WO2011013359A1 - イオントフォレーシス用薬剤組成物 - Google Patents

イオントフォレーシス用薬剤組成物 Download PDF

Info

Publication number
WO2011013359A1
WO2011013359A1 PCT/JP2010/004779 JP2010004779W WO2011013359A1 WO 2011013359 A1 WO2011013359 A1 WO 2011013359A1 JP 2010004779 W JP2010004779 W JP 2010004779W WO 2011013359 A1 WO2011013359 A1 WO 2011013359A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
drug
phosphate
sodium phosphate
pharmaceutical composition
Prior art date
Application number
PCT/JP2010/004779
Other languages
English (en)
French (fr)
Inventor
蓮井昭宏
宮城孝満
Original Assignee
帝國製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝國製薬株式会社 filed Critical 帝國製薬株式会社
Priority to EP10804110.4A priority Critical patent/EP2460524B1/en
Priority to CA2769008A priority patent/CA2769008A1/en
Priority to AU2010277012A priority patent/AU2010277012B2/en
Priority to US13/388,295 priority patent/US8652522B2/en
Priority to CN2010800339612A priority patent/CN102573849A/zh
Publication of WO2011013359A1 publication Critical patent/WO2011013359A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/30Apparatus for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body, or cataphoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/02Drugs for genital or sexual disorders; Contraceptives for disorders of the vagina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0448Drug reservoir

