WO2011013758A1 - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
WO2011013758A1
WO2011013758A1 PCT/JP2010/062821 JP2010062821W WO2011013758A1 WO 2011013758 A1 WO2011013758 A1 WO 2011013758A1 JP 2010062821 W JP2010062821 W JP 2010062821W WO 2011013758 A1 WO2011013758 A1 WO 2011013758A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cell stack
cell
fuel cell
fuel gas
Prior art date
Application number
PCT/JP2010/062821
Other languages
English (en)
French (fr)
Inventor
孝 小野
光博 中村
高橋 成門
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020127001296A priority Critical patent/KR101355047B1/ko
Priority to EP10804504.8A priority patent/EP2461407B1/en
Priority to US13/387,499 priority patent/US10164276B2/en
Priority to JP2011524834A priority patent/JP5528451B2/ja
Priority to CN201080032699.XA priority patent/CN102473947B/zh
Publication of WO2011013758A1 publication Critical patent/WO2011013758A1/ja
Priority to US16/181,514 priority patent/US10763527B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04805Concentration; Density of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell device in which a fuel cell is housed in an outer case.
  • a cell stack formed by arranging a plurality of fuel cells that can obtain electric power using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) is stored in a storage container.
  • a fuel cell module is proposed.
  • Various fuel cell devices in which a fuel cell module is housed in an outer case have been proposed (see, for example, Patent Document 1).
  • a fuel cell As such a fuel cell, various types such as a solid polymer type (PEFC), a molten carbonate type (MCFC), a phosphoric acid type (PAFC), a solid oxide type (SOFC), etc. are known.
  • PEFC solid polymer type
  • MCFC molten carbonate type
  • PAFC phosphoric acid type
  • SOFC solid oxide type
  • An oxide fuel cell has a characteristic that it can easily follow a partial load when used for household use.
  • efficient operation can be performed by maintaining the fuel utilization rate (Uf) and current amount (I) of the cell stack at a constant value.
  • the fuel utilization rate and current amount (power generation amount) of the cell stack fluctuate according to the external load (decrease compared to during rated operation).
  • the relationship between the fuel utilization rate (Uf) of the cell stack and the amount of current (I) is not controlled in a well-balanced manner, the power generation efficiency of the fuel cell device may be reduced and the load following characteristic may be reduced. It was.
  • an object of the present invention is to provide a fuel cell device that improves the operating conditions during partial load operation in a fuel cell device that performs partial load operation.
  • a fuel cell device includes a cell stack formed by electrically connecting a plurality of fuel cells that generate power using a fuel gas and an oxygen-containing gas, and a fuel gas for supplying fuel gas to the fuel cells.
  • a fuel cell device comprising: a supply unit; a power adjustment unit that adjusts a supply amount of current generated by the fuel cell to an external load; and a control device that controls each of the fuel gas supply unit and the power adjustment unit.
  • partial load operation can be performed efficiently.
  • the fuel cell system shown in FIG. 1 includes a power generation unit that generates power, a hot water storage unit that stores hot water after heat exchange, and a circulation pipe that circulates water between these units.
  • the power generation unit shown in FIG. 1 includes a cell stack 1 in which a plurality of fuel cells (not shown) are electrically connected and arranged, and a raw fuel supply unit for supplying raw fuel such as natural gas. 2, an oxygen-containing gas supply unit 3 for supplying an oxygen-containing gas to the fuel cells constituting the cell stack 1, and a reformer 4 that performs a steam reforming reaction with raw fuel and steam. .
  • the reformer 4 vaporizes pure water supplied by a water pump 5 to be described later, and a vaporizer (not shown) for mixing raw fuel and steam supplied from the raw fuel supply unit 2, And a reforming section (not shown) for generating a fuel gas (hydrogen-containing gas) by reacting the mixed raw fuel with water vapor.
  • the fuel cell (cell stack 1) is generated by the fuel gas generated in the reformer 4 and the oxygen-containing gas supplied by the oxygen-containing gas supply unit 3.
  • the fuel gas supply unit includes at least the raw fuel supply unit 2.
  • the cell stack 1 and the reformer 4 are stored in a storage container, and constitute a fuel cell module (hereinafter sometimes abbreviated as a module).
  • a fuel cell module hereinafter sometimes abbreviated as a module.
  • each device constituting the fuel cell module is surrounded by a two-dot chain line, and the module is indicated by M.
  • the reformer 4 may be provided outside the storage container.
  • the module M a known fuel cell module can be used.
  • a known fuel cell module in a storage container, columnar fuel cells having gas flow paths through which gas flows are arranged in an upright state, and electrically connected in series between adjacent fuel cells via a current collecting member.
  • the cell stack 1 is configured by connecting to the.
  • a cell stack device in which the lower end of the fuel cell is fixed to the fuel gas chamber by an insulating bonding material such as a glass seal material, and the fuel cell arranged above the fuel cell to supply the fuel gas to the fuel cell
  • the reformer 4 is accommodated.
  • Various types of fuel cells are known as the fuel cells constituting the cell stack 1.
  • a solid oxide fuel cell can be used.
