WO2011017973A1 - 一种信号的资源确定方法 - Google Patents

一种信号的资源确定方法 Download PDF

Info

Publication number
WO2011017973A1
WO2011017973A1 PCT/CN2010/073777 CN2010073777W WO2011017973A1 WO 2011017973 A1 WO2011017973 A1 WO 2011017973A1 CN 2010073777 W CN2010073777 W CN 2010073777W WO 2011017973 A1 WO2011017973 A1 WO 2011017973A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbols
subcarrier
layers
thirteenth
fourteenth
Prior art date
Application number
PCT/CN2010/073777
Other languages
English (en)
French (fr)
Inventor
郁光辉
李儒岳
孙云锋
戴博
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012524092A priority Critical patent/JP2013502110A/ja
Priority to MX2012001873A priority patent/MX2012001873A/es
Priority to US13/258,313 priority patent/US8547922B2/en
Priority to BR112012003186A priority patent/BR112012003186A2/pt
Priority to RU2012111189/07A priority patent/RU2529370C2/ru
Priority to KR1020127006672A priority patent/KR101306168B1/ko
Priority to EP10807918.7A priority patent/EP2453624A4/en
Publication of WO2011017973A1 publication Critical patent/WO2011017973A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to reference signals in mobile communications, and more particularly to a resource determination method for signals.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is essentially a multi-carrier modulation communication technology, which is one of the core technologies in B3G and 4G mobile communication.
  • the multipath channel of OFDM exhibits frequency selective fading characteristics.
  • the channel is divided into multiple subchannels in the frequency domain, and the spectral characteristics of each subchannel are approximately flat, and each OFDM sub-sub-channel
  • the channels are orthogonal to each other, thus allowing the frequency of the subchannels to overlap each other, so that the spectrum resources can be utilized to the utmost.
  • MIMO Multiple Input Multiple Output
  • OFDM Orthogonal Downlink Signal
  • closed-loop MIMO adaptive MIMO
  • open-loop MIMO mainly because when the transmitting side acquires channel information and interference information in whole or in part.
  • the transmitted signal can be processed in advance to adapt to changes in channel and interference.
  • This benefit is especially reflected in the multi-user MIMO (MU-MIMO) and Cooperation Multi-Point (CoMP) transmission modes. In these two modes, the interference is more prominent, and it is more necessary to suppress the interference by using the pre-processed transmitted signal on the transmitting side.
  • MU-MIMO multi-user MIMO
  • CoMP Cooperation Multi-Point
  • This reference signal is called Common Reference Signal (CRS). Because the designed reference signal is distributed over the entire system bandwidth, all receivers can use this common reference signal for channel estimation from the receiver to the antenna port.
  • CRS Common Reference Signal
  • the advantage of this common reference signal is that it can be used as The measurement reference signal can also be used as a demodulation data reference signal, and since the reference signal is distributed over the entire bandwidth, the occupied resources are relatively large, so the channel estimation is relatively accurate.
  • this common reference signal also needs to be used by the transmitting side to additionally inform the receiving end of the preprocessing method used for the transmitted data, and when the number of transmitting antennas is relatively large, the overhead increases, which becomes less suitable.
  • the MIMO transmission mode (except transmission mode 7) in the LTE system takes the form of such a reference signal.
  • the second way of designing the reference signal is that the reference signal itself and the data are used in the same pre-processing.
  • the reference signal may not be the same because the preprocessing method used for each receiving end may be different.
  • the form of the common reference signal but a special form, which is only distributed over the same bandwidth resources as the data.
  • this reference signal is also involved in the same preprocessing as the data, so it cannot be used as a measurement reference signal (the measurement reference signal is not within the scope of this patent), and can only be used as a demodulated data reference signal for coherence.
  • the data is demodulated, so the second reference signal described above is referred to as a dedicated demodulated data reference signal.
  • Pre-processing is the physical antenna-to-layer mapping, and each layer corresponds to a different pre-processing of multiple physical antennas.
  • LTE-A Enhanced Long Term Evolution
  • LTE-A has not only basically determined the form of the dedicated demodulation data reference signal, but also specifies that when the number of layers is less than or equal to 2, the total amount of dedicated demodulation data reference signals on each resource block (RB) is 12 resource elements (Resource Element, RE); When the number of layers is from 3 to 8, the total cost of dedicated demodulation data reference signals on each resource block RB does not exceed 24 REs.
  • the technical problem to be solved by the present invention is to provide a method for determining a resource of a signal for determining the position of the RE occupied by the dedicated demodulation reference signal in the RB.
  • the present invention provides a signal resource determining method, the method comprising: carrying a dedicated demodulated data reference signal in a non-control channel region of a resource block and being non-public
  • the reference signal is located on a resource unit (RE) on an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • RE resource unit
  • OFDM Orthogonal Frequency Division Multiplexing
  • said non-control channel region and orthogonal frequency division multiplexing (OFDM) symbols in which non-common reference signals are located comprise sixth, seventh, ten, eleven, thirteen and tenth of each subcarrier in said resource block Four OFDM symbols.
  • the method further comprises: classifying different number of layers, and determining the location of the dedicated demodulated data reference signal for different classes respectively.
  • the step of classifying different layers includes: classifying the different layers into two categories, the total number of layers is 1 or 2 is the first category, and the total number of layers is greater than 2 is the second category;
  • the number of different layers is divided into three categories, the total number of layers is 1 or 2 is the first category, the total number of layers is 3 or 4 is the second category, and the total number of layers is greater than 4 is the third category;
  • the dedicated demodulated data reference signals on different layers in the same class have the same overhead; and the relative two-dimensional time-frequency positions between the REs of the dedicated demodulated data reference signals in the same class are the same, translation Or a symmetric relationship.
  • the step of classifying different number of layers further comprises: when the different number of layers is divided into two types, the total overhead of the dedicated demodulated data reference signal on all layers of the first type is 12 RE, The total overhead of the dedicated demodulation data reference signal on all layers of the second class is 24 RE; or
  • the total overhead of dedicated demodulation data reference signals on all layers of the first type is 12 RE
  • the total overhead of dedicated demodulation data reference signals on all layers of the second type is 12 RE or 24 REs
  • the total demodulation data reference signal overhead on all layers of the third type is 24 REs.
  • the step of classifying different number of layers further includes:
  • the dedicated demodulated data reference signals on different layers in the same class are multiplexed by code division multiplexing, and the orthogonal code used is Walsh orthogonal code, and the order of the code division multiplexing is 2. Power.
  • the length of each orthogonal code is equal to the order of the code division multiplexing, and the number of occupied REs is equal to the length of the orthogonal code.
  • the step of classifying different layer numbers further comprises: when the number of layers actually used is smaller than the order of code division multiplexing in the same class, boosting the dedicated demodulated data reference signal power of each layer.
  • the index of the dedicated demodulated data reference signal is a physical resource of a layer-specific demodulated data reference signal uniquely determined by the class and the orthogonal code index.
  • the position of the first type of dedicated demodulated data reference signal in the RB is:
  • the position of the second type of dedicated demodulated data reference signal in the RB is:
  • Spear ⁇ Seventh, thirteenth and fourteenth subcarriers of fourteen OFDM symbols
  • the step of classifying different number of layers when the number of the different layers is divided into two categories,
  • the adjacent two REs use the second-order Walsh orthogonal code to perform the code division multiplexing, respectively corresponding to the dedicated demodulation data reference signals on the two layers;
  • the 24 REs in the second category are divided into 6 groups, each group containing 4 REs, where:
  • the first group is the second subcarrier of the sixth and seventh OFDM symbols, and the third subcarrier of the sixth and seventh OFDM symbols;
  • the second group is the second subcarrier of the thirteenth and fourteenth OFDM symbols, and the third subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the third group is a sixth subcarrier of the sixth and seventh OFDM symbols, and a seventh subcarrier of the sixth and seventh OFDM symbols;
  • the fourth group is a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the fifth group is a tenth subcarrier of the sixth and seventh OFDM symbols, and an eleventh subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group is a tenth subcarrier of the thirteenth and fourteenth OFDM symbols, and an eleventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the first group is the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols; the second group is the third subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols; the third group is The sixth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols; the fourth group is the seventh subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols; the fifth group is the sixth and seventh a tenth subcarrier of ten-three and fourteen OFDM symbols; and a sixth group of eleventh subcarriers of sixth, seventh, thirteenth and fourteenth OFDM symbols; or,
  • the first group is the first subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the second group is the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the fourth group is the seventh subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the fifth group is the sixth Seventh, thirteenth and fourteenth OFDM symbols of the eleventh subcarrier;
  • the sixth group is the twelfth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols; the first, third, fifth and seventh layers corresponding to the dedicated demodulation data reference signals are carried in the first, fourth and fifth groups The dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the second, third and sixth groups; or
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the second, third and sixth groups, and the second, fourth, sixth and eighth layers corresponding to the dedicated demodulation data reference signals are carried in the first, On the fourth and fifth groups; or
  • the first, second, fifth and seventh layers corresponding to the dedicated demodulation data reference signals are carried on the second, fourth and sixth groups, and the third, fourth, sixth and eighth layers corresponding to the dedicated demodulation data reference signals are carried in the first, On the third and fifth groups;
  • the four-layer corresponding dedicated demodulated data reference signals in the same group are subjected to the code division multiplexing using a fourth-order Walsh orthogonal code.
  • the position of the first type of dedicated demodulated data reference signal in the RB is:
  • the position of the second type of dedicated demodulated data reference signal in the RB is: Spears ⁇ : the first subcarrier of seven, thirteen and fourteen OFDM symbols; spear ⁇ : the second subcarrier of seven, thirteen and fourteen OFDM symbols;
  • the adjacent two REs use the second-order Walsh orthogonal code to perform the code division multiplexing, respectively corresponding to the dedicated demodulation data reference signals on the two layers;
  • the 24 REs in the second category are divided into 6 groups, each group containing 4 REs, where:
  • the first group is the first subcarrier of the sixth and seventh OFDM symbols, and the second subcarrier of the sixth and seventh OFDM symbols;
  • the second group is the first subcarrier of the thirteenth and fourteenth OFDM symbols, and the second subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the third group is a sixth subcarrier of the sixth and seventh OFDM symbols, and a seventh subcarrier of the sixth and seventh OFDM symbols;
  • the fourth group is a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the fifth group is an eleventh subcarrier of the sixth and seventh OFDM symbols, and a twelfth subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group is an eleventh subcarrier of the thirteenth and fourteenth OFDM symbols, and a twelfth subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the second, fourth, sixth and eighth layers corresponding to the dedicated demodulation data reference signals are carried in the second, On the third and sixth groups; or
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried in the second, third and sixth
  • the dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the first, fourth and fifth groups;
  • the four-layer corresponding dedicated demodulated data reference signals in the same group are subjected to the code division multiplexing using a fourth-order Walsh orthogonal code.
  • the position of the first type of dedicated demodulated data reference signal in the RB is:
  • the position of the third type of dedicated demodulated data reference signal in the RB is:
  • Spears ⁇ the tenth subcarrier of the seven, thirteenth and fourteenth OFDM symbols; and the eleventh subcarrier of the spear ⁇ : seven, thirteen and fourteen OFDM symbols.
  • the step of classifying different number of layers when the number of different layers is divided into three categories,
  • the adjacent two REs use the second-order Walsh orthogonal code to perform the code division multiplexing, respectively corresponding to the dedicated demodulation data reference signals on the two layers;
  • the first group is the second subcarrier of the sixth and seventh OFDM symbols
