WO2011013611A1 - Photosensitive resin composition, and antireflection film and antireflective hard coating film which are produced using same - Google Patents

Photosensitive resin composition, and antireflection film and antireflective hard coating film which are produced using same Download PDF

Info

Publication number
WO2011013611A1
WO2011013611A1 PCT/JP2010/062511 JP2010062511W WO2011013611A1 WO 2011013611 A1 WO2011013611 A1 WO 2011013611A1 JP 2010062511 W JP2010062511 W JP 2010062511W WO 2011013611 A1 WO2011013611 A1 WO 2011013611A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
meth
film
hard coat
Prior art date
Application number
PCT/JP2010/062511
Other languages
French (fr)
Japanese (ja)
Inventor
悦幸 矢作
浩和 狩野
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201080031455.XA priority Critical patent/CN102471425B/en
Priority to JP2011524763A priority patent/JP5767583B2/en
Publication of WO2011013611A1 publication Critical patent/WO2011013611A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making

Definitions

  • the present invention relates to a photosensitive resin composition, an antireflection film having a cured film thereof, and an antireflection hard coat film. More specifically, a photosensitive resin composition having excellent scratch resistance, abrasion resistance, stain resistance, transparency, a low refractive index, and a low reflectance when used in an antireflection film and an antireflection hard coat film, The present invention also relates to an antireflection film or an antireflection hard coat film having the cured film.
  • plastics are used in large quantities in various industries including the automobile industry, home appliance industry, and electrical and electronic industry.
  • the reason why a large amount of plastic is used in this way is that it is lightweight, inexpensive, and excellent in optical characteristics in addition to its excellent processability and transparency.
  • it has drawbacks such as being softer than glass or the like and being easily scratched on the surface.
  • it is a common means to coat the surface with a hard coating agent.
  • Thermosetting hard coat agents such as silicone paints, acrylic paints, and melamine paints are used as the hard coat agents.
  • silicone hard coating agents are particularly frequently used because of their high hardness and excellent quality.
  • it has a long curing time, is expensive, and cannot be said to be suitable for a hard coat layer provided on a continuously processed film.
  • photosensitive acrylic hard coating agents have been developed and used (see Patent Document 1).
  • the photosensitive hard coating agent is cured immediately upon irradiation with an active energy ray such as ultraviolet rays to form a hard film, so that the processing speed is high, and it has excellent performance such as hardness and scratch resistance. Because it is cheaper in terms of total cost, it is now the mainstream in the hard coat field.
  • it is suitable for continuous processing of films such as polyester.
  • Plastic films include polyester film, polyacrylate film, acrylic film, polycarbonate film, vinyl chloride film, triacetylcellulose film, polyethersulfone film, cycloolefin polymer film, etc., but polyester film and triacetylcellulose film are It is most widely used due to various excellent properties.
  • Polyester film is a glass scattering prevention film, or a light shielding film for automobiles, a surface film for whiteboard, a system kitchen surface antifouling film, and as a functional film for electronic materials such as touch panels, CRT flat TVs, plasma displays, etc. Widely used.
  • the triacetyl cellulose film is used for a polarizing plate which is an essential material for a liquid crystal display. As described above, a hard coating agent is applied to these so as not to scratch the surface.
  • display screens such as PDP (Plasma Display Panel), LCD (Liquid Crystal Panel), and CRT (CRT) with a film coated with a hard coating agent in recent years make the display screen difficult to see due to reflection, and eyes are tired. Since the problem that it is easy arises, the hard coat process which has the antireflection ability on the surface is needed depending on the use.
  • a film in which an inorganic filler or an organic filler is dispersed in a photosensitive resin composition for hard coat is coated on a film and the surface is made uneven to prevent reflection (AG: anti-glare) Processing), a method of providing multiple layers having different refractive indexes on a film, and preventing reflection by utilizing light interference due to the difference in refractive index (AR: anti-reflection treatment), or AG combining the above two methods / AR processing method (see Patent Document 2).
  • thermosetting type compound obtained by condensing a silane compound by a sol-gel method is used (see Patent Document 3), but it takes time to cure. There are problems that productivity is poor and that the hard coat layer shrinks and cracks due to heating.
  • an active energy ray-curable resin using a (meth) acrylate having a fluorine atom has also been developed (see Patent Document 4), but there is a problem that the scratch resistance is not sufficient or the chemical resistance is not sufficient. is there.
  • the present invention is a low-reflective anti-reflection film that is easily cured and has excellent hardness, scratch resistance, abrasion resistance, chemical resistance, magic wiping property, fingerprint wiping property, and other stain resistance, and transparency.
  • An object is to provide a photosensitive resin composition for a refractive index layer, and an antireflection film and an antireflection hard coat film using the same.
  • the present invention (1) polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, colloidal silica (B) having a nanoporous structure with an average particle diameter of 1 to 200 nanometers, (meta )
  • An antireflection hard coat film having a hard coat agent cured layer and a cured layer of the photosensitive resin composition according to any one of (1) to (3) in this order on a base film; (6)
  • the hard coat agent is a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, a metal oxide (F) having an average particle diameter of 1 to 200 nanometers, and light.
  • the antireflection hard coat film according to (5) which is a photosensitive resin composition containing a radical polymerization initiator (D); (7) The antireflection hard coat film according to (6), wherein the metal oxide (F) having an average particle diameter of 1 to 200 nanometers is tin oxide doped with phosphorus; About.
  • a photosensitive resin composition containing a specific compound capable of forming a low refractive index layer having a low reflectance can be provided.
  • the photosensitive resin composition of the present invention is a colloidal having a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule and a nanoporous structure having an average particle diameter of 1 to 200 nanometers. It contains silica (B), polysiloxane (C) having a (meth) acryloyl group, and a radical photopolymerization initiator (D).
  • polyfunctional (meth) acrylate (A) having at least 3 (meth) acryloyl groups in the molecule examples include polyfunctional (meth) acrylates having 3 to 15 (meth) acryloyl groups in the molecule.
  • polyfunctional urethane (meth) acrylates which are a reaction product of a polyfunctional (meth) acrylate compound having a hydroxyl group and a polyisocyanate compound, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol octa (meth) Polyester
  • Examples of the polyfunctional (meth) acrylate compound having a hydroxyl group include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol tri (meth) acrylate.
  • pentaerythritols such as dipentaerythritol di (meth) acrylate, methylols such as trimethylolpropane di (meth) acrylate, and epoxy (meth) acrylates such as bisphenol A diepoxy (meth) acrylate.
  • pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferable.
  • These polyfunctional (meth) acrylate compounds having a hydroxyl group may be used alone or in combination of two or more.
  • polyisocyanate compound examples include polyisocyanate compounds basically composed of chain saturated hydrocarbons, cyclic saturated hydrocarbons (alicyclic), and aromatic hydrocarbons.
  • polyisocyanate compounds include chain saturated hydrocarbon polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and methylene bis (4- Cyclohexyl isocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate and other cyclic saturated hydrocarbon (alicyclic) polyisocyanates, 2,4-tolylene diisocyanate, 1,3-xylylene diisocyanate, p- Phenylene diisocyanate, 3,3'-dimethyl-4,4'
  • the polyfunctional urethane (meth) acrylate compound can be obtained by reacting the polyfunctional (meth) acrylate compound having a hydroxyl group with the polyisocyanate compound.
  • the polyisocyanate compound may be used in the range of usually 0.1 to 50 equivalents, preferably 0.1 to 10 equivalents as the isocyanate group equivalent with respect to 1 equivalent of the hydroxyl group in the polyfunctional (meth) acrylate compound.
  • the reaction temperature is usually in the range of 30 to 150 ° C., preferably 50 to 100 ° C.
  • the end point of the reaction is that the residual isocyanate is reacted with an excess of n-butylamine, and the amount of residual isocyanate is calculated by a back titration of unreacted n-butylamine with 1N hydrochloric acid.
  • a catalyst may be added for the purpose of shortening the reaction time.
  • a basic catalyst or an acidic catalyst is used.
  • the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine, and phosphine such as ammonia, tributylphosphine and triphenylphosphine.
  • the acidic catalyst examples include copper naphthenate, cobalt naphthenate, zinc naphthenate, metal alkoxides such as tributoxyaluminum, trititanium tetrabutoxide, zirconium tetrabutoxide, Lewis acids such as aluminum chloride, 2-ethylhexane, etc.
  • metal alkoxides such as tributoxyaluminum, trititanium tetrabutoxide, zirconium tetrabutoxide, Lewis acids such as aluminum chloride, 2-ethylhexane, etc.
  • tin compounds such as tin, octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate.
  • the addition amount of these catalysts is usually 0.1% by weight or more and 1% by weight or less with respect to 100% by weight of polyisocyanate.
  • a polymerization inhibitor for example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, etc.
  • the amount of the polymerization inhibitor used is based on the reaction mixture. It is 0.01 weight% or more and 1 weight% or less, Preferably it is 0.05 weight% or more and 0.5 weight% or less.
  • the content of the component (A) is usually 5 to 90% by weight, preferably 10 to 70% by weight, when the solid content of the photosensitive resin composition is 100% by weight. It is.
  • the solid content is the entire remaining components excluding the composition and the diluent when the composition contains a diluent and a solvent.
  • the colloidal silica (B) includes a colloidal solution in which colloidal silica is dispersed in a solvent, or fine powdered colloidal silica containing no dispersion solvent.
  • examples of the colloidal solution in which colloidal silica is dispersed in a solvent include ELCOM series and Thru rear series manufactured by Catalyst Kasei Kogyo Co., Ltd.
  • Examples of the dispersion solvent for colloidal solution in which colloidal silica is dispersed in a solvent include water, alcohols such as methanol, ethanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol Polyhydric alcohols such as monomethyl ether acetate and derivatives thereof, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and dimethylacetamide, esters such as ethyl acetate and butyl acetate, nonpolar solvents such as toluene and xylene, 2-hydroxy (Meth) acrylates such as butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate or others In general organic solvents, it can be used.
  • the amount of the dispersion solvent is
  • the average particle size means the smallest particle size of the particles when the aggregation is broken, and can be measured by BET method, dynamic light scattering method, electron microscope observation, or the like.
  • the colloidal silica (B) it is necessary to use those having an average particle diameter of 1 to 200 nanometers according to these measurement methods, those having an average particle diameter of 1 to 100 nanometers are preferable, and the average particle diameter is More preferred is 1 to 80 nanometers.
  • the content of the component (B) is usually 5 to 90% by weight, preferably 10 to 80% by weight when the solid content of the photosensitive resin composition is 100% by weight. More preferably, it is 20 to 70% by weight.
  • the surface of colloidal silica can be surface treated with a silane coupling agent or the like to improve dispersibility.
  • the surface treatment method may be a known method, and there are a dry method and a wet method.
  • the dry method is a method of treating silica powder, in which a stock solution or solution of a silane coupling agent is uniformly dispersed in silica powder that is rapidly stirred by a stirrer.
  • the wet method is a method of processing by adding and stirring a silane coupling agent to a slurry obtained by dispersing silica in a solvent or the like. Either method may be used in the present invention.
  • the amount (g) of the silane coupling agent used is less than the amount obtained from the weight of silica (g) ⁇ the specific surface area of silica (m 2 / g) / the minimum coating area of the silane coupling agent (m 2 / g). good.
  • the polysiloxane (C) having a (meth) acryloyl group contained in the photosensitive resin composition of the present invention is sometimes called silicone acrylate, organic modified silicone, organic modified polysiloxane, reaction-bonded organic modified silicone acrylate, or the like.
  • silicone acrylate organic modified silicone
  • organic modified polysiloxane organic modified polysiloxane
  • reaction-bonded organic modified silicone acrylate or the like.
  • a part of linear dimethylsiloxane is organically modified with an alkyl group or a polyether group, and a (meth) acrylate group is added to the terminal of the modified part.
  • a compound in which a (meth) acryloyl group is introduced at the end of the organically modified part is preferable.
  • a polymerization reaction is possible, and the migration of polysiloxane to the interface is reduced, and roll and winding during production are performed. It is possible to reduce the transition to the back of the film at the time, and further improve chemical resistance (alkaline solution, organic solvent, etc.).
  • polysiloxanes (C) having (meth) acryloyl groups commercially available products may be used. 2600, 2700 (all manufactured by Degussa), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22 -1603, X-22-1615, X-22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201 X-22-2426, X-22-164A, X-22-164C (all manufactured by Shin-Etsu Chemical Co., Ltd.), etc. It can gel.
  • the component (C) may contain a fluorine atom.
  • the component (C) preferably has 1 to 8 (meth) acryloyl groups in the molecule, and more preferably has 2 to 6 (meth) acryloyl groups.
  • the content of the component (C) is usually 0.1 to 50% by weight when the solid content of the photosensitive resin composition is 100% by weight, preferably 1 to 20% by weight.
  • Examples of the photo radical polymerization initiator (D) contained in the photosensitive resin composition of the present invention include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2 , 2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ Acetophenones such as 4- (methylthio) phenyl] -2-morpholinopropan-1-one; anthraquino such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone Thioxanthones such as 2,4-diethylthi
  • Irgacure 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure 907 (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) propane-1 manufactured by Ciba Specialty Chemicals, Inc. -On), Lucylin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by BASF, etc.
  • These may be used alone or in combination of two or more.
  • the content of the component (D) is usually 0.1 to 30% by weight, preferably 1 to 15 when the solid content of the photosensitive resin composition is 100% by weight. % By weight.
  • a sensitizer can be used in combination with the photosensitive resin composition of the present invention as required.
  • Examples of sensitizers that can be used include anthracene, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, and 2-ethyl.
  • the amount used is 1 to 200% by weight, preferably 5 to 150% by weight, based on 100% by weight of the radical photopolymerization initiator (D).
  • a diluent (E) may be used.
  • the diluent (E) include lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -heptalactone, ⁇ -acetyl- ⁇ -butyrolactone, and ⁇ -caprolactone; -Ethers such as dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether Carbonates such as ethylene carbonate and propylene carbonate; methyl ethyl keto , Ketones such as methyl isobutyl ket
  • the content of the component (E) is 0 to 99% by weight in the photosensitive resin composition of the present invention.
  • a leveling agent, an ultraviolet absorber, a light stabilizer, an antifoaming agent, and the like can be added to the photosensitive resin composition of the present invention as necessary to impart desired functionality.
  • the photosensitive resin composition of the present invention comprises the component (A), the component (B), the component (C), the component (D), and, if necessary, the component (E) and other components in any order. It can be obtained by mixing. The photosensitive resin composition of the present invention thus obtained is stable over time.
  • the antireflection film of the present invention can be obtained by providing a cured layer of the photosensitive resin composition on a base film (base film). After drying the photosensitive resin composition of the present invention on a base film, the film thickness is 0.05 to 0.5 ⁇ m, preferably 0.05 to 0.3 ⁇ m (the wavelength showing the minimum value of reflectance is 500 to 700 nm, Preferably, the film thickness is preferably set to 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film.
  • the printing layer, the anchor coat layer for improving adhesion, and the refractive index of the base film (base film) A layer such as a high refractive index layer having a high refractive index may be provided.
  • the film thickness after drying the high refractive index coating agent is 0.05 to 5 ⁇ m, preferably 0.05 to 3 ⁇ m (the wavelength showing the maximum value of reflectance is 500 to 700 nm, preferably The film thickness is preferably set to 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film.
  • the antireflection hard coat film of the present invention can be obtained by providing a hard coat layer and a photosensitive resin composition layer of the present invention in this order on a base film (base film).
  • a hard coat agent is applied onto a base film so that the film thickness after drying is 1 to 30 ⁇ m, preferably 3 to 20 ⁇ m, and after drying, an active energy ray is irradiated to form a cured film.
  • the film thickness is 0.05 to 0.5 ⁇ m, preferably 0.05 to 0.3 ⁇ m (the minimum reflectance is set to a minimum value).
  • the film thickness is preferably set so that the wavelength shown is 500 to 700 nm, preferably 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film. be able to.
  • a high refractive index layer having a refractive index higher than that of the hard coat layer may be provided between the hard coat layer and the cured layer of the photosensitive resin composition of the present invention.
  • the film thickness is 0.05 to 5 ⁇ m, preferably 0.05 to 3 ⁇ m (the wavelength showing the maximum reflectance is 500 to 700 nm, preferably 520 to 650 nm). It is preferable to set the film thickness in such a manner that it is preferable to form a cured film by irradiating active energy rays after drying.
  • the base film examples include, as described above, polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetylcellulose, polyethersulfone, cycloolefin polymer, and the like.
  • the film may be a thick sheet.
  • the film to be used may be colored, provided with an easy-adhesion layer, or subjected to a surface treatment such as corona treatment.
  • Examples of the method for applying the photosensitive resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, reverse micro gravure coating, and die coating. Ter coating, vacuum die coating, dip coating, spin coating and the like.
  • Examples of active energy rays irradiated for curing include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, a metal halide lamp or the like is used as the light source, and the light amount, the arrangement of the light source, etc. are adjusted as necessary.
  • a high-pressure mercury lamp it is preferable to cure at a conveying speed of 5 to 60 m / min for one lamp having an energy of 80 to 240 W / cm.
  • the oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • Nitrogen gas is preferably used as the inert gas.
  • the hard coat agent used in the first layer of the antireflection hard coat film of the present invention a commercially available hard coat agent may be used as it is, or three or more (meth) acryloyl groups described above may be used. You may use the photosensitive resin composition which mix
  • a metal oxide (F) having an average particle size of 1 to 200 nanometers is preferable to use.
  • the metal oxide (F) are metal oxides that improve the refractive index, such as titanium oxide, zirconium oxide, zinc oxide, tin oxide, iron oxide, indium tin oxide (ITO), antimony-doped tin oxide ( ATO), zinc antimonate, aluminum-doped zinc oxide, gallium-doped zinc oxide, tin-doped zinc antimonate, phosphorus-doped tin oxide, and the like.
  • tin oxide and indium tin oxide which are metal oxides imparting antistatic properties (ITO), antimony-doped tin oxide (ATO), zinc antimonate, aluminum-doped zinc oxide, phosphorus-doped tin oxide and the like are preferable, and zinc antimonate and phosphorus-doped tin oxide are particularly preferable in terms of price, stability, dispersibility, etc. From this viewpoint, phosphorus-doped tin oxide is particularly preferable. These can be obtained as a fine powder or a dispersion liquid dispersed in an organic solvent.
  • organic solvents examples include methanol, ethanol, isopropanol, n-butanol, alcohols such as ethylene glycol, ethylene glycol monoethyl ether, and propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • examples include ketones, esters such as ethyl acetate and butyl acetate, and nonpolar solvents such as toluene and xylene.
  • the amount of the organic solvent is usually 70 to 900% by weight with respect to 100% by weight of the metal oxide.
  • the average particle diameter means the smallest particle diameter of the particles when the aggregation is broken, and the average particle diameter of the metal oxide (F) by BET method, dynamic light scattering method, electron microscope observation, etc. Can be measured.
  • the content of the component (F) is usually 5 to 90% by weight, preferably 10 to 80% by weight, when the solid content of the hard coat agent is 100% by weight.
  • colloidal silica (G) having an average particle diameter of 1 nm or more and 200 nm or less can be added for the purpose of improving the hardness of the hard coat layer.
  • the colloidal silica (G) having an average particle diameter of 1 nm or more and 200 nm or less can be used as a colloidal solution in which colloidal silica is dispersed in a solvent, or as fine powdered colloidal silica containing no dispersion solvent.
  • Examples of the dispersion solvent for colloidal silica (G) include water, methanol, ethanol, isopropanol, n-butanol, diacetone alcohol and other polyhydric alcohols such as ethylene glycol and derivatives thereof, methyl ethyl ketone and methyl isobutyl ketone.
  • the amount of the dispersion solvent is usually 100% by weight or more and 900% by weight or less with respect to 100% by weight of colloidal silica.
  • colloidal silica (G) can be produced by a known method, and commercially available ones can also be used.
  • An example is organosilica sol: MEK-ST manufactured by Nissan Chemical Industries. It is necessary to use those having an average particle size of 1 nm or more and 200 nm or less, preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 50 nm or less. Transparency can be secured at 1 nm or more and 100 nm or less, and sufficiently good results can be obtained for both transparency and haze at 1 nm or more and 50 nm or less.
  • the average particle size means the smallest particle size of the particles when the aggregation is broken, and the average particle size of the colloidal silica (G) is determined by BET method, dynamic light scattering method, electron microscope observation or the like. Can be measured.
  • the content thereof is usually 10 to 70% by weight, preferably 20 to 50% by weight, with the solid content of the hard coating agent being 100% by weight.
  • the (A) component, (D) component, (E) component, (F) component, and (G) component used in the hard coat agent may be blended and mixed in any order, and further as necessary. You may add a leveling agent, an antifoamer, etc. and other additives.
  • a layer such as a high refractive index layer having a refractive index higher than the refractive index of the base film (base film) is provided between the base film (base film) and the cured layer of the photosensitive resin composition of the present invention.
  • a high refractive index layer having a refractive index higher than the refractive index of the hard coat layer between the hard coat layer on the substrate film and the cured layer of the photosensitive resin composition of the present invention are also for the high refractive index coating agent in the case of providing the above component (A), the component (D), the component (E), the component (F) and other additives as necessary. .
  • Production Example 1 37.5 parts of a mixture of dipentaerythritol hexaacrylate and pentaacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD DPHA), 2.5 parts of tetrahydrofurfuryl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., Biscoat # 150), Irgacure 184 (Ciba Specialty Chemicals) 1.5 parts, Irgacure 907 (Ciba Specialty Chemicals) 1 part, Cellnax CX-Z603M-F2 (Nissan Chemical Industry Co., Ltd.) Methanol dispersion sol, solid content 60%, average particle size 15-20 nm) 12.5 parts, methanol 8 parts, propylene glycol monomethyl ether 7.5 parts, diacetone alcohol 2.5 parts, methyl ethyl ketone 27 parts A hard coat agent with a minute of 50% was obtained.
  • the obtained hard coat agent was applied to a triacetyl cellulose (TAC) film (manufactured by Konica Minolta Opto) having a thickness of 80 ⁇ m before saponification treatment so that the film thickness was about 5 ⁇ m, dried at 80 ° C., and then applied to an ultraviolet irradiator.
  • TAC triacetyl cellulose
  • the transmittance of the film after application and curing was 89%, haze was 0.7%, pencil hardness (load 500 g) was 3H, and the adhesion of the cured film was also good.
  • Production Example 2 24 parts of a mixture of dipentaerythritol hexaacrylate and pentaacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD DPHA), 3 parts of tetrahydrofurfuryl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., Biscoat # 150), Irgacure 184 (Ciba) ⁇ Specialty Chemicals Co., Ltd.
  • the obtained hard coat agent was applied to a triacetyl cellulose (TAC) film (manufactured by Konica Minolta Opto) having a thickness of 80 ⁇ m before saponification treatment so that the film thickness was about 5 ⁇ m, dried at 80 ° C., and then applied to an ultraviolet irradiator. Used a high-pressure mercury lamp and was cured under irradiation conditions of energy of 160 W / cm and transport speed of 5 m / min. The transmittance of the film after application and curing was 91%, the haze was 0.5%, the pencil hardness (load 500 g) was 3H, and the adhesion of the cured film was also good.
  • TAC triacetyl cellulose
  • DPHA manufactured by Nippon Kayaku Co., Ltd.
  • KAYARAD DPHA mixture of dipentaerythritol pentaacrylate and hexaacrylate
  • ELCOM MIBK dispersion of nanoporous silica (manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • Example 3 The photosensitive resin composition of the present invention obtained in Example 1 was applied on the TAC film on which the hard coat layer obtained in Production Example 1 was formed, dried at 80 ° C., and then a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Example 4 The photosensitive resin composition of the present invention obtained in Example 1 was applied on the TAC film formed with the hard coat layer obtained in Production Example 2, and after drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Example 5 On the TAC film on which the hard coat layer obtained in Production Example 2 was formed, the photosensitive resin composition of the present invention obtained in Example 1 was applied, and after drying at 80 ° C., the oxygen concentration was 0.1% by volume. Under a nitrogen atmosphere, a high pressure mercury lamp was used as an ultraviolet irradiator and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Example 6 The photosensitive resin composition of the present invention obtained in Example 2 was applied on the TAC film formed with the hard coat layer obtained in Production Example 2, and after drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Comparative Example 3 The photosensitive resin composition of the present invention obtained in Comparative Example 1 was applied on the TAC film on which the hard coat layer obtained in Production Example 2 was formed. After drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Comparative Example 4 The photosensitive resin composition of the present invention obtained in Comparative Example 2 was applied on the TAC film on which the hard coat layer obtained in Production Example 2 was formed, dried at 80 ° C., and then a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 ⁇ m so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
  • Adhesion According to JIS K5600, 25 grids are made by making 6 vertical and horizontal cuts at 2 mm intervals on the surface of the film having the cured film to be measured. After the cellophane tape was brought into close contact with the surface, the number of cells remaining without peeling was shown.
  • UV-3150 UV-3150 manufactured by Shimadzu Corporation.
  • the antireflection hard coat films of Examples 3 to 6 showed good results with respect to pencil hardness, scratch resistance, adhesion, magic wiping property and alkali resistance.
  • Comparative Example 3 as a result of changing the component (C) to a polysiloxane graft polymer, the scratch resistance was lowered, and the magic wiping property and the alkali resistance were inferior.
  • Comparative Example 4 as a result of changing the component (C) to polysiloxane containing no acryloyl group, the scratch resistance was lowered and the transparency, magic wiping property and alkali resistance were inferior.
  • the cured film obtained with the photosensitive resin composition of the present invention is excellent in stain resistance such as hardness, scratch resistance, transparency, chemical resistance and magic wiping property. Moreover, it is suitable for producing an antireflection hard coat film having a low reflectance by coating and curing on the hard coat layer. Such an antireflection hard coat film of the present invention is suitable for fields requiring antireflection functions such as antireflection films for flat panel displays such as LCDs and PDPs, plastic optical components, touch panels, mobile phones, and film liquid crystal elements. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a photosensitive resin composition which can be easily cured by means of active energy rays. The photosensitive composition can provide a cured product which exhibits high hardness, and excellent scratch resistance, adhesion, chemical resistance, stain resistance (such as removability of marker pen ink or fingerprints by rubbing), and transparency, and which has a low refractive index. Further, an antireflection film produced using the photosensitive resin composition exhibits a low reflectivity. Also provided are an antireflection film and an antireflective hard coating film, which have films prepared by curing the resin composition. A photosensitive resin composition which comprises (A) a polyfunctional (meth)acrylate having at least three (meth)acryloyl groups in the molecule, (B) colloidal silica that has a nanoporous structure with a mean particle diameter of 1 to 200 nm, and (C) a (meth)acryloyl-containing polysiloxane, and (D) a photo-radical polymerization initiator.