  • the fuel cell constituting the cell stack 1 is a solid oxide fuel cell, auxiliary equipment necessary for the operation of the fuel cell can be reduced in size, so that the fuel cell device 22 can be reduced in size.
  • a fuel cell of various shapes such as a flat plate type and a cylindrical type can be used, but for efficient power generation of the fuel cell, can do.
  • a fuel electrode support type hollow plate type fuel cell in which a fuel electrode layer is formed on the inner side and an oxygen electrode layer is formed on the outer side can be used.
  • a heat exchanger 6 that performs heat exchange between exhaust gas (exhaust heat) generated by power generation of the fuel cells constituting the cell stack 1 and water flowing through the circulation pipe 13, Condensate purification device 7 for purifying the condensed water generated by the exchange (preferably producing pure water), and condensation for supplying the condensed water generated in the heat exchanger 6 to the condensed water purification device 7
  • a water supply pipe 15 is provided.
  • Condensed water treated by the condensed water purification device 7 is stored in a water tank 8 connected by a tank connecting pipe 16 and then supplied to a reformer 4 (vaporizer, not shown) by a water pump 5. Is done.
  • the water tank 8 can also be abbreviate
  • the power generation unit shown in FIG. 1 converts the DC power generated by the fuel cell into AC power, and adjusts the supply amount of the converted AC power to the external load, and heat exchange.
  • An outlet water temperature sensor 11 for measuring the temperature of water (circulated water flow) flowing through the outlet of the heat exchanger 6 provided at the outlet of the heat exchanger 6, a control device 10, and a circulation pump 12 for circulating water in the circulation pipe 13. It is equipped with.
  • the fuel cell device includes at least the cell stack 1, the control device 10, a fuel gas supply unit for supplying fuel gas to the fuel cell, and electric power for adjusting the amount of current generated by the fuel cell to an external load.
  • the adjustment unit is included.
  • the hot water storage unit includes a hot water storage tank 14 for storing hot water after heat exchange.
  • an exhaust gas treatment device (not shown) for treating the exhaust gas generated during the operation of the cell stack 1.
  • the exhaust gas treatment apparatus houses an exhaust gas treatment unit in a storage container, and a generally known combustion catalyst can be used as the exhaust gas treatment unit.
  • each water treatment apparatus is provided in order to purify the water supplied from the outside.
  • each water treatment apparatus for supplying water supplied from the outside to the reformer 4 is an activated carbon filter apparatus 19, a reverse osmosis membrane apparatus 20, and an ion exchange resin apparatus 21 for purifying water.
  • an ion exchange resin device 21 (preferably all devices) is provided.
  • the pure water generated by the ion exchange resin device 21 is stored in the water tank 8.
  • a water supply valve 18 for adjusting the amount of water supplied from the outside is provided.
  • each water treatment device for treating the water supplied to the reformer 4 with pure water is surrounded by a one-dot chain line (shown as an external water purification device X).
  • the water (pure water) necessary for the steam reforming reaction in the reformer 4 is composed only of the condensed water generated by heat exchange between the exhaust gas (exhaust heat) generated by the power generation of the fuel cell and the water in the circulation pipe 13.
  • the external water purification device X may be omitted.
  • Condensed water (pure water) processed by a condensed water purification unit (ion exchange resin or the like) provided in the condensed water purification device 7 is supplied to the water tank 8 via the tank connection pipe 16.
  • Water stored in the water tank 8 is supplied to the reformer 4 by the water pump 5, steam reforming is performed with the raw fuel supplied from the raw fuel supply unit 2, and the generated fuel gas is used as a fuel cell. It is supplied to the cell (cell stack 1).
  • power generation is performed using the fuel gas supplied via the reformer 4 and the oxygen-containing gas supplied from the oxygen-containing gas supply unit 3, and the fuel cell.
  • the current generated in (cell stack 1) is supplied to the external load via the adjusting unit 9.
  • water such as tap water supplied from the outside can be used.
  • the water supply valve 18 (for example, an electromagnetic valve or an air drive valve) is opened, and water supplied from the outside such as tap water is supplied to the activated carbon filter 19 through the water supply pipe 17.
  • the water treated with the activated carbon filter 19 is subsequently supplied to the reverse osmosis membrane 20.
  • the water treated by the reverse osmosis membrane 20 is continuously supplied to the ion exchange resin device 21.
  • the water purified by the ion exchange resin device 21 is stored in the water tank 8. Purified water (pure water) stored in the water tank 8 is used for power generation of the fuel cell (cell stack 1) by the method described above.
  • the control device 10 controls the operations of the raw fuel supply unit 2 and the oxygen-containing gas supply unit 3, and contains the fuel gas and oxygen containing the amount necessary for the rated operation. Gas is supplied to the fuel cell (cell stack 1). Thereby, rated electric power is generated in the fuel cell (cell stack 1), and a direct current flows through the fuel cell (cell stack 1). Further, the electric power generated by the power generation of the fuel cell (cell stack 1) is converted into AC power by the adjusting unit 9, and then supplied to the external load.