  • the second group is the second subcarrier of the thirteenth and fourteenth OFDM symbols
  • the third group is the sixth subcarrier of the sixth and seventh OFDM symbols
  • the fourth group is the sixth subcarrier of the thirteenth and fourteenth OFDM symbols
  • the fifth group is the tenth subcarrier of the sixth and seventh OFDM symbols
  • the sixth group is the tenth subcarrier of the thirteenth and fourteenth OFDM symbols
  • the dedicated demodulation data reference signals corresponding to the first and third layers are carried on the first, fourth and fifth groups, and the dedicated demodulation data reference signals corresponding to the second and fourth layers are carried on the second, third and sixth groups; or
  • the dedicated demodulation data reference signals corresponding to the first and third layers are carried on the second, third and sixth groups, and the dedicated demodulation data reference signals corresponding to the second and fourth layers are carried on the first, fourth and fifth groups;
  • Two layers of corresponding dedicated demodulated data reference signals in the same group are subjected to said code division multiplexing using a second order Walsh orthogonal code;
  • the neighboring four REs use the fourth-order Walsh orthogonal code to perform the code division multiplexing, respectively corresponding to the dedicated solution on the fourth layer. Adjust the data reference signal;
  • the 24 REs in the second class are divided into 6 groups, each group containing 4 REs, where: the first group is the second subcarrier of the sixth and seventh OFDM symbols, and the sixth and seventh OFDM The third subcarrier of the symbol;
  • the second group is the second subcarrier of the thirteenth and fourteenth OFDM symbols, and the third subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the third group is a sixth subcarrier of the sixth and seventh OFDM symbols, and a seventh subcarrier of the sixth and seventh OFDM symbols;
  • the fourth group is a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the fifth group is a tenth subcarrier of the sixth and seventh OFDM symbols, and an eleventh subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group is a tenth subcarrier of the thirteenth and fourteenth OFDM symbols, and an eleventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the second, fourth, sixth and eighth layers corresponding to the dedicated demodulation data reference signals are carried in the second, On the third and sixth groups; or
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the second, third and sixth groups, and the second, fourth, sixth and eighth layers corresponding to the dedicated demodulation data reference signals are carried in the first, On the fourth and fifth groups;
  • the four-layer corresponding dedicated demodulated data reference signals in the same group are subjected to the code division multiplexing using a fourth-order Walsh orthogonal code.
  • the resource determining method for the dedicated demodulated data reference signal defined on the layer provided by the present invention uses less signaling; and the mode is less, which is convenient for hardware implementation; for MU-MIMO (including in CoMP) MU-MIMO)
  • the receiver is transparent and can take full advantage of the transmit power.
  • FIG. 1 is a schematic diagram of physical resource locations of a common reference signal and its control signaling in an RB in the prior art
  • 2(A) is a schematic diagram showing the position of a first type of dedicated demodulated data reference signal in an RB according to the first embodiment of the present invention
  • 2(B) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB in the first embodiment of the present invention
  • 3(A) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB according to a second embodiment of the present invention
  • 3(B) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB according to a second embodiment of the present invention
  • 4(A) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB according to a third embodiment of the present invention.
  • 4(B) is a schematic diagram showing the position of a class of dedicated demodulated data reference signals in an RB according to a third embodiment of the present invention.
  • Figure 5 (A) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB in a fourth embodiment of the present invention
  • Figure 5 (B) is a schematic diagram showing the position of a special demodulation data reference signal in the RB in the fourth embodiment of the present invention.
  • Figure 5 (C) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB in the fourth embodiment of the present invention.
  • 6(A) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB according to a fifth embodiment of the present invention.
  • 6(B) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB according to a fifth embodiment of the present invention.
  • Figure 6 (C) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB in the fifth embodiment of the present invention.
  • Figure 7 (A) is a schematic diagram showing the position of a class-specific demodulated data reference signal in an RB in a sixth embodiment of the present invention.
  • FIG. 7(B) is a first type of dedicated demodulated data reference signal in the RB according to the sixth embodiment of the present invention. Schematic diagram of the location. Preferred embodiment of the invention
  • FIG. 1 is a schematic structural diagram of an RB in the current LTE-A. As shown in FIG. 1, one block represents an RE, and RBs occupy 12 subcarriers in the frequency domain, and occupy 14 OFDM symbols (Normal CP) in the time domain, where the first 4 OFDM symbols may be used for the control channel. Bearer, therefore, cannot carry any dedicated demodulated data reference signal on the first 4 OFDM.
  • LTE allows common reference signals of different cells to be translated on different subcarriers of the same OFDM symbol (a frequency hopping mode)
  • these common reference signals are still retained in the LTE-A RBs.
  • the OFDM symbols on which these REs are located cannot carry any dedicated demodulated data reference signals. Therefore, the dedicated demodulation data reference signal position of the LTE-A can be carried, and can only be the RE on the OFDM symbol where the non-control channel region in the RB and the non-common reference signal is located, that is, the sixth, seventh, ten in the RB. Eleven, thirteen and fourteen OFDM symbols on the RE.
  • the number of layers can be divided into two types or three types. If divided into two types, the total number of layers is 1 or 2 is the first category, and the total number of layers is greater than 2 is the second category; Then the total number of layers is 1 or 2 for the first category, the total number of layers is 3 or 4 for the second category, and the total number of layers is greater than 4 for the third category.
  • Dedicated demodulated data reference signals on different layers in the same class have the same overhead; there is a certain correlation between the relative two-dimensional time-frequency positions between the REs of the dedicated demodulated data reference signals on the same class.
  • the total overhead of the dedicated demodulated data reference signal on all layers of the first type is 12 RE
  • the total overhead of the dedicated demodulated data reference signal on all layers of the second type is 24 RE
  • the total overhead of dedicated demodulated data reference signals on all layers of the first type is 12 REs
  • the total overhead of dedicated demodulated data reference signals on all layers of the second type is 12 REs or 24 REs.
  • the total overhead of the dedicated demodulated data reference signal on all layers of the third type is 24 REs.
  • the dedicated demodulated data reference signal on each layer can only use the non-control channel region (RE on the OFDM symbol after the fourth OFDM symbol), and can only be in the RE of the OFDM symbol where the non-LTE common reference signal is located, It is only possible to use REs on the 6, 7, 10, 11, 13 and 14 OFDM symbols.
  • the relative two-dimensional time-frequency position between the REs of the dedicated demodulated data reference signal on the same layer has the same, translational or symmetric relationship.
  • the same means that the two-dimensional time-frequency position relationship is exactly the same.
  • Translation means that the two-dimensional time-frequency relationship is shifted in the time domain or the frequency domain as a whole.
  • Symmetry means that the two-dimensional time-frequency relationship has many symmetry relations such as axis symmetry and central symmetry. .
  • Dedicated demodulation data reference signals on different layers in the same class are multiplexed by Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • the orthogonal code used is Walsh orthogonal code, so the maximum number of layers to be multiplexed (the order of CDM) is a power of 2, that is, 2, 4 or 8.
  • the length of each orthogonal code is equal to the order of CDM, and the number of REs occupied is equal to its length.
  • the power of the dedicated demodulated data reference signal for each layer can be increased. Since the data is also subjected to the same power boost as the dedicated demodulated data reference signal, there is no need to notify the receiving end of the amount of boosting of the dedicated demodulated data reference signal power.
  • the index of each layer i.e., the index of the dedicated demodulated data reference signal, is uniquely determined by the class and orthogonal code index to determine the physical resources of the layer dedicated demodulation data reference signal.
  • the physical resource location determination and multiplexing method of the dedicated demodulated data reference signal on the layer provided by the present invention uses less signaling; the mode is small, and is convenient for hardware implementation; for MU-MIMO (including MU-MIMO in CoMP)
  • the receiver is transparent and can take full advantage of the transmission power.
  • the abscissa in the figures is the time domain (OFDM symbol index), and the ordinate is the frequency domain. (subcarrier index).
  • the number of layers is divided into two categories, the total number of layers is 1 or 2, and the total number of layers is greater than 2, which is the second category.
  • Figure 2 (A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown
  • all dedicated demodulated data reference signals in the first class occupy 12 REs in one RB.
  • the position of these 12 REs in one RB can be expressed as coordinates (x, y). :
  • X denotes an OFDM symbol index in one RB
  • y denotes a subcarrier index in one RB.
  • the position of the RE in the RB is expressed in the form of coordinates (X, y).
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols is the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • the position of the dedicated demodulated data reference signal in the RB is described by OFDM and subcarrier number, whether it is time domain (OFDM symbol index) or frequency domain (sub) The carrier index) starts from 1.
  • Figure 2 (B) is a schematic diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown in Figure 2 (B), all dedicated demodulated data reference signals in the second class occupy 24 REs in one RB. The positions of these 24 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the first-class demodulation data reference signal in one RB can also be expressed as spear ⁇ : seven, thirteen and fourteen OFDM symbols second subcarrier
  • two adjacent REs are multiplexed using a second-order Walsh orthogonal code CDM method, corresponding to dedicated demodulation data reference signals on the two layers.
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 2) (7, 2) (6, 3) (7, 3);
  • the second group (13, 2) (14, 2) (13, 3) (14, 3);
  • the third group (6, 6) (7, 6) (6, 7) (7, 7);
  • the sixth group (13, 10) (14, 10) (13, 11) (14, 11).
  • the six groups of 24 REs can also be expressed as:
  • a first group a second subcarrier of the sixth and seventh OFDM symbols, and a third subcarrier of the sixth and seventh OFDM symbols;
  • a second group a second subcarrier of the thirteenth and fourteenth OFDM symbols, and a third subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the third group the sixth subcarrier of the sixth and seventh OFDM symbols, and the sixth and seventh
  • a seventh subcarrier of the OFDM symbol a fourth group: a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • a fifth group a tenth subcarrier of the sixth and seventh OFDM symbols, and an eleventh subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group the tenth subcarrier of the thirteenth and fourteenth OFDM symbols, and the eleventh subcarrier of the thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the four layers correspond to dedicated demodulation
  • the data reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM;
  • the dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the second, third and sixth groups, and the four layers correspond to the dedicated demodulation data.
  • the reference signals are multiplexed using the fourth-order Walsh orthogonal code CDM in the same group, as shown in Figure 2 (A) and Figure 2 (B).
  • the total number of layers is 1 or 2 is the first category, and the total number of layers is greater than 2 is the second category.
  • Figure 3 (A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown in FIG. 3(A), all the dedicated demodulated data reference signals in the first class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (x, y). Expressed as: (6, 1) (7, 1) (13, 1) (14, 1)
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the first subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the eleventh subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols are provided.
  • Figure 3 (B) is a diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown 3 (B), all the dedicated demodulated data reference signals in the second category occupy 24 REs in one RB. The position of these 24 REs in one RB can be expressed as coordinates (x, y). :
  • the location of the class-specific demodulation data reference signal in an RB can also be expressed as: spear ⁇ : , 7.
  • the second subcarrier of the spears ⁇ , seven, thirteen and fourteen OFDM symbols;
  • the fifteenth subcarrier of the spears ⁇ , seven, thirteen and fourteen OFDM symbols.
  • two adjacent REs are multiplexed using a second-order Walsh orthogonal code CDM method, corresponding to dedicated demodulation data reference signals on the two layers.
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 1) (7, 1) (6, 2) (7, 2);
  • the second group (13, 1) (14, 1) (13, 2) (14, 2);
  • the third group (6, 6) (7, 6) (6, 7) (7, 7);
  • the six groups of 24 REs can also be expressed as: a first group: a first subcarrier of the sixth and seventh OFDM symbols, and a second subcarrier of the sixth and seventh OFDM symbols;
