WO2011017954A1 - 信号传输方法及用户终端 - Google Patents

信号传输方法及用户终端 Download PDF

Info

Publication number
WO2011017954A1
WO2011017954A1 PCT/CN2010/072873 CN2010072873W WO2011017954A1 WO 2011017954 A1 WO2011017954 A1 WO 2011017954A1 CN 2010072873 W CN2010072873 W CN 2010072873W WO 2011017954 A1 WO2011017954 A1 WO 2011017954A1
Authority
WO
WIPO (PCT)
Prior art keywords
mse
signal
precoding matrix
path signal
precoding
Prior art date
Application number
PCT/CN2010/072873
Other languages
English (en)
French (fr)
Inventor
任天民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020127003643A priority Critical patent/KR101664087B1/ko
Priority to JP2012524091A priority patent/JP5567673B2/ja
Priority to EP10807899.9A priority patent/EP2466930B1/en
Priority to US13/258,989 priority patent/US8705638B2/en
Publication of WO2011017954A1 publication Critical patent/WO2011017954A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to the field of communications, and in particular to a signal transmission method and a user equipment (UE).
  • BACKGROUND Multiple Input Multiple Output (MIMO) technology is the key technology of the third generation (3rd Generation, referred to as 3G), the fourth generation (4th Generation, referred to as 4G) and even the future broadband wireless communication.
  • MIMO technology can be divided into two categories: open loop MIMO technology and closed loop MIMO technology. Closed-loop MIMO technology can greatly increase system capacity, but requires information on the transmission channel. In closed-loop MIMO technology, the transmitter selects the appropriate transmission method according to the characteristics of the transmission channel.
  • the UE when a user equipment (User Equipment, UE for short) operates in a spatially multiplexed closed-loop MIMO mode, the UE needs to select an optimal one from a predetermined set of precoding matrices (for example, to make the system The throughput of the precoding matrix is maximized.
  • the precoding matrix is used for signal transmission.
  • the precoding matrix selects a theoretically provable optimal solution, for example, a system capacity maximization selection method, and a maximum selection method associated with a channel's right eigenmatrix.
  • these methods are not applicable when the number of transmission antennas is equal to the number of transmission signals.
  • the base station (NodeB) is equipped with two transmit antennas and the UE has two receive antennas.
  • the NodeB uses the spatial multiplexing mode to transmit two signals simultaneously.
  • the UE needs to select one optimal feedback from the two precoding matrices in the protocol to the NodeB.
  • the number of transmission antennas is equal to the number of signal paths.
  • This method is a system capacity maximization selection method based on MMSE receiver, where C ⁇ oo is the average error square of the 0th and 1st signals when the precoding matrix i is used respectively
  • MSE Mel Squared Error
  • This method is equivalent to maximizing the MSE gap between the two signals.
  • This algorithm is applied to the performance of LTE systems where the number of transmitted antennas is equal to the number of signal paths. Poor, although the MSE ⁇ one signal is more likely to pass when the spatial characteristics of the channel are not good, but when the channel space characteristics are good, one MSE high signal cannot be received correctly.
  • the present invention has been made in view of the problem that the user terminal UE in the related art cannot judge when to use the MSE gap maximization method, when to use the MSE averaging method, and thus cannot ensure the correct transmission of signals.
  • the purpose is to provide a signal transmission method and a UE to solve at least one of the above problems.
  • a signal transmission method is provided.
  • the signal transmission method includes: the UE calculates the MSE of the first path signal and the MSE of the second path signal of the two path signals; the UE is based on the sum of the MSE of the first path signal and the MSE of the second path signal, One precoding matrix is selected from the precoding matrices; the UE notifies the base station to transmit signals using the selected precoding matrix.
  • the UE selects one precoding matrix from the plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal, including: when ⁇ + C (i ) n > t , the UE is from multiple The precoding matrix selects a precoding matrix that minimizes the noise of one channel of the two channels, wherein C W QQ is the MSE of the first signal when the ith precoding matrix is used, and is using the i th The MSE of the second signal when t precoding the matrix, t is the set threshold.
  • the UE selects, from the plurality of precoding matrices, a precoding matrix that minimizes the noise of one channel of the two channels in accordance with the following formula: Where i is the number of the precoding matrix, min is the minimum value, and argmin is the The value of i when the value is the smallest.
  • the UE is based on the sum of the MSE of the first path signal and the MSE of the second path signal from the plurality of Selecting a precoding matrix in the precoding matrix includes: when ⁇ 00 + C ( " n ⁇ t , the UE selects, from a plurality of precoding matrices, a precoding matrix that minimizes the noise of one channel of the channel difference in the two signals.
