WO2011015038A1 - 垂直起降飞行汽车 - Google Patents

垂直起降飞行汽车 Download PDF

Info

Publication number
WO2011015038A1
WO2011015038A1 PCT/CN2010/001190 CN2010001190W WO2011015038A1 WO 2011015038 A1 WO2011015038 A1 WO 2011015038A1 CN 2010001190 W CN2010001190 W CN 2010001190W WO 2011015038 A1 WO2011015038 A1 WO 2011015038A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft
bevel gear
transmission
rotor shaft
Prior art date
Application number
PCT/CN2010/001190
Other languages
English (en)
French (fr)
Inventor
张庆柳
Original Assignee
Zhang Qingliu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Qingliu filed Critical Zhang Qingliu
Publication of WO2011015038A1 publication Critical patent/WO2011015038A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • B64C27/10Helicopters with two or more rotors arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives

Definitions

  • the present invention relates to a flying vehicle, and more particularly to a vertical takeoff and landing flying vehicle. Background technique
  • the invention overcomes the deficiencies of the prior art, and provides a structure that is simple in structure, easy to manufacture, and can be used as a normal driving of a car on a highway, and in a special case, can take off and land vertically as a helicopter, and take off and land vertically.
  • the present invention is achieved by the following technical solution.
  • the vertical take-off and landing flying vehicle of the present invention comprises an engine, a transmission, a wheel, a vehicle body and a cab, and the upper part of the vertical take-off and landing flying vehicle body is equipped
  • the upper and lower rotors of the coaxial reversal, the upper and lower rotors are equipped with automatic positioning and gathering devices for the rotor to automatically gather backwards, the upper rotor is connected with the inner rotor shaft, the lower rotor is connected with the outer rotor shaft, and the inner rotor
  • the shaft is coaxial with the outer rotor shaft, and the outer rotor shaft is equipped with an automatic positioning device for the rotor shaft which can automatically position backwards after the upper rotor and the lower rotor are gathered, and the inner rotor shaft and the outer rotor shaft are connected with the bevel gear final reducer, and the bevel gear
  • the lower part of the main reducer is equipped with the inner rotor contracting downwardly so that the upper rotor is contracted
  • Rotor shaft telescopically mounted The lower rotor is equipped with a periodic moment and a total moment control device.
  • the engine is equipped with a clutch, and by controlling the communication or disconnection of the respective controllable coupling, the engine output power can be transmitted through the transmission shaft, the bevel gear transmission, the controllable coupling and the transmission connected to the bevel gear final drive.
  • the shaft is transmitted to the bevel gear final drive.
  • the engine output can also be transmitted to the transmission via a drive shaft, a bevel gear, a controllable coupling, and a drive shaft coupled to the transmission.
  • the rear of the vehicle body is equipped with a controllable rotor support and stabilizer.
  • controllable rotor support and stabilizer When the flying car needs vertical take-off and landing and flight, the controllable rotor support and stabilizer are lowered, and the controllable coupling between the bevel gear transmission and the transmission is disconnected.
  • Controllable coupling between the connecting bevel gear transmission and the bevel gear final drive, engine power via clutch, bevel gear transmission, controllable coupling, bevel gear final drive, rotor shaft, drive coaxial Inverting the rotation of the double-rotor, manipulating the periodic moment and the total moment control device, throttle and other control devices can make the vertical take-off and landing flying car as efficient as the helicopter, take off and fly efficiently, greatly increasing the mobility of the car.
  • Figure 1 is a schematic view showing the structure of an embodiment of the present invention.