  • a second group a first subcarrier of the thirteenth and fourteenth OFDM symbols, and a second subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the third group the sixth subcarrier of the sixth and seventh OFDM symbols, and the sixth and seventh
  • a fourth group a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • a fifth group an eleventh subcarrier of the sixth and seventh OFDM symbols, and a twelfth subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group the eleventh sub-carrier of the thirteenth and fourteenthth OFDM symbols, and the twelfth subcarrier of the thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the four layers correspond to dedicated demodulation
  • the data reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM;
  • the dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the second, third and sixth groups, and the four layers correspond to the dedicated demodulation data.
  • the reference signals are multiplexed using the fourth-order Walsh orthogonal code CDM in the same group, as shown in Figure 3 (A) and Figure 3 (B).
  • the total number of layers is 1 or 2 is the first category, and the total number of layers is greater than 2 is the second category.
  • Figure 4 (A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown in FIG. 4(A), all the dedicated demodulated data reference signals in the first class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (X, y). Expressed as:
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols is the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • Figure 4 (B) is a diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown in FIG. 4(B), all the dedicated demodulated data reference signals in the second class occupy 24 REs in one RB, and the positions of the 24 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the location of the class-specific demodulation data reference signal in an RB can also be expressed as: spear ⁇ : , 7.
  • the third subcarrier of the spears ⁇ : , seven, thirteen and fourteen OFDM symbols;
  • the tenth subcarrier of the spears ⁇ : , seven, thirteen and fourteen OFDM symbols;
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 2) (7, 2) (13, 2) (14, 2);
  • the second group (6, 3) (7, 3) (13, 3) (14, 3);
  • the third group (6, 6) (7, 6) (13, 6) (14, 6);
  • the sixth group (6, 11) (7, 11) (13, 11) (14, 11)
  • the six groups of 24 REs can also be expressed as:
  • Group 2 Spears ⁇ : Seven, thirteen and fourteenth subcarriers of OFDM symbols
  • Group 3 Spears ⁇ : Seven, thirteen and fourteenth subcarriers of OFDM symbols
  • the fifth group Spears ⁇ : Seventh, thirteen and fourteenth OFDM symbols
  • the tenth subcarrier and the sixth group: Spears ⁇ : Seven, thirteen and fourteenth OFDM symbols of the eleventh subcarrier.
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, third and fifth groups, and the four layers correspond to dedicated demodulation
  • the data reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM;
  • the second, fourth, sixth and eighth layers (or the first, third, fifth and seventh layers) corresponding dedicated demodulation data reference signals are carried on the second, fourth and sixth groups, and the four layers correspond to dedicated demodulation data.
  • the reference signals are multiplexed using the fourth-order Walsh orthogonal code CDM in the same group, as shown in Fig. 4(A) and Fig. 4(B), in which Fig. 4(B) uses two kinds of graphical representations for dedicated demodulation.
  • the position of the data reference signal one indicating the position of the dedicated demodulated data reference signal corresponding to the first, third, fifth and seventh layers, and the other indicating the dedicated demodulated data reference signal corresponding to the second, fourth, sixth and eighth layers s position.
  • FIG. 5(A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown in FIG. 5(A), all the dedicated demodulated data reference signals in the first class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols is the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • Figure 5 (B) is a schematic diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown in FIG. 5(B), all the dedicated demodulated data reference signals in the second class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the second type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols is the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • Figure 5 (C) is a schematic diagram showing the position of the third type of dedicated demodulated data reference signal in the RB. As shown in Figure 5 (C), all the dedicated demodulated data reference signals in the third class occupy 24 REs in one RB. The positions of the 24 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the first-class demodulation data reference signal in one RB can also be expressed as spear ⁇ : seven, thirteen and fourteen OFDM symbols second subcarrier
  • two adjacent REs are multiplexed using a second-order Walsh orthogonal code CDM method, corresponding to dedicated demodulation data reference signals on the two layers.
  • 12 REs are divided into 6 groups, each group containing 2 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 2) (7, 2);
  • the second group ( 13, 2) (14, 2);
  • the third group (6, 6) (7, 6);
  • the fourth group ( 13, 6) (14, 6);
  • the six groups of 12 REs can also be expressed as:
  • the first group the second subcarrier of the sixth and seventh OFDM symbols;
  • Second group the second subcarrier of the thirteenth and fourteenth OFDM symbols
  • the third group the sixth subcarrier of the sixth and seventh OFDM symbols;
  • Fourth group the sixth subcarrier of the thirteenth and fourteenth OFDM symbols; a fifth group: a tenth subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group the tenth subcarrier of the thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first and third layers (or the second and fourth layers) are carried on the first, fourth and fifth groups, and the dedicated demodulation data reference signals corresponding to the two layers are used in the same group.
  • Second-order Walsh orthogonal code CDM multiplexing
  • the dedicated demodulation data reference signals corresponding to the second and fourth layers (or the first and third layers) are carried on the second, third and sixth groups, and the dedicated demodulation data reference signals corresponding to the two layers are used in the same group.
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 2) (7, 2) (6, 3) (7, 3);
  • the second group (13, 2) (14, 2) (13, 3) (14, 3);
  • the third group (6, 6) (7, 6) (6, 7) (7, 7);
  • the six groups of 24 REs can also be expressed as:
  • a first group a second subcarrier of the sixth and seventh OFDM symbols, and a third subcarrier of the sixth and seventh OFDM symbols;
  • a second group a second subcarrier of the thirteenth and fourteenth OFDM symbols, and a third subcarrier of the thirteenth and fourteenth OFDM symbols;
  • a third group a sixth subcarrier of the sixth and seventh OFDM symbols, and a seventh subcarrier of the sixth and seventh OFDM symbols;
  • a fourth group a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • a fifth group a tenth subcarrier of the sixth and seventh OFDM symbols, and an eleventh subcarrier of the sixth and seventh OFDM symbols;
  • the sixth group the tenth subcarrier of the thirteenth and fourteenth OFDM symbols, and the eleventh subcarrier of the thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the four layers correspond to dedicated demodulation
  • the data reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM;
  • the dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the second, third and sixth groups, and the four layers correspond to the dedicated demodulation data.
  • the reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM, as shown in Figure 5 (A), Figure 5 (B), and Figure 5 (C).
  • the number of layers it is divided into three categories, the total number of layers is 1 or 2 is the first category, the total number of layers is 3 or 4 is the second category, and the total number of layers is greater than 4 is the third category.
  • Figure 6 (A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown in FIG. 6(A), all the dedicated demodulated data reference signals in the first class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols is the tenth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • Figure 6 (B) is a diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown in FIG. 6(B), all the dedicated demodulated data reference signals in the second class occupy 24 REs in one RB, and the positions of the 24 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • the position of the class-specific demodulation data reference signal in one RB may also be expressed as: spear ⁇ : , seven, thirteen _ and the second subcarrier of fourteen OFDM symbols;
  • Figure 6 (C) is a diagram showing the position of the Class J dedicated demodulated data reference signal in the RB. As shown
  • all dedicated demodulated data reference signals in the third category occupy 24 REs in one RB.
  • the position of these 24 REs in one RB can be expressed as coordinates (x, y). :
  • the eleventh subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols are provided.
  • two adjacent REs are multiplexed using a second-order Walsh orthogonal code CDM method, respectively corresponding to dedicated demodulation data reference signals on the two layers; corresponding to the dedicated demodulation data reference signals on the four layers;
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 2) (7, 2) (6, 3) (7, 3);
  • the second group (13, 2) (14, 2) (13, 3) (14, 3);
  • the third group (6, 6) (7, 6) (6, 7) (7, 7);
  • the six groups of 24 REs can also be expressed as:
  • a first group a second subcarrier of the sixth and seventh OFDM symbols, and a third subcarrier of the sixth and seventh OFDM symbols;
  • a second group a second subcarrier of the thirteenth and fourteenth OFDM symbols, and a third subcarrier of the thirteenth and fourteenth OFDM symbols;
  • a third group a sixth subcarrier of the sixth and seventh OFDM symbols, and a seventh subcarrier of the sixth and seventh OFDM symbols;
  • a fourth group a sixth subcarrier of the thirteenth and fourteenth OFDM symbols, and a seventh subcarrier of the thirteenth and fourteenth OFDM symbols;
  • the eleventh subcarrier of the OFDM symbol The sixth group: the tenth subcarrier of the thirteenth and fourteenth OFDM symbols, and the eleventh subcarrier of the thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first, third, fifth and seventh layers are carried on the first, fourth and fifth groups, and the four layers correspond to dedicated demodulation
  • the data reference signals are multiplexed in the same group using a fourth-order Walsh orthogonal code CDM;
  • the dedicated demodulation data reference signals corresponding to the second, fourth, sixth and eighth layers are carried on the second, third and sixth groups, and the four layers correspond to the dedicated demodulation data.
  • the reference signals are multiplexed using the fourth-order Walsh orthogonal code CDM in the same group, as shown in Figure 6 (A), Figure 6 (B), and Figure 6 (C).
  • the number of layers is divided into two categories, the total number of layers is 1 or 2, and the total number of layers is greater than 2, which is the second category.
  • Figure 7 (A) is a schematic diagram showing the position of the first type of dedicated demodulated data reference signal in the RB. As shown in FIG. 7(A), all the dedicated demodulated data reference signals in the first class occupy 12 REs in one RB, and the positions of the 12 REs in one RB can be in the form of coordinates (x, y). Expressed as:
  • X denotes an OFDM symbol index in one RB
  • y denotes a subcarrier index in one RB
  • the position of the first type of dedicated demodulated data reference signal in one RB may also be expressed as: the second subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • Figure 7 (B) is a diagram showing the position of the second type of dedicated demodulated data reference signal in the RB. As shown in Figure 7 (B), all dedicated demodulated data reference signals in the second category account for 24 in one RB. RE, the position of these 24 REs in an RB can be expressed as coordinates (x, y) as:
  • the position of the class-specific demodulation data reference signal in an RB may also be expressed as: spear ⁇ : , the first subcarrier of the seven, thirteen and fourteen OFDM symbols;
  • the second subcarrier of the spears ⁇ , seven, thirteen and fourteen OFDM symbols;
  • the fifteenth subcarrier of the spears ⁇ , seven, thirteen and fourteen OFDM symbols.
  • two adjacent REs are multiplexed using a second-order Walsh orthogonal code CDM method, corresponding to dedicated demodulation data reference signals on the two layers.
  • 24 REs are divided into 6 groups, each group containing 4 REs.
  • the positions of these 6 groups in the RB can be expressed as coordinates (X, y):
  • the first group (6, 1) (7, 1) (13, 1) (14, 1);
  • the second group (6, 2) (7, 2) (13, 2) (14, 2);
  • the third group (6, 6) (7, 6) (13, 6) (14, 6);
  • the six groups of 24 REs can also be expressed as: First group: the first subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • Second group the sixth, seventh, thirteenth and fourteenth fourth subcarriers of the OFDM symbol
  • the third group the sixth, seventh, thirteenth and fourteenth fourth subcarriers of the OFDM symbol;
  • Group 4 the seventh, seventh, thirteenth and fourteenth seventh subcarriers of the OFDM symbol
  • Group 5 the eleventh subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols;
  • the sixth group the twelfth subcarrier of the sixth, seventh, thirteenth and fourteenth OFDM symbols.
  • the dedicated demodulation data reference signals corresponding to the first, second, fifth and seventh layers are carried on the second, fourth and sixth groups, and the four dedicated demodulation data reference signals corresponding to the four layers use the fourth-order Walsh positive in the same group.
  • Cross code CDM multiplexing
  • the dedicated demodulation data reference signals corresponding to the third, fourth, sixth and eighth layers are carried on the first, third and fifth groups, and the four demodulation data reference signals corresponding to the four layers use the fourth-order Walsh orthogonal in the same group.
  • Code CDM multiplexing as shown in Figure 7 (A) and Figure 7 (B).
  • the resource determining method of the dedicated demodulated data reference signal defined on the layer provided by the present invention uses less signaling; and has fewer modes for hardware implementation; for MU-MIMO (including MU-MIMO in CoMP)
  • the receiving end is transparent and can take full advantage of the transmission power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