  • the control device 10 makes the relationship between the fuel utilization rate (Uf) of the cell stack 1 and the amount of current (I) generated by the cell stack 1 according to the demand of the external load become a constant value.
  • Each apparatus is controlled so that it becomes.
  • the required power of the external load is likely to fluctuate.
  • the required power is high and the current flowing through the cell stack 1 is high, whereas the required power is low during the day and at night, and the current flowing through the cell stack 1 is small. Become.
  • the power from the fuel cell device may cause a reverse flow in the system power connected to the fuel cell device. Therefore, in particular, in the operation of a household fuel cell device, it is possible to perform a partial load operation (load follow-up operation) according to the required power of the external load.
  • the control device 10 controls the operations of the raw fuel supply unit 2 and the oxygen-containing gas supply unit 3 to obtain the amount of current necessary to obtain the amount of current corresponding to the required power of the external load.
  • a fuel gas and an oxygen-containing gas are supplied to the fuel cell (cell stack 1).
  • the DC power generated by the power generation of the fuel cell (cell stack 1) is converted into AC power by the power adjusting unit 9, and then supplied to the external load.
  • the fuel utilization rate (Uf) and the amount of current (I) of the cell stack 1 vary according to the required load. Specifically, it will be lower than during rated operation.
  • 2 to 4 are graphs showing the relationship between the fuel utilization rate of the cell stack 1 in the fuel cell device and the amount of current generated by the cell stack 1 in response to a request from the external load.
  • this predetermined amount of fuel gas is referred to as the minimum flow rate.
  • the control device 10 determines the fuel utilization rate (Uf) of the cell stack 1 and the external load.
  • the raw fuel supply unit 2 and the power adjustment unit 9 are controlled so that the relationship with the current amount (I) generated by the cell stack 1 is non-linear in response to the request.
  • the control device 10 controls the raw fuel supply unit 2 and the adjustment unit 9 so as to improve the load following characteristics during partial load operation, or burn excess fuel gas at one end of the fuel cell. In this case, an operation that suppresses misfire can be performed, and an efficient partial load operation can be performed.
  • the maximum value of the fuel utilization rate (Uf) of the cell stack 1 during the partial load operation is equal to the fuel utilization rate (Uf) during the rated operation of the fuel cell device, the oxidation of the fuel cell can be reduced. It is possible to reduce the damage of the fuel cell. Therefore, a fuel cell device with improved reliability can be obtained.
  • the current generated by the cell stack 1 when more fuel gas than the minimum flow rate of the fuel gas supplied to the cell stack 1 is supplied to the cell stack 1 during partial load operation.
  • the control device 10 controls the control device 10 so that the increase amount of the fuel utilization rate (Uf) of the cell stack 1 decreases as the amount (I) increases, the cell stack 1 Even when the current amount (I) is low, the temperature of the fuel cell can be maintained at a high temperature, and the load following characteristic of the fuel cell device can be improved.
  • the fuel cell is supplied to the fuel cell (cell stack 1) during partial load operation. Since the amount of the fuel gas to be reduced is reduced, there is a possibility that the combustion of excess fuel gas may misfire.
  • the relationship between the rate (Uf) and the current amount (I) is a quadratic curve
  • the relationship is not limited to the relationship represented by the quadratic curve. It can be set as appropriate depending on the number of fuel cells constituting the fuel cell device, the size of the module M, and the like, and may be a relationship represented by a cubic curve, for example.
  • the control unit 10 can control the raw fuel supply unit 2 and the power adjustment unit 9 so that the increase in the fuel utilization rate (Uf) decreases as the current amount (I) increases.
  • the relationship between the fuel utilization rate (Uf) of the cell stack 1 and the amount of current (I) during partial load operation is a relationship represented by a cubic curve.
  • surplus fuel gas increases in the region where the current amount (I) of the cell stack 1 is low, and it is possible to reduce misfiring of combustion of the surplus fuel gas in the fuel cell device and to improve load following characteristics. be able to.
  • an increase in the amount of current (I) generated by the cell stack 1 when the fuel gas is supplied to the cell stack 1 more than the minimum flow rate of the fuel gas supplied to the cell stack 1 during partial load operation For example, an increase in the amount of current (I) generated by the cell stack 1 when the fuel gas is supplied to the cell stack 1 more than the minimum flow rate of the fuel gas supplied to the cell stack 1 during partial load operation. As the fuel usage rate (Uf) increases, the amount of increase in the fuel usage rate (Uf) increases as the current amount (I) generated by the cell stack 1 increases.
  • the raw fuel supply unit 2 and the power adjustment unit 9 may be controlled.
  • Cell stack 2 Raw fuel supply unit 3: Oxygen-containing gas supply unit 9: Adjustment unit (power conditioner) 10: Control device M: Fuel cell module