  • C W QQ is the MSE of the first path when the ith precoding matrix is used, and is the MSE of the second signal when the ith precoding matrix is used, t is a set threshold.
  • the formula selects, from a plurality of precoding matrices, a precoding matrix that minimizes the noise of a signal in which the channels of the two signals are relatively poor: Where i is the number of the precoding matrix, max is the maximum value, and argmin is the value of i when max ⁇ c ⁇ n) is minimized.
  • the UE calculates the MSE of the first path signal and the MSE of the second path signal by the following formula: C where c. . Representing the first signal
  • MSE MSE
  • c garbage denotes the MSE
  • the second signal and has no physical meaning
  • is a channel matrix
  • N is a noise variance
  • / is a unit matrix
  • f " indicates a pair of conjugates Transpose
  • H H indicates conjugate transposition of H.
  • the UE includes: a calculation module, configured to separately calculate an average error squared MSE of the first signal and a MSE of the second signal of the two signals; and a selection module, configured to perform MSE and the first according to the first signal The sum of the MSEs of the two signals selects one precoding matrix from the plurality of precoding matrices; and the feedback module is configured to notify the base station to transmit the signals using the selected precoding matrix.
  • i arg min(max(c (i) 00 , Where i is the number of the precoding matrix, max is the maximum value, and argmin is the value of i when max(c (i) ⁇ is
  • the MSE of the signal, c garbage represents the MSE, ⁇ and ⁇ of the second signal.
  • H is the channel matrix
  • N is the noise variance
  • / is the identity matrix
  • H H indicates conjugate transposition of H.
  • the UE uses the MSE of the first signal and the MSE of the second signal in the two signals, and the sum of the MSE of the first signal and the MSE of the second signal from the plurality of precoding matrices
  • a precoding matrix is selected to notify the base station to use the selected precoding matrix for signal transmission, which solves the problem that the UE cannot determine when to use the MSE gap maximization method in the related art, and when the MSE averaging method is used, the signal cannot be guaranteed.
  • the problem of correct transmission which reduces the block error rate of the system and improves the throughput of the system.
  • FIG. 1 is a flow chart of a signal transmission method according to an embodiment of the present invention
  • FIG. 2 is a performance simulation diagram of an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a UE according to an embodiment of the present invention
  • Embodiments of the present invention provide a signal transmission scheme, in which the sum of MSEs of two signals of a minimum mean square error MMSE receiver is found to be the same, and different precoding matrices result in an MSE at 2
  • the MSE of the two signals is used as the criterion for selecting the precoding matrix, that is, the precoding matrix is selected according to the spatial characteristics of the channel
  • the processing principle is as follows: Calculating the first of the two signals The MSE of the road signal and the MSE of the second signal; selecting a precoding matrix from the plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal, so that the base station performs according to the selected precoding matrix Signal transmission.
  • the MSE is most balanced when the spatial characteristics of the channel are good, and the signal with a high MSE can be correctly received at the same time; otherwise, the gap is maximized.
  • the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • the steps shown in the flowcharts in the figures may be performed in a computer system such as a set of computer executable instructions, and although the logical order is shown in the flowchart, in some In this case, the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 1 is a flowchart of a signal transmission method according to an embodiment of the present invention.
  • the method includes the following steps S102 to 4 S S 106: Step S102, the UE calculates the MSE of the first path signal and the MSE of the second path signal of the two path signals.
  • Step S104 The UE selects one precoding matrix from the plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal.
  • the UE selects a precoding from a plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal as a criterion for determining the use of MSE maximization, or MSE averaging. matrix.
  • Step S106 the UE notifies the base station to transmit the signal using the selected precoding matrix. In the related art, the UE cannot determine when to use the MSE gap maximization method, when to use
  • the MSE averaging method cannot guarantee the correct transmission of the signal.
  • the UE selects the most reasonable precoding matrix from the plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal, and notifies the base station to use the matrix for signal transmission. Thereby ensuring the correctness of the transmitted signal.
  • step S104 when ⁇ + C ⁇ i ) n > t , the UE selects, from a plurality of precoding matrices, a precoding matrix that minimizes the noise of one channel of the two signals, wherein ⁇ is When using the ith precoding matrix, the MSE of the first signal, C ⁇ i ) n is the MSE of the second signal when the ith precoding matrix is used, t is the set threshold, and the threshold t can be obtained by simulation. , can also be preset.
