧下降;很难实现同PLC、DCS
等控制系统的配合,对提高装置的整体自动化程度和实现优化控制无益;同时因控制装置比较复杂、谐波污染对电网有较大干扰,进一步限制了它的使用,属落后技术。电磁转差离合器调速技术,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节,这种系统一般也采用转速闭环控制。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率增大,转差功率也增大,以发热形式消耗在转子电路里,使得系统效率也随之降低,这类调速系统存在着调速范围愈宽,转差功率愈大,系统效率愈低的问题,控制装置也较为复杂,故不值得提倡。液力耦合器调速技术,属低效调速方式,调速范围有限,高速丢转约5%---10%,低速转差损耗大,最高可达额定功率的30%以上,
精度低、线性度差、响应慢,启动电流大,装置大,不适合改造;容易漏液、维护复杂、费用大,不能满足提高装置整体自动化水平的需要。变频调速技术,是目前应用比较普遍和相对先进的技术,采用电力电子技术来实现对电机的速度调节,可以有效根据实际工况来自动控制,实现一定的节能效果。但是变频设备易产生谐波,大功率变频器对电网的谐波污染非常大,它比较“娇贵”、对环境要求也比较苛刻,需要空调环境;高压环境下故障率高,安全性差,变频调速系统需要专业人员维护,而且易损备件时常需要更换,维护费用高,调速范围小,特别是在其低速运行时对电机损害大,需要配备相应的变频电机,对于常用的6000V以上高压和50千瓦---
10000千瓦型号的变频器来说,其价格昂贵,且拥有者总成本非常大。
同样,在其他的行业中,传动轴耦合驱动及负载调速的场合也有着巨大的需求,对其技术进步的要求也一样强烈,迫切需要新技术取代传统技术,如汽车和机械设备上经常用到的离合器、联轴器、变速器等等,由于绝大多数为硬联接或摩擦联接传动结构,存在着效率低、易磨损、可靠性差、不易操控、制造加工组装困难、设备启动困难、轴对准要求高、噪声和振动大等很多方面的缺点和不足。因此,动力传输耦合、调速及节能技术是一个永久的研究和开发课题。
永磁耦合及调速技术是目前最为先进的、正在进一步大力研究和开发的传动轴耦合驱动和调速技术,主要优点表现在:①节能,可无级调整转速,调速范围在0---98%;②结构简单;③可靠性高,容易安装,不怕恶劣环境,
寿命长达 25
年以上;④软启动,动力设备完全在空载下启动;⑤不怕堵转,不怕脉冲型负载,机械密封;⑥容忍轴偏心,具有负载隔离,减低振动、噪声;⑦延长设备寿命,增长故障周期,
减少维护需求;⑧无谐波危害,不伤害动力设备,不影响电网安全,除执行机构和控制器之外不用电源供电,适用于各种工业级电机系统及防爆场合;⑨无电磁波干扰;⑩拥有者总成本比较低。还有一个重要的特点是对动力源设备没有任何条件要求,只要动力源设备的输出轴转动即可工作。
目前市场上看到的永磁耦合及调速器,已经得到用户的认可和好评,例如美国麦格纳驱动公司的相关产品,也是目前全球市场上推出的唯一的、适合电机拖动领域的一种有大功率型号的永磁耦合及调速器产品,再有就是常见的不能调速的传动轴双永磁联轴器或耦合器。由于它们受结构和技术方案的局限,致使其产品技术性能有很多不足,需要改进和克服,它主要有以下几个方面的不足:①只采用单一的双永磁耦合组件或轴向金属导体永磁耦合组件,产品单位体积的功率容量受到一定限制,功率不能做得太大;②永磁耦合及调速器本身不能自动调节气隙间距达到调速目的,必须配置另外的执行机构或装置来实现气隙间距调节,是一种纯机械的传动轴耦合及调速传动装置,在目前机电一体化技术已非常先进和可靠的背景下,非机电一体化的产品已不能适应高可靠性、高精度、及时跟随、智能化的要求;③由于受永磁耦合工作原理的局限,永磁耦合驱动的效率较低,在磁耦合组件的尺寸、气隙间距、轴转速和转速差确定的条件下,单位体积所能提供的磁转矩功率还比较小、发热量较大,致使超大功率的永磁耦合及调速器的设计制造还受到成本和技术瓶颈的限制;④产品发热部件上的散热技术需要改进,散热技术也是提高永磁耦合装置的单位体积传输功率容量的技术瓶颈,是制造更大功率永磁耦合及调速装置的重要技术保证,是超大功率永磁耦合及调速器能长期安全运行的技术支撑之一,据调查,目前在750转/分条件下,风冷型功率最大只能做到130千瓦左右,在1500转/分条件下,风冷型功率最大只能做到300千瓦左右,其推广应用受到很大局限,其主要原因与散热问题有很大关系;⑤产品中用于调节气隙间距的机械传动机构存在着固有的技术局限和缺点,特别是对于设有两组及两组以上磁耦合转盘或转筒单元的系统,其传动环节多机构多、机构之间有传动空隙、可靠性差、调节执行不够直接、速度较慢等,使得上述产品不能应用于对调速跟随性和调速精度要求较高的场合,如发电厂大型锅炉给水泵的调速场合等;⑥产品不具备智能自动化和智能控制功能,更谈不上对软启动及负载异常运行情况的人性化处理,不能针对不同的负载特性和运行状况进行个性化参数设置,在很多应用场合受到很大局限;⑦由于产品结构单一,在许多应用领域受到局限,目前只在电机拖动领域应用;⑧产品非一体化整机包装运输结构,在产品安装现场还需要较为复杂的部件、组件安装,其结构和部件易受到损伤、损坏,有时还会出现安装事故,危及人身安全,安装质量参差不齐,不能保证整机的质量和技术性能,有必要对产品的结构及其相关联的一体化组装机构进行方案设计,同时从根本上解决安装过程中的人身安全问题,避免安装事故的发生。
本发明人先前的专利中公开了的电枢绕组盘与永磁体盘耦合构成的电枢绕组永磁耦合技术方案,它分两种结构形式,一种结构形式是专利200910148103.1中所公开的轴向气隙磁场的电枢绕组永磁耦合技术方案,通过轴向调节气隙间距达到调节磁扭矩实现调节负载转速的目的;另一种结构形式是本发明人先前的专利200910148102.7中所公开的径向气隙磁场的电枢绕组永磁耦合技术方案,通过轴向调节气隙磁场的耦合面积达到调节磁扭矩实现调节负载转速的目的。基于本发明人在长期的产品应用和研发实践中对上述两种种永磁耦合组件的深刻认识,本发明融合轴向和径向气隙磁场电枢绕组永磁耦合技术,采用先进的永磁耦合气隙间距和气隙耦合面积调节机构以及先进的传感器技术、自控和智能化技术,打造一种先进的、新型的、安装更便捷和安全的、系列化的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器技术方案。依据本发明的技术方案可制作成具有不同用途或不同功能的系列产品,以完善和克服目前永磁耦合及调速器产品的上述不足、缺陷以及相关技术瓶颈的限制,可大大提高永磁耦合及调速器产品的单位体积所能提供的扭矩传输或驱动功率,并提高磁扭矩传输或驱动效率、降低发热量,有效解决目前永磁耦合及调速器产品在设计和生产过程中存在的多方面技术问题,在全世界都在努力节能减排、倡导科学发展的背景下,迫切要求对永磁耦合扭矩传输或驱动机理及其技术方案进行革新地构思和重新设计,为更先进、更大功率的永磁耦合及调速器产品提供重要的、核心的技术支撑和技术方案,以满足电机拖动系统领域对先进的、性价比卓越的新型传动轴永磁耦合驱动和调速系列产品的急需。
发明内容
在上述已公知的传动轴永磁耦合驱动或调速技术的基础上,本发明在以下方面进行了创新设计:①在一个可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器中,对轴向和径向气隙磁场电枢绕组永磁耦合组件进行结构融合和集成设计,以发挥轴向和径向永磁耦合组件的优势,取长补短,提高本发明装置的单位体积磁扭矩传输效率,降低其单位体积发热量;②采用先进的散热技术,打破了永磁耦合组件的系统结构布设方面的局限,可使发热部件的散热问题得到高效处理,大大提高了产品单位体积的功率容量,同时降低了产品成本;③给出了系列化的、功能不同的、用于调节磁扭矩大小或调节负载转速的气隙间距和气隙耦合面积调节机构组件的设计思想及其技术方案,这些技术方案有转盘限位机构组件、扭矩传输机构组件、转盘联动机构组件、离心式调节机构组件、无级调节机构组件、自动无级调节机构组件等,它们可单独实施,也可根据实际功能和技术需要选择适配的调节机构组件进行组合实施,为设计系列化的传动轴永磁耦合驱动和调速产品提供技术支撑;④采用先进的嵌入式微处理技术、自控技术以及非接触式位移、转速、温度传感器技术和冷却液液位监测技术,给出了具有系统运行监控、软启动模式控制、负载堵转事件处理和转速智能调节功能的智能控制器技术方案,智能控制器与自动调节机构组件相适配,使永磁耦合传动和调速装置成为全自动化智能化的系统,不但产品的可操控性有了飞跃的进步,而且大幅度提高了系统的实时跟随性能,实现了系统运行过程中的全程监控及智能化控制功能,并可针对不同的负载特性和运行状况进行个性化参数设置和控制,满足了各种应用领域的技性能要求;⑤给出了产品的一体化整机包装运输安装结构方案,为保证安装质量、避免安装事故的发生提供了技术保障。
本发明的具体技术方案如下:
一种可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,它为转筒型或转盘转筒复合型结构,由至少一组轴向磁场永磁耦合组件或/和径向磁场永磁耦合组件、至少一副与永磁耦合组件中的主动转盘相适配的主动永磁耦合转盘联轴机构和对应的主动轴联轴节、至少一副与永磁耦合组件中的被动永磁耦合转盘相适配的被动永磁耦合转盘联轴机构和对应的被动轴联轴节、一副永磁耦合转盘气隙间距和耦合面积调节机构以及一副使系统成一体化整体结构以便包装运输和安装用的一体化组装机构组成,轴向磁场永磁耦合组件为轴向磁场电枢绕组永磁耦合组件,径向磁场永磁耦合组件为径向磁场电枢绕组永磁耦合组件,永磁耦合组件中的主动转盘通过相适配的主动永磁耦合转盘联轴机构与对应的主动轴联轴节相联接,永磁耦合组件中的被动永磁耦合转盘通过相适配的被动转盘联轴机构与对应的被动轴联轴节相联接,在主动转盘及其相关联的联轴机构上或者在被动转盘及其相关联的联轴机构上设置适配的永磁耦合转盘气隙间距和耦合面积调节机构,设备出厂包装、运输与安装过程中在主动转盘及其相关联的联轴机构与被动转盘及其相关联的联轴机构之间设置一体化组装机构。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的轴向磁场永磁耦合组件中的两个相互适配的气隙磁场耦合盘呈圆盘或圆环盘平面对立状结构,其中的轴向磁场永磁体盘由圆盘或圆环盘状的永磁体安装盘和相适配的至少一个永磁体或永磁体组构成,一个永磁体组中的相邻永磁体在其圆盘或圆环盘状的安装盘的圆环周上呈轴向N、S极性交错地布设,轴向磁场永磁体盘与适配的轴向磁场电枢绕组盘耦合构成轴向磁场电枢绕组永磁耦合组件,所述的径向磁场永磁耦合组件中的两个相互适配的气隙磁场耦合盘呈圆筒盘或圆管盘嵌套状结构,其中的径向磁场永磁体盘由圆筒盘或圆管盘状的永磁体安装盘和相适配的至少一个永磁体或永磁体组构成,一个永磁体组中的相邻永磁体在其圆筒盘或圆管盘状的安装盘的圆周上呈径向N、S极性交错地布设,径向磁场永磁体盘与适配的径向磁场电枢绕组盘耦合构成径向磁场电枢绕组永磁耦合组件。