WO2011017946A1 - 一种确定转发邻接标签交换路径上首尾节点的方法及系统 - Google Patents

一种确定转发邻接标签交换路径上首尾节点的方法及系统 Download PDF

Info

Publication number
WO2011017946A1
WO2011017946A1 PCT/CN2010/072464 CN2010072464W WO2011017946A1 WO 2011017946 A1 WO2011017946 A1 WO 2011017946A1 CN 2010072464 W CN2010072464 W CN 2010072464W WO 2011017946 A1 WO2011017946 A1 WO 2011017946A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
lsp
path
layer
sero
Prior art date
Application number
PCT/CN2010/072464
Other languages
English (en)
French (fr)
Inventor
林雪峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/258,194 priority Critical patent/US9191308B2/en
Priority to EP10807891.6A priority patent/EP2466813B1/en
Publication of WO2011017946A1 publication Critical patent/WO2011017946A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/44Distributed routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/645Splitting route computation layer and forwarding layer, e.g. routing according to path computational element [PCE] or based on OpenFlow functionality

Definitions

  • the present invention relates to a transport network multi-layer network technology, and more particularly to a method and system for a layer boundary head node in a multi-layer network to determine the forwarding of the head and tail nodes on the adjacent label switch path.
  • the Automatic Switched Optical Network (ASON) network supports multiple switching capabilities and service scheduling at different rates for each switching capability.
  • Support for multiple switching capabilities and different rates for each switching capability constitutes a multi-layer network, such as Multi-Protocol Label Switching (MPLS) and Generalized Multiprotocol Label Switching (GMPLS).
  • MPLS Multi-Protocol Label Switching
  • GPLS Generalized Multiprotocol Label Switching
  • LSP Label Switched Path
  • TE traffic engineering
  • FA Forwarding Adjacency
  • the FA LSP can be established automatically or manually.
  • the manual establishment of the FA LSP refers to planning and configuring it in advance.
  • the biggest disadvantage of this method is that it is not flexible enough, and the resource utilization efficiency of the whole network cannot be optimized.
  • the technical problem to be solved by the present invention is to provide a method and system for determining the head and tail nodes on a forwarding adjacent label switching path, so that the layer boundary head node can determine the first and last nodes on the FA LSP.
  • the present invention provides a method for determining a head-to-tail node on a Forwarding Label Switched Path (FA LSP), which is applied to a multi-layer network in which a FA LSP is established using an upper layer signaling triggering model, the method comprising:
  • the path calculation unit will each layer when the calculated service path contains one or more layers of FA LSPs.
  • the path information of the FA LSP is encapsulated in a secondary explicit routing object (SERO), and is returned together with the service path information by the query response message to the first layer first node that initiates the query;
  • SESO secondary explicit routing object
  • the node on the service path receives the query response message or a path message sent by the upstream node, and determines whether the node is the first node of a certain layer FA LSP according to the path information of the FA LSP included in the SERO. If yes, the FA LSP is learned as the next layer of the FA LSP, and the tail node of the next layer of the FA LSP is determined according to the path information of the next layer of the FA LSP.
  • the above methods also include:
  • the signaling flow is created through the standard label switching path (LSP), and the FA LSP is in the next layer.
  • LSP standard label switching path
  • the next layer of LSPs is created between the first and last nodes, and the node will receive the FA LSP path information in the query response message or path message except the SERO encapsulating the next layer of FA LSP path information. SERO, reserved in the path message sent to the downstream node of the next layer FA LSP.
  • the above methods also include:
  • the node on the service path determines that the node is not the first node of any FA LSP, all the SEROs in the query response message or the path message are retained in the path message sent to the downstream node. .
  • the SERO is a SERO having a new type (C-Type) value, in the SERO
  • Each node sub-object is a node on the FA LSP path.
  • the path information of each layer of the FA LSP includes the identification information of each node included in the layer FA LSP that is sequentially arranged from the head node.
  • the step of determining, by the node on the service path, whether the node is the first node of a layer of the FA LSP comprises: the node on the service path receiving the query response message or the path message, if the judgment message includes a new one
  • the SERO of the type value parses all the SEROs with the new type value, obtains the path information of the FA LSP contained therein, and compares the identification information of the node with the identification information of the first node in the path information of each layer FA LSP.
  • the node is determined to be the first node of the FA LSP of the layer, and if the identifier information of the first node of each layer of the FA LSP is different, This node is not the first node of any FA LSP.
  • the present invention also provides a multi-layer network that can determine the head-to-tail node on a Forwarding Label Switched Path (FA LSP), including a path calculation unit and each layer node, where:
  • FA LSP Forwarding Label Switched Path
  • the path calculation unit is configured to: encapsulate the path information of each layer of the FA LSP in a secondary explicit routing object (SERO), and the service path, when the calculated service path includes one or more layers of FA LSPs
  • SERO secondary explicit routing object
  • the information is returned to the first layer head node of the initiating query by the query response message; the node on the service path is set to: receive the query response message or a path message sent by the upstream node, according to the message
  • the path information of the FA LSP included in the SERO determines whether the node is the first node of a certain layer of the FA LSP. If yes, the FA LSP is learned as the next layer of the FA LSP, and then the next layer is determined according to the path information of the next layer of the FA LSP. The tail node of the FA LSP.
  • the node on the service path is further configured to: after determining that the node is the first node of the next layer of the FA LSP and determining the tail node of the next layer of the FA LSP, the signaling is established through a standard label switched path (LSP).
  • LSP label switched path
  • the process creates a next layer of LSPs between the first and last nodes of the next layer of the FA LSP, and the node receives the query response message or the path message except the SERO that encapsulates the next layer of FA LSP path information.
  • the other encapsulated FA LSP path information SERO is reserved in the path message sent to the downstream node of the next layer FA LSP; and, after determining that the node is not the first node of any FA LSP, the query response message will be received.
  • the SERO is a SERO having a new type (C-Type) value
  • each node sub-object in the SERO is a node on a FA LSP path.
  • the path information of each layer of the FA LSP includes the identification information of each node included in the layer FA LSP that is sequentially arranged from the first node;
  • the node on the service path is set to receive the query response message or the path message. If the judgment message includes a SERO having a new type value, all the SEROs having the new type value are parsed, and the FA included therein is obtained.
  • the path information of the LSP is compared with the identifier information of the first node in the path information of each layer of the FA LSP, and is determined to be the same as the identifier information of the first node of the layer FA LSP.
  • the node is the first node of the layer FA LSP. If the identifier information of the first node of each layer FA LSP is different, it is determined that the node is not the first node of any FA LSP.
  • the present invention also provides a node that can determine the head and tail nodes on a Forwarding Label Switched Path (FA LSP), the node being set to:
  • FA LSP Forwarding Label Switched Path
  • the node After receiving the query response message sent by the path calculation unit or the path message sent by the upstream node, determining whether the node is a layer of FA LSP according to the path information of the FA LSP included in the secondary explicit route object (SERO) in the message.
  • the first node if yes, the FA LSP is the next layer of the FA LSP, and the tail node of the next layer of the FA LSP is determined according to the path information of the next layer of the FA LSP, where the query response message includes the node
  • the path information of each layer of the FA LSP included in the service path, and the path information of each layer of the FA LSP is encapsulated in a secondary explicit route object (SERO).
  • the node is also set to:
  • the signaling flow is created through the standard label switching path (LSP), and the first and last nodes of the next layer FA LSP
  • LSP standard label switching path
  • the next layer of LSP is created, and the node will receive the FA LSP path information SERO except the SERO encapsulating the next layer of FA LSP path information in the query response message or path message.
  • the path message of the downstream layer of the FA LSP and after determining that the node is not the first node of any FA LSP, all the SEROs in the query response message or the path message are kept and sent. Go to the path message of the downstream node.
  • the SERO is a SERO having a new type (C-Type) value, in the SERO
  • Each node sub-object is a node on the FA LSP path.
  • the path information of each layer of the FA LSP includes the identification information of each node included in the layer FA LSP that is sequentially arranged from the first node;
  • the node is configured to: receive the query response message or the path message, and if the judgment message includes a SERO having a new type value, parse all the SEROs with the new type value, and obtain the path of the FA LSP included therein. And comparing the identifier information of the local node with the identifier information of the first node in the path information of each layer of the FA LSP, and if the identifier information of the first node of the layer FA LSP is the same, determining that the node is The first node of the FA LSP of the layer, if the identification information of the first node of each layer FA LSP is different, it is determined that the node is not the first node of any FA LSP.
  • a path computation unit that supports determining the head and tail nodes on a Forward Adjacency Label Switched Path (FA LSP), where:
  • the path calculation unit is configured to: encapsulate the path information of each layer of the FA LSP in a secondary explicit routing object (SERO), and the service path, when the calculated service path includes one or more layers of FA LSPs
  • SERO secondary explicit routing object
  • the information is returned to the first layer head node of the initiating query by the query response message, so that the node on the service path receives the query response message or the path message sent by the upstream node, according to the message
  • the path information of the FA LSP included in the SERO determines whether the node is the first node of a certain layer of the FA LSP. If yes, the FA LSP is learned as the next layer of the FA LSP, and then the next layer is determined according to the path information of the next layer of the FA LSP. The tail node of the FA LSP.
  • the foregoing embodiment is used for automatically establishing an FA LSP in an upper layer signaling triggering model, and adding a new one to a secondary explicit explicit object (SERO: Secondary Explicit Route Object) in a resource resert protocol (RS VP: Resource reSerVation Protocol) Type, and introduce SERO into the Path Computation Element Communication Protocol (PCEP), which gives the automatic establishment process of FA LSP in combination with the SERO object, so that the layer boundary head node can determine the first on the FA LSP.
  • SERO Secondary explicit explicit object
  • RS VP Resource reSerVation Protocol
  • PCEP Path Computation Element Communication Protocol
  • FIG. 2 is a flow chart of automatic FALSP establishment according to an embodiment of the present invention.
  • this embodiment extends a secondary explicit route object (SERO) to add a new type, which is used to indicate that each node sub-object in the SERO is on the FA LSP path.
  • SERO secondary explicit route object
  • Each node sub-object in the SERO with the new type value is a node on the FALSP path.
  • the multi-layer network on which the present invention is based includes, but is not limited to, a three-layer network, please refer to the The process of establishing the FALSP in this embodiment includes:
  • Step 1 when the upper layer first node HI establishes a service, sends a path query request to the path calculation unit (PCE);
  • PCE path calculation unit
  • Step 2 After receiving the path query request, the PCE calculates the path and returns the information of the path to the upper layer HI through the path query response.
  • the path includes one or more layers of FA LSPs, each layer needs to be
  • the role information of the first and last nodes of the FALSP is encapsulated in a SERO object with a new type value, and is returned to the upper node HI;
  • the path of the service calculated in this embodiment is H1-H2-M3-L4-L5-M6-H7-H8, which includes the FA LSP1 composed of nodes H2-M3-L4-L5-M6-H7, which is also referred to below. It is a middle layer FA LSP, H2, H7 is an upper layer boundary node; and M3-L4-L5-M6 is composed of FALSP2, which is also referred to as a lower layer FALSP, and M3 and M6 are middle layer boundary nodes.
  • the ERO object is ⁇ H2, H7 ⁇
  • the SERO object one is ⁇ H2, M3, M6, H7 ⁇
  • the SERO object 2 is ⁇ M3, L4, L5, M6 ⁇ .
  • Step 3 The first node HI sends a Path message to the upper boundary node H2, where the message carries the ERO object as ⁇ H2, H7 ⁇ , the SERO object one is ⁇ H2, M3, M6, H7 ⁇ , and the SERO object 2 is ⁇ M3, L4, L5, M6 ⁇ .
  • Step 3.1 After receiving the Path message, the border node H2 parses the ERO and SERO objects in the Path message, and finds that the address of the first node H2 in the SERO object is the same as the address of the local node, and determines that the node is the first node of the middle FA LSP.
  • the last node in the SERO object is H7. It is determined that H7 is the tail node of the upper layer FA LSP.
  • H2 first keeps the path message of the upper layer, and creates a signaling flow through the standard LSP to create a middle layer LSP between H2 and H7. In this process, H2 first sends a Path message to the downstream node L3 of the middle LSP, and the message converts the SERO object into an ER0 object.
  • the message carries the ER0 object as ⁇ M3, M6 ⁇ , and the SERO object is unchanged.
  • ⁇ M3, L4, L5, M6 ⁇ the information of the middle LSP tail node H7 is encapsulated in the session object of the path message.
  • the conversion processing of the SERO object by each FA LSP head node is also the standard processing flow for the SERO object specified in the protocol.
  • Step 3.1.1 after receiving the Path message of the middle layer, the middle boundary node M3 resolves the ERO and SERO objects in the Path message, and the M3 address of the first node in the SERO object 2 is the same as the address of the local node, and determines that the node is the lower layer.
  • the first node of the FA LSP, the last node of the SERO object 2 is M6, and it is determined that M6 is the tail node of the lower layer FA LSP.
  • M3 first keeps the path message of the middle layer, and creates a signaling flow through the standard LSP, creating between M3 and M6. A lower layer LSP.
  • M3 first sends a Path message to the downstream layer node L4, and the message converts the SERO object 2 into an ER0 object.
  • the message carries the ERO object as ⁇ L4, L5 ⁇ , and the information of the middle LSP tail node M6 is encapsulated in the session object of the path message.
  • Step 3.1.2 - Step 3.1.7 Continue the LSP establishment process of the lower standard.
  • Step 3.2 After the border node M3 receives the lower layer Resv message returned by the lower layer node L4, the lower layer LSP is established, the establishment of the middle layer LSP is awakened, and the establishment process of the middle layer LSP is continued;