Definitions

  • the present invention relates to a pharmaceutical composition for iontophoresis suitable for transdermal and transmucosal application.
  • Iontophoresis is a method in which components such as ionic drugs useful for the living body are permeated into the living body using so-called electrophoresis, which is also called ion osmosis therapy or iontophoresis, and is mainly systemic. It is used for the administration of drugs.
  • An iontophoresis device generally has a working electrode structure that holds a drug solution that dissociates medicinal ingredients (bioactive substances) into positive or negative ions (drug ions), and a non-acting function that acts as a counter electrode of the working electrode structure.
  • a drug is provided by applying a voltage having the same polarity as the drug ion to the working electrode structure from the power supply device in a state where both structures are in contact with the skin of a living body (human or mammal). Ions are administered into the living body.
  • both poles may contain a physiologically active substance, and both poles may be an action structure.
  • water-soluble steroids are administered intra-articularly as injections in the treatment of rheumatoid arthritis, osteoarthritis and the like.
  • it has pain during injection, requires advanced techniques of a doctor, and may cause infections from the administration site, so it was never a simple and highly safe pharmaceutically useful administration method. .
  • Non-patent Document 1 dermal administration of dexamethasone sodium phosphate, which is a kind of water-soluble steroid, using DC iontophoresis is known.
  • lidocaine which is a local anesthetic
  • an object of the present invention is to provide a pharmaceutical composition for iontophoresis that is excellent in drug stability, easy to prepare and fill during production, and can be produced at low cost.
  • the present inventors have conducted extensive research on the relationship between water-soluble steroids and long-term stability in order to achieve the above object, and as a result have found the present invention.
  • the pharmaceutical composition for iontophoresis of the present invention is characterized by containing a nonionic synthetic polymer, betamethasone sodium phosphate, and a solvent.
  • the nonionic synthetic polymer substance is polyvinyl alcohol (PVA).
  • the blending amount of polyvinyl alcohol (PVA) is 0.5 to 30% by weight.
  • the amount of the polyvinyl alcohol (PVA) is 20% by weight or less.
  • the amount of betamethasone sodium phosphate is 1 to 12% by weight.
  • the amount of betamethasone sodium phosphate is 1 to 4% by weight.
  • the solvent is at least one selected from the group consisting of water and a phosphate buffer.
  • the pH on the surface of the composition is in the range of 7-8.
  • the pharmaceutical composition further contains ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • the blending amount of ethylenediaminetetraacetic acid (EDTA) is 0.05 to 0.15% by weight.
  • the concentration of the phosphate buffer is 1 to 10 mM.
  • the preparation of the present invention is characterized by having the composition according to any one of claims 1 to 11 and an adhesive layer.
  • the adhesive layer is composed of at least one selected from the group consisting of acrylic, silicone, synthetic rubber, natural rubber, and the like. To do.
  • the iontophoresis administration method of the present invention is characterized in that betamethasone sodium phosphate is administered using the pharmaceutical composition of the present invention.
  • betamethasone sodium phosphate is transdermally distributed from the support layer through the pericardium to the medial pericardium and synovium in a band shape and delivered to the joint. It is characterized by.
  • the method for treating rheumatoid arthritis, osteoarthritis, tendonitis, tenosynovitis, or peritonitis of the present invention comprises administering rhematoid arthritis and deformity by administering betamethasone sodium phosphate according to the administration method of the present invention. It is characterized by treating at least one disease selected from the group consisting of osteoarthritis, tendonitis, tenosynovitis, peri-tendonitis (all limited to non-infectious).
  • the present invention there is an advantageous effect that the residual rate of the drug composition is stable over a long period of time and the drug is excellent in stability. Further, according to the present invention, since the minimum necessary components are used except unnecessary components as much as possible, it is possible to achieve an excellent drug effect without causing problems such as water separation in the conventional components. It has the advantageous effect of being.
  • FIG. 1 shows the drug residual rate at various pH values.
  • FIG. 2 shows the results of an accelerated test at 40 ° C. for the pharmaceutical composition in one example of the present invention.
  • Fig. 3 shows the residual rate of drug in the accelerated test at 40 ° C for gel preparations when EDTA is added or under phosphate buffer (no EDTA added for accelerated test with 1 mM phosphate buffer) Indicates.
  • FIG. 4 shows a schematic view of a normal rabbit right knee joint to which 3H-labeled betamethasone phosphate was transdermally administered by electrification.
  • FIG. 5 shows a semi-micro autoradiograph of a normal rabbit right knee joint that was transdermally administered with 3H-labeled betamethasone phosphate for 30 minutes.
  • FIG. 6 shows a semi-microautoradiograph of a normal rabbit right knee joint to which 3H-labeled betamethasone phosphate was transdermally administered for 30 minutes by electrification.
  • FIG. 7 shows a semi-micro autoradiograph of a normal rabbit right knee joint that was transdermally administered with 3H-labeled betamethasone phosphate for 120 minutes.
  • FIG. 8 shows a semi-microautoradiograph of the left knee joint on the non-administration side of a normal rabbit in which 3H-labeled betamethasone phosphate was transcutaneously administered to the right leg by electrification.
  • FIG. 9 shows the relationship between time and the cumulative permeation profile at a phosphate concentration of 0 mM to 100 mM.
  • FIG. 10 shows the relationship between the time-dependent slope of the cumulative permeated profile (flux) at a phosphate concentration of 0 mM to 100 mM and time.
  • the pharmaceutical composition for iontophoresis of the present invention contains a nonionic synthetic polymer substance, betamethasone sodium phosphate, and a solvent.
  • the nonionic synthetic polymer substance used in the pharmaceutical composition for iontophoresis of the present invention is not particularly limited as long as it is a hydrophilic and nonionic synthetic polymer substance.
  • polyvinyl alcohol examples thereof include synthetic polymer substances such as polyvinyl formal, polyvinyl methyl ether, polyvinyl methacrylate, polyvinyl pyrrolidone, polyvinyl pyrrolidone / vinyl acetate copolymer, polyethylene oxide, and polypropylene oxide.
  • polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene oxide are preferable from the viewpoint of easy production. These are used alone or in combination of two or more.
  • the blending amount of such a nonionic synthetic polymer substance is preferably 0.5 to 30.0% by weight in the iontophoretic drug composition.
  • the amount of the polyvinyl alcohol (PVA) is 20% by weight or less. This is because threading with a nonionic synthetic polymer substance and prevention of a decrease in productivity due to an increase in viscosity are prevented. More preferably, it is 16% by weight or less, and further preferably 14 to 16% by weight.
  • the amount of betamethasone sodium phosphate is not particularly limited, but is 1 to 12 weights from the viewpoint of the permeation promoting effect by the electric field on the drug concentration of the donor. %, More preferably 1 to 4% by weight from the viewpoint of permeation promoting efficiency.
  • the solvent is at least one selected from the group consisting of water and a phosphate buffer.
  • the water formulated in the iontophoretic pharmaceutical composition of the present invention is a very important ingredient in iontophoretic administration because of swelling of the stratum corneum, relaxation of irritation, and dissolution and permeation of the administered drug. It is.
  • the blending amount of water is preferably 10 to 80% by weight, more preferably 30 to 60% by weight, based on the total weight of the iontophoretic pharmaceutical composition.
  • the blending amount is less than 10% by weight, the solubility of the water-soluble drug in the composition is decreased, crystals are precipitated, the amount of free water in the composition is decreased, and an increase in diffusion resistance occurs. As a result, there is a possibility that the amount of drug absorption may decrease.
  • the blending amount exceeds 80% by weight, it becomes difficult to form a sufficient gel body, the volatility becomes high, and quality assurance at the time of storage and administration becomes difficult.
  • the pH on the surface of the pharmaceutical composition of the present invention is not particularly limited because it varies depending on the stability of the drug and the administration electrode. However, in view of drug stability, safety to the skin, and gel physical properties, preferably pH 4 In the range of ⁇ 9, more preferably in the range of pH 7-8.
  • the pharmaceutical composition of the present invention may further contain ethylenediaminetetraacetic acid (EDTA).
  • Ethylenediaminetetraacetic acid (EDTA) can adjust the curing of the metal-based compound, and can capture metal ions, particularly Ag +, with a chelate, which in turn contributes to the stability of the drug.
  • the blending amount of ethylenediaminetetraacetic acid (EDTA) is not particularly limited, but it is preferably 0.05 to 0.15% by weight from the viewpoint of preventing the drug from permeating the skin.
  • the pharmaceutical composition of the present invention from the viewpoint that pH change on the gel surface can be reduced over a long period of time and competition with betamethasone sodium phosphate in skin permeation during energization can be suppressed.
  • the concentration of the liquid is 1 to 10 mM, more preferably 1 to 5 mM.
  • the preparation of the present invention has the above-described pharmaceutical composition of the present invention and an adhesive layer.
  • the adhesive layer is composed of at least one selected from the group consisting of acrylic, silicon, synthetic rubber, and natural rubber.
  • the adhesive layer is preferably acrylic.
  • the scope of the present invention that is, a scope that does not depart from the spirit of providing a stable pharmaceutical composition while removing the harmful effects of additives using the minimum necessary components. And may contain preservatives and preservatives.
  • a solvent and a nonionic synthetic polymer substance are added to a suitable container and stirred as necessary. Immerse in a heated oil bath, heat with stirring for 20-60 minutes, and cool at room temperature with stirring if necessary.
  • betamethasone sodium phosphate is administered using the pharmaceutical composition of the present invention.
  • the above description can be referred to.
  • the pharmaceutical composition of the present invention is spread on an electrode formed by printing a conductive paste in advance on the plaster surface of a support, or on a film or molded cup once subjected to a peeling treatment.
  • An electrode for iontophoresis can be obtained by spreading or filling the electrode with a drug composition and then pressing it onto the electrode.
  • the electrode can be used for administration using a conventional iontophoresis device.
  • an iontophoresis device is constructed using the above-described pharmaceutical composition of the present invention, and betamethasone sodium phosphate is transcutaneously passed from the support layer through the pericardial membrane to the inner muscle. It can be distributed in the form of a band to the peripheries and synovium and delivered to the joint.
