WO2011017826A1 - 一种多相绕组永磁无刷直流电动机及其控制方法和控制电路 - Google Patents

一种多相绕组永磁无刷直流电动机及其控制方法和控制电路 Download PDF

Info

Publication number
WO2011017826A1
WO2011017826A1 PCT/CN2009/000995 CN2009000995W WO2011017826A1 WO 2011017826 A1 WO2011017826 A1 WO 2011017826A1 CN 2009000995 W CN2009000995 W CN 2009000995W WO 2011017826 A1 WO2011017826 A1 WO 2011017826A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
winding
stator
permanent magnet
rotor
Prior art date
Application number
PCT/CN2009/000995
Other languages
English (en)
French (fr)
Inventor
马玉林
赵军平
裴超
丁杰
Original Assignee
西安磁林电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安磁林电气有限公司 filed Critical 西安磁林电气有限公司
Publication of WO2011017826A1 publication Critical patent/WO2011017826A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • Multiphase winding permanent magnet brushless choke motor and control method thereof and control circuit thereof Multiphase winding permanent magnet brushless choke motor and control method thereof and control circuit thereof
  • the invention belongs to the field of electromechanical technology, and particularly relates to a multi-phase winding permanent magnet brushless DC motor and a control method and a control circuit thereof.
  • the winding windings of the existing winding stators are usually three-phase structures or two sets of three-phase structures with an electrical angle of 30°.
  • the energized windings approach or enter the area where the magnetic induction is reduced.
  • torque ripple occurs, and the torque ripple affects the control accuracy and servo performance of the brushless motor, and causes vibration and noise of the motor.
  • two sets of three-phase windings are mentioned by chute, fractional slot, PWM-0N-PWM and literature (Wang Yufei. Simulation and analysis of multiphase permanent magnet brushless motor system. Micro-motor, No. 10, 2005)
  • the torque ripple is improved or reduced by an electrical angle of 30°. As a result, there are side effects such as reduced efficiency, but the problem of torque ripple cannot be eliminated.
  • the present invention provides a multiphase
  • the technical solution of the present invention is: a multi-phase winding permanent magnet brushless DC motor comprising a rotor, a stator disposed outside the rotor, a multi-phase stator winding disposed on the stator, at least one pair of permanent magnets, and a plurality of a rotor position sensor, characterized in that: said multi-phase stator windings are sequentially uniformly disposed on an inner surface of a stator circumference between central axes of two adjacent permanent magnets in said permanent magnet; said rotor position sensor The number is the same as the number of phases of the multi-phase stator winding, and the center of the magnetic circuit corresponding to each of the multi-phase stator windings is disposed on the upper rotor position sensor of the stator; the width of the reduced portion of the magnetic induction intensity on the permanent magnet is smaller than The phase width of the multiphase stator winding.
  • the working control method of the multi-phase winding permanent magnet brushless DC motor of the invention mainly comprises the controller controlling the on and off of the stator windings of each phase according to the level signal of each phase position sensor, specifically the position sensor whose level is changed from low to high.
  • the winding of the phase is kept off, and the winding of the phase adjacent to the phase in which the magnetic induction is reduced is turned off, and the remaining phases are turned on.
  • the phase of the magnetic induction reduction region and the phase close to or entering the region are not turned on, and the phase leaving the region is turned on, and avoids
  • the reduction phase of the phase magnetic induction intensity is turned on, so that the relative potential of the back electromotive force is a stable value, thereby avoiding the occurrence of the torque ripple phenomenon.
  • the present invention provides a six-phase bridge type control circuit, which is suitable for the control of a six-phase winding permanent magnet brushless DC motor, and the circuit mainly comprises a controller The bootstrap circuit and the winding circuit, the winding circuit is connected to the controller through the bridge driving circuit, wherein the winding circuit mainly comprises a multi-phase winding, and the main feature is that the same-name end of each phase winding is electrically connected with the different-name end of the adjacent winding And connected and connected to the common contact at the same time, the common contact is the ideal zero point.
  • the width of the magnetic induction reduction region in the multi-phase winding permanent magnet brushless DC motor of the present invention is smaller than the interphase width of the winding, and the phase of the magnetic induction reduction region and the phase approaching or entering the region in the control mode of the present invention Passing, and the phase leaving the region is turned on, so that the commutation magnetic induction intensity reduction region (the intersection of the magnetic poles) has no conductive winding, thereby avoiding the influence of the magnetic induction strength reduction region on the torque stress, and making the armature (stator winding) reverse
