WO2011017932A1 - 光电处理装置及约束信息的处理方法 - Google Patents

光电处理装置及约束信息的处理方法 Download PDF

Info

Publication number
WO2011017932A1
WO2011017932A1 PCT/CN2010/071890 CN2010071890W WO2011017932A1 WO 2011017932 A1 WO2011017932 A1 WO 2011017932A1 CN 2010071890 W CN2010071890 W CN 2010071890W WO 2011017932 A1 WO2011017932 A1 WO 2011017932A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
layer
processing device
wavelength
Prior art date
Application number
PCT/CN2010/071890
Other languages
English (en)
French (fr)
Inventor
谢刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20100807877 priority Critical patent/EP2466766B1/en
Priority to US13/259,987 priority patent/US8682176B2/en
Priority to ES10807877.5T priority patent/ES2538394T3/es
Publication of WO2011017932A1 publication Critical patent/WO2011017932A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the present invention relates to the field of communications, and in particular to an optoelectronic processing apparatus and a method of processing constraint information. Background technique
  • the transmission network not only needs to be able to provide large bandwidth, but also requires the transmission network to be flexibly scheduled and implement the function of Operation Administration and Maintenance (abbreviated as ⁇ ).
  • Operation Administration and Maintenance
  • the transmission network mainly uses Synchronous Digital Hierarchy (SDH) technology or wavelength division multiplexing.
  • WDM Wavelength Division Multiplexing
  • SDH technology mainly deals with electrical layer signals. Its advantages are flexible scheduling, rich protection functions, and perfect OAM. However, since the largest scheduled particle of SDH is virtual container VC4, the scheduling granularity is small, so it cannot meet the growing business demand. WDM technology mainly deals with optical layer signals and provides large bandwidth by multiplexing multiple wavelengths. However, optical layer processing has physical limitations, such as optical damage, wavelength conversion, etc., so there is no flexible scheduling for electrical layer signal processing. And a wealth of protection features, therefore, WDM technology is usually only used in point-to-point or ring network scenarios. In response to the shortcomings of SDH and WDM technologies, the International Telecommunications Union-Telecommunications Standardization Sector (ITU-T) proposes a new transmission architecture Optical Transport Network (OTN).
  • ITU-T International Telecommunications Union-Telecommunications Standardization Sector
  • wavelength converter function As a wavelength-switched optical network.
  • WSON Wavelength Switch Optical Network
  • OCh and ODUk inter-layer adapter function as a multi-layer/multi-network or multiple layer network (Multi-layer Network/Multiple Region Network, MRN/MLN for short) With information. Since these information are abstracted separately and are not associated, the management and maintenance of information is complicated.
  • the present invention has been made in view of the problems in the related art that wavelength conversion, 3R regeneration, optical layer service signals, and electrical layer service signals are separately described in different scenarios, resulting in complicated management and maintenance of information. Accordingly, it is a primary object of the present invention to provide an improved optoelectronic processing apparatus that addresses the above problems. In order to achieve the above object, according to an aspect of the invention, an optoelectronic processing apparatus is provided.
  • the optoelectronic processing device is further configured to manage and process the signal according to the inter-link constraint information, wherein the constraint information includes at least one of the following: a processor function flag of the optoelectronic processing device Number, input wavelength range, output wavelength range, encoding format of the wavelength-carrying signal, rate of wavelength-carrying signal, use of the optoelectronic processing device.
  • the scheduling unit is configured to schedule the 3R regeneration unit to process the signal if the function flag parameter takes a value of 3R regeneration, in order to describe the 3R regeneration capability of the optoelectronic processing device.
  • the scheduling unit is configured to: when the function flag parameter takes a value of the wavelength conversion, the scheduling wavelength conversion unit processes the signal to describe the wavelength conversion capability of the photoelectric processing device.
  • the scheduling unit is configured to schedule the inter-layer adaptation unit when the function flag parameter value is the inter-optical layer adaptation, so as to describe the inter-optical layer adaptation capability of the optoelectronic processing device.
  • the optoelectronic processing device is specifically configured to perform 3R regeneration, wavelength conversion or inter-optical layer adaptation function when the provided signal coding mode and the coding mode and rate of the wavelength-bearing signal are consistent.
  • the optical damage calculation unit is further configured to: after the signal is exchanged from the OCh link through the OCh, and then the inter-layer adaptation unit converts the signal from the OCh layer to the ODUk layer, and then switches from the ODUk to the ODUk link, and then stops. Calculate the optical damage of the signal.
  • a method of processing constraint information includes: when a node to which the photoelectric processing device belongs establishes a connection with other nodes, the node floods the constraint information managed by the photoelectric processing device, calculates a route, and performs a hop-by-hop verification constraint according to the route.
  • the optoelectronic processing device is configured to manage and process the signal according to the inter-link constraint information
  • the constraint information includes at least one of the following: a processor function flag of the optoelectronic processing device, an input wavelength range, an output wavelength range, and a wavelength bearing signal.
  • the optoelectronic processing device includes: a 3R reproducing unit that re-amplifies, reshapes, and retimes the signal, and a wavelength converting unit that performs wavelength conversion on the signal, and the signal Inter-layer adapter for conversion between OCh layer and ODUk layer And a scheduling unit that schedules the 3R regeneration unit, the wavelength conversion unit, and the inter-layer adaptation unit according to the function identification parameter of the optoelectronic processing device to process the signal.
  • a method of processing constraint information is also provided.
  • the method for processing the constraint information of the present invention includes: the node to which the photoelectric processing device belongs is in the process of establishing a connection with other nodes, the route is calculated by the connected source node, and the constraint information is separately verified by each node in the route, wherein
  • the optoelectronic processing device is configured to manage and process the signal according to the inter-link constraint information, and the constraint information includes at least one of the following: a processor function flag of the optoelectronic processing device, an input wavelength range, an output wavelength range, an encoding format of the wavelength-bearing signal, The rate at which the wavelength carries the signal, and the use of the photoelectric processing device;
  • the photoelectric processing device includes: a 3R regeneration unit that re-amplifies, reshapes, and retimes the signal, and a wavelength conversion unit that performs wavelength conversion on the signal, and the signal is in the OCh layer and An inter-layer adaptation unit that converts between ODUk layers, and a scheduling
  • the 3R regeneration capability, the inter-layer adaptation capability, and the wavelength conversion capability are uniformly described by using the photoelectric processor information model, and the wavelength conversion, 3R regeneration, optical layer service signal, and electrical layer in the related art are solved.
  • the conversion function between service signals is described in different scenarios, which causes complicated management and maintenance of information, which simplifies the management of OTN equipment and uniformly manages 3R regeneration, wavelength conversion and inter-optical layer adaptation information.
  • FIG. 1 is a schematic diagram of an OTN architecture according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an OTN device model according to an embodiment of the present invention
  • FIG. 3 is an optoelectronic processor according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of information description of an optoelectronic processor information in an OTN network model according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of message interaction when optoelectronic processor information establishes a connection in an OTN network according to an embodiment of the present invention
  • FIG. 6 is a flowchart of processing of optoelectronic processor information when a connection is established according to an embodiment of the present invention.
  • An optical processing device for use in an OTN device, that is, an opto-interlayer processor model of an OTN device is provided, and a related function of the OTN device in processing photoelectric conversion is introduced by introducing the model, the related function It includes wavelength conversion, 3R regeneration, and conversion between optical layer service signals and electrical layer service signals, which simplifies the management of OTN equipment and achieves the purpose of unified management of 3R regeneration, wavelength conversion and inter-optical layer adaptation information.
  • the functions implemented by the optoelectronic processing device include: 3R regeneration for re-amplifying, reshaping, and retiming the signal; wavelength conversion for wavelength conversion of the signal; inter-layer adaptation, The signal is converted between the OCh layer and the ODUk layer.
  • an optoelectronic processing apparatus ie, an optoelectronic processor
  • the optoelectronic processing apparatus comprises: a 3R regeneration unit, a wavelength conversion unit, and an inter-layer adaptation unit. , scheduling unit, the function of the device is described in detail below.
  • a 3R regeneration unit ie, for providing 3R regeneration capability for re-amplifying, reshaping, and retiming the signal
  • a wavelength conversion unit ie, for providing wavelength conversion capability for wavelength conversion of the signal
  • the adaptation unit ie, is used to provide an inter-layer adapter function for converting signals between the OCh layer and the ODUk layer.