  • rotor automatic positioning and closing device 1 inner rotor shaft 2 upper rotor 3 transmission shaft 4 controllable coupling 5 bevel gear transmission 6 transmission shaft 7 controllable rotor bracket and stabilizer wing 8 rear wheel 9 transmission shaft 10 engine 11 clutch 12 Universal joint 13 Bevel gear transmission 14 Transmission 15 Drive shaft 16 Controllable coupling 17 Inner rotor shaft expansion device 18 Front wheel 19 Body 20 Cab 21 Bevel gear final drive 22 Rotor axis automatic positioning device 23 Cycle moment and Total moment control device 24 outer rotor shaft 25 lower rotor 26 differential 27
  • a vertical take-off and landing flying vehicle includes an engine 11, a transmission 15, Front wheel 19, rear wheel 9, body 20, cab 21.
  • the upper portion of the body 20 is provided with a coaxially inverted upper rotor 3 and a lower rotor 26.
  • the upper rotor 3 and the lower rotor 26 are provided with a rotor automatic positioning and gathering device 1 which enables the rotor to automatically gather backwards.
  • the upper rotor 3 is connected to the inner rotor shaft 2.
  • the inner rotor shaft 2 is located near one end of the upper rotor 3.
  • the lower rotor 26 is coupled to the outer rotor shaft 25.
  • the outer rotor shaft 25 is located adjacent one end of the lower rotor 26.
  • the inner rotor shaft 2 and the outer rotor shaft 25 are coaxial.
  • the outer rotor shaft 25 is provided with a rotor shaft automatic positioning device 23 for automatically positioning the upper rotor 3 and the lower rotor 26 to be rearwardly positioned.
  • the inner rotor shaft 2 and the outer rotor shaft 25 are coupled to the bevel gear final drive 22.
  • Below the bevel gear final drive 22 is mounted an inner rotor shaft expansion device 18 that causes the inner rotor shaft 2 to contract downwardly to retract the upper rotor 3 to a position overlapping the lower rotor 26.
  • the lower rotor 26 is equipped with a periodic moment and total moment control device 24.
  • a clutch 12 is mounted on the engine 11.
  • the output power of the engine 11 is connected to the transmission shaft 7, the bevel gear transmission 6, the controllable coupling 5, and the bevel gear final drive 22.
  • the drive shaft 4 is transmitted to the bevel gear final drive 22.
  • the controllable coupling 5 is disconnected and the controllable coupling 17 is connected, the output power of the engine 11 is transmitted through the transmission shaft 7, the bevel gear transmission 6, the controllable coupling 17, and the transmission shaft 16 connected to the transmission 15. , transmitted to the transmission 15.
  • the rear of the body 20 is provided with a controllable rotor support and stabilizer wings 8.
  • the shape of the vertical takeoff and landing flying car is basically similar to that of the ordinary car.
  • the upper and lower rotors are provided on the upper part of the vertical takeoff and landing flying car.
  • the upper rotor 3 and the lower rotor The rotor automatic positioning and gathering device 1 and the rotor shaft automatic positioning device 23 of 26 respectively position the upper rotor 3 and the lower rotor 26 in a rearward manner, and the inner rotor shaft expansion device 18 retracts the upper rotor 3 to a position overlapping the lower rotor 26.
  • the inner rotor shaft expansion device 18 is composed of a hydraulic telescopic mechanism or an electric telescopic device.
  • the upper end of the telescopic rod of the inner rotor shaft expansion device 18 is connected to the lower end of the inner rotor shaft 2, and the inner rotor shaft expansion device 18 contracts the inner rotor shaft 2 downward. Thereby, the upper rotor 3 is contracted downward to a position overlapping with the lower rotor 26.
  • Rotating the controllable rotor support and stabilizing wing 8 counterclockwise to be perpendicular to the body 20 The position is to hold the rear rotor 26 and the rear portion of the upper rotor 3 which are placed in an overlapping manner after being folded rearward.
  • the bevel gear transmission 6 is composed of bevel gears placed perpendicularly to each other for dividing the transmission power output into horizontal and vertical directions.
  • the controllable coupling is a spline-type controllable coupling, and the spline sleeve on the spline shaft can be turned to realize the disconnection and communication of the transmission shaft.
