WO2011013331A1 - マイクロ流体チップ - Google Patents

マイクロ流体チップ Download PDF

Info

Publication number
WO2011013331A1
WO2011013331A1 PCT/JP2010/004689 JP2010004689W WO2011013331A1 WO 2011013331 A1 WO2011013331 A1 WO 2011013331A1 JP 2010004689 W JP2010004689 W JP 2010004689W WO 2011013331 A1 WO2011013331 A1 WO 2011013331A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
cell
transfer control
microfluidic chip
weighing
Prior art date
Application number
PCT/JP2010/004689
Other languages
English (en)
French (fr)
Inventor
中村瑞木
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2011013331A1 publication Critical patent/WO2011013331A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00148Test cards, e.g. Biomerieux or McDonnel multiwell test cards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1032Dilution or aliquotting

Definitions

  • the present invention relates to a microfluidic chip that weighs and mixes a minute amount of liquid.
  • automatic analyzers are known as techniques for automatically analyzing immune components contained in specimens such as blood and body fluids.
  • a sample is added to a reaction container containing a reagent, and a reaction occurring between the reagent and the reagent in the reaction container is optically detected.
  • the amount of reagent required for sample analysis with this automatic analyzer is as small as several ⁇ l (microliter) to several ml (milliliter) for one sample.
  • a technique that can further reduce the amount of reagent to be used has been awaited.
  • the conventional automatic analyzer has a large amount of waste water for washing the dispensing nozzle for dispensing the sample and the reagent, and there is room for improvement in this point as well.
  • microfluidic chip capable of weighing and mixing fluids by integrating elements necessary for analyzing a sample on a microchip (for example, Patent Documents). 1 and 2).
  • Patent Documents for example, Patent Documents 1 and 2.
  • this microfluidic chip a technique of controlling the flow of fluid between flow paths by pressing an elastic member is also disclosed.
  • the microfluidic chip shown in Patent Documents 1 and 2 has a problem in that the apparatus configuration is complicated and the processing effort is large because the fluid flow control is performed while the elastic member is pressed. .
  • the present invention has been made in view of the above, and an object of the present invention is to provide a microfluidic chip capable of controlling the flow of fluid with a simple mechanism and accurately weighing the fluid contained in the cell.
  • the microfluidic chip according to the present invention discharges a surplus amount of fluid that exceeds the accommodation volume of the fluid introduction port for introducing the fluid to be weighed and the weighing cell.
  • a weighing cell having a fluid discharge port and weighing one volume of fluid; and one end connected to the weighing cell, the fluid weighed in the weighing cell being able to flow out from the one end;
  • a transfer control flow path for stopping the outflow of the fluid by a Laplace force acting in a direction opposite to the direction.
  • the other end of the transfer control flow path is connected to a storage cell that stores the fluid weighed by the weighing cell. And an exhaust port for discharging the gas in the accommodation cell.
  • the transfer control channel has a liquid reservoir formed by increasing a partial cross-sectional area in the middle of the transfer control channel, The outflow of the fluid is stopped by the Laplace force generated in the enlarged diameter region formed by the transfer control flow path and the liquid reservoir.
  • the liquid reservoir has an external exhaust port communicating with the outside.
  • the liquid reservoir is connected to the plurality of transfer control flow paths.
  • the transfer control channel is formed such that at least a part of the inner wall surface is hydrophobic.
  • the microfluidic chip of the present invention further includes a sealing member that seals the fluid discharge port, the exhaust port, and / or the external exhaust port.
  • microfluidic chip of the present invention described above further includes a fluid inlet sealing member that seals the fluid inlet in the above invention.
  • the apparatus of the present invention includes any one or more of the features described above.
  • the flow of the fluid is stopped by the Laplace force applied to the transfer flow path connecting the cells, and the flow of the fluid can be canceled by a simple mechanism. And the liquid can be fed to the adjacent cell via the transfer channel.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a microfluidic chip according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section taken along line AA of the microfluidic chip shown in FIG.
  • FIG. 3 is a cross-sectional view showing a case where fluid is accommodated in the weighing cell shown in FIG.
  • FIG. 4 is a cross-sectional view showing a configuration of a microfluidic chip that is a first modification of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a microfluidic chip that is a second modification of the first embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a microfluidic chip according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a cross section taken along line AA of the microfluidic chip shown in FIG.
  • FIG. 3 is a cross
  • FIG. 6 is a schematic diagram showing a weighing and transfer method using the microfluidic chip according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a configuration of a microfluidic chip that is a third modification of the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a configuration of a microfluidic chip that is a fourth modification of the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a schematic configuration of the microfluidic chip according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a cross section taken along line BB of the microfluidic chip shown in FIG.
  • FIG. 11 is a cross-sectional view showing a case where fluid is accommodated in the weighing cell shown in FIG.
  • FIG. 12 is a cross-sectional view showing a configuration of a microfluidic chip that is Modification 1 of Embodiment 2 of the present invention.
  • FIG. 13 is sectional drawing which shows the structure of the microfluidic chip which is the modification 2 of Embodiment 2 of this invention.
  • FIG. 14 is a cross-sectional view showing the configuration of a microfluidic chip that is a third modification of the second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view showing a configuration of a microfluidic chip that is a fourth modification of the second embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a configuration of a microfluidic chip that is a fifth modification of the second embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a configuration of a microfluidic chip that is a sixth modification of the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a microfluidic chip according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a cross section taken along line AA of the microfluidic chip 1 shown in FIG.
  • the microfluidic chip 1 shown in FIGS. 1 and 2 is formed using an optically transparent material that transmits 80% or more of light, for example, glass including heat-resistant glass, synthetic resin such as cyclic olefin, polystyrene, etc.
  • It has an introduction port 11a, a weighing cell D11 and a storage cell D12, a transfer control channel LF11, a fluid discharge port 12a and an exhaust port 13a, and the weighing cell D11 and the storage cell D12 are connected by a transfer control channel LF11.
  • the fluid introduction port 11a has an opening in the upper plane of the microfluidic chip 1 and communicates with the weighing cell D11. A fluid is fed into the weighing cell D11 by inserting a probe or the like into the fluid introduction port 11a and dispensing a fluid as a specimen or a reagent.
  • the fluid discharge port 12a has an opening in the upper plane of the microfluidic chip 1 and communicates with the weighing cell D11, like the fluid introduction port 11a.
  • the weighing cell D11 can be filled with the fluid by discharging the gas and fluid in the weighing cell D11 from the fluid discharge port 12a, and the filled fluid is weighed.