  • the optoelectronic processing device manages and performs related processing on the signal according to the inter-link constraint information, and the constraint information includes: a function identifier parameter of the optoelectronic processor, an input wavelength range, an output wavelength range, and a wavelength The encoding format of the bearer signal, the rate at which the wavelength carries the signal, and the use of the optoelectronic processor.
  • the processor function flag parameter in the optoelectronic processor information is used to describe the 3R regeneration capability of the optoelectronic processor during 3R regeneration (ie, the scheduling unit schedules the 3R regeneration unit to process the signal); the processor in the optoelectronic processor information
  • the function flag parameter is used to describe the wavelength conversion capability of the optoelectronic processor during wavelength conversion (ie, the scheduling unit schedules the 3R regeneration unit to process the signal); the processor function flag parameter in the optoelectronic processor information takes the value of the inter-layer
  • the adaptation is used to describe the inter-optical layer adaptation capability of the optoelectronic processor (ie, the scheduling unit schedules the 3R regeneration unit to process the signal).
  • the processor function flag parameter in the optoelectronic processor information is a combination of 3R regeneration, wavelength conversion or inter-optical layer adaptation of the optoelectronic processor when the value of the combination in 3R regeneration, wavelength conversion or inter-optical layer adaptation is taken. Capability (ie, the scheduling unit schedules the combination of the above three units to process the signal).
  • the signal processing mode and the rate specifically provided by the optoelectronic processing device are used to perform 3R regeneration, wavelength conversion or inter-optical layer adaptation function when the encoding and the rate of the wavelength-bearing signal are consistent.
  • the apparatus further comprises: an optical damage calculation unit, configured to recalculate optical damage of the signal after the signal is processed by the 3R regeneration unit or the wavelength conversion unit.
  • the optical damage calculation unit is further configured to perform signal conversion from the ODUk layer link through the ODUk, and then the inter-layer adaptation unit converts the signal from the ODUk layer to the OCh layer, and then converts the signal from the OCh to the OCh link to start calculating the signal.
  • the optical damage calculation unit is also used to convert the signal from the OCh link through the OCh, and then the inter-layer adaptation unit converts the signal from the OCh layer to the ODUk layer, and then switches from the ODUk to the ODUk link, and then stops. Calculate the optical damage of the signal.
  • the devices involved in the present embodiment will be described below.
  • Optical cross matrix The optical cross matrix is mainly used to exchange OCh signals.
  • a typical optical cross-matrix device can be fixed ADD Drop Multiplexer (FOADM), Reconfigurable ADD Drop Multiplexer (ROADM), optical cross-connect (Optical) Cross Connect (referred to as OXC), Photonic Cross Connect (PXC), etc., where FOADM, ROADM, and OXC cannot guarantee full-wavelength switching due to device limitations.
  • Electrical Cross Matrix The electrical cross matrix is mainly used to exchange ODUk signals.
  • Photoelectric processor that is, an optoelectronic processing device for performing conversion processing of photoelectric signals, including 3R regeneration capability, photoelectric adaptation capability, wavelength conversion capability, etc. Depending on the application scenario, the optoelectronic processor contains different functions.
  • the optoelectronic processor mainly includes the following three functions: Function 1: 3R regenerator as OTN equipment, that is, 3R regenerative unit. Due to the limitations of existing optical devices, pure optical devices only have amplification (Regeneration, referred to as 1R) (typical devices are optical amplifiers) and amplification and reshaping (Regeneration Reshaping, 2R for short) (typical devices are all-optical wavelength conversion) The function of the device). If you want to have 3R (amplification, integer and timing) functions, you need to pass the OEO way.
  • Regeneration referred to as 1R
  • Regeneration Reshaping typically devices are all-optical wavelength conversion
  • the relevant parameters used for the function description of the optoelectronic processor as the 3R regenerator include: the wavelength range, the encoding mode of the wavelength-bearing signal, and the rate of the wavelength-bearing signal.
  • Function 2 As a wavelength converter of an OTN device, that is, a wavelength conversion unit. Since the existing pure optical wavelength converter is not mature in technology, the pure optical wavelength converter cannot be practically applied to the OTN device. Therefore, if the existing OTN device needs to perform wavelength conversion, it is still performed by the OEO method.
  • the relevant parameters for the functional description of the optoelectronic processor as a wavelength converter include: input wavelength range, output wavelength range, encoding format of the wavelength-bearing signal, and rate of the wavelength-bearing signal.
  • Function 3 As the OCh and ODUk inter-layer adapter of the OTN device, that is, the inter-layer adaptation unit. Because the OTN device has the interface switching capability of the optical layer and the electrical layer, the Lambda Switch Capable (LSC) and the Time Division Multiple (TDM), the OTN device needs to be simultaneously These two exchange capabilities are managed. When the service passes through the optoelectronic two layers, the service signal needs to be converted between the OCh layer and the ODUk layer.
  • the relevant parameters for the functional description of the optoelectronic processor as the OCh and ODUk inter-layer adapter include: input wavelength range, output wavelength range, encoding format of the wavelength-bearing signal, and rate of the wavelength-bearing signal.
  • the relevant parameters in the above capabilities are basically similar, the above three functions are uniformly described by using a unified photoelectric processor information model, and the related parameters include: photoelectric processor function flag parameter, input wavelength range, output wavelength range, and wavelength bearing signal.
  • the encoding format the rate at which the wavelength carries the signal, and the use of the optoelectronic processor.
  • the processor function flag parameter is used to instruct the processor to implement one or more capabilities.
  • the relevant parameters of the 3R regenerator only the wavelength range has no input wavelength range and output wavelength range, but for the purpose of uniform definition, the definition of the input wavelength range and the output wavelength range is also used when describing the 3R regeneration capability, but only the input wavelength range and the output wavelength. The range is the same.
  • FIG. 1 is a schematic diagram of an OTN architecture according to an embodiment of the present invention, wherein the upper half of FIG. 1 is a topological component corresponding to the adaptation and termination of the optoelectronic processor, and the lower half of FIG. 1 is proposed.
  • the topological components of the optoelectronic processor, the optoelectronic processor topology component symbols borrow the symbols of the G800 mid-layer processor topology components, and will not be described here.
  • OTN architecture is divided into six layers: Optical Payload Unit (OPU), Optical Data Unit (ODU), Optical Transport Unit (Operation), OCh, Optical Multiplex Layer (OMS), Optical Transpor Layer (OTS).
  • OPU Optical Payload Unit
  • ODU Optical Data Unit
  • Operation Optical Transport Unit
  • OCh Optical Multiplex Layer
  • OMS Optical Transpor Layer
  • 2 is a structural block diagram of an OTN device model according to an embodiment of the present invention. As shown in FIG. 2, the corresponding relationship between the above six layers and the actual device model is as follows: Interface adaptation processing unit: used to receive the client side interface The signal is adapted and loaded into the payload of the OPU, and then the OPU signal is terminated. The terminated OPU signal is loaded into the payload of the ODU by adaptation, and then the ODU signal is terminated.
  • Interface adaptation processing unit used to receive the client side interface
  • the signal is adapted and loaded into the payload of
  • the terminated ODU signal is loaded into the payload of the ODU by adaptation, and then the ODU signal is terminated. .
  • ODUk cross unit used to schedule the terminated ODUk signal. Since the ODUk is further divided into multiple layers at the ODU layer, the ODUk cross unit is also responsible for adapting, terminating, and multiplexing between different levels of ODUk. operating.
  • Line interface processing unit Used to adapt the terminated ODUk signal to the OTUk payload, and then terminate the OTUk signal. The terminated OTUk signal is loaded into the OCh payload by adaptation, and then the OCh signal is terminated. At the same time, the line interface processing unit is also used to adapt the final OCh signal to the OCh payload, and then terminate the OCh signal. The final OCh signal is loaded into the OTUkh payload by adaptation and the OTUk signal is terminated.
  • OCh cross unit Used to schedule the terminated OCh signal.
  • Optical multiplex section processing unit used to adapt the terminated OCh signal, multiplexed and loaded
  • OMS payload is then terminated by the OMS signal.
  • Optical transmission section processing unit Used to adapt the terminated OMS signal, load it into the OTS payload, then terminate the OTS signal, and finally send it to the main track.
  • the photoelectric processor of the embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2.
  • An optoelectronic processor in accordance with an embodiment of the present invention is located between the ODUk and OCh layers in FIG. 1, corresponding to the line interface processing unit of FIG.
  • the main functions of the optoelectronic processor in the OTN equipment include OCh and ODUk inter-layer adaptation capability, 3R regenerative capability and wavelength conversion capability.
  • FIG. 3 is a schematic structural diagram of an optoelectronic processor application device according to an embodiment of the present invention, and the model in FIG. 3 can cover all OTN device instances by cropping.