  • the relative rotational speed of the potential is a stable value, which effectively avoids the occurrence of torque ripple phenomenon; and its structure is simple and easy to maintain.
  • FIG. 1 is a schematic structural view of a multi-phase winding permanent magnet brushless DC motor of the present invention
  • FIG. 2 is a schematic structural view of a six-phase winding permanent magnet brushless DC motor
  • Figure 3 is a timing diagram of the opposite potentials of the six-phase winding permanent magnet brushless DC motor, the rotor rotor position sensor and the turn-on of each phase winding;
  • Figure 4 is a schematic diagram of a six-phase winding permanent magnet brushless DC motor control circuit.
  • a multi-phase winding permanent magnet brushless DC motor provided by the present invention includes a rotor, a stator disposed outside the rotor 2, a multi-phase stator winding 3 disposed on the stator 2, and a multi-phase stator winding disposed thereon.
  • a rotor position sensor 4 wherein the rotor comprises a non-magnetic rotor body 1 and a rotor core 5 nested outside the non-magnetic rotor body 1, the rotor core 5 having at least one pair of permanent magnets 6 nested therein;
  • the stator windings 3 are sequentially disposed uniformly on the inner surface of the circumference of the stator 2 between the central axes of the adjacent two permanent magnets 6 in the permanent magnets 6; at the center of the magnetic circuit of each phase winding in the multi-phase stator windings 3
  • a rotor position sensor 4 is provided, and the rotor position sensor 4 is disposed only in one magnetic pole.
  • the torque ripple is generated when the energized winding approaches or enters the section where the magnetic induction is reduced due to the decrease of the air gap magnetic induction strength
  • the concept of the present invention is that the multiphase winding
  • the controller controls the on and off of the stator windings of each phase according to the level signal of each phase rotor position sensor, specifically the winding of the phase of the phase of the rotor position sensor from low to high remains closed.
  • the phase adjacent to the magnetic induction intensity reduction region is turned off, and the remaining phases are turned on, so that the phase of the magnetic induction reduction region and the phase close to or entering the region are not turned on, and the phase conduction leaving the region is turned on.
  • the counter electromotive force relative rotation speed of the armature is a stable value, thereby avoiding the occurrence of the torque ripple phenomenon.
  • the present invention applies the magnetic induction intensity on the permanent magnet 6.
  • the width of the reduced portion is smaller than the interphase width of the multiphase stator winding 3.
  • the six-phase windings are six-phase stator windings of A, B, C, D, E and F, respectively, and clockwise along the circumference of the stator.
  • the second uniform setting (the rotor position sensor corresponding to each winding in Figure 3 reflects the position of the six-phase winding, and the rotor position sensors shown in Figure 3 are all placed in the same area, which is composed of 6 permanent magnets
  • the six stator angles formed by the stator core are 60° (mechanical angle); the stator windings in each area are six phases, and are arranged clockwise along the circumference of the stator. Each group of windings is separated by 30°.
  • the present invention selects a permanent magnet 6 having a trapezoidal cross section, and the narrow end of the permanent magnet 6 is disposed close to the multiphase stator winding 3, that is, the magnetic induction intensity reduction portion of the permanent magnet 6 is satisfied.
  • the width is smaller than the interphase width of the multiphase stator winding 3.
  • stator of the present invention has a slotless structure, and the stator winding can also adopt a square hollow wire, and the square wire is favorable for improving the utilization of the air gap, and the hollow of the hollow wire can be dissipated by the oil circulation.
  • the control circuit of the six-phase winding permanent magnet brushless DC motor mainly comprises a controller, a bootstrap circuit, a winding circuit and a rotor position sensor circuit, and the main feature thereof is the same name and the different name of the windings of adjacent phases.
  • the terminal electrical connection ie the end of the same name of each phase winding, is electrically connected to the opposite end of the adjacent winding and to a common junction that is the ideal zero.
  • the same name end, the B phase non-identical end, the C same name end, the D phase non-identical end, the E same name end, and the F phase non-identical end are connected to the common contact, which can achieve dynamic symmetry similar to the Y-type connection.
  • the motor speed can be controlled by PWM mode, and the modulation frequency varies with the difference between the current speed and the target speed. Increase and increase, which is beneficial to PWM modulation and feedback braking.