  • the clutch 12, the transmission shaft 7, the bevel gear transmission 6, the controllable coupling 17, the transmission shaft 16, the transmission 15, the bevel gear transmission 14, the universal joint 13, and the transmission shaft 10 are transmitted to the rear wheel 9.
  • the differential 27 drives the rear wheel 9 to rotate.
  • the transmission 15 is a vehicle transmission, which can have a neutral gear, a plurality of forward gears and a reverse gear.
  • the vertical take-off and landing flying car can be operated on the road like a normal car, such as encountering special circumstances, such as traffic jams and road breaks.
  • the controllable rotor support and stabilizer wing 8 is first turned clockwise to the horizontal position of the body 20, and the inner rotor shaft expansion device 18 is operated to connect the inner rotor shaft 2 and the same.
  • the upper rotor 3 extends upward, disconnects the controllable coupling 17 between the bevel gear transmission 6 and the transmission 15, and then controls the coupling between the bevel gear transmission 6 and the bevel gear final drive 22.
  • the device 5 is connected.
  • the bevel gear final drive 22 includes two large bevel gears symmetrically placed on the upper and lower bevel surfaces, and a small bevel gear connected to the transmission shaft 4 and placed between the two large bevel gears.
  • the transmission shaft 4 drives the small bevel gear to rotate.
  • the bevel gear drives the two large bevel gears to rotate in opposite directions of rotation.
  • the upper large bevel gear is connected to the outer rotor shaft 25, and the lower large bevel gear is connected to the inner rotor shaft 2,
  • the rotor shaft 2 and the outer rotor shaft 25 are coaxially reversed.
  • the inner rotor shaft 2 is an inner and outer double-layer structure, the inner layer is a spline shaft structure, the upper end of the outer layer is substantially flush with the upper end of the outer rotor shaft 25, the upper end portion of the outer layer is a spline sleeve structure, and the lower end and the bevel gear final drive 22
  • the lower inner bevel gear is connected, the upper end of the inner spline shaft is connected to the upper rotor 3, and the lower end is spline-connected to the outer spline sleeve. In this way, the power can be transmitted, and the power can be expanded and contracted up and down.
  • the power output from the engine 11 passes through the clutch 12 and the transmission shaft 7.
  • the bevel gear transmission 6, the controllable coupling 5, the transmission shaft 4, and the bevel gear final drive 22 drive the inner rotor shaft 2 and the outer rotor shaft 25 connected to the bevel gear final drive 22 to be coaxially reversed.
  • the upper rotor 3 connected to the inner rotor shaft 2 and the lower rotor 26 connected to the outer rotor shaft 25 are coaxially inverted to generate lift.
  • the lower rotor 26 is equipped with a periodic moment and total moment control device 24, that is, a swash plate for phase control and a device for rotor angle control as described by a general helicopter, vertical takeoff and landing, forward flight, and steering of a vertical takeoff and landing flight vehicle.
  • the rotor automatic positioning and gathering device 1 includes a spring and a fixed bracket, and the spring and the fixed bracket are located between the two upper rotors and the two lower rotors just before the upper rotor 3 and the lower rotor 26 are gathered. Since the vertical take-off and landing of the flying vehicle is completed and opened on the ground during vertical take-off and landing, even if the rotor automatic positioning and folding device fails and fails, the rotor can be manually closed and opened, so the use is extremely safe and Convenience.
  • the rotor shaft automatic positioning device 23 is composed of a disc and a pin lock that are fixedly coupled to the outer rotor shaft 25 or the inner rotor shaft 2.
  • the upper and lower rotors respectively comprise three rotors, three rotor slots 120.
  • the angular arrangement, and the two rotors on which the rotor automatic positioning and folding device 1 is mounted, are located at 60 with the longitudinal axis of the vehicle body.
  • the automatic control system controls the position of the disc of the rotor shaft automatic positioning device 23.
  • a notch can be made on the disc or a notch can be placed on the edge of the disc, locked with a pin.