  • the optoelectronic processor is a model, it does not completely correspond to a specific device in practical applications, so the optoelectronic processor in the device described below actually corresponds to the device included in the device.
  • the function of the optoelectronic processor, rather than the device form of the specific optoelectronic processor; as shown in Figure 3, the devices described in the figure are models and do not represent the actual number of devices. For example, device 2 may correspond to Multiple sets of actual devices.
  • Devices 1 and 5 process the signals accessed by the client-side interface, perform scheduling switching to other network elements through the OCh cross-unit, or convert the OCh signals into client signals through a series of reverse terminations and adaptations.
  • the device includes the functions of the interface adaptation processing unit and the line interface processing unit in FIG. 2.
  • the optoelectronic processor cannot correspond to one device in this case, but corresponds to the OCh/OTUk/ODUk function in devices 1 and 5. .
  • the main function of the optoelectronic processor is the inter-layer adaptation of OCh and ODUk.
  • Devices 2 and 4 convert the OCh signal to an ODUk signal through a series of reverse terminations and adaptations; or convert and terminate the ODUk signal to an OCh signal.
  • the functions of the optoelectronic processor are the inter-layer adaptation function of OCh and ODUk, the wavelength conversion function and the 3R reproduction function.
  • the specific description is as follows: If the OCh signal is converted into the ODUk signal in the device 2/4, the ODUk switching unit is switched to the interface adaptation processing unit and then converted into the client signal, or the ODUk signal encapsulating the customer data is converted into the OCh signal and then passed.
  • the OCh switching unit exchanges, then the optoelectronic processor in the device 2 / 4 mainly completes the inter-layer adaptation function of OCh and ODUk; if the device 2 / 4 converts the OCh signal into the ODUk signal, it is directly exchanged through the ODUk switching unit to The other set of devices is 2/4, and then converted to OCh signals for exchange by the OCh switching unit. If the wavelength of the OCh signal before conversion to ODUk and the wavelength after ODUk exchange and ODUk are converted to OCh are the same, then the photo processor in device 2 / 4 Mainly complete 3R regeneration function, if not consistent, then device 2 / 4 mainly complete 3R regeneration and wavelength conversion function.
  • the device 3 converts the OCh signal into an OTUk signal through reverse termination and adaptation, and then converts the reproduced OTUk signal into an OCh signal through termination and adaptation after the 3R process.
  • the main functions of the optoelectronic processor are the wavelength conversion function and the 3R adaptation function. Similar to devices 2 and 4, if the wavelength corresponding to the OCh signal of device 3 converted to OTUk is the same as the wavelength of the OCh signal converted by OTUk after 3R regeneration, device 3 completes the 3R regeneration function; if not, device 3 is completed. Wavelength conversion and 3R regeneration. 4 is a schematic diagram of information description of an optoelectronic processor information in an OTN network model according to an embodiment of the present invention, and FIG.
  • a white node represents a pure optical layer node, where There is no ODUk switching unit in the node device, which is mainly used for long-distance thousand lines.
  • the gray node is a hybrid node that includes both an OCh exchange unit and an ODUk exchange unit.
  • the solid line is the OCh link and is used to carry the OCh connection.
  • the dotted line is the ODUk link used to carry the ODUk connection.
  • the OTN network topology management manages node information and link information respectively.
  • the link information mainly includes: interface switching capability (TDM/LSC), link cost, maximum bandwidth, unreserved bandwidth, maximum reserved bandwidth, and protection. Attribute, minimum bandwidth, Shared Risk Link Group (SRLG), etc.
  • the node information mainly includes a node identifier (ID, referred to as ID).
  • ID node identifier
  • the optoelectronic processor information is used to describe the constraint information between the link and the link, and therefore can be managed as node information.
  • the main constraint between OCh links is 3R regenerative capability.
  • the constraint between the OCh link and the ODUk link is the OCh and ODUk inter-layer adaptation capability.
  • the value and processing method of the photoelectric processor information parameters are described as follows: Since the description is made using the unified photoelectric processor information, different capabilities are described according to the values of the processor function flags.
  • Processor function flag 3R regenerative I wavelength conversion I inter-layer adaptation
  • Input wavelength range wavelength that the optoelectronic processor can input Range, for example, ⁇ 1- ⁇ 20
  • Output wavelength range input wavelength range
  • encoding format of the carrier signal encoding format of the signal, eg ODU ITU-T G.709
  • rate of wavelength-bearing signal actual rate of the signal, eg, lOGbps; use of optoelectronic processor
  • the situation indicates that the current optoelectronic processor is processing an idle state or is in use.
  • the optical layer link and the electrical layer link have inter-optical layer adaptation capability, and the optical layer link has 3R regenerative capability and wavelength conversion capability at the same time, but the same one is used among multiple sets of links.
  • processor function flag 3R regenerative I wavelength conversion I inter-layer adaptation
  • input wavelength range wavelength range that the optoelectronic processor can input, for example, ⁇ 1- ⁇ 20
  • output wavelength Range range of wavelengths that the optoelectronic processor can output, for example, ⁇ 21- ⁇ 40
  • encoding format of the carrier signal encoding format of the signal, eg ODU ITU-T G709
  • rate of the wavelength-carrying signal actual rate of the signal For example, lOGbps
  • the use of the optoelectronic processor indicates that the current optoelectronic processor handles the idle state or is in use.
  • Wavelength conversion can only be performed when the signal encoding mode and rate carried in the wavelength are the same as the encoding mode and rate of the signal provided in the optoelectronic processor. When the wavelength signal is regenerated by 3R, the previous optical damage information is no longer accumulated, but the optical damage is calculated again.
  • Wavelength conversion capability Due to the limitation of wavelength continuity, when the wavelength is on two OCh links, it cannot be guaranteed. In the case of continuity, it is necessary to convert the wavelength by the wavelength conversion function, but it should be noted that when the OOS wavelength conversion function is performed by the photoelectric processor, the 3R reproduction function is actually performed at the same time, but the 3R reproduction function is not necessarily performed when the function is reversed.
  • the optical damage information does not accumulate after the wavelength conversion, but needs to recalculate the optical damage; also the encoding mode and rate of the signal carried in the wavelength and the encoding of the signal provided in the optoelectronic processor and The wavelength conversion can only be performed when the rates are the same.
  • OCh and ODUk inter-layer adaptation function When the service signal needs to pass the ODUk signal to OCh The inter-layer adaptation capability needs to be processed on the signal, and the wavelength conversion can be performed only when the coding mode and rate of the signal carried in the wavelength are the same as the coding mode and rate of the signal provided in the optoelectronic processor. For example, if the signal rate of the connection to be established is ODU2, but the signal rate of the inter-layer adaptation capability is only ODU1, then the service signal cannot be converted from ODUk to OCh. It should be noted that the inter-layer adaptation function of OCh and ODUk also indicates whether to start or stop the calculation of optical impairment.
  • Method 1 the node floods the constraint information managed by the optoelectronic processing device, calculates a route, and verifies the constraint information hop by hop according to the route; and second, the node establishes a connection with other nodes, A route is calculated by the connected source node, and the constraint information is separately verified by each node in the route.
  • the two methods are described in detail below.
  • the constraint information of the optoelectronic processor is maintained locally, but whether or not flooding is performed depends on the policy of connection establishment. There are two general types: centralized route calculation and constraint verification. This method floods the constraint information of the optoelectronic processor.
  • the source node When performing route calculation, the source node calculates the route and calculates the calculated route hop-by-risk constraint information; centralized route calculation and distributed constraint-risk certificate. This method does not flood the constraint information of the optoelectronic processor.
  • the source node calculates the route, and then in each of the nodes in the process of establishing the connection, the risk information is constrained.
  • the difference between the above two methods is: the former method at the source node-risk all the constraint information, and the latter case verifies the constraint information of the node at each node through which the connection passes, the embodiment of the present invention is the latter method A detailed description is made, and the former method only replaces the distributed constraint-risk certificate with a centralized constraint-risk certificate.
  • FIG. 5 is a schematic diagram of message interaction when the photoelectric processor information is connected in the OTN network according to the embodiment of the present invention.
  • FIG. 5 depicts a message interaction diagram for establishing an ODUk connection in the OTN network.
  • 6 is a flowchart of processing of a photoelectric processor information when a connection is established according to an embodiment of the present invention, and FIG. 6 is a flowchart for describing centralized routing calculation and distributed constraint verification in the scenario of FIG. 5, as shown in FIG.
  • the method includes the following steps: Step S601 to S609: Step 601:
  • the control plane of the node 1 receives a message that the network management station requests to establish an ODUk connection.