  • Step 3.3 - Step 3.6 continue the middle layer standard LSP establishment process.
  • Step 4 After the upper layer border node H2 receives the middle layer Resv message returned by the middle layer node M3, the middle layer LSP is established, the establishment of the upper layer LSP is awakened, and the establishment process of the upper layer LSP is continued;
  • Step 5-8 Continue the standard signaling procedure for the establishment of the upper layer LSP, which will not be described in detail here.
  • the above embodiment is an example of three layers.
  • a second layer or a layer having more than three layers may be included.
  • the upper layer may be referred to as a first layer
  • the lower layer may be referred to as a lower layer.
  • the layers of the second layer and below belong to the FA LSP, and the method of determining the first and last nodes on the FA LSP of the layer on the boundary head node of each layer is the same as the above embodiment.
  • the present invention provides a multi-layer network that can determine the head-to-tail node on a Forwarding Label Switched Path (FA LSP), including a path calculation unit and each layer node, where:
  • FA LSP Forwarding Label Switched Path
  • the path calculation unit is configured to: encapsulate the path information of each layer of the FA LSP in a secondary explicit routing object (SERO), and the service path, when the calculated service path includes one or more layers of FA LSPs
  • SERO secondary explicit routing object
  • the information is returned to the first layer head node of the initiating query by the query response message; the node on the service path is set to: after receiving the query response message or the path message sent by the upstream node, according to the message
  • the path information of the FA LSP included in the SERO determines whether the node is the first node of a layer of the FA LSP. If yes, the FA LSP is learned as the next layer of the FA LSP, and then the path information of the next layer of the FA LSP is determined. The tail node of the layer FA LSP.
  • the node on the service path is further configured to: after determining that the node is the first node of the next layer of the FA LSP and determining the tail node of the next layer of the FA LSP, the signaling is established through a standard label switched path (LSP).
  • LSP label switched path
  • the process creates a next layer of LSPs between the first and last nodes of the next layer of the FA LSP, and the node receives the query response message or the path message except the SERO that encapsulates the next layer of FA LSP path information.
  • the other encapsulated FA LSP path information SERO is reserved in the path message sent to the downstream node of the next layer FA LSP;
  • the SERO is a SERO having a new type (C-Type) value, and each node sub-object in the SERO is a node on a FA LSP path.
  • the path information of each layer of the FA LSP encapsulated in the SERO by the path calculation unit includes identification information of each node included in the layer FA LSP that is sequentially arranged from the head node; the node on the service path is set to After receiving the query response message or the path message, if the message contains a SERO having a new type value, all the SEROs having the new type value are parsed, the path information of the FA LSP included therein is obtained, and the node is obtained.
  • the identification information is compared with the identification information of the first node in the path information of each layer of the FA LSP. If the identification information of the first node of the FA LSP is the same, the node is determined to be the first of the FA LSPs of the layer. Node, such as with each layer FA LSP If the identifier information of the first node is different, it is determined that the node is not the first node of any one of the FA LSPs.
  • the present invention provides a node that can determine the head and tail nodes on a Forwarding Label Switched Path (FA LSP), the node being set to:
  • FA LSP Forwarding Label Switched Path
  • the node After receiving the query response message sent by the path calculation unit or the path message sent by the upstream node, determining whether the node is a layer of FA LSP according to the path information of the FA LSP included in the secondary explicit route object (SERO) in the message.
  • the first node if yes, the FA LSP is the next layer of the FA LSP, and the tail node of the next layer of the FA LSP is determined according to the path information of the next layer of the FA LSP, where the query response message includes the node
  • the path information of each layer of the FA LSP included in the service path, and the path information of each layer of the FA LSP is encapsulated in a secondary explicit route object (SERO).
  • the node is further configured to: after determining that the node is the first node of the next layer of the FA LSP and determining the tail node of the next layer of the FA LSP, the signaling process is established through a standard label switching path (LSP), in the next The next layer of LSPs is created between the first and last nodes of the layer FA LSP, and the node will receive the FA in the query response message or path message except the SERO encapsulating the next layer of FA LSP path information.
  • the LSP path information SERO is reserved in the path message sent to the downstream node of the next layer FA LSP;
  • the SERO is a SERO having a new type (C-Type) value, and each node sub-object in the SERO is a node on a FA LSP path.
  • the path information of each layer of the FA LSP includes the identification information of each node included in the layer FA LSP that is sequentially arranged from the head node;
  • the node is configured to: after receiving the query response message or the path message, if the judgment message includes a SERO having a new type value, parse all the SEROs having the new type value, and obtain the FA LSP included therein.
  • the path information is compared with the identifier information of the first node in the path information of each layer of the FA LSP, and the identity information is determined by the same as the first node of the FA LSP of the layer. It is the first node of the FA LSP of the layer. If the identification information of the first node of each layer FA LSP is different, it is determined that the node is not the first section of any FA LSP. Point
  • the present invention also provides a path calculation unit that supports determining a head-to-tail node on a Forward Adjacency Label Switched Path (FA LSP), where:
  • the path calculation unit is configured to: encapsulate the path information of each layer of the FA LSP in a secondary explicit routing object (SERO), and the service path, when the calculated service path includes one or more layers of FA LSPs
  • SERO secondary explicit routing object
  • the information is returned to the first layer head node of the initiating query by the query response message, so that the node on the service path receives the query response message or the path message sent by the upstream node, according to the message
  • the path information of the FA LSP included in the SERO determines whether the node is the first node of a certain layer of the FA LSP. If yes, the FA LSP is learned as the next layer of the FA LSP, and then the next layer is determined according to the path information of the next layer of the FA LSP. The tail node of the FA LSP.
  • the present invention is used for automatically establishing an FA LSP in an upper layer signaling triggering model, and adds a new type to a secondary explicit route object (SERO: Secondary Explicit Route Object) in a Resource ReSerVation Protocol (RSVP).
  • SERO Secondary explicit route object
  • RSVP Resource ReSerVation Protocol
  • the SERO is introduced into the Path Computation Element Communication Protocol (PCEP), and the automatic establishment process of the FA LSP is combined with the SERO object, so that the first node of the layer boundary can determine the first and last nodes on the FA LSP. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种确定FA LSP上首尾节点的方法,应用于使用上层信令触发模型建立FA LSP的多层网络中, 包括: 路径计算单元在计算出的业务路径包含一层或多层FA LSP时, 将每层FA LSP的路径信息分别封装在一个次要显式路由对象(SERO)中,和业务路径信息一起通过查询应答消息返回给发 起查询的第一层首节点;业务路径上的节点收到查询应答消息或上游节点发来的路径(path)消息,根据消息中SERO包含的FA LSP的路径信息确定本节点是否某层FA LSP的首节点,如是,则获知该FA LSP为下一层FA LSP,再根据该下一层FA LSP的路径信息确定下一层FA LSP的尾节点。 本发明还 提供一种多层网络。