  • Rheumatoid arthritis, osteoarthritis, tendonitis, tenosynovitis, peritonitis (all are limited to non-infectious) by administering betamethasone sodium phosphate using the iontophoresis administration method of the present invention. It is possible to treat at least one disease selected from the group consisting of:
  • Purified water was added to prepare 100 g. Stir again until homogeneous. When sufficiently stirred, the mixed solution was sucked with a syringe. About 1 g of the prepared solution was dispensed into a preparation prepared with foam tape (manufactured by 3M, closed-cell foam tape, model 9773). PVA gelation was promoted by freezing it in a freezer at -80 ° C. After freezing for about one night, the mixture was allowed to stand at room temperature and thawed. This was packaged one by one in an aluminum wrapping material, placed in a thermo-hygrostat set at various temperatures, and a stability test was performed.
  • foam tape manufactured by 3M, closed-cell foam tape, model 9773
  • Example 1 the composition prepared according to Example 1 was subjected to an acceleration test at 40 ° C. when the amount of EDTA was changed.
  • the stability of the drug was examined by measuring the pH of the gel at this time.
  • Table 1 and FIG. 2 show the results of an accelerated test at 40 ° C. for the pharmaceutical composition in one example of the present invention.
  • (a) is 0% EDTA
  • (b) is 0.05% EDTA
  • (c) is 0.15% EDTA
  • pH of 1, 2, 3, 6 months later It shows a change.
  • Table 2 and FIG. 3 show the residual ratio of the drug in the accelerated test at 40 ° C. of the gel preparation when EDTA is added and the phosphate buffer is used.
  • Example 3 As a result, as estimated in Example 3, it is possible to prevent a decrease in pH by using a phosphate buffer or the like, and thus it is possible to suppress a decrease in the drug residual rate. I understand that.
  • Table 3 shows the pH change in the aqueous solution with the drug added.
  • BSP represents betamethasone sodium phosphate.
  • Tables 4 and 5 show the pH change on the gel surface with the drug added.
  • Table 5 (a) shows the average value obtained by measuring the pH of one gel surface 7 to 8 times.
  • Table 5 (b) summarizes the average values obtained in Table 5 (a).
  • Beta-P represents betamethasone sodium phosphate.
  • the stability of the drug in the wide-area buffer pH 2 to pH 8 was examined. More specifically, Briton-Robinson's broad-area buffer was used, the pH was adjusted to 2-8, and 3% (w / v) betamethasone sodium phosphate solution was prepared with each solution.
  • the stability of the drug was examined after 2 weeks, 1 month, 4 months, and 6 months at 4 ° C, 40 ° C, 50 ° C, and 60 ° C.
  • Table 6 shows the results of examining the stability of the drug after 2 weeks at 4 ° C and 60 ° C.
  • Table 7 shows the results of examining the stability of the drug after one month at 4 ° C, 40 ° C, 50 ° C and 60 ° C.
  • Table 8 shows the results of examining the stability of the drug after 4 months at 4 ° C, 40 ° C, 50 ° C and 60 ° C.
  • Table 9 shows the results of examining the stability of the drug after 6 months at 4 ° C, 40 ° C and 50 ° C.
  • W means purified water (ion-exchanged water)
  • N2-W indicates purified water that has been bubbled with nitrogen gas.
  • FIG. 1 shows the drug residual rate after 6 months at 40 ° C. It can be seen from FIG. 1 that the drug residual rate gradually increases from pH 5 and above.
  • the radioactivity concentration in the plasma of rabbits was measured after transdermal administration with energization treatment.
  • 120-minute-administered individuals it gradually increased from 10 minutes after the administration and showed the highest value after 120 minutes, but it was still on an upward trend.
  • the individual administered 30 minutes it gradually increased from 10 minutes after the administration, and still showed an increasing trend after 30 minutes.
  • Table 10 shows the contents of the purity measurement of the labeled compound.
  • Table 11 shows the contents of the measurement of plasma radioactivity concentration.
  • transdermal administration with energization treatment was as follows. Dosage: 18.5 MBq (500 ⁇ Ci) / 1 mL / head.
  • Table 12 shows the contents of the semi-micro autoradiography of the rabbit knee joint.
  • transdermal administration with energization treatment was as follows. Dosage: 18.5 MBq (500 ⁇ Ci) / 1 mL / head.
  • Table 13 shows the measurement contents of semi-micro autoradiography (non-administration site) of the rabbit knee joint.
  • the labeling compound was as follows. Labeled compound name: [ 3 H] Betamethasone-21-phosphate disodium salt Supplier: GE Healthcare Life Science Co., Ltd. Radiochemical purity: 99.4% Radioactivity concentration: 185 MBq (5 mCi) / mL Specific activity: 407 GBq (11 Ci) / mmol Shape: Liquid Storage method: Shading, airtight, frozen ( ⁇ 20 °C)
  • Betamethasone-21-phosphate disodium salt purity test In order to confirm the radiochemical purity of [ 3 H] Betamethasone-21-phosphate disodium salt, a test was performed using the TLC method when the compound was received (lot number TRQ40214). The analysis conditions were as follows. ⁇ TLC analysis conditions> Date of test: November 18, 2008 (at the time of compound acceptance) TLC plate: Silica gel 60 F 254 (Merck) Mobile phase: n-BuOH / AcOH / DW (8: 1: 1)
  • ⁇ Test animal> Two NZ male rabbits for the test were purchased from Kitayama Labes (Nippon Charles River Co., Ltd.). One animal was housed per cage, and after 3 days of preliminary breeding, it was confirmed that it was in good health and used for the test (rabbit weight: 2.49 kg and 2.43 kg). The animals were observed daily during the preliminary breeding and during the test in a general state such as hair, skin and excrement.
  • ⁇ Administration method and dose> The administration method and dose were as follows. Route of administration: Transdermal administration with electrification treatment Dose: 18.5 MBq (500 ⁇ Ci) / 1 mL / head
  • FIG. 4 shows a schematic diagram of a normal rabbit right knee joint to which 3 H-labeled betamethasone phosphate was transdermally administered by electrification. Electrode A was used for individuals administered for 120 minutes, and electrode B was used for individuals administered for 30 minutes (Table 14). Table 14 shows the radioactivity and drug amount in the drug solution / drug-containing gel.
  • Plasma radioactivity concentration was measured as follows. Blood was collected by centrifugation (4 ° C., 3000 rpm, 15 minutes) with a heparin-treated syringe at a predetermined time after administration, and plasma was prepared as a sample for radioactivity measurement.
  • the sample for measurement was treated with a solubilizing agent and measured using a liquid scintillation counter (LSC-1000, ALOKA).
  • LSC-1000 liquid scintillation counter
  • ND liquid scintillation counter
  • knee joint sites were removed from animals euthanized by an overdose of anesthetic (Nembutal), respectively, and frozen using liquid nitrogen.
  • the embedded frozen block was fixed to the microtome (CRYOMACROCUT, Leica) stage table with the thighs in front and the shins in front, with the back of the legs in close contact with the stage. .
  • the blade contacted the rectangular block in the direction perpendicular to the short side, and the upper surface was cut into a thin slice and the slice was brought into close contact with the adhesive tape and taken out.
  • This operation was repeated several tens of times, cutting from the front to the rear of the knee, and the sections leading to the administration / energized portion were sequentially (from front to back) (1) to (7).
  • the section of interest was exposed in close contact with an imaging plate (Fuji Photo Film Co., Ltd.), exposed for 168 hours, and then imaged with a bioimaging analyzer (BAS1800, Fuji Photo Film Co., Ltd.).
  • the drug-converted concentration converted to unchanged form was calculated by the following formula.
  • Table 15 shows the plasma radioactivity concentrations in rabbits after transdermal administration with 3 H-labeled betamethasone phosphate energization treatment.
  • the plasma radioactivity concentration gradually increased from 10 minutes after administration, and showed the highest value after 120 minutes, but it was still on the rise.
  • the average drug conversion value 120 minutes after administration was 1.17 ⁇ g eq / mL. Even in the 30-minute administration individuals, it gradually increased from 10 minutes after administration, and still showed an upward trend after 30 minutes.
  • the average drug conversion value was 0.09 ⁇ g eq / mL.
  • FIG. 4 shows a schematic diagram of a rabbit right knee joint semi-microautoradiograph that was transdermally administered with energization from the outside to the inside of the knee joint.
  • the semi-micro autoradiograph of the rabbit knee joint administered for 30 minutes is shown in FIGS. 5 to 6, and the semi-micro auto radiograph of the rabbit knee joint administered for 120 minutes is shown in FIG.
  • a semi-micro autoradiograph based on BAS1800 is shown on the left side, a section image is shown on the right side, and a composite image in which the BAS image is superimposed on the section image is shown in the center.
  • the section numbers (2), (3), (5), and (6) were sequentially cut from the front to the rear of the knee. (5) was shown.
  • the radioactivity concentration [(PSL-BG) / area] quantified according to the degree of blackening is shown in Table 16 (120 minutes administration) and Table 17 (30 minutes administration).
  • Synovial of skeletal tissue especially focused on joint, fibrous encapsulation and, in the synovium (synovium membrane), showed a very slight blackening image by 3 H recording.
  • perimysial tissue pericardial membrane
  • pericardial membrane following the high density 3 H blackening image up to the reticular dermis located inside the epidermal tissue, blackening of the perimyal outer periphery Observed. This image reached the tendon, and a blackened image invaded the inner circumference around the muscle circumference and reached the periosteum. In this case, the blackening density was extremely dilute.
  • the radioactivity intensity was 807.0 [PSL-BG / area] at the highest darkened area and 39.93 [ PSL-BG / area], 18.03 [PSL-BG / area] on the inner pericardium, and 0.41 [PSL-BG / area] on the tissue around the joint capsule.
  • FIG. 8 shows a semi-micro autoradiograph of a non-administered / untreated knee joint.
  • the dose of radioactivity was 538.3908 ⁇ Ci for the 30-minute individual and 545.6088 ⁇ Ci for the 120-minute individual, but the 30-minute individual had a higher concentration in the epithelium than the 120-minute individual.
  • the 30-minute individual had a higher concentration in the epithelium than the 120-minute individual.
  • the drug concentration was 1.35 times higher was observed. For this reason, it seems that in the 30-minute individual, the systemic dispersion is fast due to absorption from the epithelium.
  • Table 18 shows the case with a phosphate concentration of 0 mM
  • Table 19 shows the case with a phosphate concentration of 1 mM
  • Table 20 shows the case with a phosphate concentration of 3 mM
  • Table 21 shows the phosphate concentration.
  • Table 22 shows the case of phosphate concentration 10 mM
  • Table 23 shows the case of phosphate concentration 10 mM (second time)
  • Table 24 shows the case of phosphate concentration 50 mM.
  • Table 25 shows the case with a phosphate concentration of 100 mM.
  • FIG. 9 shows the relationship between the amount of drug accumulated in the skin at a phosphate concentration of 0 mM to 100 mM and time.
  • FIG. 10 shows the relationship between the time course of the cumulative amount permeated flux and the time at phosphate concentrations from 0 mM to 100 mM.
  • the unit of cumulative transmission is [mol / cm 2 ] (eg No. 1 [mol / cm 2 ] etc.), and the unit of flux is [mol / cm 2 / hour]. ].
  • the phosphate concentration is low, especially about 0mM to 10mM does not affect the permeation and can be expected to improve the stability of the drug (study only at 1mM. Stable after 18 months. I understand.
  • This relates to preparations for administering physiologically active substances transdermally and transmucosally using electrical energy, and can be used mainly in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Electrotherapy Devices (AREA)