一种信号的资源确定方法
技术领域
本发明涉及移动通信中的参考信号, 特别是涉及一种信号的资源确定方 法。
背景技术
正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )技 术本质上是一种多载波调制通信技术, 该技术是 B3G和 4G移动通信中的核 心技术之一。 在频域上, OFDM的多径信道呈现出频率选择性衰落特性, 为 了克服这种衰落, 将信道在频域上划分成多个子信道, 每个子信道的频谱特 性都近似平坦, 并且 OFDM各个子信道相互正交, 因此允许子信道的频语相 互重叠, 从而可以最大程度地利用频谱资源。
多输入多输出 ( Multiple Input Multiple Output , MIMO )技术可以增大系 统容量、 提高传输性能, 并能很好地和 OFDM等其它物理层技术融合, 因此 成为 B3G和 4G移动通信系统的关键技术。 随着对 MIMO技术研究的深入, 目前普遍认为闭环 MIMO (自适应 MIMO )相对于开环 MIMO来说具有更多 的性能增益, 这主要是因为当发射侧全部或者部分获取信道信息和干扰信息 时, 能预先对所发射的信号进行处理, 从而适应信道和干扰的变化。 这种增 益尤其体现在多用户 MIMO ( MU-MIMO ) 和协作多点 ( Cooperation Multi-Point, CoMP )传输模式下。 在这两种模式下, 干扰比较突出, 更需要 在发射侧使用预先处理发射信号的方式实现对干扰的抑制。
在 MIMO通信系统中, 对参考信号的设计有两种方式。
一种方式是参考信号定义在物理天线端口上, 然后使用信令通知接收端 对所发射的数据釆用了何种预处理方式(一般釆用线性预编码的形式) 。 这 种参考信号称为公共参考信号(Common Reference Signal, CRS ) , 因为所设 计的参考信号分布在整个系统带宽, 所有接收端都可以使用该公共参考信号 进行接收端到天线端口的信道估计。 这种公共参考信号的优点是既可以用作 测量参考信号, 又可以用作解调数据参考信号, 并且由于参考信号在整个带 宽上分布, 所占用的资源比较多, 所以信道估计比较准确。 但这种公共参考 信号由于还需要发射侧额外通知接收端对发射的数据釆用了何种预处理方 式, 同时当发射天线数比较多的时候, 开销增大, 从而变得不是很合适。 LTE 系统中的 MIMO发射模式(除了发射模式 7 ) 即釆用这种参考信号的形式。
参考信号设计的第二种方式是参考信号本身和数据釆用相同的预处理, 此时这种参考信号因为对每个接收端所釆用的预处理方式可能不一样, 因此 不再是一种公共参考信号的形式, 而是专用形式, 其只分布在和数据相同的 带宽资源上。 同时这种参考信号由于也参与了和数据一样的预处理, 所以不 能当作测量参考信号使用 (测量参考信号不在本专利讨论范围之内) , 只能 当作解调数据参考信号, 用于相干解调数据, 故上述第二种参考信号称为专 用解调数据参考信号。 由于数据和参考信号釆用了相同的预处理, 因此此时 专用解调数据参考信号应该是定义在层(Layer )上的 (发射的数据也是承载 在层上发射) 。 预处理(预编码) 即为物理天线到层的映射, 每个层对应着 对多根物理天线的不同预处理。 目前增强长期演进(LTE-A ) 系统即釆用专 用解调数据参考信号的形式。
LTE-A不仅已经基本确定釆用专用解调数据参考信号的形式, 同时还规 定当层数小于等于 2时, 每个资源块(Resource Block, RB )上专用解调数据 参考信号的开销总数为 12个资源单位(Resource Element, RE ) ; 当层数从 3到 8的时候, 每个资源块 RB上专用解调数据参考信号的开销总数不超过 24个 RE。
尽管 LTE-A等系统已经基本确定了专用解调数据参考信号的开销, 但是 其在一个 RB中所占 RE的位置,以及不同层之间的复用方式目前还没有确定。 发明内容
本发明所要解决的技术问题, 在于需要提供一种信号的资源确定方法, 用于确定专用解调参考信号在 RB中所占的 RE的位置。
为了解决上述技术问题, 本发明提供了一种信号的资源确定方法, 该方 法包括: 将专用解调数据参考信号承载在资源块中非控制信道区域且非公共 参考信号所在的正交频分复用 (OFDM )符号上的资源单位(RE )上。
优选地, 所述非控制信道区域且非公共参考信号所在的正交频分复用 ( OFDM )符号包括所述资源块中每个子载波的第六、 七、 十、 十一、 十三 及十四个 OFDM符号。
优选地, 所述承载的步骤之前, 该方法还包括: 对不同的层数进行分类, 并为不同的类分别确定所述专用解调数据参考信号的位置。
优选地, 所述对不同的层数进行分类的步骤包括: 对所述不同层数分为 2类, 总层数为 1或 2为第一类, 总层数大于 2为第二类;
或者,
对所述不同层数分为 3类, 总层数为 1或 2为第一类, 总层数为 3或 4 为第二类, 总层数大于 4为第三类;
其中, 同一类中不同层上的所述专用解调数据参考信号的开销相同; 且 同一类上所述专用解调数据参考信号所占的 RE之间的相对二维时频位置是 相同、 平移或者对称关系。
优选地, 所述对不同的层数进行分类的步骤还包括: 对所述不同层数分 为 2类时, 第一类所有层上的专用解调数据参考信号总开销为 12个 RE, 第 二类所有层上的专用解调数据参考信号总开销为 24个 RE; 或者
对所述不同层数分为 3类时, 第一类所有层上的专用解调数据参考信号 总开销都为 12个 RE, 第二类所有层上的专用解调数据参考信号总开销为 12 个 RE或者 24个 RE, 第三类所有层上的专用解调数据参考信号总开销为 24 个 RE。
优选地, 所述对不同的层数进行分类的步骤还包括:
同一类中的不同层上专用解调数据参考信号之间釆用码分复用的方式复 用, 所使用的正交码为 Walsh正交码, 所述码分复用的阶数为 2的幂次。
优选地, 每条正交码的长度等于所述码分复用的阶数, 占用的 RE数等 于正交码的长度。
优选地, 所述对不同的层数进行分类的步骤还包括: 实际使用的层数小 于同一类中码分复用的阶数时, 提升每层的专用解调数据参考信号功率。 优选地, 所述专用解调数据参考信号的索引是类别和正交码索引唯一确 定的层上专用解调数据参考信号的物理资源。
优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 2 类时,
第一类专用解调数据参考信号在所述 RB中的位置为:
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波; 及 矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波;
或者,
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波; 及 矛 ^: 七、 十三及十四个 OFDM符号的第十二个子载波;
第二类专用解调数据参考信号在所述 RB中的位置为:
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 及 矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。 或者,
矛 ^: 七、 十三及十四个 OFDM符号的第一个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波 第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 及 第六、 七、 十三及十四个 OFDM符号的第十二个子载波。 优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 2 类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中:
第一组为第六和第七个 OFDM符号的第二个子载波,及第六及第七 个 OFDM符号的第三个子载波;
第二组为第十三和第十四个 OFDM符号的第二个子载波,及第十三 和第十四个 OFDM符号的第三个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波,及第六和第七 个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波,及第十三 和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十个子载波,及第六和第七 个 OFDM符号的第十一个子载波; 及
第六组为第十三和第十四个 OFDM符号的第十个子载波,及第十三 和第十四个 OFDM符号的第十一个子载波;
或者,
第一组为第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第二组为第六、 七、 十三及十四个 OFDM符号的第三个子载波; 第三组为第六、 七、 十三及十四个 OFDM符号的第六个子载波; 第四组为第六、 七、 十三及十四个 OFDM符号的第七个子载波; 第五组为第六、 七、 十-三及十四个 OFDM符号的第十个子载波; 及 第六组为第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 或者,
第一组为第六、 七、 十三及十四个 OFDM符号的第一个子载波; 第二组为第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第三组为第六、 七、 十三及十四个 OFDM符号的第六个子载波; 第四组为第六、 七、 十三及十四个 OFDM符号的第七个子载波; 第五组为第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 及
第六组为第六、 七、 十三及十四个 OFDM符号的第十二个子载波; 第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上; 或者
第一, 二, 五及七层对应的专用解调数据参考信号承载在第二、 四及六 组上, 第三, 四, 六及八层对应的专用解调数据参考信号承载在第一、 三及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 2 类时,
所述第一类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第一个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 以及,
所述第二类专用解调数据参考信号在所述 RB中的位置为: 矛 ^: 七、 十三及十四个 OFDM符号的第一个子载波; 矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波; 矛 ^: 七、 十三及十四个 OFDM符号的第十二个子载波。 优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 2 类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中:
第一组为第六和第七个 OFDM符号的第一个子载波, 以及第六及第 七个 OFDM符号的第二个子载波;
第二组为第十三和第十四个 OFDM符号的第一个子载波, 以及第十 三和第十四个 OFDM符号的第二个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波, 以及第六和第 七个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波, 以及第十 三和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十一个子载波, 以及第六和 第七个 OFDM符号的第十二个子载波; 以及
第六组为第十三和第十四个 OFDM符号的第十一个子载波, 以及第 十三和第十四个 OFDM符号的第十二个子载波;
第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 3 类时,
所述第一类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十个子载波;
所述第二类专用解调数据参考信号在所述 RB中占用 12个 RE时, 相应 的位置为:
第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十个子载波;
所述第二类专用解调数据参考信号在所述 RB中占用 24个 RE时, 相应 的位置为:
矛 ^: 七、 十.三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十-三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十-三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十-三及十四个 OFDM符号的第七个子载波
矛 ≤ 七、 十-三及十四个 OFDM符号的第十个子载波 以及
Figure imgf000010_0001
以及,
所述第三类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第二个子载波; 矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波; 矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波; 以及 矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。 优选地, 所述对不同的层数进行分类的步骤中, 对所述不同层数分为 3 类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
所述第二类专用解调数据参考信号在所述 RB中占用 12个 RE时, 将该
12个 RE分成 6组, 每组含有 2个 RE, 其中:
第一组为第六及七个个 OFDM符号的第二个子载波;
第二组为第十三及十四个 OFDM符号的第二个子载波;
第三组为第六及七个 OFDM符号的第六个子载波;
第四组为第十三及十四个 OFDM符号的第六个子载波;
第五组为第六及七个 OFDM符号的第十个子载波; 以及
第六组为第十三及十四个 OFDM符号的第十个子载波;
第一及三层对应的专用解调数据参考信号承载在第一、 四及五组上, 第 二及四层对应的专用解调数据参考信号承载在第二、 三及六组上; 或者
第一及三层对应的专用解调数据参考信号承载在第二、 三及六组上, 第 二及四层对应的专用解调数据参考信号承载在第一、 四及五组上;
同一组内的两层对应的专用解调数据参考信号使用二阶 Walsh正交码进 行所述码分复用;
所述第二类专用解调数据参考信号在所述 RB中占用 24个 RE时, 相邻 四个 RE使用四阶 Walsh正交码进行所述码分复用, 分别对应四层上的专用 解调数据参考信号; 将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中: 第一组为第六和第七个 OFDM符号的第二个子载波, 以及第六及第 七个 OFDM符号的第三个子载波;
第二组为第十三和第十四个 OFDM符号的第二个子载波, 以及第十 三和第十四个 OFDM符号的第三个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波, 以及第六和第 七个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波, 以及第十 三和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十个子载波, 以及第六和第 七个 OFDM符号的第十一个子载波; 以及
第六组为第十三和第十四个 OFDM符号的第十个子载波, 以及第十 三和第十四个 OFDM符号的第十一个子载波;
第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
与现有技术相比, 本发明提供的在层上定义的专用解调数据参考信号的 资源确定方法所使用的信令少; 而且模式少, 便于硬件实现; 对 MU-MIMO (包括 CoMP中的 MU-MIMO )接收端透明且能充分利用发射功率等优点。 附图概述