Description

一种确定转发邻接标签交换路径上首尾节点的方法及系统
技术领域
本发明涉及传送网多层网络技术, 更具体的说, 涉及多层网络中层边界 首节点确定转发邻接标签交换路径上首尾节点的方法及系统。 背景技术
随着传送网络的不断发展, 网络拓朴越来越复杂, 业务量越来越多。 为 满足不同业务调度粒度的要求, 自动交换光网络(ASON ) 网络支持多种交 换能力及每种交换能力下不同速率的业务调度。 对多种交换能力及每种交换 能力下不同速率的支持, 构成了多层网络, 如多协议标签交换 (MPLS : MultiProtocolLabelSwitching ) 和通用多协议标签交换 ( GMPLS: Generalized Multiprotocol Label Switching ) 多层网络。
在层的边界节点建立一条标签交换路径(Label Switched Path, LSP ) , 如果将该 LSP作为上层的流量工程(TE )链路进行泛洪, 那么该 LSP称为 FA ( Forwarding Adjacency, 转发邻接) LSP, 而该 TE链路称为转发邻接 ( Forwarding Adjacency, FA ) 。 FA的端点之间不存在路由邻接关系, 但存 在信令相邻关系。
FA LSP可以自动建立, 也可以手动建立。
FA LSP的手动建立方式, 是指通过事先规划并配置好。 这种方式的最大 缺点是不够灵活, 全网的资源使用效率不能达到最优。
FA自动建立, 可以使用路径计算单元 -虚拟网络拓朴管理(PCE-VNTM: Path Compute Element- Virtual Network Manager )协作模型、 网络管理-虚拟网 络拓朴管理 ( NMS-VNTM : Network Manager System- Virtual Network Manager ) 协作模型或上层信令触发模型三种方式。 前两种方式都引入了 VNTM。 但是 VNTM的引入会带来布局的困难、 需要协调交互的内容增加、 LSP建立时间的增加及不稳定性。
使用上层信令触发模型时,层边界首节点如何知道 FA LSP的首、尾节点, 来向 FA LSP的尾节点发起 LSP的建立, 是一个难点。 目前还没有相关解决 方案。 发明内容
本发明要解决的技术问题是提供一种确定转发邻接标签交换路径上首尾 节点的方法及系统, 使得层边界首节点能够确定 FA LSP上的首、 尾节点。
为了解决上述问题, 本发明提供了一种确定转发邻接标签交换路径 (FA LSP)上首尾节点的方法,应用于使用上层信令触发模型建立 FA LSP的多层网 络中, 该方法包括:
路径计算单元在计算出的业务路径包含一层或多层 FA LSP时, 将每层
FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中,和业务路径 信息一起通过查询应答消息返回给发起查询的第一层首节点;
所述业务路径上的节点收到所述查询应答消息或上游节点发来的路径 (path)消息, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本节点是 否某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根 据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
上述方法还包括:
所述业务路径上的节点确定本节点为下一层 FA LSP的首节点并确定下 一层 FA LSP的尾节点后, 通过标准的标签交换路径 (LSP)创建信令流程, 在 下一层 FA LSP的首、尾节点之间创建下一层 LSP,且该节点将收到的所述查 询应答消息或 path消息中除封装有下一层 FA LSP路径信息的 SERO外的其 他封装有 FA LSP路径信息 SERO , 保留在发送到下一层 FA LSP下游节点的 path消息中。
上述方法还包括:
所述业务路径上的节点如确定本节点不是任何一个 FA LSP的首节点,则 将收到的所述查询应答消息或路径 (path)消息中所有的 SERO保留在发送到下 游节点的 path消息中。
其中: 所述 SERO是具有新的类型 (C-Type)值的 SERO, 所述 SERO中的 各节点子对象为 FA LSP路径上的各节点。
其中: 所述每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP包含的各个节点的标识信息。
其中:所述业务路径上的节点确定本节点是否某层 FA LSP的首节点的步 骤包括: 所述业务路径上的节点收到所述查询应答消息或 path消息, 如判断 消息中包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP的路径信息中首节点的标识信息比较,如与某层 FA LSP的首节点的所述 标识信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的 首节点的所述标识信息均不相同,则确定本节点不是任何一个 FA LSP的首节 点。
本发明还提供一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的 多层网络, 包括路径计算单元和各层节点, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点; 所述业务路径上的节点设置为: 收到所述查询应答消息或上游节点发来 的路径 (path)消息, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本 节点是否某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
其中: 所述业务路径上的节点还设置为: 在确定本节点为下一层 FA LSP的首节点并确定下一层 FA LSP的尾节点 后, 通过标准的标签交换路径 (LSP)创建信令流程, 在下一层 FA LSP的首、 尾节点之间创建下一层 LSP, 且该节点将收到的所述查询应答消息或 path消 息中除封装有下一层 FA LSP路径信息的 SERO外的其他封装有 FA LSP路径 信息 SERO, 保留在发送到下一层 FA LSP下游节点的 path消息中; 以及, 在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。 其中: 所述 SERO为具有新的类型 (C-Type)值的 SERO, 所述 SERO中的 各节点子对象为 FA LSP路径上的各节点。
其中: 每层 FA LSP 的路径信息包括从首节点开始按序排列的该层 FA LSP包含的各个节点的标识信息;
所述业务路径上的节点是设置为收到所述查询应答消息或 path消息, 如 判断消息中包含具有新的类型值的 SERO , 则解析所有具有新的类型值的 SERO, 获取其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与 各层 FA LSP的路径信息中首节点的所述标识信息比较, 如与某层 FA LSP的 首节点的所述标识信息相同,则确定本节点是该层 FA LSP的首节点,如与各 层 FA LSP的首节点的所述标识信息均不相同, 则确定本节点不是任何一个 FA LSP的首节点。