Description

垂直起降飞行汽车 技术领域
本发明涉及一种飞行汽车, 更具体地说, 它涉及一种垂直起 降飞行汽车。 背景技术
到目前为止, 飞行汽车研制过不少类型, 但真正能垂直起降 的飞行汽车仍没有进入实用阶段,中国专利公开号 CN1718458A, 公开日是 2006年 1月 11 日, 名称为 《垂直飞行汽车》 中公开了 一种带伸缩式螺旋浆叶和重叠伸缩式螺旋浆叶的直升飞行汽车, 由于其螺旋浆叶收缩后仍然较大, 加之其它一些缺陷, 使该垂直 飞行汽车的实用受到很大限制。 发明内容
本发明克服了现有技术的不足, 提供了一种结构简单、 易于 生产制造、 即能作为汽车在公路上正常行驶, 特殊情况下又能象 直升飞机一样垂直起降、 飞行的垂直起降飞行汽车, 为了解决以 上技术问题, 本发明是通过以下技术方案实现的, 本发明的垂直 起降飞行汽车包括发动机、 变速器、 车轮、 车身、 驾驶室, 所述 垂直起降飞行汽车车身上部装有共轴反转的上旋翼和下旋翼, 上 旋翼和下旋翼上装有能使旋翼自动向后收拢的旋翼自动定位收拢 装置, 上旋翼与内旋翼轴连接, 下旋翼与外旋翼轴连接, 内旋翼 轴与外旋翼轴共轴, 外旋翼轴上装有能使上旋翼和下旋翼收拢后 自动向后定位的旋翼轴自动定位装置, 内旋翼轴和外旋翼轴与锥 齿轮主减速器连接, 锥齿轮主减速器下方装有使内旋翼轴向下收 缩从而使上旋翼向下缩至与下旋翼重叠位置的内旋翼轴伸缩装 置, 下旋翼装有周期矩及总矩控制装置。 优选地, 发动机上装有 离合器, 通过控制各自可控联轴器的连通或断开, 发动机输出功 率可经传动轴、 锥齿轮传动装置、 可控联轴器和与锥齿轮主减速 器连接的传动轴, 传递给锥齿轮主减速器。 发动机输出功率还可 经传动轴、 锥齿轮传动装置、 可控联轴器、 与变速器连接的传动 轴, 传递给变速器。 车身后部装有可控旋翼支架兼稳定翼, 在飞 行汽车需要垂直起降和飞行的情况下, 放下可控旋翼支架兼稳定 翼, 断开锥齿轮传动装置与变速器之间的可控联轴器, 连通锥齿 轮传动装置与锥齿轮主减速器之间的可控联轴器, 发动机动力经 离合器、 锥齿轮传动装置、 可控联轴器、 锥齿轮主减速器、 旋翼 轴, 带动共轴反转双旋翼旋转, 操纵周期矩及总矩控制装置、 油 门等控制装置可使垂直起降飞行汽车象直升机一样高效垂直起降 和飞行, 大大增加了汽车的机动性。 附图说明
附图 1是本发明的实施例原理结构示意图。
图中:旋翼自动定位收拢装置 1 内旋翼轴 2 上旋翼 3 传 动轴 4 可控联轴器 5 锥齿轮传动装置 6 传动轴 7 可控旋翼 支架兼稳定翼 8 后车轮 9 传动轴 10 发动机 11 离合器 12 万向节 13 锥齿轮传动装置 14 变速器 15 传动轴 16 可控联 轴器 17 内旋翼轴伸缩装置 18 前车轮 19 车身 20 驾驶室 21 锥齿轮主减速器 22 旋翼轴自动定位装置 23 周期矩及总矩控 制装置 24 外旋翼轴 25 下旋翼 26 差速器 27 具体实施方式