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 【課題】部分負荷運転時の運転条件を改善した燃料電池装置を提供する。 【解決手段】燃料ガスと酸素含有ガスとで発電を行なう燃料電池セルを電気的に接続してなるセルスタックと、燃料電池セルに燃料ガスを供給するための燃料ガス供給部と、燃料電池セルで発電した電流の外部負荷への供給量を調整する電力調整部と、燃料ガス供給部および電力調整部のそれぞれを制御する制御装置とを具備する燃料電池装置であって、制御装置は、燃料電池装置の部分負荷運転中で、セルスタックに供給する燃料ガスが最低流量以上である場合に、セルスタックの燃料利用率と、セルスタックが発電する電流量との関係が非直線となるように、燃料ガス供給部および電力調整部を制御することにより、燃料電池装置の運転制御において、効率よく部分負荷運転を行なうことができる。

Description

燃料電池装置
 本発明は、外装ケース内に燃料電池セルを収納してなる燃料電池装置に関する。
 近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルを複数個配列してなるセルスタックを収納容器内に収納してなる燃料電池モジュールが提案されている。また、燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が種々提案されている(例えば、特許文献1参照)。
 このような燃料電池としては、固体高分子形(PEFC)、溶融炭酸塩形(MCFC)、リン酸形(PAFC)、固体酸化物形(SOFC)等の各種が知られているが、特に固体酸化物形燃料電池は、家庭用として用いる場合に、部分負荷に容易に追従できる特性を有している。
 ところで、部分負荷運転中においては、セルスタック(燃料電池セル)に供給される燃料ガスの量を低下させることが一般的に知られており、この部分負荷運転中の燃料電池装置の運転方法が提案されている(例えば、特許文献2参照。)。
特開2007-59377号公報 特開2006-24478号公報
 燃料電池装置の定格運転中においては、セルスタックの燃料利用率(Uf)と電流量(I)とを一定の値に保持することにより、効率の良い運転を行なうことができる。
 一方、燃料電池装置の部分負荷運転中においては、外部負荷に応じてセルスタックの燃料利用率と電流量(発電量)が変動する(定格運転中と比較すると低下する)こととなる。この場合、セルスタックの燃料利用率(Uf)と電流量(I)との関係をバランスよく制御しなければ、燃料電池装置の発電効率が低下するおそれや、負荷追従特性が低下するおそれがあった。
 それゆえ、本発明においては、部分負荷運転を行なう燃料電池装置において、部分負荷運転中の運転条件を改善した燃料電池装置を提供することを目的とする。
 本発明の燃料電池装置は、燃料ガスと酸素含有ガスとで発電を行なう燃料電池セルの複数個を電気的に接続してなるセルスタックと、燃料電池セルに燃料ガスを供給するための燃料ガス供給部と、燃料電池セルで発電した電流の外部負荷への供給量を調整する電力調整部と、燃料ガス供給部および電力調整部のそれぞれを制御する制御装置と、を具備する燃料電池装置であって、制御装置は、燃料電池装置の部分負荷運転中で、かつセルスタックに供給する燃料ガスが発電に必要な最低流量以上である場合に、セルスタックの燃料利用率と、セルスタックが発電する電流量との関係が非直線となるように、燃料ガス供給部および電力調整部を制御することを特徴とする。
 本発明の燃料電池装置によれば、効率よく部分負荷運転を行なうことができる。
本発明の燃料電池装置を具備する燃料電池システムの一例を示す構成図である。 本発明の燃料電池装置におけるセルスタックの燃料利用率と、外部負荷の要求に応じてセルスタックが発電する電流量との関係の一例を示すグラフである。 本発明の燃料電池装置におけるセルスタックの燃料利用率と、外部負荷の要求に応じてセルスタックが発電する電流量との関係の他の例を示すグラフである。 本発明の燃料電池装置におけるセルスタックの燃料利用率と、外部負荷の要求に応じてセルスタックが発電する電流量との関係のさらに他の例を示すグラフである。
 本発明の燃料電池装置の一例について図1を用いて説明する。
 図1に示す燃料電池システムは、発電を行なう発電ユニットと、熱交換後の湯水を貯湯する貯湯ユニットと、これらのユニット間に水を循環させるための循環配管とから構成されている。
 図1に示す発電ユニットは、複数個の燃料電池セル(図示せず)を電気的に接続して配列してなるセルスタック1と、天然ガス等の原燃料を供給するための原燃料供給部2と、セルスタック1を構成する燃料電池セルに酸素含有ガスを供給するための酸素含有ガス供給部3と、原燃料と水蒸気により水蒸気改質反応を行なう改質器4とを具備している。改質器4は、後述する水ポンプ5により供給される純水を気化し、原燃料供給部2から供給された原燃料と水蒸気とを混合するための気化部(図示せず)と、内部に改質触媒を備え、混合された原燃料と水蒸気とを反応させて燃料ガス(水素含有ガス)を生成するための改質部(図示せず)とを備えている。それにより、改質器4にて生成された燃料ガスと酸素含有ガス供給部3により供給される酸素含有ガスとで、燃料電池セル(セルスタック1)の発電が行なわれる。なお、燃料ガス供給部は少なくとも原燃料供給部2を含んでいる。
 セルスタック1や改質器4は収納容器内に収納されており、燃料電池モジュール(以下、モジュールと略す場合がある。)を構成するようになっている。なお、図1においては、燃料電池モジュールを構成する各装置類を二点鎖線により囲って示しており、モジュールをMで示している。ただし、改質器4は収納容器外に設けても構わない。
 ここで、モジュールMについて説明する。モジュールMとしては、既知の燃料電池モジュールを用いることができる。例えば、収納容器内に、内部をガスが流通するガス流路を有する柱状の燃料電池セルを立設させた状態で配列し、隣接する燃料電池セル間に集電部材を介して電気的に直列に接続してセルスタック1を構成している。そして、燃料電池セルの下端をガラスシール材等の絶縁性接合材により燃料ガス室に固定してなるセルスタック装置と、燃料電池セルの上方に配置され、燃料電池セルに燃料ガスを供給するための改質器4とを収納して構成される。
 セルスタック1を構成する燃料電池セルとしては、各種燃料電池セルが知られているが、部分負荷運転(負荷追従運転)を行うにあたり、固体酸化物形燃料電池セルとすることができる。また、セルスタック1を構成する燃料電池セルを固体酸化物形燃料電池セルとすることにより、燃料電池セルの動作に必要な補機類を小型化することができることから、燃料電池装置22を小型化することができる。