图 1现有技术中一个 RB内的公共参考信号及其控制信令所在的物理资 源位置示意图; 图 2 (A)为本发明第一实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 2 (B)为本发明第一实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 3 (A)为本发明第二实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 3 (B)为本发明第二实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 4 (A)为本发明第三实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 4 (B)为本发明第三实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 5 (A)为本发明第四实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 5 (B)为本发明第四实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 5 (C)为本发明第四实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 6 (A)为本发明第五实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 6 (B)为本发明第五实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 6 (C)为本发明第五实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 7 (A)为本发明第六实施例中第 类专用解调数据参考信号在 RB中 的位置示意图;
图 7 (B)为本发明第六实施例中第 类专用解调数据参考信号在 RB中 的位置示意图。 本发明的较佳实施方式
以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明 如何应用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解 并据以实施。
图 1为目前 LTE-A中一个 RB中的结构示意图。 如图 1所示, 一个方块 表示一个 RE,—个 RB在频域上占 12个子载波,在时域上占 14个 OFDM符 号 (Normal CP ) , 其中前 4个 OFDM符号可能用于控制信道的承载, 因此 在前 4个 OFDM上不能承载任何专用解调数据参考信号。
由于 LTE允许不同小区的公共参考信号在同一个 OFDM符号的不同子载 波上进行平移 (一种跳频方式) , 为了保持和 LTE后向兼容, 在 LTE-A的 RB中仍然保留这些公共参考信号及其跳频形式, 因此这些 RE所在的 OFDM 符号上也不能承载任何专用解调数据参考信号。 从而, 可以承载 LTE-A的专 用解调数据参考信号位置, 只能为 RB 中非控制信道区域且非公共参考信号 所在的 OFDM符号上的 RE, 也即 RB中的第六、 七、 十、 十一、 十三及十四 个 OFDM符号的 RE上。
本发明所提出的专用解调数据参考信号的资源确定方法中, 为了减少参 考信号和控制信令的开销, 对不同层数进行分类, 并为不同的类分别确定专 用解调数据参考信号以及参考信号的复用方法。 本发明的技术方案中根据层 数可以分成 2类或者 3类, 如果分成 2类, 则总层数为 1或者 2为第一类, 总层数大于 2为第二类; 如果分成 3类, 则总层数为 1或者 2为第一类, 总 层数为 3或者 4为第二类, 总层数大于 4为第三类。
在同一类中不同层上的专用解调数据参考信号, 其开销相同; 同一类上 专用解调数据参考信号所占若干个 RE之间的相对二维时频位置之间具有一 定的相互关系。
如果分成 2类, 那么第一类所有层上的专用解调数据参考信号总开销为 12个 RE, 第二类所有层上的专用解调数据参考信号总开销为 24个 RE; 如果分成 3类, 那么第一类所有层上的专用解调数据参考信号总开销都 为 12个 RE, 第二类所有层上的专用解调数据参考信号总开销为 12个 RE或 者 24个 RE, 第三类所有层上的专用解调数据参考信号总开销为 24个 RE。
各层上的专用解调数据参考信号只能使用非控制信道区域 (第四个 OFDM符号以后的 OFDM符号上的 RE ) , 且只能处于非 LTE公共参考信号 所在的 OFDM符号上的 RE, 也就是只能使用第 6, 7, 10, 11 , 13和 14个 OFDM符号上的 RE。
同一层上专用解调数据参考信号所占若干个 RE之间的相对二维时频位 置, 具有相同、 平移或者对称等关系。 其中相同是指二维时频位置关系完全 一样, 平移是指二维时频关系整体在时域或频域上平移, 对称是指二维时频 关系具有轴对称、 中心对称等多种对称关系。
同一类中的不同层上专用解调数据参考信号之间釆用码分复用 ( Code Division Multiplexing, CDM ) 的方式复用。 所使用的正交码釆用 Walsh正交 码, 所以最多复用的层数(CDM的阶数)是 2的幂次, 即 2, 4或者 8。 每 条正交码的长度等于 CDM的阶数, 占用的 RE数等于其长度。
如果实际使用的层数小于该类中最多复用的层数, 那么每层的专用解调 数据参考信号功率可以提升。 由于数据同样进行了和专用解调数据参考信号 相同的功率提升, 所以不需要向接收端通知专用解调数据参考信号功率的提 升量。
每层的索引, 即专用解调数据参考信号的索引由类别和正交码索引唯一 确定该层专用解调数据参考信号的物理资源。
由上述内容可以得出, 本发明提供的在层上的专用解调数据参考信号的 物理资源位置确定及其复用方法, 所使用的信令少; 模式少, 便于硬件实现; 对 MU-MIMO (包括 CoMP中的 MU-MIMO )接收端透明且能充分利用发射 功率等优点。
为了便于深刻理解本发明, 下面结合附图, 给出本发明确定在层上的专 用解调数据参考信号确定方法的具体实施例。
首先说明, 各附图中横坐标为时域(OFDM符号索引) , 纵坐标为频域 (子载波索引) 。
第一实施例
本实施例将层数分成 2类, 总层数为 1或者 2为第一类, 总层数大于 2 为第二类。
图 2 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图
2 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 10) (7, 10) ( 13, 10) ( 14, 10) ;
其中, X表示一个 RB中的 OFDM符号索引, y表示一个 RB中的子载波 索引。 以下各实施例中如未特别说明, 均以坐标(X, y) 的形式表示 RE在 RB中的位置。
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十个子载波。
需要说明的是, 本发明如未特别说明, 则以 OFDM以及子载波序号来描 述专用解调数据参考信号在 RB中的位置, 在计数时不管是时域(OFDM符 号索引)还是频域(子载波索引)都是从 1开始的。
图 2 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 2 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 3) (7, 3) (13, 3) (14, 3)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7) (6, 10) (7, 10) (13, 10) (14, 10)
(6, 11 ) (7, 11 ) (13, 11 ) (14, 11 )
或者, 弟一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为 矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 以及
矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。
在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号。
在第二类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 2) (7, 2) (6, 3) (7, 3) ;
第二组: (13, 2) (14, 2) (13, 3) (14, 3 ) ;
第三组: (6, 6) (7, 6) (6, 7) (7, 7) ;
第四组: (13, 6) (14, 6) (13, 7) (14, 7) ;
第五组: (6, 10) (7, 10) (6, 11 ) (7, 11 ) ; 以及
第六组: (13, 10) (14, 10) (13, 11 ) (14, 11 ) 。
或者, 24个 RE所分成的 6组也可以表述为:
第一组: 第六和第七个 OFDM符号的第二个子载波, 以及第六及第七个 OFDM符号的第三个子载波;
第二组: 第十三和第十四个 OFDM符号的第二个子载波, 以及第十三和 第十四个 OFDM符号的第三个子载波;
第三组: 第六和第七个 OFDM符号的第六个子载波, 以及第六和第七个
OFDM符号的第七个子载波; 第四组: 第十三和第十四个 OFDM符号的第六个子载波, 以及第十三和 第十四个 OFDM符号的第七个子载波;
第五组: 第六和第七个 OFDM符号的第十个子载波, 以及第六和第七个 OFDM符号的第十一个子载波; 以及
第六组: 第十三和第十四个 OFDM符号的第十个子载波, 以及第十三和 第十四个 OFDM符号的第十一个子载波。
其中第一、 三、 五及七层(或第二、 四、 六及八层)对应的专用解调数 据参考信号承载在第一、 四及五组上, 且这四层对应的专用解调数据参考信 号在同一组内使用四阶 Walsh正交码 CDM复用;
第二、 四、 六及八层 (或第一、 三、 五及七层)对应的专用解调数据参 考信号承载在第二、 三及六组上, 且这四层对应的专用解调数据参考信号在 同一组内使用四阶 Walsh正交码 CDM复用, 见图 2 (A)及图 2 (B)所示。
第二实施例
根据层数分成 2类, 总层数为 1或者 2为第一类, 总层数大于 2为第二 类。
图 3 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图 3 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为: (6, 1) (7, 1) (13, 1) (14, 1)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 11 ) (7, 11 ) ( 13, 11 ) (14, 11 ) 。
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第一个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十一个子载波。
图 3 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 3 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 1) (7, 1) (13, 1) (14, 1)
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 11) (7, 11) (13, 11) (14, 11)
(6, 12) (7, 12) (13, 12) (14, 12) ; 或者 , 弟 ^一一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为: 矛 ^: 、 七、 十三及十四个 OFDM符号的第一个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第六个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第七个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第十一个子载波; 以及
矛 ^: 、 七、 十三及十四个 OFDM符号的第十二个子载波。 在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号。
在第二类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 1) (7, 1) (6, 2) (7, 2) ;
第二组: (13, 1) (14, 1) (13, 2) (14, 2) ;
第三组: (6, 6) (7, 6) (6, 7) (7, 7) ;
第四组: (13, 6) (14, 6) (13, 7) (14, 7) ;
第五组: (6, 11) (7, 11) (6, 12) (7, 12) ; 以及
第六组: (13, 11) (14, 11) (13, 12) (14, 12) 。
或者, 24个 RE所分成的 6组也可以表述为: 第一组: 第六和第七个 OFDM符号的第一个子载波, 以及第六及第七个 OFDM符号的第二个子载波;
第二组: 第十三和第十四个 OFDM符号的第一个子载波, 以及第十三和 第十四个 OFDM符号的第二个子载波;
第三组: 第六和第七个 OFDM符号的第六个子载波, 以及第六和第七个
OFDM符号的第七个子载波;
第四组: 第十三和第十四个 OFDM符号的第六个子载波, 以及第十三和 第十四个 OFDM符号的第七个子载波;
第五组: 第六和第七个 OFDM符号的第十一个子载波, 以及第六和第七 个 OFDM符号的第十二个子载波; 以及
第六组: 第十三和第十四个 OFDM符号的第十一个子载波, 以及第十三 和第十四个 OFDM符号的第十二个子载波。
其中第一、 三、 五及七层(或第二、 四、 六及八层)对应的专用解调数 据参考信号承载在第一、 四及五组上, 且这四层对应的专用解调数据参考信 号在同一组内使用四阶 Walsh正交码 CDM复用;
第二、 四、 六及八层 (或第一、 三、 五及七层)对应的专用解调数据参 考信号承载在第二、 三及六组上, 且这四层对应的专用解调数据参考信号在 同一组内使用四阶 Walsh正交码 CDM复用, 见图 3 (A)及图 3 (B)所示。
第三实施例
根据层数分成 2类, 总层数为 1或者 2为第一类, 总层数大于 2为第二 类。
图 4 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图 4 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(X, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6) (6, 10) (7, 10) ( 13, 10) ( 14, 10) ;
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十个子载波。
图 4 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 4 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 3) (7, 3) (13, 3) (14, 3)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 10) (7, 10) (13, 10) (14, 10)
(6, 11 ) (7, 11 ) (13, 11 ) (14, 11 ) ; 或者 , 弟 ^一一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为: 矛 ^: 、 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第三个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第六个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第七个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第十个子载波; 以及
矛 ^: 、 七、 十三及十四个 OFDM符号的第十一个子载: :皮。 在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号。
在第二类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 2) (7, 2) (13, 2) (14, 2) ; 第二组: (6, 3) (7, 3) (13, 3) (14, 3) ;
第三组: (6, 6) (7, 6) (13, 6) (14, 6) ;
第四组: (6, 7) (7, 7) (13, 7) (14, 7) ;
第五组: (6, 10) (7, 10) ( 13, 10) ( 14, 10) ; 以及
第六组: (6, 11 ) (7, 11 ) (13, 11 ) (14, 11 )
或者, 24个 RE所分成的 6组也可以表述为:
第一组: 矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