Abstract

 本発明は、薬物安定性において優れ、製造時の調合及び充填が容易で、低コストで製造が可能なイオントフォレーシス用薬剤組成物を提供することを目的とする。本発明のイオントフォレーシス用薬剤組成物は、非イオン性合成高分子と、リン酸ベタメタゾンナトリウムと、溶媒とを含有することを特徴とする。また、本発明の薬剤組成物の好ましい実施態様において、非イオン性合成高分子物質が、ポリビニルアルコール(PVA)であることを特徴とする。また、本発明の薬剤組成物の好ましい実施態様において、ポリビニルアルコール(PVA)の配合量が、0.5~30重量%であることを特徴とする。

Description

イオントフォレーシス用薬剤組成物
 本発明は、経皮及び経粘膜への適用に好適なイオントフォレーシス用製剤組成物に関する。
 イオントフォレーシスは、生体に有用なイオン性の薬剤などの成分を、所謂電気泳動を利用して生体に浸透させる方法であり、イオン浸透療法、イオン導入方法などとも呼ばれ、主に全身性の薬物の投与に用いられている。
 イオントフォレーシス装置は一般に薬効成分(生理活性物質)がプラス又はマイナスのイオン(薬剤イオン)に解離する薬剤液を保持する作用極構造体と、作用極構造体の対極の役割を有する非作用構造体を備えており、これら両構造体を生体(ヒト又は哺乳動物)の皮膚に当接させた状態で、作用極構造体に薬剤イオンと同一極性の電圧を電源装置より印加することによって薬剤イオンが生体内へ投与される。まれに両方の極に生理活性物質を含ませ、両極とも作用構造体とすることもある。
 ところで、水溶性ステロイドは、慢性関節リウマチや変形性関節症等の治療において、注射剤として関節内投与されている。しかし、注射に際し痛みを有し、医師の高度な技術が必要となり、更に投与部位から感染症を引き起こす可能性もあり、決して簡便で安全性に優れた医薬上有用性の高い投与方法ではなかった。
 かかる問題を解決するために、水溶性ステロイドの一種であるリン酸デキサメタゾンナトリウムを直流型のイオントフォレーシスを用いた経皮投与が知られている(非特許文献1)。
インターナショナル ジャーナル オブダーマトロジィ 19巻(1990年)第519~525頁(Int.J.Dermatol.19.(1990)519-525))
 しかしながら、上述の注射剤による投与では、生体状況、例えば副作用等を考慮しながら投与するため、2週間以上間隔を開けて投与しなければならず、また、通院等が必要であり、必ずしも治療効果を求める上で簡便で有効性の高い投与方法とは言い難く、効果的な投与方法が希求されていた。
 また、上述の非特許文献による投与では、電気的刺激や痛みを抑えるために局所麻酔薬であるリドカインの使用を前提とするものであるが、実用上必ずしても簡便で安全な投与方法とはいえないという問題があった。
 また、イオントフォレーシスへ適用するための薬剤組成物は、より長期安定性が望まれるのであるが、かかる観点から薬剤組成物を準備する試みがほとんどなされていないのが現状である。
 そこで、本発明は、薬物安定性において優れ、製造時の調合及び充填が容易で、低コストで製造が可能なイオントフォレーシス用薬剤組成物を提供することを目的とする。
 上記目的を達成するために、本発明者らは、上記目的を達成すべく水溶性ステロイドと長期安定性との関係について、鋭意研究を重ねた結果、本発明を見出すに至った。
 すなわち、本発明のイオントフォレーシス用薬剤組成物は、非イオン性合成高分子と、リン酸ベタメタゾンナトリウムと、溶媒とを含有することを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、非イオン性合成高分子物質が、ポリビニルアルコール(PVA)であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、ポリビニルアルコール(PVA)の配合量が、0.5~30重量%であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、前記ポリビニルアルコール(PVA)の配合量が、20重量%以下であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、リン酸ベタメタゾンナトリウムの配合量が、1~12重量%であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、前記リン酸ベタメタゾンナトリウムの配合量が、1~4重量%であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、溶媒が、水、リン酸緩衝液、からなる群から選択される少なくとも1種であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、前記組成物の表面におけるpHが、7~8の範囲であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、さらに、エチレンジアミン四酢酸(EDTA)を含有することを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、エチレンジアミン四酢酸(EDTA)の配合量が、0.05~0.15重量%であることを特徴とする。
 また、本発明の薬剤組成物の好ましい実施態様において、リン酸緩衝液の濃度が、1~10mMであることを特徴とする。
 また、本発明の製剤は、前記請求項1~11項のいずれか1項に記載の組成物と、粘着層とを有することを特徴とする。
 また、本発明の製剤の好ましい実施態様において、前記粘着層が、アクリル系、シリコン系、合成ゴム系、および天然ゴム系などからなる群から選択される少なくとも1種で構成されることを特徴とする。
 また、本発明のイオントフォレーシス投与方法は、本発明の薬剤組成物を用いて、リン酸ベタメタゾンナトリウムを投与することを特徴とする。
 また、本発明の投与方法の好ましい実施態様において、リン酸ベタメタゾンナトリウムを経皮的に、支持層から筋周膜を経由し、内側筋周膜並びに滑膜へ帯状に分布させ関節に送達することを特徴とする。
 また、本発明の慢性関節リウマチ、変形性関節症、腱炎、腱鞘炎、又は腱周囲炎の治療方法は、本発明の投与方法によりリン酸ベタメゾンナトリウムを投与することにより、慢性関節リウマチ、変形性関節症、腱炎、腱鞘炎、腱周囲炎(いずれも非感染性に限る)からなる群から選択される少なくとも1種の疾患を治療することを特徴とする。
 本発明によれば、薬剤組成物の残存率が、長期間に渡って安定しており、薬剤の安定性に優れるという有利な効果を奏する。また、本発明によれば、できる限り不要な成分を除いて、最小限必要な成分を用いたので、従来の成分における離水等の問題も生じることなく、優れた薬剤効果を達成することが可能であるという有利な効果を奏する。
図1は、種々のpHにおける薬物残存率を示す。 図2は、本発明の一実施例における薬剤組成物について、40℃で加速試験を行った場合の結果を示す。 図3は、EDTAを添加した場合、又はリン酸緩衝液下(1mMリン酸緩衝液での加速試験ではEDTA添加せず)での場合について、ゲル製剤40℃での加速試験における薬物の残存率を示す。 図4は3H標識リン酸ベタメタゾンを通電により経皮投与した正常ウサギ右膝関節の模式図を示す。 図5は3H標識リン酸ベタメタゾンを通電により30分間経皮投与した正常ウサギ右膝関節のセミミクロオートラジオグラフを示す。 図6は3H標識リン酸ベタメタゾンを通電により30分間経皮投与した正常ウサギ右膝関節のセミミクロオートラジオグラフを示す。 図7は3H標識リン酸ベタメタゾンを通電により120分経皮投与した正常ウサギ右膝関節のセミミクロオートラジオグラフを示す。 図8は右脚に3H標識リン酸ベタメタゾンを通電により経皮投与した正常ウサギの非投与側である左膝関節のセミミクロオートラジオグラフを示す。 図9は、0mM~100mMのリン酸塩濃度における累積透過量プロファイル(cumulative amount permeated)との時間の関係を示す。 図10は、0mM~100mMのリン酸塩濃度における累積透過量プロファイル(cumulative amount permeated)の経時的な傾き(flux)と時間との関係を示す。
 本発明のイオントフォレーシス用薬剤組成物は、非イオン性合成高分子物質と、リン酸ベタメタゾンナトリウムと、溶媒とを含有する。本発明のイオントフォレーシス用薬剤組成物において使用される非イオン性合成高分子物質としては、親水性で非イオン性の合成高分子物質であれば、特に限定されないが、例えば、ポリビニルアルコール、ポリビニルホルマール、ポリビニルメチルエーテル、ポリビニルメタアクリレート、ポリビニルピロリドン、ポリビニルピロリドン・ビニルアセテート共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド等の合成高分子物質を挙げることができる。中でも製造が簡便であるという観点から、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイドが好ましい。これらは、1種又は2種以上が適宜組み合わせて使用される。
 このような非イオン性合成高分子物質の配合量は、イオントフォレーシス用薬剤組成物において、0.5~30.0重量%であることが好ましい。配合量が0.5重量%未満となると、十分な保形性と粘着性が発揮されない虞があるのに対して、30.0重量%を超えると、増粘による製造面での取り扱い性及び充填性が低下する虞がある。また、本発明の薬剤組成物の好ましい実施態様において、前記ポリビニルアルコール(PVA)の配合量が、20重量%以下である。これは、非イオン性合成高分子物質による糸引き、粘度上昇による生産性低下の防止からである。より好ましくは、16重量%以下、さらに好ましくは、14~16重量%である。
 また、本発明の薬剤組成物の好ましい実施態様において、リン酸ベタメタゾンナトリウムの配合量は、特に限定されるものではないが、ドナーの薬物濃度に対する電場による透過促進効果という観点から、1~12重量%であり、さらに好ましくは透過促進効率という観点から1~4重量%である。
 また、本発明の薬剤組成物の好ましい実施態様において、溶媒が、水、リン酸緩衝液、からなる群から選択される少なくとも1種である。本発明のイオントフォレーシス用薬剤組成物において配合される水は、皮膚角質層の膨潤、刺激性の緩和及び投与薬物の溶解と透過のために、イオントフォレーシス投与では非常に重要な成分である。水の配合量は、イオントフォレーシス用薬剤組成物の全体の重量に対して、10~80重量%とすることが好ましく、より好ましくは30~60重量%である。配合量が10重量%未満となると、組成物中の水溶性薬物の溶解性が低下して、結晶が析出したり、組成物中の自由水量が低下して、拡散抵抗の増加が発生し、結果的に薬物吸収量が低下してしまう虞がある。一方、配合量が80重量%を超えると、十分なゲル体を形成するのが困難になり、水揮散性が高くなり、保管時及び投与時の品質保証が困難になる。
 尚、本発明の薬剤組成物の表面におけるpHは、薬物の安定性及び投与電極によって異なるため、特に限定されないが、薬物安定性や皮膚への安全性及びゲル物性を考慮すると、好ましくは、pH4~9の範囲内、より好ましくはpH7~8の範囲内である。