Description

感光性樹脂組成物、それを用いた反射防止フィルム及び反射防止ハードコートフィルムPhotosensitive resin composition, antireflection film and antireflection hard coat film using the same
 本発明は、感光性樹脂組成物、その硬化皮膜を有する反射防止フィルム及び反射防止ハードコートフィルムに関する。更に詳しくは、耐擦傷性、耐摩耗性、耐汚染性、透明性に優れ、低屈折率で、反射防止フィルム及び反射防止ハードコートフィルムに使用した場合、反射率が低い感光性樹脂組成物、及び、その硬化皮膜を有する反射防止フィルムや反射防止ハードコートフィルムに関する。 The present invention relates to a photosensitive resin composition, an antireflection film having a cured film thereof, and an antireflection hard coat film. More specifically, a photosensitive resin composition having excellent scratch resistance, abrasion resistance, stain resistance, transparency, a low refractive index, and a low reflectance when used in an antireflection film and an antireflection hard coat film, The present invention also relates to an antireflection film or an antireflection hard coat film having the cured film.
 現在、プラスチックは自動車業界、家電業界、電気電子業界を初めとして種々の産業界で大量に使われている。このようにプラスチックが大量に使われている理由は、その加工性、透明性に優れているのに加えて軽量、安価、光学特性にも優れている等の理由による。しかしながら、ガラス等に比べて柔らかく、表面に傷が付きやすい等の欠点を有している。これらの欠点を改良するために、表面にハードコート剤をコーティングする事が一般的な手段として行われている。このハードコート剤には、シリコーン系塗料、アクリル系塗料、メラミン系塗料等の熱硬化型のハードコート剤が用いられている。この中でも特に、シリコーン系ハードコート剤は、硬度が高く、品質が優れているため多く用いられている。しかしながら、硬化時間が長く、高価であり、連続的に加工するフィルムに設けられるハードコート層には適しているとは言えない。 Currently, plastics are used in large quantities in various industries including the automobile industry, home appliance industry, and electrical and electronic industry. The reason why a large amount of plastic is used in this way is that it is lightweight, inexpensive, and excellent in optical characteristics in addition to its excellent processability and transparency. However, it has drawbacks such as being softer than glass or the like and being easily scratched on the surface. In order to improve these drawbacks, it is a common means to coat the surface with a hard coating agent. Thermosetting hard coat agents such as silicone paints, acrylic paints, and melamine paints are used as the hard coat agents. Of these, silicone hard coating agents are particularly frequently used because of their high hardness and excellent quality. However, it has a long curing time, is expensive, and cannot be said to be suitable for a hard coat layer provided on a continuously processed film.
 近年、感光性のアクリル系ハードコート剤が開発され、利用されるようになった(特許文献1参照)。感光性ハードコート剤は、紫外線等の活性エネルギー線を照射することにより、直ちに硬化して硬い皮膜を形成するため、加工処理スピードが速く、又、硬度、耐擦傷性等に優れた性能を持ち、トータルコスト的に安価になるため、今やハードコート分野の主流になっている。特に、ポリエステル等のフィルムの連続加工に適している。プラスチックのフィルムとしては、ポリエステルフィルム、ポリアクリレートフィルム、アクリルフィルム、ポリカーボネートフィルム、塩化ビニルフィルム、トリアセチルセルロースフィルム、ポリエーテルスルホンフィルム、シクロオレフィンポリマーフィルム等があるが、ポリエステルフィルム、トリアセチルセルロースフィルムが種々の優れた特性から最も広く使用されている。ポリエステルフィルムは、ガラスの飛散防止フィルム、あるいは、自動車の遮光フィルム、ホワイトボード用表面フィルム、システムキッチン表面防汚フィルム、電子材料的には、タッチパネル、CRTフラットテレビ、プラズマディスプレイ等の機能性フィルムとして広く用いられている。トリアセチルセルロースフィルムは、液晶ディスプレイの必須材料である偏光板に使用されている。前記のように、これらはいずれもその表面に傷が付かないようにするためにハードコート剤を塗工している。 In recent years, photosensitive acrylic hard coating agents have been developed and used (see Patent Document 1). The photosensitive hard coating agent is cured immediately upon irradiation with an active energy ray such as ultraviolet rays to form a hard film, so that the processing speed is high, and it has excellent performance such as hardness and scratch resistance. Because it is cheaper in terms of total cost, it is now the mainstream in the hard coat field. In particular, it is suitable for continuous processing of films such as polyester. Plastic films include polyester film, polyacrylate film, acrylic film, polycarbonate film, vinyl chloride film, triacetylcellulose film, polyethersulfone film, cycloolefin polymer film, etc., but polyester film and triacetylcellulose film are It is most widely used due to various excellent properties. Polyester film is a glass scattering prevention film, or a light shielding film for automobiles, a surface film for whiteboard, a system kitchen surface antifouling film, and as a functional film for electronic materials such as touch panels, CRT flat TVs, plasma displays, etc. Widely used. The triacetyl cellulose film is used for a polarizing plate which is an essential material for a liquid crystal display. As described above, a hard coating agent is applied to these so as not to scratch the surface.
 更に、近年におけるハードコート剤をコーティングしたフィルムを設けたPDP(プラズマディスプレイパネル)、LCD(液晶パネル)、CRT(ブラウン管)等の表示体では、反射により表示体画面が見難くなり、目が疲れやすいと言う問題が生ずるため、用途によっては表面に反射防止能のあるハードコート処理が必要となっている。表面反射防止の方法としては、ハードコート用感光性樹脂組成物中に無機フィラーや有機フィラーを分散させたものをフィルム上にコーティングし、表面に凹凸をつけて反射を防止する方法(AG:アンチグレア処理)、フィルム上に屈折率の異なる層を多層に設け、屈折率の差による光の干渉を利用し映り込みを防止する方法(AR:アンチリフレクション処理)、又は上記2つの方法を合わせたAG/AR処理の方法等がある(特許文献2参照)。 In addition, display screens such as PDP (Plasma Display Panel), LCD (Liquid Crystal Panel), and CRT (CRT) with a film coated with a hard coating agent in recent years make the display screen difficult to see due to reflection, and eyes are tired. Since the problem that it is easy arises, the hard coat process which has the antireflection ability on the surface is needed depending on the use. As a method for preventing surface reflection, a film in which an inorganic filler or an organic filler is dispersed in a photosensitive resin composition for hard coat is coated on a film and the surface is made uneven to prevent reflection (AG: anti-glare) Processing), a method of providing multiple layers having different refractive indexes on a film, and preventing reflection by utilizing light interference due to the difference in refractive index (AR: anti-reflection treatment), or AG combining the above two methods / AR processing method (see Patent Document 2).
 ここで、AR処理に用いられる低屈折率層にはゾル-ゲル法によるシラン化合物を縮合させたような熱硬化タイプの化合物が用いられている(特許文献3参照)が、硬化に時間が掛かり、生産性が悪いことやハードコート層が加熱により収縮しクラックが入るといった問題がある。
 一方、フッ素原子を有する(メタ)アクリレートを用いた活性エネルギー線硬化型樹脂も開発されている(特許文献4参照)が、耐擦傷性が十分ではなかったり、耐薬品性が十分でないという問題がある。
Here, for the low refractive index layer used for the AR treatment, a thermosetting type compound obtained by condensing a silane compound by a sol-gel method is used (see Patent Document 3), but it takes time to cure. There are problems that productivity is poor and that the hard coat layer shrinks and cracks due to heating.
On the other hand, an active energy ray-curable resin using a (meth) acrylate having a fluorine atom has also been developed (see Patent Document 4), but there is a problem that the scratch resistance is not sufficient or the chemical resistance is not sufficient. is there.
 前記の生産性や加熱によるクラックの発生等の問題から活性エネルギー線硬化型樹脂を使用した低屈折率ハードコートが求められている。しかし、活性エネルギー線硬化型樹脂は、耐擦傷性が十分ではなかったり、耐薬品性が十分でないというのが実状である。 From the above-mentioned problems such as productivity and generation of cracks due to heating, a low refractive index hard coat using an active energy ray curable resin is required. However, the actual state is that the active energy ray-curable resin has insufficient scratch resistance or insufficient chemical resistance.
特開平9-48934号公報Japanese Patent Laid-Open No. 9-48934 特開平9-145903号公報Japanese Patent Laid-Open No. 9-145903 特許第3776978号公報Japanese Patent No. 3776978 特許第3724144号公報Japanese Patent No. 3724144
 本発明は、容易に硬化し、高硬度、耐擦傷性、耐摩耗性、耐薬品性、マジック拭取り性や指紋拭取り性等の耐汚染性、透明性等に優れた反射防止フィルムの低屈折率層のための感光性樹脂組成物とそれを用いた反射防止フィルムや反射防止ハードコートフィルムを提供することを目的とする。 The present invention is a low-reflective anti-reflection film that is easily cured and has excellent hardness, scratch resistance, abrasion resistance, chemical resistance, magic wiping property, fingerprint wiping property, and other stain resistance, and transparency. An object is to provide a photosensitive resin composition for a refractive index layer, and an antireflection film and an antireflection hard coat film using the same.
 本発明者らは前記課題を解決するため、鋭意検討を行った結果、特定の化合物を含有する感光性樹脂組成物を見いだし、本発明に到達した。 As a result of intensive studies in order to solve the above problems, the present inventors have found a photosensitive resin composition containing a specific compound, and have reached the present invention.
即ち、本発明は、
(1)分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、平均粒子径が1~200ナノメートルのナノポーラス構造を有するコロイダルシリカ(B)、(メタ)アクリロイル基を有するポリシロキサン(C)及び光ラジカル重合開始剤(D)を含有する感光性樹脂組成物;
That is, the present invention
(1) polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, colloidal silica (B) having a nanoporous structure with an average particle diameter of 1 to 200 nanometers, (meta ) A photosensitive resin composition containing a polysiloxane (C) having an acryloyl group and a radical photopolymerization initiator (D);
(2)(メタ)アクリロイル基を有するポリシロキサン(C)が、分子内に1~8個の(メタ)アクリロイル基を有する化合物である前記(1)に記載の感光性樹脂組成物;
(3)更に、希釈剤(E)を含有する前記(1)又は(2)に記載の感光性樹脂組成物;
(4)前記(1)ないし(3)のいずれか一に記載の感光性樹脂組成物の硬化層を基材フィルム上に低屈折率層として最外層に配する反射防止フィルム;
(2) The photosensitive resin composition according to (1), wherein the polysiloxane (C) having a (meth) acryloyl group is a compound having 1 to 8 (meth) acryloyl groups in the molecule;
(3) The photosensitive resin composition according to (1) or (2), further containing a diluent (E);
(4) An antireflection film in which a cured layer of the photosensitive resin composition according to any one of the above (1) to (3) is disposed as an outermost layer as a low refractive index layer on a base film;
(5)基材フィルム上に、ハードコート剤の硬化層及び前記(1)ないし(3)のいずれか一に記載の感光性樹脂組成物の硬化層をこの順に有する反射防止ハードコートフィルム;
(6)ハードコート剤が、分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、平均粒子径1~200ナノメートルの金属酸化物(F)及び光ラジカル重合開始剤(D)を含有する感光性樹脂組成物である前記(5)に記載の反射防止ハードコートフィルム;
(7)平均粒子径1~200ナノメートルの金属酸化物(F)が、リンをドーピングした酸化錫である前記(6)に記載の反射防止ハードコートフィルム;
に関する。
(5) An antireflection hard coat film having a hard coat agent cured layer and a cured layer of the photosensitive resin composition according to any one of (1) to (3) in this order on a base film;
(6) The hard coat agent is a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, a metal oxide (F) having an average particle diameter of 1 to 200 nanometers, and light. The antireflection hard coat film according to (5), which is a photosensitive resin composition containing a radical polymerization initiator (D);
(7) The antireflection hard coat film according to (6), wherein the metal oxide (F) having an average particle diameter of 1 to 200 nanometers is tin oxide doped with phosphorus;
About.
 本発明により活性エネルギー線で容易に硬化し、高硬度、耐擦傷性、耐摩耗性、耐薬品性、透明性、マジック拭取り性や指紋拭取り性等の耐汚染性等に優れ、反射防止フィルムや反射防止ハードコートフィルムに使用した場合、反射率が低い低屈折率層を形成することが可能な特定の化合物を含有する感光性樹脂組成物を提供することができる。 Easily cured with active energy rays according to the present invention, high hardness, scratch resistance, abrasion resistance, chemical resistance, transparency, excellent anti-contamination properties such as magic wiping properties and fingerprint wiping properties, and antireflection When used for a film or an antireflection hard coat film, a photosensitive resin composition containing a specific compound capable of forming a low refractive index layer having a low reflectance can be provided.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の感光性樹脂組成物は、分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、平均粒子径が1~200ナノメートルのナノポーラス構造を有するコロイダルシリカ(B)、(メタ)アクリロイル基を有するポリシロキサン(C)及び光ラジカル重合開始剤(D)を含有する。 The photosensitive resin composition of the present invention is a colloidal having a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule and a nanoporous structure having an average particle diameter of 1 to 200 nanometers. It contains silica (B), polysiloxane (C) having a (meth) acryloyl group, and a radical photopolymerization initiator (D).
 分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)としては、分子内に3個~15個の(メタ)アクリロイル基を有する多官能(メタ)アクリレートが好ましく、例えば、水酸基を有する多官能(メタ)アクリレート化合物とポリイソシアネート化合物の反応物である多官能ウレタン(メタ)アクリレート類、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート等のポリエステルアクリレート類、トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。なお、これらは、単独で使用しても、2種以上を混合して使用しても良い。 Examples of the polyfunctional (meth) acrylate (A) having at least 3 (meth) acryloyl groups in the molecule include polyfunctional (meth) acrylates having 3 to 15 (meth) acryloyl groups in the molecule. Preferably, for example, polyfunctional urethane (meth) acrylates, which are a reaction product of a polyfunctional (meth) acrylate compound having a hydroxyl group and a polyisocyanate compound, trimethylolpropane tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol octa (meth) Polyester acrylates such as acrylate, tris (acryloyloxyethyl) isocyanurate. These may be used alone or in combination of two or more.