第二组: 矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
第三组: 矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
第四组: 矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
第五组: 矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 以及 第六组: 矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。
或者也可以说 , 24个 RE中, 同一个子载波上的四个 RE分为一 -组。 其中第一、 三、 五及七层(或第二、 四、 六及八层)对应的专用解调数 据参考信号承载在第一、 三及五组上, 且这四层对应的专用解调数据参考信 号在同一组内使用四阶 Walsh正交码 CDM复用;
第二、 四、 六及八层 (或第一、 三、 五及七层)对应的专用解调数据参 考信号承载在第二、 四及六组上, 且这四层对应的专用解调数据参考信号在 同一组内使用四阶 Walsh正交码 CDM复用, 见图 4 (A)及图 4 (B)所示, 其中, 图 4 (B) 中釆用了两种图形表示专用解调数据参考信号的位置, 一种 表示第一、 三、 五及七层对应的专用解调数据参考信号的位置, 另一种表示 第二、 四、 六及八层对应的专用解调数据参考信号的位置。
第四实施例
根据层数分成 3类,其中总层数为 1或者 2为第一类,总层数为 3或者 4 为第二类, 总层数大于 4为第三类。 图 5 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图 5 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 10) (7, 10) ( 13, 10) ( 14, 10) ;
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十个子载波。
图 5 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 5 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 10) (7, 10) ( 13, 10) ( 14, 10) ;
或者, 第二类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十个子载波。
图 5 (C)为第三类专用解调数据参考信号在 RB中的位置示意图。 如图 5 (C)所示, 第三类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 3) (7, 3) (13, 3) (14, 3)
(6, 6) (7, 6) (13, 6) (14, 6) (6, 7) (7, 7) (13, 7) (14, 7)
(6, 10) (7, 10) (13, 10) (14, 10)
(6, 11) (7, 11) (13, 11) (14, 11) ;
或者, 弟一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为 矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 以及
矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。
在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号。
在第二类中, 把 12个 RE分成 6组, 每组含有 2个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 2) (7, 2) ;
第二组: ( 13, 2) (14, 2) ;
第三组: (6, 6) (7, 6) ;
第四组: ( 13, 6) (14, 6) ;
第五组: (6, 10) (7, 10) ; 以及
第六组: (13, 10) (14, 10)
或者, 12个 RE所分成的 6组也可以表述为:
第一组: 第六及七个个 OFDM符号的第二个子载波;
第二组: 第十三及十四个 OFDM符号的第二个子载波;
第三组: 第六及七个 OFDM符号的第六个子载波;
第四组: 第十三及十四个 OFDM符号的第六个子载波; 第五组: 第六及七个 OFDM符号的第十个子载波; 以及
第六组: 第十三及十四个 OFDM符号的第十个子载波。
其中第一及三层 (或第二及四层)对应的专用解调数据参考信号承载在 第一、 四及五组上, 且这二层对应的专用解调数据参考信号在同一组内使用 二阶 Walsh正交码 CDM复用;
第二及四层(或第一及三层)对应的专用解调数据参考信号承载在第二、 三及六组上, 且这二层对应的专用解调数据参考信号在同一组内使用二阶 Walsh正交码 CDM复用。
在第三类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 2) (7, 2) (6, 3) (7, 3) ;
第二组: (13, 2) (14, 2) (13, 3) (14, 3 ) ;
第三组: (6, 6) (7, 6) (6, 7) (7, 7) ;
第四组: (13, 6) (14, 6) (13, 7) (14, 7) ;
第五组: (6, 10) (7, 10) (6, 11) (7, 11) ; 以及
第六组: (13, 10) (14, 10) (13, 11) (14, 11) 。
或者, 24个 RE所分成的 6组也可以表述为:
第一组: 第六和第七个 OFDM符号的第二个子载波, 以及第六及第七个 OFDM符号的第三个子载波;
第二组: 第十三和第十四个 OFDM符号的第二个子载波, 以及第十三和 第十四个 OFDM符号的第三个子载波;
第三组: 第六和第七个 OFDM符号的第六个子载波, 以及第六和第七个 OFDM符号的第七个子载波;
第四组: 第十三和第十四个 OFDM符号的第六个子载波, 以及第十三和 第十四个 OFDM符号的第七个子载波;
第五组: 第六和第七个 OFDM符号的第十个子载波, 以及第六和第七个 OFDM符号的第十一个子载波; 以及 第六组: 第十三和第十四个 OFDM符号的第十个子载波, 以及第十三和 第十四个 OFDM符号的第十一个子载波。
其中第一、 三、 五及七层(或第二、 四、 六及八层)对应的专用解调数 据参考信号承载在第一、 四及五组上, 且这四层对应的专用解调数据参考信 号在同一组内使用四阶 Walsh正交码 CDM复用;
第二、 四、 六及八层 (或第一、 三、 五及七层)对应的专用解调数据参 考信号承载在第二、 三及六组上, 且这四层对应的专用解调数据参考信号在 同一组内使用四阶 Walsh正交码 CDM复用, 见图 5 (A) 、 图 5 (B)及图 5 (C)所示。
第五实施例
根据层数分成 3类, 总层数为 1或者 2为第一类, 总层数为 3或者 4为 第二类, 总层数大于 4为第三类。
图 6 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图 6 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 10) (7, 10) ( 13, 10) ( 14, 10) ;
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十个子载波。
图 6 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 6 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2) (6, 3) (7, 3) (13, 3) (14, 3)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 10) (7, 10) (13, 10) (14, 10)
(6, 11 ) (7, 11 ) (13, 11 ) (14, 11 ) ;
或者, 弟 ^一一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为: 矛 ^: 、 七、 十三 _及十四个 OFDM符号的第二个子载波;
矛 ^: 、 七、 十三 _及十四个 OFDM符号的第三个子载波;
矛 ^: 、 七、 十三 _及十四个 OFDM符号的第六个子载波;
矛 ^: 、 七、 十三 _及十四个 OFDM符号的第七个子载波;
矛 ^: 、 七、 十三 _及十四个 OFDM符号的第十个子载波; 以及
矛 ^: 、 七、 十三 _及十四个 OFDM符号的第十一个子载: :皮。
图 6 (C)为第 J 类专用解调数据参考信号在 RB中的位置示意图。 如图
6 (C)所示, 第三类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 3) (7, 3) (13, 3) (14, 3)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 10) (7, 10) (13, 10) (14, 10)
(6, 11 ) (7, 11 ) (13, 11 ) (14, 11 ) ;
或者: ' 弟二一 -类专用解调数据参考信号在一个 I
矛 ^: 、 七、 十三及十四个 OFDM符号的第二
矛 ^: 、 七、 十三及十四个 OFDM符号的第三
矛 ^: 、 七、 十三及十四个 OFDM符号的第六 第六、 七、 十三及十四个 OFDM符号的第七个子载波;
第六、 七、 十三及十四个 OFDM符号的第十个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十一个子载波。
在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号; 对应四层上的专用解调数据参考信号;
在第三类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 2) (7, 2) (6, 3) (7, 3) ;
第二组: (13, 2) (14, 2) (13, 3) (14, 3 ) ;
第三组: (6, 6) (7, 6) (6, 7) (7, 7) ;
第四组: (13, 6) (14, 6) (13, 7) (14, 7) ;
第五组: (6, 10) (7, 10) (6, 11) (7, 11) ; 以及
第六组: (13, 10) (14, 10) (13, 11) (14, 11) 。
或者, 24个 RE所分成的 6组也可以表述为:
第一组: 第六和第七个 OFDM符号的第二个子载波, 以及第六及第七个 OFDM符号的第三个子载波;
第二组: 第十三和第十四个 OFDM符号的第二个子载波, 以及第十三和 第十四个 OFDM符号的第三个子载波;
第三组: 第六和第七个 OFDM符号的第六个子载波, 以及第六和第七个 OFDM符号的第七个子载波;
第四组: 第十三和第十四个 OFDM符号的第六个子载波, 以及第十三和 第十四个 OFDM符号的第七个子载波;
第五组: 第六和第七个 OFDM符号的第十个子载波, 以及第六和第七个
OFDM符号的第十一个子载波; 以及 第六组: 第十三和第十四个 OFDM符号的第十个子载波, 以及第十三和 第十四个 OFDM符号的第十一个子载波。
其中第一、 三、 五及七层(或第二、 四、 六及八层)对应的专用解调数 据参考信号承载在第一、 四及五组上, 且这四层对应的专用解调数据参考信 号在同一组内使用四阶 Walsh正交码 CDM复用;
第二、 四、 六及八层 (或第一、 三、 五及七层)对应的专用解调数据参 考信号承载在第二、 三及六组上, 且这四层对应的专用解调数据参考信号在 同一组内使用四阶 Walsh正交码 CDM复用, 见图 6 (A) 、 图 6 (B)及图 6 (C)所示。
第六实施例
本实施例将层数分成 2类, 总层数为 1或者 2为第一类, 总层数大于 2 为第二类。
图 7 (A)为第一类专用解调数据参考信号在 RB中的位置示意图。 如图 7 (A)所示, 第一类中所有的专用解调数据参考信号在一个 RB 中占 12个 RE, 这 12个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 12) (7, 12) ( 13, 12) ( 14, 12) ;
其中, X表示一个 RB中的 OFDM符号索引, y表示一个 RB中的子载波 索引。
或者, 第一类专用解调数据参考信号在一个 RB中的位置也可以表述为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波;
第六、 七、 十三及十四个 OFDM符号的第七个子载波; 以及
第六、 七、 十三及十四个 OFDM符号的第十二个子载波。
图 7 (B)为第二类专用解调数据参考信号在 RB中的位置示意图。 如图 7 (B)所示, 第二类中所有的专用解调数据参考信号在一个 RB 中占 24个 RE, 这 24个 RE在一个 RB中的位置以坐标(x, y) 的形式可以表示为:
(6, 1) (7, 1) (13, 1) (14, 1)
(6, 2) (7, 2) (13, 2) (14, 2)
(6, 6) (7, 6) (13, 6) (14, 6)
(6, 7) (7, 7) (13, 7) (14, 7)
(6, 11) (7, 11) (13, 11) (14, 11)
(6, 12) (7, 12) (13, 12) (14, 12) 。 或者 , 弟 ^一一 -类专用解调数据参考信号在一个 RB中的位置也可以表述为: 矛 ^: 、 七、 十三及十四个 OFDM符号的第一个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第六个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第七个子载波;
矛 ^: 、 七、 十三及十四个 OFDM符号的第十一个子载波; 以及
矛 ^: 、 七、 十三及十四个 OFDM符号的第十二个子载波。 在第一类中,相邻两个 RE使用二阶 Walsh正交码 CDM方式复用, 分别 对应两层上的专用解调数据参考信号。
在第二类中, 把 24个 RE分成 6组, 每组含有 4个 RE, 这 6组在 RB中 的位置以坐标(X, y) 的形式可以表示为:
第一组: (6, 1) (7, 1) (13, 1) (14, 1) ;
第二组: (6, 2) (7, 2) (13, 2) (14, 2) ;
第三组: (6, 6) (7, 6) (13, 6) (14, 6) ;
第四组: (6, 7) (7, 7) (13, 7) (14, 7) ;
第五组: (6, 11) (7, 11) (13, 11) (14, 11) ;
第六组: (6, 12) (7, 12) (13, 12) (14, 12) 。
或者, 24个 RE所分成的 6组也可以表述为: 第一组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第一个子 载波;
第二组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第二个子 载波;
第三组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第六个子 载波;
第四组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第七个子 载波;
第五组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第十一个 子载波; 以及
第六组: 第六个, 第七个, 第十三个和第十四个 OFDM符号的第十二个 子载波。
其中第一、 二、 五及七层对应的专用解调数据参考信号承载在第二、 四 及六组上 ,且这四层对应的专用解调数据参考信号在同一组内使用四阶 Walsh 正交码 CDM复用;
第三、 四、 六及八层对应的专用解调数据参考信号承载在第一、 三及五 组上, 且这四层对应的专用解调数据参考信号在同一组内使用四阶 Walsh正 交码 CDM复用, 见图 7 ( A )及图 7 ( B )所示。
虽然本发明所揭露的实施方式如上, 但所述的内容只是为了便于理解本 发明而釆用的实施方式, 并非用以限定本发明。 任何本发明所属技术领域内 的技术人员, 在不脱离本发明所揭露的精神和范围的前提下, 可以在实施的 形式上及细节上作任何的修改与变化, 如本发明所应用的系统不局限于 LTE-A系统, 但本发明的专利保护范围, 仍须以所附的权利要求书所界定的 范围为准。
工业实用性 本发明提供的在层上定义的专用解调数据参考信号的资源确定方法所使 用的信令少; 而且模式少, 便于硬件实现; 对 MU-MIMO (包括 CoMP中的 MU-MIMO )接收端透明且能充分利用发射功率等优点。