下面结合附图对本发明作进一步的描述。
在附图 1中,垂直起降飞行汽车, 包括发动机 11、变速器 15、 前车轮 19、 后车轮 9、 车身 20、 驾驶室 21。 车身 20上部装有共 轴反转的上旋翼 3和下旋翼 26。 上旋翼 3和下旋翼 26上装有能 使旋翼自动向后收拢的旋翼自动定位收拢装置 1。 上旋翼 3与内 旋翼轴 2连接。 优选地, 内旋翼轴 2位于所述上旋翼 3的一个端 部附近。 下旋翼 26 与外旋翼轴 25连接。 优选地, 外旋翼轴 25 位于所述下旋翼 26的一个端部附近。 内旋翼轴 2和外旋翼轴 25 共轴。 外旋翼轴 25上装有能使上旋翼 3和下旋翼 26收拢后自动 向后定位的旋翼轴自动定位装置 23。 内旋翼轴 2和外旋翼轴 25 与锥齿轮主减速器 22连接。 锥齿轮主减速器 22下方装有使内旋 翼轴 2向下收缩从而使上旋翼 3向下缩至与下旋翼 26重叠位置的 内旋翼轴伸缩装置 18。下旋翼 26装有周期矩及总矩控制装置 24。 发动机 11上装有离合器 12。 当断开可控联轴器 17、 连通可控联 轴器 5时,发动机 11的输出功率经传动轴 7、锥齿轮传动装置 6、 可控联轴器 5和与锥齿轮主减速器 22连接的传动轴 4,传递到锥 齿轮主减速器 22。 当断开可控联轴器 5、 连通可控联轴器 17时, 发动机 11的输出功率经传动轴 7、 锥齿轮传动装置 6、 可控联轴 器 17和与变速器 15连接的传动轴 16, 传递到变速器 15。 车身 20后部装有可控旋翼支架兼稳定翼 8。 垂直起降飞行汽车的外形 设计基本与普通汽车设计相似, 在垂直起降飞行汽车的上部设置 有上旋翼 3和下旋翼 26, 垂直起降飞行汽车在公路上行驶时, 上 旋翼 3和下旋翼 26的旋翼自动定位收拢装置 1和旋翼轴自动定位 装置 23将上旋翼 3和下旋翼 26向后定位收拢, 内旋翼轴伸缩装 置 18将上旋翼 3向下缩至与下旋翼 26重叠位置。 内旋翼轴伸缩 装置 18由液压式伸缩机构或电动式伸缩装置构成,内旋翼轴伸缩 装置 18的伸缩杆上端与内旋翼轴 2下端连接,内旋翼轴伸缩装置 18将内旋翼轴 2向下收缩,从而使上旋翼 3向下缩至与下旋翼 26 重叠位置。反时针旋转可控旋翼支架兼稳定翼 8至与车身 20垂直 位置,将向后收拢后重叠放置的下旋翼 26和上旋翼 3后部固定托 住。 锥齿轮传动装置 6为相互垂直放置的锥齿轮构成, 用于将传 动功率输出分为水平和垂直方向输出。 可控联轴器为花键式可控 联轴器,拨动花键轴上的花键套筒即可实现传动轴的断开与连通。 将锥齿轮传动装置 6与锥齿轮主减速器 22之间的可控联轴器 5 断开, 将锥齿轮传动装置 6与变速器 15之间的可控联轴器 17连 通, 发动机 11的输出功率将经过离合器 12、 传动轴 7、 锥齿轮传 动装置 6、 可控联轴器 17、 传动轴 16、 变速器 15、 锥齿轮传动装 置 14、万向节 13、传动轴 10传送给与后车轮 9连接的差速器 27, 从而驱动后车轮 9转动。 