本发明还提供一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的 节点, 所述节点设置为:
收到路径计算单元发送的查询应答消息或上游节点发来的路径 (path)消 息后, 根据消息中次要显式路由对象 (SERO)包含的 FA LSP的路径信息确定 本节点是否某层 FA LSP的首节点,如是,则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点, 所述查询 应答消息中包括所述节点所在的业务路径所包含的每层 FA LSP的路径信息, 且每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中。
其中: 所述节点还设置为:
在确定本节点为下一层 FA LSP的首节点并确定下一层 FA LSP的尾节点 后, 通过标准的标签交换路径 (LSP)创建信令流程, 在下一层 FA LSP的首、 尾节点之间创建下一层 LSP, 且该节点将收到的所述查询应答消息或 path消 息中除封装有下一层 FA LSP路径信息的 SERO外的其他封装有 FA LSP路径 信息 SERO, 保留在发送到下一层 FA LSP下游节点的 path消息中; 以及, 在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。
其中: 所述 SERO是具有新的类型 (C-Type)值的 SERO, 所述 SERO中的 各节点子对象为 FA LSP路径上的各节点。
其中: 所述每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP包含的各个节点的标识信息;
所述节点是设置为: 收到所述查询应答消息或 path消息, 如判断消息中 包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取其 中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP的 路径信息中首节点的所述标识信息比较,如与某层 FA LSP的首节点的所述标 识信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的首 节点的所述标识信息均不相同, 则确定本节点不是任何一个 FA LSP的首节 点。
一种支持确定转发邻接标签交换路径 (FA LSP)上首尾节点的路径计算单 元, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点, 以 使所述业务路径上的节点收到所述查询应答消息或上游节点发来的路径 (path) 消息后, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本节点是否 某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根据 该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
上述实施方案用于上层信令触发模型中 FA LSP的自动建立 ,通过对资源 预留协议 (RS VP: Resource reSerVation Protocol)中的次要显式路由对象 ( SERO: Secondary Explicit Route Object )增加新的类型, 并把 SERO引入到 路径计算单元通讯协议 ( PCEP: Path Computation Element communication Protocol ) 中, 给出了结合 SERO对象进行 FA LSP的自动建立流程, 使得层 边界首节点能够确定 FA LSP上的首、 尾节点。 附图概述 图 1是本发明实施例扩展的 SERO对象类型的示意图;
图 2是本发明实施例的 FALSP自动建立流程图。
本发明的较佳实施方式
下面结合附图对本发明进行说明。
如图 1所示, 本实施例对次要显式路由对象( SERO: Secondary Explicit Route Object)进行扩展, 增加一种新的类型, 用于表示 SERO中的各节点子 对象为 FA LSP路径上的各节点。 Class-Num=200, 用于指示 SERO对象, C-Type=TBD, 即该 SERO对象具有新的类型 (C-Type)值, 具体的类型值的编 号待标准组织 IANA分配, TBD是 To Be Defined的简写, 表示待定。 该具有 新的类型值的 SERO中的各节点子对象为 FALSP路径上的各节点。
图 2示出了本实施例所基于的多层(三层) 网络并示出了节点间信令的 发送流程, 本发明所基于的多层网络包括但不局限于三层网络, 请参照该图, 本实施例 FALSP的建立流程包括:
步骤 1, 上层首节点 HI建立业务时, 向路径计算单元(PCE)发出路径 查询请求;
步骤 2, PCE收到该路径查询请求后, 计算出路径并将该路径的信息通 过路径查询应答返回给上层首节点 HI, 该路径包含一层或多层 FA LSP时, 还需将每一层 FALSP的首、尾节点的角色信息分别封装在具有新的类型值的 SERO对象中, 返回给上层首节点 HI;
本实施例计算出的该业务的路径为 H1-H2-M3-L4-L5-M6-H7-H8, 其中包 含了节点 H2-M3-L4-L5-M6-H7组成的 FA LSP1 , 下文也称为中层 FA LSP, H2,H7为上层边界节点; 及 M3-L4-L5-M6组成的 FALSP2, 下文也称为下层 FALSP, M3、 M6为中层边界节点。
PCE向 HI发送的路径查询应答消息中, ERO对象为 {H2, H7}, SERO 对象一为 {H2, M3, M6, H7}, SERO对象二为 {M3, L4, L5, M6}。
步骤 3,首节点 HI向上层边界节点 H2发送 Path消息, 消息中携带 ERO 对象为 {H2, H7}, SERO对象一为 {H2, M3, M6, H7}, SERO对象二为 {M3, L4, L5 , M6}。
步骤 3.1 , 边界节点 H2收到 Path消息后, 通过解析 Path消息中的 ERO , SERO对象,发现 SERO对象一中第一个节点 H2地址与本节点地址相同, 确 定本节点是中层 FA LSP的首节点, SERO对象一中最后一个节点是 H7 , 确 定 H7是上层 FA LSP的尾节点, H2先保持上层的 Path消息,通过标准的 LSP 创建信令流程, 在 H2与 H7之间创建一条中层 LSP。 在该过程中, H2先向 中层 LSP的下游节点 L3发送 Path消息, 消息中将 SERO对象一转换为 ER0 对象, 此时消息中携带 ER0对象为 {M3 , M6} , SERO对象二不变, 为 {M3 , L4, L5 , M6} , 中层 LSP尾节点 H7的信息封装在 path消息的会话 (session) 对象中。 各 FA LSP首节点对 SERO对象的转换处理, 也是协议中规定的对 SERO对象的标准处理流程。
步骤 3.1.1 , 中层边界节点 M3收到中层的 Path消息后, 通过解析 Path 消息中的 ERO、 SERO对象二, SERO对象二中第一个节点 M3地址与本节 点地址相同, 确定本节点是下层 FA LSP的首节点, SERO对象二中最后一个 节点是 M6,确定 M6是下层 FA LSP的尾节点, M3先保持中层的 Path消息, 通过标准的 LSP创建信令流程, 在 M3与 M6之间创建一条下层 LSP, 在该 过程中, M3先向下层下游节点 L4发送 Path消息, 消息中将 SERO对象二转 换为 ER0对象。 消息中携带 ERO对象为 {L4, L5} , 中层 LSP尾节点 M6的 信息封装在 path消息的会话 (session)对象中。