  • step S104 when ⁇ + C (i ) n ⁇ t , the UE selects, from a plurality of precoding matrices, a precoding matrix that minimizes noise of a channel in which the channels of the two signals are relatively poor, where ⁇ is When the ith precoding matrix is used, the MSE of the first signal, C (i ) n is the MSE of the second signal when the ith precoding matrix is used, t is a set threshold, wherein, according to the following formula Selecting, from a plurality of precoding matrices, a precoding matrix that minimizes the noise of a channel in which the channels of the two signals are relatively poor: ⁇ argmin maxW cWn)), where i is the number of the precoding matrix, and max is the maximum value.
  • Argmin represents the value of i when the value of ax ( cW . . ' cW ") is minimized.
  • the MSE of the first signal and the MSE of the second signal can be calculated according to the following formula: c where c. . Representing the first signal
  • the second signal and has no physical meaning
  • a channel matrix
  • N a noise variance
  • / a unit matrix
  • f " indicates a pair of conjugates Transpose
  • H H indicates conjugate transposition of H.
  • the implementation process of the embodiment of the present invention will be described in detail below with reference to examples.
  • the MSE of the 2-way signal of the MMSE receiver is used as the criterion for selecting the pre-coding matrix, wherein the MSE of the 2-way signal can be calculated
  • C 00 and C U are the MSEs of the 0th and 1st signals, respectively, which are optional precoding matrices, and ⁇ is the channel matrix, N.
  • is the channel matrix, N.
  • / is the unit matrix, indicating that the pair is conjugate transposed, H "flag conjugate transposes, c 01 , c 10 have no physical meaning.
  • Coo and sum are different precoding matrices The same is true.
  • Step 4 gather 1 and calculate
  • C l) oo, C l) u are the MSEs of the 0th and 1st signals when the precoding matrix i is used, respectively.
  • Step 2 If C W Q( ) + C W ll >t, that is, when the spatial characteristics of the channel are poor, the selected precoding matrix should minimize the noise of the channel with relatively good channel, that is, try to make all the way The signal passes, wherein the relatively good channel means that the noise is relatively small.
  • you can select the precoding matrix according to the following formula, argmin(min(c (!) oo ,c (!) pleasant)) 5 where i is the index number of the selected precoding matrix; the choice of threshold t should It is obtained by simulation.
  • the selected precoding matrix should minimize the noise of the signal with relatively poor channel, that is, try to make two signals pass through, wherein the relatively poor channel means that the noise is relatively large.
  • FIG. 2 is a performance simulation graph according to an embodiment of the present invention.
  • the abscissa is SNR (Sign To Noise Ratio, signal to noise ratio It is dB), who coordinates BLER (BLock Error Rate, BLER).
  • SNR Signal To Noise Ratio, signal to noise ratio It is dB
  • BLER Battery Error Rate, BLER
  • Open Loop represents a precoding matrix is selected randomly, and later choose not change.
  • Optimal Selection is to simulate the same channel twice, each time using a different precoding matrix and selecting the smallest BLER twice.
  • FIG. 3 is a structural block diagram of a UE, where the device includes a calculation module 32, a selection module 34, and a feedback module 36. A detailed description of the structure is made.
  • the calculating module 32 is configured to separately calculate the MSE and the second path of the first signal of the two signals The MSE of the signal; the selection module 34 is coupled to the calculation module 32, configured to select a precoding matrix from the plurality of precoding matrices according to the sum of the MSE of the first path signal and the MSE of the second path signal; the feedback module 36, configured to The base station is informed to transmit the signal using the selected precoding matrix.
  • 4 is a structural block diagram of an optimized UE in the embodiment shown in FIG. 3 of the present invention.
  • the selection module 34 includes: a first selection submodule 42 and a second selection submodule 44.
  • t is the pre-acquired threshold
  • i is the number of the precoding matrix
  • min is the minimum value
  • argmin is the The value of i when the value is the smallest.
  • the calculation module 32 calculates the MSE and the second signal of the first path signal according to the following formula.
  • MSE MSE
  • the second signal and has no physical meaning
  • a channel matrix
  • N a noise variance
  • / a unit matrix
  • f " indicates a pair of conjugates Transpose
  • H H indicates conjugate transposition of H.
  • the precoding matrix in the related art is solved by the above embodiment of the present invention.
  • the selection method cannot be applied to 2 transmission antennas, 2 channels of signals in LTE, or poor performance, so that the block error rate of the system is reduced and the throughput is improved.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种信号传输方法及用户终端UE,其中,所述方法包括:用户终端UE计算两路信号中的第一路信号的MSE和第二路信号的MSE;UE根据第一路信号的MSE与第二路信号的MSE的和从多个预编码矩阵中选择一个预编码矩阵;UE通知基站使用选择的预编码矩阵传输信号。通过本发明,保证了信号的正确传输,降低了系统的误块率,提高了系统的吞吐量。