 また、本発明の薬剤組成物において、さらに、エチレンジアミン四酢酸(EDTA)を含有してもよい。エチレンジアミン四酢酸(EDTA)は、金属系化合物の硬化を調整することができるとともに、金属イオン、特にAg+をキレートで捕捉することができ、ひいては、薬物の安定性にも寄与する。エチレンジアミン四酢酸(EDTA)の配合量としては、特に限定されるものではないが、薬物の皮膚透過を妨げないという観点から、0.05~0.15重量%であることが好ましい。
 また、本発明の薬剤組成物の好ましい実施態様において、長期にわたってゲル表面のpH変化を小さくし、通電時の皮膚透過においてリン酸ベタメタゾンナトリウムとの競合を抑える事ができるという観点から、リン酸緩衝液の濃度が、1~10mMであり、より好ましくは、1~5mMである。
 また、本発明の製剤は、上述した本発明の薬剤組成物と、粘着層とを有する。例えば、前記粘着層は、アクリル系、シリコン系、合成ゴム系、および天然ゴム系などからなる群から選択される少なくとも1種で構成される。粘着層は、好ましくは、アクリル系である。
 また、本発明の薬剤組成物においては、本発明の趣旨、すなわち、必要最小限の成分を用いて、添加物による弊害を除去しつつ、安定な薬剤組成物を提供するという趣旨を逸脱しない範囲で、保存剤、防腐剤を含有してもよい。
 本発明の薬剤組成物の製造方法は、適当な容器に、溶媒と非イオン性合成高分子物質とを加え、必要に応じて攪拌する。加熱したオイルバスに浸し、撹拌しながら20~60分加熱し、必要に応じて撹拌しながら室温下で冷却する。
 温度が下がった後、リン酸ベタメタゾンナトリウム溶液を加えて、必要におうじて精製水を加え、均一になるまで再度撹拌する。このようにして、本発明の薬剤組成物を得ることができる。
 次に、本発明のイオントフォレーシス投与方法について説明する。本発明のイオントフォレーシス投与方法は、本発明の薬剤組成物を用いて、リン酸ベタメタゾンナトリウムを投与する。本発明の薬剤組成物については、上述の説明を参照することができる。
 投与に際して、上記本発明の薬剤組成物は、支持体の展膏面に予め導電性ペーストを印刷して形成された電極上に展膏するか、又は一旦剥離処理を施したフィルムや成型カップに薬剤組成物を展膏又は充填した後に電極に転写圧着して、イオントフォレーシス用電極を得ることができる。当該電極を用いて、常法のイオントフォレーシス装置を用いて、投与することが可能である。
 また、本発明において、上述の本発明の薬剤組成物を利用し、イオントフォレーシス装置を構築して、リン酸ベタメタゾンナトリウムを経皮的に、支持層から筋周膜を経由し、内側筋周膜並びに滑膜へ帯状に分布させ関節に送達することが可能である。
 本発明のイオントフォレーシス投与方法を用いて、リン酸ベタメゾンナトリウムを投与することにより、慢性関節リウマチ、変形性関節症、腱炎、腱鞘炎、腱周囲炎(いずれも非感染性に限る)からなる群から選択される少なくとも1種の疾患を治療することが可能となる。
 以下、本発明の実施例を説明するが、下記の実施例は、本発明の範囲を何ら限定するものではない。
<作製手順(100gスケールとして)>
 セパラブルビーカーにPVAを15g入れ精製水を加えた(EDTAを添加する場合はこの時に添加した。また、緩衝液を用いる場合は精製水の部分を緩衝液にして作製した。)。ビーカーのふたを閉め、撹拌用のパドルを装着した。120℃のオイルバスに浸し、撹拌しながら30分加熱した。オイルバスから取り出し、撹拌しながら室温下で冷却した。約60℃まで温度が下がったら3%となるようにリン酸ベタメタゾンナトリウム溶液を加え撹拌した。精製水を加え100gに調製した。均一になるまで再度撹拌した。十分に撹拌したらこの混合溶液をシリンジで吸い取った。フォームテープ(3M社製, 独立気泡フォームテープ、型番9773。)で作製した製剤に作製した溶液を約1g分注した。-80℃の冷凍庫に入れ凍結させる事によりPVAのゲル化を促進させた。1晩程度凍結させた後、室温下に静置して解凍した。これをアルミ製の包材に1つずつ分包し、種々の温度に設定された恒温恒湿機に入れ、安定性試験を行った。
 次に、実施例1に従って調製した組成物について、EDTAの量を変化させた場合について、40℃で加速試験を行った。このときのゲルのpH測定を行うことによって、薬物の安定性を調べた。表1及び図2は、本発明の一実施例における薬剤組成物について、40℃で加速試験を行った場合の結果を示す。表1中、(a)は0%EDTAの場合、(b)は0.05%EDTAの場合、(c)は0.15%EDTAの場合において、1、2、3、6か月後のpHの変化を示したものである。
Figure JPOXMLDOC01-appb-T000001
 その結果、pHは、経時的に下がってきており、このpH低下を防げることができればより安定な製剤になると推察された。
 次に、EDTAを添加した場合、リン酸緩衝液下の場合について、ゲル製剤40℃での加速試験における薬物の残存率について調べた。表2及び図3は、EDTAを添加した場合、リン酸緩衝液下の場合について、ゲル製剤40℃での加速試験における薬物の残存率を示す。
Figure JPOXMLDOC01-appb-T000002
 この結果、実施例3での推測されたように、リン酸緩衝液等の使用により、pHの低下を防止することが可能であり、ひいては、薬物残存率の低下を抑制することが可能となることがわかる。
 次に、薬剤組成物を水やゲル等に溶解させた場合のpH変化について調べた。表3は、薬物を加えた水溶液中のpH変化を示す。表中、BSPは、リン酸ベタメタゾンナトリウム(Betamethasone sodium phosphate)を示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果、薬物を加えると、pHがアルカリ側に傾くことが判明した。また、薬物濃度を増加させるとpHがよりアルカリ側に傾くことも判明した。一方で、EDTAは酸性側にpHを傾ける事が判明した。
 また、薬剤組成物をゲルに溶解させた場合のpH変化についても調べた。表4及び表5は、薬物を加えたゲル表面でのpH変化を示す。表5(a)は、1枚のゲル表面のpHを7~8回測定し平均値を示したものである。表5(b)は、表5(a)で得られた平均値をまとめたものである。表5中の、Beta-Pは、リン酸ベタメタゾンナトリウムを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4、及び表5の結果、ゲル表面でも薬物を加えると、pHがアルカリ側に傾くことが判明した。また、薬物濃度を増加させるとpHがよりアルカリ側に傾くことも判明した。一方で、EDTAは酸性側にpHを傾ける事が判明した。この結果、ゲルでも水溶液と同様の傾向が得られることが判明した。
 次に、広域緩衝液pH2~pH8中の薬物の安定性について検討した。より詳細には、Briton-Robinsonの広域緩衝液を使い、pHを2~8に調整し、それぞれの溶液で3%(w/v)リン酸ベタメタゾンナトリウム溶液を作製した。また、4℃、40℃、50℃、60℃で、2週間後、1か月後、4か月後、6か月後の薬物の安定性を調べた。表6は、4℃、60℃で、2週間後の薬物の安定性を調べた結果を示す。表7は、4℃、40℃、50℃、60℃で、1か月後の薬物の安定性を調べた結果を示す。表8は、4℃、40℃、50℃、60℃で、4か月後の薬物の安定性を調べた結果を示す。表9は、4℃、40℃、50℃で、6か月後の薬物の安定性を調べた結果を示す。表中、Wは、精製水(イオン交換水)を意味し、N2-Wは、窒素ガスでバブリングを行った精製水を示す。
 また、図1は、40℃で、6か月後の薬物残存率を示す。図1からpH5以上から徐々に薬物残存率が高くなるのが分かる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 これらの結果、pHの増加に従って、薬物安定性も増加することが判明した。
 次に、3H標識リン酸ベタメタゾンを経皮投与後、通電処置を行った正常ウサギ膝関節のセミミクロオートラジオグラフィーを作成し、3H標識リン酸ベタメタゾンの分布について検討した。
 通電処置を伴う経皮投与後ウサギの血漿中放射能濃度を測定した。120分投与個体においては、投与10分後から緩やかに上昇し、120分後に最高数値を示したが、まだ上昇傾向であった。30分投与個体においても、投与10分後から緩やかに上昇し、30分後ではまだ上昇傾向を示した。
 投与時間が120分および30分のウサギ膝関節のセミミクロオートラジオグラフを作成した。骨格系組織のうち滑膜性(synovial)jointに特に着目し、線維性被包および、滑膜に(synovium membrane)に、ごく僅かながら3Hによる黒化像の記録を認めた。
 Perimysial tissueの帯(筋周膜)に関しては、表皮組織の内側に位置している真皮網状層(reticular dermis)までの濃度の高い3H黒化像に続いて、筋周膜外周の黒化が観察された。
 非投与・未処置の膝関節のセミミクロオートラジオグラフについては、120分間投与個体において、極めて希薄な上皮組織の黒化が確認できたが、何れもバックグランドレベルで放射能強度の測定は不能であった。
 上記の成績から、3H標識リン酸ベタメタゾンの経皮投与に通電処置を伴うことによって、深部吸収を示した。真皮毛細血管への移行のみではなく支持層から筋周膜を経由して、内側筋周膜並びに、滑膜への移行を実証できた。
 試験項目として、標識化合物の純度測定、血漿中放射能濃度測定、ウサギ膝関節のセミミクロオートラジオグラフィー、ウサギ膝関節のセミミクロオートラジオグラフィー(非投与部位)を行った。
<標識化合物の純度測定>
 表10は、標識化合物の純度測定の内容を示す。
Figure JPOXMLDOC01-appb-T000010
<血漿中放射能濃度測定>
 表11は、血漿中放射能濃度測定の内容を示す。
Figure JPOXMLDOC01-appb-T000011
 なお、通電処置を伴う経皮投与は、以下の通りであった。投与量:18.5 MBq (500 μCi)/1 mL/head。
<ウサギ膝関節のセミミクロオートラジオグラフィー>
 表12は、ウサギ膝関節のセミミクロオートラジオグラフィーの内容を示す。
Figure JPOXMLDOC01-appb-T000012
 なお、通電処置を伴う経皮投与は、以下の通りであった。投与量:18.5 MBq (500 μCi)/1 mL/head。
<ウサギ膝関節のセミミクロオートラジオグラフィー(非投与部位)>
 表13は、ウサギ膝関節のセミミクロオートラジオグラフィー(非投与部位)の測定内容を示す。
Figure JPOXMLDOC01-appb-T000013
<標識化合物>
 標識化合物については、以下の通りであった。
標識化合物名 : [3H] Betamethasone-21-phosphate disodium salt
供給者: GE ヘルスケアライフサイエンス株式会社 
放射化学的純度: 99.4%
放射能濃度: 185 MBq (5 mCi)/mL