 なお、燃料電池セルの形状としては、平板型や円筒型等の各種形状の燃料電池セルを用いることができるが、効率よく燃料電池セルの発電を行なううえで、中空平板型の燃料電池セルとすることができる。このような中空平板型の燃料電池セルとしては、内側に燃料極層が、外側に酸素極層が形成された燃料極支持タイプの中空平板型燃料電池セルを用いることができる。
 また、図1に示す発電ユニットにおいては、セルスタック1を構成する燃料電池セルの発電により生じた排ガス(排熱)と循環配管13を流れる水とで熱交換を行なう熱交換器6と、熱交換により生成された凝縮水を浄化する(好ましくは純水を生成する)ための凝縮水浄化装置7と、熱交換器6で生成された凝縮水を凝縮水浄化装置7に供給するための凝縮水供給管15とが設けられている。凝縮水浄化装置7にて処理された凝縮水は、タンク連結管16にて連結された水タンク8に貯水された後、水ポンプ5により改質器4(気化部、図示せず)に供給される。なお、凝縮水浄化装置7に水タンクの機能を持たせることで、水タンク8を省略することもできる。
 さらに図1に示す発電ユニットは、燃料電池セルにて発電された直流電力を交流電力に変換し、変換した交流電力の外部負荷への供給量を調整するための電力調整部9と、熱交換器6の出口に設けられ熱交換器6の出口を流れる水(循環水流)の水温を測定するための出口水温センサ11と、制御装置10と、循環配管13内で水を循環させる循環ポンプ12とを具備している。そして、燃料電池装置は少なくともセルスタック1、制御装置10、燃料電池セルに燃料ガスを供給するための燃料ガス供給部、および燃料電池セルで発電した電流の外部負荷への供給量を調整する電力調整部を含んで構成されている。
 なお、図1において、電力調整部9と外部負荷との接続は省略して示しており、電力調整部9としてはパワーコンディショナ(パワコン)を例示することができる。そして、これら発電ユニットを構成する各装置を、外装ケース内に収納することで、設置や持ち運び等が容易となる。なお、貯湯ユニットは、熱交換後の湯水を貯湯するための貯湯タンク14を具備して構成されている。
 また、セルスタック1と熱交換器6との間には、セルスタック1の運転に伴い生じる排ガスを処理するための排ガス処理装置が設けられている(図示せず)。排ガス処理装置は、収納容器内に排ガス処理部を収納してなり、排ガス処理部としては、一般的に公知の燃焼触媒を用いることができる。
 一方、凝縮水浄化装置7に供給される凝縮水の量が少ない場合や凝縮水処理部で処理された後の凝縮水の純度が低い場合においては、外部より供給される水(水道水等)を浄化して改質器4に供給することもできる。図1においては外部から供給される水を浄化するために各水処理装置を具備している。
 ここで、外部より供給される水を改質器4に供給するための各水処理装置は、水を浄化するための活性炭フィルタ装置19、逆浸透膜装置20およびイオン交換樹脂装置21の各装置のうち、少なくともイオン交換樹脂装置21(好ましくは全ての装置)を具備する。そして、イオン交換樹脂装置21にて生成された純水は水タンク8に貯水される。なお、図1に示す燃料電池装置(発電ユニット)おいては、外部より供給される水の量を調整するための給水弁18が設けられている。
 また、図1において、改質器4に供給する水を純水に処理するための各水処理装置を一点鎖線により囲って示している(外部水浄化装置Xとして示している)。
 ただし、燃料電池セルの発電により生じた排ガス(排熱)と循環配管13の水との熱交換により生成された凝縮水のみで、改質器4での水蒸気改質反応に必要な水(純水)をまかなえる場合には、外部水浄化装置Xを省いてもよい。
 ここで、図1に示した燃料電池装置(発電ユニット)の運転方法について説明する。燃料電池セルの発電に用いられる燃料ガスを生成するために水蒸気改質を行なうにあたり、改質器4で使用される純水は、熱交換器6においてセルスタック1(燃料電池セル)の運転に伴って生じた排ガスと循環配管13を流れる水との熱交換により生成される凝縮水が用いられる。なお、循環配管13を流れて排ガスとの熱交換により温度が上昇した水(即ちお湯)は、貯湯タンク14に貯湯される。熱交換器6にて生成された凝縮水は、凝縮水供給管15を流れて凝縮水浄化装置7に供給される。凝縮水浄化装置7に備える凝縮水浄化部(イオン交換樹脂等)にて処理された凝縮水(純水)は、タンク連結管16を介して水タンク8に供給される。水タンク8に貯水された水は、水ポンプ5により改質器4に供給され、原燃料供給部2より供給される原燃料とで水蒸気改質が行われ、生成された燃料ガスが燃料電池セル(セルスタック1)に供給される。燃料電池セル(セルスタック1)においては、改質器4を介して供給された燃料ガスと、酸素含有ガス供給部3より供給される酸素含有ガスとを用いて発電が行われ、燃料電池セル(セルスタック1)で発電された電流が、調整部9を介して外部負荷に供給される。以上の方法により、凝縮水を有効に利用して、水自立運転を行なうことができる。
 一方で、凝縮水の生成量が少ない場合や、凝縮水浄化装置7にて処理された凝縮水の純度が低い場合においては、外部より供給される水(水道水等)を用いることもできる。
 この場合は、まず、給水弁18(例えば、電磁弁やエア駆動バルブ等)が開放され、水道水等の外部から供給される水が、給水管17を通して活性炭フィルタ19に供給される。活性炭フィルタ19にて処理された水は、続いて逆浸透膜20に供給される。逆浸透膜20にて処理された水は、引き続きイオン交換樹脂装置21に供給される。そして、イオン交換樹脂装置21で浄化された水が、水タンク8に貯水される。水タンク8に貯水された浄化された水(純水)は、上述した方法により、燃料電池セル(セルスタック1)の発電に利用される。
 上述したような構成の燃料電池装置において、定格運転中は、制御装置10が原燃料供給部2および酸素含有ガス供給部3の動作を制御し、定格運転に必要な量の燃料ガスと酸素含有ガスを燃料電池セル(セルスタック1)に供給する。それにより、燃料電池セル(セルスタック1)において定格の電力を発生させ、燃料電池セル(セルスタック1)に直流電流が流れる。また、燃料電池セル(セルスタック1)の発電により生じた電力は、調整部9にて交流電力に変換された後、外部負荷に供給される。すなわち、定格運転中においては、制御装置10は、セルスタック1の燃料利用率(Uf)と外部負荷の要求に応じてセルスタック1が発電する電流量(I)との関係が一定の値になるように、各装置を制御する。
 一方、家庭用として燃料電池装置を用いる場合には、外部負荷の要求電力が変動しやすい。特に朝方や夕方以降の時間帯においては要求電力が高くなり、セルスタック1に流れる電流が高くなるのに対し、日中や夜中などにおいては要求電力が低くなり、セルスタック1に流れる電流が少なくなる。