Description

信号传输方法及用户终端 技术领域 本发明涉及通信领域, 具体而言, 涉及一种信号传输方法及用户终端 ( User Equipment, UE )。 背景技术 多天线输入 /输出 ( Multiple Input Multiple Output, 简称为 MIMO )技术 是第三代( 3rd Generation, 简称为 3G ), 第四代( 4th Generation, 简称为 4G ) 乃至未来宽带无线通信的关键技术。 MIMO技术可分为两大类: 开环 (open loop ) MIMO技术和闭环 ( closed loop ) MIMO技术。 闭环 MIMO技术可以 大幅提高系统容量, 但是需要得到传输信道的信息。 在闭环 MIMO技术中, 传输机根据传输信道的特性选择合适的传输方式。 在 LTE协议中, 当用户设备 ( User Equipment, 简称为 UE ) 工作在空 间复用的闭环 MIMO模式时, UE需要从一组事先规定好的预编码矩阵中选 择出一个最优 (例如, 使系统的吞吐量最大) 的预编码矩阵, 使用该预编码 矩阵进行信号传输。 当传输天线数大于传输信号路数时, 预编码矩阵选择有 理论上可证明的最优解, 例如, 系统容量最大化选择法、 与信道的右本征矩 阵相关最大化选择法。 但是这些方法在传输天线数等于传输信号路数时不适 用。 然而, 在 LTE系统中一种最常用的天线配置是基站 (NodeB ) 装备有 2 个传输天线, UE有 2个接收天线。 NodeB釆用空间复用模式, 同时传输 2 路信号。 UE需要从协议中的 2个预编码矩阵中选取 1个最优的反馈给 NodeB。 在这种情况下, 传输天线数等于信号路数。 LTE提案给出了一种解决传输天 线数等于信号路数时的最优预编码矩阵选择方法, 如下: i = argmax(log(l /c(i) 00) + log(l /c(i) n)) 该方法为基于 MMSE接收机的系统容量最大化选择法, 其中, C^oo 、 分别为当釆用预编码矩阵 i 时第 0 路和第 1 路信号的平均错误平方
( Mean Squared Error, 简称为 MSE )。 这种方法等效于使 2路信号的 MSE 差距最大化。这种算法应用于传输天线数等于信号路数的 LTE系统时性能较 差, 虽然在信道的空间特性不好时可以使 MSE 氐的一路信号更有可能通过, 但在信道空间特性好时, 会导致 MSE高的一路信号不能被正确接收。 另夕卜, 还有一种应用于传输天线数等于信号路数的 LTE系统的选择预编码矩阵的方 法, 该方法使 2路信号的 MSE平均化。 但是, 在实际过程中, 往往无法判断何时使用 MSE差距最大化方法, 何时使用 MSE 平均化方法, 也即无法选择最合理的预编码矩阵, 因而无法 保证信号的正确传输。 发明内容 针对相关技术中的用户终端 UE无法判断何时使用 MSE差距最大化方 法, 何时使用 MSE 平均化方法, 因而无法保证信号的正确传输的问题而提 出本发明, 为此, 本发明的主要目的在于提供一种信号传输方法及 UE, 以 解决上述问题至少之一。 为了实现上述目的,根据本发明的一个方面,提供了一种信号传输方法。 根据本发明的信号传输方法包括: UE计算两路信号中的第一路信号的 MSE和第二路信号的 MSE; UE根据第一路信号的 MSE与第二路信号的 MSE 的和, 从多个预编码矩阵中选择一个预编码矩阵; UE 通知基站使用选择的 预编码矩阵传输信号。 优选地, UE根据第一路信号的 MSE与第二路信号的 MSE的和从多个 预编码矩阵中选择一个预编码矩阵包括: 当 ^ + C(i ) n >t时, UE从多个预 编码矩阵中选择使两路信号中信道好的一路信号的噪声最小的预编码矩阵, 其中, CW QQ是在使用第 i个预编码矩阵时第一路信号的 MSE, 是在使 用第 i个预编码矩阵时第二路信号的 MSE, t为设置的阈值。 优选地, UE根据以下公式从多个预编码矩阵中选择使两路信号中信道 好的一路信号的噪声最小的预编码矩阵:
Figure imgf000004_0001
, 其中, i 为预编码矩阵的编号, min表示取最小值, argmin表示使
Figure imgf000004_0002
取值 最小时的 i的值。 优选地, UE根据第一路信号的 MSE与第二路信号的 MSE的和从多个 预编码矩阵中选择一个预编码矩阵包括: 当 ^ 00 + C("n <t时, UE从多个预 编码矩阵中选择使两路信号中信道差的一路信号的噪声最小的预编码矩阵。 其中, CW QQ是在使用第 i个预编码矩阵时第一路信号的 MSE, 是在使 用第 i个预编码矩阵时第二路信号的 MSE, t为设置的阈值。 优选地,根据以下公式从多个预编码矩阵中选择使两路信号中信道比较 差的一路信号的噪声最小的预编码矩阵:
Figure imgf000005_0001
, 其中, i 为预编码矩阵的编号, max表示取最大值, argmin表示使 max ^^ c^n)取值 最小时的 i的值。 优选地, UE 居以下公式计算第一路信号的 MSE 和第二路信号的 MSE: C 其中, c。。表示所述第一路信号的
Figure imgf000005_0002
MSE, c„表示所述第二路信号的 MSE, 和 。无物理意义, 为可选预编 码矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, f "表示对 进行 共轭转置, HH表示对 H进行共轭转置。 为了实现上述目的,根据本发明的另一方面,提供了一种用户终端 UE。 根据本发明的 UE包括: 计算模块, 用于分别计算两路信号中的第一路 信号的平均错误平方 MSE和第二路信号的 MSE; 选择模块, 用于根据第一 路信号的 MSE与第二路信号的 MSE的和从多个预编码矩阵中选择一个预编 码矩阵; 反馈模块, 用于通知基站使用选择的预编码矩阵传输信号。 优选地, 选择模块包括: 第一选择子模块, 用于当 CW QQ + C{i ) n >t 时, 根据公式 i = arg min(min(c(i) 00 ,
Figure imgf000005_0003