Claims

权 利 要 求 书
1、 一种信号的资源确定方法, 该方法包括: 将专用解调数据参考信号承 载在资源块中非控制信道区域且非公共参考信号所在的正交频分复用
( OFDM )符号上的资源单位(RE )上。
2、 如权利要求 1所述的方法, 其中,
所述非控制信道区域且非公共参考信号所在的 OFDM符号包括所述资源 块中每个子载波的第六、 七、 十、 十一、 十三及十四个 OFDM符号。
3、 如权利要求 1所述的方法, 其中, 所述承载的步骤之前, 该方法还包 括:
对不同的层数进行分类, 并为不同的类分别确定所述专用解调数据参考 信号的位置。
4、 如权利要求 3所述的方法, 其中, 所述对不同的层数进行分类的步骤 包括:
对所述不同层数分为 2类, 总层数为 1或 2为第一类, 总层数大于 2为 第二类;
或者,
对所述不同层数分为 3类, 总层数为 1或 2为第一类, 总层数为 3或 4 为第二类, 总层数大于 4为第三类;
其中, 同一类中不同层上的所述专用解调数据参考信号的开销相同; 且 同一类上所述专用解调数据参考信号所占的 RE之间的相对二维时频位置是 相同、 平移或者对称关系。
5、 如权利要求 4所述的方法, 其中, 所述对不同的层数进行分类的步骤 还包括:
对所述不同层数分为 2类时, 第一类所有层上的专用解调数据参考信号 总开销为 12个 RE,第二类所有层上的专用解调数据参考信号总开销为 24个 RE; 或者
对所述不同层数分为 3类时, 第一类所有层上的专用解调数据参考信号 总开销都为 12个 RE, 第二类所有层上的专用解调数据参考信号总开销为 12 个 RE或者 24个 RE, 第三类所有层上的专用解调数据参考信号总开销为 24 个 RE
6、如权利要求 4所述的方法,所述对不同的层数进行分类的步骤还包括: 同一类中的不同层上所述专用解调数据参考信号之间釆用码分复用的方 式复用, 所使用的正交码为 Walsh正交码, 所述码分复用的阶数为 2的幂次。
7、 如权利要求 6所述的方法, 其中,
每条所述正交码的长度等于所述码分复用的阶数, 占用的 RE数等于正 交码的长度。
8、 如权利要求 7所述的方法, 其中, 所述对不同的层数进行分类的步骤 还包括: 实际使用的层数小于同一类中码分复用的阶数时, 提升每层的专用 解调数据参考信号功率。
9、 如权利要求 7所述的方法, 其中,
所述专用解调数据参考信号的索引是类别和正交码索引唯一确定的层上 专用解调数据参考信号的物理资源。
10、 如权利要求 5所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 2类时,
第一类专用解调数据参考信号在所述 RB中的位置为:
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波; 及 矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波;
或者
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波;
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波; 及 矛 ^: 七、 十三及十四个 OFDM符号的第十二个子载波; 及, 第二类专用解调数据参考信号在所述 RB中的位置为:
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 及 矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波。
矛 ^: 七、 十三及十四个 OFDM符号的第一个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十一个子载波; 矛 ^: 七、 十三及十四个 OFDM符号的第十二个子载波。
11、 如权利要求 10所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 2类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中:
第一组为第六和第七个 OFDM符号的第二个子载波,及第六及第七 个 OFDM符号的第三个子载波;
第二组为第十三和第十四个 OFDM符号的第二个子载波,及第十三 和第十四个 OFDM符号的第三个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波,及第六和第七 个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波,及第十三 和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十个子载波,及第六和第七 个 OFDM符号的第十一个子载波; 及
第六组为第十三和第十四个 OFDM符号的第十个子载波,及第十三 和第十四个 OFDM符号的第十一个子载波;
或者,
第一组为第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第二组为第六、 七、 十三及十四个 OFDM符号的第三个子载波; 第三组为第六、 七、 十三及十四个 OFDM符号的第六个子载波; 第四组为第六、 七、 十三及十四个 OFDM符号的第七个子载波; 第五组为第六、 七、 十—三及十四个 OFDM符号的第十个子载波; 及 第六组为第六、 七、 十三及十四个 OFDM符号的第十一个子载波;
第一组为第六、 七、 十三及十四个 OFDM符号的第一个子载波; 第二组为第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第三组为第六、 七、 十三及十四个 OFDM符号的第六个子载波; 第四组为第六、 七、 十三及十四个 OFDM符号的第七个子载波; 第五组为第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 第六组为第六、 七、 十三及十四个 OFDM符号的第十二个子载波; 第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上; 或者
第一, 二, 五及七层对应的专用解调数据参考信号承载在第二、 四及六 组上, 第三, 四, 六及八层对应的专用解调数据参考信号承载在第一、 三及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
12、 如权利要求 5所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 2类时,
所述第一类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第一个子载波; 第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 以及,
所述第二类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第一个子载波; 第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第六、 七、 十三及十四个 OFDM符号的第六个子载波; 第六、 七、 十三及十四个 OFDM符号的第七个子载波; 第六、 七、 十三及十四个 OFDM符号的第十一个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十二个子载波。
13、 如权利要求 12所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 2类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中:
第一组为第六和第七个 OFDM符号的第一个子载波, 以及第六及第 七个 OFDM符号的第二个子载波;
第二组为第十三和第十四个 OFDM符号的第一个子载波, 以及第十 三和第十四个 OFDM符号的第二个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波, 以及第六和第 七个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波, 以及第十 三和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十一个子载波, 以及第六和 第七个 OFDM符号的第十二个子载波; 以及
第六组为第十三和第十四个 OFDM符号的第十一个子载波, 以及第 十三和第十四个 OFDM符号的第十二个子载波;
第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
14、 如权利要求 5所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 3类时,
所述第一类专用解调数据参考信号在所述 RB中的位置为:
第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十个子载波; 所述第二类专用解调数据参考信号在所述 RB中占用 12个 RE时, 相应 的位置为: 第六、 七、 十三及十四个 OFDM符号的第二个子载波; 第六、 七、 十三及十四个 OFDM符号的第六个子载波; 以及 第六、 七、 十三及十四个 OFDM符号的第十个子载波; 所述第二类专用解调数据参考信号在所述 RB中占用 24个 RE时, 相应 的位置为:
矛楚 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第三个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第六个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第七个子载波
矛 ^: 七、 十三及十四个 OFDM符号的第十个子载波 以及 矛 ≤ 七、 十三及十四个 OFDM符号的第十一个子载波; 以及
所述第三类专用解调数据参考信号在所述 RB中的位置为:
矛 ^: 、 七、 十三及十四个 OFDM符号的第二个子载波
矛 ^: 、 七、 十三及十四个 OFDM符号的第三个子载波
矛楚 、 七、 十三及十四个 OFDM符号的第六个子载波; 矛 ^: 、 七、 十三及十四个 OFDM符号的第七个子载波; 矛 ^: 、 七、 十三及十四个 OFDM符号的第十个子载波; 以及 矛 ^: 、 七、 十三及十四个 OFDM符号的第十一个子载: :皮。
15、 如权利要求 14所述的方法, 其中, 所述对不同的层数进行分类的步 骤中, 对所述不同层数分为 3类时,
在所述第一类中, 相邻两个 RE使用二阶 Walsh正交码进行所述码分复 用, 分别对应两层上的专用解调数据参考信号;
所述第二类专用解调数据参考信号在所述 RB中占用 12个 RE时, 将该 12个 RE分成 6组, 每组含有 2个 RE, 其中:
第一组为第六及七个个 OFDM符号的第二个子载波; 第二组为第十三及十四个 OFDM符号的第二个子载波; 第三组为第六及七个 OFDM符号的第六个子载波;
第四组为第十三及十四个 OFDM符号的第六个子载波; 第五组为第六及七个 OFDM符号的第十个子载波; 以及 第六组为第十三及十四个 OFDM符号的第十个子载波; 第一及三层对应的专用解调数据参考信号承载在第一、 四及五组上, 第 二及四层对应的专用解调数据参考信号承载在第二、 三及六组上; 或者
第一及三层对应的专用解调数据参考信号承载在第二、 三及六组上, 第 二及四层对应的专用解调数据参考信号承载在第一、 四及五组上;
同一组内的两层对应的专用解调数据参考信号使用二阶 Walsh正交码进 行所述码分复用;
所述第二类专用解调数据参考信号在所述 RB中占用 24个 RE时, 相邻 四个 RE使用四阶 Walsh正交码进行所述码分复用, 分别对应四层上的专用 解调数据参考信号;
将所述第二类中的 24个 RE分成 6组, 每组含有 4个 RE, 其中:
第一组为第六和第七个 OFDM符号的第二个子载波, 以及第六及第 七个 OFDM符号的第三个子载波;
第二组为第十三和第十四个 OFDM符号的第二个子载波, 以及第十 三和第十四个 OFDM符号的第三个子载波;
第三组为第六和第七个 OFDM符号的第六个子载波, 以及第六和第 七个 OFDM符号的第七个子载波;
第四组为第十三和第十四个 OFDM符号的第六个子载波, 以及第十 三和第十四个 OFDM符号的第七个子载波;
第五组为第六和第七个 OFDM符号的第十个子载波, 以及第六和第 七个 OFDM符号的第十一个子载波; 以及
第六组为第十三和第十四个 OFDM符号的第十个子载波, 以及第十 三和第十四个 OFDM符号的第十一个子载波; 第一、 三、 五及七层对应的专用解调数据参考信号承载在第一、 四及五 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第二、 三及 六组上; 或者
第一、 三、 五及七层对应的专用解调数据参考信号承载在第二、 三及六 组上, 第二、 四、 六及八层对应的专用解调数据参考信号承载在第一、 四及 五组上;
同一组内的四层对应的专用解调数据参考信号使用四阶 Walsh正交码进 行所述码分复用。
PCT/CN2010/073777 2009-08-14 2010-06-10 一种信号的资源确定方法 WO2011017973A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012524092A JP2013502110A (ja) 2009-08-14 2010-06-10 信号リソース決定方法
MX2012001873A MX2012001873A (es) 2009-08-14 2010-06-10 Metodo de determinacion de recursos de señal.
US13/258,313 US8547922B2 (en) 2009-08-14 2010-06-10 Signal resource determination method
BR112012003186A BR112012003186A2 (pt) 2009-08-14 2010-06-10 método de determinação de recurso de sinal
RU2012111189/07A RU2529370C2 (ru) 2009-08-14 2010-06-10 Способ определения ресурса сигнала
KR1020127006672A KR101306168B1 (ko) 2009-08-14 2010-06-10 신호의 자원 확정 방법
EP10807918.7A EP2453624A4 (en) 2009-08-14 2010-06-10 METHOD FOR DETERMINING SIGNAL RESOURCES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910165673.1 2009-08-14
CN200910165673A CN101621492A (zh) 2009-08-14 2009-08-14 一种专用解调数据参考信号的资源确定方法

Publications (1)

Publication Number Publication Date
WO2011017973A1 true WO2011017973A1 (zh) 2011-02-17