Description

一种多相绕组永磁无刷莨流电动机及其控制方法和控制电路 技术领域
本发明属于机电技术领域, 具体涉及一种多相绕组永磁无刷直流电动机及 其控制方法和控制电路。
背景技术
现有绕组定子的绕组绕组通常为三相结构或互成 30° 电角度的两套三相结 构, 在永磁体磁极交接处, 由于气隙磁感应强度降低, 通电绕组接近或进入磁 感应强度降低的区段时, 就会出现转矩脉动, 转矩脉动影响了无刷电机的控制 精度和伺服性能, 同时会引起电机的振动和噪声。 目前是通过斜槽、 分数槽、 PWM-0N-PWM 以及文献 (王宇飞. 多相永磁无刷电动机系统仿真及分析. 微特电 机, 2005年第 10期) 提到的两套三相绕组互隔 30° 电角度的方式来改善或降 低转矩脉动, 其结果是有降低效率等副作用, 但不能消除转矩脉动的问题, 发明内容
为了消除现有电机中的转矩脉动的问题, 本发明提供了一种多相
绕组永磁无刷直流电动机及其控制方法和控制电路, 其能够完全消除转矩 脉动的问题。
本发明的技术解决方案是: 一种多相绕组永磁无刷直流电动机, 包括转子、 设置在该转子外的定子、 设置在该定子上的多相定子绕组、 至少一对永磁体及 多个转子位置传感器, 其特征在于: 所述多相定子绕组顺次均匀设置在所述永 磁体中相邻的两个永磁体的中心轴线之间的定子圆周的内表面上; 所述转子位 置传感器的数目与所述多相定子绕组的相数相同, 对应所述多相定子绕组中的 每相定子绕组的磁路中心设置在定子上转子位置传感器; 所述永磁体上磁感应 强度降低部分的宽度小于所述多相定子绕组的相间宽度。
本发明的多相绕组永磁无刷直流电动机的工作控制方法, 主要在于控制器 根据各相位置传感器的电平信号控制各相定子绕组的通断, 具体是电平由低变 高的位置传感器所在相的绕组保持截止, 并且与该相相邻欲进入磁感应强度降 低区域的相的绕组截止, 其余各相导通。 通过该控制方式, 使磁感应强度降低 区域的相以及接近或进入该区域的相不导通, 而离开该区域的相导通, 通过避 开换相磁感应强度的降低区段, 使反电势相对转速为稳定值, 从而避免转矩脉 动现象的发生。
为了实现本发明的多相绕组永磁无刷直流电动机的控制, 本发明提供了一 种六相桥式控制电路, 适用于六相绕组永磁无刷直流电动机的控制, 该电路主 要包括控制器、 自举电路和绕组电路, 绕组电路通过桥式驱动电路接入控制器, 其中, 绕组电路主要包括多相绕组, 其主要特点是每相绕组的同名端与相邻绕 组的异名端电连接且连接且同时连接至公共接点, 该公共接点为理想零点。
由于本发明的多相绕组永磁无刷直流电动机中磁感应强度降低区域的宽度 小于绕组的相间宽度, 并且本发明的控制方式中使磁感应强度降低区域的相以 及接近或进入该区域的相不导通, 而离开该区域的相导通, 从而使得换向磁感 应强度降低区域 (磁极交接处) 无导电绕组, 避免了磁感应强度降低区域对转 矩受力的影响, 使电枢 (定子绕组) 反电势相对转速为稳定值, 有效的避免了 转矩脉动现象的发生; 且其结构简单, 易于维护。
附图说明
图 1是本发明的多相绕组永磁无刷直流电动机结构示意图;
图 2 是六相绕组永磁无刷直流电动机的结构示意图;
图 3是六相绕组永磁无刷直流电动机的各相反电势、 转子转子位置传感器 和各相绕组导通对应时序图;
图 4是六相绕组永磁无刷直流电动机控制电路示意图。
具体实施方式