 該水酸基を有する多官能(メタ)アクリレート化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート等のペンタエリスリトール類、トリメチロールプロパンジ(メタ)アクリレート等のメチロール類、ビスフェノールAジエポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類を挙げることができる。中でも好ましくは、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレートが挙げられる。これらの水酸基を有する多官能(メタ)アクリレート化合物は単独で用いても、2種以上混合して用いても良い。 Examples of the polyfunctional (meth) acrylate compound having a hydroxyl group include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol tri (meth) acrylate. And pentaerythritols such as dipentaerythritol di (meth) acrylate, methylols such as trimethylolpropane di (meth) acrylate, and epoxy (meth) acrylates such as bisphenol A diepoxy (meth) acrylate. Among these, pentaerythritol triacrylate and dipentaerythritol pentaacrylate are preferable. These polyfunctional (meth) acrylate compounds having a hydroxyl group may be used alone or in combination of two or more.
 該ポリイソシアネート化合物としては、鎖状飽和炭化水素、環状飽和炭化水素(脂環式)、芳香族炭化水素を基本構成とするポリイソシアネート化合物が挙げられる。このようなポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素ポリイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート、水添トルエンジイソシアネート等の環状飽和炭化水素(脂環式)ポリイソシアネート、2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、p-フェニレンジイソシアネート、3,3'-ジメチル-4,4'-ジフェニレンジイソシアネート、6-イソプロピルー1,3-フェニルジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ポリイソシアネートを挙げることができる。好ましい例としては、トリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートが挙げられる。これらポリイソシアネート化合物は単独で用いても、2種以上混合して用いても良い。 Examples of the polyisocyanate compound include polyisocyanate compounds basically composed of chain saturated hydrocarbons, cyclic saturated hydrocarbons (alicyclic), and aromatic hydrocarbons. Examples of such polyisocyanate compounds include chain saturated hydrocarbon polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and methylene bis (4- Cyclohexyl isocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate and other cyclic saturated hydrocarbon (alicyclic) polyisocyanates, 2,4-tolylene diisocyanate, 1,3-xylylene diisocyanate, p- Phenylene diisocyanate, 3,3'-dimethyl-4,4'-diphenylene diisocyanate, 6-isopropyl-1,3-phenyl Isocyanates, and aromatic polyisocyanates such as 1,5-naphthalene diisocyanate. Preferred examples include tolylene diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate. These polyisocyanate compounds may be used alone or in combination of two or more.
 該多官能ウレタン(メタ)アクリレート化合物は、前記の水酸基を有する多官能(メタ)アクリレート化合物と前記のポリイソシアネート化合物とを反応させることにより得られる。多官能(メタ)アクリレート化合物中の水酸基1当量に対し、ポリイソシアネート化合物は、イソシアネート基当量として、通常0.1~50当量の範囲、好ましくは0.1~10当量の範囲で使用すれば良い。
 反応温度は、通常30~150℃、好ましくは50~100℃の範囲である。
反応の終点は、残存イソシアネートを過剰のn-ブチルアミンと反応させ、未反応のn-ブチルアミンを1N塩酸にて逆滴定する方法により残存イソシアネート量を算出し、ポリイソシアネート化合物として0.5重量%以下となった時を終了とする。
The polyfunctional urethane (meth) acrylate compound can be obtained by reacting the polyfunctional (meth) acrylate compound having a hydroxyl group with the polyisocyanate compound. The polyisocyanate compound may be used in the range of usually 0.1 to 50 equivalents, preferably 0.1 to 10 equivalents as the isocyanate group equivalent with respect to 1 equivalent of the hydroxyl group in the polyfunctional (meth) acrylate compound. .
The reaction temperature is usually in the range of 30 to 150 ° C., preferably 50 to 100 ° C.
The end point of the reaction is that the residual isocyanate is reacted with an excess of n-butylamine, and the amount of residual isocyanate is calculated by a back titration of unreacted n-butylamine with 1N hydrochloric acid. The time when
 反応時間の短縮を目的として触媒を添加してもよい。この触媒としては、塩基性触媒又は酸性触媒のいずれかが用いられる。塩基性触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン類、アンモニア、トリブチルフォスフィンやトリフェニルフォスフィン等のフォスフィン類を挙げることができる。又、酸性触媒としては、例えば、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、トリチタニウムテトラブトキシド、ジルコニウムテトラブトキシド等の金属アルコキシド類、塩化アルミニウム等のルイス酸類、2-エチルヘキサンスズ、オクチルスズトリラウレート、ジブチルスズジラウレート、オクチルスズジアセテート等のスズ化合物を挙げることができる。これら触媒の添加量は、ポリイソシアネート100重量%に対して、通常0.1重量%以上、1重量%以下である。 A catalyst may be added for the purpose of shortening the reaction time. As the catalyst, either a basic catalyst or an acidic catalyst is used. Examples of the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine, and phosphine such as ammonia, tributylphosphine and triphenylphosphine. Examples of the acidic catalyst include copper naphthenate, cobalt naphthenate, zinc naphthenate, metal alkoxides such as tributoxyaluminum, trititanium tetrabutoxide, zirconium tetrabutoxide, Lewis acids such as aluminum chloride, 2-ethylhexane, etc. Examples thereof include tin compounds such as tin, octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate. The addition amount of these catalysts is usually 0.1% by weight or more and 1% by weight or less with respect to 100% by weight of polyisocyanate.
 更に、反応に際しては反応中の重合を防止するために重合禁止剤(例えば、メトキノン、ハイドロキノン、メチルハイドロキノン、フェノチアジン等)を使用することが好ましく、該重合禁止剤の使用量は反応混合物に対して0.01重量%以上、1重量%以下であり、好ましくは0.05重量%以上、0.5重量%以下である。 Further, in the reaction, it is preferable to use a polymerization inhibitor (for example, methoquinone, hydroquinone, methylhydroquinone, phenothiazine, etc.) in order to prevent polymerization during the reaction, and the amount of the polymerization inhibitor used is based on the reaction mixture. It is 0.01 weight% or more and 1 weight% or less, Preferably it is 0.05 weight% or more and 0.5 weight% or less.
 本発明の感光性樹脂組成物において、前記(A)成分の含有量は該感光性樹脂組成物の固形分を100重量%とした場合、通常5~90重量%、好ましくは10~70重量%である。本発明において固形分とは、組成物が希釈剤、溶剤を含む場合は組成物からそれを除いた残りの成分全体である。 In the photosensitive resin composition of the present invention, the content of the component (A) is usually 5 to 90% by weight, preferably 10 to 70% by weight, when the solid content of the photosensitive resin composition is 100% by weight. It is. In the present invention, the solid content is the entire remaining components excluding the composition and the diluent when the composition contains a diluent and a solvent.
 本発明の感光性樹脂組成物に含有される平均粒子径が1~200ナノメートルのナノポーラス構造を有するコロイダルシリカ(B)としては、多孔質シリカや中空シリカが挙げられる。通常のシリカ粒子が屈折率n=1.45程度であるのに対し、内部に屈折率n=1の空気を有する多孔質シリカや中空シリカの屈折率は、n=1.2~1.45である。これにより本発明の感光性樹脂組成物から好適に低屈折率の層を形成することができる。 Examples of the colloidal silica (B) having a nanoporous structure with an average particle diameter of 1 to 200 nanometers contained in the photosensitive resin composition of the present invention include porous silica and hollow silica. While ordinary silica particles have a refractive index n = 1.45, the refractive index of porous silica or hollow silica having air with a refractive index n = 1 therein is n = 1.2-1.45. It is. Thereby, a low refractive index layer can be suitably formed from the photosensitive resin composition of the present invention.
 コロイダルシリカ(B)には、溶媒にコロイダルシリカを分散させたコロイド溶液、又は、分散溶媒を含有しない微粉末のコロイダルシリカがある。溶媒にコロイダルシリカを分散させたコロイド溶液としては、触媒化成工業(株)製のELCOMシリーズ、スルーリアシリーズ等が挙げられる。 The colloidal silica (B) includes a colloidal solution in which colloidal silica is dispersed in a solvent, or fine powdered colloidal silica containing no dispersion solvent. Examples of the colloidal solution in which colloidal silica is dispersed in a solvent include ELCOM series and Thru rear series manufactured by Catalyst Kasei Kogyo Co., Ltd.
 溶媒にコロイダルシリカを分散させたコロイド溶液の分散溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n-ブタノール等のアルコール類、エチレングリコール、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の多価アルコール類及びその誘導体、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルアセトアミド等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の非極性溶媒、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリレート類又はその他の一般有機溶剤類が使用できる。分散溶媒の量は、コロイダルシリカ100重量%に対し、通常100~900重量%である。 Examples of the dispersion solvent for colloidal solution in which colloidal silica is dispersed in a solvent include water, alcohols such as methanol, ethanol, isopropanol, n-butanol, ethylene glycol, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol Polyhydric alcohols such as monomethyl ether acetate and derivatives thereof, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and dimethylacetamide, esters such as ethyl acetate and butyl acetate, nonpolar solvents such as toluene and xylene, 2-hydroxy (Meth) acrylates such as butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate or others In general organic solvents, it can be used. The amount of the dispersion solvent is usually 100 to 900% by weight with respect to 100% by weight of colloidal silica.
 本発明において平均粒子径とは凝集を崩したときの、その粒子が持つ一番小さい粒径を意味し、BET法、動的光散乱法、電子顕微鏡観察等により測定することができる。コロイダルシリカ(B)として、これらの測定法による平均粒子径が1~200ナノメートルのものを使用することが必要であり、平均粒子径が1~100ナノメートルのものが好ましく、平均粒子径が1~80ナノメートルのものが更に好ましい。 In the present invention, the average particle size means the smallest particle size of the particles when the aggregation is broken, and can be measured by BET method, dynamic light scattering method, electron microscope observation, or the like. As the colloidal silica (B), it is necessary to use those having an average particle diameter of 1 to 200 nanometers according to these measurement methods, those having an average particle diameter of 1 to 100 nanometers are preferable, and the average particle diameter is More preferred is 1 to 80 nanometers.
 本発明の感光性樹脂組成物において、(B)成分の含有量は、該感光性樹脂組成物の固形分を100重量%とした場合、通常5~90重量%、好ましくは10~80重量%、更に好ましくは20~70重量%である。 In the photosensitive resin composition of the present invention, the content of the component (B) is usually 5 to 90% by weight, preferably 10 to 80% by weight when the solid content of the photosensitive resin composition is 100% by weight. More preferably, it is 20 to 70% by weight.
 又、コロイダルシリカの表面をシランカップリング剤等で表面処理し、分散性を向上させることもできる。 Further, the surface of colloidal silica can be surface treated with a silane coupling agent or the like to improve dispersibility.
 表面処理方法は、公知の方法で処理すれば良く、乾式法と湿式法がある。乾式法はシリカ粉末に処理する方法で、撹拌機によって高速撹拌しているシリカ粉末にシランカップリング剤の原液又は溶液を均一に分散させて処理する方法である。湿式法は溶剤等にシリカを分散させスラリー化したものにシランカップリング剤を添加・撹拌することで処理する方法である。本発明ではどちらの方法を用いても良い。シランカップリング剤の使用量(g)はシリカ重量(g)×シリカの比表面積(m/g)/シランカップリング剤の最小被覆面積(m/g)から求められる量以下であれば良い。 The surface treatment method may be a known method, and there are a dry method and a wet method. The dry method is a method of treating silica powder, in which a stock solution or solution of a silane coupling agent is uniformly dispersed in silica powder that is rapidly stirred by a stirrer. The wet method is a method of processing by adding and stirring a silane coupling agent to a slurry obtained by dispersing silica in a solvent or the like. Either method may be used in the present invention. The amount (g) of the silane coupling agent used is less than the amount obtained from the weight of silica (g) × the specific surface area of silica (m 2 / g) / the minimum coating area of the silane coupling agent (m 2 / g). good.
 本発明の感光性樹脂組成物に含有される(メタ)アクリロイル基を有するポリシロキサン(C)は、シリコーンアクリレート、有機変性シリコーン、有機変性ポリシロキサン、反応結合型有機変性シリコーンアクリレート等と呼ばれることもあり、例えば、直鎖型ジメチルシロキサンの一部をアルキル基やポリエーテル基等で有機変性し、その変性部末端に(メタ)アクリレート基を付与したものが挙げられる。シロキサン主鎖の長さを長くすることにより、表面のスリップ性、離型性、耐ブロッキング性、耐指紋性、マジック拭き取り性、指紋拭き取り性等を付与することができる。又、有機変性率を上げることにより、相溶性、再塗装性(リコート性)、印刷性を向上させることができる。
 有機変性部末端に(メタ)アクリロイル基を導入した化合物が好ましく、(メタ)アクリロイル基の導入により重合反応が可能となり、界面へのポリシロキサンの移行性を低減し、生産時のロール及び巻取り時のフィルム背面への移行を低減することも可能で、更には耐薬品性(アルカリ性溶液、有機溶剤等)を向上させることができる。