Abstract

本发明公开了一种光电处理装置及约束信息的处理方法,该光电处理装置,应用于光传输网络OTN设备中,包括:3R再生单元,用于对信号进行再放大、再整形和再定时;波长变换单元,用于对信号进行波长变换;层间适配单元,用于将信号在OCh层和ODUk层之间进行转换;调度单元,用于根据光电处理装置的功能标识参数对3R再生单元、波长变换单元、层间适配单元进行调度,以便对信号进行处理。通过本发明简化了OTN设备的管理、统一管理了3R再生、波长变换及光电层间适配信息。

Description

光电处理装置及约束信息的处理方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种光电处理装置及约束信息的 处理方法。 背景技术
7 载业务的日益丰富, 特别是数据业务中宽带、 互联网协议电视
( Internet Protocol, 简称为 IPTV )、 视频等业务的快速发展, 对传输网络提 出了新的要求。 传输网络不但要能够提供大的带宽, 更要求传输网络能够进 行灵活的调度, 实现完善的维护与管理 ( Operation Administration and Maintenance , 简称为 ΟΑΜ ) 功能。 相关技术中传输网络主要釆用同步数字 体系 ( Synchronous Digital Hierarchy , 简称为 SDH ) 技术或波分复用
( Wavelength Division Multiplexing, 简称为 WDM )技术, 这两种技术各有 优缺点。
SDH 技术主要进行电层信号的处理, 其优点是有灵活的调度、 丰富的 保护功能、 完善的 OAM。 但是, 由于 SDH 现在最大调度的颗粒为虚容器 VC4, 调度粒度较小, 所以, 不能满足日益增长的业务需求。 WDM 技术主 要进行光层信号的处理, 通过复用多个波长提供大的带宽, 但是, 光层处理 存在物理限制, 例如, 光损伤、 波长变换等, 所以不具有电层信号处理时的 灵活调度和丰富的保护功能, 因此, WDM技术通常只用在点到点或环网的 场景中。 针对 SDH 和 WDM 技术各自的缺点, 国际电信联盟一电信标准部 ( International Telecommunications Union-Telecommunications standardization sector , 简称为 ITU-T ) 提出了新的传输体系架构 光传输网络 ( Optical Transport Network, 简称为 OTN )。 OTN技术包含了光层和电层, 每层都具 有网络生存性机制, 光层和电层之间具有相应的管理监控机制, 从而较好的 解决了上述存在的问题。 同时, OTN网络提供强大的 OAM功能, 在提供比 较大带宽的情况下依然能够对不同颗粒的业务进行灵活的调度。 虽然 OTN技术的提出解决了 SDH和 WDM技术各自的缺陷, 但是却 产生了新的问题: 光电层间适配问题。 在 OTN设备中, 在建立 OCh层网络 连接时, 由于波长的限制, 光-电-光 ( Optic-Electric-Optic , 简称为 O-E-O ) 波长变换的实现、再放大、再整形、再定时( Regenaration, Reshaping, Retiming, 简称为 3R )再生等功能都需要信号从光通道( Optical Channel, 简称为 OCh ) ->光通道传输单元 k ( Optical Channel Transport Unit, 简称为 OTUk ) -光数 据单元 k ( Optical Channel Data Unit, 简称为 ODUk ) ->OCh, 但是, 如果业 务信号经过光电两层, 那 么信号需要从 OCh->OTUk->ODUk 或 ODUk->OTUk->OCh , 所以, OCh/OTUk可以作为 OTN光电层间处理器使 用。 目前, 对于 OTN设备的管理, 将波长转换、 3R再生、 光层业务信号以 及电层业务信号之间的转换功能在不同的场景中分别进行描述, 例如, 波长 变换器功能, 作为波长交换光网络 ( Wavelength Switch Optical Network , 简 称为 WSON )模型中波长转换信息; OCh和 ODUk层间适配器功能, 作为 多层 /多 i或网络 ( Multiple Layer Network/Multiple Region Network, 简称为 MRN/MLN ) 层间适配信息。 由于分别对这些信息进行抽象, 并没有进行关 联, 所以信息的管理和维护复杂。 发明内容 针对相关技术中波长转换、 3R再生、 光层业务信号以及电层业务信号 之间的转换功能在不同的场景中分别进行描述而造成信息的管理和维护复杂 的问题而提出本发明, 为此, 本发明的主要目的在于提供一种改进光电处理 装置, 以解决上述问题。 为了实现上述目的,根据本发明的一个方面,提供了一种光电处理装置。 根据本发明的光电处理装置, 应用于光传输网络 OTN设备中, 包括: 再放大 /再整形 /再定时 3R再生单元, 用于对信号进行再放大、 再整形和再定 时; 波长变换单元, 用于对信号进行波长变换; 层间适配单元, 用于将信号 在光通道 OCh层和光数据单元 ODUk层之间进行转换; 调度单元, 用于根 据光电处理装置的功能标识参数对 3R再生单元、 波长变换单元、 层间适配 单元进行调度, 以便对信号进行处理。 优选地,光电处理装置还用于管理并根据链路间约束信息对信号进行处 理, 其中, 约束信息至少包括以下之一: 光电处理装置的处理器功能标志参 数、 输入波长范围、 输出波长范围、 波长承载信号的编码格式、 波长承载信 号的速率、 光电处理装置的使用情况。 优选地,调度单元用于在功能标志参数取值为 3R再生的情况下调度 3R 再生单元对信号进行处理, 以便于描述光电处理装置的 3R再生能力。 优选地, 调度单元用于在功能标志参数取值为波长变换时, 调度波长变 换单元对信号进行处理, 以便于描述光电处理装置的波长变换能力。 优选地, 调度单元用于在功能标志参数取值为光电层间适配时, 调度层 间适配单元, 以便于描述光电处理装置的光电层间适配能力。 优选地,光电处理装置具体用于在提供的信号编码方式及速率和波长承 载信号的编码方式及速率一致的情况下, 将信号执行 3R再生、 波长变换或 光电层间适配功能。 优选地, 上述光电处理装置还包括: 光损伤计算单元, 用于在信号经过 3R再生单元或波长变换单元处理之后, 重新计算信号的光损伤。 优选地, 光损伤计算单元, 还用于在信号从 ODUk层链路通过 ODUk 交换, 再由层间适配单元将信号进行从 ODUk层到 OCh层转换, 再从 OCh 交换到 OCh链路之后, 开始计算信号的光损伤。 优选地, 光损伤计算单元, 还用于在信号从 OCh链路通过 OCh交换, 再由层间适配单元将信号进行从 OCh层到 ODUk层转换, 再从 ODUk交换 到 ODUk链路之后, 停止计算信号的光损伤。 为了实现上述目的, 居本发明的另一方面, 提供了一种约束信息的处 理方法。 才艮据本发明的约束信息的处理方法包括:光电处理装置所属的节点在与 其他节点建立连接时, 节点将光电处理装置所管理的约束信息进行泛洪, 计 算路由并根据路由逐跳验证约束信息, 其中, 光电处理装置用于管理并根据 链路间约束信息对信号进行处理, 约束信息至少包括以下之一: 光电处理装 置的处理器功能标志、 输入波长范围、 输出波长范围、 波长承载信号的编码 格式、 波长承载信号的速率、 光电处理装置的使用情况; 光电处理装置包括: 对信号进行再放大、 再整形和再定时的 3R再生单元、 对信号进行波长变换 的波长变换单元, 将信号在 OCh层和 ODUk层之间进行转换的层间适配单 元, 以及根据光电处理装置的功能标识参数对 3R再生单元、 波长变换单元、 层间适配单元进行调度, 以便对信号进行处理的调度单元。 为了实现上述目的, 根据本发明的另一方面, 还提供了一种约束信息的 处理方法。 居本发明的约束信息的处理方法包括:光电处理装置所属的节点在与 其他节点建立连接的过程中, 由连接的源节点计算路由, 并由路由中的每个 节点分别验证约束信息, 其中, 光电处理装置用于管理并根据链路间约束信 息对信号进行处理, 约束信息至少包括以下之一: 光电处理装置的处理器功 能标志、 输入波长范围、 输出波长范围、 波长承载信号的编码格式、 波长承 载信号的速率、 光电处理装置的使用情况; 光电处理装置包括: 对信号进行 再放大、 再整形和再定时的 3R再生单元、 对信号进行波长变换的波长变换 单元, 将信号在 OCh层和 ODUk层之间进行转换的层间适配单元, 以及根 据光电处理装置的功能标识参数对 3R再生单元、 波长变换单元、 层间适配 单元进行调度, 以便对信号进行处理的调度单元。 