 要求電力が低い時間帯において燃料電池装置を定格運転させることは、燃料電池装置に接続される系統電力に、燃料電池装置からの電力が逆潮流を生じるおそれがある。従って、特には家庭用の燃料電池装置の運転において、外部負荷の要求電力に応じた部分負荷運転(負荷追従運転)を行なうことができる。
 このような部分負荷運転中において、制御装置10は、原燃料供給部2および酸素含有ガス供給部3の動作を制御し、外部負荷の要求電力に応じた電流量を得るために必要な量の燃料ガスと酸素含有ガスとを燃料電池セル(セルスタック1)に供給する。燃料電池セル(セルスタック1)の発電により生じた直流電力は、電力調整部9にて交流電力に変換された後、外部負荷に供給される。
 すなわち、部分負荷運転中においては、セルスタック1の燃料利用率(Uf)と電流量(I)とが、要求負荷に応じて変動することとなる。具体的には、定格運転中よりも低下することとなる。
 それゆえ、部分負荷運転中において、セルスタック1の燃料利用率(Uf)と電流量(I)との関係をバランスよく制御しなければ、燃料電池装置の発電効率が低下するおそれや、負荷追従特性が低下するおそれがある。
図2から図4は、燃料電池装置におけるセルスタック1の燃料利用率と、外部負荷の要求に応じてセルスタック1が発電する電流量との関係を示すグラフである。
 燃料電池装置の運転を維持するにあたり、燃料電池セルの温度を所定温度以上に保つ必要があることから、外部負荷の要求電力が低い場合であっても、所定量以上の燃料ガスを燃料電池セル(セルスタック1)に供給する必要がある場合がある。以下、この所定量の燃料ガスの量を最低流量という。
 本実施形態の燃料電池装置では、部分負荷運転中で、セルスタック1に供給する燃料ガスが最低流量以上である場合に、制御装置10は、セルスタック1の燃料利用率(Uf)と外部負荷の要求に応じてセルスタック1が発電する電流量(I)との関係が非直線となるように、原燃料供給部2および電力調整部9を制御する。また、あわせて酸素含有ガス供給部3も制御することが好ましく、以下同様である。
 すなわち、部分負荷運転中のセルスタック1の燃料利用率(Uf)と電流量(I)との関係が直線となるように原燃料供給部2および電力調整部9を制御すると、後述するように、負荷追従特性を向上する運転や、燃料電池セルの一端側で余剰の燃料ガスを燃焼させる場合に失火を抑制する運転等のような運転を行なうことが困難となる。
 これに対し、部分負荷運転中で、セルスタック1に供給する燃料ガスが最低流量以上である場合に、セルスタック1の燃料利用率(Uf)と電流量(I)との関係が非直線となるように制御装置10によって原燃料供給部2および調整部9を制御することにより、部分負荷運転中において、負荷追従特性を向上する運転や、燃料電池セルの一端側で余剰の燃料ガスを燃焼させる場合に失火を抑制する運転等を行なうことができ、効率のよい部分負荷運転を行なうことができる。
 また、部分負荷運転中のセルスタック1の燃料利用率(Uf)の最大値が、燃料電池装置の定格運転中における燃料利用率(Uf)と等しい場合、燃料電池セルの酸化を低減することができ、燃料電池セルの破損を低減することができる。そのため、信頼性の向上した燃料電池装置とすることができる。
 そして、図2に示すように、部分負荷運転中において、セルスタック1に供給する燃料ガスの最低流量より多くの燃料ガスがセルスタック1に供給されている場合に、セルスタック1が発電する電流量(I)の増加に伴い、セルスタック1の燃料利用率(Uf)の増加量が減少するように制御装置10によって燃料ガス供給部2および電力調整部9のそれぞれを制御すると、セルスタック1の電流量(I)が低い場合においても、燃料電池セルの温度を高温に維持することができ、燃料電池装置の負荷追従特性を向上させることができる。
 一方、燃料電池セルの一端側で、燃料電池セルの発電に利用されなかった余剰の燃料ガスを燃焼させる構成の燃料電池装置においては、部分負荷運転中において燃料電池セル(セルスタック1)に供給される燃料ガスの量が減少するため、余剰の燃料ガスの燃焼が失火するおそれがある。
 そこで、図3に示すように、部分負荷運転中で、セルスタック1に供給する燃料ガスが最低流量以上である場合に、セルスタック1が発電する電流量(I)の増加に伴い、燃料利用率(Uf)の増加量が増加するように制御装置10によって原燃料供給部2および電力調整部9を制御すると、セルスタック1の電流量(I)が低い場合に、余剰の燃料ガスが増加することとなる。つまり、余剰の燃料ガスが増加することから、余剰の燃料ガスの燃焼の失火を低減することができる。
 なお、図2および図3においては、セルスタック1に供給される燃料ガスの最低流量より多くの燃料ガスがセルスタック1に供給されている場合に、部分負荷運転時のセルスタック1の燃料利用率(Uf)と電流量(I)との関係が二次曲線となる場合を示したが、二次曲線で表される関係に限られるものではない。燃料電池装置を構成する燃料電池セルの数や、モジュールMの大きさ等により適宜設定することができ、例えば、三次曲線で表される関係等であってもよい。
 例えば、図4に示すように、セルスタック1に供給する燃料ガスが最低流量以上である場合に、セルスタック1が発電する電流量(I)の増加に伴い燃料利用率(Uf)の増加量が増加し、その後、電流量(I)の増加に伴い燃料利用率(Uf)の増加老が減少するように制御装置10によって原燃料供給部2および電力調整部9を制御することができる。この場合、部分負荷運転時のセルスタック1の燃料利用率(Uf)と電流量(I)との関係が三次曲線で表される関係となっている。
 それにより、セルスタック1の電流量(I)が低い領域において余剰の燃料ガスが増加し、燃料電池装置における余剰の燃料ガスの燃焼の失火を低減することができるとともに、負荷追従特性を向上させることができる。
 なお、部分負荷運転中のセルスタック1の燃料利用率(Uf)と電流量(I)との関係において、セルスタック1に供給する燃料ガスの量が最低流量に至るまでは、セルスタック1の燃料利用率(Uf)と電流量(I)との関係が直線となっている。
 以上、本発明について詳細に説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
 例えば、部分負荷運転中で、セルスタック1に供給される燃料ガスの最低流量より多くの燃料ガスがセルスタック1に供給されている場合に、セルスタック1が発電する電流量(I)の増加に伴い燃料利用率(Uf)の増加量が減少し、その後、セルスタック1が発電する電流量(I)の増加に伴い燃料利用率(Uf)の増加量が増加するように制御装置10によって原燃料供給部2および電力調整部9を制御するようにしてもよい。
1:セルスタック
2:原燃料供給部
3:酸素含有ガス供給部
9:調整部(パワーコンディショナ)
10:制御装置
M:燃料電池モジュール