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的主动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的主动永磁耦合转盘的机笼壁、机笼端壁、转筒壁、转筒端壁中的至少之一、并与对应的主动轴联轴节相适配连接的部件或联合组件构成,在主动永磁耦合转盘与主动轴联轴节之间由主动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构,所述的被动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的被动永磁耦合转盘的端壁、端壁上的非圆形轴孔及其轴套、非圆形中心短轴、力矩传输滑杠、中心转盘及其联轴节和中心短轴部件或组件中的至少之一、并与对应的被动轴联轴节相适配连接的部件或联合组件构成,在被动永磁耦合转盘与被动轴联轴节之间由被动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的被动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的被动永磁耦合转盘的机笼壁、机笼端壁、转筒壁、转筒端壁中的至少之一、并与对应的被动轴联轴节相适配连接的部件或联合组件构成,在被动永磁耦合转盘与被动轴联轴节之间由被动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构,所述的主动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的主动永磁耦合转盘的端壁、端壁上的非圆形轴孔及其轴套、非圆形中心短轴、力矩传输滑杠、中心转盘及其联轴节和中心短轴部件或组件中的至少之一、并与对应的主动轴联轴节相适配连接的部件或联合组件构成,在主动永磁耦合转盘与主动轴联轴节之间由主动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为离心式调节机构,它有四种供分别实施的结构,其一是由至少一副门闩式弹簧离心锁机构、被动永磁耦合转盘/转筒端壁上的非圆形轴孔轴套及相适配的带有限位机构的非圆形中心短轴组件构成,其二是由至少一副门闩式弹簧离心锁机构、中心短轴组件、中心转盘和被动永磁耦合转盘力矩传输滑杠组件构成,其三是由至少一副弹簧离心销、被动永磁耦合转盘/转筒端壁上的非圆形轴孔轴套及相适配的带有限位机构的非圆形中心短轴组件构成,其四是由至少一副弹簧离心销、中心短轴组件、中心转盘和被动永磁耦合转盘力矩传输滑杠组件构成,弹簧离心销安装在筒壁上、机笼壁上、中心转盘上、转盘/转筒端壁上、非圆形中心短轴上或中心短轴上的适当位置,门闩式弹簧离心锁机构的门闩和弹簧离心锁分别安装在永磁耦合组件的背靠背的两个被动永磁耦合转盘的对应位置或者被动永磁耦合转盘与中心转盘相对应的位置,并设置成能通过传动轴启动或堵转过程中转速状态的不同引起弹簧离心销或弹簧离心锁处于不同限位位置状态而使永磁耦合气隙间距和耦合面积自动进行阶梯式调整的结构。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为无级调节机构,它有六种供分别实施的结构,其一是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联的转盘/转筒隔离轴承外套或内套、带凸轮槽的转盘/转筒隔离轴承对应内套或外套、带与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮和绕轴转动调节杆或调节手柄的凸轮套筒、凸轮套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其二是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联的转盘/转筒隔离轴承外套或内套、带滚动/滑动丝母筒的转盘/转筒隔离轴承对应内套或外套、带与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝和绕轴转动调节杆或调节手柄的丝母套筒、丝母套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其三是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套、带凸轮槽的转盘/转筒隔离轴承对应内套或外套、带与凸轮槽配合的并使其做直线位移传动的凸轮和绕轴转动调节杆或调节手柄的凸轮套筒、凸轮套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其四是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套、带滚动/滑动丝母筒的转盘/转筒隔离轴承对应内套或外套、带与丝母筒配合的并使其做直线位移传动的滚动/滑动丝母筒螺丝和绕轴转动调节杆或调节手柄的丝母套筒、丝母套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其五是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联接的转盘/转筒隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘/转筒隔离轴承对应内套或外套,布设在传动轴一侧并与转盘/转筒隔离轴承内套或外套对应适配的设置有凸轮直线位移传动机构、齿条直线位移传动机构或者丝杠螺母直线位移传动机构和与其适配的调节杆或调节手柄的驱动机构组件及适配的摆动支架组件和/或适配的固定支架组件构成,其六是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘/转筒隔离轴承对应内套或外套,布设在传动轴一侧并与转盘/转筒隔离轴承内套或外套对应适配的设置有凸轮直线位移传动机构、齿条直线位移传动机构或者丝杠螺母直线位移传动机构和与其适配的调节杆或调节手柄的驱动机构组件及适配的摆动支架组件和/或适配的固定支架组件构成,所述的背靠背相邻永磁耦合转盘/转筒的联动机构有五种供分别实施的结构,之一是滚动/滑动丝杠副结构,它由至少一副转盘/转筒联动滚动/滑动丝杠、转盘/转筒端壁上的联动滚动/滑动螺母及相适配的中心转盘上的滚动/滑动丝杠副支撑轴承构成,之二是转盘/转筒联动圆柱形或条型齿条齿轮副结构,它由至少一副相对固定在背靠背相邻转盘/转筒端壁上的齿条、对应适配的齿条过孔及中心转盘上的齿条齿轮副传动齿轮组件构成,之三是横式转盘/转筒联动凸轮槽拨杆副结构,它由至少一副固定在两个转盘/转筒端壁上的凸轮、安装在中心转盘上的两端设置有凸轮槽的并与转盘/转筒端壁上的凸轮相适配的横式转盘/转筒联动凸轮槽拨杆构成,之四是纵式转盘/转筒联动滑杆拨叉副结构,它由至少一副固定在转盘/转筒端壁上的滑槽或滑杆、安装在中心转盘上的两端设置有滑动凸轮或杆孔并与转盘/转筒端壁上的滑槽或滑杆相适配的纵式转盘/转筒联动滑杆拨叉构成,之五是转盘/转筒力矩传输滑杠结构,它由至少一副固定安装在中心转盘上的转盘/转筒力矩传输滑杠及与其滑杠相适配的转盘/转筒端壁上的滑孔及滑孔轴套构成,所述的非圆形中心短轴有两种供分别实施的结构,一种是通体均为非圆形结构轴,另一种是两节结构,其中一节是用于安装永磁耦合转盘/转筒的非圆形轴,另一节是圆形轴,所述的摆动支架安装在系统地基、系统基座或系统支架与转盘/转筒隔离轴承相适配的内套或外套之间,所述的固定式支撑架安装在系统地基、系统基座或系统支架与传动轴隔离轴承、传动轴支撑轴承或伺服电机之间。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为自动无级调节机构,它由无级调节结构、伺服电机及其相关联机构、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,有九种供分别实施的结构,其一是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带凸轮槽的转盘隔离轴承对应内套或外套、设有与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮套筒轴、驱动凸轮套筒轴做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件,其二是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带滚动/滑动丝母筒的转盘隔离轴承对应内套或外套、设有与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝、驱动丝母筒螺丝做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其三是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带凸轮槽的转盘隔离轴承对应内套或外套、设有与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮套筒轴、驱动凸轮套筒轴做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其四是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带滚动/滑动丝母筒的转盘隔离轴承对应内套或外套、设有与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝、驱动丝母筒螺丝做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其五由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带与直线伺服电机输出筒轴联接螺孔和螺丝的转盘隔离轴承对应内套或外套、设有与转盘隔离轴承对应内套或外套相适配联接螺孔并与之相联接使其做直线位移传动的直线运动筒轴、驱动筒轴做直线运动的筒型或盘环型直线伺服电机、直线伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其六由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带与直线伺服电机输出筒轴联接螺孔和螺丝的转盘隔离轴承对应内套或外套、设有与转盘隔离轴承对应内套或外套相适配的联接螺孔并与之相联接使其做直线位移传动的直线运动筒、驱动筒轴作直线运动的筒型或盘环型直线伺服电机、直线伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其七是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘隔离轴承对应内套或外套,布设在传动轴一侧并与转盘隔离轴承内套或外套对应适配的设置有使凸轮直线位移传动机构、使齿条直线位移传动机构或者使丝杠螺母直线位移传动机构的直线伺服电机、旋转伺服电机或直交轴旋转伺服电机、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其八是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘隔离轴承对应内套或外套,布设在传动轴一侧并与转盘隔离轴承内套或外套对应适配的设置有使凸轮直线位移传动机构、使齿条直线位移传动机构或者使丝杠螺母直线位移传动机构的直线伺服电机、旋转伺服电机或直交轴式伺服电机、控制器适配的摆动支架组件和/或适配的固定支架组件构成,其九是由所述无级调节机构分别与外部适配的并独立设置的传统型的执行机构及其相配的控制器构成,无级调节机构中的调节杆或调节手柄与适配的执行机构的输出机构相联接,所述的背靠背相邻永磁耦合转盘/转筒的联动机构有五种供分别实施的结构,之一是滚动/滑动丝杠副结构,它由至少一副转盘/转筒联动滚动/滑动丝杠、转盘/转筒端壁上的联动滚动/滑动螺母及相适配的中心转盘上的滚动/滑动丝杠副支撑轴承构成,之二是转盘/转筒联动圆柱形或条型齿条齿轮副结构,它由至少一副相对固定在背靠背相邻转盘/转筒端壁上的齿条、对应适配的齿条过孔及中心转盘上的齿条齿轮副传动齿轮组件构成,之三是横式转盘/转筒联动凸轮槽拨杆副结构,它由至少一副固定在两个转盘/转筒端壁上的凸轮、安装在中心转盘上的两端设置有凸轮槽的并与转盘/转筒端壁上的凸轮相适配的横式转盘/转筒联动凸轮槽拨杆构成,之四是纵式转盘/转筒联动滑杆拨叉副结构,它由至少一副固定在转盘/转筒端壁上的滑槽或滑杆、安装在中心转盘上的两端设置有滑动凸轮或杆孔并与转盘/转筒端壁上的滑槽或滑杆相适配的纵式转盘/转筒联动滑杆拨叉构成,之五是转盘/转筒力矩传输滑杠结构,它由至少一副固定安装在中心转盘上的转盘/转筒力矩传输滑杠及与其滑杠相适配的转盘/转筒端壁上的滑孔及滑孔轴套构成,所述的非圆形中心短轴有两种供分别实施的结构,一种