通过本发明, 釆用将 3R再生能力、 层间适配能力、 波长转换能力统一 使用光电处理器信息模型的方式进行描述, 解决了相关技术中波长转换、 3R 再生、 光层业务信号以及电层业务信号之间的转换功能在不同的场景中分别 进行描述而造成信息的管理和维护复杂的问题, 进而简化了 OTN设备的管 理、 统一管理了 3R再生、 波长变换及光电层间适配信息。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例的 OTN体系架构的示意图; 图 2是根据本发明实施例的 OTN设备模型的结构框图; 图 3是根据本发明实施例的光电处理器应用设备的结构示意图; 图 4是 居本发明实施例的光电处理器信息在 OTN网络模型中的信息 描述的示意图; 图 5是根据本发明实施例的光电处理器信息在 OTN网络中建立连接时 的消息交互的示意图; 图 6 是根据本发明实施例的光电处理器信息在连接建立时的处理的流 程图。 具体实施方式 考虑到相关技术中波长转换、 3R再生、 光层业务信号以及电层业务信 号之间的转换功能在不同的场景中分别进行描述而造成信息的管理和维护复 杂的问题, 本发明实施例提供了一种光电处理装置, 应用于 OTN设备中, 即,提供了一种 OTN设备的光电层间处理器模型,通过引入该模型统一 OTN 设备在处理光电转换时的相关功能, 该相关功能包括波长变换、 3R再生和光 层业务信号及电层业务信号之间的转换, 从而简化了 OTN设备的管理, 达 到统一管理 3R再生、 波长变换及光电层间适配信息的目的。 该光电处理装 置 (即, 光电处理器) 实现的功能包括: 3R再生, 用于对信号进行再放大、 再整形和再定时; 波长变换, 用于对信号进行波长变换; 层间适配, 用于将 信号在 OCh层和 ODUk层之间进行转换。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在以下实施例中,在附图的流程图示出的步 4聚可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 根据本发明的实施例, 提供了一种光电处理装置 (即, 光电处理器), 应用于 OTN设备中, 其特征在于, 光电处理装置包括: 3R再生单元、 波长 变换单元、 层间适配单元、 调度单元, 下面对该装置的功能进行详细的介绍。
3R再生单元, 即, 用于提供 3R再生能力, 用于对信号进行再放大、 再 整形和再定时; 波长变换单元, 即, 用于提供波长转换能力, 用于对信号进 行波长变换; 层间适配单元, 即, 用于提供层间适配器功能, 用于将信号在 OCh层和 ODUk层之间进行转换。 光电处理装置管理并根据链路间约束信息对信号执行相关处理,约束信 息包括: 光电处理器的功能标志参数、 输入波长范围、 输出波长范围、 波长 承载信号的编码格式、 波长承载信号的速率、 光电处理器的使用情况。 其中, 光电处理器信息中处理器功能标志参数取值为 3R再生时用于描 述光电处理器的 3R再生能力(即, 调度单元调度 3R再生单元对信号进行处 理);光电处理器信息中处理器功能标志参数取值为波长变换时用于描述光电 处理器的波长变换能力 (即, 调度单元调度 3R再生单元对信号进行处理); 光电处理器信息中处理器功能标志参数取值为光电层间适配时用于描述光电 处理器的光电层间适配能力 (即, 调度单元调度 3R再生单元对信号进行处 理)。 光电处理器信息中处理器功能标志参数取值为 3R再生、 波长变换或光 电层间适配中的组合取值时用于描述光电处理器的 3R再生、 波长变换或光 电层间适配的组合能力 (即, 调度单元调度上述三个单元的组合对信号进行 处理)。 优选地,光电处理装置具体提供的信号编码方式及速率和波长承载信号 的编码方式及速率一致的情况下, 用于将信号执行 3R再生、 波长变换或光 电层间适配功能。 优选地, 该装置还包括: 光损伤计算单元, 用于在信号经过 3R再生单 元或波长变换单元处理之后, 重新计算信号的光损伤。 光损伤计算单元, 还 用于在信号从 ODUk层链路通过 ODUk交换,再由层间适配单元将信号进行 从 ODUk层到 OCh层转换, 再从 OCh交换到 OCh链路之后, 开始计算信号 的光损伤; 光损伤计算单元还用于在信号从 OCh链路通过 OCh交换, 再由 层间适配单元将信号进行从 OCh层到 ODUk层转换, 再从 ODUk 交换到 ODUk链路之后, 停止计算信号的光损伤。 为了更好的说明本实施例, 下面对本实施例中涉及到的器件进行描述。 光交叉矩阵: 光交叉矩阵主要用于对 OCh信号进行交换处理。 典型的 光交叉矩阵设备可固定光分插复用器 ( Fixed ADD Drop Multiplexer, 简称为 FOADM )、 可重构光分插复用器 (Reconfigurable ADD Drop Multiplexer, 简 称为 ROADM )、 光交叉连接(Optical Cross Connect, 简称为 OXC )、 光子交 叉连接 ( Photonic Cross Connect, 简称为 PXC )等, 其中, FOADM、 ROADM 和 OXC由于受器件限制不能保证全波长交换。 电交叉矩阵: 电交叉矩阵主要用于对 ODUk信号进行交换处理。 光电处理器: 即, 光电处理装置, 用于执行光电信号的转换处理, 包括 3R再生能力、 光电适配能力、 波长变换能力等。 根据不同的应用场景, 光电 处理器包含的功能有所不同。 光电处理器主要包含以下 3个功能: 功能一: 作为 OTN设备的 3R再生器, 即, 3R再生单元。 由于受现有 光器件的限制, 纯光器件只具备放大( Regeneration, 简称为 1R ) (典型器件 为光放大器) 和放大和整型 ( Regeneration Reshaping, 简称为 2R ) (典型器 件为全光波长变换器) 的功能。 如果要具备 3R (放大、 整型和定时) 功能, 就需要通过 O-E-O的方式。 光电处理器作为 3R再生器时用于功能描述的相 关参数包括: 波长范围、 波长承载信号的编码方式、 波长承载信号的速率。 功能二: 作为 OTN设备的波长变换器, 即, 波长变换单元。 由于现有 纯光波长变换器在技术上不成熟,导致纯光波长变换器不能实际应用到 OTN 设备中, 所以, 现有的 OTN设备如果需要进行波长变换仍然通过 O-E-O的 方式进行。 光电处理器作为波长变换器时用于功能描述的相关参数包括: 输 入波长范围、 输出波长范围、 波长承载信号的编码格式、 波长承载信号的速 率。 功能三: 作为 OTN设备的 OCh和 ODUk层间适配器, 即, 层间适配 单元。 由于 OTN设备同时具备光层和电层的接口交换能力一波长交换能力 ( Lambda Switch Capable,简称为 LSC )和时分复用( Time Division Multiple, 简称为 TDM ), 所以, 对于 OTN设备, 需要同时对这两种交换能力的业务 进行管理。 当业务经过光电两层时, 业务信号需要在 OCh层和 ODUk层间 进行转换。 光电处理器作为 OCh和 ODUk层间适配器时用于功能描述的相 关参数包括: 输入波长范围、 输出波长范围、 波长承载信号的编码格式、 波 长承载信号的速率。 由于上述能力中的相关参数基本类似,所以使用统一的光电处理器信息 模型对上述三个功能统一描述, 相关参数包括: 光电处理器功能标志参数、 输入波长范围、 输出波长范围、 波长承载信号的编码格式、 波长承载信号的 速率、 光电处理器的使用情况。 其中, 处理器功能标志参数用于指示处理器 实现一种或多种能力。 3R再生器时相关参数中只有波长范围没有输入波长范 围和输出波长范围, 但是为了统一定义, 所以在描述 3R再生能力时也使用 输入波长范围和输出波长范围的定义, 只是输入波长范围和输出波长范围是 相同的。 下面将结合实例对本发明实施例的实现过程进行详细描述。 图 1是才艮据本发明实施例的 OTN体系架构的示意图, 其中, 图 1中的 上半部分是光电处理器对应的适配及终结的拓朴元件, 图 1中的下半部分是 提出的光电处理器的拓朴元件, 光电处理器拓朴元件符号借用 G800中层处 理器拓朴元件的符号, 在此不再赘述。 OTN体系架构总共分为六层: 光净荷单元( Optical Payload Unit, 简称 为 OPU ),光数据单元( Optical Data Unit,简称为 ODU ),光传输单元( Optical Transport Unit, 简称为)、 OCh、 光复用单元 ( Optical Multiplex Layer, 简称 为 OMS ), 光复用单元 ( Optical Transpor Layer, 简称为 OTS )。 图 2是才艮据 本发明实施例的 OTN设备模型的结构框图, 如图 2所示, 上述六层和实际 的设备模型对应关系如下: 接口适配处理单元:用于将客户侧接口收到的信号进行适配后再装载到 OPU的净荷中, 然后终结 OPU信号。 将终结的 OPU信号通过适配的方式装 载到 ODU的净荷中, 然后终结 ODU信号。 还用于将客户侧接口收到的信号 进行适配后再装载到 ODU的净荷中, 然后终结 ODU信号。 将终结的 ODU 信号通过适配的方式装载到 ODU的净荷中, 然后终结 ODU信号。。