比放射能: 407 GBq (11 Ci)/mmol
形状: 液体
保管方法: 遮光、気密、冷凍(-20 ℃)
 その他の試薬は特級品または同等品およびHPLC用規格品を用いた。
<[3H] Betamethasone-21-phosphate disodium saltの純度検定>
 [3H] Betamethasone-21-phosphate disodium salt放射化学的純度を確認するため、化合物受入れ時(ロット番号TRQ40214)にTLC法を用いて検定を行った。分析条件は下記のとおりとした。
<TLC分析条件>
検定日   : 2008年11月18日(化合物受入れ時)
TLCプレート: Silica gel 60 F254 (Merck)
Mobile phase: n-BuOH/AcOH/DW (8:1:1)
<ゲル製剤の作成>
  [3H]-Betamethasone-21-phosphate disodium salt約18.5MBq(500mCi/1g)のゲルを作製した。トリチウムで標識した[3H]-Betamethasone-21-phosphate disodium saltと非標識体のBetamethasone-21-phosphate disodium saltの混合溶液を作製し、融解したPVA溶液と混合した。これを電極と粘着層から成るパッチに流し込み-80℃で冷却して目的とする製剤を得た。
<試験動物>
 試験に供するNZ系雄性ウサギ2匹は、北山ラベス(日本チャールズリバー株式会社)より購入した。1ケージ当たり1匹で収容し、3日間の予備飼育後、健康状態が良好であることを確認し試験に使用した(ウサギ体重:2.49 kgと2.43 kg)。予備飼育中および試験中における動物の観察は被毛および皮膚、排泄物などの一般状態とし、毎日行った。
 動物入荷時に、動物の耳に番号を付け識別した。試験に際しての群分けは無作為に行った。動物は金属製ケージ(400W x 500D x 400H mm、夏目製作所)に収容して飼育した。ケージ、床敷、給餌器および給水ビンの交換は3回/週行った。予備飼育中および試験中の飼育は、温度19.0~23.6 ℃、湿度40.0~60.0 %RH、明暗サイクル12時間/12時間 (明: 6時~18時; 暗: 18時~翌 6時)に設定した飼育室内で行い、飼料(ウサギ用飼料(LRC-4、 オリエンタル酵母工業株式会社および水は自由摂取とした。
<投与方法および投与量>
 投与方法及び投与量については、以下の通りであった。
  投与経路: 通電処置を伴う経皮投与
  投 与 量: 18.5 MBq (500 μCi)/1 mL/head
<投与部位の通電処置>
 3H標識リン酸ベタメタゾンのゲル製剤(陰極)と薬物を含まないリファレンスゲル製剤(陽極)を予め徐毛したウサギ膝関節に適用し、通電装置(VI 1002、プレサイスゲージ株式会社)を接続した。0.968mAの電流(電流密度0.2mA/cm2)を30分または120分通電した。通電処置の模式図を図4に示した。図4は、3H標識リン酸ベタメタゾンを通電により経皮投与した正常ウサギ右膝関節の模式図を示す。120分間投与個体には電極Aを、30分間投与個体には電極Bを用いた(表14)。
 表14は、薬液/薬物含有ゲル中放射能及び薬物量を示す。
Figure JPOXMLDOC01-appb-T000014
 血漿中放射能濃度測定は以下のように行った。投与後の所定時点にヘパリン処理を施したシリンジにより、採血した血液を遠心分離(4℃、3000rpm、15分)して血漿を調製し、放射能計測用試料とした。
 測定用試料は、可溶化剤を加えて処理し、液体シンチレーションカウンター(LSC-1000、ALOKA)を用いて計測を行った。定量限界はバックグラウンドの2倍とし、この値未満をNDとした。計測値から血漿中放射能濃度を算出した。
 次に、ウサギ膝関節のセミミクロオートラジオグラフを以下のように作成した。
 投与30分、および120分後にそれぞれ麻酔薬(ネンブタール)の過剰投与によって安楽死させた動物より、膝関節部位を摘出し液体窒素を用いて凍結した。その後、包埋した凍結ブロックをミクロトーム(CRYOMACROCUT, Leica)載物台の刃に向かって、前方に大腿部、後方に脛部を向けて、脚の裏側を載物台に密着させて固定した。ミクロトームの載物台を滑走させると、刃は長方形ブロックの短辺と直角方向に接触し、その上面を薄切り切片として削り切りつつ接着テープにその切片を密着させ、取り出した。この作業を数十回繰り返し、膝の前部から後部に向かって切り進み、投与・通電部分に至る切片は順次(前面から後面に向かって)(1)~(7)とした。関心のある切片は、イメージングプレート(富士写真フイルム株式会社)と密着露出させ、168時間露出の後、バイオイメージングアナライザー(BAS1800、富士写真フイルム株式会社)により画像化した。
 放射能濃度を指標として、未変化体換算した薬物換算濃度は以下の式で算出した。
 薬物換算濃度(μg eq./mL)=   試料中放射能濃度(dpm/mL)  
                投与放射能量(dpm)/投与薬物量(μg)
 それぞれの測定の結果は以下の通りであった。
<血漿中放射能濃度測定について>
 3H標識リン酸ベタメタゾン通電処置を伴う経皮投与後ウサギの血漿中放射能濃度を表15に示した。
Figure JPOXMLDOC01-appb-T000015
 120分投与個体において、血漿中放射能濃度は投与10分後から緩やかに上昇し、120分後に最高数値を示したが、まだ上昇傾向であった。投与120分後の平均薬物換算値は1.17μg eq/mLであった。30分投与個体においても、投与10分後から緩やかに上昇し、30分後ではまだ上昇傾向を示した。平均薬物換算値は0.09μg eq/mLであった。
<ウサギ膝関節のセミミクロオートラジオグラフィーについて>
 膝関節の外側から内側に向かって通電処置を伴う経皮投与を行ったウサギ右膝関節セミミクロオートラジオグラフの模式図を図4に示した。上皮、筋周膜、骨膜、骨、骨髄などの黒化度に着目した。
 30分間投与したウサギ膝関節のセミミクロオートラジオグラフを図5~6に、120分間投与したウサギ膝関節のセミミクロオートラジオグラフを図7に示した。左側にはBAS1800によるセミミクロオートラジオグラフを、右側には切片像を、中央には切片像にBAS画像を重ねた合成像を示した。
 30分投与個体においては、膝の前部から後部に向かって切り進めた順次に切片番号(2)、(3)、(5)と(6)の断面を、120分投与個体においては切片番号(5)を示した。各切片において、黒化度別に定量された4部位の放射能濃度[(PSL-BG)/area]を表16(120分投与)及び表17(30分投与)に示した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 骨格系組織のうち滑膜性(synovial)jointに特に着目し、線維性被包および、滑膜に(synovium membrane)に、ごく僅かながら3Hによる黒化像の記録を認めた。
 Perimysial tissueの帯(筋周膜)に関しては、表皮組織の内側に位置している真皮網状層(reticular dermis)までの濃度の高い3H黒化像に続いて、筋周膜外周の黒化が観察された。この像は腱に達し、筋周を巡って内周に黒化像が浸襲し骨膜に達していた。この場合の黒化濃度は極めて希薄であった。表16及び17に示したように、120分間投与の実施例(断面(5))については、放射能強度が最高黒化部で807.0[PSL-BG/area]、筋周膜外側で39.93[PSL-BG/area]、筋周膜内側で18.03[PSL-BG/area]、関節包周辺組織で0.41[PSL-BG/area]であった。それに対し、30分間投与の実施例(断面(5))については、最高黒化部位で1091.13[PSL-BG/area]、筋周膜外側で49.69[PSL-BG/area]、筋周膜内側で13.87[PSL-BG/area]、関節包周辺組織で0.42[PSL-BG/area]であった。
<ウサギ膝関節のセミミクロオートラジオグラフィー(非投与部位)について>
 非投与・未処置の膝関節のセミミクロオートラジオグラフを図8に示す。120分間投与個体において、168時間という長期露出を行った結果、極めて希薄な上皮組織の黒化が確認できたが、何れもバックグランドレベルであったため放射能強度の定量は不能であった。
 両実施例では、投与放射能量が30分個体で538.3908μCi、120分個体で545.6088μCiと、ほぼ同量であったにも関わらず、30分個体では120分個体に比べ、上皮では高濃度で、上皮組織において薬物濃度が1.35倍高く分布している領域が観測された。そのため、30分個体では上皮からの吸収により全身への分散が速いように思われる。
 本試験の成績から、3H標識リン酸ベタメタゾンの経皮投与に通電処置を伴うことによって、深部吸収を示した。真皮毛細血管への移行のみではなく支持層から筋周膜を経由して、内側筋周膜並びに、滑膜への移行を実証できた。
 次に、PVAゲル作製時に使用した溶媒をリン酸緩衝液(pH8に調整)にし、そのリン酸塩濃度を0mM~100mMまでふった場合の薬物のヘアレスマウス皮膚透過性について調べた。表18は、リン酸塩濃度0mMの場合を示し、表19は、リン酸塩濃度1mMの場合を示し、表20は、リン酸塩濃度3mMの場合を示し、表21は、リン酸塩濃度5mMの場合を示し、表22は、リン酸塩濃度10mMの場合を示し、表23は、リン酸塩濃度10mM(2回目)の場合を示し、表24は、リン酸塩濃度50mMの場合を示し、表25は、リン酸塩濃度100mMの場合を示す。また、図9は、0mM~100mMのリン酸塩濃度における皮膚内へ蓄積した薬物の量と時間との関係を示す。図10は、0mM~100mMのリン酸塩濃度における累積透過量プロファイル(cumulative amount permeated)の経時的な傾き(flux)と時間との関係を示す。なお、表18~表25において、累積透過量の単位は、[mol/cm2](例No.1[mol/cm2]等)であり、fluxの単位は、[mol/cm2/hour]である。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 これらの結果、塩濃度が高いと若干累積透過量が低下していることがわかる。これは競合するイオン濃度が増えることで薬物の透過を妨げたからであると考えられる。低い塩濃度1~10mM程度の場合、これらの影響は小さいことも判明した。また、累積透過量プロファイル(cumulative amount permeated)の経時的な傾き(flux)は、実験後期ではあまり差が出なかったが初期に競合イオンの影響を受け、低い塩濃度(1mM)は水と同じ様な挙動を示していると思われる。
 従って、リン酸塩濃度は低い方が望ましく、特に0mM~10mM程度が透過へ影響せず、薬物の安定性を向上させる事が期待できる(安定性は1mMでのみ検討。18か月後も安定)ことが分かる。
 電気的エネルギーを利用して経皮、経粘膜から生理活性物質を投与するための製剤に関するもので、主に医療分野で利用可能である。