  • the fluid introduction port 11a plays a role as a discharge port for discharging the gas and fluid in the weighing cell D11.
  • the weighing cell D11 and the accommodation cell D12 are formed to have a predetermined volume.
  • the weighing cell D11 when the fed fluid is filled in the cell, it can be weighed with a predetermined volume.
  • the shape of the cell may be circular, or a rectangular.
  • the transfer control flow path LF11 is preferably formed so that a cross-sectional area perpendicular to the fluid flow direction is 1 mm 2 or less, and particularly preferably 0.1 mm 2 or less.
  • the force is opposite to the flow direction of the fluid in the enlarged diameter region at the boundary between the transfer control flow path LF11 and the storage cell D12.
  • a Laplace force is generated, the Laplace force stops the fluid flow, and the fluid does not flow into the storage cell D12.
  • the gas in the transfer control flow path LF11, the weighing cell D11, and the storage cell D12 is discharged from the exhaust port 13a as the fluid flows.
  • the fluid is weighed with the weighing cell D11, the transfer control flow path LF11, the fluid introduction port 11a, and the fluid discharge port 12a as weighing units, and the total amount of the filled fluid is targeted.
  • FIG. 3 is a cross-sectional view showing a case where the fluid F1 is accommodated in the weighing cell D11.
  • the fluid F1 dispensed from the fluid introduction port 11a enters the transfer control flow path LF11 by a capillary phenomenon, but by a Laplace force opposite to the flow direction applied to the end of the transfer control flow path LF11 on the accommodation cell D12 side.
  • the flow of the fluid F1 is stopped.
  • the fluid F1 is sequentially filled in the weighing cell D11 by this flow stop.
  • the cross-sectional area of the transfer control flow path LF11 is determined by the following expression (1).
  • the Laplace force is determined by the surface tension of the fluid, the contact angle of the specimen, reagent, or reaction liquid with respect to the transfer channel, the channel width, and the channel depth, and suppresses the flow of the liquid due to the capillary force.
  • is the surface tension
  • is the contact angle
  • w is the channel width
  • h the channel depth (equivalent to w if the cross section of the transfer channel is a circle)
  • the Laplace force P is arbitrarily set.
  • P 2 ⁇ (1 / w + 1 / h) Sin ⁇ (1)
  • FIG. 4 is a cross-sectional view showing a configuration of a microfluidic chip 2 that is a first modification of the first embodiment of the present invention.
  • the transfer control flow path LF11a is connected to the side surface of the storage cell D13, and a difference in height is provided between the bottom of the transfer control flow path LF11a and the bottom of the storage cell D13.
  • the diameter-enlarged region is formed also in the bottom portion direction of the transfer control flow path LF11a at the end of the transfer control flow path LF11a on the accommodation cell D13 side, the effect of the Laplace force can be further ensured.
  • the gas in the accommodation cell D13 is discharged to the outside through the exhaust port 13b.
  • FIG. 5 is a cross-sectional view showing a configuration of a microfluidic chip 2a that is a second modification of the first embodiment of the present invention.
  • the transfer control flow path LF11b for connecting the weighing cell D11 and the storage cell D13a is arranged so that the upper part of the transfer control flow path LF11b and the upper part of the storage cell D13a coincide.
  • the flow of the fluid F1 is stopped by the same effect as the Laplace force shown in FIG.
  • FIG. 6 is a schematic diagram showing a weighing and transfer method using the microfluidic chip 1 according to the first embodiment of the present invention.
  • the fluid F1 to be dispensed is injected from the fluid introduction port 11a (FIG. 6A).
  • the fluid F1 enters the transfer control flow path LF11 from the bottom of the weighing cell D11 by capillarity, the flow stops at the end on the accommodation cell D12 side due to Laplace force, and the fluid F1 enters the weighing cell D11. Is filled.
  • the injection of the fluid F1 is continued until the fluid F1 is discharged from the fluid discharge port 12a for weighing (FIG. 6B).
  • the discharged fluid F1 is removed, and the fluid discharge port 12a is sealed by the sealing member 14a (FIG. 6C).
  • the stored fluid F1 is stored in a predetermined amount in the weighing cell D11 and can be weighed.
  • air is injected into the weighing cell D11 from the fluid introduction port 11a using a probe or the like, and the fluid F1 is pressed. .
  • Whether or not to seal the fluid introduction port 11a shown in FIG. 6 (e) is arbitrary, but it is possible to prevent the back flow of the fluid F1 to the weighing cell D11 side by the internal pressure in the weighing cell D11.
  • the fluid inlet 11a is preferably sealed with the sealing member 14b. Further, when the weighed fluid F1 is collected, it can be collected by sucking it with a pipette from the exhaust port 13a. Further, the sealing members 14a and 14b may be separate or may be integrated.
  • microfluidic chip makes it possible to reliably transfer the weighed fluid with a simple mechanism. Further, unlike the microfluidic chip shown in Patent Documents 1 and 2, it is not necessary to form a part of the microfluidic chip by an elastic member or the like, and therefore the microfluidic chip can be created with a simple configuration. In addition, since the distribution control shown in Patent Document 3 uses a photoresponsive gel, it takes time to open and close the flow path. On the other hand, the microfluidic chip according to the present embodiment can transfer a fluid without requiring time for a photoresponsive reaction.
  • FIG. 7 is a schematic diagram showing a configuration of a microfluidic chip 3 which is a third modification of the first embodiment of the present invention.
  • the microfluidic chip 3 shown in FIG. 7 is provided with a plurality of weighing cells D14, D15, D16, D17, and each weighing cell is connected to a mixing cell M1 as a storage cell by a transfer control flow path LF12a, LF12b, LF12c, LF12d. is doing. Accordingly, the weighed fluids can be mixed by feeding the weighed fluids to the mixing cell M1.
  • a shape or accommodation volume may differ.
  • each of the weighing cells D14, D15, D16, and D17 in the flow shown in FIG. 6 the fluid discharge ports 12b to 12e are sealed, and air is injected from the fluid introduction ports 11b to 11e for mixing. Send to cell M1. At this time, the gas in the mixing cell M1 is discharged from the exhaust port 13d. Thereby, each fluid sent into the mixing cell M1 can be mixed.
  • the weighing cells D14, D15, D16, D17 and the exhaust port 13d can be arranged at any position as long as processing is possible.
  • FIG. 8 is a schematic diagram showing a configuration of a microfluidic chip 4 that is a fourth modification of the first embodiment of the present invention.
  • the mixing cells M2 and M3 are connected by the transfer control flow path LF13c, and the mixing cell M2 is connected to the weighing cells D18 and D19 via the transfer control flow paths LF13a and LF13b, and mixed.
  • the cell M3 is connected to the weighing cell D20 via the transfer control flow path LF13d.
  • the mixing cells M2 and M3 discharge the internal gas to the outside through the exhaust ports 13e and 13f.
  • the fluids weighed in the weighing cells D18 and D19 are fed by air from the fluid inlets 11f and 11g to the mixing cell M2 and mixed.
  • the fluid mixed in the mixing cell M2 is stopped by the Laplace force applied to the transfer control flow path LF13c, and remains in the mixing cell M2.
  • the fluid in the mixing cell M2 is fed to the mixing cell M3 from the fluid introduction port 11f and / or the fluid introduction port 11g, thereby weighing.
  • Each of the fluids can be mixed stepwise.
  • the order of the fluid sent to the mixing cell M3 may send the fluid in the mixing cell M2 first.
  • each fluid discharge port 12f-12h is sealed with a sealing member.
  • the fluid introduction ports 11f to 11h may be sealed with a fluid introduction port sealing member after feeding.