从多个预编码矩阵中选择使两路信号中信 道好的一路信号的噪声最小的预编码矩阵, 其中, cw QQ是在使用第 i个预编 码矩阵时第一路信号的 MSE, 是在使用第 i个预编码矩阵时第二路信号 的 MSE, t为预先获取的阈值; 所述公式 = & 1^^1^^ )。。, ) 11))中, i为预 编码矩阵的编号, min表示取最小值, argmin表示使 min ^^ c^n)取值最小 时的 i的值。 优选地, 选择模块还包括: 第二选择子模块, 用于当 C^^ + C^^t时, 根据公式 i = arg min(max(c(i) 00 ,
Figure imgf000006_0001
从多个预编码矩阵中选择使两路信号中信 道差的一路信号的噪声最小的预编码矩阵, 其中, CW QQ是在使用第 i个预编 码矩阵时第一路信号的 MSE, 是在使用第 i个预编码矩阵时第二路信号 的 MSE , t为预先获取的阈值; 所述公式 i = arg min(max(c(i) 00 ,
Figure imgf000006_0002
中, i为预 编码矩阵的编号, max表示取最大值, argmin表示使 max(c(i)。。, 取值最小 时的 i的值。 优选地, 计算模块具体根据以下公式计算第一路信号的 MSE和第二路 信号的 MSE: C = 其中, c。。表示所述第一路
Figure imgf000006_0003
信号的 MSE, c„表示所述第二路信号的 MSE, ^和^。无物理意义, 为可 选预编码矩阵, H为信道矩阵, N。为噪声方差, /为单位矩阵, f "表示对 进行共轭转置, HH表示对 H进行共轭转置。 通过本发明, UE釆用计算两路信号中的第一路信号的 MSE和第二路 信号的 MSE,并 居第一路信号的 MSE与第二路信号的 MSE的和从多个预 编码矩阵中选择一个预编码矩阵, 通知基站使用该选择的预编码矩阵进行信 号传输, 解决了相关技术中的 UE无法判断何时使用 MSE差距最大化方法, 何时使用 MSE 平均化方法, 因而无法保证信号的正确传输的问题, 进而降 低了系统的误块率, 提高了系统的吞吐量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据本发明实施例的信号传输方法的流程图; 图 2是 居本发明实施例的性能仿真曲线图; 图 3是 居本发明实施例的一种 UE的结构框图; 图 4是 居本发明实施例的另一种 UE的结构框图。 具体实施方式 本发明实施例提供了一种信号传输方案,在实施的过程中发现最小均方 差 MMSE接收机的两路信号的 MSE的和是一样的, 而不同的预编码矩阵导 致了 MSE在 2路信号之间的不同分布, 根据此 2路信号的 MSE作为选择预 编码矩阵的判据, 即, 才艮据信道的空间特性选取预编码矩阵, 处理原则如下: 计算两路信号中的第一路信号的 MSE和第二路信号的 MSE; 根据第一路信 号的 MSE与第二路信号的 MSE的和从多个预编码矩阵中选择一个预编码矩 阵, 以便基站根据选择的预编码矩阵进行信号传输。 通过本实施例使 MSE 在信道的空间特性好时最为平衡, 此时 MSE 高的信号也可被正确接收; 反 之则使差距最大。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在以下实施例中,附图中的流程图示出的步 4聚可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 方法实施例 根据本发明的实施例, 提供了一种信号传输方法, 图 1是根据本发明实 施例的信号传输方法的流程图, 如图 1 所示, 该方法包括如下的步骤 S 102 至步 4聚 S 106: 步骤 S 102, UE计算两路信号中的第一路信号的 MSE和第二路信号的 MSE。 步骤 S 104, UE才艮据第一路信号的 MSE与第二路信号的 MSE的和从多 个预编码矩阵中选择一个预编码矩阵。 本步骤中, UE才艮据第一路信号的 MSE与第二路信号的 MSE的和, 作 为决定使用 MSE最大化, 或 MSE平均化的判据, 从多个预编码矩阵中选择 一个预编码矩阵。 步骤 S 106, UE通知基站使用选择的预编码矩阵传输信号。 相关技术中, UE无法判断何时使用 MSE差距最大化方法, 何时使用
MSE平均化方法, 因而无法保证信号的正确传输。 通过本实施例, UE才艮据 第一路信号的 MSE与第二路信号的 MSE的和从多个预编码矩阵中选择出最 合理的预编码矩阵, 并通知基站使用该矩阵进行信号传输, 从而保证传输的 信号的正确性。 在步骤 S 104中, 当 ^ + C{i ) n >t时, UE从多个预编码矩阵中选择使 两路信号中信道比较好的一路信号的噪声最小的预编码矩阵, 其中, ^是 在使用第 i个预编码矩阵时第一路信号的 MSE, C{i ) n是在使用第 i个预编码 矩阵时第二路信号的 MSE, t为设置的阈值, 阈值 t可以由仿真得到, 也可 以是预先设置的。 其中, 可以才艮据以下公式从多个预编码矩阵中选择使两路 信号 中 信道比较好的 一路信号 的 噪声 最小 的预编码矩阵: z = argmin(min(c(i) 00,c(i) n)) , 其中, i为预编码矩阵的编号, min表示取最小值, argmin表示使 min(c(i)。。 ,
Figure imgf000008_0001
取值最小时的 i的值。 在步骤 S 104中, 当 ^ + C(i ) n <t时, UE从多个预编码矩阵中选择使 两路信号中信道比较差的一路信号的噪声最小的预编码矩阵, 其中, ^是 在使用第 i个预编码矩阵时第一路信号的 MSE, C(i ) n是在使用第 i个预编码 矩阵时第二路信号的 MSE, t为设置的阈值, 其中, 可以根据以下公式从多 个预编码矩阵中选择使两路信号中信道比较差的一路信号的噪声最小的预编 码矩阵: ^ argmin maxW cWn)) , 其中, i为预编码矩阵的编号, max表示 取最大值, argmin表示使 ax(cW。。'cW")取值最小时的 i的值。 在步 4聚 S 102 中, 可以才艮据以下公式计算第一路信号的 MSE和第二路 信号的 MSE: c 其中, c。。表示所述第一路信号的
Figure imgf000009_0001