The polysiloxane (C) having a (meth) acryloyl group contained in the photosensitive resin composition of the present invention is sometimes called silicone acrylate, organic modified silicone, organic modified polysiloxane, reaction-bonded organic modified silicone acrylate, or the like. There are, for example, those in which a part of linear dimethylsiloxane is organically modified with an alkyl group or a polyether group, and a (meth) acrylate group is added to the terminal of the modified part. By increasing the length of the siloxane main chain, it is possible to impart surface slip properties, mold release properties, blocking resistance, fingerprint resistance, magic wiping properties, fingerprint wiping properties, and the like. Further, by increasing the organic modification rate, compatibility, repaintability (recoatability), and printability can be improved.
A compound in which a (meth) acryloyl group is introduced at the end of the organically modified part is preferable. By introducing the (meth) acryloyl group, a polymerization reaction is possible, and the migration of polysiloxane to the interface is reduced, and roll and winding during production are performed. It is possible to reduce the transition to the back of the film at the time, and further improve chemical resistance (alkaline solution, organic solvent, etc.).
 これら(メタ)アクリロイル基を有するポリシロキサン(C)としては市販品を使用しても良く、例えば、BYK-UV3500、BYK-UV3570(いずれもビックケミー社製)、TEGO Rad2100、2200N、2250、2500、2600、2700(いずれもデグサ社製)、X-22-2445、X-22-2455、X-22-2457、X-22-2458、X-22-2459、X-22-1602、X-22-1603、X-22-1615、X-22-1616、X-22-1618、X-22-1619、X-22-2404、X-22-2474、X-22-174DX、X-22-8201、X-22-2426、X-22-164A、X-22-164C(いずれも信越化学工業(株)製)等を挙げることができる。 As these polysiloxanes (C) having (meth) acryloyl groups, commercially available products may be used. 2600, 2700 (all manufactured by Degussa), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22 -1603, X-22-1615, X-22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201 X-22-2426, X-22-164A, X-22-164C (all manufactured by Shin-Etsu Chemical Co., Ltd.), etc. It can gel.
 又、前記(C)成分はフッ素原子を含有するものであっても良い。 The component (C) may contain a fluorine atom.
 前記(C)成分は、分子内に1~8個の(メタ)アクリロイル基を有するものが好ましく、より好ましい(メタ)アクリロイル基の数は、2~6個である。 The component (C) preferably has 1 to 8 (meth) acryloyl groups in the molecule, and more preferably has 2 to 6 (meth) acryloyl groups.
 本発明の感光性樹脂組成物において、前記(C)成分の含有量は、該感光性樹脂組成物の固形分を100重量%とした場合、通常0.1~50重量%であり、好ましくは1~20重量%である。 In the photosensitive resin composition of the present invention, the content of the component (C) is usually 0.1 to 50% by weight when the solid content of the photosensitive resin composition is 100% by weight, preferably 1 to 20% by weight.
 本発明の感光性樹脂組成物に含有される光ラジカル重合開始剤(D)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等のアセトフェノン類;2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、4,4'-ビスメチルアミノベンゾフェノン等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類等が挙げられる。又、市場より、チバ・スペシャリティケミカルズ社製イルガキュア184(1-ヒドロキシシクロヘキシルフェニルケトン)、イルガキュア907(2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)プロパン-1-オン)、BASF社製ルシリンTPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)等を容易に入手出来る。又、これらは、単独で使用しても、又は2種以上を混合して使用しても良い。 Examples of the photo radical polymerization initiator (D) contained in the photosensitive resin composition of the present invention include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2 , 2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ Acetophenones such as 4- (methylthio) phenyl] -2-morpholinopropan-1-one; anthraquino such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone Thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4, Benzophenones such as 4'-bismethylaminobenzophenone; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Also, from the market, Irgacure 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure 907 (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) propane-1 manufactured by Ciba Specialty Chemicals, Inc. -On), Lucylin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by BASF, etc. can be easily obtained. These may be used alone or in combination of two or more.
 本発明の感光性樹脂組成物において、(D)成分の含有量は、該感光性樹脂組成物の固形分を100重量%とした場合、通常0.1~30重量%、好ましくは1~15重量%である。 In the photosensitive resin composition of the present invention, the content of the component (D) is usually 0.1 to 30% by weight, preferably 1 to 15 when the solid content of the photosensitive resin composition is 100% by weight. % By weight.
 本発明の感光性樹脂組成物には、更に必要に応じて、増感剤を併用することができる。
使用しうる増感剤としては、例えば、アントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、2-エチル-9,10-ジプロポキシアントラセン、2-エチル-9,10-ジ(メトキシエトキシ)アントラセン、フルオレン、ピレン、スチルベン、4'-ニトロベンジル-9,10-ジメトキシアントラセン-2-スルホネート、4'-ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、4'-ニトロベンジル-9,10-ジプロポキシアントラセン-2-スルホネート等が挙げられるが、溶解性及び感光性樹脂組成物への相溶性の点で特に2-エチル-9,10-ジ(メトキシエトキシ)アントラセンが好ましい。
A sensitizer can be used in combination with the photosensitive resin composition of the present invention as required.
Examples of sensitizers that can be used include anthracene, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, and 2-ethyl. -9,10-diethoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene, 2-ethyl-9,10-di (methoxyethoxy) anthracene, fluorene, pyrene, stilbene, 4'-nitrobenzyl-9, 10-dimethoxyanthracene-2-sulfonate, 4′-nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, 4′-nitrobenzyl-9,10-dipropoxyanthracene-2-sulfonate, and the like. 2 particularly in terms of solubility and compatibility with the photosensitive resin composition Ethyl-9,10-di (methoxyethoxy) anthracene are preferable.
 これら増感剤を用いる場合、その使用量は光ラジカル重合開始剤(D)100重量%に対して1~200重量%、好ましくは5~150重量%である。 When these sensitizers are used, the amount used is 1 to 200% by weight, preferably 5 to 150% by weight, based on 100% by weight of the radical photopolymerization initiator (D).
 本発明の感光性樹脂組成物には、希釈剤(E)を使用しても良い。該希釈剤(E)としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン等のラクトン類;ジオキサン、1,2-ジメトキシメタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル等のエーテル類;エチレンカーボネート、プロピレンカーボネート等のカーボネート類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン類;フェノール、クレゾール、キシレノール等のフェノール類;酢酸エチル、酢酸ブチル、乳酸エチル、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類;トルエン、キシレン、ジエチルベンゼン、シクロヘキサン等の炭化水素類;トリクロロエタン、テトラクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素類、石油エーテル、石油ナフサ等の石油系溶剤等の有機溶剤類、2,2,3,3-テトラフルオロプロパノール等のフッ素系アルコール類、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテル等のハイドロフルオロエーテル類等が挙げられる。これらは、単独で使用しても、又は2種以上を混合して使用しても良い。 In the photosensitive resin composition of the present invention, a diluent (E) may be used. Examples of the diluent (E) include lactones such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptalactone, α-acetyl-γ-butyrolactone, and ε-caprolactone; -Ethers such as dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether Carbonates such as ethylene carbonate and propylene carbonate; methyl ethyl keto , Ketones such as methyl isobutyl ketone, cyclohexanone, acetophenone; phenols such as phenol, cresol, xylenol; ethyl acetate, butyl acetate, ethyl lactate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol Esters such as monomethyl ether acetate; Hydrocarbons such as toluene, xylene, diethylbenzene and cyclohexane; Halogenated hydrocarbons such as trichloroethane, tetrachloroethane and monochlorobenzene; Organic solvents such as petroleum solvents such as petroleum ether and petroleum naphtha , Fluorinated alcohols such as 2,2,3,3-tetrafluoropropanol, perfluorobutyl methyl ether, perfluorobutyl ethyl And hydrofluoroethers such as ether. These may be used alone or in admixture of two or more.
 本発明の感光性樹脂組成物において前記(E)成分の含有量は、本発明の感光性樹脂組成物中0~99重量%である。 In the photosensitive resin composition of the present invention, the content of the component (E) is 0 to 99% by weight in the photosensitive resin composition of the present invention.
 更に、本発明の感光性樹脂組成物には、必要に応じてレベリング剤、紫外線吸収剤、光安定化剤、消泡剤等を添加し、それぞれ目的とする機能性を付与することも可能である。
 レベリング剤としてはフッ素系化合物、シリコーン系化合物、アクリル系化合物等が、紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物等が、光安定化剤としてはヒンダードアミン系化合物、ベンゾエート系化合物等が挙げられる。
Furthermore, a leveling agent, an ultraviolet absorber, a light stabilizer, an antifoaming agent, and the like can be added to the photosensitive resin composition of the present invention as necessary to impart desired functionality. is there.
Fluorine compounds, silicone compounds, acrylic compounds, etc. as leveling agents, benzotriazole compounds, benzophenone compounds, triazine compounds, etc. as ultraviolet absorbers, hindered amine compounds, benzoates as light stabilizers, etc. System compounds and the like.
 本発明の感光性樹脂組成物は、前記(A)成分、(B)成分、(C)成分、(D)成分、及び、必要に応じて(E)成分及びその他の成分を任意の順序で混合することにより得ることができる。
 こうして得られた本発明の感光性樹脂組成物は、経時的に安定である。
The photosensitive resin composition of the present invention comprises the component (A), the component (B), the component (C), the component (D), and, if necessary, the component (E) and other components in any order. It can be obtained by mixing.
The photosensitive resin composition of the present invention thus obtained is stable over time.
 本発明の反射防止フィルムは、基材フィルム(ベースフィルム)上に前記感光性樹脂組成物の硬化層を設けることにより得られる。基材フィルム上に本発明の感光性樹脂組成物を乾燥後膜厚が0.05~0.5μm、好ましくは0.05~0.3μm(反射率の最小値を示す波長が500~700nm、好ましくは520~650nmになるように膜厚を設定するのが好ましい)になるように塗布し、乾燥後、活性エネルギー線を照射して硬化皮膜を形成させることにより得ることができる。 The antireflection film of the present invention can be obtained by providing a cured layer of the photosensitive resin composition on a base film (base film). After drying the photosensitive resin composition of the present invention on a base film, the film thickness is 0.05 to 0.5 μm, preferably 0.05 to 0.3 μm (the wavelength showing the minimum value of reflectance is 500 to 700 nm, Preferably, the film thickness is preferably set to 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film.
 又、基材フィルム(ベースフィルム)と本発明の感光性樹脂組成物の硬化層との間に、印刷層、密着性向上のためのアンカーコート層、基材フィルム(ベースフィルム)の屈折率より高い屈折率を有する高屈折率層等の層を設けても良い。
高屈折率層を設ける際には、高屈折率コート剤を乾燥後の膜厚が0.05~5μm、好ましくは0.05~3μm(反射率の最大値を示す波長が500~700nm、好ましくは520~650nmになるように膜厚を設定するのが好ましい)になるように塗布し、乾燥後、活性エネルギー線を照射して硬化皮膜を形成させる。
Also, between the base film (base film) and the cured layer of the photosensitive resin composition of the present invention, the printing layer, the anchor coat layer for improving adhesion, and the refractive index of the base film (base film) A layer such as a high refractive index layer having a high refractive index may be provided.
When the high refractive index layer is provided, the film thickness after drying the high refractive index coating agent is 0.05 to 5 μm, preferably 0.05 to 3 μm (the wavelength showing the maximum value of reflectance is 500 to 700 nm, preferably The film thickness is preferably set to 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film.
 本発明の反射防止ハードコートフィルムは、基材フィルム(ベースフィルム)上にハードコート層及び本発明の感光性樹脂組成物層をこの順に設けることにより得られる。まず、基材フィルム上にハードコート剤を乾燥後膜厚が1~30μm、好ましくは3~20μmになるように塗布し、乾燥後、活性エネルギー線を照射して硬化皮膜を形成させる。次いで、形成されたハードコート層の上に、本発明の感光性樹脂組成物を乾燥後膜厚が0.05~0.5μm、好ましくは0.05~0.3μm(反射率の最小値を示す波長が500~700nm、好ましくは520~650nmになるように膜厚を設定するのが好ましい)になるように塗布し、乾燥後、活性エネルギー線を照射して硬化皮膜を形成させることにより得ることができる。 The antireflection hard coat film of the present invention can be obtained by providing a hard coat layer and a photosensitive resin composition layer of the present invention in this order on a base film (base film). First, a hard coat agent is applied onto a base film so that the film thickness after drying is 1 to 30 μm, preferably 3 to 20 μm, and after drying, an active energy ray is irradiated to form a cured film. Next, after drying the photosensitive resin composition of the present invention on the formed hard coat layer, the film thickness is 0.05 to 0.5 μm, preferably 0.05 to 0.3 μm (the minimum reflectance is set to a minimum value). (The film thickness is preferably set so that the wavelength shown is 500 to 700 nm, preferably 520 to 650 nm), and after drying, an active energy ray is irradiated to form a cured film. be able to.