  • the fluid in the mixing cell M2 is sent, for example, when air is injected and pressed from the fluid introduction port 11f, the fluid introduction ports 11g and 11h, the fluid discharge ports 12f to 12h, and the exhaust port 13e are it is preferably sealed by the fluid inlet port sealing member and the sealing member.
  • FIG. 9 is a schematic diagram showing a schematic configuration of the microfluidic chip 5 according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a cross section of the microfluidic chip 5 taken along line BB of FIG. is there.
  • the microfluidic chip 5 shown in FIGS. 9 and 10 is an optically transparent material that transmits 80% or more of light, for example, glass including heat-resistant glass, synthetic resin such as cyclic olefin and polystyrene, as in the first embodiment.
  • the liquid reservoir C21 is provided between the transfer control flow path LF21a and the transfer control flow path LF21b so that the diameter in the direction perpendicular to the fluid flow direction is larger than that of the transfer control flow paths LF21a and LF21b. Is formed.
  • FIG. 11 is a cross-sectional view showing a case where the fluid F2 is accommodated in the weighing cell D21 shown in FIG.
  • the fluid F2 accommodated in the weighing cell D21 flows into the transfer control flow path LF21a by capillarity, but the fluid F2 flowing through the transfer control flow path LF21a is at the contact point between the transfer control flow path LF21a and the liquid reservoir C21.
  • the Laplace force is applied at each contact point due to the diameter expansion, and the flow of the fluid F2 is stopped.
  • the fluid F2 dispensed from the fluid inlet 21a due to the suspension of the fluid is filled into the weighing cell D21 and the transfer control flow path LF21a.
  • FIG. 12 is a cross-sectional view showing a configuration of a microfluidic chip 6 that is Modification 1 of Embodiment 2 of the present invention.
  • the transfer control flow path LF21c is connected to the side surface portion of the storage cell D23, and a difference in height is provided between the bottom of the transfer control flow path LF21c and the bottom of the storage cell D23.
  • the flow stop of the transfer control flow path LF21a is released by an external force, the flow can be stopped by the Laplace force applied to the transfer control flow path LF21c, so that errors in weighing can be minimized. is there.
  • it has the exhaust port 23b which discharges
  • FIG. 13 is a cross-sectional view showing a configuration of a microfluidic chip 6a that is a second modification of the second embodiment of the present invention.
  • the microfluidic chip 6a shown in FIG. 13 is arranged such that the transfer control flow path LF21d for connecting the liquid reservoir C21 and the storage cell D23a is aligned with the upper part of the transfer control flow path LF21d and the upper part of the storage cell D23a.
  • the flow of the fluid F2 is stopped by the same effect as the Laplace force applied to the end of the transfer control flow path LF21a on the liquid reservoir C21 side. It is possible to stop the flow of the fluid stepwise and to feed the liquid, and even when a backflow to the weighing cell D21 occurs due to an external force, it is possible to minimize the backflowing fluid F2. .
  • the storage cell D23a has an exhaust port 23c for discharging the gas in the storage cell D23a, similarly to the microfluidic chip 6 shown in FIG.
  • FIG. 14 is a cross-sectional view showing a configuration of a microfluidic chip 7 which is a third modification of the second embodiment of the present invention.
  • the microfluidic chip 7 shown in FIG. 14 has an external exhaust port 24a that communicates with the upper part from the liquid reservoir C22.
  • the external exhaust port 24a By the external exhaust port 24a, the gas in the microfluidic chip 7 can be discharged to the outside more efficiently, and the efficiency of the injection work is improved.
  • the external exhaust port 24a is sealed with a sealing member.
  • FIG. 15 is a cross-sectional view showing a configuration of a microfluidic chip 8 that is a fourth modification of the second embodiment of the present invention.
  • a weighing cell D21 is connected to a weighing cell D24 having a fluid inlet 25a and a fluid outlet 26a via transfer control channels LF21a and LF21b.
  • the external exhaust port 24a causes the gas in the weighing cell D24 to flow outside. Take the role of discharging.
  • FIG. 16 is a schematic diagram showing a configuration of a microfluidic chip 9 which is a fifth modification of the second embodiment of the present invention
  • FIG. 17 is a microfluidic chip which is a sixth modification of the second embodiment of the present invention.
  • the weighing cells D25 to D28 are connected to the mixing cell M4 via the transfer control flow paths LF22a to LF25a and LF22b to LF25b.
  • liquid reservoirs C23 to C26 are provided between the transfer control flow paths LF22a to LF25a, LF22b to LF25b, and an exhaust port 23d communicating with the upper part is formed at the center of the mixing cell M4.
  • Each weighing cell D25-28 is provided with fluid inlets 21b-21e and fluid outlets 22b-22e, and the fluid stored in each weighing cell D25-28 can be weighed.
  • the fluid stored in the mixing cell M4 is transferred to the transfer control flow path LF24b.
  • the flow is stopped by LF25b, and the fluids accommodated in the weighing cells D27, 28 are stopped by the transfer control flow paths LF24a, LF25a, and therefore mixed in the space formed by the liquid reservoirs C25, C26. Since the fluid stored in the cell M4 and the fluid stored in the weighing cells D27 and 28 do not come into contact with each other, the fluid can be mixed more reliably.
  • each fluid is processed by the liquid reservoirs C27 and C28 without contacting each fluid stored in the mixing cell M5 and each weighing cell D29-31. be able to. Therefore, the weighed fluid can be mixed stepwise without providing a plurality of mixing cells.
  • each of the weighing cells D29 to D31 has fluid introduction ports 21f to 21h and fluid discharge ports 22f to 22h, and transfer control flow paths LF26a to LF26c, LF27a, via liquid reservoirs C27 and C28,
  • the LF 27b communicates with the mixing cell M5. Further, the fluid injected into the weighing cells D29 and D30 is stopped by the Laplace force applied to the transfer control flow paths LF26a and LF26b, and the weighing cells D29 and D30 are filled with the fluid.
  • the liquid reservoir C27 has an external exhaust port 24b.
  • the external exhaust port 24b is sealed with a sealing member in addition to the fluid discharge ports 22f and 22g.
  • the fluid is injected from the fluid introduction port 21h and seals the fluid discharge port 22h when the liquid is fed.
  • the fluid introduction ports 21f and 21g, the fluid discharge ports 22f and 22g, and the external exhaust port 24b are preferably sealed.
  • the fluid inlet 21g and the fluid outlet 22g of the weighing cell D30 not accommodated are sealed by the fluid inlet sealing member. Furthermore, it is preferable that only the fluid introduction ports 21f to 21h and the exhaust ports 23e of the weighing cells D29 to D31 that perform liquid feeding are opened for transferring the fluid to the mixing cell M5.
  • microfluidic chip according to the second embodiment described above can be weighed and mixed without the fluid contained in each cell coming into contact, it is possible to perform more reliable processing. It can cope with typical processing.
  • the inner surface of the transfer control channel is formed so that at least a place where a Laplace force can be generated is hydrophobic.
  • the length of the flow path of the transfer control flow path may be any flow path length as long as it can be weighed, and the flow path may be bent.
  • the microfluidic chip according to the present invention is useful when performing accurate weighing, and is particularly suitable for weighing and mixing in microanalysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】簡易な機構で流体の流通を制御し、セルに収容された流体の秤量を正確に行なうことができるマイクロ流体チップを提供すること。 【解決手段】当該秤量セルD11内に流体を導入する流体導入口11aおよび当該秤量セルD11の収容体積を越えた余剰量の流体を排出する流体排出口12aを有する秤量セルD11と、一方の端部が前記秤量セルD11と連結し、前記流体の流通方向に対して逆方向に働くラプラス力によって前記流体の流動を停止させる移送制御流路LF11とを備えたマイクロ流体チップ1において、移送制御流路LF11の収容セルD12側の端部にかかるラプラス力によって、毛細管現象により流れ込む流体の流通を停止させることで秤量セルD11に流体を充填する。