步骤 3.1.2-步骤 3.1.7 继续下层标准的 LSP建立流程。
步骤 3.2, 边界节点 M3收到下层节点 L4返回的下层 Resv消息后, 下层 LSP建立完毕, 中层 LSP的建立被唤醒, 继续中层 LSP的建立过程;
步骤 3.3-步骤 3.6, 继续中层标准的 LSP建立流程。
步骤 4. 上层边界节点 H2收到中层节点 M3返回的中层 Resv消息后,中 层 LSP建立完毕, 上层 LSP的建立被唤醒, 继续上层 LSP的建立过程;
步骤 5-8. 继续上层 LSP建立的标准信令流程, 这里不再详细叙述。
以上实施例是以三层为例, 在其他实施例中, 也可以包括二层或者层数 大于三层的场景, 在这些场景下, 可以将最上层称为第一层, 向下依次称为 第二层、 第三层 等等。 第二层及以下的各层都属于 FA LSP, 每层的边 界首节点确定本层 FA LSP上的首、 尾节点的方法和上述实施例是相同的。
本发明提供一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的多 层网络, 包括路径计算单元和各层节点, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点; 所述业务路径上的节点设置为: 收到所述查询应答消息或上游节点发来 的路径 (path)消息后, 根据消息中所述 SERO包含的 FA LSP的路径信息确定 本节点是否某层 FA LSP的首节点,如是,则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
其中, 所述业务路径上的节点还设置为: 在确定本节点为下一层 FA LSP 的首节点并确定下一层 FA LSP的尾节点后, 通过标准的标签交换路径 (LSP) 创建信令流程, 在下一层 FA LSP的首、尾节点之间创建下一层 LSP, 且该节 点将收到的所述查询应答消息或 path消息中除封装有下一层 FA LSP路径信 息的 SERO外的其他封装有 FA LSP路径信息 SERO, 保留在发送到下一层 FA LSP下游节点的 path消息中; 以及,
在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。
其中, 所述 SERO为具有新的类型 (C-Type)值的 SERO, 所述 SERO中的 各节点子对象为 FA LSP路径上的各节点。
其中, 所述路径计算单元封装在 SERO中的每层 FA LSP的路径信息包 括从首节点开始按序排列的该层 FA LSP包含的各个节点的标识信息;所述业 务路径上的节点是设置为收到所述查询应答消息或 path消息后, 如判断消息 中包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取 其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP 的路径信息中首节点的所述标识信息比较,如与某层 FA LSP的首节点的所述 标识信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的 首节点的所述标识信息均不相同,则确定本节点不是任何一个 FA LSP的首节 点。
本发明提供一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的节 点, 所述节点设置为:
收到路径计算单元发送的查询应答消息或上游节点发来的路径 (path)消 息后, 根据消息中次要显式路由对象 (SERO)包含的 FA LSP的路径信息确定 本节点是否某层 FA LSP的首节点,如是,则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点, 所述查询 应答消息中包括所述节点所在的业务路径所包含的每层 FA LSP的路径信息, 且每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中。
其中,所述节点还设置为:在确定本节点为下一层 FA LSP的首节点并确 定下一层 FA LSP的尾节点后,通过标准的标签交换路径 (LSP)创建信令流程, 在下一层 FA LSP的首、尾节点之间创建下一层 LSP,且该节点将收到的所述 查询应答消息或 path消息中除封装有下一层 FA LSP路径信息的 SERO外的 其他封装有 FA LSP路径信息 SERO, 保留在发送到下一层 FA LSP下游节点 的 path消息中; 以及,
在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。
其中, 所述 SERO为具有新的类型 (C-Type)值的 SERO中, 所述 SERO 中的各节点子对象为 FA LSP路径上的各节点。
其中, 所述每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP包含的各个节点的标识信息;
所述节点是设置为: 收到所述查询应答消息或 path消息后, 如判断消息 中包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取 其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP 的路径信息中首节点的所述标识信息比较,如与某层 FA LSP的首节点的所述 标识信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的 首节点的所述标识信息均不相同,则确定本节点不是任何一个 FA LSP的首节 点
本发明还提供一种支持确定转发邻接标签交换路径 (FA LSP)上首尾节点 的路径计算单元, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点, 以 使所述业务路径上的节点收到所述查询应答消息或上游节点发来的路径 (path) 消息后, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本节点是否 某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根据 该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
工业实用性
本发明用于上层信令触发模型中 FA LSP的自动建立,通过对资源预留协 议(RSVP: Resource reSerVation Protocol)中的次要显式路由对象(SERO: Secondary Explicit Route Object )增加新的类型, 并把 SERO引入到路径计算 单元通讯协议 ( PCEP: Path Computation Element communication Protocol )中 , 给出了结合 SERO对象进行 FA LSP的自动建立流程, 使得层边界首节点能 够确定 FA LSP上的首、 尾节点。