变速器 15为车用变速器, 可有空档、 数 个前进档和倒档, 这时垂直起降飞行汽车可作为普通汽车一样操 纵在公路上行驶, 如遇到特殊情况, 如堵车和路断, 无路可走需 垂直起降和飞行时, 先将可控旋翼支架兼稳定翼 8按顺时针方向 转至与车身 20水平位置, 操纵内旋翼轴伸缩装置 18将内旋翼轴 2及与之连接的上旋翼 3伸向上方, 将锥齿轮传动装置 6与变速 器 15之间的可控联轴器 17断开, 再将锥齿轮传动装置 6与锥齿 轮主減速器 22之间的可控联轴器 5连通。 锥齿轮主减速器 22包 括上下锥齿面对称放置的两个大锥齿轮及与传动轴 4连接的放置 于两个大锥齿轮中间的小锥齿轮, 传动轴 4带动小锥齿轮转动, 小锥齿轮带动两个大锥齿轮作旋转方向反向的转动, 在锥齿轮主 减速器 22中, 上面的大锥齿轮与外旋翼轴 25连接, 下面的大锥 齿轮与内旋翼轴 2连接, 内旋翼轴 2和外旋翼轴 25作同轴反转。 内旋翼轴 2为内外双层结构, 内层为花键轴结构, 外层上端基本 与外旋翼轴 25上端齐平, 外层上端部分为花键套筒结构, 下端与 锥齿轮主减速器 22内的下面大锥齿轮连接,内层花键轴上端与上 旋翼 3连接, 下端与外层花键套筒花键式连接。 这样即可传递动 力,又可上下伸縮,发动机 11输出的动力经离合器 12、传动轴 7、 锥齿轮传动装置 6、可控联轴器 5、传动轴 4、锥齿轮主减速器 22, 带动与锥齿轮主减速器 22连接的内旋翼轴 2和外旋翼轴 25作共 轴反转,使与内旋翼轴 2连接的上旋翼 3和与外旋翼轴 25连接的 下旋翼 26作共轴反转, 产生升力。 下旋翼 26装有周期矩及总矩 控制装置 24, 即一般直升机所述的用于相位控制的十字盘和用于 旋翼角控制的装置, 垂直起降飞行汽车的垂直起降、 前飞、 转向 和悬停均通过操纵控制周期矩及总矩控制装置、 油门等控制。 旋 翼自动定位收拢装置 1包括弹簧和固定支架, 所述弹簧和固定支 架位于刚好在上旋翼 3和下旋翼 26收拢之前朝前的两上旋翼之间 和两下旋翼之间。 由于垂直起降飞行汽车在垂直起降时旋翼的收 拢和打开均在地面完成, 因此即使旋翼自动定位收拢装置出故障 和失效后, 仍可用人工来实现旋翼的收拢和打开, 因此使用极为 安全和方便。 旋翼轴自动定位装置 23由与外旋翼轴 25或与内旋 翼轴 2固定连接的圆盘及销锁件构成。 在一实施例中, 上旋翼和 下旋翼分别包括三个旋翼, 三个旋翼间隔 120。 角布置, 并且当 其上安装有旋翼自动定位收拢装置 1的其中两个旋翼均位于与车 身纵轴线成 60。 角的朝前位置时, 控制自控系统锁定旋翼轴自动 定位装置 23的圆盘的位置。优选地, 可在圆盘上打眼或在圆盘边 沿设置一缺口, 利用销钉锁定。