Claims (4)

  1.  燃料ガスと酸素含有ガスとで発電を行なう燃料電池セルの複数個を電気的に接続してなるセルスタックと、
    前記燃料電池セルに前記燃料ガスを供給するための燃料ガス供給部と、
    前記燃料電池セルで発電した電流の外部負荷への供給量を調整する電力調整部と、
    前記燃料ガス供給部および前記電力調整部のそれぞれを制御する制御装置と、
    を具備する燃料電池装置であって、
    前記制御装置は、前記燃料電池装置の部分負荷運転中で、前記セルスタックに供給する前記燃料ガスが発電に必要な最低流量以上である場合に、前記セルスタックの燃料利用率と、前記セルスタックが発電する電流量との関係が非直線となるように、前記燃料ガス供給部および前記電力調整部を制御することを特徴とする燃料電池装置。
  2.  前記燃料電池装置の部分負荷運転中における前記セルスタックの燃料利用率の最大値が、前記燃料電池装置の定格運転中における燃料利用率と同じであることを特徴とする請求項1に記載の燃料電池装置。
  3.  前記制御装置は、前記燃料電池装置の部分負荷運転中で、前記セルスタックに供給する前記燃料ガスが最低流量以上である場合に、前記セルスタックが発電する電流量の増加に伴い、前記燃料利用率の増加量が減少するように、前記燃料ガス供給部および前記電力調整部のそれぞれを制御することを特徴とする請求項1または請求項2に記載の燃料電池装置。
  4.  前記燃料電池セルが、当該燃料電池セルの一端側で前記燃料電池セルの発電に利用されなかった余剰の燃料ガスを燃焼させる構成を有するとともに、前記制御装置は、前記燃料電池装置の部分負荷運転中で、前記セルスタックに供給する前記燃料ガスが最低流量以上である場合に、前記セルスタックが発電する電流量の増加に伴い、前記燃料利用率の増加量が増加するように、前記燃料ガス供給部および前記電力調整部のそれぞれを制御することを特徴とする請求項1または請求項2に記載の燃料電池装置。
PCT/JP2010/062821 2009-07-29 2010-07-29 燃料電池装置 WO2011013758A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127001296A KR101355047B1 (ko) 2009-07-29 2010-07-29 연료 전지 장치
EP10804504.8A EP2461407B1 (en) 2009-07-29 2010-07-29 Fuel cell device
US13/387,499 US10164276B2 (en) 2009-07-29 2010-07-29 Fuel cell device
JP2011524834A JP5528451B2 (ja) 2009-07-29 2010-07-29 燃料電池装置
CN201080032699.XA CN102473947B (zh) 2009-07-29 2010-07-29 燃料电池装置
US16/181,514 US10763527B2 (en) 2009-07-29 2018-11-06 Fuel cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009176296 2009-07-29
JP2009-176296 2009-07-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/387,499 A-371-Of-International US10164276B2 (en) 2009-07-29 2010-07-29 Fuel cell device
US16/181,514 Division US10763527B2 (en) 2009-07-29 2018-11-06 Fuel cell device

Publications (1)

Publication Number Publication Date
WO2011013758A1 true WO2011013758A1 (ja) 2011-02-03

Family

ID=43529410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062821 WO2011013758A1 (ja) 2009-07-29 2010-07-29 燃料電池装置

Country Status (6)