 又、ハードコート層と本発明の感光性樹脂組成物の硬化層との間に、ハードコート層の屈折率より高い屈折率を有する高屈折率層を設けても良い。その際には、高屈折率コート剤を乾燥後膜厚が0.05~5μm、好ましくは0.05~3μm(反射率の最大値を示す波長が500~700nm、好ましくは520~650nmになるように膜厚を設定するのが好ましい)になるように塗布し、乾燥後、活性エネルギー線を照射して硬化皮膜を形成させる。 Further, a high refractive index layer having a refractive index higher than that of the hard coat layer may be provided between the hard coat layer and the cured layer of the photosensitive resin composition of the present invention. In that case, after drying the high refractive index coating agent, the film thickness is 0.05 to 5 μm, preferably 0.05 to 3 μm (the wavelength showing the maximum reflectance is 500 to 700 nm, preferably 520 to 650 nm). It is preferable to set the film thickness in such a manner that it is preferable to form a cured film by irradiating active energy rays after drying.
 基材フィルムとしては、前記の様に、例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリアクリレート、ポリカーボネート、トリアセチルセルロース、ポリエーテルスルホン、シクロオレフィン系ポリマー等が挙げられる。フィルムはある程度厚いシート状のものであっても良い。使用するフィルムは、着色したものや易接着層を設けたもの、コロナ処理等の表面処理をしたものであっても良い。 Examples of the base film include, as described above, polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetylcellulose, polyethersulfone, cycloolefin polymer, and the like. The film may be a thick sheet. The film to be used may be colored, provided with an easy-adhesion layer, or subjected to a surface treatment such as corona treatment.
 前記の感光性樹脂組成物の塗布方法としては、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、マイクログラビア塗工、リバースマイクログラビア塗工、ダイコーター塗工、バキュームダイ塗工、ディップ塗工、スピンコート塗工等が挙げられる。 Examples of the method for applying the photosensitive resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, reverse micro gravure coating, and die coating. Ter coating, vacuum die coating, dip coating, spin coating and the like.
 硬化のために照射する活性エネルギー線としては、例えば、紫外線、電子線等が挙げられる。紫外線により硬化させる場合、光源としては、キセノンランプ、高圧水銀灯、メタルハライドランプ等を有する紫外線照射装置が使用され、必要に応じて光量、光源の配置等が調整される。高圧水銀灯を使用する場合、80~240W/cmのエネルギーを有するランプ1灯に対して搬送速度5~60m/分で硬化させるのが好ましい。 Examples of active energy rays irradiated for curing include ultraviolet rays and electron beams. In the case of curing by ultraviolet rays, an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, a metal halide lamp or the like is used as the light source, and the light amount, the arrangement of the light source, etc. are adjusted as necessary. When using a high-pressure mercury lamp, it is preferable to cure at a conveying speed of 5 to 60 m / min for one lamp having an energy of 80 to 240 W / cm.
 又、不活性ガス置換をした環境下で活性エネルギー線を照射し、硬化させることがより好ましい。酸素濃度としては1体積%以下が好ましく、0.5体積%以下がより好ましい。該不活性ガスとしては窒素ガスを使用することが好ましい。 Moreover, it is more preferable to cure by irradiating active energy rays in an environment where inert gas replacement is performed. The oxygen concentration is preferably 1% by volume or less, and more preferably 0.5% by volume or less. Nitrogen gas is preferably used as the inert gas.
 本発明の反射防止ハードコートフィルムの1層目に使用するハードコート剤としては、市販されているハードコート剤をそのまま用いても良いし、先に述べた3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)と光ラジカル重合開始剤(D)、必要に応じて希釈剤(E)やその他の添加剤を配合した感光性樹脂組成物を使用しても良い。 As the hard coat agent used in the first layer of the antireflection hard coat film of the present invention, a commercially available hard coat agent may be used as it is, or three or more (meth) acryloyl groups described above may be used. You may use the photosensitive resin composition which mix | blended the polyfunctional (meth) acrylate (A) which has, radical photopolymerization initiator (D), and a diluent (E) and other additives as needed.
 又、ハードコート層の屈折率を向上させる目的やハードコート層に帯電防止性を付与する目的で、平均粒子径が1~200ナノメートルの金属酸化物(F)を使用することが好ましい。該金属酸化物(F)としては、屈折率を向上させる金属酸化物である、例えば、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化鉄、酸化インジウム錫(ITO)、アンチモンドープ酸化錫(ATO)、アンチモン酸亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、錫ドープアンチモン酸亜鉛、リンドープ酸化錫等が挙げられ、中でも帯電防止性を付与する金属酸化物である、酸化錫、酸化インジウム錫(ITO)、アンチモンドープ酸化錫(ATO)、アンチモン酸亜鉛、アルミニウムドープ酸化亜鉛、リンドープ酸化錫等が好ましく、価格、安定性、分散性等からアンチモン酸亜鉛、リンドープ酸化錫が特に好ましく、透明性の観点からリンドープ酸化錫が殊更に好ましい。
これらは微粉末若しくは有機溶剤に分散させた分散液として入手することができる。
For the purpose of improving the refractive index of the hard coat layer and imparting antistatic properties to the hard coat layer, it is preferable to use a metal oxide (F) having an average particle size of 1 to 200 nanometers. Examples of the metal oxide (F) are metal oxides that improve the refractive index, such as titanium oxide, zirconium oxide, zinc oxide, tin oxide, iron oxide, indium tin oxide (ITO), antimony-doped tin oxide ( ATO), zinc antimonate, aluminum-doped zinc oxide, gallium-doped zinc oxide, tin-doped zinc antimonate, phosphorus-doped tin oxide, and the like. Among them, tin oxide and indium tin oxide which are metal oxides imparting antistatic properties (ITO), antimony-doped tin oxide (ATO), zinc antimonate, aluminum-doped zinc oxide, phosphorus-doped tin oxide and the like are preferable, and zinc antimonate and phosphorus-doped tin oxide are particularly preferable in terms of price, stability, dispersibility, etc. From this viewpoint, phosphorus-doped tin oxide is particularly preferable.
These can be obtained as a fine powder or a dispersion liquid dispersed in an organic solvent.
 分散液に使用しうる有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコール、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の非極性溶媒等が挙げられる。有機溶剤の量は、金属酸化物100重量%に対して、通常70~900重量%である。 Examples of organic solvents that can be used in the dispersion include methanol, ethanol, isopropanol, n-butanol, alcohols such as ethylene glycol, ethylene glycol monoethyl ether, and propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples include ketones, esters such as ethyl acetate and butyl acetate, and nonpolar solvents such as toluene and xylene. The amount of the organic solvent is usually 70 to 900% by weight with respect to 100% by weight of the metal oxide.
 なお、平均粒子径とは凝集を崩したときのその粒子が持つ一番小さい粒径を意味し、BET法、動的光散乱法、電子顕微鏡観察等により金属酸化物(F)の平均粒子径を測定することができる。 The average particle diameter means the smallest particle diameter of the particles when the aggregation is broken, and the average particle diameter of the metal oxide (F) by BET method, dynamic light scattering method, electron microscope observation, etc. Can be measured.
 これらハードコート剤において(F)成分の含有量は、ハードコート剤の固形分を100重量%とした場合、通常5~90重量%、好ましくは10~80重量%である。 In these hard coat agents, the content of the component (F) is usually 5 to 90% by weight, preferably 10 to 80% by weight, when the solid content of the hard coat agent is 100% by weight.
 又、ハードコート層の硬度を向上させる目的で平均粒子径が1nm以上、200nm以下のコロイダルシリカ(G)を添加することができる。使用する平均粒子径が1nm以上、200nm以下のコロイダルシリカ(G)は、溶媒にコロイダルシリカを分散させたコロイド溶液として、又は、分散溶媒を含有しない微粉末のコロイダルシリカとして用いることができる。 Also, colloidal silica (G) having an average particle diameter of 1 nm or more and 200 nm or less can be added for the purpose of improving the hardness of the hard coat layer. The colloidal silica (G) having an average particle diameter of 1 nm or more and 200 nm or less can be used as a colloidal solution in which colloidal silica is dispersed in a solvent, or as fine powdered colloidal silica containing no dispersion solvent.
 コロイダルシリカ(G)の分散溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n-ブタノール、ダイアセトンアルコール等のアルコール類、エチレングリコール等の多価アルコール類及びその誘導体、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸-n-ブチル等のエステル類、トルエン、キシレン等の非極性溶媒、2-ヒドロキシエチルアクリレート等のアクリレート類、ジメチルアセトアミド又はその他の一般有機溶剤類が使用できる。分散溶媒の量は、コロイダルシリカ100重量%に対して、通常100重量%以上、900重量%以下である。 Examples of the dispersion solvent for colloidal silica (G) include water, methanol, ethanol, isopropanol, n-butanol, diacetone alcohol and other polyhydric alcohols such as ethylene glycol and derivatives thereof, methyl ethyl ketone and methyl isobutyl ketone. Use of ketones such as cyclohexanone, esters such as ethyl acetate and n-butyl acetate, nonpolar solvents such as toluene and xylene, acrylates such as 2-hydroxyethyl acrylate, dimethylacetamide or other general organic solvents it can. The amount of the dispersion solvent is usually 100% by weight or more and 900% by weight or less with respect to 100% by weight of colloidal silica.
 これらコロイダルシリカ(G)は、周知の方法で製造可能であり、市販されているものを用いることもできる。例えば、日産化学工業(株)製のオルガノシリカゾル:MEK-ST等が挙げられる。平均粒子径が1nm以上、200nm以下のものを使用することが必要であり、好ましくは5nm以上、100nm以下、より好ましくは10nm以上、50nm以下である。1nm以上、100nm以下では透明性が確保でき、1nm以上、50nm以下では透明性、ヘイズともに十分に良好な結果が得られる。 These colloidal silica (G) can be produced by a known method, and commercially available ones can also be used. An example is organosilica sol: MEK-ST manufactured by Nissan Chemical Industries. It is necessary to use those having an average particle size of 1 nm or more and 200 nm or less, preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 50 nm or less. Transparency can be secured at 1 nm or more and 100 nm or less, and sufficiently good results can be obtained for both transparency and haze at 1 nm or more and 50 nm or less.
 なお、平均粒子径とは凝集を崩したときのその粒子が持つ一番小さい粒径を意味し、BET法、動的光散乱法、電子顕微鏡観察等によりコロイダルシリカ(G)の平均粒子径を測定することができる。 The average particle size means the smallest particle size of the particles when the aggregation is broken, and the average particle size of the colloidal silica (G) is determined by BET method, dynamic light scattering method, electron microscope observation or the like. Can be measured.
 これらハードコート剤に(G)成分を含有する場合、その含有量は、ハードコート剤の固形分を100重量%として、通常10~70重量%、好ましくは20~50重量%である。 When the hard coating agent contains the component (G), the content thereof is usually 10 to 70% by weight, preferably 20 to 50% by weight, with the solid content of the hard coating agent being 100% by weight.
 前記のハードコート剤に使用する(A)成分、(D)成分、(E)成分、(F)成分、(G)成分は、任意の順序で配合・混合すれば良く、更に必要に応じてレベリング剤、消泡剤等やその他の添加剤を添加しても良い。 The (A) component, (D) component, (E) component, (F) component, and (G) component used in the hard coat agent may be blended and mixed in any order, and further as necessary. You may add a leveling agent, an antifoamer, etc. and other additives.
 基材フィルム(ベースフィルム)と本発明の感光性樹脂組成物の硬化層との間に、基材フィルム(ベースフィルム)の屈折率より高い屈折率を有する高屈折率層等の層を設ける場合の高屈折率コート剤、及び、基材フィルム上のハードコート層と本発明の感光性樹脂組成物の硬化層との間に、ハードコート層の屈折率より高い屈折率を有する高屈折率層を設ける場合の高屈折率コート剤についても、前記(A)成分、(D)成分、必要に応じて(E)成分、(F)成分及びその他の添加剤を配合して使用することができる。 When a layer such as a high refractive index layer having a refractive index higher than the refractive index of the base film (base film) is provided between the base film (base film) and the cured layer of the photosensitive resin composition of the present invention. And a high refractive index layer having a refractive index higher than the refractive index of the hard coat layer between the hard coat layer on the substrate film and the cured layer of the photosensitive resin composition of the present invention. Also for the high refractive index coating agent in the case of providing the above component (A), the component (D), the component (E), the component (F) and other additives as necessary. .
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例によって限定されるものではない。又、実施例中、特に断りがない限り、部は重量%を示す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Further, in the examples, unless otherwise specified, the part indicates% by weight.
 製造例1
 ジペンタエリスリトールヘキサアクリレートとペンタアクリレートとの混合物(日本化薬(株)製、KAYARAD DPHA)37.5部、テトラヒドロフルフリルアクリレート(大阪有機化学(株)製、ビスコート#150)2.5部、イルガキュア184(チバ・スペシャリティ・ケミカルズ社製)1.5部、イルガキュア907(チバ・スペシャリティ・ケミカルズ社製)1部、セルナックスCX-Z603M-F2(日産化学工業(株)製、アンチモン酸亜鉛のメタノール分散ゾル、固形分60%、平均粒子径15~20nm)12.5部、メタノール8部、プロピレングリコールモノメチルエーテル7.5部、ジアセトンアルコール2.5部、メチルエチルケトン27部を混合し、固形分50%のハードコート剤を得た。
 得られたハードコート剤をけん化処理前の厚み80μmのトリアセチルセルロース(TAC)フィルム(コニカミノルタオプト製)に膜厚が約5μmになるように塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させた。塗布、硬化後のフィルムの透過率は89%、ヘイズは0.7%、鉛筆硬度(荷重500g)は3Hであり、硬化膜の密着性も良好であった。
Production Example 1
37.5 parts of a mixture of dipentaerythritol hexaacrylate and pentaacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD DPHA), 2.5 parts of tetrahydrofurfuryl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., Biscoat # 150), Irgacure 184 (Ciba Specialty Chemicals) 1.5 parts, Irgacure 907 (Ciba Specialty Chemicals) 1 part, Cellnax CX-Z603M-F2 (Nissan Chemical Industry Co., Ltd.) Methanol dispersion sol, solid content 60%, average particle size 15-20 nm) 12.5 parts, methanol 8 parts, propylene glycol monomethyl ether 7.5 parts, diacetone alcohol 2.5 parts, methyl ethyl ketone 27 parts A hard coat agent with a minute of 50% was obtained.
