WO2024007736A1 - 超100g电中继的控制方法、控制器以及存储介质 - Google Patents

超100g电中继的控制方法、控制器以及存储介质 Download PDF

Info

Publication number
WO2024007736A1
WO2024007736A1 PCT/CN2023/093890 CN2023093890W WO2024007736A1 WO 2024007736 A1 WO2024007736 A1 WO 2024007736A1 CN 2023093890 W CN2023093890 W CN 2023093890W WO 2024007736 A1 WO2024007736 A1 WO 2024007736A1
Authority
WO
WIPO (PCT)
Prior art keywords
data unit
target output
optical path
optical
signal
Prior art date
Application number
PCT/CN2023/093890
Other languages
English (en)
French (fr)
Inventor
罗春
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024007736A1 publication Critical patent/WO2024007736A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form

Definitions

  • This application relates to the field of transmission network communication technology, and specifically relates to a control method, controller and storage medium for super-100G electrical relay.
  • the existing electrical relay method uses a transponder, which can only be
  • the fixed forwarding method lacks electrical layer switching capabilities and cannot realize the beyond 100G electrical relay function while cross-scheduling over 100G electrical layer signals.
  • Embodiments of the present application provide a control method, a controller and a storage medium for a beyond 100G electrical relay.
  • embodiments of the present application provide a control method for beyond 100G electrical relay, which is applied to electrical relay nodes.
  • the method includes receiving a first optical layer signal beyond 100G, and controlling the first optical layer.
  • the signal is de-mapping to obtain a super-100G optical path data unit signal.
  • the optical path data unit signal is cross-scheduled according to the preset scheduling method to transmit the optical path data unit signal to the target output port.
  • the optical path data unit signal is mapped to obtain a second optical layer signal exceeding 100G, and the second optical layer signal is output through the target output port.
  • inventions of the present application provide a control method for beyond 100G electrical relay, which is applied to a split optical transmission network.
  • the split optical transmission network includes a source site, an electrical relay node, and a sink site.
  • the electrical relay node includes an input port and a target output port.
  • the method includes: the source station performs mapping processing on the received client-side service signal to obtain a first optical layer signal exceeding 100G, and transfers the first optical layer signal to the source station.
  • the layer signal is sent to the electrical relay node.
  • the electrical relay node receives the first optical layer signal through the input port and performs demapping processing on the first optical layer signal to obtain an optical path data unit signal.
  • the port performs mapping processing on the optical path data unit signal to obtain a second optical layer signal exceeding 100G, and sends the second optical layer signal to the sink site through the target output port.
  • embodiments of the present application provide a controller, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program Implement the control method for beyond 100G electrical relay as described in any one of the embodiments of the first aspect and the second aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions.
  • the computer-executable instructions are used to execute the ultrasonic processing method described in any one of the embodiments of the first aspect and the second aspect. Control method of 100G electrical relay.
  • Figure 1 is a schematic diagram of optical-electrical-optical relay forwarding proposed by an embodiment of the present application
  • Figure 2 is a schematic diagram of optical-electrical-optical relay forwarding through a relay board proposed in another embodiment of the present application;
  • Figure 3 is a flow chart of a control method for a super-100G electrical relay proposed by another embodiment of the present application.
  • Figure 4 is a schematic diagram of optical-electrical-optical relay forwarding through a separate circuit board proposed by another embodiment of the present application;
  • Figure 5 is an atomic model diagram of optical-electrical-optical relay forwarding in the control method of super-100G electrical relay proposed by another embodiment of the present application;
  • Figure 6 is a flowchart of cross-scheduling processing in the control method of beyond 100G electrical relay proposed by another embodiment of the present application;
  • Figure 7 is a flow chart of a control method for a super-100G electrical relay proposed by another embodiment of the present application, and a flow chart of transmitting data payload;
  • Figure 8 is a flow chart of a control method for a super-100G electrical relay proposed by another embodiment of the present application, and a flow chart of transmission frame overhead;
  • Figure 9 is a flow chart of the application of the control method of the super-100G electrical relay and the separate optical transmission network proposed by another embodiment of the present application;
  • Figure 10 is a schematic diagram of establishing a super-100G channel through a super-100G electrical relay through a separate circuit board according to another embodiment of the present application;
  • Figure 11 is a structural diagram of a controller proposed in another embodiment of the present application.
  • optical transport networks such as DWDM (Dense Wavelength Division Multiplexing) and OTN (Optical Transport Network).
  • technologies with rates exceeding 100G are collectively called super-100G transmission technology, which is becoming the main development direction of high-speed transmission technology.
  • optical transmission is defined in ITU-T (International Telecommunication Union, International Telecommunications Union) G.709 Interface standard, which defines that non-super 100G signals and super 100G signals in optical layer signals are carried by OCH (Optical Channel, optical channel) and OTSi (Optical Tributary Signal, optical branch signal) layer signals respectively.
  • ITU-T International Telecommunication Union, International Telecommunications Union
  • OCH Optical Channel, optical channel
  • OTSi Optical Tributary Signal, optical branch signal
  • non-super 100G signals in the electrical layer Beyond 100G signals and beyond 100G signals are respectively composed of OTUk (Optical Transport Unit-k, optical transmission unit k)/ODUk (Optical Channel Data Unit-k, optical channel data unit k) and OTUCn (Optical Transport Unit-Cn, optical transmission unit Cn)/ODUCn (Optical Channel Data Unit-Cn, optical channel data unit Cn) layer information carrying.
  • OTUk Optical Transport Unit-k, optical transmission unit k
  • OFDUk Optical Channel Data Unit-k, optical channel data unit k
  • OTUCn Optical Transport Unit-Cn, optical transmission unit Cn
  • ODUCn Optical Channel Data Unit-Cn, optical channel data unit Cn
  • the existing electrical relay method uses a transponder, which can only be done through The fixed forwarding method performs optical-electrical-optical conversion and lacks electrical layer switching capabilities, making it impossible to perform cross-scheduling of over-100G electrical layer signals and at the same time realize the over-100G electrical relay function.
  • the present application discloses a control method, a controller and a storage medium for a beyond 100G electrical relay.
  • the control method for a beyond 100G electrical relay includes receiving the first optical layer signal beyond 100G, and The first optical layer signal is de-mapping to obtain a super-100G optical path data unit signal.
  • the optical path data unit signal is cross-scheduled according to the preset scheduling method to transmit the optical path data unit signal to the target output port.
  • the optical path data unit signal is mapped to obtain a second optical layer signal exceeding 100G, and the second optical layer signal is output through the target output port.
  • the optical path data unit signal exceeding 100G is cross-scheduled, that is, in ODUCn
  • the electrical signal exchange connection is carried out at the level, so that the separated board can support the beyond 100G electrical relay mode, realize the beyond 100G electrical relay function, and make the beyond 100G business networking more flexible.
  • Figure 1 is a schematic diagram of optical-electrical-optical relay forwarding proposed by an embodiment of the present application. Due to factors such as loss in optical layer signal transmission, when the optical layer cannot directly transmit signals to the sink end during long-distance transmission, The optical signal needs to be converted into an electrical signal on the way and then regenerated into an optical signal to be sent out (optical-electrical-optical conversion). This method is called an electrical relay method.
  • optical-to-electrical-to-optical conversion of electrical relays
  • three processes are generally performed.
  • the functions of optical-to-electrical conversion include optical signal termination and electrical signal decomposition.
  • Mapping adaptation and electro-optical conversion include the functions of electrical signal mapping adaptation and optical signal regeneration. Among them, electrical signal connections can be divided into fixed connections and switched connections.
  • Figure 1(b) corresponds to the electrical signal fixed connection method.
  • the electrical signal fixed connection method an integrated single-board design is generally used, in which the middle is responsible for fixing the electrical signal.
  • the connection structure is originally called a transponder or relay board.
  • the signal In the process of transmitting signals through fixed connection of electrical signals, the signal can only be accessed from one end and fixedly output from the other end.
  • the networking is not flexible enough and must be advanced on the service path.
  • the problem of deploying relay boards as shown in Figure 1(c), Figure 1(c) corresponds to the electrical signal exchange connection method.
  • the electrical signal exchange connection adopts a separate board design, which can realize multi-service, multi-granule, and multi- Cross-scheduling in any dimension does not require the deployment of trunk boards in advance. Electrical signal exchange connections are set up as needed when generating services. Optical-electrical-optical trunks are temporarily generated between required ports through the cooperation of line boards and cross-connect boards. Among them, the current The electrical signal exchange connections of OTN products are directly scheduled according to the clearly set scheduling method. For example, if ODU4 is set, only the ODU4 method will be used for cross-connection. If other signals are connected, a failure will be returned directly during the business optical-to-electrical conversion and demapping. It does not have the ability to obtain parameters such as service rate and bandwidth of access services.
  • the beyond 100G electrical layer ODUCn switching connection scheduling method is not defined in the ITU standard, but only the electrical relay method using transponders is explained in the ITU-T G.709 appendix, where,
  • the optical transmission network includes source site 1, electrical relay node 2 and sink site 3.
  • Electrical relay node 2 is a single transponder.
  • Optical-electrical-optical conversion is performed in a single transponder. It can only be a fixed forwarding method and lacks