ODUk交叉单元:用于对终结后的 ODUk信号进行调度处理,由于 ODUk 在 ODU 层还分为多个层次, 所以, ODUk 交叉单元还负责在不同层次的 ODUk之间进行适配、 终结和复用操作。 线路接口处理单元: 用于将终结后的 ODUk 信号进行适配再装载在 OTUk净荷中, 然后终结 OTUk信号。 将终结的 OTUk信号通过适配装载到 OCh净荷中, 然后终结 OCh信号。 同时线路接口处理单元同时还用于将终 结后的 OCh信号进行适配再装载在 OCh净荷中, 然后终结 OCh信号。 将终 结的 OCh信号通过适配装载到 OTUkh净荷中, 然后终结 OTUk信号。
OCh交叉单元: 用于对终结的 OCh信号进行调度处理。 光复用段处理单元: 用于将终结的 OCh信号进行适配, 复用后装载在
OMS净荷中, 然后终结 OMS信号。 光传输段处理单元: 用于将终结的 OMS信号进行适配, 再装载到 OTS 净荷中, 然后终结 OTS信号, 最后送到主光道中。 下面结合图 1和图 2对本发明实施例的光电处理器进行详细的说明。 根据本发明实施例的光电处理器在图 1中位于 ODUk和 OCh层之间, 与图 2中的线路接口处理单元对应。 光电处理器在 OTN设备中主要实现的功能包括 OCh和 ODUk层间适 配能力、 3R再生能力和波长转换能力。 图 3是才艮据本发明实施例的光电处理 器应用设备的结构示意图, 图 3 中的模型可以通过裁剪覆盖所有的 OTN设 备实例。 需要说明的, 由于光电处理器是一个模型, 所以在实际应用中并不能完 整的对应一个具体的器件, 所以下面所描述的器件中的所说的光电处理器实 际上对应的是器件中包含的光电处理器的功能, 而不是具体的光电处理器的 器件形态; 如图 3所示,该图中所描述的器件均为模型,并不代表实际器件的个数, 例如, 器件②可能对应于多组实际器件。 器件①和⑤将客户侧接口接入的信号进行处理, 通过 OCh交叉单元进 行调度交换到其它网元,或者将 OCh信号通过一系列的反向终结和适配转换 为客户信号。 该器件包含图 2中的接口适配处理单元和线路接口处理单元的 功能, 光电处理器在这种情况下不能够完全对应一个器件, 而是对应器件① 和⑤中的 OCh/OTUk/ODUk功能。 对于器件①和⑤, 光电处理器的主要功能 是 OCh和 ODUk的层间适配功能。 器件②和④将 OCh信号通过一系列的反向终结和适配转换为 ODUk信 号; 或者将 ODUk信号进行适配和终结后转换为 OCh信号。 对于器件②和 ④, 光电处理器的功能是 OCh和 ODUk的层间适配功能、 波长变换功能和 3R再生功能。 具体描述如下: 如果器件② /④中将 OCh信号转换为 ODUk信号后通过 ODUk交换单元 交换到接口适配处理单元再转换为客户信号, 或者将封装好客户数据的 ODUk信号转换为 OCh信号后通过 OCh交换单元进行交换, 那么这时器件 ② /④中的光电处理器主要完成 OCh和 ODUk的层间适配功能; 如果器件② /④将 OCh信号转换为 ODUk信号后通过 ODUk交换单元直 接交换到另一组器件② /④上, 然后转换为 OCh信号通过 OCh交换单元进行 交换。 如果转换为 ODUk 前的 OCh信号的波长和通过 ODUk 交换后再将 ODUk转换为 OCh后的波长如果一致的话, 那么器件② /④中的光电处理器 主要完成 3R再生功能, 如果不一致的话, 那么器件② /④主要完成 3R再生 和波长转化功能。 器件③将 OCh信号通过反向终结和适配转换为 OTUk信号, 然后通过 3R过程后将再生的 OTUk的信号通过终结和适配转换为 OCh信号。 对于器 件③, 光电处理器主要功能是波长转换功能和 3R适配功能。 同器件②和④ 类似, 如果器件③转换为 OTUk的 OCh信号对应的波长如果和 3R再生后 OTUk转换成的 OCh信号的波长相同时, 器件③完成 3R再生功能; 如果不 相同, 那么器件③完成波长转换和 3R再生功能。 图 4是 居本发明实施例的光电处理器信息在 OTN网络模型中的信息 描述的示意图, 图 4描述的是一个典型的 OTN 网络拓朴, 其中, 白色节点 表示纯光层节点, 这里指该节点设备中没有 ODUk的交换单元, 主要用于长 途千线上。 灰色节点为混合节点同时包含 OCh交换单元和 ODUk交换单元。 实线为 OCh链路,用于承载 OCh连接。虚线为 ODUk链路,用于承载 ODUk 连接。 对于纯光层节点, 由于只有 OCh交叉单元, 所以只对波长进行调度, 由于波长经过长距离传输后由于光损伤带来的信号劣化, 所以需要通过 3R 功能对信号进行再生。 用于 OTN网络拓朴管理时分别管理节点信息和链路信息, 链路信息主 要包括: 接口交换能力 (TDM/LSC )、 链路代价、 最大带宽、 未预留带宽、 最大预留带宽、 保护属性、 最小带宽、 共享风险链路组 (Shared Risk Link Group, 简称为 SRLG )等。 节点信息主要包括节点标识( Identification , 简 称为 ID )。 光电处理器信息用于描述链路和链路间的约束信息, 因此, 可以 作为节点信息进行管理。 对于纯光层节点和光电混合节点, OCh链路间的主 要约束为 3R再生能力。 而对于光电混合节点, OCh链路和 ODUk链路之间 的约束为 OCh和 ODUk层间适配能力。 光电处理器信息参数取值和处理方 式描述如下: 由于使用统一的光电处理器信息进行描述,所以根据处理器功能标志的 取值不同对不同的能力进行描述。 举例说明: 在纯光节点中, 由于链路间只有 3R再生能力, 所以取值如下: 处理器功能标志 =3R再生 I波长变换 I层间适配; 输入波长范围 =光电处理器可输入的波长范围, 例如, λ 1- λ 20; 输出波长范围 =输入波长范围; 波长|载信号的编码格式=信号的编码格式, 例如 ODU ITU-T G.709; 波长 载信号的速率 =信号的实际速率, 例如, lOGbps; 光电处理器的使用情况表示当前的光电处理器处理空闲状态或者是处 于使用状态。 在混合节点中, 光层链路和电层链路间为光电层间适配能力, 而光层链 路间同时存在 3R再生能力和波长变换能力, 但是由于在多组链路间使用同 一个光电处理器, 所以取值 ¾口下: 处理器功能标志 =3R再生 I波长变换 I层间适配; 输入波长范围 =光电处理器可输入的波长范围, 例如, λ 1- λ 20; 输出波长范围 =光电处理器可输出的波长范围, 例如, λ 21- λ 40; 波长|载信号的编码格式=信号的编码格式, 例如, ODU ITU-T G709; 波长 载信号的速率 =信号的实际速率, 例如, lOGbps; 光电处理器的使用情况表示当前的光电处理器处理空闲状态或者是处 于使用状态。
3R再生能力: 只有对波长中承载的信号编码方式及速率和光电处理器 中提供的信号的编码方式及速率一致时才能进行波长变换。 当波长信号通过 3R再生后,之前的光损伤信息不再进行累积,而是再重新对光损伤进行计算; 波长变换能力: 由于波长连续性的限制, 当波长在两条 OCh链路上无 法保证连续性时, 需要通过波长变换功能对波长进行转换, 但是需要注意的 是当光电处理器执行 O-E-O波长转换功能时实际上也同时进行了 3R再生功 能, 但是反过来进行 3R再生功能时不一定执行了波长变换功能, 因此当通 过波长变换后光损伤信息不再累积, 而是需要重新计算光损伤; 同样只有对 波长中承载的信号编码方式及速率和光电处理器中提供的信号的编码方式及 速率一致时才能进行波长变换。