是通体均为非圆形结构轴,另一种是两节结构,其中一节是用于安装永磁耦合转盘/转筒的非圆形轴,另一节是圆形轴,所述的摆动支架安装在系统地基、系统基座或系统支架与转盘/转筒隔离轴承相适配的内套或外套之间,所述的固定式支撑架安装在系统地基、系统基座或系统支架与传动轴隔离轴承或伺服电机之间,所述控制器为刻度盘型控制器、数显控制器或智能控制器,刻度盘型控制器由控制刻度盘、控制旋钮或按键、控制器输入输出接口、电机电源单元、电机控制单元、PLC可编程控制器接口单元及其相适配的控制电路和外围单路、电源开关、电源保险及控制器外壳组成,数显控制器由嵌入式微处理器单元、显示器单元、操作键盘单元、控制器输入输出接口、电机电源单元、控制器电源电路单元、电源开关、电源保险及控制器外壳组成,智能控制器由嵌入式微处理器、显示器单元、操作键盘单元、至少一路且至少一种传感器及其适配的输入接口、至少一路开关量输入/输出接口单元、至少一路模拟量输入/输出接口单元、至少一个或至少一种通用或非标数据通讯接口单元、电机电源单元、控制器电源电路单元、电源开关、电源保险及控制器外壳等构成,传感器有四种供配用,第一种是用于直接或间接检测永磁耦合气隙间距和耦合面积的位移传感器,第二种是用于检测主动或被动传动轴转速的传感器,第三种是用于传感永磁耦合组件温度的温度传感器,第四种是用于传感冷却水水位的液位传感器,通用或非标数据通讯接口单元有485接口、现场总线接口、互联网接口、局域网接口、无线通讯接口或专用非标接口,用于所述各种传感器获取的状态信息采集和处理、操作键盘输入命令处理、显示器输出信息处理、伺服电机电源时序和幅值处理及所述各种接口单元输入输出信息处理并完成系统数据计算、事件分析处理和数据存储的嵌入式微处理器单元分别通过相应数据总线与所述各对应单元端口相接驳,控制器电源电路为控制器中的每个电路单元提供工作电源并与相应单元的电源输入端相接驳,受控于嵌入式微处理器单元并为伺服电机提供相适配伺服驱动电源的伺服电机电源的控制线通过数据总线与嵌入式微处理器单元的相应端口相接驳。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合组件的非永磁体转盘的非气隙磁场耦合的一侧和/或与永磁耦合组件相联接的发热部件、发热机构或发热组件上安装、固定、制作或配装相适合的散热器、散热片、旋转热导管散热器、水冷组件或组合式综合技术散热组件,或者在发热部件或组件上制作设置、镶嵌、焊接、嵌入或置入旋转热导管的吸热段,通过旋转热导管的输送段把热量引出到装置外部适当位置设置的旋转热导管冷却段进行散热处理,旋转热导管冷却段上设置散热片、散热器或水冷组件,组合式综合技术散热组件是采用三种既风冷技术部件、旋转热导管技术组件和水冷技术系统之中至少含有其中两种技术结构的综合散热组件,在对应于散热器或散热片的散热通风通道部件上设置通风口、风孔或散热介质路径。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的一体化组装机构,是指本装置出场调试和测试之后安装的并在本装置出厂包装、运输与安装过程中安装在主动转盘及其相关联的联轴机构与被动转盘及其相关联的联轴机构之间的便于整体包装、运输和安装的一体化组装机构,它有五种供分别实施的结构,其一是设置在主动轴一侧的主动转盘/转筒端壁与被动转盘/转筒端壁组件之间的一体化组装用螺杆组件,其二是设置在主动轴一侧的主动转盘/转筒端壁与中心短轴组件或非圆形中心短轴之间的一体化组装用螺杆组件,其三是是设置在主动转盘/转筒壁或机笼壁与被动转盘/转筒壁组件与主动转盘/转筒筒壁之间的一体化组装用螺杆组件,其四是设置在被动轴一侧的被动转盘/转端壁组件与主动转盘/转筒端壁之间的一体化组装用螺杆组件,其五是设置在被动轴一侧的中心短轴组件或非圆形中心短轴与主动转盘/转筒端壁或筒壁之间的一体化组装用“螺杆联接帽”式组件,在输入联轴器及其相连接的部件与输出联轴器及其相连的部件之间用一体化组装机构组件联接固定起来,在设备安装之收尾工作过程中且设备运行调试之前再逐一替代或卸掉一体化组装机构组件。
如上所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,本装置的外部设置有防尘罩或设置具有安全防护和防止磁场泄露的机笼或机壳,它们只与本装置最外部的、主动转盘部分和被动转盘部分其中之一相联接的组件相联接,或者与适配的散热组件或散热系统融合为一体式结构,或者把机笼、机壳或防尘罩设置或融合在另外给本装置、电机或负载设置的基座或基架、支架或支座上,支架或支座为卧式结构或者立式结构。
本发明中,所采用的轴向和径向气隙磁场电枢绕组永磁耦合组件之具体结构及其布设方案在上述公开资料(专利200910148103.1和200910148102.7)中已有详细阐述,本案中就不再做详细说明,本案主要是构建两种永磁耦合组件相互融合或集成的技术方案、永磁耦合气隙磁场的气隙间距和耦合面积调节机构的技术方案、自动调节控制和智能控制技术方案、系统散热技术方案以及便于本发明装置进行整体包装、运输和安装的一体化组装机构的技术方案,并对一些典型的、有代表性的或能说明方案设计思想的具体技术方案进行了具体实施例说明。
为实现本发明的目的,依据本发明的技术方案,在保持永磁耦合及调速技术所具有的前述十多项优点的前提下,克服和解决目前公知技术中存在的不足、缺陷和问题,设计一种可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,它必将为永磁耦合及调速装置的系列产品带来巨大的、飞跃式的技术进步。
附图说明
图 1为实施例1在安装有一体化组装机构时的工作原理及结构剖切示意图;
图 2为实施例1在去掉一体化组装机构并处于堵转卸载状态下的工作原理及结构剖切示意图;
图 3为实施例1的非圆形中心短轴右视图;
图 4为实施例2在软启动状态下的工作原理及结构剖切示意图;
图 5为实施例2在被动轴堵转卸载状态下的工作原理及结构剖切示意图;
图
6为实施例3在安装有一体化组装机构并处于最小气隙间距和最大耦合面积时的工作原理及结构剖切示意图;
图
7为实施例3在卸换掉一体化组装机构并处于最大气隙间距和最小耦合面积时的工作原理及结构剖切示意图;
图 8为实施例4在安装有一体化组装机构时的工作原理及结构剖切示意图;
图 9为实施例4的非圆形中心短轴右视图;
图10为实施例5在安装有一体化组装机构并处于最小气隙间距和最大耦合面积时的工作原理及结构剖切示意图;
图11为实施例5在卸换掉一体化组装机构后、在图10所示状态基础上转盘旋转90度并处于最大气隙间距和最小耦合面积时的工作原理及结构剖切示意图;
图12为实施例6的工作原理及结构剖切示意图;
图13为实施例6的中心短轴右视图;
图14为实施例7的工作原理及结构剖切示意图;
图15为实施例7的智能控制器原理及组成框图;
图16为实施例8的工作原理及结构剖切示意图;
图17为实施例8的非圆形中心短轴右视图;
图18为实施例9的工作原理及结构剖切示意图;
图19为实施例9的非圆形中心短轴右视图;
图20为实施例10的工作原理及结构剖切示意图;
图21为图20中的横式转盘联动凸轮槽拨杆副的俯视结构示意图;
图22为实施例11的工作原理及结构剖切示意图;
图23为实施例12的工作原理及结构剖切示意图;
图24为实施例12的非圆形中心短轴右视图;
图25为实施例13的工作原理及结构剖切示意图;
图26为实施例13的非圆形中心短轴右视图。
具体实施方式
实施例1
如图1、图2和图3所示,它是由两个内转筒(50、51)和一个外转筒(70)构成的转筒型结构的传动轴永磁耦合器。外转筒的端壁(80、81)上分别设有轴向磁场电枢绕组盘(1、2)、内转筒的端壁(60、61)上分别设有轴向磁场永磁体盘(35、36),它们分别对应耦合构成两个轴向磁场电枢绕组永磁耦合组件(401、402),外转筒壁(72)的内圆周面(77)设有径向磁场电枢绕组盘(320、321)、内转筒壁(50、51)的外圆周面设有对应的径向磁场永磁体盘(355、356),并分别对应耦合构成两个径向磁场电枢绕组永磁耦合组件(441、442);气隙间距及耦合面积调节机构为离心式调节机构,它由四方形中心短轴(125)、设置在内转筒的端壁(60、61)上的四方形轴孔及其轴套(135、136)、设置在外转筒壁(72)的内圆周面(77)上的弹簧离心销(172、173),设置在四方形中心短轴(125)上的转盘限位销(180、181、182)组成,在轴向磁场电枢绕组盘(1、2)的外侧分别设置转盘散热器(260、261),在外转筒端壁(82、70)上设有散热风孔(264);外转筒筒壁(72)与机笼壁(280)合二为一,外转筒端壁(82、70)与机笼端壁(284)合二为一;在内转筒端壁(60、61)之间以轴对称地安装复合缓冲延迟弹簧(300、301);一体化组装机构由轴向永磁耦合组件的转盘之间设置的一体化组装用螺孔及螺栓(315、
317)组成,在系统出厂调试之后包装之前安装上,在设备安装过程的最后阶段再逐一卸掉即完成了一体化组装机构的使命,它不影响系统结构和系统功能,图2所示给出了卸掉一体化组装机构后、工作在被动轴堵转时刻卸载状态下的工作原理及结构剖切示意图;主动永磁耦合转盘联轴机构由外转筒筒壁(72)或机笼壁(280)、外转筒端壁(82、70)或机笼端壁(284)构成,外转筒端壁(82、70或284)与主动轴联轴节(310)相联接;被动永磁耦合转盘联轴机构由内转筒端壁(60、61)、端壁(60、61)上的四方形轴轴孔及其轴套(135、136)、四方形中心短轴(125)及其上的转盘限位销(180、181、182)组成,四方形中心短轴(125)的外端与适配的被动轴联轴节(311)相联接。
本实例的工作原理:在主动轴启动并带动外转筒(70)过程中,永磁耦合组件的转盘之间产生扭矩,主动转盘带动被动转盘旋转,被动转盘带动四方形中心短轴(125)旋转;与此同时,弹簧离心销(172、173)因转速从0开始升速,离心销处于弹出状态,此时由于永磁耦合组件中的转盘之间的转速差较大,转盘之间会产生排斥力,既两个内转筒(50、51)在各自轴向永磁耦合组件(401、402)中的转盘间排斥力的作用下,推动内转筒端壁(60、61)促使轴向气隙间距增大,但又被弹簧离心销(172、173)限位,形成气隙间距受限制或自动分级限位的脱开,随着启动过程的延续,永磁耦合组件中的转盘之间的转速差逐渐缩小,排斥力变成吸引力,两个内转筒(50、51)在各自轴向永磁耦合组件(401、402)中的转盘间吸引力的作用下,拉动内转筒端壁(60、61)促使轴向气隙间距变小,并受到限位销(180、182)的限位或设定气隙间距和耦合面积一直以设定的转速运行下去,此时弹簧离心销(172、173)因转速大而使离心销处于非限位状态,同时在内转筒端壁(60、61)之间安装用压簧和拉簧制作而成的复合缓冲延迟弹簧(300、301)还可延缓气隙间距和耦合面积的调节速度,达到缓慢软启动的目的;图2所示,当被动轴出现堵转时,轴向永磁耦合组件中的转盘之间的转速差迅速变得最大,轴向永磁耦合组件(401、402)中的转盘间吸引力迅速变成排斥力,推动内转筒端壁(60、61)在四方形中心短轴(125)滑动,促使轴向气隙间距迅速而且不受弹簧离心销(172、173)的限制达到最大,起到迅速或紧急卸载的目的;当随后堵转现象消失时,由于主动轴向磁场电枢绕组盘(1、2)一直保持匀速在转动,排斥力会逐渐变成吸引力,系统会自动进行一个软启动过程,从而达到容许堵转或容忍脉冲负载的目的;另外,在启动和堵转过程中,径向永磁耦合组件(441、442)产生的径向排斥力或径向吸引力以及磁扭矩力,因与作用于内转筒端壁(60、61)的轴向推力和拉力垂直并且它们本身以轴心相向或相反对称作用,而不会影响气隙调节过程。自然风冷转盘散热器(260、261)是为轴向磁场电枢绕组盘(1、2)进行散热处理而设置,以保证系统能正常工作;需要指出的是,本实施例也包括把实施例中的主动轴与被动轴进行倒置或互换地反向使用,倒置或互换后的本发装置可正常工作,这一点适用于本发明的所有技术方案和实施例。