The obtained hard coat agent was applied to a triacetyl cellulose (TAC) film (manufactured by Konica Minolta Opto) having a thickness of 80 μm before saponification treatment so that the film thickness was about 5 μm, dried at 80 ° C., and then applied to an ultraviolet irradiator. Used a high-pressure mercury lamp and was cured under irradiation conditions of energy of 160 W / cm and transport speed of 5 m / min. The transmittance of the film after application and curing was 89%, haze was 0.7%, pencil hardness (load 500 g) was 3H, and the adhesion of the cured film was also good.
 製造例2
 ジペンタエリスリトールヘキサアクリレートとペンタアクリレートとの混合物(日本化薬(株)製、KAYARAD DPHA)24部、テトラヒドロフルフリルアクリレート(大阪有機化学(株)製、ビスコート#150)3部、イルガキュア184(チバ・スペシャリティ・ケミカルズ社製)1.8部、イルガキュア907(チバ・スペシャリティ・ケミカルズ社製)1.2部、セルナックスCX-S505M(日産化学工業(株)製、酸化錫のメタノール分散ゾル、固形分50%、平均粒子径10~40nm)40部、1-プロパノール25部、ジアセトンアルコール5部を混合し、固形分50%のハードコート剤を得た。
 得られたハードコート剤をけん化処理前の厚み80μmのトリアセチルセルロース(TAC)フィルム(コニカミノルタオプト製)に膜厚が約5μmになるように塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させた。塗布、硬化後のフィルムの透過率は91%、ヘイズは0.5%、鉛筆硬度(荷重500g)は3Hであり、硬化膜の密着性も良好であった。
Production Example 2
24 parts of a mixture of dipentaerythritol hexaacrylate and pentaacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD DPHA), 3 parts of tetrahydrofurfuryl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., Biscoat # 150), Irgacure 184 (Ciba)・ Specialty Chemicals Co., Ltd. (1.8 parts), Irgacure 907 (Ciba Specialty Chemicals Co., Ltd.) 1.2 parts, Cellnax CX-S505M (Nissan Chemical Industry Co., Ltd., methanol dispersion sol of tin oxide, solid 40 parts of an average particle size of 10 to 40 nm), 25 parts of 1-propanol, and 5 parts of diacetone alcohol were mixed to obtain a hard coating agent having a solid content of 50%.
The obtained hard coat agent was applied to a triacetyl cellulose (TAC) film (manufactured by Konica Minolta Opto) having a thickness of 80 μm before saponification treatment so that the film thickness was about 5 μm, dried at 80 ° C., and then applied to an ultraviolet irradiator. Used a high-pressure mercury lamp and was cured under irradiation conditions of energy of 160 W / cm and transport speed of 5 m / min. The transmittance of the film after application and curing was 91%, the haze was 0.5%, the pencil hardness (load 500 g) was 3H, and the adhesion of the cured film was also good.
 実施例1~2、比較例1~2
 表1に示す材料を配合した感光性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
Examples 1-2 and Comparative Examples 1-2
The photosensitive resin composition which mix | blended the material shown in Table 1 was prepared.
Figure JPOXMLDOC01-appb-T000001
(注)
DPHA:日本化薬(株)製、KAYARAD DPHA(ジペンタエリスリトールペンタアクリレートとヘキサアクリレートの混合物)((A)成分)
ELCOM:日揮触媒化成工業(株)製、ナノポーラスシリカのMIBK分散液(固形分20%、平均粒径:40~60ナノメートル)((B)成分)
TEGO:ダデグサ社製、TEGO Rad 2600(アクリレート官能基数:6)((C)成分)
X-22:信越化学工業(株)製、X-22-2445(アクリレート官能基数:2)((C)成分)
US270:東亞合成(株)製、ポリシロキサングラフトポリマー(固形分30%)((C)成分との比較用)
ST103PA:東レ・ダウコーニング(株)製、ポリシロキサン((C)成分との比較用)
開始剤1:1-ヒドロキシシクロヘキシルフェニルケトン((D)成分)
開始剤2:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン((D)成分)
MEK:メチルエチルケトン((E)成分)
DAA:ジアセトンアルコール((E)成分)
(note)
DPHA: manufactured by Nippon Kayaku Co., Ltd., KAYARAD DPHA (mixture of dipentaerythritol pentaacrylate and hexaacrylate) (component (A))
ELCOM: MIBK dispersion of nanoporous silica (manufactured by JGC Catalysts & Chemicals Co., Ltd. (solid content 20%, average particle size: 40-60 nanometers) (component (B))
TEGO: manufactured by Dadegusa, TEGO Rad 2600 (number of acrylate functional groups: 6) (component (C))
X-22: manufactured by Shin-Etsu Chemical Co., Ltd., X-22-2445 (number of acrylate functional groups: 2) (component (C))
US270: manufactured by Toagosei Co., Ltd., polysiloxane graft polymer (solid content 30%) (for comparison with component (C))
ST103PA: manufactured by Toray Dow Corning Co., Ltd., polysiloxane (for comparison with component (C))
Initiator 1: 1-hydroxycyclohexyl phenyl ketone (component (D))
Initiator 2: 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (component (D))
MEK: Methyl ethyl ketone (component (E))
DAA: diacetone alcohol (component (E))
実施例3
 製造例1で得たハードコート層を形成したTACフィルム上に、実施例1で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Example 3
The photosensitive resin composition of the present invention obtained in Example 1 was applied on the TAC film on which the hard coat layer obtained in Production Example 1 was formed, dried at 80 ° C., and then a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
実施例4
 製造例2で得たハードコート層を形成したTACフィルム上に、実施例1で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Example 4
The photosensitive resin composition of the present invention obtained in Example 1 was applied on the TAC film formed with the hard coat layer obtained in Production Example 2, and after drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
実施例5
 製造例2で得たハードコート層を形成したTACフィルム上に、実施例1で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、酸素濃度が0.1体積%の窒素雰囲気下にて、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Example 5
On the TAC film on which the hard coat layer obtained in Production Example 2 was formed, the photosensitive resin composition of the present invention obtained in Example 1 was applied, and after drying at 80 ° C., the oxygen concentration was 0.1% by volume. Under a nitrogen atmosphere, a high pressure mercury lamp was used as an ultraviolet irradiator and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
実施例6
 製造例2で得たハードコート層を形成したTACフィルム上に、実施例2で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Example 6
The photosensitive resin composition of the present invention obtained in Example 2 was applied on the TAC film formed with the hard coat layer obtained in Production Example 2, and after drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
比較例3
 製造例2で得たハードコート層を形成したTACフィルム上に、比較例1で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Comparative Example 3
The photosensitive resin composition of the present invention obtained in Comparative Example 1 was applied on the TAC film on which the hard coat layer obtained in Production Example 2 was formed. After drying at 80 ° C., a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
比較例4
 製造例2で得たハードコート層を形成したTACフィルム上に、比較例2で得られた本発明の感光性樹脂組成物を塗布し、80℃で乾燥後、紫外線照射機には高圧水銀灯を使用し、160W/cmのエネルギー、搬送速度5m/分の照射条件で硬化させて反射防止ハードコートフィルムを得た。この時、反射率の最小値が520~650nmの波長領域になるように膜厚を約0.1μmに調整した。
Comparative Example 4
The photosensitive resin composition of the present invention obtained in Comparative Example 2 was applied on the TAC film on which the hard coat layer obtained in Production Example 2 was formed, dried at 80 ° C., and then a high-pressure mercury lamp was installed in the ultraviolet irradiator. It was used and cured under irradiation conditions of 160 W / cm energy and a conveyance speed of 5 m / min to obtain an antireflection hard coat film. At this time, the film thickness was adjusted to about 0.1 μm so that the minimum value of the reflectance was in the wavelength region of 520 to 650 nm.
 実施例3~6、比較例3及び4で得られた反射防止ハードコートフィルムにつき、下記項目を評価しその結果を表2に示した。 The following items were evaluated for the antireflection hard coat films obtained in Examples 3 to 6 and Comparative Examples 3 and 4, and the results are shown in Table 2.
(鉛筆硬度)
 JIS K 5600に従い、鉛筆引っかき試験機を用いて、前記組成の塗工フィルムの鉛筆硬度を測定した。詳しくは、測定する硬化皮膜を有するフィルム上に、鉛筆を45度の角度で、上から500gの荷重を掛け5mm程度引っかき、5回中、4回以上傷の付かなかった鉛筆の硬さで表した。
(Pencil hardness)
According to JIS K 5600, the pencil hardness of the coated film having the above composition was measured using a pencil scratch tester. Specifically, on a film having a cured film to be measured, a pencil is applied at a 45 degree angle, applied with a load of 500 g from the top, and scratched for about 5 mm. did.
(耐擦傷性)
 スチールウール#0000上に500g/cmの荷重を掛けて10往復させ、傷の状況を目視で判定した。
 評価 5級:傷なし
    4級:1~10本の傷発生
    3級:10~30本の傷発生
    2級:30本以上の傷発生
    1級:全面に傷、又は剥れが生じる
(Abrasion resistance)
The steel wool # 0000 was subjected to 10 reciprocations by applying a load of 500 g / cm 2 and the state of the scratch was visually determined.
Evaluation Grade 5: No scratch Grade 4: Generation of 1 to 10 scratches Grade 3: Generation of 10 to 30 scratches Level 2: Generation of 30 or more scratches Level 1: Scratches or peeling occurred on the entire surface
(密着性)
 JIS K5600に従い、測定する硬化皮膜を有するフィルムの表面に2mm間隔で縦、横6本の切れ目を入れて25個の碁盤目を作る。セロハンテープをその表面に密着させた後、一気に剥がしたときに剥離せずに残存したマス目の個数を示した。
(Adhesion)
According to JIS K5600, 25 grids are made by making 6 vertical and horizontal cuts at 2 mm intervals on the surface of the film having the cured film to be measured. After the cellophane tape was brought into close contact with the surface, the number of cells remaining without peeling was shown.
(最低反射率)
 紫外・可視・赤外分光光度計 (株)島津製作所製UV-3150を使用し測定。
(Minimum reflectance)
Ultraviolet / visible / infrared spectrophotometer Measured using UV-3150 manufactured by Shimadzu Corporation.
(マジック拭取性)
 マジックインキの黒/赤を使用して、塗工面に文字を書き、キムワイプにて拭取りを行ない、拭取性を目視で判定した。
 評価 A:同じ場所で10回以上拭取り可能
    B:同じ場所で5~9回拭取り可能
    C:同じ場所で1~4回拭取り可能
(Magic wipeability)
Using black / red magic ink, letters were written on the coated surface, wiped with a Kimwipe, and the wipeability was judged visually.
Evaluation A: Wipe 10 or more times at the same location B: Wipe 5-9 times at the same location C: Wipe 1 to 4 times at the same location
(全光線透過率)
 ヘイズメーター 東京電色(株)製、TC-H3DPKを使用し測定。(単位:%)
(Total light transmittance)
Haze meter Measured using TC-H3DPK manufactured by Tokyo Denshoku Co., Ltd. (unit:%)
(ヘイズ)
 ヘイズメーター 東京電色(株)製、TC-H3DPKを使用し測定。(単位:%)
(Haze)
Haze meter Measured using TC-H3DPK manufactured by Tokyo Denshoku Co., Ltd. (unit:%)
(表面抵抗率)
 抵抗率計 三菱化学(株)製、HIRESTA IPを使用し測定。(単位:Ω/□) 
(Surface resistivity)
Resistivity meter Measured using HIRESTA IP manufactured by Mitsubishi Chemical Corporation. (Unit: Ω / □)
 (耐アルカリ性)
 1%及び3%NaOH水溶液を作製。塗膜表面に液を滴下し、30分放置後の塗膜表面状態を観察。
  評価 A:変化なし
     B:変色が生じる
     C:膜が剥離する
(Alkali resistance)
Make 1% and 3% NaOH aqueous solution. The solution was dropped on the surface of the coating film, and the coating film surface state was observed after standing for 30 minutes.
Evaluation A: No change B: Discoloration occurs C: Film peels off
前記評価結果を表2に示した。 The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例3~6の反射防止ハードコートフィルムは鉛筆硬度、耐擦傷性、密着性、マジック拭取性及び耐アルカリ性ついて良好な結果を示した。比較例3は(C)成分をポリシロキサンのグラフトポリマーに変更した結果、耐擦傷性が低下し、マジック拭取り性及び耐アルカリ性が劣る結果となった。比較例4は(C)成分をアクリロイル基を含有しないポリシロキサンに変更した結果、耐擦傷性が低下し、透明性、マジック拭取り性及び耐アルカリ性が劣る結果となった。 As is clear from Table 2, the antireflection hard coat films of Examples 3 to 6 showed good results with respect to pencil hardness, scratch resistance, adhesion, magic wiping property and alkali resistance. In Comparative Example 3, as a result of changing the component (C) to a polysiloxane graft polymer, the scratch resistance was lowered, and the magic wiping property and the alkali resistance were inferior. In Comparative Example 4, as a result of changing the component (C) to polysiloxane containing no acryloyl group, the scratch resistance was lowered and the transparency, magic wiping property and alkali resistance were inferior.
 本発明の感光性樹脂組成物で得られた硬化皮膜は、硬度、耐擦傷性、透明性、耐薬品性及びマジック拭取り性等の耐汚染性に優れている。又、ハードコート層の上に塗工し硬化させることにより反射率の低い反射防止ハードコートフィルムを製造するのに適している。この様な本発明の反射防止ハードコートフィルムは、LCDやPDPといったフラットパネルディスプレイ用の反射防止フィルム、プラスチック光学部品、タッチパネル、携帯電話、フィルム液晶素子等反射防止機能を必要とする分野に好適である。 The cured film obtained with the photosensitive resin composition of the present invention is excellent in stain resistance such as hardness, scratch resistance, transparency, chemical resistance and magic wiping property. Moreover, it is suitable for producing an antireflection hard coat film having a low reflectance by coating and curing on the hard coat layer. Such an antireflection hard coat film of the present invention is suitable for fields requiring antireflection functions such as antireflection films for flat panel displays such as LCDs and PDPs, plastic optical components, touch panels, mobile phones, and film liquid crystal elements. is there.