OCh和 ODUk层间适配功能:当业务信号需要通过 ODUk信号上到 OCh 信号上时需要处理层间适配能力, 同样只有对波长中承载的信号编码方式及 速率和光电处理器中提供的信号的编码方式及速率一致时才能进行波长变 换。 例如如果需要建立的连接的信号速率为 ODU2, 但是层间适配能力的波 长承载的信号速率仅为 ODU1 ,那么则不能将业务信号从 ODUk转换为 OCh。 需要注意的是 OCh和 ODUk层间适配功能同时表明是否开始或停止光损伤 的计算, 如果业务信号从 ODUk链路通过 ODUk交换、 ODUk/OCh转换和 OCh交换到 OCh链路,那么需要开始计算光损伤;但是如果业务信号从 OCh 链路通过 OCh交换、 OCh/ODUk转换和 ODUk交换到 ODUk链路, 那么需 要停止光损伤计算。 才艮据本发明的实施例, 提供了两种约束信息的处理方法。 方法一, 节点将所述光电处理装置所管理的所述约束信息进行泛洪, 计 算路由并根据所述路由逐跳验证所述约束信息; 方法二, 节点在与其他节点 建立连接的过程中, 由所述连接的源节点计算路由, 并由所述路由中的每个 节点分别 -险证所述约束信息。 下面对这两种方法进行详细的描述。 光电处理器的约束信息由本地进行维护, 但是是否进行泛洪, 根据连接 建立的策略来决定。 一般分为两种: 集中式路由计算和约束验证。 该方式泛 洪光电处理器的约束信息。 在进行路由计算时, 源节点计算路由并且将计算 得到的路由逐跳 -险证约束信息; 集中式路由计算和分布式约束 -险证。 该方式 不泛洪光电处理器的约束信息。 源节点计算路由, 然后在建立连接的过程中 由每个节点分别 -险证约束信息。 上面两种方式的区别在于: 前一种方式在源节点 -险证所有的约束信息 , 而后一种情况在连接经过的每个节点验证本节点的约束信息, 本发明实施例 对后一种方式进行详细描述, 而前一种方式仅将分布式约束-险证替换为集中 式约束 -险证即可。 图 5是才艮据本发明实施例的光电处理器信息在 OTN 网络 中建立连接时的消息交互的示意图, 在图 5 中描述了在 OTN 网络中建立一 条 ODUk连接的消息交互图。 图 6是根据本发明实施例的光电处理器信息在 连接建立时的处理的流程图, 图 6用于描述图 5的场景中使用集中式路由计 算和分布式约束验证的流程, 如图 6所示, 具体包括步骤 S601到 S609: 步骤 601 , 节点 1的控制平面收到网管请求建立 ODUk连接的消息。 步骤 602, 节点 1对连接请求消息进行验证, 如果错误执行步骤 603 , 否则执行步骤 604。 步骤 603 , 连接建立失败, 执行失败处理流程。 步骤 604, 才艮据请求的条件进行路由计算, 计算得到路由后向节点 2发 送连接请求。 步骤 605 , 节点 2收到连接请求消息后 -险证 OCh和 ODUk层间适配能 力是否满足连接请求参数, 如果不满足则执行步骤 603 , 否则向节点 3发送 连接请求消息。 步骤 606,节点 3收到连接请求消息后首先在本节点检查波长的连续性, 如果波长连续性不能满足, 那么检查该节点是否有 O-E-O的波长转换能力, 如果有并且满足连接请求的参数要求, 那么执行 O-E-O波长转换, 否则执行 步骤 603。 步骤 607, 如果在本节点执行了 O-E-O波长转换, 就不要再验证光损伤 信息, 否则需要验证光损伤累积是否越限, 如果越限那么检查该节点是否有 3R再生能力, 如果有再生能力并且 3R再生能力满足连接请求的参数要求, 那么执行 3R再生, 否则执行步骤 603; 步骤 608, 节点 4收到连接请求消息后 -险证 OCh和 ODUk层间适配能 力是否满足连接请求的参数要求, 如果不满足则执行步骤 603 , 否则, 向节 点 3返回连接确认。 步骤 609, 节点 3向节点 2返回连接确认, 节点 2向节点 1返回连接确 认, 最后节点 1向网管返回连接确认, 连接建立流程完毕。 综上所述, 在上述实施例中, 通过釆用光电处理器来统一 OTN设备中 OCh层和 ODUk层间处理的相关功能, 包括 OCh和 ODUk层间适配能力、 O-E-O波长转换能力、 3R再生能力, 更有利于 OTN设备中相关信息的维护 和管理, 通过统一的光电处理器模型, 能够艮好的描述 OTN 网络的拓朴信 息及管理 OTN网络的连接。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种光电处理装置,应用于光传输网络 OTN设备中,其特征在于, 包括: 再放大 /再整形 /再定时 3R再生单元, 用于对信号进行再放大、 再 整形和再定时;
波长变换单元, 用于对信号进行波长变换;
层间适配单元, 用于将信号在光通道 OCh层和光数据单元 ODUk 层之间进行转换;
调度单元, 用于才艮据所述光电处理装置的功能标识参数对所述 3R 再生单元、 所述波长变换单元、 层间适配单元进行调度, 以便对信号进 行处理。
2. 根据权利要求 1所述的装置, 其特征在于, 所述光电处理装置还用于管 理并 居链路间约束信息对信号进行处理, 其中, 所述约束信息至少包 括以下之一:
所述光电处理装置的处理器功能标志参数、 输入波长范围、 输出波 长范围、 波长承载信号的编码格式、 波长承载信号的速率、 所述光电处 理装置的使用情况。
3. 根据权利要求 1所述的装置, 其特征在于, 所述调度单元用于在所述功 能标志参数取值为 3R再生的情况下调度所述 3R再生单元对信号进行处 理, 以便于描述所述光电处理装置的 3R再生能力。
4. 居权利要求 1所述的装置, 其特征在于, 所述调度单元用于在所述功 能标志参数取值为波长变换时,调度所述波长变换单元对信号进行处理, 以便于描述所述光电处理装置的波长变换能力。
5. 根据权利要求 1所述的装置, 其特征在于, 所述调度单元用于在所述功 能标志参数取值为光电层间适配时, 调度所述层间适配单元, 以便于描 述所述光电处理装置的光电层间适配能力。
6. 根据权利要求 1所述的装置, 其特征在于, 所述光电处理装置具体用于 在提供的信号编码方式及速率和所述波长承载信号的编码方式及速率一 致的情况下, 将所述信号执行 3R再生、 波长变换或光电层间适配功能。
7. 根据权利要求 1至 6中任一项所述的装置, 其特征在于, 还包括:
光损伤计算单元, 用于在所述信号经过所述 3R再生单元或所述波 长变换单元处理之后, 重新计算所述信号的光损伤。
8. 根据权利要求 7所述的装置, 其特征在于, 所述光损伤计算单元, 还用 于在所述信号从 ODUk层链路通过 ODUk交换, 再由所述层间适配单元 将所述信号进行从所述 ODUk层到所述 OCh层转换, 再从 OCh交换到 OCh链路之后, 开始计算所述信号的光损伤。
9. 根据权利要求 7所述的装置, 其特征在于, 所述光损伤计算单元, 还用 于在所述信号从 OCh链路通过 OCh交换, 再由所述层间适配单元将所 述信号进行从所述 OCh层到所述 ODUk 层转换, 再从 ODUk 交换到 ODUk链路之后, 停止计算所述信号的光损伤。
10. —种约束信息的处理方法, 其特征在于, 包括: 光电处理装置所属的节 点在与其他节点建立连接时, 所述节点将所述光电处理装置所管理的所 述约束信息进行泛洪,计算路由并根据所述路由逐跳验证所述约束信息, 其中, 光电处理装置用于管理并根据链路间约束信息对信号进行处理, 所述约束信息至少包括以下之一:所述光电处理装置的处理器功能标志、 输入波长范围、 输出波长范围、 波长承载信号的编码格式、 波长承载信 号的速率、 所述光电处理装置的使用情况;
所述光电处理装置包括: 对信号进行再放大、 再整形和再定时的 3R再生单元、 对信号进行波长变换的波长变换单元, 将信号在 OCh层 和 ODUk层之间进行转换的层间适配单元, 以及根据所述光电处理装置 的功能标识参数对所述 3R再生单元、 所述波长变换单元、 层间适配单 元进行调度, 以便对信号进行处理的调度单元。
11. 一种约束信息的处理方法, 其特征在于, 包括: 光电处理装置所属的节 点在与其他节点建立连接的过程中, 由所述连接的源节点计算路由, 并 由所述路由中的每个节点分别验证所述约束信息, 其中, 光电处理装置 用于管理并根据链路间约束信息对信号进行处理, 所述约束信息至少包 括以下之一: 所述光电处理装置的处理器功能标志、 输入波长范围、 输 出波长范围、 波长承载信号的编码格式、 波长承载信号的速率、 所述光 电处理装置的使用情况;
所述光电处理装置包括: 对信号进行再放大、 再整形和再定时的 3R再生单元、 对信号进行波长变换的波长变换单元, 将信号在 OCh层 和 ODUk层之间进行转换的层间适配单元, 以及根据所述光电处理装置 的功能标识参数对所述 3R再生单元、 所述波长变换单元、 层间适配单 元进行调度, 以便对信号进行处理的调度单元。
PCT/CN2010/071890 2009-08-13 2010-04-19 光电处理装置及约束信息的处理方法 WO2011017932A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20100807877 EP2466766B1 (en) 2009-08-13 2010-04-19 Optoelectronic processinig apparatus and processing method for constraint information
US13/259,987 US8682176B2 (en) 2009-08-13 2010-04-19 Optoelectronic processing apparatus and methods for processing constraint information
ES10807877.5T ES2538394T3 (es) 2009-08-13 2010-04-19 Equipo de tratamiento optoelectrónico y método de tratamiento de la información de restricción