Claims

权 利 要 求 书
1、 一种确定转发邻接标签交换路径 (FA LSP)上首尾节点的方法, 应用于 使用上层信令触发模型建立 FA LSP的多层网络中, 该方法包括:
路径计算单元在计算出的业务路径包含一层或多层 FA LSP时, 将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中,和业务路径 信息一起通过查询应答消息返回给发起查询的第一层首节点;
所述业务路径上的节点收到所述查询应答消息或上游节点发来的路径 (path)消息, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本节点是 否某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根 据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
2、 如权利要求 1所述的方法, 还包括:
所述业务路径上的节点确定本节点为下一层 FA LSP的首节点并确定下 一层 FA LSP的尾节点后, 通过标准的标签交换路径 (LSP)创建信令流程, 在 下一层 FA LSP的首、尾节点之间创建下一层 LSP,且该节点将收到的所述查 询应答消息或 path消息中除封装有下一层 FA LSP路径信息的 SERO外的其 他封装有 FA LSP路径信息 SERO , 保留在发送到下一层 FA LSP下游节点的 path消息中。
3、 如权利要求 1或 2所述的方法, 还包括:
所述业务路径上的节点如确定本节点不是任何一个 FA LSP的首节点,则 将收到的所述查询应答消息或路径 (path)消息中所有的 SERO保留在发送到下 游节点的 path消息中。
4、 如权利要求 1或 2所述的方法, 其中:
所述 SERO是具有新的类型 (C-Type)值的 SERO,所述 SERO中的各节点 子对象为 FA LSP路径上的各节点。
5、 如权利要求 4所述的方法, 其中:
所述每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP 包含的各个节点的标识信息。
6、 如权利要求 5所述的方法, 其中:
所述业务路径上的节点确定本节点是否某层 FA LSP的首节点的步骤包 括: 所述业务路径上的节点收到所述查询应答消息或 path消息, 如判断消息 中包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取 其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP 的路径信息中首节点的标识信息比较,如与某层 FA LSP的首节点的所述标识 信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的首节 点的所述标识信息均不相同, 则确定本节点不是任何一个 FA LSP的首节点。
7、 一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的多层网络, 包括路径计算单元和各层节点, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点; 所述业务路径上的节点设置为: 收到所述查询应答消息或上游节点发来 的路径 (path)消息, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本 节点是否某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
8、 如权利要求 7所述的多层网络, 其中:
所述业务路径上的节点还设置为:
在确定本节点为下一层 FA LSP的首节点并确定下一层 FA LSP的尾节点 后, 通过标准的标签交换路径 (LSP)创建信令流程, 在下一层 FA LSP的首、 尾节点之间创建下一层 LSP, 且该节点将收到的所述查询应答消息或 path消 息中除封装有下一层 FA LSP路径信息的 SERO外的其他封装有 FA LSP路径 信息 SERO, 保留在发送到下一层 FA LSP下游节点的 path消息中; 以及, 在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。
9、 如权利要求 7或 8所述的多层网络, 其中:
所述 SERO为具有新的类型 (C-Type)值的 SERO,所述 SERO中的各节点 子对象为 FA LSP路径上的各节点。
10、 如权利要求 9所述的多层网络, 其中:
每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP包含 的各个节点的标识信息;
所述业务路径上的节点是设置为收到所述查询应答消息或 path消息, 如 判断消息中包含具有新的类型值的 SERO , 则解析所有具有新的类型值的 SERO, 获取其中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与 各层 FA LSP的路径信息中首节点的所述标识信息比较, 如与某层 FA LSP的 首节点的所述标识信息相同,则确定本节点是该层 FA LSP的首节点,如与各 层 FA LSP的首节点的所述标识信息均不相同, 则确定本节点不是任何一个 FA LSP的首节点。
11、 一种可确定转发邻接标签交换路径 (FA LSP)上首尾节点的节点, 所 述节点设置为:
收到路径计算单元发送的查询应答消息或上游节点发来的路径 (path)消 息后, 根据消息中次要显式路由对象 (SERO)包含的 FA LSP的路径信息确定 本节点是否某层 FA LSP的首节点,如是,则获知该 FA LSP为下一层 FA LSP, 再根据该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点, 所述查询 应答消息中包括所述节点所在的业务路径所包含的每层 FA LSP的路径信息, 且每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中。
12、 如权利要求 11所述的节点, 其中: 所述节点还设置为:
在确定本节点为下一层 FA LSP的首节点并确定下一层 FA LSP的尾节点 后, 通过标准的标签交换路径 (LSP)创建信令流程, 在下一层 FA LSP的首、 尾节点之间创建下一层 LSP, 且该节点将收到的所述查询应答消息或 path消 息中除封装有下一层 FA LSP路径信息的 SERO外的其他封装有 FA LSP路径 信息 SERO, 保留在发送到下一层 FA LSP下游节点的 path消息中; 以及, 在确定本节点不是任何一个 FA LSP的首节点后,将收到的所述查询应答 消息或路径 (path)消息中所有的 SERO保留在发送到下游节点的 path消息中。
13、 如权利要求 11或 12所述的节点, 其中: 所述 SERO是具有新的类型 (C-Type)值的 SERO,所述 SERO中的各节点 子对象为 FA LSP路径上的各节点。
14、 如权利要求 13所述的节点, 其中:
所述每层 FA LSP的路径信息包括从首节点开始按序排列的该层 FA LSP 包含的各个节点的标识信息;
所述节点是设置为: 收到所述查询应答消息或 path消息, 如判断消息中 包含具有新的类型值的 SERO, 则解析所有具有新的类型值的 SERO, 获取其 中包含的 FA LSP的路径信息, 并将本节点的所述标识信息与各层 FA LSP的 路径信息中首节点的所述标识信息比较,如与某层 FA LSP的首节点的所述标 识信息相同, 则确定本节点是该层 FA LSP的首节点, 如与各层 FA LSP的首 节点的所述标识信息均不相同, 则确定本节点不是任何一个 FA LSP的首节 点。
15、 一种支持确定转发邻接标签交换路径 (FA LSP)上首尾节点的路径计 算单元, 其中:
所述路径计算单元设置为:在计算出的业务路径包含一层或多层 FA LSP 时,将每层 FA LSP的路径信息分别封装在一个次要显式路由对象 (SERO)中, 和业务路径信息一起通过查询应答消息返回给发起查询的第一层首节点, 以 使所述业务路径上的节点收到所述查询应答消息或上游节点发来的路径 (path) 消息后, 根据消息中所述 SERO包含的 FA LSP的路径信息确定本节点是否 某层 FA LSP的首节点, 如是, 则获知该 FA LSP为下一层 FA LSP, 再根据 该下一层 FA LSP的路径信息确定下一层 FA LSP的尾节点。
PCT/CN2010/072464 2009-08-14 2010-05-05 一种确定转发邻接标签交换路径上首尾节点的方法及系统 WO2011017946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/258,194 US9191308B2 (en) 2009-08-14 2010-05-05 Method and system for determining initiator and terminator in forwarding adjacency label switched path
EP10807891.6A EP2466813B1 (en) 2009-08-14 2010-05-05 Method and system for determining initiator and terminator in forwarding adjacency label switched path