Claims

Figure imgf000008_0001
1. 一种垂直起降飞行汽车, 包括发动机(11) 、 变速器 (15) 、 前车轮(19) 、 后车轮(9) 、 车身 (20) 、 驾驶室 (21) , 其特 征在于车身( 20 )上部装有共轴反转的上旋翼( 3 )和下旋翼( 26 ), 上旋翼(3)和下旋翼(26)上均装有能使旋翼自动向后收拢的旋 翼自动定位收拢装置 (1) , 上旋翼 (3) 与内旋翼轴 (2) 连接, 下旋翼(26)与外旋翼轴(25)连接, 内旋翼轴(2)与外旋翼轴
( 25 )共轴,外旋翼轴( 25 )上装有能使上旋翼( 3 )和下旋翼( 26 ) 收拢后自动向后定位的旋翼轴自动定位装置(23) , 内旋翼轴(2) 和外旋翼轴 (25) 与锥齿轮主减速器 (22) 连接, 锥齿轮主减速 器 (22) 下方装有使内旋翼轴 (2) 向下收缩从而使上旋翼 (3) 向下缩至与下旋翼 (26) 重叠位置的内旋翼轴伸缩装置 (18) , 下旋翼 (26) 装有周期矩及总矩控制装置 (24) 。
2. 根据权利要求 1所述的垂直起降飞行汽车, 其特征在于, 所述 发动机(11) 上装有离合器 (12) ; 并且其中, 当断开可控联轴 器(17)并连通可控联轴器(5) 时, 发动机(11)的输出功率经 传动轴(7) 、 锥齿轮传动装置(6) 、 可控联轴器(5)和与所述 锥齿轮主减速器(22)连接的传动轴(4) , 传递到所述锥齿轮主 减速器 (22) , 当断开可控联轴器 (5) 并连通可控联轴器 (17) 时,发动机( 11 )的输出功率经传动轴( 7 )、锥齿轮传动装置(6 )、 可控联轴器 (17) 和与所述变速器 (15) 连接的传动轴 (16) , 传递到所述变速器 (15) 。
3. 根据权利要求 1所述的垂直起降飞行汽车, 其特征在于, 所述 车身 (20) 的后部装有可控旋翼支架兼稳定翼(8) 。
4. 根据权利要求 1所述的垂直起降飞行汽车, 其特征在于, 所述 内旋翼轴 (2)位于所述上旋翼 (3) 的一个端部附近, 所述外旋 翼轴 (25)位于所述下旋翼 (26) 的一个端部附近。
5. 根据权利要求 2所述的垂直起降飞行汽车, 其特征在于, 所述 锥齿轮主减速器 (22) 包括上下锥齿面对称放置的两个大锥齿轮 和与传动轴(4)连接的放置于两个大锥齿轮中间的小锥齿轮, 传 动轴(4)带动小锥齿轮转动, 小锥齿轮带动两个大锥齿轮作旋转 方向反向的转动, 上面的大锥齿轮与外旋翼轴 (25) 连接, 下面 的大锥齿轮与内旋翼轴 (2)连接。
6. 根据权利要求 1所述的垂直起降飞行汽车, 其特征在于, 内旋 翼轴 (2) 为内外双层结构, 内旋翼轴 (2) 的外层的上端与外旋 翼轴 (25) 的上端齐平并且所述外层的上端为花键套筒结构, 所 述外层的下端与锥齿轮主减速器(22)连接, 内旋翼轴(2)的内 层为花键轴, 所迷花键轴的上端与上旋翼(3)连接, 所述花键轴 的下端与外层的所述花键套筒结构花键式连接。
7. 根据权利要求 2所述的垂直起降飞行汽车, 其特征在于, 所述 雉齿轮传动装置(6)包括相互垂直放置的锥齿轮, 用于将输出功 率分为水平和垂直方向输出。
PCT/CN2010/001190 2009-08-04 2010-08-04 垂直起降飞行汽车 WO2011015038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910094794.1 2009-08-04
CN2009100947941A CN101987565A (zh) 2009-08-04 2009-08-04 垂直起降飞行汽车

Publications (1)

Publication Number Publication Date
WO2011015038A1 true WO2011015038A1 (zh) 2011-02-10

Family

ID=43543888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001190 WO2011015038A1 (zh) 2009-08-04 2010-08-04 垂直起降飞行汽车

Country Status (2)

Country Link
CN (1) CN101987565A (zh)
WO (1) WO2011015038A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490559A (zh) * 2011-11-23 2012-06-13 许明坚 一种陆空两用车
CN107791763A (zh) * 2017-09-27 2018-03-13 北京航空航天大学 一种飞行汽车用可伸缩尾撑杆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103770589B (zh) * 2014-02-28 2018-07-06 武汉蓝天翔航空科技有限公司 飞行汽车
CN105196815A (zh) * 2015-10-27 2015-12-30 陈晓春 一种应用于飞行汽车同步翻转机构
CN108032692A (zh) * 2017-11-30 2018-05-15 吉林大学 新型螺旋式越野车