  • For electrical layer switching capabilities when you want to establish a super-100G pipeline at the first and last ports, in some cases you can only use the super-100G transponder relay board method, which causes the deployment of relay boards to be planned in advance for engineering applications, pipelines and business groups. Network functions are limited.
  • Figure 3 is a flow chart of a control method for beyond 100G electrical relay proposed by another embodiment of the present application.
  • the control method for beyond 100G electrical relay includes but is not limited to the following steps:
  • Step S310 Receive the first optical layer signal exceeding 100G
  • Step S320 Demap the first optical layer signal to obtain a super-100G optical path data unit signal
  • Step S330 Perform cross-scheduling processing on the optical path data unit signal according to the preset scheduling method to transmit the optical path data unit signal to the target output port;
  • Step S340 Perform mapping processing on the optical path data unit signal to obtain a second optical layer signal exceeding 100G, and output the second optical layer signal through the target output port.
  • control method of beyond 100G electrical relay is applied in the OTN rack environment with separate architecture of tributary board and line board.
  • the tributary/line board and the centralized cross-connect board are used together.
  • the cross-connect board performs ODUk granular service scheduling at each level to achieve more flexible electrical layer signal scheduling and higher bandwidth utilization.
  • the first optical layer signal exceeding 100G is the OTSi signal exceeding 100G.
  • the first optical layer signal is de-mapping to obtain the optical path data unit signal exceeding 100G, in which the optical path data exceeding 100G is The unit signal is ODUCn.
  • the international ITU has formulated the ODUCn mapping To handle the corresponding beyond 100G services.
  • the optical path data unit signals are cross-scheduled according to a preset scheduling method. processing to transmit the optical path data unit signal to the target output port, perform mapping processing on the optical path data unit signal, obtain a second optical layer signal exceeding 100G, and output the second optical layer signal through the target output port, where, in When the ODUCn layer performs electrical signal exchange and scheduling, it only exchanges ODUCn electrical signals, not ODUk signals. After configuring the ODUCn scheduling mode, during the optical-to-electrical conversion process, only the over-100G optical layer signal input at one end is decoded. Map to the ODUCn layer instead of continuing to demap to the ODUk layer.
  • the port can only parse super-100G optical layer signals, and other non-super-100G OCH signals will fail to demap.
  • the ODUCn scheduling mode in During the electro-optical conversion process, the ODUCn is mapped and encapsulated into super-100G optical signals at the other end and sent out, thereby realizing electrical signal exchange and connection at the ODUCn level, so that the separate board can support super-100G electrical relay mode, realizing The Beyond 100G electrical relay function makes Beyond 100G business networking more flexible.
  • two-level demapping will be performed during optical-to-electrical conversion, that is, for ultra-100G
  • the continuous demapping goes first to ODUCn and then to ODUk.
  • the electrical-to-optical conversion is also a two-level mapping, from ODUk to ODUCn and then to the regeneration of the optical signal.
  • due to the two-level mapping during optical-to-electrical conversion As a result, when electrical signals are exchanged and connected at the ODUk level, the over-100G electrical relay function cannot be realized.
  • One over-100G pipeline can only be formed at the primary site and the intermediate site, and another over-100G pipeline is formed at the intermediate site and sink site 3. A complete super-100G pipeline cannot be formed.
  • the OAM (Operation Administration and Maintenance) overhead of the ODUCn layer will end during optical-to-electrical conversion. Only the overhead of the ODUk layer will be transparently transmitted, alarm delivered and delay measured. Functions that depend on overhead such as overhead are limited at the beyond 100G level. Therefore, the control method of the beyond 100G electrical relay proposed in this application will perform one-level demapping during optical-to-electrical conversion, that is, terminate the beyond 100G optical layer signal. Afterwards, it is de-mapped to ODUCn.
  • electro-optical conversion is also a first-level mapping. From ODUCn to the regeneration of optical signals, it is possible to provide electrical signal exchange and scheduling capabilities at the ODUCn level, enabling the separate board to support beyond 100G electricity.
  • the relay mode provides the electrical relay function at the ODUCn level, forming a super-100G pipeline between the first and last sites, making business networking more flexible.
  • the electrical relay node includes an input port and a target output port
  • the control method of the beyond 100G electrical relay includes receiving a first optical layer signal beyond 100G through the input port, and performing processing on the first optical layer signal. Demapping processing is performed to obtain over 100G optical path data unit signals.
  • the optical path data unit signals are cross-scheduled according to the preset scheduling method to transmit the optical path data unit signals to the target output port, and the optical path data unit signals are transmitted through the target output port.
  • the data unit signal is mapped to obtain a second optical layer signal exceeding 100G, and the second optical layer signal is output through the target output port.
  • the input port and the target are formed through the cross-connection scheduling configuration on the cross-connect board in the electrical relay node. Channels between output ports, thereby realizing switching scheduling processing at the ODUCn level.
  • Figure 5 is an atomic model diagram of a control method for a super-100G electrical relay.
  • the DWDM wavelength signal is transmitted through the optical /Electrical conversion and layer-by-layer de-mapping to ODUCn layer signals are scheduled through the cross-connect board 4 in the electrical relay node 2, that is, OTSI termination is performed first and then OTUCn/ODUCn adaptation is performed, and the optical layer signals are de-mapped into ODUCn layer signals.
  • the ODUCn layer signal dispatched from the backplane is multiplexed and mapped.
  • OTUCn/ODUCn adaptation is performed first and then OTSI termination is performed.
  • OTSI termination is performed.
  • the signal is scheduled on the electrical relay node 2 line, only the solution is mapped to the ODUCn signal and sent to the cross-connect board 4 in the electrical relay node 2 through the backplane.
  • Cross-connect board 4 implements cross-scheduling at ODUk granularity, and finally forms an ODUCn connection.
  • the separated board card can support the beyond-100G electrical relay mode and realize the beyond-100G electrical relay function. Beyond 100G business networking is more flexible.
  • Figure 6 is a flow chart of a control method for a beyond 100G electrical relay proposed by another embodiment of the present application.
  • the control method for a beyond 100G electrical relay includes but is not limited to the following steps:
  • Step S610 determine the target output port according to the preset scheduling method
  • Step S620 Perform cross-scheduling configuration on the optical path data unit signal according to the target output port, so that the optical path data unit signal is transmitted to the target output port.
  • the target output port is determined according to a preset scheduling method, and the optical path data unit signal is cross-scheduled according to the target output port, so that the optical path data unit signal is transmitted to the target output port, wherein
  • the input port and target output port of node 2 perform cross-scheduling processing, so that the super-100G signal is transmitted between these two ports, and the electrical signal exchange connection is performed at the ODUCn level, so that the separate board can support the super-100G electrical relay mode. , realizing the beyond-100G electrical relay function and making the beyond-100G business networking more flexible.
  • Figure 7 is a flow chart of a control method for beyond 100G electrical relay proposed by another embodiment of the present application.
  • the control method for beyond 100G electrical relay includes but is not limited to the following steps:
  • Step S710 obtain the data payload according to the optical path data unit signal
  • Step S720 Perform cross-scheduling processing on the data payload according to the target output port to transmit the data payload to the target output port.
  • the data payload is obtained according to the optical path data unit signal, and the data payload is cross-scheduled according to the target output port to transmit the data payload to the target output port, so that the data payload can be processed at the ODUCn layer.
  • Transmission overcoming the situation that in some cases, only a super 100G pipeline can be formed at the primary site and the intermediate site, and another super 100G pipeline can be formed at the intermediate site and sink site 3, but a complete super 100G pipeline cannot be formed.
  • ODUCn The layer OAM overhead will be terminated during the optical-to-electrical conversion. Only the overhead of the ODUk layer will be transparently transmitted.
  • control method can transmit the data payload at the ODUCn layer, thereby transmitting the data overhead, and realize overhead-dependent functions such as alarm delivery and delay measurement at the beyond 100G level.
  • Figure 8 is a flow chart of a control method for beyond 100G electrical relay proposed by another embodiment of the present application.
  • the control method for beyond 100G electrical relay includes but is not limited to the following steps:
  • Step S810 obtain frame overhead data according to the optical path data unit signal
  • Step S820 Perform cross-scheduling processing on the frame overhead data according to the target output port to transmit the frame overhead data to the target output port.
  • the frame overhead data is obtained according to the optical path data unit signal
  • the target output data is The port performs cross-scheduling processing on the frame overhead data to transmit the frame overhead data to the target output port.
  • the ODUCn signal can be exchanged between the two ports, and the ODUCn
  • the signal at least includes the data payload of ODUCn, and then the OAM overhead data of ODUCn is transparently transmitted, or transparent transmission can be configured separately for the OAM overhead of ODUCn, ensuring that the overhead can be transparently transmitted to the source or sink site 3, and then at the super-100G level Implement overhead-dependent functions such as alarm delivery and delay measurement.
  • Figure 9 is a flow chart of a control method for a super-100G electrical relay proposed by another embodiment of the present application, which is applied to a separated optical transmission network.
  • the separated optical transmission network includes a source site 1 and an electrical relay node 2 and the sink site 3, the electrical relay node 2 includes an input port and a target output port.
  • the control method for beyond 100G electrical relay includes but is not limited to the following steps:
  • Step S910 The source site performs mapping processing on the received client-side service signal to obtain a first optical layer signal exceeding 100G, and sends the first optical layer signal to the electrical relay node;
  • Step S920 The electrical relay node receives the first optical layer signal through the input port, demaps the first optical layer signal to obtain the optical path data unit signal, and performs cross-scheduling on the optical path data unit signal according to the preset scheduling method. Process and transmit the optical path data unit signal to the target output port;
  • Step S930 The electrical relay node performs mapping processing on the optical path data unit signal through the target output port to obtain a second optical layer signal exceeding 100G, and sends the second optical layer signal to the sink site through the target output port.
  • the electrical relay node performs cross-scheduling processing on the optical path data unit signal according to the preset scheduling method to transmit the optical path data unit signal to the target output port, and performs mapping processing on the optical path data unit signal to obtain The second optical layer signal exceeds 100G and outputs the second optical layer signal through the target output port. Since the electrical relay node performs electrical signal exchange scheduling at the ODUCn layer, it only exchanges ODUCn electrical signals and does not exchange ODUk signals. After configuring the ODUCn scheduling mode, during the optical-to-electrical conversion process, the over-100G optical layer signal input at one end is only de-mapped to the ODUCn layer, and does not continue to be de-mapped to the ODUk layer.
  • the ODUCn is mapped and encapsulated into a super 100G optical signal and sent out, thereby realizing electrical signal exchange and connection at the ODUCn level, so that the separate board can support the super 100G electrical relay mode and realize the super 100G electrical relay function. , making beyond 100G business networking more flexible.
  • the source site performs mapping processing on the received client-side service signals to obtain the first optical layer signal exceeding 100G, and sends the first optical layer signal to the electrical relay node, and the electrical relay node performs crossover Scheduling, and sending the second optical layer signal to the sink site, thereby generating a super-100G pipeline between the source site and the sink site, so that the relevant OAM overhead on the super-100G service or pipeline can be transparently transmitted, thereby realizing relevant alarms, time Delay measurement and other overhead-dependent functions, and make the beyond 100G service networking more flexible.
  • FIG 10 is a schematic diagram of the application of the super-100G electrical relay proposed in an implementation of the present application to a split optical transmission network.
  • the split optical transmission network includes a split-type OTN device with super-100G signal relay capability.
  • Type OTN equipment includes tributary boards, circuit boards and cross-connect boards 4.
  • the tributary board is used for conversion of client side signals and backplane signals.
  • the client-side service signal undergoes encapsulation mapping processing, OTN framing, FEC encoding processing and other operations, and the output ODU layer signal is sent to the cross-connect board 4 through the backplane for scheduling; conversely, from the backplane side to the client side, the backplane
  • the ODU layer signals dispatched by the board are mapped and multiplexed and finally converted into customer service signals and sent out.
  • the tributary board will only be configured at the source site 1 and sink site 3 of the service. This application does not involve changes to the tributary board.
  • the specific arrangement details of the branch circuit board do not limit the solution of this application.
  • the circuit board is used for conversion of line side signals and backplane signals.
  • the DWDM wavelength signal is converted layer by layer through optical/electrical conversion and de-mapped to the ODU layer.
  • the signal is sent to the cross-connect board 4 through the backplane for scheduling; conversely, from the backplane side to the line side, the backplane is dispatched.
  • the ODU layer signals are multiplexed and mapped. After completing the electrical/optical conversion, they are converted into standard wavelength signals that meet the requirements of the DWDM system and sent out.
  • the solution of this application involves the circuit board used for relaying in the intermediate site, that is, the electrical relay node 2. During the signal conversion process, only the optical layer signal is de-mapped to the ODUCn signal and sent to the cross-connect board through the backplane. 4. Perform subsequent cross-scheduling processing.
  • the cross-connect board 4 is used to dispatch the ODU layer signals dispatched from the tributary board/line board ports to other tributary board/line board ports according to the configuration.
  • This patent relates to circuit boards used for relaying at intermediate sites, making business networking more flexible through cross-scheduling of signals.
  • an electrical relay control method for a beyond 100G pipeline in which the received client-side service signal is mapped through the source site 1 to obtain the first optical layer signal beyond 100G, and the third optical layer signal is obtained.
  • An optical layer signal is sent to the electrical relay node 2.
  • the electrical relay node 2 receives the first optical layer signal through the input port, demaps the first optical layer signal, obtains the optical path data unit signal, and schedules it according to the preset
  • the method performs cross-scheduling processing on the optical path data unit signal and transmits the optical path data unit signal to the target output port.
  • the electrical relay node 2 performs mapping processing on the optical path data unit signal through the target output port to obtain the second optical path exceeding 100G.
  • performing cross-scheduling processing on the optical path data unit signal according to the preset scheduling method, and transmitting the optical path data unit signal to the target output port includes: the electrical relay node 2 determines the target output port according to the preset scheduling method. , the electrical relay node 2 performs cross-scheduling processing on the optical path data unit signal according to the target output port, so that the optical path data unit signal is transmitted to the target output port.
  • cross-scheduling is performed on the optical path data unit signal according to a preset scheduling method, and the optical path data unit signal is transmitted to the target output port, including: the electrical relay node 2 obtains the data net according to the optical path data unit signal. The electrical relay node 2 performs cross-scheduling processing on the data payload according to the target output port to transmit the data payload to the target output port.
  • performing cross-scheduling processing on the optical path data unit signal according to the target output port to transmit the optical path data unit signal to the target output port includes, obtaining frame overhead data according to the optical path data unit signal, and obtaining frame overhead data according to the target output The port cross-schedules the frame overhead data to transmit the frame overhead data to the target output port.
  • the source station maps the received client-side traffic signals Process, obtain the first optical layer signal exceeding 100G, and send the first optical layer signal to the electrical relay node.
  • the electrical relay node performs cross-scheduling and sends the second optical layer signal to the sink site, thereby generating the source site.
  • the ultra-100G pipe ODUCn channel
  • the frame overhead data generated by the source site Transmission at the ODUCn level will not be interrupted at the electrical relay node, allowing the source site to transparently transmit frame overhead data through the ultra-100G pipeline, that is, the source site generates frame overhead data and transparently transmits the frame overhead data through the above-mentioned electrical relay node. to the sink site, and then implement functions based on frame overhead data such as alarm delivery and delay measurement at the beyond 100G level.
  • the electrical relay control method of the beyond 100G pipeline also includes establishing a first channel for transmitting optical branch signals and OTUCn between the source site 1 and the electrical relay node 2, and at the electrical relay node A second channel for transmitting optical branch signals and CN optical transmission units is established between 2 and the sink site 3.
  • the first channel, the second channel and the electrical relay node 2, between the source site 1 and the sink site 3 Transmit optical branch signals and OTUCn signals.
  • the electrical relay control method for the Beyond 100G pipeline further includes: after controlling the sink site to establish the Beyond 100G pipeline between the source site 1 and the sink site according to the second optical layer signal, generating a signal for the Beyond 100G pipeline according to the second optical layer signal.
  • the embodiment of the present application also provides a controller 1100, which includes: a memory 1120, a processor 1110, and a computer program stored in the memory and executable on the processor.
  • a controller 1100 which includes: a memory 1120, a processor 1110, and a computer program stored in the memory and executable on the processor.
  • the processor 1110 executes the computer program, the following is implemented:
  • the control method of the super-100G electrical relay in any one of the above embodiments, for example, performs the above-described method steps S310 to S340 in Figure 3, method steps S610 to S620 in Figure 6, and method step S710 in Figure 7 to S720, method steps S810 to S820 in Figure 8, and method steps S910 to S930 in Figure 9.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, execute The above-described method steps S310 to S340 in Figure 3, method steps S610 to S620 in Figure 6, method steps S710 to S720 in Figure 7, method steps S810 to S820 in Figure 8, and method step S910 in Figure 9 to S930.
  • This application at least has the following beneficial effects: receiving a first optical layer signal exceeding 100G, performing demapping processing on the first optical layer signal to obtain an optical path data unit signal exceeding 100G, and mapping the optical path data unit signal according to a preset scheduling method.
  • the path data unit signal is subjected to cross-scheduling processing to transmit the optical path data unit signal to the target output port, and the optical path data unit signal is mapped to obtain a second optical layer signal exceeding 100G, and passed through the
  • the target output port outputs the second optical layer signal, in which the electrical signal exchange connection is performed at the ODUCn (Optical Transport Unit-Cn, optical transmission unit Cn) level by cross-scheduling the super-100G optical path data unit signal,
  • the separate board card can support the beyond 100G electrical relay mode, realize the beyond 100G electrical relay function, and make the beyond 100G business networking more flexible.
  • the software may be implemented as software executed by a processor, such as a processor, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • a processor such as a processor, a digital signal processor, or a microprocessor
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