Description

マイクロ流体チップ
 本発明は、微少量の液体を秤量し、混合するマイクロ流体チップに関する。
 従来、血液や体液等の検体に含まれる免疫成分などを自動的に分析する技術として自動分析装置が知られている。この自動分析装置は、試薬が入った反応容器に検体を加え、反応容器内の試薬との間で生じた反応を光学的に検出するものである。この自動分析装置による検体の分析に必要な試薬量は、一つの検体に対して数μl(マイクロリットル)~数ml(ミリリットル)程度と少量で済むが、コスト的な観点から見て、分析に用いる試薬量をさらに低減することのできる技術が待望されていた。また、従来の自動分析装置は、検体や試薬を分注する分注ノズルの洗浄に用いる洗浄水の廃液量も多く、この点においてもコスト面で改善の余地があった。
 このような状況を解決しうる技術として、検体の分析に必要な要素を微小なチップ上に集積化することによって流体の秤量および混合を行うことが可能なマイクロ流体チップがある(例えば、特許文献1,2参照)。このマイクロ流体チップに関しては、弾性部材を押圧することによって流路間の流体の流通を制御するという技術も開示されている。
特開2004-270935号公報 特開2007-162899号公報 特開2007-108087号公報
 しかしながら、特許文献1,2に示すマイクロ流体チップは、弾性部材を押圧した状態を維持して流体の流通制御を行なうため、装置構成が複雑となり、処理にかかる労力も大きいという問題点があった。
 本発明は、上記に鑑みてなされたものであって、簡易な機構で流体の流通を制御し、セルに収容された流体の秤量を正確に行なうことができるマイクロ流体チップを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるマイクロ流体チップは、秤量対象の流体を導入する流体導入口および当該秤量セルの収容体積を越えた余剰量の流体を排出する流体排出口を有し、前記収容体積分の流体を秤量する秤量セルと、一端が前記秤量セルと連結し、該一端から前記秤量セル内で秤量された流体を流出可能であるとともに、該流出方向に対して逆方向に働くラプラス力によって前記流体の流出を停止させる移送制御流路とを備える。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記移送制御流路は、他端が、前記秤量セルで秤量された前記流体を収容する収容セルと接続し、前記収容セルは、該収容セル内の気体を排出する排気口を有する。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記移送制御流路は、該移送制御流路途中の一部の断面積を増大して形成される液溜部を有し、前記移送制御流路と前記液溜部とで形成される拡径領域に生じる前記ラプラス力によって前記流体の流出を停止する。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記液溜部は、外部に連通する外部排気口を有する。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記液溜部は、複数の前記移送制御流路と連結する。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記移送制御流路は、少なくとも一部の内部壁面が疎水性となるように形成される。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記流体排出口および前記排気口および/または前記外部排気口を封止する封止部材を備える。
 また、上記の本発明のマイクロ流体チップは、上記の発明において、前記流体導入口を封止する流体導入口封止部材をさらに備える。
 種々の実施形態において、本発明の装置は、上記のいずれか一つまたは複数の特徴を含む。
 本発明によれば、セル間を繋ぐ移送流路にかかるラプラス力によって流体の流通を停止させ、簡易な機構によって流体の流通を解除できるようにしたので、マイクロ流体チップに収容された流体を正確に秤量し、移送流路を介して隣接するセルに送液することができるという効果を奏する。
図1は、本発明の実施の形態1にかかるマイクロ流体チップの概略構成を示す模式図である。 図2は、図1に示すマイクロ流体チップのA-A線断面を示す断面図である。 図3は、図2に示す秤量セルに流体を収容した場合を示す断面図である。 図4は、本発明の実施の形態1の変形例1であるマイクロ流体チップの構成を示す断面図である。 図5は、本発明の実施の形態1の変形例2であるマイクロ流体チップの構成を示す断面図である。 図6は、本発明の実施の形態1にかかるマイクロ流体チップを用いた秤量および移送方法を示す模式図である。 図7は、本発明の実施の形態1の変形例3であるマイクロ流体チップの構成を示す模式図である。 図8は、本発明の実施の形態1の変形例4であるマイクロ流体チップの構成を示す模式図である。 図9は、本発明の実施の形態2にかかるマイクロ流体チップの概略構成を示す模式図である。 図10は、図9に示すマイクロ流体チップのB-B線断面を示す断面図である。 図11は、図10に示す秤量セルに流体を収容した場合を示す断面図である。 図12は、本発明の実施の形態2の変形例1であるマイクロ流体チップの構成を示す断面図である。 図13は、本発明の実施の形態2の変形例2であるマイクロ流体チップの構成を示す断面図である。 図14は、本発明の実施の形態2の変形例3であるマイクロ流体チップの構成を示す断面図である。 図15は、本発明の実施の形態2の変形例4であるマイクロ流体チップの構成を示す断面図である。 図16は、本発明の実施の形態2の変形例5であるマイクロ流体チップの構成を示す模式図である。 図17は、本発明の実施の形態2の変形例6であるマイクロ流体チップの構成を示す模式図である。
 以下、図面を参照して本発明のマイクロ流体チップを実施するための形態について説明する。本発明は、以下に例示する実施の形態や変形例に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。また、図面の記載において、同一部分には同一符号を付している。
(実施の形態1)
 図1は、本発明の実施の形態1にかかるマイクロ流体チップの概略構成を示す模式図であり、図2は、図1に示すマイクロ流体チップ1のA-A線断面を示す断面図である。図1,2に示すマイクロ流体チップ1は、光の80%以上を透過する光学的に透明な素材、たとえば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂を用いて形成され、流体導入口11a、秤量セルD11および収容セルD12、移送制御流路LF11、流体排出口12aおよび排気口13aを有し、秤量セルD11と収容セルD12とが移送制御流路LF11によって連結されている。