Claims (16)

  1.  非イオン性高分子物質と、リン酸ベタメタゾンナトリウムと、溶媒とを含有するイオントフォレーシス用薬剤組成物。
  2.  前記非イオン性高分子物質が、ポリビニルアルコール(PVA)である請求項1記載の組成物。
  3.  前記ポリビニルアルコール(PVA)の配合量が、0.5~30.0重量%であることを特徴とする請求項1記載の組成物。
  4.  前記ポリビニルアルコール(PVA)の配合量が、20重量%以下であることを特徴とする請求項3記載の組成物。
  5.  前記リン酸ベタメタゾンナトリウムの配合量が、1~12重量%であることを特徴とする請求項1~3項のいずれか1項に記載の組成物。
  6.  前記リン酸ベタメタゾンナトリウムの配合量が、1~4重量%であることを特徴とする請求項5項に記載の組成物。
  7.  前記溶媒が、水、リン酸緩衝液からなる群から選択される少なくとも1種である請求項1~6項のいずれか1項に記載の組成物。
  8.  前記組成物の表面におけるpHが、7~8の範囲である請求項1~7項のいずれか1項に記載の組成物。
  9.  さらに、エチレンジアミン四酢酸(EDTA)を含有する請求項1~8項のいずれか1項に記載の組成物。
  10.  エチレンジアミン四酢酸(EDTA)の配合量が、0.05~0.15重量%であることを特徴とする請求項1~9項のいずれか1項に記載の組成物。
  11.  リン酸緩衝液の濃度が、1~10mMであることを特徴とする請求項7~10項のいずれか1項に記載の組成物。
  12.  前記請求項1~11項のいずれか1項に記載の組成物と、粘着層とを有するイオントフォレーシス用製剤。
  13.  前記粘着層が、アクリル系、シリコン系、合成ゴム系、および天然ゴム系からなる群から選択される少なくとも1種で構成される請求項10項記載の製剤。
  14.  請求項1~11項のいずれか1項に記載の薬剤組成物を用いて、リン酸ベタメタゾンナトリウムを投与するイオントフォレーシス投与方法。
  15.  リン酸ベタメタゾンナトリウムを経皮的に、支持層から筋周膜を経由し、内側筋周膜並びに滑膜へ帯状に分布させ関節に送達することを特徴とする請求項14記載の投与方法。
  16.  請求項14又は15記載の投与方法によりリン酸ベタメゾンナトリウムを投与することにより、慢性関節リウマチ、変形性関節症、腱炎、腱鞘炎、腱周囲炎(いずれも非感染性に限る)からなる群から選択される少なくとも1種の疾患を治療する治療方法。
PCT/JP2010/004779 2009-07-31 2010-07-28 イオントフォレーシス用薬剤組成物 WO2011013359A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10804110.4A EP2460524B1 (en) 2009-07-31 2010-07-28 Medicinal composition for iontophoresis
CA2769008A CA2769008A1 (en) 2009-07-31 2010-07-28 A pharmaceutical composition for an iontophoresis
AU2010277012A AU2010277012B2 (en) 2009-07-31 2010-07-28 Medicinal composition for iontophoresis
US13/388,295 US8652522B2 (en) 2009-07-31 2010-07-28 Pharmaceutical composition of an iontophoresis
CN2010800339612A CN102573849A (zh) 2009-07-31 2010-07-28 用于离子电渗法的药物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179895A JP6116790B2 (ja) 2009-07-31 2009-07-31 イオントフォレーシス用薬剤組成物
JP2009-179895 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013359A1 true WO2011013359A1 (ja) 2011-02-03