参见图 1 , 本发明提供的多相绕组永磁无刷直流电动机, 包括转子、设置在 该转子外的定子 2、设置在该定子 2上的多相定子绕组 3及设置在该多相定 子绕组 3外的转子位置传感器 4,其中,转子包括非磁性转子体 1和嵌套在该非 磁性转子体 1外的转子铁心 5, 该转子铁心 5上嵌套有至少一对永磁体 6; 多相 定子绕组 3顺次均匀设置在永磁体 6中相邻的两个永磁体 6的中心轴线之间的 定子 2的圆周的内表面上; 多相定子绕组 3中的每相绕组的磁路中心处均设置 有一转子位置传感器 4, 且该转子位置传感器 4只设置在一个磁极内。
为了避免在永磁体磁极交接处, 由于气隙磁感应强度降低, 通电绕组接近 或进入磁感应强度降低的区段时, 产生转矩脉动, 本发明的构思是, 多相绕组 永磁无刷直流电动机在工作过程中, 控制器根据各相转子位置传感器的电平信 号控制各相定子绕组的通断, 具体是电平由低变高的转子位置传感器所在相的 绕组保持截止, 并且与该相相邻欲进入磁感应强度降低区域的相截止, 其余各 相导通, 使磁感应强度降低区域的相以及接近或进入该区域的相不导通, 而离 开该区域的相导通, 通过避开换相磁感应强度的降低区段, 使电枢(定子绕组) 的反电势相对转速为稳定值, 从而避免转矩脉动现象的发生, 为此, 本发明将 永磁体 6上磁感应强度降低部分的宽度小于多相定子绕组 3的相间宽度。
参见图 2、 3, 以六相绕组永磁无刷直流电动机为例, 设该六相绕组分别是 A、 B、 C, D、 E和 F这六相定子绕组, 且沿定子圆周顺时针顺次均匀设置(图 3 中以每项绕组所对应的转子位置传感器体现六相绕组的位置, 且图 3 中所示的 转子位置传感器均设置在同一个区域内, 该区域是由 6个永磁体均分定子铁心 所形成的 6个夹角为 60° (机械角度) 的区域; 每个区域内的定子绕组均是六 相, 且沿定子圆周顺时针顺次设置, 每组绕组间隔 30° 电角度。 ), 电机运行过 程中, 假设 A相己进入磁感应强度降低的区域, 当 A相转子位置传感器的电平 从低变高时, F相定子绕组开始导通, B相定子绕组开始不导通, A相定子绕组 保持不导通, C、 D、 E保持导通。 当 B相传感器电平从低变高时, A相开始导 通, C相开始不导通, B相保持不导通, D、 E、 F保持导通。
同时, 为了实现理想化的方波气隙磁场, 本发明选用横截面为梯形的永磁 体 6,且永磁体 6较窄的一端靠近多相定子绕组 3设置即满足永磁体 6上磁感应 强度降低部分的宽度小于多相定子绕组 3的相间宽度。
此外, 本发明的定子为无槽结构, 定子绕组还可以采用方形空心线, 方形 线有利于提高气隙的利用率, 空心线的空心可通过油循环散热。
参见图 4, 该六相绕组永磁无刷直流电动机的控制电路, 主要包括控制器、 自举电路、 绕组电路和转子位置传感器电路, 其主要特点是相邻相的绕组的同 名端与异名端电连接即每相绕组的同名端与相邻绕组的异名端电连接且连接至 为理想零点的公共接点。 具体是 A相同名端、 B相非同名端、 C相同名端、 D相 非同名端、 E相同名端、 F相非同名端连接到公共接点, 可实现类似 Y型接法的 动态对称。
控制电机转速可采用 PWM方式, 其调制频率随当前速度与目标速度的差的 增大而增大, 有利于 PWM的调制和回馈制动。
同样可以在六相绕组永磁无刷直流电动机的基础上, 根据实际需要设计制 造 12相绕组永磁无刷直流电动机, 其设计构思、 原理和机械结构及其控制方式 均与六相绕组永磁无刷直流电动机的相同。