 流体導入口11aは、マイクロ流体チップ1の上部平面に開口を有し、秤量セルD11に連通している。流体導入口11aにプローブ等を挿入して検体または試薬としての流体を分注することによって、秤量セルD11に流体を送り込む。
 流体排出口12aは、流体導入口11aと同様、マイクロ流体チップ1の上部平面に開口を有し、秤量セルD11に連通している。流体の秤量を行なう場合に、流体排出口12aから秤量セルD11内の気体および流体を排出することによって秤量セルD11内を流体で充填することができ、充填された流体の秤量を行なう。なお、流体排出口12aから流体を導入する場合は、流体導入口11aが、秤量セルD11内の気体および流体の排出を行なう排出口としての役割を担う。
 秤量セルD11および収容セルD12は、所定の体積となるように形成される。特に、秤量セルD11においては、送り込まれた流体がセル内に充填された場合に所定体積と秤量できる。なお、セルの形状は、円形でもよく、角形でもよい。
 移送制御流路LF11は、流体の流通方向に対して垂直な断面積が、1mm以下となるように形成されることが好ましく、特に、0.1mm以下が好ましい。秤量セルD11に注入された流体が毛細管現象によって移送制御流路LF11に流れ込むが、移送制御流路LF11と収容セルD12との境界における拡径領域で流体の流通方向とは逆向きの力であるラプラス力が生じ、このラプラス力によって流体の流通が停止し、収容セルD12に流体が流れ込まない。また、移送制御流路LF11および秤量セルD11、収容セルD12内の気体は、流体の流入に従って排気口13aから排出される。流体の秤量は、秤量セルD11と移送制御流路LF11と流体導入口11aおよび流体排出口12aとを秤量単位とし、充填された流体の総量が対象となる。
 ここで、秤量セルD11に流体が収容された場合について、図3を参照して説明する。図3は、秤量セルD11に流体F1を収容した場合を示す断面図である。流体導入口11aから分注された流体F1は、毛細管現象によって移送制御流路LF11に入り込むが、移送制御流路LF11の収容セルD12側の端部にかかる流通方向とは逆向きのラプラス力によって流体F1の流通が停止する。この流通停止によって流体F1は、秤量セルD11に順次充填される。
 なお、移送制御流路LF11の断面積は、下式(1)によって決定される。ラプラス力は、流体の表面張力、移送流路に対する検体、試薬、または反応液の接触角、流路幅、流路深さによって決定され、毛細管力による液の流通を抑制している。ここで、γを表面張力、θを接触角、wを流路幅、hを流路深さ(移送流路の断面が円であればwと同値)とした場合、下式(1)によって決定されるラプラス力Pをもとに移送制御流路LF11の断面積を構成するwおよびhが設定される。ラプラス力Pは、任意に設定されるものとする。
  P=2γ(1/w+1/h)Sinθ   ・・・(1)
 また、収容セルD12の配置において、収容セルD12の底部が移送制御流路の底部と一致していなくてもよい。図4は、本発明の実施の形態1の変形例1であるマイクロ流体チップ2の構成を示す断面図である。図4に示すマイクロ流体チップ2は、移送制御流路LF11aが収容セルD13の側面と連結し、移送制御流路LF11aの底部と収容セルD13の底部に高低差を設けてある。これにより、移送制御流路LF11aの収容セルD13側端部において、移送制御流路LF11aの底部方向にも拡径領域が形成されるため、一層ラプラス力の効力を確実なものとすることができる。ここで、図2,3と同様、収容セルD13内の気体は、排気口13bから外部に排出される。
 なお、移送制御流路の上部が、収容セルの上部と一致するように配置されていてもよい。図5は、本発明の実施の形態1の変形例2であるマイクロ流体チップ2aの構成を示す断面図である。図5に示すマイクロ流体チップ2aは、秤量セルD11と収容セルD13aとを連結させる移送制御流路LF11bが、移送制御流路LF11bの上部と収容セルD13aの上部とが一致するように配置される。移送制御流路LF11bの収容セルD13a側の端部では、図3に示すラプラス力と同様の効果によって流体F1の流通を停止する。秤量セルD11に収容され、秤量された流体F1が収容セルD13aに送液された場合、収容セルD13a内部の気体は、排気口13cから外部に排出される。移送制御流路LF11bを収容セルD13aの上部側に設けたことによって、外的な力による秤量セルD11への逆流が生じた場合でも、逆流する流体F1を最小限に抑えることが可能である。
 つぎに、流体F1を秤量セルD11において秤量し、秤量された流体F1を収容セルD12に移送させる秤量および移送方法について、図6を参照して説明する。図6は、本発明の実施の形態1にかかるマイクロ流体チップ1を用いた秤量および移送方法を示す模式図である。
 まず、流体導入口11aから分注対象の流体F1を注入する(図6(a))。流体F1を注入すると、秤量セルD11底部から毛細管現象により移送制御流路LF11内に流体F1が入り込み、ラプラス力によって収容セルD12側の端部で流通が停止して、秤量セルD11内に流体F1が充填される。流体F1の注入は、秤量のため流体排出口12aから流体F1が外部に排出されるまで注入を継続する(図6(b))。
 移送制御流路LF11および秤量セルD11への流体F1の注入が完了すると、排出された流体F1を取り除き、流体排出口12aを封止部材14aによって封止する(図6(c))。この封止によって、収容された流体F1が秤量セルD11内に所定量収容されたこととなり、秤量できる。封止部材14aによる封止によって流体導入口11a、排気口13aのみが開放された状態になると、プローブ等を用いてエアを流体導入口11aから秤量セルD11内部に注入し、流体F1を押圧する。流体F1が押圧されることによって、流体F1の流通方向に対する力が、移送制御流路LF11にかかるラプラス力を超えることで、ラプラス力による流通停止が解除され、収容セルD12に流体F1が流れ込む(図6(d))。エアによる押圧を継続し、秤量セルD11に収容された流体F1を収容セルD12に移送完了すると、流体導入口11aを流体導入口封止部材14bによって封止する(図6(e))。
 なお、図6(e)に示す流体導入口11aの封止を行うか否かは、任意であるが、秤量セルD11内の内部圧力によって流体F1の秤量セルD11側への逆流を防止できるため、封止部材14bによって流体導入口11aを封止することが好ましい。また、秤量された流体F1を回収する場合は、排気口13aからピペット等によって吸引することで回収できる。さらに、封止部材14aおよび14bは、別体であってもよく、一体であってもよい。