本申请公开了一种超100G电中继的控制方法、控制器以及存储介质,其中,方法包括,接收超100G的第一光层信号(S310),对第一光层信号进行解映射处理,得到超100G的光通路数据单元信号(S320),根据预设调度方法对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口(S330),对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号(S340)。

Description

超100G电中继的控制方法、控制器以及存储介质
相关申请的交叉引用
本申请基于申请号为202210779518.4、申请日为2022年07月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及传输网络通信技术领域,具体涉及一种超100G电中继的控制方法、控制器以及存储介质。
背景技术
随着社会的发展,急剧增长的数据流量对光传送网络的带宽容量提出了越来越高的要求,密集波分复用和光传送网络传输领域中速率超过100G的技术统一称作超100G传输技术,正成为高速传输技术的主要发展方向;
在长距离传输过程中,当光层无法直接传递信号到宿站点时,需要在途中通过电中继方式进行光-电-光转换,而现有电中继方式采用转发器进行,只能是固定转发的方式,缺乏电层交换能力,无法在对超100G电层信号进行交叉调度的同时实现超100G电中继功能。
发明内容
本申请实施例提供一种超100G电中继的控制方法、控制器以及存储介质。
第一方面,本申请实施例提供了一种超100G电中继的控制方法,应用于电中继节点,所述方法包括,接收超100G的第一光层信号,对所述第一光层信号进行解映射处理,得到超100G的光通路数据单元信号,根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,对所述光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过所述目标输出端口输出所述第二光层信号。
第二方面,本申请实施例提供了一种超100G电中继的控制方法,应用于分离型光传送网络,所述分离型光传送网络包括源站点、电中继节点和宿站点,所述电中继节点包括输入端口和目标输出端口,所述方法包括:所述源站点将接收到的客户侧业务信号进行映射处理,得到超100G的第一光层信号,并将所述第一光层信号发送至所述电中继节点,所述电中继节点通过所述输入端口接收所述第一光层信号,对所述第一光层信号进行解映射处理,得到光通路数据单元信号,并根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,将所述光通路数据单元信号传输至所述目标输出端口,所述电中继节点通过所述目标输出端 口对所述光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过所述目标输出端口将所述第二光层信号发送至宿站点。
第三方面,本申请实施例提供了一种控制器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面和第二方面中任意一项实施例所述的超100G电中继的控制方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行如第一方面和第二方面中任意一项实施例所述的超100G电中继的控制方法。
附图说明
图1为本申请一实施例提出的光-电-光中继转发示意图;
图2为本申请另一实施例提出的通过中继板进行光-电-光中继转发的示意图;
图3为本申请另一实施例提出的超100G电中继的控制方法的流程图;
图4为本申请另一实施例提出的通过分离式线路板进行光-电-光中继转发的示意图;
图5为本申请另一实施例提出的超100G电中继的控制方法中,进行光-电-光中继转发的原子模型图;
图6为本申请另一实施例提出的超100G电中继的控制方法中,交叉调度处理的流程图;
图7为本申请另一实施例提出的超100G电中继的控制方法的流程图,传输数据净荷的流程图;
图8为本申请另一实施例提出的超100G电中继的控制方法的流程图,传输帧开销的流程图;
图9为本申请另一实施例提出的超100G电中继的控制方法应用与分离型光传送网络流程图;
图10为本申请另一实施例提出的通过分离式线路板通过超100G电中继建立超100G通道的示意图;
图11为本申请另一实施例提出的控制器的结构图。
附图标记:1、源站点;2、电中继节点;3、宿站点;4、交叉板。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
在一些实施例中,虽然在系统示意图中进行了功能模块划分,在流程图中示 出了逻辑顺序,但是在某些情况下,可以以不同于系统中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语第一、第二等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
随着社会的发展,急剧增长的数据流量对光传送网络的带宽容量提出了越来越高的要求,DWDM(Dense Wavelength Division Multiplexing,密集波分复用)和OTN(Optical Transport Network,光传送网络)传输领域中速率超过100G的技术统一称作超100G传输技术,正成为高速传输技术的主要发展方向,其中,在ITU-T(International Telecommunication Union,国际电信联盟)G.709中定义了光传送接口标准,其中定义光层信号中的非超100G信号和超100G信号分别由OCH(Optical Channel,光信道)和OTSi(Optical Tributary Signal,光支路信号)层信号承载,同时,电层中非超100G信号和超100G信号分别由OTUk(Optical Transport Unit-k,光传送单元k)/ODUk(Optical Channel Data Unit-k,光通道数据单元k)和OTUCn(Optical Transport Unit-Cn,光传送单元Cn)/ODUCn(Optical Channel Data Unit-Cn,光通路数据单元Cn)层信息承载。
在长距离传输过程中,当光层无法直接传递信号到宿端时,需要在途中通过电中继方式进行光-电-光转换,而现有电中继方式采用转发器进行,只能通过固定转发的方式进行光-电-光转换,缺乏电层交换能力,无法在对超100G电层信号进行交叉调度的同时实现超100G电中继功能。
为至少解决上述问题,本申请公开了一种超100G电中继的控制方法、控制器以及存储介质,其中,超100G电中继的控制方法包括,接收超100G的第一光层信号,对第一光层信号进行解映射处理,得到超100G的光通路数据单元信号,根据预设调度方法对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口,对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号,其中,通过对超100G的光通路数据单元信号进行交叉调度,即在ODUCn层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
下面结合附图,对本申请实施例作进一步描述。
参考图1,图1为本申请一实施例提出的光-电-光中继转发示意图,由于光层信号传输存在的损耗等因素,长距离传输当光层无法直接传递信号到宿端时,需要在途中将光信号转换为电信号重新再生为光信号发送出去(光-电-光转换),这种方式称之为电中继方式。
在一些实施例中,如图1(a)所示,在电中继的光-电-光转换时,一般会经过三个过程,光-电转换包括的功能是光信号终结、电信号解映射适配,电-光转换包括的功能是电信号映射适配和光信号再生,其中,电信号连接则可分为固定连接和交换连接两种。
在一些实施例中,如图1(b)所示,图1(b)对应电信号固定连接方式,在电信号固定连接方式中,一般采用合一型单板设计,其中中间负责电学号固定连接的结构本称为转发器或中继板,在电信号固定连接方式传输信号的过程中,信号只能从一端接入从另一端固定输出,存在组网不够灵活,必须在业务路径上提前部署中继板卡的问题;如图1(c)所示,图1(c)对应电信号交换连接方式,电信号交换连接采用分离的板卡设计,对应可实现多业务、多颗粒、多维度的任意交叉调度,无需提前部署中继板,业务生成时根据需要设置电信号交换连接,通过线路板和交叉板配合在需要的端口间临时生成光-电-光中继,其中,目前的OTN产品电信号交换连接都是直接根据设置明确的调度方式进行调度,比如设置采用ODU4,则只会采用ODU4方式交叉,其它信号接入,直接在业务光-电转换解映射时即返回失败,并不具备获取接入业务的业务速率和带宽等参数能力。