特别指出:本发明中的非圆形中心短轴可以是四方形、五边形、六边形、花形轴或花键轴(花键轴也是对非圆形传动轴的传统称谓),凡是能滑动且传输扭矩的、轴对称的、有边棱的几何形状的轴均可用作非圆形中心短轴,本案中只选用最简单的四方形中心短轴只是作示例说明而已。
实施例2
如图4和图5所示,它是由两个内转筒(550、551)和一个外转筒(570)构成的转筒型结构的传动轴永磁耦合器。外转筒的端壁(580、581)上分别设有轴向磁场电枢绕组盘(510、511)、内转筒的端壁(560、561)上分别设有轴向磁场永磁体盘(535、536),它们分别对应耦合构成两个轴向磁场电枢绕组永磁耦合组件,外转筒壁(572)的内圆周面(577)设有径向磁场电枢绕组盘(850、851)、内转筒壁(552、551)的外圆周面设有径向磁场永磁体盘(855、856),并分别对应耦合构成径向磁场电枢绕组永磁耦合组件;气隙间距和耦合面积调节机构为离心式调节机构,它由转盘力矩传输滑杠(666,667),内转筒的端壁(560、561)上的滑杠孔及其轴套(563、564)、设在中心转盘(590)上的两副弹簧离心销(672、673)和设在被动永磁耦合转盘与中心转盘相对应位置的两副门闩式弹簧离心锁机构(674、675)以及设置在转筒力矩传输滑杠(666,667)端部的限位螺母(685、686)组成;主动永磁耦合转盘联轴机构由外转筒筒壁(572)和外转筒端壁(570)构成,外转筒端壁(570)与主动轴联轴节(810)相联接;被动永磁耦合转盘联轴机构由内转筒端壁(560、561)、端壁(560、561)上的滑杠孔及其轴套(563、564)、转盘力矩传输滑杠(666,667)、中心转盘(590)、中心转盘联轴器(593)及中心短轴(620)构成,中心短轴(620)的外端与适配的被动轴联轴节(811)相联接;在轴向磁场电枢绕组盘(510、511)的外侧分别设置转盘散热器(760、761)和散热风孔(763、764),转盘散热器也可以是冲压成型的、与转盘/转筒端壁成一体的凸起筋、凸起条或风叶;为了简化示意图,图中未给出设置在主动轴联轴节(810)和外转筒端壁(570)与内转筒的端壁(561)之间的一体化组装机构,它由适配的螺孔及长螺栓组成,在系统出厂调试之后包装之前安装上,在设备安装过程的最后阶段再逐一用适配的短螺丝替换掉即完成了一体化组装机构的使命,它不影响系统结构和系统功能;当然,在内转筒端壁(560、561)之间也可安装用压簧和拉簧制作而成的复合缓冲延迟弹簧以延缓气隙间距和耦合面积的调节速度,达到缓慢软启动的目的。
本实例的工作原理:本实施例给出了另一种弹簧离心销(672、673)和一种门闩式弹簧离心锁机构(674、675)两种实现气隙间距和耦合面积调节的离心式调节机构,在产品设计中只选用一种结构即可,这里主要是想说明技术方案的多样性,它们均是利用启动状态下或堵转状态下,不同的离心力的作用,使它们自动具有两个气隙间距和耦合面积限位位置,其工作原理与实施例1类同。另外还有两点与实施例1不同之处,一是采用了“转盘力矩传输滑杠---中心转盘---中心短轴”结构的被动永磁耦合转盘联轴机构;二是设置一体化组装机构的部件和位置不同。
实施例3
如图6和图7所示,它与实施例2一样,由两个内转筒和一个外转筒构成的转筒型结构的传动轴永磁耦合器,由轴向磁场电枢绕组盘(1001、1002)与轴向磁场永磁体盘(1035、1036)分别相耦合构成轴向磁场电枢绕组永磁耦合组件(1001和1035、1002和1036),并以背靠背布设,另外,还有外转筒壁(1072)的内圆周面设有径向磁场电枢绕组盘(1350、1351)、内转筒壁(1050、1051)的外圆周面设有径向磁场永磁体盘(1355、1356),并分别对应耦合构成径向磁场电枢绕组永磁耦合组件;主动永磁耦合转盘联轴机构由机笼壁(1280)和机笼端壁(1284)构成,机笼端壁(1284)与主动轴联轴节(1310)相联接;被动永磁耦合转盘联轴机构由转盘端壁(1060、1061)、转盘端壁上的滚动丝杠副螺母(1154、1155)、滚动丝杠副丝杠(1152、1153)、图中未示出的转盘端壁(1060、1061)上的滑杠孔及其轴套和转盘力矩传输滑杠、中心转盘(1090)、中心转盘联轴器(1093)及中心短轴(1120)构成,中心短轴(1120)的外端与适配的被动轴联轴节(1311)相联接;气隙间距和耦合面积调节机构为无级调节机构,它由背靠背相邻永磁耦合转盘的联动机构、中心短轴(1120)、转盘隔离轴承(1201)、与相适配转盘端壁(1060)相联的转盘隔离轴承外套(1202)、带凸轮槽(1204)的转盘隔离轴承内套(1203)、带有与凸轮槽(1204)配合的并使其内套(1203)做直线位移传动的凸轮(1206)和绕轴转动调节杆(1207)的凸轮套筒(1205)、凸轮套筒(1205)的轴隔离轴承(1208)及安装在转盘隔离轴承内套(1203)与地基之间的摆动支架(1477)组件构成,其中的背靠背相邻永磁耦合转盘的联动机构是滚动丝杠副结构,它由轴对称的两副转盘联动滚动丝杠副丝杠(1152、1153)、转盘端壁上的滚动丝杠副螺母(1154、1155)及相适配的中心转盘(1090)上的滚动丝杠副支撑轴承(1101)构成;一体化组装机构由设置在主动联轴节(1310)与中心转盘(1090)之间对应适配的螺孔及长螺栓(1316、1315)组成,在系统出厂调试之后包装之前安装上,在设备安装过程的最后阶段再逐一用适配的短螺丝(1317)替换掉长螺栓(1315)即完成了一体化组装机构的使命,它不影响系统结构和系统功能;设有转盘散热器(1260、1261)及散热风孔(1263、1264)。
本实例的工作原理与实施例1和2的工作原理不同之处在于,气隙间距和耦合面积调节机构采用无级调节机构取代了实施例1和2中的离心式调节机构所发生的工作原理变化。当转动调节杆(1207)时,带动凸轮套筒(1205)转动,凸轮套筒(1205)上的凸轮(1206)与转盘隔离轴承内套(1203)上的凸轮槽(1204)配合并使转盘隔离轴承内套(1203)做直线位移传动,转盘隔离轴承内套(1203)带动转盘隔离轴承(1201)、转盘隔离轴承外套(1202)及转盘端壁(1060)做直线位移传动,转盘端壁(1060)上的滚动丝杠副螺母(1154)带动滚动丝杠副丝杠(1152)转动,由于每副滚动丝杠副上的两段丝杠(1152、1153)呈反向螺纹设计,滚动丝杠副丝杠(1152、1153)在中心转盘(1090)上的滚动丝杠副支撑轴承(1101)的支撑下,滚动丝杠副丝杠(1153)带动转盘端壁(1061)上的滚动丝杠副螺母(1155)及其转盘端壁(1061)做相向或相反方向的直线位移运动,使背靠背设置的永磁耦合组件中的气隙磁场间距同时得到相同的调节,从而达到无级调节磁扭矩和负载转速的目的。摆动支架(1477)一方面对气隙调节机构起到定位防止转动并跟随转盘隔离轴承内套(1203)做直线位移摆动,另一方面对被动转盘系统起到支撑作用。
特别指出,本发明中类似于转盘隔离轴承内套(1203)上的凸轮槽(1204)与凸轮套筒(1205)上的凸轮(1206)配合均呈对应适配设置,并且在转盘隔离轴承内套(1203)和凸轮套筒(1205)上可轴心对称地设置多副“凸轮槽---凸轮”传动机构,以便可靠、顺畅工作。
实施例4
如图8和图9所示,
它是由一个内转筒(1550)和一个外转筒(1570)相互嵌套构成的筒型结构的传动轴永磁耦合器。轴向磁场电枢绕组永磁耦合组件由外转筒的端壁(1580)上的轴向磁场电枢绕组盘(1510)和内转筒端壁(1561)上的轴向磁场永磁体盘(1535)构成;两组径向磁场电枢绕组永磁耦合组件由外转筒壁(1572)的内圆周面(1577)上的径向磁场电枢绕组盘(1820、1821)和内转筒壁(1552)的外圆周面(1554)上的对应径向磁场永磁体盘(1855、1856)耦合构成;主动永磁耦合转盘联轴机构由外转筒壁(1572)和外转筒的端壁(1580)构成,外转筒的端壁(1580)与主动轴联轴节(1810)相联接;被动永磁耦合转盘联轴机构由内转筒端壁(1560、1561)、内转筒端壁(1560、1561)上的非圆形轴孔和轴套(1635、1636)、四方形中心短轴(1625)构成,四方形中心短轴(1625)的外端与被动轴联轴节(1811)相联接;气隙间距和耦合面积调节机构为无级调节机构,它由内转筒端壁(1560、1561)、内转筒端壁(1560、1561)上的四方形轴孔和轴套(1635、1636)、安装在四方形中心短轴(1625)适当位置的限位销(1682)、四方形中心短轴(1625)的四方形段(1627)和圆形段(1626)、转盘隔离轴承(1701)、与转盘端壁(1560)相联的转盘隔离轴承外套(1702)、带凸轮槽(1704)的并安装在圆形段(1626)上的转盘隔离轴承内套(1703)、带有与凸轮槽(1704)配合的并使其内套(1703)做直线位移传动的凸轮(1706)和绕轴转动调节杆(1707)的凸轮套筒(1705)、凸轮套筒(1705)的轴隔离轴承(1708)及安装在转盘隔离轴承内套(1703)与地基之间的图中未示出的摆动支架组件构成;一体化组装机构由设置在主动联轴节(1810)与内转筒端壁(1561)之间对应适配的螺孔及长螺栓(1816、1815)组成,在系统出厂调试之后包装之前安装上,在设备安装过程的最后阶段再逐一用适配的短螺丝替换掉长螺栓(1815)即完成了一体化组装机构的使命,它不影响系统结构和系统功能;在外转筒壁(1572)和外转筒的端壁(1580)上及其外表面上设有散热风孔(1763、1764)转筒散热器(1770)。
本实例的工作原理与实施3相比较不同之处在于,其一是采用了转筒型结构,使系统结构更简单;其二是无级调节机构采用非圆形中心短轴结构,也使气隙间距和耦合面积调节机构的结构更简单、可靠。当转动调节杆(1707)时,带动凸轮套筒(1705)在四方形中心短轴(1625)的圆形段(1626)上转动,凸轮套筒(1705)上的凸轮(1706)与安装在圆形段(1626)上的转盘隔离轴承内套(1703)上的凸轮槽(1704)配合并使转盘隔离轴承内套(1703)在圆形段(1626)上做直线位移传动,转盘隔离轴承内套(1703)带动转盘隔离轴承(1701)、转盘隔离轴承外套(1702)做相应的直线位移传动,并带动转筒端壁(1560、1561)和内转筒(1550)在四方形中心短轴(1625)的四方形段(1627)上做相应的直线位移滑动,永磁耦合组件中的气隙磁场间距和耦合面积同时得到相应的调节,从而达到无级调节磁扭矩和负载转速的目的;限位销(1682)可用来设定和限制最小气隙间距和最大耦合面积的作用。同时转筒端壁(1560、1561)与四方形中心短轴(1625)的四方形段(1627)之间还具有扭矩传输功能,实现内转筒(1550)带动四方形中心短轴(1625)转动的目的。
实施例5
如图10和图11所示,大体上与实施例3相同,参见实施例3,二者不同之处在于气隙间距和耦合面积调节机构中的转盘隔离轴承内套及使其做直线位移传动的机构有所不同,本实施例的气隙间距和耦合面积调节机构为自动无级调节机构,它的转盘隔离轴承内套设计为带安装螺孔和螺丝(2214)的隔离轴承内套(2213),使隔离轴承内套(2213)做直线位移传动的机构设计成由套装在中心短轴(2120)上的盘型直线伺服电机(2215)及其筒形输出轴(2216)、筒形输出轴(2216)的内轴套(2219)、筒形输出轴(2216)内轴套(2219)的隔离轴承(2217、2218)以及直线伺服电机(2215)控制器(2480)构成,隔离轴承内套(2213)通过安装螺孔和螺丝(2214)与盘型直线伺服电机(2215)的筒形输出轴(2216)相联接;在直线伺服电机(2215)与本装置的地基之间设置有固定式支撑架(2478),固定式支撑架(2478)能把气隙间距和耦合面积调节机构,整体支撑着而且不影响永磁耦合组件、气隙间距和耦合面积调节机构和中心短轴或非圆形中心短轴正常工作,固定式支撑架(2478)还对被动转盘系统机构起到支撑和固定的作用;支撑架(2478)上设置有控制器(2480),控制器(2480)由控制刻度盘(2481)、控制旋钮(2482)、控制器输入输出接口(2483)构成,控制器内部还包含电机电源单元、电机控制单元或PLC可编程控制器及其相适配的外围器件和组件等;本实施例是一种全自动刻度盘式永磁耦合调速装置,控制器(2480)在设定操作下为直线伺服电机(2215)提供电源和控制信号,直线伺服电机(2215)驱动输出筒形轴(2216)做直线位移传动,带动隔离轴承内套(2213)做直线位移传动,从而达到无级调节磁扭矩和负载转速的目的。图11中还给出了安装在转盘(2060、2061)上的转盘力矩传输滑杠(2166和2167)及其对应转盘上的过孔(2165),滑杠轴孔及其轴套(2169、2168)设置到中心转盘(2090)上的一种设计方案,而且它的长短可根据需求进行设计。