 上述したマイクロ流体チップによって、秤量した流体を簡易な機構で確実に移送することが可能となる。また、特許文献1,2に示すマイクロ流体チップのように、一部を弾性部材等で形成する必要がないため、簡易な構成でマイクロ流体チップを作成することができる。なお、特許文献3に示す流通制御は、光応答ゲルを用いているため、流路の開閉に時間を要していた。これに対して本実施の形態にかかるマイクロ流体チップは、光応答反応にかかる時間を要さずに流体の移送を行なうことができる。
 ここで、図1に示すマイクロ流体チップ1において、秤量セルを複数設け、各秤量された流体を混合するようにしてもよい。図7は、本発明の実施の形態1の変形例3であるマイクロ流体チップ3の構成を示す模式図である。図7に示すマイクロ流体チップ3は、複数の秤量セルD14,D15,D16,D17を設け、各秤量セルを移送制御流路LF12a,LF12b,LF12c,LF12dによって、収容セルとしての混合セルM1に連結している。これにより、秤量した各流体を混合セルM1に送り込むことで秤量した流体を混合することが可能となる。なお、各秤量セルD14,D15,D16,D17は、秤量すべき体積に対応して形成されるため、形状または収容体積が異なる場合がある。
 図6に示す流れで各秤量セルD14,D15,D16,D17に流体が収容されると、流体排出口12b~12eを封止し、各流体導入口11b~11eからエアを注入して、混合セルM1に送り込む。このとき、混合セルM1内の気体は、排気口13dから排出される。これにより、混合セルM1に送り込まれた各流体を混合させることができる。なお、各秤量セルD14,D15,D16,D17および排気口13dの配置は、処理が可能であれば如何なる位置でも配置可能である。
 さらに、混合セルを複数設けて段階的に混合させてもよい。図8は、本発明の実施の形態1の変形例4であるマイクロ流体チップ4の構成を示す模式図である。図8に示すマイクロ流体チップ4は、混合セルM2,M3が移送制御流路LF13cによって連結され、混合セルM2は、移送制御流路LF13a,LF13bを介して秤量セルD18,D19と接続し、混合セルM3は、移送制御流路LF13dを介して秤量セルD20と接続されている。また、混合セルM2,M3は、排気口13e,13fによって、内部の気体を外部に排出する。
 秤量セルD18,D19において秤量された各流体を、流体導入口11f,11gからエアによって押圧することで混合セルM2に送液して混合する。混合セルM2で混合された流体は、移送制御流路LF13cにかかるラプラス力によって流通が停止され、混合セルM2内にとどまる。また、秤量セルD20において秤量された流体を混合セルM3に送液した後、流体導入口11fおよび/または流体導入口11gから混合セルM2内の流体を混合セルM3に送液することによって、秤量された各流体を段階的に混合することができる。ここで、混合セルM3に送液する流体の順序は、混合セルM2内の流体を先に送液してもよい。
 なお、送液時に、各流体排出口12f~12hを封止部材によって封止する。また、送液後に、流体導入口11f~11hを流体導入口封止部材で封止してもよい。さらに、混合セルM2内の流体を送液する場合に、たとえば、流体導入口11fからエアを注入して押圧する場合、流体導入口11g,11hおよび流体排出口12f~12hおよび排気口13eが、流体導入口封止部材および封止部材によって封止されていることが好ましい。
 (実施の形態2)
 つぎに、本発明の実施の形態2について説明する。図9は、本発明の実施の形態2にかかるマイクロ流体チップ5の概略構成を示す模式図であり、図10は、図9に示すマイクロ流体チップ5のB-B線断面を示す断面図である。図9,10に示すマイクロ流体チップ5は、実施の形態1と同様、光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂を用いて形成され、流体導入口21a、秤量セルD21および収容セルD22、移送制御流路LF21a,LF21b、液溜部C21、流体排出口22aおよび排気口23aを有し、秤量セルD21と収容セルD22とが、液溜部C21を介して移送制御流路LF21a,LF21bによって連結されている。
 液溜部C21は、移送制御流路LF21aと移送制御流路LF21bとの間に設けられ、流体の流通方向に対して垂直方向の径が移送制御流路LF21a,LF21bと比して大きくなるように形成されている。
 ここで、流体F2が秤量セルD21に収容された場合について、図11を参照して説明する。図11は、図10に示す秤量セルD21に流体F2を収容した場合を示す断面図である。秤量セルD21に収容された流体F2は、毛細管現象によって、移送制御流路LF21aに流れ込むが、移送制御流路LF21aを流通した流体F2は、移送制御流路LF21aと液溜部C21との接点における拡径によって各接点でラプラス力がかかり、流体F2の流通が停止する。この流体の流通停止によって流体導入口21aから分注された流体F2が秤量セルD21および移送制御流路LF21aに充填される。
 なお、実施の形態1と同様、移送制御流路の底部と収容セルの底部とに高低差を設けてもよい。図12は、本発明の実施の形態2の変形例1であるマイクロ流体チップ6の構成を示す断面図である。図12に示すマイクロ流体チップ6は、移送制御流路LF21cが収容セルD23の側面部と連結し、移送制御流路LF21cの底部と収容セルD23の底部に高低差を設けてある。これにより、移送制御流路LF21cの底部方向にも拡径領域が形成されるため、一層ラプラス力の効力を確実なものとすることができる。特に、外的な力によって移送制御流路LF21aの流通停止が解除された場合でも、移送制御流路LF21cにかかるラプラス力によって流通停止できるため、秤量にかかる誤差を最小限に抑えることが可能である。また、図10,11に示すマイクロ流体チップ5と同様に、収容セルD23内の気体を排出する排気口23bを有する。
 さらに、移送制御流路の上部が、収容セルの上部と一致するように配置されていてもよい。図13は、本発明の実施の形態2の変形例2であるマイクロ流体チップ6aの構成を示す断面図である。図13に示すマイクロ流体チップ6aは、液溜部C21と収容セルD23aとを連結させる移送制御流路LF21dが、移送制御流路LF21dの上部と収容セルD23aの上部とが一致するように配置される。移送制御流路LF21dの収容セルD23a側の端部では、移送制御流路LF21aの液溜部C21側端部にかかるラプラス力と同様の効果によって流体F2の流通を停止する。段階的な流体の流通停止および送液を行なうことが可能であるとともに、外的な力による秤量セルD21への逆流が生じた場合でも、逆流する流体F2を最小限に抑えることが可能である。なお、収容セルD23aは、図12に示すマイクロ流体チップ6と同様に、収容セルD23a内の気体を排出する排気口23cを有する。