参考图2,在一些情形中,超100G电层ODUCn交换连接调度方式并没有在ITU标准中定义,而只在ITU-T G.709附录中说明了采用转发器的电中继方式,其中,光传送网络包括源站点1、电中继节点2和宿站点3,电中继节点2为单个转发器,光-电-光转换在单个转发器中进行,只能是固定转发的方式,缺乏电层交换能力,当希望在首尾端口建立超100G管道时,在一些情形中只能采用超100G转发器中继板方式,导致工程应用时中继板卡的部署需要提前规划,管道和业务组网功能受限。
参考图3,图3为本申请另一实施例提出的超100G电中继的控制方法的流程图,在一些实施例中,超100G电中继的控制方法,包括但不限于以下步骤:
步骤S310,接收超100G的第一光层信号;
步骤S320,对第一光层信号进行解映射处理,得到超100G的光通路数据单元信号;
步骤S330,根据预设调度方法对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口;
步骤S340,对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号。
在一些实施例中,超100G电中继的控制方法应用于支路板、线路板分离架构的OTN机架环境中,分离架构下支路/线路板和集中交叉单板配合使用,可通过集中交叉单板进行各级别ODUk颗粒业务调度,实现更加灵活的电层信号调度及更高的带宽利用率。
在一些实施例中,超100G的第一光层信号即为超100G的OTSi信号,对第一光层信号进行解映射处理,得到超100G的光通路数据单元信号,其中超100G的光通路数据单元信号即为ODUCn,其中,对于100G之上的带宽,传统的ODUk(k=2、3、4)是无法提供足够的频谱宽度,来直接承载超100G业务,因此,国际ITU制定了ODUCn映射来处理相应的超100G业务。
在一些实施例中,根据预设调度方法对光通路数据单元信号进行交叉调度处 理,以将光通路数据单元信号传输至目标输出端口,对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号,其中,在ODUCn层进行电信号交换调度时,只交换ODUCn电信号,而不交换ODUk信号,在配置为ODUCn调度方式后,在光-电转换的过程中,对一端输入的超100G的光层信号只解映射到ODUCn层,而不继续解映射到ODUk层,在该模式下,端口上只能解析超100G光层信号,其它非超100G OCH信号会解映射失败;同时,配置ODUCn调度方式后,在电-光转换的过程中,在另一端对ODUCn映射封装到超100G光信号发送出去,进而实现在ODUCn层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
在一些实施例中,参考图4,在一些情形中,在进行超100G传输过程中,如果采用分离型板卡样式进行交叉调度,在光-电转换时会进行两级解映射即对超100G光层信号终结后连续解映射先到ODUCn再到ODUk,电-光转换同理也是两级映射,从ODUk到ODUCn再到光信号的再生,其中,由于光-电转换时的两级映射,导致在ODUk层面进行电信号交换连接时,无法实现超100G电中继功能,只能在首站点和中间站点形成一个超100G管道,在中间站点和宿站点3再形成另外一个超100G管道,而不能形成一个完整的超100G管道,存在ODUCn层OAM(Operation Administration and Maintenance,操作管理和维护)开销会在光-电转换时终结,只有ODUk层的开销会被透传,告警传递和时延测量等依赖开销的功能都在超100G层面受到限制的问题,故在本申请提出的超100G电中继的控制方法,在光-电转换时会进行一级解映射即对超100G光层信号终结后进行解映射到ODUCn,电-光转换同理也是一级映射,从ODUCn到光信号的再生,实现在ODUCn层面提供电信号交换调度能力,能使分离型板卡上能够支持超100G电中继方式,提供ODUCn层面的电中继功能,使首尾站点间形成一个超100G管道,使业务组网更加灵活。
在一些实施例中,电中继节点包括输入端口和目标输出端口,超100G电中继的控制方法,包括,通过输入端口接收超100G的第一光层信号,并对第一光层信号进行解映射处理,得到超100G的光通路数据单元信号,根据预设调度方法对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口,通过目标输出端口对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号,其中,通过电中继节点中交叉板上的交叉调度配置,形成输入端口与目标输出端口之间的通道,进而实现在ODUCn层面上的交换调度处理。
在一些实施例中,参考图5,图5为超100G电中继的控制方法的原子模型图,其中,在电中继节点2线路侧到背板侧的过程中,将DWDM波长信号通过光/电转换并逐层解映射到ODUCn层信号通过电中继节点2中的交叉板4进行调度,即先进行OTSI终结再进行OTUCn/ODUCn适配,将光层信号解映射为ODUCn层信 号,反之,背板侧到线路侧的过程中,将背板调度过来的ODUCn层信号进行复用和映射,完成电/光转换后,转换为符合DWDM系统要求的标准波长信号发送出去,即先进行OTUCn/ODUCn适配再进行OTSI终结,在电中继节点2线路对信号进行调度时,仅将解映射到ODUCn信号,通过背板发送到电中继节点2中的交叉板4,由交叉板4实现ODUk粒度的交叉调度,最终形成ODUCn连接,进而通过在ODUCn层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
参考图6,图6为本申请另一实施例提出的超100G电中继的控制方法的流程图,在一些实施例中,超100G电中继的控制方法,包括但不限于以下步骤:
步骤S610,根据预设调度方法确定目标输出端口;
步骤S620,根据目标输出端口对光通路数据单元信号进行交叉调度配置,以使光通路数据单元信号传输至目标输出端口。
在一些实施例中,根据预设调度方法确定目标输出端口,根据目标输出端口对光通路数据单元信号进行交叉调度处理,以使光通路数据单元信号传输至目标输出端口,其中,通过在电中继节点2的输入端口和目标输出端口进行交叉调度处理,使超100G信号在这两个端口间传递,在ODUCn层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
参考图7,图7为本申请另一实施例提出的超100G电中继的控制方法的流程图,在一些实施例中,超100G电中继的控制方法,包括但不限于以下步骤:
步骤S710,根据光通路数据单元信号得到数据净荷;
步骤S720,根据目标输出端口对数据净荷进行交叉调度处理,以将数据净荷传输至目标输出端口。
在一些实施例中,根据光通路数据单元信号得到数据净荷,根据目标输出端口对数据净荷进行交叉调度处理,以将数据净荷传输至目标输出端口,使数据净荷能在ODUCn层进行传输,克服了在一些情形中只能在首站点和中间站点形成一个超100G管道,在中间站点和宿站点3再形成另外一个超100G管道,而不能形成一个完整的超100G管道,此时ODUCn层OAM开销会在光-电转换时终结,只有ODUk层的开销会被透传,告警传递和时延测量等依赖开销的功能都在超100G层面受到限制的问题,使超100G电中继的控制方法能在ODUCn层传输数据净荷,进而传输数据开销,在超100G层面实现告警传递和时延测量等依赖开销的功能。
参考图8,图8为本申请另一实施例提出的超100G电中继的控制方法的流程图,在一些实施例中,超100G电中继的控制方法,包括但不限于以下步骤:
步骤S810,根据光通路数据单元信号得到帧开销数据;
步骤S820,根据目标输出端口对帧开销数据进行交叉调度处理,以将帧开销数据传输至目标输出端口。
在一些实施例中,根据光通路数据单元信号得到帧开销数据,根据目标输出 端口对帧开销数据进行交叉调度处理,以将帧开销数据传输至目标输出端口,其中,通过本实施例中超100G的电中继控制方法,能使ODUCn的信号在两个端口间交换,并且ODUCn的信号至少包括ODUCn的数据净荷,进而通过透明传输ODUCn的OAM开销数据,或对于ODUCn的OAM开销可单独配置透传,保证开销可以被透传到源或宿站点3,进而在超100G层面实现告警传递和时延测量等依赖开销的功能。