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910165291.9 2009-08-14
CN200910165291.9A CN101997760B (zh) 2009-08-14 2009-08-14 一种确定转发邻接标签交换路径上首尾节点的方法及系统

Publications (1)

Publication Number Publication Date
WO2011017946A1 true WO2011017946A1 (zh) 2011-02-17

Family

ID=43585914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072464 WO2011017946A1 (zh) 2009-08-14 2010-05-05 一种确定转发邻接标签交换路径上首尾节点的方法及系统

Country Status (4)

Country Link
US (1) US9191308B2 (zh)
EP (1) EP2466813B1 (zh)
CN (1) CN101997760B (zh)
WO (1) WO2011017946A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103004148B (zh) * 2011-06-15 2015-05-13 华为技术有限公司 用于建立多层路径的方法及其装置和系统
US9172658B2 (en) * 2013-01-21 2015-10-27 Ciena Corporation Call setup systems and methods using dynamic link tagging and overbooking of links in multi-domain transport networks
CN110943923B (zh) * 2018-09-21 2023-09-12 中兴通讯股份有限公司 一种lsp建立方法、装置、设备和计算机存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163090A (zh) * 2006-10-09 2008-04-16 华为技术有限公司 一种业务路径的计算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831700B2 (en) 2006-10-16 2010-11-09 Futurewei Technologies, Inc. Distributed PCE-based system and architecture in multi-layer network
US8325706B2 (en) * 2007-11-26 2012-12-04 Verizon Patent And Licensing Inc. Hierarchical segmented label switched paths
US8923295B2 (en) * 2009-03-31 2014-12-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for point to multipoint traffic path encoding
CN102598588B (zh) * 2009-10-15 2014-12-10 瑞典爱立信有限公司 网络连接分段监控
CN102065512B (zh) * 2009-11-12 2013-08-07 中兴通讯股份有限公司 多层网络中区域边界控制的方法、建立连接的方法和系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163090A (zh) * 2006-10-09 2008-04-16 华为技术有限公司 一种业务路径的计算方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALCATEL, GMPLS SEGMENT RECOVERY, RFC4873, May 2007 (2007-05-01), XP015052418 *
DATA CONNECTION LTD.: "draft-mcwalter-mpls-tp-recovery-cp-analysis-00.txt", MPLS-TP RECOVERY CONTROL PLANE ANALYSIS, 1 July 2009 (2009-07-01), XP015062937 *
NTT: "draft-ietf pce-inter-layer-frwk-10.txt", FRAMEWORK FOR PCE-BASED INTER-LAYER MPLS AND GMPLS TRAFFIC ENGINEERING, March 2009 (2009-03-01), XP015061196 *
See also references of EP2466813A4 *
ZTE CORPORATION: "draft-lin-pce-ccamp-multilayer-lsp-00", A PATH COMPUTATION ELEMENT (PCE) SOLUTION FOR MULTILAYER LSP, 19 October 2009 (2009-10-19), XP015064720 *

Also Published As

Publication number Publication date
EP2466813A1 (en) 2012-06-20
US20120134296A1 (en) 2012-05-31
CN101997760B (zh) 2015-08-12
EP2466813A4 (en) 2014-04-09
US9191308B2 (en) 2015-11-17
CN101997760A (zh) 2011-03-30
EP2466813B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP5543596B2 (ja) マルチレイヤネットワークにおいてフォワーディング隣接のプロパティの継承方法及び相応のマルチレイヤネットワーク
US8588611B2 (en) Method for establishing an inter-domain path that satisfies wavelength continuity constraint
US8848538B2 (en) Power-saving functions in communications networks
JP5200170B2 (ja) トラフィック接続および関連監視接続を確立する方法
US9350620B2 (en) Method for creating ring network label switched path, related device, and communications system
US9210075B2 (en) Method and apparatus for managing end-to-end consistency of bi-directional MPLS-TP tunnels via in-band communication channel (G-ACH) protocol
US10484299B2 (en) Method and apparatus for configuring quality of service
US20150103691A1 (en) Method and apparatus for multi-instance control plane for dynamic mpls-tp tunnel management via in-band communication channel (g-ach)
WO2006122506A1 (fr) Procede et appareil pour calculer un chemin d'acces dans un domaine de reseau
WO2014012207A1 (zh) 标记交换路径建立方法、数据转发方法及设备
WO2017193569A1 (zh) 一种路径建立方法及控制器
WO2015035616A1 (zh) 跨网通信方法及装置
JP5204308B2 (ja) トラフィック接続および関連監視接続を確立する方法
WO2007019758A1 (fr) Méthode, système et appareil d’implémentation d’ingénierie de trafic
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
WO2011017946A1 (zh) 一种确定转发邻接标签交换路径上首尾节点的方法及系统
CN101945048A (zh) 一种标签交换路径的建立方法、系统及装置
WO2008011771A1 (fr) Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique
WO2013037319A1 (zh) 标签转发路径的带宽资源管理方法、装置和系统
WO2021052364A1 (zh) 业务路径的建立方法、装置、电子设备及可读存储介质
WO2013013577A1 (zh) 标签转发路径的带宽资源管理方法、装置和系统
Xia Research on signaling mechanism based on convergence network
US9876734B2 (en) Method and system for processing RSVP-TE signaling
WO2010022600A1 (zh) 多层网络连接建立方法、节点设备及多层网络系统
WO2012171191A1 (zh) 用于建立多层路径的方法及其装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010807891

Country of ref document: EP