MSE, c„表示所述第二路信号的 MSE, 和 。无物理意义, 为可选预编 码矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, f "表示对 进行 共轭转置, HH表示对 H进行共轭转置。 下面将结合实例对本发明实施例的实现过程进行详细描述。 釆用 MMSE接收机的 2路信号的 MSE作为选择预编码矩阵的判据,其 中, 2路信号的 MSE可计算如下: coo co\
C (WHH"HW/N0 + iy
其中, C00、 CU分别为第 0路和第 1路信号的 MSE, 为可选预编码 矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, 表示对 进行共 轭转置, H "标识对 ^进行共轭转置, c01、 c10的取值无物理意义。 coo与 的和对不同的预编码矩阵是相同的。 当釆用 MSE作为判据时, 根据空间信道的特性, 有两种相反的选择方 式。 当信道的空间特性好时 (两路信号的 MSE的和较小时), 我们可以选择 预编码矩阵使得两路信号的 MSE较平均; 反之我们应选择预编码矩阵使两 路信号中较小的 MSE最小化, 即保证一路信号可以被正确接收。 步 4聚 1 , 计算
Figure imgf000009_0002
C l)oo、 C l)u分别为当釆用预编码矩阵 i时第 0路和第 1路信号的 MSE。 步骤 2, 如果 CW Q() + CWl l >t, 即, 信道的空间特性差时, 选择的预编码 矩阵应使信道相对较好的那路信号的噪声最小化, 即,尽量使一路信号通过, 其中, 信道相对较好是指噪声相对较小。 此时, 可以根据以下公式选择预编 码矩阵, = argmin(min(c(!)oo ,c(!)„)) 5 其中, i 是所选择的预编码矩阵的索引号; 阈值 t的选择应由仿真得到。 即, 在不同的信道条件下对不同的阈值进行仿 真, 从中选取最佳的取值。 否则, C(')00 + C(;)l l <=t, 即, 信道的空间特性好时, 选择的预编码矩阵 应使信道相对较差的那路信号的噪声最小化, 即, 尽量使两路信号通过, 其 中, 信道相对较差是指噪声相对较大。 此时, 可以根据以下公式选择预编码 矩阵, i = argmin(max(cWoo ,cWii )) 步骤 3 , UE通知基站使用选择的预编码矩阵进行信号传输。 通过本实施例,对 2传输天线, 2路信号的空间复用的闭环 MIMO模式 根据信道特性自适应地选择预编码矩阵的选择判据, 图 2是根据本发明实施 例的性能仿真曲线图, 如图 2所示, 横坐标为 SNR ( Signal to Noise Ratio, 信噪比)(单位是 dB ), 人坐标为 BLER ( BLock Error Rate, 误块率)。 其中 "Open Loop,,表示预编码矩阵是随机选取,并且选取以后不再改变。 "Optimal Selection"是对同一信道进行 2次仿真, 每次釆用不同的预编码矩阵, 并选取 两次中最小的 BLER。 即, 個—设每次选取最优的预编码矩阵时所得到的 BLER。 "Adaptive Selection"是本实施例中的算法。 由图 2可知, 本实施例的 算法的性能非常接近最优。 装置实施例 根据本发明的实施例, 提供了一种用户终端 UE, 图 3是根据本发明实 施例的一种 UE的结构框图, 该装置包括计算模块 32、 选择模块 34 , 反馈模 块 36 , 下面对该结构进行详细的描述。 计算模块 32 , 用于分别计算两路信号中的第一路信号的 MSE和第二路 信号的 MSE; 选择模块 34连接至计算模块 32 , 用于根据第一路信号的 MSE 与第二路信号的 MSE 的和从多个预编码矩阵中选择一个预编码矩阵; 反馈 模块 36 , 用于通知基站使用选择的预编码矩阵传输信号。 图 4是 居本发明图 3所示实施例的优化 UE的结构框图, 其中, 选择 模块 34包括: 第一选择子模块 42、 第二选择子模块 44。 第一选择子模块 42 , 用 于 当 CW QQ + C(i ) n >t 时, 根据公式 i = arg min(min(c(i) 00 ,
Figure imgf000011_0001
从多个预编码矩阵中选择使两路信号中信道比较好 的一路信号的噪声最小的预编码矩阵, 其中, CW QQ是在使用第 i个预编码矩 阵时第一路信号的 MSE, 是在使用第 i 个预编码矩阵时第二路信号的
MSE, t为预先获取的阈值, i为预编码矩阵的编号, min表示取最小值, argmin 表示使
Figure imgf000011_0002
取值最小时的 i的值。 第二选择子模块 44 , 用 于 当 + C("n <t 时, 根据公式 i = arg min(max(c(i) 00 ,
Figure imgf000011_0003
从多个预编码矩阵中选择使两路信号中信道比较差 的一路信号的噪声最小的预编码矩阵, 其中, CW QQ是在使用第 i个预编码矩 阵时第一路信号的 MSE, 是在使用第 i 个预编码矩阵时第二路信号的
MSE, t为预先获取的阈值, i为预编码矩阵的编号, max表示取最大值, argmin 表示使 max^^ cWu )取值最小时的 i的值。 计算模块 32具体根据以下公式计算第一路信号的 MSE和第二路信号的
MSE: C 其中, c。。表示所述第一路信号的
Figure imgf000011_0004
MSE, c„表示所述第二路信号的 MSE, 和 。无物理意义, 为可选预编 码矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, f "表示对 进行 共轭转置, HH表示对 H进行共轭转置。 综上所述, 通过本发明的上述实施例, 解决了相关技术中的预编码矩阵 选择方法无法应用于 LTE中 2传输天线、 2路信号, 或者性能差的问题, 使 系统的误块率得到了降低, 吞吐量得到了提高。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种信号传输方法, 其特征在于, 包括:
用户终端 UE计算两路信号中的第一路信号的平均错误平方 MSE 和第二路信号的 MSE;
所述 UE才艮据所述第一路信号的 MSE与所述第二路信号的 MSE的 和从多个预编码矩阵中选择一个预编码矩阵;