实施例6
如图12和图13所示,大体上与实施例3相同,参见实施例3,二者不同之处在于气隙间距和耦合面积调节机构中的转盘隔离轴承内套及使其做直线位移传动的机构有所不同,本实施例的气隙间距和耦合面调节机构为自动无级调节机构,它的转盘隔离轴承内套设计为带内滚动丝筒(2724)的隔离轴承内套(2713),使隔离轴承内套(2713)做直线位移传动的机构设计成由套装在中心短轴(2620)上的盘型旋转伺服电机(2725)及其输出筒形转轴(2726)、输出筒形转轴(2726)的外端部设置有与隔离轴承内套(2713)上的内滚动丝筒(2724)相适配的外滚珠丝筒(2729)、筒形输出轴(2726)的隔离轴承(2727)以及旋转伺服电机(2725)控制器(2980)构成,隔离轴承内套(2713)通过其上的内滚动丝筒(2724)与盘型旋转伺服电机(2725)的筒形输出转轴(2726)上的外滚珠丝筒(2729)相啮合联接;在旋转伺服电机(2725)与本装置的地基之间设置有固定式支撑架(2978),支撑架(2978)上设置有旋转伺服电机(2725)控制器(2980),控制器(2980)由数字显示单元(2984)、键盘单元(2985)、控制器输入输出接口(2983)、控制器外壳等组成,控制器(2980)内部还包含电机电源单元、电机控制单元或嵌入式单片机系统单元等;本实施例是一种全自动数字式永磁耦合调速装置,控制器(2980)在设定操作下为旋转伺服电机(2725)提供电源和控制信号,旋转伺服电机(2725)驱动输出筒形转轴(2726)做旋转传动,通过滚动丝筒副(2729、2724)带动隔离轴承内套(2723)做直线位移传动,从而达到无级调节磁扭矩和负载转速的目的;固定式支撑架(2978)还对被动转盘系统机构起到支撑和固定的作用。
实施例7
如图14和图15所示,基本上与实施例5相同,二者不同之处在于气隙间距和耦合面积调节机构中的背靠背相邻永磁耦合转盘的联动机构的不同,本实施例中采用的是转盘联动圆柱形齿条齿轮副结构,它由两副相对固定在背靠背相邻转盘端壁(3060、3061)上的齿条(3153和3154、3155和3156)、对应适配的齿条过孔(3157、3158)及中心转盘(3090)上的齿条齿轮副传动齿轮(3115、3116)组件构成,当转盘隔离轴承外套(3212)及转盘端壁(3060)在直线伺服电机(3215)驱动下做直线位移传动时,带动转盘端壁(3060)上的齿条(3153、3155)也做相应的直线位移传动,齿条(3153、3155)分别带动传动齿轮(3115、3116)转动,传动齿轮(3115、3116)再分别带动转盘端壁(3061)上的齿条(3154、3156)及其转盘端壁(3061)做相向或相反方向的直线位移运动,使背靠背设置的永磁耦合组件中的气隙磁场间距和耦合面积同时得到相同的调节,从而达到无级调节磁扭矩和负载轴或负载转速的目的。本实施例的其它机械系统的工作原理和结构阐述参见实施例5,只不过相对应的部件标号增加1000即可。
另外,本实施例是一种全自动智能型永磁调速装置。在直线伺服电机(3215)与本装置的地基之间设置有固定式支撑架(3478),支撑架(3478)上设置有智能控制器(3480),从外部看智能控制器(3480),它由图文显示器单元(3484)、键盘单元(3485)、输入输出接口组件(3492)、传感器及控制接线端子(3494)等构成,如图15所示为智能控制器(3480)的电路构成及工作原理框图,它由嵌入式微处理器单元、图文显示器单元、键盘单元、位移传感器及其接口单元、主动轴转速传感器及其接口单元、被动轴转速传感器及其接口单元、用于监测发热转盘或部件温度的温度传感器及其接口单元、冷却液位传感器接口单元、多路开关量输入输出接口单元、多路模拟量输入输出接口单元、通用或非标数据通讯接口组件、传感器及控制接线端子单元、电机电源单元、控制器电源电路及控制器外壳等构成,控制器电源电路为控制器中的每个电路单元提供工作电源,电机电源单元为适配的伺服电机提供驱动电源和控制信号;嵌入式微处理器通过对所述直接的或间接的系统工作状态传感信号和数据的采集、计算和分析,结合存储的系统参数和历史数据、实时操作命令和接口通讯数据,使智能控制器具有系统自检、工作状态自学习和自适应、工作状态实时监控、事件获取及应急处理、故障报警及人性化的人机操作界面等功能,控制和驱动适配的伺服电机智能化工作,使永磁调速装置成为先进的、鲁棒化的、智能化的传动轴耦合驱动和调速系统。
实施例8
如图16和图17所示,它是由以“轴向磁场电枢绕组盘---轴向磁场永磁体盘”依次顺序布设三组轴向磁场电枢绕组永磁耦合组件(3501和3535、3502和3536、3503和3537)和三组径向磁场电枢绕组永磁耦合组件构成的转筒型结构的传动轴永磁耦合器。主动永磁耦合转盘联轴机构由外转筒壁(3572),外转筒端壁(3570)构成,外转筒端壁(3570)与主动轴联轴节(3810)相联接;被动永磁耦合转盘联轴机构由转盘端壁(3560、3561、3562)、转盘端壁上的四方轴轴孔(3630、3631、3632)及其一体化转盘四方轴轴套(3638)及四方形中心短轴(3625)构成,四方形中心短轴(3625)的外端与适配的被动轴联轴节(3811)相联接;气隙间距和耦合面积调节机构为自动无级调节机构,它由四方中心短轴(3625)、转盘隔离轴承(3711)、与转盘四方轴轴套(3638、3712)做成一体化的并套装在四方中心短轴(3625)四方形段(3627)上、带电机轴联接安装孔(3714)的隔离轴承内套(3713)、设置在四方中心短轴(3625)上方一侧的直线伺服电机(3715)及智能控制器(3980)构成,直线伺服电机(3715)的输出拉杆轴(3716)与隔离轴承内套(3713)相联接,直线伺服电机(3715)安装在固定支撑架(3978)上,隔离轴承外套(3712)与地基之间设置左右摆动式支撑架/杆(3977),直线伺服电机(3715)和固定式支撑架(3978)与中心短轴圆形段(3626)之间由隔离轴承(3717)进行隔离,固定支撑架(3978)的中部适当位置设置有智能控制器(3980),智能控制器(3980)的原理及组成同实施例7中的一样;在最左边的外转筒的端壁(3503)上设置风叶散热器(3760),在外转筒端壁(3501、3502)背侧设置转筒组合式综合技术散热组件(3775、3776),它由旋转热导管(3777、3778)和相适配的散热片构成,每一根旋转热导管的吸热段分别镶嵌在发热的外转筒端壁(3501、3502)上,通过输送段把热量引导转子筒外侧,在旋转热导管的冷却段设置散热片,可大大提高散热效率,同时可把不方便安装散热组件的热量引到适合散热的地方进行散热处理;图16是本实施例拆卸掉一体化组装机构的剖切示意图。气隙间距和耦合面积调节机构的工作原理:控制器控制并驱动直线伺服电机(3715)工作,伺服电机的输出轴(3716)做左右直线运动,输出轴(3716)带动隔离轴承内套(3713)在中心短轴圆形段(3626)上左右滑动,同时带动转盘隔离轴承(3711)和一体化的隔离轴承外套(3712)在四方中心短轴(3625)四方形段(3627)上左右滑动,隔离轴承外套(3712)带动永磁体转盘(3535、3536、3537)做相应的左右位移、永磁耦合组件中的气隙磁场间距得到相应的调节,从而达到无级调节磁扭矩和负载轴或负载转速的目的;在工作过程中永磁体转盘(3535、3536、3537)通过一体化的隔离轴承外套(3712)与四方中心短轴(3625)的四方形段(3627)适配完成磁扭矩传输功能。
实施例9
如图18和图19所示,它是由一个内转筒(4050)和一个外转筒(4070)相互嵌套构成的筒型结构的传动轴永磁耦合器。设置有一组由轴向磁场电枢绕组盘(4020)与轴向磁场永磁体盘(4035)相耦合构成轴向磁场电枢绕组永磁耦合组件,还设有由径向磁场电枢绕组盘(4340、4341、4342、4343)分别与径向磁场永磁体盘(4355、4356)内外侧相耦合构成的四组径向磁场电枢绕组永磁耦合组件;由于三个内转筒端壁(4060、4061、4062)之间是一体的刚性连接,它们左面两个非圆形轴轴孔轴套(4131、4132)可以不与内转筒端壁(4060)的非圆形轴轴孔轴套(4130)和隔离轴承内套(4212)做成一体的,即可推拉一个内转筒端壁(4060)达到同时推拉三个内转筒端壁及内转筒位移的目的;在内转筒的端壁(4061、4062)上设置风叶散热器(4270、4271、4272)及散热风孔(4273),在内转筒壁(4054)中及内转筒端壁(4060)外侧适配地嵌入和设置转筒组合式综合技术散热组件(4276、4275),它由旋转热导管(4276)和相适配的散热片(4275)构成,每一根旋转热导管的吸热段分别嵌入发热的内转筒壁(4054)中,通过输送段把热量引导内转筒外侧,在旋转热导管的冷却段设置散热片(4275);气隙磁场的气隙间距和耦合面积调节机构的工作原理:控制器控制并驱动旋转伺服电机(4215)工作,伺服电机的滚动/滑动丝杠输出轴(4216)做正反旋转运动,滚动/丝杠输出轴(4216)与隔离轴承外套(4213)上设置的滚动/滑动丝杠螺母适配传动,带动隔离轴承外套(4213)左右滑动,同时带动转盘隔离轴承(4211)和隔离轴承内套(4212)在四方中心短轴(4125)四方形段(4127)上左右滑动,隔离轴承内套(4212)带动内转筒(4050)做相应的左右位移、永磁耦合组件中的气隙磁场间距和耦合面积得到相应的调节,从而达到无级调节磁扭矩和负载轴或负载转速的目的;在工作过程中内转筒通过非圆形轴轴孔轴套(4131、4132)和隔离轴承内套(4212)与四方中心短轴(4125)的四方形段(4127)适配完成磁扭矩传输功能。
实施例10
如图20和图21所示,本实施例与实施例2具有同样的永磁耦合组件构成及结构,不同之处在于气隙间距和耦合面积调节机构方面,它为自动无级调节机构,其构成及其工作机理是:两套能使背靠背转盘相向或相反方向联动的横式转盘联动凸轮槽拨杆副(4662、4618、4664、4665、4565、4566及4663、4619)、转盘力矩传输滑杠(4666,4667),内转筒的端壁(4560、4561)上的滑杠孔轴套(4595、4596)、中心短轴(4620)、转盘隔离轴承(4711)、与端壁(4560)相联接的隔离轴承外套、带凸轮槽(4714)的隔离轴承内套(4713)、带有与凸轮槽(4714)配合的并使其内套(4713)做直线位移传动的凸轮(4716)和传动齿轮(4720)的凸轮套筒(4721)、凸轮套筒(4721)的隔离轴承(4717)、设置在中心短轴(4620)上方一侧的旋转伺服电机(4715)、伺服电机(4715)的输出轴上设置与凸轮套筒(4721)上的传动齿轮(4720)相适配啮合传动的齿轮(4719)、伺服电机(4715)安装在固定支撑架(4978)上,伺服电机(4715)和固定式支撑架(4978)与中心短轴(4620)之间由隔离轴承(4718)进行隔离,伺服电机的输出轴齿轮(4719)做正反旋转运动,带动凸轮套筒(4721)上的传动齿轮(4720)并使凸轮套筒(4721)和凸轮(4716)做反正旋转运动,凸轮(4716)带动设有凸轮槽(4714)的隔离轴承内套(4713)、转盘隔离轴承(4711)及与之相联的转盘(4560)做左右直线位移运动,转盘(4560)通过横式转盘联动凸轮槽拨杆副使对应适配的相邻背靠背设置的转盘(4561)同时做相向或相反方向联动,使永磁耦合组件中的气隙磁场间距和耦合面积得到相应的调节,从而达到无级调节磁扭矩和负载轴或负载转速的目的。