Country Link
US (2) US10164276B2 (ja)
EP (1) EP2461407B1 (ja)
JP (1) JP5528451B2 (ja)
KR (1) KR101355047B1 (ja)
CN (1) CN102473947B (ja)
WO (1) WO2011013758A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049387A (ja) * 2012-09-03 2014-03-17 Osaka Gas Co Ltd 燃料利用率の設定方法
JP2017162746A (ja) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 燃料電池システム及びその運転方法
JP2018110079A (ja) * 2017-01-05 2018-07-12 大阪瓦斯株式会社 燃料電池システム及びその運転方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413955B (zh) * 2013-08-07 2015-04-01 东南大学 一种防止固体氧化物燃料电池燃料利用率超限的控制方法
CN107464944B (zh) 2016-05-27 2021-02-02 通用电气公司 燃料电池系统及其操作方法
EP3862314A4 (en) 2018-10-02 2022-06-22 Eneos Corporation METHOD OF OPERATING A HYDROGEN PRODUCTION FACILITIES AND CONTROL DEVICE FOR HYDROGEN PRODUCTION FACILITIES
WO2020175218A1 (ja) * 2019-02-28 2020-09-03 京セラ株式会社 燃料電池装置
JP6984047B2 (ja) * 2019-05-27 2021-12-17 京セラ株式会社 燃料電池装置
EP3858242A1 (en) 2020-02-03 2021-08-04 Koninklijke Philips N.V. Cleaning and charging portable x-ray detectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323157A (ja) * 1999-05-14 2000-11-24 Hitachi Ltd 燃料電池発電システムおよびその制御方法
JP2003123811A (ja) * 2001-10-18 2003-04-25 Ebara Ballard Corp 燃料電池発電システムによる発電方法及び燃料電池発電システム
JP2006032262A (ja) * 2004-07-21 2006-02-02 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
JP2006059550A (ja) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp 燃料電池発電装置および運転制御方法
JP2006302881A (ja) * 2005-03-25 2006-11-02 Kyocera Corp 燃料電池組立体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012381A (ja) 2001-06-27 2003-01-15 Kyocera Corp 無機多孔体の製造方法及び無機多孔体並びにガス分離モジュール
US7582371B2 (en) * 2003-06-09 2009-09-01 Panasonic Corporation Fuel cell system having fuel and water controlling means
JP4595317B2 (ja) * 2003-11-19 2010-12-08 日産自動車株式会社 燃料電池システム
US6959249B2 (en) 2003-12-02 2005-10-25 General Motors Corporation Load following algorithm for a fuel cell based system
JP2006024478A (ja) 2004-07-08 2006-01-26 Ebara Ballard Corp 燃料電池発電システムの運転方法及び燃料電池発電システム
US7456517B2 (en) 2005-04-12 2008-11-25 General Electric Company Methods and apparatus for controlled solid oxide fuel cell (SOFC)/turbine hybrid power generation
JP4943037B2 (ja) 2005-07-27 2012-05-30 京セラ株式会社 燃料電池モジュール
WO2007052633A1 (ja) * 2005-10-31 2007-05-10 Kyocera Corporation 燃料電池システム
US20070259219A1 (en) * 2005-12-19 2007-11-08 Jing Ou Technique and apparatus to detect and recover from an unhealthy condition of a fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323157A (ja) * 1999-05-14 2000-11-24 Hitachi Ltd 燃料電池発電システムおよびその制御方法
JP2003123811A (ja) * 2001-10-18 2003-04-25 Ebara Ballard Corp 燃料電池発電システムによる発電方法及び燃料電池発電システム
JP2006032262A (ja) * 2004-07-21 2006-02-02 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
JP2006059550A (ja) * 2004-08-17 2006-03-02 Mitsubishi Materials Corp 燃料電池発電装置および運転制御方法
JP2006302881A (ja) * 2005-03-25 2006-11-02 Kyocera Corp 燃料電池組立体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049387A (ja) * 2012-09-03 2014-03-17 Osaka Gas Co Ltd 燃料利用率の設定方法
JP2017162746A (ja) * 2016-03-11 2017-09-14 大阪瓦斯株式会社 燃料電池システム及びその運転方法
JP2018110079A (ja) * 2017-01-05 2018-07-12 大阪瓦斯株式会社 燃料電池システム及びその運転方法

Also Published As

Publication number Publication date
EP2461407A4 (en) 2013-07-10
EP2461407A1 (en) 2012-06-06
JPWO2011013758A1 (ja) 2013-01-10
US20120148933A1 (en) 2012-06-14
US10164276B2 (en) 2018-12-25
KR101355047B1 (ko) 2014-01-24
CN102473947B (zh) 2014-09-10
US10763527B2 (en) 2020-09-01
KR20120024977A (ko) 2012-03-14
JP5528451B2 (ja) 2014-06-25
EP2461407B1 (en) 2017-08-30
US20190074531A1 (en) 2019-03-07
CN102473947A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5528451B2 (ja) 燃料電池装置
JP3804543B2 (ja) 燃料電池システム
JP5591249B2 (ja) 燃料電池装置
JP2009032555A (ja) 燃料電池装置
JP5969297B2 (ja) 燃料電池システム
JP5132143B2 (ja) 燃料電池装置
JP5409121B2 (ja) 燃料電池装置
JP5597628B2 (ja) 燃料電池装置
JP5460208B2 (ja) 燃料電池コージェネレーションシステム
JP5855955B2 (ja) エネルギー管理装置
KR102483560B1 (ko) 용융탄산염형 연료전지와 고체산화물 수전해전지의 융복합 시스템
JP5534775B2 (ja) 燃料電池コージェネレーションシステム
JP2009117170A (ja) 水素製造発電システム及びその負荷追従発電方法
JP2011029116A (ja) 燃料電池装置
JP2002319427A (ja) 燃料電池発電システム及び燃料電池発電方法
JP2004213985A (ja) 燃料電池システム
JP2018137094A (ja) 燃料電池装置
JP2010153062A (ja) 燃料電池装置
JP2008210629A (ja) 燃料電池装置
JP5266782B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
KR20230077060A (ko) 발열체에 의한 승온이 적용되는 암모니아 기반 고체산화물 연료전지(sofc) 시스템, 및 이의 작동방법
JP2024062068A (ja) 電解システム
JP2010231921A (ja) 燃料電池装置
US20150311551A1 (en) Fuel cell system
KR20150052674A (ko) 연료 전지 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032699.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524834

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127001296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13387499

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010804504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804504

Country of ref document: EP