Family

ID=41514540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073777 WO2011017973A1 (zh) 2009-08-14 2010-06-10 一种信号的资源确定方法

Country Status (9)

Country Link
US (1) US8547922B2 (zh)
EP (1) EP2453624A4 (zh)
JP (1) JP2013502110A (zh)
KR (1) KR101306168B1 (zh)
CN (1) CN101621492A (zh)
BR (1) BR112012003186A2 (zh)
MX (1) MX2012001873A (zh)
RU (1) RU2529370C2 (zh)
WO (1) WO2011017973A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507033A (ja) * 2009-10-02 2013-02-28 エルジー エレクトロニクス インコーポレイティド ダウンリンク参照信号の転送方法及び装置
US20130250923A1 (en) * 2012-03-23 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth adaptive reference signals
JP2015513238A (ja) * 2012-02-03 2015-04-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) チャネル推定のための方法および装置
US10708900B2 (en) 2012-01-13 2020-07-07 Huawei Technologies Co., Ltd. Generating and transmitting demodulation reference signals

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621492A (zh) 2009-08-14 2010-01-06 中兴通讯股份有限公司 一种专用解调数据参考信号的资源确定方法
WO2011073876A2 (en) 2009-12-17 2011-06-23 Marvell World Trade Ltd Mimo feedback schemes for cross-polarized antennas
WO2011082543A1 (zh) * 2010-01-08 2011-07-14 富士通株式会社 正交掩码生成装置、解调参考信号生成装置和方法
CN104780013B (zh) * 2010-01-08 2017-09-22 富士通株式会社 发射机和通信系统
CN102122985B (zh) * 2010-01-11 2015-04-08 株式会社Ntt都科摩 多用户多输入多输出mu-mimo传输方法
CN102148659B (zh) * 2010-02-10 2018-01-30 中兴通讯股份有限公司 解调参考信号的发送功率配置方法及装置
WO2011100857A1 (en) 2010-02-17 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for improving demodulation performance using demodulation reference signals power boosting
US9407409B2 (en) 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
CN102202027B (zh) * 2010-03-26 2015-08-12 中兴通讯股份有限公司 一种导频序列的产生方法和装置
CN102255840B (zh) * 2010-05-20 2014-10-22 中兴通讯股份有限公司 一种解调方法及装置
CN102263723B (zh) * 2010-05-31 2013-09-25 中国移动通信集团公司 下行信道测量参考信号发送方法、装置和接收方法、装置
CN102271406B (zh) * 2010-06-03 2014-05-07 中国移动通信集团公司 一种dm-rs端口的分配方法和设备
CN102271109B (zh) * 2010-06-07 2015-08-12 中兴通讯股份有限公司 一种解调参考符号的映射方法及系统
CA2802423C (en) * 2010-06-16 2022-05-31 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for transmitting and decoding reference signals
KR101783165B1 (ko) 2010-06-16 2017-09-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 기준 신호를 전송 및 디코딩하기 위한 방법 및 장치
CN102378110B (zh) * 2010-08-16 2014-09-24 中国移动通信集团公司 解调参考信号的发送方法及装置、接收方法及装置
CN102469059B (zh) * 2010-11-15 2015-10-28 中兴通讯股份有限公司 解调参考信号承载方法及装置
JP2012186736A (ja) * 2011-03-07 2012-09-27 Sharp Corp 端末装置、基地局装置、および無線通信システム
WO2013025486A2 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holdings, Inc. Method and apparatus for multiple-input multiple-output operation
CN102957471B (zh) * 2011-08-19 2018-04-03 中兴通讯股份有限公司 一种解调参考信号的增强方法和系统
CN104115460A (zh) 2012-01-30 2014-10-22 美国博通公司 用于提供增强干扰抑制的方法和设备
CN103181114B (zh) * 2012-09-04 2016-11-02 华为技术有限公司 一种参考信号的传输方法和装置
WO2014178662A1 (ko) * 2013-04-30 2014-11-06 인텔렉추얼디스커버리 주식회사 공통참조신호를 이용한 스몰셀 네트워크 데이터 자원 추가 구성
CN104283820A (zh) * 2013-07-03 2015-01-14 普天信息技术研究院有限公司 一种通信系统中确定信噪比的方法
WO2015010269A1 (zh) * 2013-07-24 2015-01-29 华为技术有限公司 一种信道检测方法、装置及终端
US9935807B2 (en) * 2014-09-26 2018-04-03 Telefonaktiebolaget L M Ericsson (Publ) Discovery signal design
EP3675408A1 (en) * 2015-07-16 2020-07-01 Huawei Technologies Co., Ltd. Terminal-to-terminal data transmission method and device
CN106998311B (zh) * 2016-01-25 2020-08-04 中国移动通信集团公司 一种参考信号传输方法及装置、基站
CN108632190B (zh) * 2017-03-24 2022-06-17 中兴通讯股份有限公司 信息发送、接收方法及装置、终端、基站
CN110311770B (zh) * 2019-07-05 2022-08-23 北京神经元网络技术有限公司 基于ofdm通信体制的高速工业通信系统的时频复用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658528A (zh) * 2004-02-20 2005-08-24 电子科技大学 一种mimo—ofdm系统的自适应信道估计方法
CN101242217A (zh) * 2007-02-07 2008-08-13 大唐移动通信设备有限公司 一种发送正交频分多路复用符号的方法、系统及装置
CN101388867A (zh) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 一种基于正交频分复用系统的资源调度方法
CN101621492A (zh) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 一种专用解调数据参考信号的资源确定方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526412B2 (en) * 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
WO2006075870A1 (en) * 2005-01-11 2006-07-20 Samsung Electronics Co., Ltd. Method and system for indicating data burst allocation in a wireless communication system
US7720470B2 (en) * 2006-06-19 2010-05-18 Intel Corporation Reference signals for downlink beamforming validation in wireless multicarrier MIMO channel
WO2008003815A1 (en) * 2006-07-07 2008-01-10 Nokia Corporation Improved radio resource allocation mechanism
KR100899744B1 (ko) 2006-09-11 2009-05-27 삼성전자주식회사 이동통신 시스템에서 제어 채널 메시지를 송수신하는 장치 및 방법
KR101355313B1 (ko) * 2006-10-12 2014-01-23 엘지전자 주식회사 Mimo 시스템에서의 참조신호 배치 방법
KR20080059105A (ko) * 2006-12-22 2008-06-26 삼성전자주식회사 직교 주파수 분할 다중 접속 방식의 무선 통신 시스템에서공용 제어 채널 메시지 송수신 방법 및 장치
US7796639B2 (en) * 2007-03-21 2010-09-14 Motorola Mobility, Inc. Apparatuses and methods for multi-antenna channel quality data acquisition in a broadcast/multicast service network
US8811373B2 (en) * 2007-08-15 2014-08-19 Qualcomm Incorporated Rate matching of messages containing system parameters
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
US8116271B2 (en) * 2008-02-07 2012-02-14 Samsung Electronics Co., Ltd. Methods and apparatus to allocate acknowledgement channels
US8537790B2 (en) * 2008-03-10 2013-09-17 Motorola Mobility Llc Hierarchical pilot structure in wireless communication systems
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
US8675537B2 (en) 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US20100061360A1 (en) * 2008-09-10 2010-03-11 Texas Instruments Incorporated Dedicated reference signal structures for spatial multiplexing beamforming
US20100067512A1 (en) * 2008-09-17 2010-03-18 Samsung Electronics Co., Ltd. Uplink transmit diversity schemes with 4 antenna ports
JP5189460B2 (ja) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
US8238483B2 (en) * 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
US7974178B2 (en) * 2009-03-31 2011-07-05 Intel Corporation Pilot method for 802.16m
US8730925B2 (en) * 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US8369885B2 (en) * 2009-04-14 2013-02-05 Samsung Electronics Co., Ltd. Multi-user MIMO transmissions in wireless communication systems
US8260356B2 (en) * 2009-06-18 2012-09-04 Samsung Electronics Co., Ltd. Method and system for indicating method used to scramble dedicated reference signals
US8711716B2 (en) * 2009-06-19 2014-04-29 Texas Instruments Incorporated Multiple CQI feedback for cellular networks
US9014301B2 (en) * 2010-05-14 2015-04-21 Qualcomm Incorporated Dedicated reference signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658528A (zh) * 2004-02-20 2005-08-24 电子科技大学 一种mimo—ofdm系统的自适应信道估计方法
CN101242217A (zh) * 2007-02-07 2008-08-13 大唐移动通信设备有限公司 一种发送正交频分多路复用符号的方法、系统及装置
CN101388867A (zh) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 一种基于正交频分复用系统的资源调度方法
CN101621492A (zh) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 一种专用解调数据参考信号的资源确定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507033A (ja) * 2009-10-02 2013-02-28 エルジー エレクトロニクス インコーポレイティド ダウンリンク参照信号の転送方法及び装置
US10708900B2 (en) 2012-01-13 2020-07-07 Huawei Technologies Co., Ltd. Generating and transmitting demodulation reference signals
JP2015513238A (ja) * 2012-02-03 2015-04-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) チャネル推定のための方法および装置
US9780972B2 (en) 2012-02-03 2017-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for channel estimation
US10097380B2 (en) 2012-02-03 2018-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for channel estimation
US10904041B2 (en) 2012-02-03 2021-01-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for channel estimation
US11637721B2 (en) 2012-02-03 2023-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for channel estimation
US20130250923A1 (en) * 2012-03-23 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth adaptive reference signals
US9572152B2 (en) * 2012-03-23 2017-02-14 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth adaptive reference signals

Also Published As

Publication number Publication date
US8547922B2 (en) 2013-10-01
RU2529370C2 (ru) 2014-09-27
RU2012111189A (ru) 2013-09-20
US20120218950A1 (en) 2012-08-30
MX2012001873A (es) 2012-04-11
EP2453624A1 (en) 2012-05-16
KR20120055689A (ko) 2012-05-31
JP2013502110A (ja) 2013-01-17
KR101306168B1 (ko) 2013-09-09
CN101621492A (zh) 2010-01-06
EP2453624A4 (en) 2013-12-18
BR112012003186A2 (pt) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2011017973A1 (zh) 一种信号的资源确定方法
USRE48954E1 (en) Method for indicating a DM-RS antenna port in a wireless communication system
EP2599356B1 (en) Signaling methods for ue-specific dynamic downlink scheduler in ofdma systems
CN101340228B (zh) 一种参考信号的传输方法
KR101663617B1 (ko) 하향링크 기준신호 송수신 방법 및, 이를 이용한 기지국 및 사용자기기
EP3447959B1 (en) Method for indicating a dm-rs antenna port in a wireless communication system
KR101700003B1 (ko) 복조 기준신호를 위한 안테나 포트 맵핑방법 및 장치
JP5487320B2 (ja) 高級ロング・ターム・エボリューションシステムにおける参照信号シーケンスのマッピングシステム及び方法
KR101892688B1 (ko) 다중 안테나를 위한 제어 채널 검색 방법 및 장치
EP2775768B1 (en) Determination of the starting position of the e-pdcch
US20110261770A1 (en) Method, apparatus, and system for multi-antenna transmission
WO2019029401A1 (zh) 参考信号信息的配置方法及装置
EP2537261B1 (en) MIMO layer specific reference signals based on codes and cyclic shifts
US9571238B2 (en) Control channel resource transmission method, base station and user equipment
US9456442B2 (en) Reference signal sending method and apparatus
CN102957471A (zh) 一种解调参考信号的增强方法和系统
CN101764632B (zh) Lte-tdd室内分布系统中端口与天线映射方法及装置
CN101667893A (zh) 基于块空时分组编码的虚拟多输入多输出中继传输方法
KR20100089264A (ko) 다중 안테나 직교 주파수 분할 다중화 시스템에서 기준 신호 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010807918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/001873

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012524092

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012111189

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003186

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012003186

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003186

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120213