实施例11
如图22所示,本实施例与实施例10基本相同,不同之处在于气隙间距和耦合面积调节机构中由两套能使背靠背转盘相向或相反方向联动的纵式转盘联动滑杆拨叉副(5065、5066、5118、5067、5068)代替了横式转盘联动凸轮槽拨杆副,工作机理参见上述各个实施例及实施例10。
实施例12
如图23和图24所示,本实施例中的永磁组件布设和组成结构与实施例9基本相同,不同之处在于本实施例的内转筒(6050)的端壁与外转筒筒壁(6072)的端部(6086)之间、内转筒(6050)的筒壁(6053)的端部与外转筒端壁(6080)的外缘(6088)之间各增设了一组轴向磁场电枢绕组永磁耦合组件(6011和6036、6010和6035),用交直轴电机(6215)---齿轮(6220)齿条(6219)传动调节组件取代了实施例9中的平行轴电机(4215)---滚动/滑动丝杠副(4216、4219)传动调节组件,本实施例去掉了散热机构。工作机理参考上述各实施例。
实施例13
如图25和图26所示,本实施例中的永磁组件布设和组成结构与实施例8基本相同,不同之处在于本实施例的采用实施例5中介绍的盘型直线伺服电机结构的调节组件,即用盘型直线伺服电机(7215)、筒形输出轴(7216)内轴套(7219)的隔离轴承(7217、7218)以及直线伺服电机(7215)控制器(7480)取代了实施例8中的直线伺服电机(3715)及输出拉杆轴(3716)组件,筒形输出轴(7216)与隔离轴承内套(7213)相联接;另一个不同点是,本实施例的图25所示,在主动转盘系的筒壁(7282)与被动转盘系的隔离轴承外套(7212)之间设置了一体化组装机构(7312、7313、7314),设备安装完成过程中卸掉一体化组装机构(7312、7313、7314)即可。工作机理参考上述各实施例。
上述实施例1至13仅仅给出了本发明技术方案的几个特例结构的具体实施例,试图说明本发明可以排列组合出很多种不同结构的方案,还可构建出很多个具体的、简单的或复杂的产品技术方案进行实施,比如:在实际的设计中为了秉承轴对称原则,在实施中只会设置一种对称结构转盘力矩传输滑杠结构,而不会是像实施例5中给出的有长有短的不对称的转盘力矩传输滑杠结构设计,实施例图示是为了减少方案阐述篇幅又能说明设计思想而为之;又如,加上各种适配外壳、防尘罩或支架做成水平或立式安装方式的应用实施例;加上散热组件,甚至再增加上水冷系统等应用实施例可依据本发明技术方案给出很多实施例;再如,采用各种各类不同的系统状态传感器,也可衍生出很多实施例,而且单说位移传感器就有很多种,也可采用内置有光栅位移传感器或位移编码器的伺服电机等等。另外,为了说明或指出某一结构或部件的设计方案的多样性及阐述的方便,本《说明书》和本案的《权利要求书》案中多处使用了标点符号“/”,它代表“或者”的意思。
本发明并不局限于所给出的实施例,但它们可起到举一反三、抛砖引玉的目的,可为具体的更多的产品系列型号的设计提供技术方案,只要其它的任何未背离本发明技术方案的实质所作的改变、修饰、替代、组合及简化,都应受到本发明专利的权利约束和保护之内。
Claims (10)
- 一种可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,它为转筒型或转盘转筒复合型结构,由至少一组轴向磁场永磁耦合组件或/和径向磁场永磁耦合组件、至少一副与永磁耦合组件中的主动转盘相适配的主动永磁耦合转盘联轴机构和对应的主动轴联轴节、至少一副与永磁耦合组件中的被动永磁耦合转盘相适配的被动永磁耦合转盘联轴机构和对应的被动轴联轴节、一副永磁耦合转盘气隙间距和耦合面积调节机构以及一副使系统成一体化整体结构以便包装运输和安装用的一体化组装机构组成,轴向磁场永磁耦合组件为轴向磁场电枢绕组永磁耦合组件,径向磁场永磁耦合组件为径向磁场电枢绕组永磁耦合组件,永磁耦合组件中的主动转盘通过相适配的主动永磁耦合转盘联轴机构与对应的主动轴联轴节相联接,永磁耦合组件中的被动永磁耦合转盘通过相适配的被动转盘联轴机构与对应的被动轴联轴节相联接,在主动转盘及其相关联的联轴机构上或者在被动转盘及其相关联的联轴机构上设置适配的永磁耦合转盘气隙间距和耦合面积调节机构,设备出厂包装、运输与安装过程中在主动转盘及其相关联的联轴机构与被动转盘及其相关联的联轴机构之间设置一体化组装机构。
- 如权利要求1所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的轴向磁场永磁耦合组件中的两个相互适配的气隙磁场耦合盘呈圆盘或圆环盘平面对立状结构,其中的轴向磁场永磁体盘由圆盘或圆环盘状的永磁体安装盘和相适配的至少一个永磁体或永磁体组构成,一个永磁体组中的相邻永磁体在其圆盘或圆环盘状的安装盘的圆环周上呈轴向N、S极性交错地布设,轴向磁场永磁体盘与适配的轴向磁场电枢绕组盘耦合构成轴向磁场电枢绕组永磁耦合组件,所述的径向磁场永磁耦合组件中的两个相互适配的气隙磁场耦合盘呈圆筒盘或圆管盘嵌套状结构,其中的径向磁场永磁体盘由圆筒盘或圆管盘状的永磁体安装盘和相适配的至少一个永磁体或永磁体组构成,一个永磁体组中的相邻永磁体在其圆筒盘或圆管盘状的安装盘的圆周上呈径向N、S极性交错地布设,径向磁场永磁体盘与适配的径向磁场电枢绕组盘耦合构成径向磁场电枢绕组永磁耦合组件。
- 如权利要求1所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的主动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的主动永磁耦合转盘的机笼壁、机笼端壁、转筒壁、转筒端壁中的至少之一、并与对应的主动轴联轴节相适配连接的部件或联合组件构成,在主动永磁耦合转盘与主动轴联轴节之间由主动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构,所述的被动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的被动永磁耦合转盘的端壁、端壁上的非圆形轴孔及其轴套、非圆形中心短轴、力矩传输滑杠、中心转盘及其联轴节和中心短轴部件或组件中的至少之一、并与对应的被动轴联轴节相适配连接的部件或联合组件构成,在被动永磁耦合转盘与被动轴联轴节之间由被动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构。
- 如权利要求1所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的被动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的被动永磁耦合转盘的机笼壁、机笼端壁、转筒壁、转筒端壁中的至少之一、并与对应的被动轴联轴节相适配连接的部件或联合组件构成,在被动永磁耦合转盘与被动轴联轴节之间由被动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构,所述的主动永磁耦合转盘联轴机构由用于安装永磁耦合组件中的主动永磁耦合转盘的端壁、端壁上的非圆形轴孔及其轴套、非圆形中心短轴、力矩传输滑杠、中心转盘及其联轴节和中心短轴部件或组件中的至少之一、并与对应的主动轴联轴节相适配连接的部件或联合组件构成,在主动永磁耦合转盘与主动轴联轴节之间由主动永磁耦合转盘联轴机构形成连接、支撑、力矩传输和传动结构。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为离心式调节机构,它有四种供分别实施的结构,其一是由至少一副门闩式弹簧离心锁机构、被动永磁耦合转盘/转筒端壁上的非圆形轴孔轴套及相适配的带有限位机构的非圆形中心短轴组件构成,其二是由至少一副门闩式弹簧离心锁机构、中心短轴组件、中心转盘和被动永磁耦合转盘力矩传输滑杠组件构成,其三是由至少一副弹簧离心销、被动永磁耦合转盘/转筒端壁上的非圆形轴孔轴套及相适配的带有限位机构的非圆形中心短轴组件构成,其四是由至少一副弹簧离心销、中心短轴组件、中心转盘和被动永磁耦合转盘力矩传输滑杠组件构成,弹簧离心销安装在筒壁上、机笼壁上、中心转盘上、转盘/转筒端壁上、非圆形中心短轴上或中心短轴上的适当位置,门闩式弹簧离心锁机构的门闩和弹簧离心锁分别安装在永磁耦合组件的背靠背的两个被动永磁耦合转盘的对应位置或者被动永磁耦合转盘与中心转盘相对应的位置,并设置成能通过传动轴启动或堵转过程中转速状态的不同引起弹簧离心销或弹簧离心锁处于不同限位位置状态而使永磁耦合气隙间距和耦合面积自动进行阶梯式调整的结构。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为无级调节机构,它有六种供分别实施的结构,其一是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联的转盘/转筒隔离轴承外套或内套、带凸轮槽的转盘/转筒隔离轴承对应内套或外套、带与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮和绕轴转动调节杆或调节手柄的凸轮套筒、凸轮套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其二是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联的转盘/转筒隔离轴承外套或内套、带滚动/滑动丝母筒的转盘/转筒隔离轴承对应内套或外套、带与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝和绕轴转动调节杆或调节手柄的丝母套筒、丝母套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其三是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套、带凸轮槽的转盘/转筒隔离轴承对应内套或外套、带与凸轮槽配合的并使其做直线位移传动的凸轮和绕轴转动调节杆或调节手柄的凸轮套筒、凸轮套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其四是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套、带滚动/滑动丝母筒的转盘/转筒隔离轴承对应内套或外套、带与丝母筒配合的并使其做直线位移传动的滚动/滑动丝母筒螺丝和绕轴转动调节杆或调节手柄的丝母套筒、丝母套筒的轴隔离轴承及适配的摆动支架组件和/或适配的固定支架组件构成,其五是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁相联接的转盘/转筒隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘/转筒隔离轴承对应内套或外套,布设在传动轴一侧并与转盘/转筒隔离轴承内套或外套对应适配的设置有凸轮直线位移传动机构、齿条直线位移传动机构或者丝杠螺母直线位移传动机构和与其适配的调节杆或调节手柄的驱动机构组件及适配的摆动支架组件和/或适配的固定支架组件构成,其六是由永磁耦合转盘/转筒端壁上的非圆形轴孔和轴套、非圆形中心短轴、转盘/转筒隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联接的转盘/转筒隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘/转筒隔离轴承对应内套或外套,布设在传动轴一侧并与转盘/转筒隔离轴承内套或外套对应适配的设置有凸轮直线位移传动机构、齿条直线位移传动机构或者丝杠螺母直线位移传动机构和与其适配的调节杆或调节手柄的驱动机构组件及适配的摆动支架组件和/或适配的固定支架组件构成,所述的背靠背相邻永磁耦合转盘/转筒的联动机构有五种供分别实施的结构,之一是滚动/滑动丝杠副结构,它由至少一副转盘/转筒联动滚动/滑动丝杠、转盘/转筒端壁上的联动滚动/滑动螺母及相适配的中心转盘上的滚动/滑动丝杠副支撑轴承构成,之二是转盘/转筒联动圆柱形或条型齿条齿轮副结构,它由至少一副相对固定在背靠背相邻转盘/转筒端壁上的齿条、对应适配的齿条过孔及中心转盘上的齿条齿轮副传动齿轮组件构成,之三是横式转盘/转筒联动凸轮槽拨杆副结构,它由至少一副固定在两个转盘/转筒端壁上的凸轮、安装在中心转盘上的两端设置有凸轮槽的并与转盘/转筒端壁上的凸轮相适配的横式转盘/转筒联动凸轮槽拨杆构成,之四是纵式转盘/转筒联动滑杆拨叉副结构,它由至少一副固定在转盘/转筒端壁上的滑槽或滑杆、安装在中心转盘上的两端设置有滑动凸轮或杆孔并与转盘/转筒端壁上的滑槽或滑杆相适配的纵式转盘/转筒联动滑杆拨叉构成,之五是转盘/转筒力矩传输滑杠结构,它由至少一副固定安装在中心转盘上的转盘/转筒力矩传输滑杠及与其滑杠相适配的转盘/转筒端壁上的滑孔及滑孔轴套构成,所述的非圆形中心短轴有两种供分别实施的结构,一种是通体均为非圆形结构轴,另一种是两节结构,其中一节是用于安装永磁耦合转盘/转筒的非圆形轴,另一节是圆形轴,所述的摆动支架安装在系统地基、系统基座或系统支架与转盘/转筒隔离轴承相适配的内套或外套之间,所述的固定式支撑架安装在系统地基、系统基座或系统支架与传动轴隔离轴承、传动轴支撑轴承或伺服电机之间。