参考图9,图9为本申请另一实施例提出的超100G电中继的控制方法的流程图,应用于分离型光传送网络,分离型光传送网络包括源站点1、电中继节点2和宿站点3,电中继节点2包括输入端口和目标输出端口,在一些实施例中,超100G电中继的控制方法,包括但不限于以下步骤:
步骤S910,源站点将接收到的客户侧业务信号进行映射处理,得到超100G的第一光层信号,并将第一光层信号发送至电中继节点;
步骤S920,电中继节点通过输入端口接收第一光层信号,对第一光层信号进行解映射处理,得到光通路数据单元信号,并根据预设调度方法对光通路数据单元信号进行交叉调度处理,将光通路数据单元信号传输至目标输出端口;
步骤S930,电中继节点通过目标输出端口对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口将第二光层信号发送至宿站点。
在一些实施例中,电中继节点根据预设调度方法对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口,对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口输出第二光层信号,其中,由于电中继节点在ODUCn层进行电信号交换调度时,只交换ODUCn电信号,而不交换ODUk信号,在配置为ODUCn调度方式后,在光-电转换的过程中,对一端输入的超100G的光层信号只解映射到ODUCn层,而不继续解映射到ODUk层,在电-光转换的过程中,在另一端对ODUCn映射封装到超100G光信号发送出去,进而实现在ODUCn层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
在一些实施例中,源站点将接收到的客户侧业务信号进行映射处理,得到超100G的第一光层信号,并将第一光层信号发送至电中继节点,电中继节点进行交叉调度,并将第二光层信号发送至宿站点,进而生成源站点与宿站点之间的超100G管道,使该超100G业务或管道上的相关OAM开销可以透明传输,进而实现相关告警、时延测量等依赖开销的功能,并且使超100G业务组网更加灵活。
参考图10,图10为本申请一实施提出的超100G电中继应用于分离型光传送网络的示意图,其中,分离型光传送网络包括具备超100G信号中继能力的分离型OTN设备,分离型OTN设备中包括支路板、线路板和交叉板4。
在一些实施例中,支路板用于客户侧信号和背板信号的转换,在客户侧到背 板侧,客户侧业务信号转换后经封装映射处理、OTN成帧和FEC编码处理等操作,输出ODU层信号经背板送至交叉板4进行调度;反之,背板侧到客户侧,将背板调度过来的ODU层信号进行映射和复用最终通过转换为客户业务信号发出,支路板只会配置于业务的源站点1和宿站点3,在本申请中不涉及支路板的变更,支路板的具体的设置细节不对本申请方案构成限制。
在一些实施例中,线路板用于线路侧信号和背板信号的转换。线路侧到背板侧,将DWDM波长信号通过光/电转换并逐层解映射到ODU层信号通过背板发送到交叉板4进行调度;反之,背板侧到线路侧,将背板调度过来的ODU层信号进行复用和映射,完成电/光转换后,转换为符合DWDM系统要求的标准波长信号发送出去。本申请方案中涉及在中间站点,即电中继节点2中用于进行中继的线路板,在信号转换过程中,只将光层信号解映射到ODUCn信号,并通过背板发送到交叉板4,进行后续交叉调度处理。
在一些实施例中,交叉板4用于对支路板/线路板端口调度过来的ODU层信号根据配置调度到其它支路板/线路板端口。本专利涉及中间站点用于进行中继的线路板,通过对信号进行交叉调度处理使业务组网更加灵活。
在一些实施例中提供了一种超100G管道的电中继控制方法,其中,通过源站点1将接收到的客户侧业务信号进行映射处理,得到超100G的第一光层信号,并将第一光层信号发送至电中继节点2,电中继节点2通过输入端口接收第一光层信号,对第一光层信号进行解映射处理,得到光通路数据单元信号,并根据预设调度方法对光通路数据单元信号进行交叉调度处理,将光通路数据单元信号传输至目标输出端口,电中继节点2通过目标输出端口对光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过目标输出端口将第二光层信号发送至宿站点3,将电中继光电光转换过程中ODUCn信号进行交叉透传,形成一条完整的超100G管道,提升管道控制简便性。
在一些实施例中,根据预设调度方法对光通路数据单元信号进行交叉调度处理,将光通路数据单元信号传输至目标输出端口,包括,电中继节点2根据预设调度方法确定目标输出端口,电中继节点2根据目标输出端口对光通路数据单元信号进行交叉调度处理,以使光通路数据单元信号传输至目标输出端口。
在一些实施例中,根据预设调度方法对光通路数据单元信号进行交叉调度处理,将光通路数据单元信号传输至目标输出端口,包括,电中继节点2根据光通路数据单元信号得到数据净荷,电中继节点2根据目标输出端口对数据净荷进行交叉调度处理,以将数据净荷传输至目标输出端口。
在一些实施例中,根据目标输出端口对光通路数据单元信号进行交叉调度处理,以将光通路数据单元信号传输至目标输出端口,包括,根据光通路数据单元信号得到帧开销数据,根据目标输出端口对帧开销数据进行交叉调度处理,以将帧开销数据传输至目标输出端口。
在一些实施例中,参考图10,源站点将接收到的客户侧业务信号进行映射 处理,得到超100G的第一光层信号,并将第一光层信号发送至电中继节点,电中继节点进行交叉调度,并将第二光层信号发送至宿站点,进而生成源站点与宿站点之间的超100G管道(ODUCn通道),其中,由于电中继节点中只交换ODUCn电信号,而不交换ODUk信号,在ODUCn层面进行电信号交换连接,源站点生成的帧开销数据在ODUCn层面上的传输不会在电中继节点中断,使源站点可以通过超100G管道透明传输帧开销数据,即源站点生成帧开销数据,并通过上述电中继节点将帧开销数据透明传输至宿站点,进而在超100G层面实现告警传递和时延测量等基于帧开销数据所进行的功能。
在一些实施例中,超100G管道的电中继控制方法还包括,在源站点1与电中继节点2之间建立用于传输光支路信号和OTUCn的第一通道,在电中继节点2与宿站点3之间建立用于传输光支路信号和CN光传送单元的第二通道,通过第一通道、第二通道和电中继节点2,在源站点1与宿站点3之间传输光支路信号和OTUCn信号。
在一些实施例中,超100G管道的电中继控制方法还包括,在控制宿站点根据第二光层信号建立源站点1与宿站点之间的超100G管道之后,根据超100G管道生成用于传输低于100G的ODUk层信号的数据链路。
参考图11,本申请实施例还提供了一种控制器1100,包括:存储器1120、处理器1110及存储在存储器上并可在处理器上运行的计算机程序,处理器1110执行计算机程序时实现如上述实施例中任意一项的超100G电中继的控制方法,例如,执行以上描述的图3中的方法步骤S310至S340、图6中的方法步骤S610至S620、图7中的方法步骤S710至S720、图8中的方法步骤S810至S820、图9中的方法步骤S910至S930。
此外,本申请的一实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,执行以上描述的图3中的方法步骤S310至S340、图6中的方法步骤S610至S620、图7中的方法步骤S710至S720、图8中的方法步骤S810至S820、图9中的方法步骤S910至S930。
本申请至少具有以下有益效果:接收超100G的第一光层信号,对所述第一光层信号进行解映射处理,得到超100G的光通路数据单元信号,根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,对所述光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过所述目标输出端口输出所述第二光层信号,其中,通过对超100G的光通路数据单元信号进行交叉调度,即在ODUCn(Optical Transport Unit-Cn,光传送单元Cn)层面进行电信号交换连接,使分离型板卡上能够支持超100G电中继方式,实现超100G电中继功能,使超100G业务组网更加灵活。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组 件可以被实施为由处理器,如总处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