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625631A (en) * 1969-11-03 1971-12-07 Bell Aerospace Corp Rotor hub and blade folding system
JPH08150818A (ja) * 1994-11-29 1996-06-11 Rokuro Hosoda 多機能ヘリコプタ
CN1161286A (zh) * 1996-12-11 1997-10-08 石家智 直升飞车
CN1699085A (zh) * 2004-05-18 2005-11-23 曾稳清 一种汽飞车
WO2008036526A2 (en) * 2006-09-20 2008-03-27 Sikorsky Aircraft Corporation Rotor blade folding system
CN201158285Y (zh) * 2008-01-11 2008-12-03 王学威 空地两用汽车
CN201220750Y (zh) * 2008-06-12 2009-04-15 张庆柳 垂直起降飞机
CN101612870A (zh) * 2008-06-26 2009-12-30 张庆柳 垂直起降飞行汽车
CN201395024Y (zh) * 2008-06-26 2010-02-03 张庆柳 垂直起降飞行汽车
CN201506223U (zh) * 2009-08-04 2010-06-16 张庆柳 垂直起降飞行汽车

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625631A (en) * 1969-11-03 1971-12-07 Bell Aerospace Corp Rotor hub and blade folding system
JPH08150818A (ja) * 1994-11-29 1996-06-11 Rokuro Hosoda 多機能ヘリコプタ
CN1161286A (zh) * 1996-12-11 1997-10-08 石家智 直升飞车
CN1699085A (zh) * 2004-05-18 2005-11-23 曾稳清 一种汽飞车
WO2008036526A2 (en) * 2006-09-20 2008-03-27 Sikorsky Aircraft Corporation Rotor blade folding system
CN201158285Y (zh) * 2008-01-11 2008-12-03 王学威 空地两用汽车
CN201220750Y (zh) * 2008-06-12 2009-04-15 张庆柳 垂直起降飞机
CN101612870A (zh) * 2008-06-26 2009-12-30 张庆柳 垂直起降飞行汽车
CN201395024Y (zh) * 2008-06-26 2010-02-03 张庆柳 垂直起降飞行汽车
CN201506223U (zh) * 2009-08-04 2010-06-16 张庆柳 垂直起降飞行汽车

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102490559A (zh) * 2011-11-23 2012-06-13 许明坚 一种陆空两用车
CN107791763A (zh) * 2017-09-27 2018-03-13 北京航空航天大学 一种飞行汽车用可伸缩尾撑杆
CN107791763B (zh) * 2017-09-27 2020-06-23 北京航空航天大学 一种飞行汽车用可伸缩尾撑杆

Also Published As

Publication number Publication date
CN101987565A (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
CN101612870B (zh) 垂直起降飞行汽车
EP2464567B1 (en) Tilt-rotor aircraft
US8371520B2 (en) Rapidly convertible hybrid aircraft and manufacturing method
WO2011015038A1 (zh) 垂直起降飞行汽车
CN107757273B (zh) 一种飞行汽车
CN107107690B (zh) 用于飞行式运载工具的中央翼板及其控制方法
CN107933881A (zh) 一种飞行器的外机翼折展机构
WO2009149592A1 (zh) 垂直起降飞机
CN106976552A (zh) 倾转旋翼无人机
CN208412131U (zh) 垂直起降无人机
US6978969B1 (en) Fly-drive vehicle
CN104743110A (zh) 一种折叠式空投无人机
CN109017182A (zh) 一种垂直起降机翼可折叠的飞行汽车
CN106427438B (zh) 一种旋翼可收放的陆空两用飞车及其控制方法
US3907219A (en) High speed, long range turbo-jet aircraft
CN111645860B (zh) 一种旋翼三轴倾转且机翼折叠的空地多栖无人机
RU2727642C2 (ru) Консоль крыла для летательного аппарата
WO2018223896A1 (zh) 翻转式螺旋桨装置
CN201506223U (zh) 垂直起降飞行汽车
CN206841102U (zh) 翻转式螺旋桨装置
CN201395024Y (zh) 垂直起降飞行汽车
RU2539679C1 (ru) Скоростной винтокрыл
CN214729611U (zh) 一种可垂直起降的折叠固定翼无人机
CN206926820U (zh) 一种旋翼无人机用的可偏转式旋翼总成
CN217477542U (zh) 一种复合翼无人机垂起固定翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805942

Country of ref document: EP

Kind code of ref document: A1