Family

ID=43529029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004779 WO2011013359A1 (ja) 2009-07-31 2010-07-28 イオントフォレーシス用薬剤組成物

Country Status (9)

Country Link
US (1) US8652522B2 (ja)
EP (1) EP2460524B1 (ja)
JP (1) JP6116790B2 (ja)
KR (1) KR20120042900A (ja)
CN (1) CN102573849A (ja)
AU (1) AU2010277012B2 (ja)
CA (1) CA2769008A1 (ja)
TW (1) TW201106992A (ja)
WO (1) WO2011013359A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211033B2 (ja) * 2015-05-19 2017-10-11 帝國製薬株式会社 イオントフォレーシス用薬剤組成物
US11806520B2 (en) 2017-10-31 2023-11-07 Tusker Medical, Inc. Systems, apparatus, and methods for delivery of therapeutic substance to nasal cavity
RU2709141C1 (ru) * 2018-12-11 2019-12-16 Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" (ФГАОУ ВО "КФУ им. В.И. Вернадского") Способ лечения ревматоидного артрита

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248344A (ja) * 1996-03-17 1997-09-22 Hisamitsu Pharmaceut Co Inc イオントフォレーシス用電極デバイス
WO2004019902A1 (ja) * 2002-08-30 2004-03-11 Hisamitsu Pharmaceutical Co., Inc. イオントフォレーシス製剤用粘着ゲル組成物及びその製造方法
WO2005021008A1 (ja) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. イオントフォレーシス投与組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043949A1 (en) * 2002-08-30 2004-03-04 Christopher Richardson Therapeutic system targeting pathogen proteases and uses thereof
JP4969812B2 (ja) * 2005-07-22 2012-07-04 久光製薬株式会社 ハイドロゲル組成物
US20080188791A1 (en) * 2007-02-02 2008-08-07 Difiore Attilio E Active iontophoresis delivery system
US9421356B2 (en) * 2007-08-28 2016-08-23 Teikoku Pharma Usa, Inc. Transdermal methods and systems for the delivery of corticosteroid compounds
WO2010054356A1 (en) * 2008-11-10 2010-05-14 Nitric Biotherapeutics, Inc. Pharmaceutical formulations for iontophoretic delivery of a corticosteroid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248344A (ja) * 1996-03-17 1997-09-22 Hisamitsu Pharmaceut Co Inc イオントフォレーシス用電極デバイス
WO2004019902A1 (ja) * 2002-08-30 2004-03-11 Hisamitsu Pharmaceutical Co., Inc. イオントフォレーシス製剤用粘着ゲル組成物及びその製造方法
WO2005021008A1 (ja) * 2003-08-29 2005-03-10 Hisamitsu Pharmaceutical Co., Inc. イオントフォレーシス投与組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GLASS, J.M. ET AL.: "The quantity and distribution of radiolabeled dexamethasone delivered to tissue by iontophoresis", INTERNATIONAL JOURNAL OF DERMATOLOGY, vol. 19, no. 9, 1980, pages 519 - 525, XP008149730 *
INT. J. DERMATOL., vol. 19, 1990, pages 519 - 525
INTERNATIONAL JOURNAL OF DERMATOLOGY., vol. 19, 1990, pages 519 - 525
KAMATH, S.S. ET AL.: "Electrophoretic evaluation of the mobility of drugs suitable for iontophoresis", METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY, vol. 17, no. 4, 1995, pages 227 - 232, XP008149717 *
See also references of EP2460524A4

Also Published As

Publication number Publication date
CN102573849A (zh) 2012-07-11
AU2010277012A1 (en) 2012-02-09
US8652522B2 (en) 2014-02-18
CA2769008A1 (en) 2011-02-03
EP2460524A1 (en) 2012-06-06
AU2010277012B2 (en) 2014-10-02
JP2011032209A (ja) 2011-02-17
EP2460524B1 (en) 2017-10-25
KR20120042900A (ko) 2012-05-03
JP6116790B2 (ja) 2017-04-19
TW201106992A (en) 2011-03-01
US20120165782A1 (en) 2012-06-28
EP2460524A4 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US10881607B2 (en) Composition for transdermal delivery of cationic active agents
JP6116790B2 (ja) イオントフォレーシス用薬剤組成物
Ragit et al. Iontophoresis as an effective drug delivery system in dentistry: a review
JP6211033B2 (ja) イオントフォレーシス用薬剤組成物
EP0719138B1 (en) Iontophoretic delivery of an antimigraine drug
RU2371179C2 (ru) Чрескожное введение соединений пиперазинил-2 (3н)-бензоксазолона посредством электрофореза
RU2699674C1 (ru) Композиция для чрескожной абсорбции
EP3727330A1 (en) Frigostable composition for iontophoretic transdermal delivery of a triptan compound
US5607940A (en) Morphine formulations for use by electromotive administration
JP7263359B2 (ja) トリプタン化合物のイオントフォレーシス経皮送達のための寒冷安定性組成物
EP0623345B1 (en) New morphine formulations for use by iontophoretic administration
JP6371073B2 (ja) イオントフォレシスで麻酔剤(局所麻酔薬)を導入する際に使用するパッチ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033961.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010277012

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2769008

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010804110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 913/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127002729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010277012

Country of ref document: AU

Date of ref document: 20100728

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13388295

Country of ref document: US