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合转盘气隙间距和耦合面积调节机构为自动无级调节机构,它由无级调节结构、伺服电机及其相关联机构、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,有九种供分别实施的结构,其一是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带凸轮槽的转盘隔离轴承对应内套或外套、设有与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮套筒轴、驱动凸轮套筒轴做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件,其二是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带滚动/滑动丝母筒的转盘隔离轴承对应内套或外套、设有与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝、驱动丝母筒螺丝做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其三是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带凸轮槽的转盘隔离轴承对应内套或外套、设有与凸轮槽配合的并使其内套或外套做直线位移传动的凸轮套筒轴、驱动凸轮套筒轴做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其四是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带滚动/滑动丝母筒的转盘隔离轴承对应内套或外套、设有与丝母筒配合的并使丝母筒做直线位移传动的滚动/滑动丝母筒螺丝、驱动丝母筒螺丝做旋转运动的筒型或盘环型旋转伺服电机、伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其五由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套、带与直线伺服电机输出筒轴联接螺孔和螺丝的转盘隔离轴承对应内套或外套、设有与转盘隔离轴承对应内套或外套相适配联接螺孔并与之相联接使其做直线位移传动的直线运动筒轴、驱动筒轴做直线运动的筒型或盘环型直线伺服电机、直线伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其六由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套、带与直线伺服电机输出筒轴联接螺孔和螺丝的转盘隔离轴承对应内套或外套、设有与转盘隔离轴承对应内套或外套相适配的联接螺孔并与之相联接使其做直线位移传动的直线运动筒、驱动筒轴作直线运动的筒型或盘环型直线伺服电机、直线伺服电机筒轴与中心短轴隔离轴承、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其七是由背靠背相邻永磁耦合转盘/转筒的联动机构、中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁相联的转盘隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘隔离轴承对应内套或外套,布设在传动轴一侧并与转盘隔离轴承内套或外套对应适配的设置有使凸轮直线位移传动机构、使齿条直线位移传动机构或者使丝杠螺母直线位移传动机构的直线伺服电机、旋转伺服电机或直交轴旋转伺服电机、控制器及适配的摆动支架组件和/或适配的固定支架组件构成,其八是由转盘/转筒非圆形轴孔和轴套、非圆形中心短轴、转盘隔离轴承、与相适配转盘/转筒端壁或其上非圆形轴套相联的转盘隔离轴承外套或内套,带凸轮、齿条或丝杠螺母的转盘隔离轴承对应内套或外套,布设在传动轴一侧并与转盘隔离轴承内套或外套对应适配的设置有使凸轮直线位移传动机构、使齿条直线位移传动机构或者使丝杠螺母直线位移传动机构的直线伺服电机、旋转伺服电机或直交轴式伺服电机、控制器适配的摆动支架组件和/或适配的固定支架组件构成,其九是由所述无级调节机构分别与外部适配的并独立设置的传统型的执行机构及其相配的控制器构成,无级调节机构中的调节杆或调节手柄与适配的执行机构的输出机构相联接,所述的背靠背相邻永磁耦合转盘/转筒的联动机构有五种供分别实施的结构,之一是滚动/滑动丝杠副结构,它由至少一副转盘/转筒联动滚动/滑动丝杠、转盘/转筒端壁上的联动滚动/滑动螺母及相适配的中心转盘上的滚动/滑动丝杠副支撑轴承构成,之二是转盘/转筒联动圆柱形或条型齿条齿轮副结构,它由至少一副相对固定在背靠背相邻转盘/转筒端壁上的齿条、对应适配的齿条过孔及中心转盘上的齿条齿轮副传动齿轮组件构成,之三是横式转盘/转筒联动凸轮槽拨杆副结构,它由至少一副固定在两个转盘/转筒端壁上的凸轮、安装在中心转盘上的两端设置有凸轮槽的并与转盘/转筒端壁上的凸轮相适配的横式转盘/转筒联动凸轮槽拨杆构成,之四是纵式转盘/转筒联动滑杆拨叉副结构,它由至少一副固定在转盘/转筒端壁上的滑槽或滑杆、安装在中心转盘上的两端设置有滑动凸轮或杆孔并与转盘/转筒端壁上的滑槽或滑杆相适配的纵式转盘/转筒联动滑杆拨叉构成,之五是转盘/转筒力矩传输滑杠结构,它由至少一副固定安装在中心转盘上的转盘/转筒力矩传输滑杠及与其滑杠相适配的转盘/转筒端壁上的滑孔及滑孔轴套构成,所述的非圆形中心短轴有两种供分别实施的结构,一种是通体均为非圆形结构轴,另一种是两节结构,其中一节是用于安装永磁耦合转盘/转筒的非圆形轴,另一节是圆形轴,所述的摆动支架安装在系统地基、系统基座或系统支架与转盘/转筒隔离轴承相适配的内套或外套之间,所述的固定式支撑架安装在系统地基、系统基座或系统支架与传动轴隔离轴承或伺服电机之间,所述控制器为刻度盘型控制器、数显控制器或智能控制器,刻度盘型控制器由控制刻度盘、控制旋钮或按键、控制器输入输出接口、电机电源单元、电机控制单元、PLC可编程控制器接口单元及其相适配的控制电路和外围单路、电源开关、电源保险及控制器外壳组成,数显控制器由嵌入式微处理器单元、显示器单元、操作键盘单元、控制器输入输出接口、电机电源单元、控制器电源电路单元、电源开关、电源保险及控制器外壳组成,智能控制器由嵌入式微处理器、显示器单元、操作键盘单元、至少一路且至少一种传感器及其适配的输入接口、至少一路开关量输入/输出接口单元、至少一路模拟量输入/输出接口单元、至少一个或至少一种通用或非标数据通讯接口单元、电机电源单元、控制器电源电路单元、电源开关、电源保险及控制器外壳等构成,传感器有四种供配用,第一种是用于直接或间接检测永磁耦合气隙间距和耦合面积的位移传感器,第二种是用于检测主动或被动传动轴转速的传感器,第三种是用于传感永磁耦合组件温度的温度传感器,第四种是用于传感冷却水水位的液位传感器,通用或非标数据通讯接口单元有485接口、现场总线接口、互联网接口、局域网接口、无线通讯接口或专用非标接口,用于所述各种传感器获取的状态信息采集和处理、操作键盘输入命令处理、显示器输出信息处理、伺服电机电源时序和幅值处理及所述各种接口单元输入输出信息处理并完成系统数据计算、事件分析处理和数据存储的嵌入式微处理器单元分别通过相应数据总线与所述各对应单元端口相接驳,控制器电源电路为控制器中的每个电路单元提供工作电源并与相应单元的电源输入端相接驳,受控于嵌入式微处理器单元并为伺服电机提供相适配伺服驱动电源的伺服电机电源的控制线通过数据总线与嵌入式微处理器单元的相应端口相接驳。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的永磁耦合组件的非永磁体转盘的非气隙磁场耦合的一侧和/或与永磁耦合组件相联接的发热部件、发热机构或发热组件上安装、固定、制作或配装相适合的散热器、散热片、旋转热导管散热器、水冷组件或组合式综合技术散热组件,或者在发热部件或组件上制作设置、镶嵌、焊接、嵌入或置入旋转热导管的吸热段,通过旋转热导管的输送段把热量引出到装置外部适当位置设置的旋转热导管冷却段进行散热处理,旋转热导管冷却段上设置散热片、散热器或水冷组件,组合式综合技术散热组件是采用三种既风冷技术部件、旋转热导管技术组件和水冷技术系统之中至少含有其中两种技术结构的综合散热组件,在对应于散热器或散热片的散热通风通道部件上设置通风口、风孔或散热介质路径。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,所述的一体化组装机构,是指本装置出场调试和测试之后安装的并在本装置出厂包装、运输与安装过程中安装在主动转盘及其相关联的联轴机构与被动转盘及其相关联的联轴机构之间的便于整体包装、运输和安装的一体化组装机构,它有五种供分别实施的结构,其一是设置在主动轴一侧的主动转盘/转筒端壁与被动转盘/转筒端壁组件之间的一体化组装用螺杆组件,其二是设置在主动轴一侧的主动转盘/转筒端壁与中心短轴组件或非圆形中心短轴之间的一体化组装用螺杆组件,其三是是设置在主动转盘/转筒壁或机笼壁与被动转盘/转筒壁组件与主动转盘/转筒筒壁之间的一体化组装用螺杆组件,其四是设置在被动轴一侧的被动转盘/转端壁组件与主动转盘/转筒端壁之间的一体化组装用螺杆组件,其五是设置在被动轴一侧的中心短轴组件或非圆形中心短轴与主动转盘/转筒端壁或筒壁之间的一体化组装用“螺杆联接帽”式组件,在输入联轴器及其相连接的部件与输出联轴器及其相连的部件之间用一体化组装机构组件联接固定起来,在设备安装之收尾工作过程中且设备运行调试之前再逐一替代或卸掉一体化组装机构组件。
- 如权利要求1、2、3或4所述的可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器,其特征在于,本装置的外部设置有防尘罩或设置具有安全防护和防止磁场泄露的机笼或机壳,它们只与本装置最外部的、主动转盘部分和被动转盘部分其中之一相联接的组件相联接,或者与适配的散热组件或散热系统融合为一体式结构,或者把机笼、机壳或防尘罩设置或融合在另外给本装置、电机或负载设置的基座或基架、支架或支座上,支架或支座为卧式结构或者立式结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910162313.6 | 2009-08-11 | ||
CN200910162313A CN101997397B (zh) | 2009-08-11 | 2009-08-11 | 可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011018014A1 true WO2011018014A1 (zh) | 2011-02-17 |