 また、液溜部の上部に気体の排出を行なう排気口を設けてもよい。図14は、本発明の実施の形態2の変形例3であるマイクロ流体チップ7の構成を示す断面図である。図14に示すマイクロ流体チップ7は、液溜部C22から上部に連通する外部排気口24aを有する。外部排気口24aによって、一層効率的にマイクロ流体チップ7内の気体を外部に排出でき、注入作業にかかる効率が向上する。なお、秤量セルD21に収容された流体を収容セルD22に移送する場合は、外部排気口24aを封止部材によって封止する。
 特に、図15に示すように、秤量セルを隣接して設けた場合に有効である。図15は、本発明の実施の形態2の変形例4であるマイクロ流体チップ8の構成を示す断面図である。図15に示すマイクロ流体チップ8は、秤量セルD21が、移送制御流路LF21a,LF21bを介して、流体導入口25aと流体排出口26aとを有する秤量セルD24に接続されている。このとき、たとえば、秤量セルD21に流体F2が収容されている場合、流体導入口25aから秤量セルD24に流体F3を注入した際に、外部排気口24aが、秤量セルD24内の気体を外部に排出する役割を担う。
 さらに、本実施の形態2の構成を、図7,8に示すマイクロ流体チップ3,4に適用することができる。図16は、本発明の実施の形態2の変形例5であるマイクロ流体チップ9の構成を示す模式図であり、図17は、本発明の実施の形態2の変形例6であるマイクロ流体チップ10の構成を示す模式図である。図16に示すマイクロ流体チップ9は、各秤量セルD25~28が移送制御流路LF22a~LF25a,LF22b~LF25bを介して混合セルM4に接続されている。また、移送制御流路LF22a~LF25a,LF22b~LF25bの間に液溜部C23~C26が設けられ、混合セルM4の中央部には、上部に連通する排気口23dが形成されている。なお、各秤量セルD25~28には、流体導入口21b~21eおよび流体排出口22b~22eが形成され、各秤量セルD25~28に収容される流体の秤量を行なうことができる。
 図16に示すマイクロ流体チップ9の構成によって、たとえば、秤量セルD25,26に収容された流体を混合セルM4に送液した場合に、混合セルM4に収容された流体は、移送制御流路LF24b,LF25bによって流通が停止し、秤量セルD27,28に収容されている各流体は、移送制御流路LF24a,LF25aによって流通が停止しているため、液溜部C25,C26が形成する空間により混合セルM4に収容された流体と秤量セルD27,28に収容された流体とが接触しないため、一層確実な流体の混合を行なうことができる。
 また、図17に示すマイクロ流体チップ10においても、液溜部C27,C28によって、混合セルM5と各秤量セルD29~31とに収容された各流体が接触することなく、各流体の処理を行うことができる。そのため、混合セルを複数設けることなく、秤量された流体を段階的に混合することが可能となる。
 マイクロ流体チップ10において、各秤量セルD29~31は、流体導入口21f~21hおよび流体排出口22f~22hを有し、液溜部C27,C28を介して移送制御流路LF26a~LF26c,LF27a,LF27bによって混合セルM5と連通している。また、秤量セルD29,D30において注入される流体は、移送制御流路LF26a,LF26bにかかるラプラス力によって流通が停止され、各秤量セルD29,D30に流体が充填される。
 ここで、液溜部C27は、外部排気口24bを有する。外部排気口24bが秤量セルD29,D30内の気体を排出することによって、秤量セルD29,D30内の排気効率が向上し、一層効率的な注入処理が可能となる。また、秤量セルD29および/または秤量セルD30に収容された流体を混合セルM5に送液する場合は、流体排出口22f,22gに加え、外部排気口24bを封止部材によって封止する。秤量セルD31も同様に、流体は流体導入口21hから注入され、送液の際に流体排出口22hを封鎖する。このとき、流体導入口21f,21g、流体排出口22f,22gおよび外部排気口24bが封止されていることが好ましい。
 なお、秤量セルD29または秤量セルD30の一方に流体が収容されていない場合、たとえば、秤量セルD29に流体を収容し、秤量セルD30に流体が収容されていない場合には、秤量セルD29に収容された流体を混合セルM5に送液する際に、収容されていない秤量セルD30の流体導入口21gおよび流体排出口22gが流体導入口封止部材によって封止されることが好ましい。さらに、混合セルM5への流体の移送は、送液を行なう秤量セルD29~D31の流体導入口21f~21hおよび排気口23eのみが開放されていることが好ましい。
 上述した実施の形態2にかかるマイクロ流体チップによって、各セルに収容された流体が接触することなく、秤量および混合することが可能となるため、一層確実な処理を行うことが可能であり、段階的な処理にも対応できる。
 また、外的な力によって、たとえば、図9に示すマイクロ流体チップ5の移送制御流路LF21aにおいてラプラス力による流通静止力が解除され、液溜部C21に流体の一部が漏れた場合においても、移送制御流路LF21bにかかるラプラス力によって流通を停止させることができるため、秤量に対する影響を最小限に抑えることが可能である。
 上述した実施の形態1,2において、移送制御流路の内部表面は、少なくともラプラス力が生じうる箇所が疎水性となるように形成されることが好ましい。また、移送制御流路の流路長は、秤量可能であれば如何なる流路長でもよく、流路が屈曲していてもよい。
 以上のように、本発明にかかるマイクロ流体チップは、正確な秤量を行なう場合に有用であり、特に、微量分析における秤量・混合処理に適している。
 1,2,2a,3,4,5,6,6a,7,8,9,10 マイクロ流体チップ
 11a~11h,21a~21h 流体導入口
 12a~12h,22a~22h 流体排出口
 13a~13f,23a~23e 排気口
 14a 封止部材
 14b 流体導入口封止部材
 24a,24b 外部排気口
 D11,D14~D21,D24~D31 秤量セル
 D12,D13,D13a,D22,D23,D23a 収容セル
 LF11,LF11a,LF11b,LF12a~LF12d,LF13a~LF13d,LF21a~LF21d,LF22a~LF27a,LF22b~LF27b 移送制御流路
 C21~C28 液溜部
 F1~F3 流体
 M1~M5 混合セル