  1. 一种超100G电中继的控制方法,应用于电中继节点,所述方法包括:
    接收超100G的第一光层信号;
    对所述第一光层信号进行解映射处理,得到超100G的光通路数据单元信号;
    根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口;
    对所述光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过所述目标输出端口输出所述第二光层信号。
  2. 根据权利要求1所述的超100G电中继的控制方法,其中,所述根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,包括:
    根据所述预设调度方法确定目标输出端口;
    根据所述目标输出端口对所述光通路数据单元信号进行交叉调度处理,以使所述光通路数据单元信号传输至目标输出端口。
  3. 根据权利要求2所述的超100G电中继的控制方法,其中,所述根据所述目标输出端口对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,包括:
    根据所述光通路数据单元信号得到数据净荷;
    根据所述目标输出端口对所述数据净荷进行交叉调度处理,以将所述数据净荷传输至所述目标输出端口。
  4. 根据权利要求3所述的超100G电中继的控制方法,其中,所述根据所述目标输出端口对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,包括:
    根据所述光通路数据单元信号得到帧开销数据;
    根据所述目标输出端口对所述帧开销数据进行交叉调度处理,以将所述帧开销数据传输至所述目标输出端口。
  5. 一种超100G电中继的控制方法,应用于分离型光传送网络,所述分离型光传送网络包括源站点、电中继节点和宿站点,所述电中继节点包括输入端口和目标输出端口,所述方法包括:
    所述源站点将接收到的客户侧业务信号进行映射处理,得到超100G的第一光层信号,并将所述第一光层信号发送至所述电中继节点;
    所述电中继节点通过所述输入端口接收所述第一光层信号,对所述第一光层信号进行解映射处理,得到光通路数据单元信号,并根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,将所述光通路数据单元信号传输至所述目标输出端口;
    所述电中继节点通过所述目标输出端口对所述光通路数据单元信号进行映射处理,得到超100G的第二光层信号,并通过所述目标输出端口将所述第二光 层信号发送至宿站点。
  6. 根据权利要求5所述的超100G电中继的控制方法,其中,所述根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,将所述光通路数据单元信号传输至所述目标输出端口,包括:
    所述电中继节点根据所述预设调度方法确定目标输出端口;
    所述电中继节点根据所述目标输出端口对所述光通路数据单元信号进行交叉调度处理,以使所述光通路数据单元信号传输至目标输出端口。
  7. 根据权利要求6所述的超100G电中继的控制方法,其中,所述根据预设调度方法对所述光通路数据单元信号进行交叉调度处理,将所述光通路数据单元信号传输至所述目标输出端口,包括:
    所述电中继节点根据所述光通路数据单元信号得到数据净荷;
    所述电中继节点根据所述目标输出端口对所述数据净荷进行交叉调度处理,以将所述数据净荷传输至所述目标输出端口。
  8. 根据权利要求7所述的超100G电中继的控制方法,其中,所述电中继节点根据所述目标输出端口对所述光通路数据单元信号进行交叉调度处理,以将所述光通路数据单元信号传输至目标输出端口,包括:
    所述电中继节点根据所述光通路数据单元信号得到帧开销数据;
    所述电中继节点根据所述目标输出端口对所述帧开销数据进行交叉调度处理,以将所述帧开销数据传输至所述目标输出端口。
  9. 一种控制器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至8中任意一项所述的超100G电中继的控制方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行如权利要求1至8中任意一项所述的超100G电中继的控制方法。
PCT/CN2023/093890 2022-07-04 2023-05-12 超100g电中继的控制方法、控制器以及存储介质 WO2024007736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210779518.4A CN117353820A (zh) 2022-07-04 2022-07-04 超100g电中继的控制方法、控制器以及存储介质
CN202210779518.4 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024007736A1 true WO2024007736A1 (zh) 2024-01-11