Claims (7)

  1.  分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、平均粒子径が1~200ナノメートルのナノポーラス構造を有するコロイダルシリカ(B)、(メタ)アクリロイル基を有するポリシロキサン(C)及び光ラジカル重合開始剤(D)を含有する感光性樹脂組成物。 Polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, colloidal silica (B) having a nanoporous structure with an average particle diameter of 1 to 200 nanometers, (meth) acryloyl groups The photosensitive resin composition containing the polysiloxane (C) which has NO, and radical photopolymerization initiator (D).
  2.  (メタ)アクリロイル基を有するポリシロキサン(C)が、分子内に1~8個の(メタ)アクリロイル基を有する化合物である請求項1に記載の感光性樹脂組成物。 2. The photosensitive resin composition according to claim 1, wherein the polysiloxane (C) having a (meth) acryloyl group is a compound having 1 to 8 (meth) acryloyl groups in the molecule.
  3.  更に、希釈剤(E)を含有する請求項1又は2に記載の感光性樹脂組成物。 Furthermore, the photosensitive resin composition of Claim 1 or 2 containing a diluent (E).
  4.  請求項1ないし3のいずれか一項に記載の感光性樹脂組成物の硬化層を基材フィルム上に低屈折率層として最外層に配する反射防止フィルム。 An antireflection film in which a cured layer of the photosensitive resin composition according to any one of claims 1 to 3 is disposed as an outermost layer as a low refractive index layer on a base film.
  5.  基材フィルム上にハードコート剤の硬化層及び請求項1ないし3のいずれか一項に記載の感光性樹脂組成物の硬化層をこの順に有する反射防止ハードコートフィルム。 An antireflection hard coat film having a hard coat agent hardened layer and a photosensitive resin composition hardened layer according to any one of claims 1 to 3 in this order on a base film.
  6.  ハードコート剤が、分子内に少なくとも3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(A)、平均粒子径1~200ナノメートルの金属酸化物(F)及び光ラジカル重合開始剤(D)を含有する感光性樹脂組成物である請求項5に記載の反射防止ハードコートフィルム。 The hard coating agent is a polyfunctional (meth) acrylate (A) having at least three (meth) acryloyl groups in the molecule, a metal oxide (F) having an average particle size of 1 to 200 nanometers, and initiation of radical photopolymerization. The antireflection hard coat film according to claim 5, which is a photosensitive resin composition containing an agent (D).
  7.  平均粒子径1~200ナノメートルの金属酸化物(F)が、リンをドーピングした酸化錫である請求項6に記載の反射防止ハードコートフィルム。
     