Claims (8)

  1.  秤量対象の流体を導入する流体導入口および当該秤量セルの収容体積を越えた余剰量の流体を排出する流体排出口を有し、前記収容体積分の流体を秤量する秤量セルと、
     一端が前記秤量セルと連結し、該一端から前記秤量セル内で秤量された流体を流出可能であるとともに、該流出方向に対して逆方向に働くラプラス力によって前記流体の流出を停止させる移送制御流路と
     を備えるマイクロ流体チップ。
  2.  前記移送制御流路は、他端が、前記秤量セルで秤量された前記流体を収容する収容セルと接続し、
     前記収容セルは、該収容セル内の気体を排出する排気口を有する、
     請求項1に記載のマイクロ流体チップ。
  3.  前記移送制御流路は、該移送制御流路途中の一部の断面積を増大して形成される液溜部を有し、
     前記移送制御流路と前記液溜部とで形成される拡径領域に生じる前記ラプラス力によって前記流体の流出を停止する、
     請求項1に記載のマイクロ流体チップ。
  4.  前記液溜部は、外部に連通する外部排気口を有する、請求項3に記載のマイクロ流体チップ。
  5.  前記液溜部は、複数の前記移送制御流路と連結する、請求項1に記載のマイクロ流体チップ。
  6.  前記移送制御流路は、少なくとも一部の内部壁面が疎水性となるように形成される、請求項1に記載のマイクロ流体チップ。
  7.  前記流体排出口および前記排気口および/または前記外部排気口を封止する封止部材を備る、請求項1に記載のマイクロ流体チップ。
  8.  前記流体導入口を封止する流体導入口封止部材をさらに備える、請求項7に記載のマイクロ流体チップ。
PCT/JP2010/004689 2009-07-27 2010-07-22 マイクロ流体チップ WO2011013331A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-174474 2009-07-27
JP2009174474A JP2011027590A (ja) 2009-07-27 2009-07-27 マイクロ流体チップ

Publications (1)

Publication Number Publication Date
WO2011013331A1 true WO2011013331A1 (ja) 2011-02-03

Family

ID=43529004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004689 WO2011013331A1 (ja) 2009-07-27 2010-07-22 マイクロ流体チップ

Country Status (2)

Country Link
JP (1) JP2011027590A (ja)
WO (1) WO2011013331A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105327723A (zh) * 2015-11-24 2016-02-17 中国科学院理化技术研究所 微流控分流装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554077B2 (ja) * 2016-07-28 2019-07-31 積水化学工業株式会社 マイクロ流体の合流方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163104A (ja) * 2001-10-18 2004-06-10 Aida Eng Ltd 微量液体秤取構造及び該構造を有するマイクロチップ
WO2006077695A1 (ja) * 2005-01-24 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送液装置及び送液方法
JP2008064701A (ja) * 2006-09-11 2008-03-21 Matsushita Electric Ind Co Ltd 回転分析デバイス及び計量方法及び検査方法
JP2008064748A (ja) * 2006-08-08 2008-03-21 Sekisui Chem Co Ltd 微量液体秤取装置、それを有するマイクロチップ及び微量な液体の秤取方法
JP2008126177A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 二液合流マイクロ流路チップ及び二液合流装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163104A (ja) * 2001-10-18 2004-06-10 Aida Eng Ltd 微量液体秤取構造及び該構造を有するマイクロチップ
WO2006077695A1 (ja) * 2005-01-24 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送液装置及び送液方法
JP2008064748A (ja) * 2006-08-08 2008-03-21 Sekisui Chem Co Ltd 微量液体秤取装置、それを有するマイクロチップ及び微量な液体の秤取方法
JP2008064701A (ja) * 2006-09-11 2008-03-21 Matsushita Electric Ind Co Ltd 回転分析デバイス及び計量方法及び検査方法
JP2008126177A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 二液合流マイクロ流路チップ及び二液合流装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105327723A (zh) * 2015-11-24 2016-02-17 中国科学院理化技术研究所 微流控分流装置

Also Published As

Publication number Publication date
JP2011027590A (ja) 2011-02-10

Similar Documents

Publication Publication Date Title
US9221051B2 (en) Microfluidic element for analysis of a sample liquid
US8075853B2 (en) Microchip
US9383293B2 (en) Device for plasma separation by means of a central channel structure
CN106489072B (zh) 具有计量室的用于分析生物样品的旋转筒
US20060239862A1 (en) Testing chip and micro analysis system
US20040203136A1 (en) Microfluidics devices and methods of diluting samples and reagents
US8858897B2 (en) Microfluidic chip for analysis for fluid sample
JP2023542314A (ja) 液体を定量的に処理するための装置
US10436704B2 (en) Method and system for integrated mutliplexed photometry module
US20210291175A1 (en) Fluidic system for taking in, dispensing and moving liquids, method for processing fluids in a fluidic system
JP5430766B2 (ja) 生化学分析のためのチップカード状平板体およびその使用方法
US8186869B2 (en) Method and device for dosing and mixing small amounts of liquid
WO2011013331A1 (ja) マイクロ流体チップ
JP5137007B2 (ja) マイクロチップ
JP7164505B2 (ja) マイクロ流路チップ
JP5424723B2 (ja) マイクロ流体チップおよび混合方法
JP2011137784A (ja) マイクロ流体チップ
CN113462543B (zh) 定量检测血液中癌细胞的微流控芯片
EP3336556A1 (en) Flow path structure, measurement unit, method for measuring liquid to be measured, and device for measuring liquid to be measured
JP7210524B2 (ja) 統合多重化モジュール式測光の方法及びシステム
JP5177533B2 (ja) マイクロチップ
US20200047181A1 (en) Sample Processing Device
JP6049446B2 (ja) マイクロチップ
KR20120080842A (ko) 마이크로 유체 디바이스 및 그의 제어 방법과 버블 제어 방법
JP2007292527A (ja) マイクロチップ及び化学反応検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804084

Country of ref document: EP

Kind code of ref document: A1