所述 UE通知基站使用选择的预编码矩阵传输信号。 才艮据权利要求 1所述的方法, 其特征在于, 所述 UE才艮据所述第一路信 号的 MSE与所述第二路信号的 MSE的和从多个预编码矩阵中选择一个 预编码矩阵包括: 当 C^oo >t时,所述 UE从所述多个预编码矩阵中选择使所述 两路信号中信道好的一路信号的噪声最小的预编码矩阵, 其中, CWoo是 在使用第 i个预编码矩阵时所述第一路信号的 MSE,
Figure imgf000013_0001
i是在使用第 i 个预编码矩阵时所述第二路信号的 MSE, t为设置的阈值。 根据权利要求 2所述的方法, 其特征在于, 所述 UE根据以下公式从所 述多个预编码矩阵中选择使所述两路信号中信道好的一路信号的噪声最 小的预编码矩阵: z = arg min(min(c(!) 00, c(!) n)) , 其中, i为预编码矩阵的编号, min表示 取最小值, argmin表示使
Figure imgf000013_0002
取值最小时的 i的值。 才艮据权利要求 1所述的方法, 其特征在于, 所述 UE才艮据所述第一路信 号的 MSE与所述第二路信号的 MSE的和从多个预编码矩阵中选择一个 预编码矩阵包括: 当 C^oo <t时,所述 UE从所述多个预编码矩阵中选择使所述 两路信号中信道差的一路信号的噪声最小的预编码矩阵, 其中, CWoo是 在使用第 i个预编码矩阵时所述第一路信号的 MSE,
Figure imgf000013_0003
i是在使用第 i 个预编码矩阵时所述第二路信号的 MSE, t为设置的阈值。 根据权利要求 4所述的方法, 其特征在于, 所述 UE根据以下公式从所 述多个预编码矩阵中选择使所述两路信号中信道差的一路信号的噪声最 小的预编码矩阵:
/ = argmin(max(c( oo, c( ii )) , 其中, i为预编码矩阵的编号, max表示 取最大值, argmin表示使
Figure imgf000014_0001
cWu )取值最小时的 i的值。
6. 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述 UE根据 以下公式计算所述第一路信号的 MSE和所述第二路信号的 MSE:
C00 C01
C (WHH"HW/N0 + iyl
, 其中, c。。表示所述第一路信号 的 MSE, c„表示所述第二路信号的 MSE, 和 。无物理意义, 为可 选预编码矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, ^表 示对 W进行共轭转置, H "表示对 H进行共轭转置。 一种用户终端 UE, 其特征在于, 包括:
计算模块,用于分别计算两路信号中的第一路信号的平均错误平方 MSE和第二路信号的 MSE;
选择模块, 用于根据所述第一路信号的 MSE与所述第二路信号的 MSE的和从多个预编码矩阵中选择一个预编码矩阵; 反馈模块, 用于通知基站使用选择的预编码矩阵传输信号。 根据权利要求 7所述的 UE, 其特征在于, 所述选择模块包括: 第一选择子模块, 用 于 当 CW QQ + C(i ) n >t 时, 根据公式 i = arg min(min(c(!) 00 , c(i) n))从所述多个预编码矩阵中选择使所述两路信号 中信道好的一路信号的噪声最小的预编码矩阵, 其中, CWoo是在使用第 i个预编码矩阵时所述第一路信号的 MSE, C{i)n是在使用第 i个预编码 矩阵时所述第二路信号的 MSE, t为预先获取的阈值; 所述公式 = arg min(min(c(')。。, < (')„))中, i 为预编码矩阵的编号, min 表示取最小值, argmin表示使!^^ ;!取值最小时的 i的值。 根据权利要求 7所述的 UE, 其特征在于, 所述选择模块还包括: 第二选择子模块, 用 于 当 cw 00 + c l)u <t 时, 根据公式 i = argmin(max(cw。。, cw„))从所述多个预编码矩阵中选择使所述两路信号 中信道差的一路信号的噪声最小的预编码矩阵, 其中, CWoo是在使用第 i个预编码矩阵时所述第一路信号的 MSE, C{i)n是在使用第 i个预编码 矩阵时所述第二路信号的 MSE, t为预先获取的阈值; 所述公式
Figure imgf000015_0001
cWu ))中, i为预编码矩阵的编号, max 表示取最大值, argmin
Figure imgf000015_0002
时的 i的值。
10. 才艮据权利要求 7至 9中任一项所述的 UE,所述计算模块 居以下公式计 算所述第一路信号的 MSE和所述第二路信号的 MSE:
C00 C0l
C (WHH"HW/N0 + iy
, 其中, c。。表示所述第一路信号 的 MSE, c„表示所述第二路信号的 MSE, 和 。无物理意义, 为可 选预编码矩阵, ^为信道矩阵, N。为噪声方差, /为单位矩阵, f "表 示对 进行共轭转置, H"表示对 H进行共轭转置。
PCT/CN2010/072873 2009-08-11 2010-05-18 信号传输方法及用户终端 WO2011017954A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127003643A KR101664087B1 (ko) 2009-08-11 2010-05-18 신호 전송 방법 및 사용자 단말기
JP2012524091A JP5567673B2 (ja) 2009-08-11 2010-05-18 信号伝送方法及びユーザ端末
EP10807899.9A EP2466930B1 (en) 2009-08-11 2010-05-18 Method for transmitting signals, user equipment thereof
US13/258,989 US8705638B2 (en) 2009-08-11 2010-05-18 Method for signal transmission and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101640979A CN101626262B (zh) 2009-08-11 2009-08-11 预编码矩阵选择方法及装置
CN200910164097.9 2009-08-11