Claims

权利要求书
1、一种多相绕组永磁无刷直流电动机,包括转子、设置在该转子外的定子、 设置在该定子上的多相定子绕组、 至少一对永磁体及多个转子位置传感器, 其 特征在于: 所述多相定子绕组顺次均匀设置在所述永磁体中相邻的两个永磁体 的中心轴线之间的定子圆周的内表面上; 所述转子位置传感器的数目与所述多 相定子绕组的相数相同, 对应所述多相定子绕组中的每相定子绕组的磁路中心 设置有转子位置传感器; 所述永磁体上磁感应强度降低部分的宽度小于所述多 相定子绕组的相间宽度。
2、 根据权利要求 1所述的电动机, 其特征在于: 所述转子包括非磁性转子 体和嵌套在该非磁性转子体外的转子铁心, 所述永磁体嵌套在该转子铁心中且 沿该转子铁心的圆周均匀设置。
3、 根据权利要求 2所述的电动机, 其特征在于: 所述永磁体的横截面是梯 形的, 且其较窄的一端靠近所述多相定子绕组, 该端的宽度小于所述多相定子 绕组的相间宽度。
4、 根据权利要求 1或 2或 3所述的电动机, 其特征在于: 所述多相定子绕 组是 6相或 12相。
5、 根据权利要求 4所述的多相绕组永磁无刷直流电动机, 其特征在于: 所 述多相定子绕组为 6组时, 所述永磁体为三对, 将转子铁心均分成 6个夹角为 60° 的区域, 每一区域对应的定子圆周的内表面上设置该 6组多相定子绕组, 每组绕组间隔 30° 电角度。
6、 一种多相绕组永磁无刷直流电动机的控制方法, 其特征在于: 通过控制 器根据各相转子位置传感器的电平信号控制各相定子绕组的通断, 具体是电平 由低变高的转子位置传感器所在相的绕组保持截止, 并且与该相相邻的欲进入 磁感应强度降低区域的相的绕组截止, 其余各相导通。
7、 一种六相桥式多相绕组永磁无刷直流电动机的控制电路, 主要包括控制器、 自举电路和绕组电路, 绕组电路通过自举电路接入控制器; 绕组电路主要包括 多相绕组, 其特征在于: 每相绕组的同名端与相邻绕组的异名端电连接且同时 连接至为理想零点的公共接点。
PCT/CN2009/000995 2009-08-11 2009-09-01 一种多相绕组永磁无刷直流电动机及其控制方法和控制电路 WO2011017826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910023567.X 2009-08-11
CN200910023567A CN101997377B (zh) 2009-08-11 2009-08-11 一种多相绕组永磁无刷直流电动机及其控制方法和控制电路

Publications (1)

Publication Number Publication Date
WO2011017826A1 true WO2011017826A1 (zh) 2011-02-17

Family

ID=43585835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000995 WO2011017826A1 (zh) 2009-08-11 2009-09-01 一种多相绕组永磁无刷直流电动机及其控制方法和控制电路

Country Status (2)