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910166128.4 2009-08-13
CN200910166128.4A CN101998185B (zh) 2009-08-13 2009-08-13 光电处理装置及约束信息的处理方法

Publications (1)

Publication Number Publication Date
WO2011017932A1 true WO2011017932A1 (zh) 2011-02-17

Family

ID=43585904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071890 WO2011017932A1 (zh) 2009-08-13 2010-04-19 光电处理装置及约束信息的处理方法

Country Status (6)

Country Link
US (1) US8682176B2 (zh)
EP (1) EP2466766B1 (zh)
CN (1) CN101998185B (zh)
ES (1) ES2538394T3 (zh)
PT (1) PT2466766E (zh)
WO (1) WO2011017932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939499A (zh) * 2016-04-14 2016-09-14 烽火通信科技股份有限公司 一种移动potn传输网隧道快速配置的方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747711B2 (ja) * 2011-07-22 2015-07-15 富士通株式会社 ネットワーク評価装置
DE102015119188A1 (de) 2014-11-07 2016-05-12 Trane International Inc. Spitzendichtung
CN106162382A (zh) * 2015-03-23 2016-11-23 阿尔卡特朗讯 在otn上提供双向光学定时信道的方法
US9838290B2 (en) 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
CN110474801A (zh) * 2019-08-09 2019-11-19 国网浙江省电力有限公司信息通信分公司 基于业务可靠性的电力通信网络故障仿真方法
CN114520935B (zh) * 2020-11-18 2023-04-07 华为技术有限公司 一种路径选择方法以及路径选择装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539214A (zh) * 2001-03-20 2004-10-20 西门子公司 具有可变网络边界的光传输系统
US20070065159A1 (en) * 2005-09-22 2007-03-22 Kuksenkov Dmitri V All-optical 2R regenerator for multi-channel communication
CN101005320A (zh) * 2006-01-20 2007-07-25 阿尔卡特朗讯 光信号再生器和传输系统
CN101189836A (zh) * 2005-03-08 2008-05-28 诺基亚西门子通信有限责任两合公司 光学传输系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286487B2 (en) * 2002-11-18 2007-10-23 Infinera Corporation Optical transmission network with asynchronous mapping and demapping and digital wrapper frame for the same
US8274892B2 (en) * 2001-10-09 2012-09-25 Infinera Corporation Universal digital framer architecture for transport of client signals of any client payload and format type
KR100459571B1 (ko) * 2002-07-20 2004-12-03 삼성전자주식회사 전광 신호 재생장치 및 방법
CN100349390C (zh) * 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN100403660C (zh) * 2004-09-04 2008-07-16 华为技术有限公司 双纤光复用段共享保护环的保护方法及其节点装置
US8290366B2 (en) * 2007-09-21 2012-10-16 Futurewei Technologies, Inc. Extending path computation element protocol to accommodate routing and wavelength assignment in wavelength switched optical networks
CN101227248B (zh) * 2008-01-29 2011-05-25 中兴通讯股份有限公司 业务路径建立方法
CN101499820B (zh) * 2008-02-01 2013-09-11 华为技术有限公司 业务传输的保护方法和网络设备
US8406622B2 (en) * 2009-08-06 2013-03-26 At&T Intellectual Property I, L.P. 1:N sparing of router resources at geographically dispersed locations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539214A (zh) * 2001-03-20 2004-10-20 西门子公司 具有可变网络边界的光传输系统
CN101189836A (zh) * 2005-03-08 2008-05-28 诺基亚西门子通信有限责任两合公司 光学传输系统
US20070065159A1 (en) * 2005-09-22 2007-03-22 Kuksenkov Dmitri V All-optical 2R regenerator for multi-channel communication
CN101005320A (zh) * 2006-01-20 2007-07-25 阿尔卡特朗讯 光信号再生器和传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466766A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105939499A (zh) * 2016-04-14 2016-09-14 烽火通信科技股份有限公司 一种移动potn传输网隧道快速配置的方法及系统
CN105939499B (zh) * 2016-04-14 2019-01-15 烽火通信科技股份有限公司 一种移动potn传输网隧道快速配置的方法及系统

Also Published As

Publication number Publication date
US8682176B2 (en) 2014-03-25
CN101998185A (zh) 2011-03-30
EP2466766A1 (en) 2012-06-20
CN101998185B (zh) 2015-05-20
EP2466766A4 (en) 2013-08-14
US20120134683A1 (en) 2012-05-31
ES2538394T3 (es) 2015-06-19
EP2466766B1 (en) 2015-05-20
PT2466766E (pt) 2015-07-13

Similar Documents

Publication Publication Date Title
US7526202B2 (en) Architecture and method for framing optical control and data bursts within optical transport unit structures in photonic burst-switched networks
WO2011017932A1 (zh) 光电处理装置及约束信息的处理方法
CN103891222B (zh) 对光传输网络中的现有业务流调整大小的方法及装置
US20040252995A1 (en) Architecture and method for framing control and data bursts over 10 GBIT Ethernet with and without WAN interface sublayer support
US20050063701A1 (en) Method and system to recover resources in the event of data burst loss within WDM-based optical-switched networks
CN1277375C (zh) 一种光网络中永久连接和交换连接之间的转换方法
US20110142448A1 (en) Packet add/drop multiplexer and data transmission method of packet add/drop multiplexer
US8861402B2 (en) Optical transport switching node with framer
US20040170431A1 (en) Architecture, method and system of WDM-based photonic burst switched networks
US8665749B2 (en) Method and apparatus for realizing source routing in a blocking cross network
US8848712B2 (en) Distributed RSVP-TE in a multi-chassis node architecture
WO2011017863A1 (zh) 光数据单元环路共享保护控制方法与装置
EP2466767B1 (en) Adapting equipment and method
Frigerio et al. Realizing the optical transport networking vision in the 100 Gb/s era
WO2024007736A1 (zh) 超100g电中继的控制方法、控制器以及存储介质
WO2024045813A1 (zh) 一种数据传输方法,相关设备以及系统
Zhu et al. 100G OTN technology and deployment for carrier networks
Chen et al. Comparative Analysis of Transmission and Switching Technologies
Mukherjee et al. Report of “US/EU Workshop on Key Issues and Grand Challenges in Optical Networking”
JP2013175931A (ja) 伝送装置、伝送システム及び伝送プログラム
WO2014176729A1 (zh) 传送网控制方法、控制器和节点
Saracino Which core technology for your network?
CN112260793A (zh) 一种基于otn技术应用电力设备
Mao et al. Research on scheme of applying ASON to current networks
Kitayama et al. Photonic network R and D activities in Japan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010807877

Country of ref document: EP