Publications (1)

Publication Number Publication Date
WO2011017954A1 true WO2011017954A1 (zh) 2011-02-17

Family

ID=41521964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072873 WO2011017954A1 (zh) 2009-08-11 2010-05-18 信号传输方法及用户终端

Country Status (6)

Country Link
US (1) US8705638B2 (zh)
EP (1) EP2466930B1 (zh)
JP (1) JP5567673B2 (zh)
KR (1) KR101664087B1 (zh)
CN (1) CN101626262B (zh)
WO (1) WO2011017954A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626262B (zh) * 2009-08-11 2012-12-19 中兴通讯股份有限公司 预编码矩阵选择方法及装置
CN102104453B (zh) 2009-12-18 2014-12-03 华为技术有限公司 一种预编码方法和装置以及解码方法和装置
CN102201890B (zh) * 2010-03-25 2014-08-20 华为技术有限公司 数据发射方法及装置
CN102237974B (zh) * 2010-05-07 2013-12-18 华为技术有限公司 预编码矩阵获取方法及装置
GB2499080B (en) * 2012-12-04 2014-12-31 Broadcom Corp Method and apparatus for adjusting layer 3 filter coefficients
US10171207B2 (en) * 2017-04-26 2019-01-01 Cavium, Llc Methods and apparatus for control bit detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146078A (zh) * 2006-12-27 2008-03-19 中兴通讯股份有限公司 一种多输入多输出空间复用预编码矩阵的选择方法
KR20080052900A (ko) * 2006-12-08 2008-06-12 삼성전자주식회사 통신 시스템에서 데이터 전송 방법 및 시스템
CN101291163A (zh) * 2007-04-17 2008-10-22 大唐移动通信设备有限公司 时分双工系统中进行预编码的方法、系统及装置
CN101330357A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 信道状态信息的反馈方法及网元设备
CN101626262A (zh) * 2009-08-11 2010-01-13 中兴通讯股份有限公司 预编码矩阵选择方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705659B2 (en) * 2003-11-06 2014-04-22 Apple Inc. Communication channel optimization systems and methods in multi-user communication systems
KR100943610B1 (ko) * 2004-07-20 2010-02-24 삼성전자주식회사 다중 시공간 블록 부호화 방식을 사용하는 다중 입력 다중 출력 시스템에서 안테나 셔플링 정보 피드백 장치 및 방법
JP4734210B2 (ja) * 2006-10-04 2011-07-27 富士通株式会社 無線通信方法
CN101136718A (zh) * 2006-11-07 2008-03-05 中兴通讯股份有限公司 无线通信系统中多输入多输出的空间复用的预编码方法
WO2008062587A1 (fr) * 2006-11-22 2008-05-29 Fujitsu Limited Système et procédé de communication mimo-ofdm
EP2104981B1 (en) * 2006-12-01 2016-10-26 Apple Inc. Antenna selection and soft demapping for mimo decoding
US20080187062A1 (en) * 2007-02-06 2008-08-07 Interdigital Technology Corporation Method and apparatus for multiple-input multiple- output feedback generation
US7649831B2 (en) * 2007-05-30 2010-01-19 Samsung Electronics Co., Ltd. Multi-user MIMO feedback and transmission in a wireless communication system
KR101329854B1 (ko) * 2007-06-05 2013-11-14 엘지전자 주식회사 다중안테나 시스템에서의 제어정보 전송방법
US8179775B2 (en) * 2007-08-14 2012-05-15 Texas Instruments Incorporated Precoding matrix feedback processes, circuits and systems
US20090122857A1 (en) * 2007-11-09 2009-05-14 Interdigital Patent Holdings, Inc. Method and apparatus for performing rank overriding in long term evolution networks
US8072899B2 (en) * 2008-07-02 2011-12-06 Interdigital Patent Holdings, Inc. Method and apparatus for measuring and reporting a rank and a precoding matrix for multiple-input multiple-output communication
US8923143B2 (en) * 2009-06-29 2014-12-30 Qualcomm Incorporated Open loop channel reporting in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080052900A (ko) * 2006-12-08 2008-06-12 삼성전자주식회사 통신 시스템에서 데이터 전송 방법 및 시스템
CN101146078A (zh) * 2006-12-27 2008-03-19 中兴通讯股份有限公司 一种多输入多输出空间复用预编码矩阵的选择方法
CN101291163A (zh) * 2007-04-17 2008-10-22 大唐移动通信设备有限公司 时分双工系统中进行预编码的方法、系统及装置
CN101330357A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 信道状态信息的反馈方法及网元设备
CN101626262A (zh) * 2009-08-11 2010-01-13 中兴通讯股份有限公司 预编码矩阵选择方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)", 3GPP TS 36.211 V8.7.0, May 2009 (2009-05-01), XP050377539 *
3GPP TSG-RAN WGL #50BIS R1-075007, 9 November 2007 (2007-11-09), XP008136896 *

Also Published As

Publication number Publication date
EP2466930B1 (en) 2018-10-10
JP5567673B2 (ja) 2014-08-06
KR101664087B1 (ko) 2016-10-10
EP2466930A1 (en) 2012-06-20
CN101626262A (zh) 2010-01-13
US8705638B2 (en) 2014-04-22
EP2466930A4 (en) 2017-05-10
CN101626262B (zh) 2012-12-19
KR20120082864A (ko) 2012-07-24
US20120128083A1 (en) 2012-05-24
JP2013502109A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
Brown et al. Practical guide to MIMO radio channel: With MATLAB examples
JP4533742B2 (ja) データ送信方法及びシステム
JP4832087B2 (ja) 無線基地局装置及び端末装置
TWI230525B (en) Method and apparatus for utilizing channel state information in a wireless communication system
US9287957B2 (en) Method for multi-antenna uplink transmission
US20050047517A1 (en) Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US8509319B2 (en) Uplink precoding for retransmission without explicit precoding instruction
WO2011017954A1 (zh) 信号传输方法及用户终端
WO2011035698A1 (zh) 一种上行数据处理方法及系统
WO2011140782A1 (zh) 多输入多输出系统的下行传输方法和基站
CN103222202B (zh) 无线通信系统中的方法和装置
TW200525929A (en) Transmission method and transmitter
WO2018019123A1 (zh) 一种无线传输中的方法和装置
WO2011050543A1 (zh) 获取下行信道状态信息的方法及装置
Roca Implementation of a WiMAX simulator in Simulink
Xia et al. Open-loop link adaptation for next-generation IEEE 802.11 n wireless networks
KR101483666B1 (ko) 변수의 빔을 가지고 있는 mimo 시스템에서의 효율적 cqi 신호 발신
EP1350354B1 (en) Transmitting digital signal
CN102421068A (zh) 基于分组的无线通信
CN102725992A (zh) 转换装置和方法
KR100731824B1 (ko) 통신 자원들을 제어하기 위한 방법, 제어기 및 컴퓨터 판독가능 매체
WO2009039678A1 (fr) Procédé et appareil de relais combiné pour une pluralité de stations relais dans un réseau de communication sans fil
JP2009527184A (ja) チャネル相関の利用が改善されたマルチアンテナ通信の方法
Stamenković et al. Architecture of an analog combining MIMO system compliant to IEEE802. 11a
Ellenbeck System‐Level Simulations with the IMT‐Advanced Channel Model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127003643

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012524091

Country of ref document: JP

Ref document number: 13258989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010807899

Country of ref document: EP