Country Link
CN (1) CN101997377B (zh)
WO (1) WO2011017826A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868343B (zh) * 2012-09-20 2015-07-29 西安磁林电气有限公司 六相直流方波永磁无刷电机
CN103312106A (zh) * 2013-06-13 2013-09-18 广西大学 新型永磁无刷直流电动机及其控制方法和控制电路
CN105305892B (zh) * 2015-10-15 2018-01-26 华中科技大学 一种永磁电机
CN111416552B (zh) * 2020-04-20 2021-12-21 天津工业大学 一种柔性永磁无刷直流电机控制系统及其控制方法
CN114123552B (zh) * 2021-11-27 2023-12-26 西安磁林电气有限公司 一种六相无槽方波电机
CN116131714B (zh) * 2023-04-14 2023-06-16 西华大学 一种永磁多相无刷直流电机的驱动电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043820A1 (en) * 1996-05-10 1997-11-20 Iskra Avtoelektrika Nova Gorica D.D., Sempeter Pri Gorici Three-phase electronically commutated brushless dc-electromotor
CN1351776A (zh) * 1999-05-21 2002-05-29 松下电器产业株式会社 具有永久性磁体的电动机
CN101268601A (zh) * 2005-09-23 2008-09-17 迈克尔·米利兹尔 驱动电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0130537B1 (ko) * 1994-05-31 1998-04-09 이대원 토크리플을 최소화시킨 브러쉬없는 직류전동기 제어시스템
JPH1042531A (ja) * 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd 電動機
KR19990013313A (ko) * 1998-02-11 1999-02-25 이이수 무변출력 무정류자 직류전동기
CN2376125Y (zh) * 1999-05-14 2000-04-26 石正铎 永磁同步电机的定子结构
KR100408053B1 (ko) * 2001-02-13 2003-12-01 엘지전자 주식회사 에스알엠의 토크리플 저감방법
EP3203628A1 (en) * 2002-02-25 2017-08-09 Daikin Industries, Ltd. Motor controlling method and apparatus thereof
CN1269304C (zh) * 2003-12-26 2006-08-09 浙江大学 应用于永磁无刷直流电机的脉冲宽度调制方法
JP2008263738A (ja) * 2007-04-13 2008-10-30 Hitachi Industrial Equipment Systems Co Ltd 回転電機
CN201656728U (zh) * 2009-08-11 2010-11-24 西安磁林电气有限公司 一种多相绕组永磁无刷直流电动机及其控制电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043820A1 (en) * 1996-05-10 1997-11-20 Iskra Avtoelektrika Nova Gorica D.D., Sempeter Pri Gorici Three-phase electronically commutated brushless dc-electromotor
CN1351776A (zh) * 1999-05-21 2002-05-29 松下电器产业株式会社 具有永久性磁体的电动机
CN101268601A (zh) * 2005-09-23 2008-09-17 迈克尔·米利兹尔 驱动电机

Also Published As

Publication number Publication date
CN101997377B (zh) 2012-09-12
CN101997377A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
US11967866B2 (en) System and method for controlling a multi-tunnel electric machine
EP0559818B1 (en) Polyphase switched reluctance motor
Prasad et al. Modelling and Simulation Analysis of the Brushless DC Motor by using MATLAB
KR101781382B1 (ko) 개선된 플럭스 스위칭 기계 설계
US9106122B2 (en) Single phase switched reluctance machine with short flux path
US9059659B2 (en) Method and system for measuring a characteristic of an electric motor
US8922087B1 (en) High efficiency low torque ripple multi-phase permanent magnet machine
WO2011017826A1 (zh) 一种多相绕组永磁无刷直流电动机及其控制方法和控制电路
JP6913194B2 (ja) ロータ及びこのロータを有するモータ
Azam et al. Current control of BLDC drives for EV application
JP2015509697A (ja) 同期式の電気機械
KR20120080951A (ko) 스위치드 릴럭턴스 모터
CN110429779A (zh) 一种高可靠性电励磁双凸极起动发电机
WO2015081106A2 (en) Electronically commutated electromagnetic apparatus
CN104410177A (zh) 一种定子及其相应的无刷直流电机和三相开关磁阻电机
US11641173B2 (en) Control apparatus of rotary electric machine and method therefor
CN101814881A (zh) 用于控制ipm电动机的方法及控制器
CN201656728U (zh) 一种多相绕组永磁无刷直流电动机及其控制电路
JP5885423B2 (ja) 永久磁石式回転電機
Ahfock et al. Sensorless commutation of printed circuit brushless direct current motors
CN104753300A (zh) 环形绕组永磁无刷直流电机
JP2013099240A (ja) スイッチドリラクタンスモータの駆動装置及びその方法
US20220278580A1 (en) Three pulse, odd-even motor winding system
JP4312115B2 (ja) モータ駆動装置
Zhang et al. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848156

Country of ref document: EP

Kind code of ref document: A1