Family

ID=89363809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093890 WO2024007736A1 (zh) 2022-07-04 2023-05-12 超100g电中继的控制方法、控制器以及存储介质

Country Status (2)

Country Link
CN (1) CN117353820A (zh)
WO (1) WO2024007736A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832629A (zh) * 2005-03-10 2006-09-13 华为技术有限公司 光传送网中的信号调度方法和系统
CN110830143A (zh) * 2018-08-13 2020-02-21 中兴通讯股份有限公司 一种业务传输方法及装置、光传送网设备、存储介质
CN112511925A (zh) * 2020-11-18 2021-03-16 中国联合网络通信集团有限公司 交叉调度方法和装置
US20220052762A1 (en) * 2019-04-30 2022-02-17 Huawei Technologies Co., Ltd. Data transmission method and apparatus in optical transport network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832629A (zh) * 2005-03-10 2006-09-13 华为技术有限公司 光传送网中的信号调度方法和系统
CN110830143A (zh) * 2018-08-13 2020-02-21 中兴通讯股份有限公司 一种业务传输方法及装置、光传送网设备、存储介质
US20220052762A1 (en) * 2019-04-30 2022-02-17 Huawei Technologies Co., Ltd. Data transmission method and apparatus in optical transport network
CN112511925A (zh) * 2020-11-18 2021-03-16 中国联合网络通信集团有限公司 交叉调度方法和装置

Also Published As

Publication number Publication date
CN117353820A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US10225037B2 (en) Channelized ODUflex systems and methods
EP3013017B1 (en) Channelized oduflex systems and methods for flexible ethernet and otn multiplexing
US9882634B1 (en) Coordinated connection validation systems and methods among mated transceivers for verifying optical and data plane connectivity
US9942633B2 (en) Disaggregated optical transport network switching system
KR100751962B1 (ko) 광섬유 전송 시스템, 광섬유 전송의 실현 방법 및 단말처리 장치
EP2874332B1 (en) Method and device for transporting and receiving client signal in optical transport network
CN103891222B (zh) 对光传输网络中的现有业务流调整大小的方法及装置
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US8934479B2 (en) Super optical channel transport unit signal supported by multiple wavelengths
US9020345B2 (en) Method and system for establishing end-to-end service and optical transport network
US9648402B2 (en) In-band communication channel in optical networks
JP2001186188A (ja) マルチプロトコル機能をもつ遠隔通信ネットワークノード、信号を処理する方法、およびマルチプロトコルノードを含む遠隔通信ネットワーク
EP2676408A1 (en) Resizing a path in a connection-oriented network
CN112672236A (zh) 业务信号处理方法及设备
EP3716641A1 (en) Data transport method, device and system
US8665749B2 (en) Method and apparatus for realizing source routing in a blocking cross network
CN102201973B (zh) 一种基于g.709的多级复用路由控制方法和网关网元
EP3236602A1 (en) Disaggregated optical transport network switching system
WO2024007736A1 (zh) 超100g电中继的控制方法、控制器以及存储介质
EP2093916B1 (en) Optical transport hierarchy gateway interface
WO2019052539A1 (zh) 信号的处理装置及方法
Oki et al. Optical networking paradigm: Past, recent trends and future directions
CN101951531B (zh) 一种基于g.709的标签交换路径的互联互通方法
Frigerio et al. Realizing the optical transport networking vision in the 100 Gb/s era
Elbers et al. Optical metro networks 2.0

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834510

Country of ref document: EP

Kind code of ref document: A1