     
    The antireflection hard coat film according to claim 6, wherein the metal oxide (F) having an average particle diameter of 1 to 200 nanometers is tin oxide doped with phosphorus.

PCT/JP2010/062511 2009-07-29 2010-07-26 Photosensitive resin composition, and antireflection film and antireflective hard coating film which are produced using same WO2011013611A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080031455.XA CN102471425B (en) 2009-07-29 2010-07-26 Photosensitive resin composition, and antireflection film and antireflective hard coating film which are produced using same
JP2011524763A JP5767583B2 (en) 2009-07-29 2010-07-26 Photosensitive resin composition, antireflection film and antireflection hard coat film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-176524 2009-07-29
JP2009176524 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013611A1 true WO2011013611A1 (en) 2011-02-03

Family

ID=43529266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062511 WO2011013611A1 (en) 2009-07-29 2010-07-26 Photosensitive resin composition, and antireflection film and antireflective hard coating film which are produced using same

Country Status (5)

Country Link
JP (1) JP5767583B2 (en)
KR (1) KR20120044286A (en)
CN (1) CN102471425B (en)
TW (1) TWI494685B (en)
WO (1) WO2011013611A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214590A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Photocurable resin composition
KR20130075428A (en) * 2011-12-27 2013-07-05 엘지디스플레이 주식회사 Coating film having low refelection and high hardness and display device using the same
JP2013173871A (en) * 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp Composition, antistatic coating agent, and antistatic laminate
JP2013190732A (en) * 2012-03-15 2013-09-26 Toray Advanced Film Co Ltd Antireflection film
WO2014017396A1 (en) * 2012-07-24 2014-01-30 日本化薬株式会社 Photosensitive resin composition and antireflection film
KR101407617B1 (en) 2012-04-25 2014-06-27 주식회사 엘지화학 Thermoset coating composition having self-healing capacity, coating film, and preparation method of coating film
EP2840109A4 (en) * 2012-05-31 2016-01-20 Lg Chemical Ltd Hard coating film
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
WO2018047556A1 (en) * 2016-09-08 2018-03-15 株式会社ダイセル Hardcoat laminate, molded body and method for producing same
US9926461B2 (en) 2012-05-31 2018-03-27 Lg Chem, Ltd. Hard coating film
JP2018053068A (en) * 2016-09-28 2018-04-05 株式会社ニデック Manufacturing method of resin composition for hard coat, resin composition for hard coat, and manufacturing method of substrate with hard coat
WO2018100929A1 (en) * 2016-12-01 2018-06-07 Dic株式会社 Actinic-ray-curable composition and film obtained using same
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
JP2018527615A (en) * 2015-08-18 2018-09-20 エルジー・ケム・リミテッド Low refractive layer and antireflection film including the same
EP3597710A1 (en) 2018-07-18 2020-01-22 Inkron OY Novel polysiloxane compositions and uses thereof
CN114350256A (en) * 2022-01-04 2022-04-15 海洋化工研究院有限公司 High-temperature-resistant high-reflectivity coating component, preparation method thereof, coating and construction method thereof
JP7161836B2 (en) 2015-12-18 2022-10-27 デクセリアルズ株式会社 Antifogging antifouling laminate, article, and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625241B (en) * 2011-08-22 2018-06-01 Mitsubishi Chem Corp Transparent laminated film
CN103756383B (en) * 2013-12-17 2016-09-07 张家港康得新光电材料有限公司 Cured film Antiblock coating composition and corresponding two-sided cured film
WO2017155358A1 (en) * 2016-03-11 2017-09-14 주식회사 엘지화학 Anti-reflective film and method for producing same
KR101973195B1 (en) * 2016-03-11 2019-04-26 주식회사 엘지화학 Anti-reflective film and preparation method of the same
KR20180087956A (en) 2017-01-26 2018-08-03 동우 화인켐 주식회사 Hard coating film and display window using the same
CN109991813B (en) 2017-12-29 2022-06-21 财团法人工业技术研究院 Photosensitive composite material and method for forming composite film using the same
KR102031802B1 (en) 2019-03-25 2019-10-15 동우 화인켐 주식회사 Hard coating film and display window using the same
JP6844737B1 (en) * 2020-07-16 2021-03-17 荒川化学工業株式会社 Active energy ray-curable coating agent, cured product, and laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109496A1 (en) * 2005-04-06 2006-10-19 Jsr Corporation Radiation-curable resin composition and antireflection coating
JP2006306008A (en) * 2005-03-31 2006-11-09 Jsr Corp Antistatic layered product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316860A (en) * 1997-03-19 1998-12-02 Dow Corning Asia Ltd Optical polysiloxane resin containing silica
JP2001049236A (en) * 1999-08-10 2001-02-20 Toppan Printing Co Ltd Stainproofing material and antireflection filter using the same
JP2002265866A (en) * 2001-03-13 2002-09-18 Toppan Printing Co Ltd Low-refractive index coating material and antireflection film
JP2004314468A (en) * 2003-04-17 2004-11-11 Sumitomo Chem Co Ltd Transparent substrate with cured coat formed and curable composition for the substrate
JP2005089536A (en) * 2003-09-12 2005-04-07 Jsr Corp Curable resin composition and antireflection coating
JP4726198B2 (en) * 2005-04-27 2011-07-20 日本化薬株式会社 Photosensitive resin composition and film having cured film thereof
JP2009160755A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Transparently coated base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306008A (en) * 2005-03-31 2006-11-09 Jsr Corp Antistatic layered product
WO2006109496A1 (en) * 2005-04-06 2006-10-19 Jsr Corporation Radiation-curable resin composition and antireflection coating

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214590A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Photocurable resin composition
KR20130075428A (en) * 2011-12-27 2013-07-05 엘지디스플레이 주식회사 Coating film having low refelection and high hardness and display device using the same
KR101941445B1 (en) 2011-12-27 2019-04-15 엘지디스플레이 주식회사 Position guiding apparatus for needle for ultrasonic operation
JP2013173871A (en) * 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp Composition, antistatic coating agent, and antistatic laminate
JP2013190732A (en) * 2012-03-15 2013-09-26 Toray Advanced Film Co Ltd Antireflection film
KR101407617B1 (en) 2012-04-25 2014-06-27 주식회사 엘지화학 Thermoset coating composition having self-healing capacity, coating film, and preparation method of coating film
EP2840109A4 (en) * 2012-05-31 2016-01-20 Lg Chemical Ltd Hard coating film
US9926461B2 (en) 2012-05-31 2018-03-27 Lg Chem, Ltd. Hard coating film
US9403991B2 (en) 2012-05-31 2016-08-02 Lg Chem, Ltd. Hard coating composition
US9701862B2 (en) 2012-05-31 2017-07-11 Lg Chem, Ltd. Method of preparing hard coating film
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
US9884977B2 (en) 2012-05-31 2018-02-06 Lg Chem, Ltd. Hard coating composition
US9896597B2 (en) 2012-05-31 2018-02-20 Lg Chem, Ltd. Method of preparing hard coating film
US10294387B2 (en) 2012-05-31 2019-05-21 Lg Chem, Ltd. Hard coating film
JPWO2014017396A1 (en) * 2012-07-24 2016-07-11 日本化薬株式会社 Photosensitive resin composition and antireflection film
WO2014017396A1 (en) * 2012-07-24 2014-01-30 日本化薬株式会社 Photosensitive resin composition and antireflection film
US10488558B2 (en) 2012-07-24 2019-11-26 Nippon Kayaku Kabushiki Kaisha Photosensitive resin composition and antireflection film
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
JP2018527615A (en) * 2015-08-18 2018-09-20 エルジー・ケム・リミテッド Low refractive layer and antireflection film including the same
CN110031919A (en) * 2015-08-18 2019-07-19 株式会社Lg化学 Forming low-refractive-index layer and anti-reflective film including it
CN110031919B (en) * 2015-08-18 2020-12-22 株式会社Lg化学 Low refractive layer and anti-reflection film including the same
US11614567B2 (en) 2015-08-18 2023-03-28 Lg Chem, Ltd. Low refractive layer and anti-reflective film comprising the same
JP7161836B2 (en) 2015-12-18 2022-10-27 デクセリアルズ株式会社 Antifogging antifouling laminate, article, and method for producing the same
JP2018040974A (en) * 2016-09-08 2018-03-15 株式会社ダイセル Hard coat laminate, compact and manufacturing method thereof
WO2018047556A1 (en) * 2016-09-08 2018-03-15 株式会社ダイセル Hardcoat laminate, molded body and method for producing same
JP2018053068A (en) * 2016-09-28 2018-04-05 株式会社ニデック Manufacturing method of resin composition for hard coat, resin composition for hard coat, and manufacturing method of substrate with hard coat
WO2018100929A1 (en) * 2016-12-01 2018-06-07 Dic株式会社 Actinic-ray-curable composition and film obtained using same
EP3597710A1 (en) 2018-07-18 2020-01-22 Inkron OY Novel polysiloxane compositions and uses thereof
CN114350256A (en) * 2022-01-04 2022-04-15 海洋化工研究院有限公司 High-temperature-resistant high-reflectivity coating component, preparation method thereof, coating and construction method thereof
CN114350256B (en) * 2022-01-04 2022-12-06 海洋化工研究院有限公司 High-temperature-resistant high-reflectivity coating component, preparation method thereof, coating and construction method thereof

Also Published As

Publication number Publication date
CN102471425A (en) 2012-05-23
JP5767583B2 (en) 2015-08-19
CN102471425B (en) 2015-03-04
JPWO2011013611A1 (en) 2013-01-07
TWI494685B (en) 2015-08-01
TW201120566A (en) 2011-06-16
KR20120044286A (en) 2012-05-07

Similar Documents

Publication Publication Date Title
JP5767583B2 (en) Photosensitive resin composition, antireflection film and antireflection hard coat film using the same
JP6317256B2 (en) Photosensitive resin composition and antireflection film
WO2010090116A1 (en) Actinic-energy-ray-curable resin composition for hard coat and use thereof
JP4360510B2 (en) Film having cured film of radiation curable resin composition
JP4726198B2 (en) Photosensitive resin composition and film having cured film thereof
JP5092744B2 (en) Anti-reflection laminate
JP2011088962A (en) Ultraviolet-curable hard coat resin composition, hard coat film comprising the same, and hard coat molded product
JP2010248426A (en) Transfer material excellent in fingerprint-proof property and method for producing the same
KR101314407B1 (en) Reflection preventive film
JPWO2005040245A1 (en) Photosensitive resin composition and film having cured film thereof
JP2006348061A (en) Photosensitive resin composition and film having its cured film
JP2007070523A (en) Photo-sensitive resin composition and film comprising its cured membrane
JP2003306619A (en) Photosensitive resin composition for hard-coating agent and film having cured skin comprising the same
JP2012007028A (en) Active energy ray-curable resin composition for hard coat and application of the same
WO2014208748A1 (en) Uv-curable hard-coating resin composition
JP4433300B2 (en) Photosensitive resin composition and film having cured film thereof
JP2010013572A (en) Photosensitive resin composition and antireflection film
JP2010174056A (en) Photosensitive resin composition and antireflective film
JP2005036105A (en) Photosensitive resin composition and film with cured coating thereof
JPWO2019221000A1 (en) Photosensitive resin composition and antiglare film
JP2009001598A (en) Active energy ray curable type antistatic hard coat resin composition
JP2006199765A (en) Photosensitive resin composition and film having its cured layer
JP2003306561A (en) Antistatic hard coating film and method for manufacturing the same
JP2003301018A (en) Photosensitive resin composition and film having cured coating film therefrom
JP2001123036A (en) Radiation curable antistatic resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031455.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524763

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117027658

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804357

Country of ref document: EP

Kind code of ref document: A1