Family
ID=43585950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/075792 WO2011018014A1 (zh) | 2009-08-11 | 2010-08-09 | 可调节磁场气隙间距和耦合面积的筒型传动轴永磁耦合器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101997397B (zh) |
WO (1) | WO2011018014A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108549028A (zh) * | 2018-06-14 | 2018-09-18 | 重庆合聚达智能装备有限公司 | 可调式电机固定装置 |
CN109889018A (zh) * | 2019-04-08 | 2019-06-14 | 宋杭军 | 一种永磁体单元及径向分布式可调永磁安全联轴器 |
CN110912334A (zh) * | 2019-09-30 | 2020-03-24 | 青岛海洋科学与技术国家实验室发展中心 | 全海深磁力耦合传动电机及全海深二维云台 |
CN114362473A (zh) * | 2021-11-29 | 2022-04-15 | 安徽沃弗永磁科技有限公司 | 一种可调绕组式永磁耦合传动装置 |
US20220209622A1 (en) * | 2020-12-30 | 2022-06-30 | Keyang Electric Machinery Co., Ltd. | Motor Including Tension Member |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103107680A (zh) * | 2013-01-14 | 2013-05-15 | 浙江大学 | 磁涡流联轴器 |
CN104038022B (zh) * | 2014-05-21 | 2016-08-17 | 煤科集团沈阳研究院有限公司 | 一种矿用调速型永磁传动装置 |
CN104218772A (zh) * | 2014-07-30 | 2014-12-17 | 大连应达实业有限公司 | 线轴承导轨式可调矩永磁磁力耦合器 |
CN105896926A (zh) * | 2015-01-23 | 2016-08-24 | 李启飞 | 901型回转支承盘式磁力耦合器 |
CN114598085B (zh) * | 2022-03-11 | 2024-03-22 | 德清千和精密机械有限公司 | 一种磁场推动连贯性好的直流伺服电机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB871437A (en) * | 1958-07-15 | 1961-06-28 | Pye Ltd | Induction coupling devices |
US5691587A (en) * | 1993-05-21 | 1997-11-25 | Magna Force, Inc. | Magnetic centrifugal clutch |
EP0976191A1 (en) * | 1997-04-14 | 2000-02-02 | David A. Zornes | Magnet coupler having enhanced electromagnetic torque |
CN1248354A (zh) * | 1997-02-20 | 2000-03-22 | 马格纳福斯公司 | 可调节磁耦合器 |
CN101252306A (zh) * | 2008-01-11 | 2008-08-27 | 东南大学 | 混合励磁盘式涡流传动调速装置 |
CN201490874U (zh) * | 2009-08-11 | 2010-05-26 | 余亚莉 | 可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器 |
CN201490870U (zh) * | 2009-08-11 | 2010-05-26 | 林贵生 | 可调节磁扭矩的传动轴永磁耦合传动和调速装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2307109A (en) * | 1995-11-04 | 1997-05-14 | Roy Edward Flack | Electromagnetic transmission system |
CN2704962Y (zh) * | 2004-05-20 | 2005-06-15 | 烟台宏远氧业有限公司 | 潜水加压舱、医用高压氧舱的永磁耦合密封传动装置 |
CN201478985U (zh) * | 2009-08-11 | 2010-05-19 | 余亚莉 | 可调节气隙磁场耦合间距和面积的筒型永磁耦合联轴器 |
-
2009
- 2009-08-11 CN CN200910162313A patent/CN101997397B/zh not_active Expired - Fee Related
-
2010
- 2010-08-09 WO PCT/CN2010/075792 patent/WO2011018014A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB871437A (en) * | 1958-07-15 | 1961-06-28 | Pye Ltd | Induction coupling devices |
US5691587A (en) * | 1993-05-21 | 1997-11-25 | Magna Force, Inc. | Magnetic centrifugal clutch |
CN1248354A (zh) * | 1997-02-20 | 2000-03-22 | 马格纳福斯公司 | 可调节磁耦合器 |
EP0976191A1 (en) * | 1997-04-14 | 2000-02-02 | David A. Zornes | Magnet coupler having enhanced electromagnetic torque |
CN101252306A (zh) * | 2008-01-11 | 2008-08-27 | 东南大学 | 混合励磁盘式涡流传动调速装置 |
CN201490874U (zh) * | 2009-08-11 | 2010-05-26 | 余亚莉 | 可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器 |
CN201490870U (zh) * | 2009-08-11 | 2010-05-26 | 林贵生 | 可调节磁扭矩的传动轴永磁耦合传动和调速装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108549028A (zh) * | 2018-06-14 | 2018-09-18 | 重庆合聚达智能装备有限公司 | 可调式电机固定装置 |
CN108549028B (zh) * | 2018-06-14 | 2024-05-24 | 重庆合聚达智能装备有限公司 | 可调式电机固定装置 |
CN109889018A (zh) * | 2019-04-08 | 2019-06-14 | 宋杭军 | 一种永磁体单元及径向分布式可调永磁安全联轴器 |
CN110912334A (zh) * | 2019-09-30 | 2020-03-24 | 青岛海洋科学与技术国家实验室发展中心 | 全海深磁力耦合传动电机及全海深二维云台 |
US20220209622A1 (en) * | 2020-12-30 | 2022-06-30 | Keyang Electric Machinery Co., Ltd. | Motor Including Tension Member |
US11770046B2 (en) * | 2020-12-30 | 2023-09-26 | Keyang Electric Machinery Co., Ltd. | Motor including tension member |
CN114362473A (zh) * | 2021-11-29 | 2022-04-15 | 安徽沃弗永磁科技有限公司 | 一种可调绕组式永磁耦合传动装置 |
Also Published As
Publication number | Publication date |
---|---|
CN101997397A (zh) | 2011-03-30 |
CN101997397B (zh) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011018015A1 (zh) | 可调节磁扭矩的传动轴永磁耦合传动和调速装置 | |
WO2011018013A1 (zh) | 可调节气隙磁场耦合间距和面积的筒型永磁耦合联轴器 | |
WO2011018014A1 (zh) | 可调节磁场气隙间距和耦合面积的筒型传动轴永磁耦合器 | |
WO2011018009A1 (zh) | 一种可调节永磁扭矩的筒型永磁耦合联轴器 | |
WO2011018011A1 (zh) | 一种高效的可调节电磁扭矩的锅箅永磁联轴器 | |
WO2011018012A1 (zh) | 一种高效的可调节电磁扭矩的电枢绕组永磁联轴器 | |
WO2010148991A1 (zh) | 一种筒型传动轴永磁耦合装置 | |
CN201490870U (zh) | 可调节磁扭矩的传动轴永磁耦合传动和调速装置 | |
CN201478986U (zh) | 一种高效的可调节电磁扭矩的电枢绕组永磁联轴器 | |
WO2011018010A1 (zh) | 一种可调节电磁扭矩的筒型传动轴永磁耦合器 | |
CN105987153A (zh) | 基于永磁传动技术的双动力输入减速器及其动力切换方法 | |
CN201490873U (zh) | 一种可调节永磁扭矩的筒型永磁耦合联轴器 | |
CN201490872U (zh) | 一种可调节电磁扭矩的筒型传动轴永磁耦合器 | |
CN201490874U (zh) | 可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器 | |
CN104660007A (zh) | 双支撑永磁涡流柔性变速器 | |
CN104467359A (zh) | 一种永磁调速节能联轴器 | |
CN201490871U (zh) | 一种高效的可调节电磁扭矩的锅箅永磁联轴器 | |
CN203434838U (zh) | 内辐射环式静态调速保护型永磁联轴器 | |
CN203434837U (zh) | 内辐射环式永磁联轴器 | |
CN103401396B (zh) | 内辐射环式永磁联轴器 | |
CN102157997A (zh) | 带有冷却风罩的永磁调速机 | |
CN105207429A (zh) | 调速型永磁涡流联轴器 | |
CN103441642A (zh) | 内辐射环式静态调速保护型永磁联轴器 | |
CN204481667U (zh) | 双支撑永磁涡流柔性变速器 | |
CN103427591A (zh) | 永磁扭矩调节器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10807959 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10807959 Country of ref document: EP Kind code of ref document: A1 |