WO2011012107A2 - Dispositif de pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2 - Google Patents

Dispositif de pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2 Download PDF

Info

Publication number
WO2011012107A2
WO2011012107A2 PCT/DE2010/000825 DE2010000825W WO2011012107A2 WO 2011012107 A2 WO2011012107 A2 WO 2011012107A2 DE 2010000825 W DE2010000825 W DE 2010000825W WO 2011012107 A2 WO2011012107 A2 WO 2011012107A2
Authority
WO
WIPO (PCT)
Prior art keywords
control
cable
control device
drum
drums
Prior art date
Application number
PCT/DE2010/000825
Other languages
German (de)
English (en)
Other versions
WO2011012107A9 (fr
WO2011012107A3 (fr
Inventor
Gotthard Schulte-Tigges
Robert Dietrich
Original Assignee
Gotthard Schulte-Tigges
Robert Dietrich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gotthard Schulte-Tigges, Robert Dietrich filed Critical Gotthard Schulte-Tigges
Publication of WO2011012107A2 publication Critical patent/WO2011012107A2/fr
Publication of WO2011012107A3 publication Critical patent/WO2011012107A3/fr
Publication of WO2011012107A9 publication Critical patent/WO2011012107A9/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/069Kite-sails for vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/069Kite-sails for vessels
    • B63H9/072Control arrangements, e.g. for launching or recovery

Definitions

  • the invention relates to a device for controlling a traction cable freely flying out, the use of traction wind attack element, which includes active and passive components for changing the flight characteristic determining, effective lengths of lines.
  • the high, used for Fieren and the low, spent for retrieving forces are determined essentially by the position of the steering krae with respect to the wind window and the wind window edges.
  • electrical geared motors are used with timing belts and deflections in the form of pulleys To avoid overloading is called in DE102004018838 the fishing of the ship's tow rope.
  • DE 10 2005 019 226, PCT / DE 2005/001182 and US patent application 11 876 189 disclose a system for storing hysteresis movements, which involves repetitive force fluctuations exceeding and falling below hysteresis thresholds at its point of application is used to move this point effectively against the direction of force and to accumulate these movements, for example by winding rope.
  • the application DE10 2004 018 837 explains the various changes in the aerodynamic properties of the windage element as desirable and essential control variable, but holds little concrete devices for performing these different tasks.
  • a first disadvantage of previously implemented devices lies in the use of timing belts for operating the control lines. In this case, there is a risk of slipping, and it is an exactly right angle between the freely in space plane of the belt and the axis of rotation of the belt pulley required to avoid wear.
  • Another disadvantage is that the wing segments are controlled by a gondola partly directly and partly on pulleys, the integer Operau ⁇ gsixie lead in extreme control situations to large Hubunter defenceen and thus high material loading of the wing at their segment boundaries.
  • the interruption of the nacelle's ship's power supply requires the design of the battery capacity for at least one complete pickup maneuver. A failure of the drives or the control electronics in the nacelle makes a crash inevitable.
  • Wi ⁇ dkrafta ⁇ lagen based on kites with fixed angle of attack are limited in energy yield, if they must visit regularly low-traction sectors in order to catch up with the rope again. task
  • a control device comprises at least one drive unit, which implements the adjustable connection of a freely flying windfall element on the pull rope by opposing winding of control lines or belts on at least one cable drum.
  • Control denotes short-term effective positioning movement of components in the sense of directly influencing the instantaneous direction of movement of the windage element.
  • B with effects on the shape and other aerodynamic properties of the wing to adapt to given wind conditions or desired control strategies.
  • “Surface warping” marks the setting of different angles of attack on the left and right sides of the wing, thus enabling direct control and reducing the control work used when the point of application is shifted in order to adapt their aerodynamic properties to the wind situation.
  • the device according to the invention is not exactly right-angle level of Kraftei ⁇ Signen the axis of rotation of the cable drums required because no timing belt used, but directly ropes are driven, which can be bent in more than one plane.
  • the correct winding can be supported by mitbewegte Fhacku ⁇ gsrollen.
  • control lines are additionally divided over the wing depth and symmetrically wound with respect to the wing span on front and rear drums whose diameter each have small differences, which is coupled to control movements for Kraftangriffsticianverlagerung Trag lakeverwindung.
  • control device is designed as a double drive unit with two control / charging drives, each having at least two interconnected cable drums of different diameters, which perform a movement of the two control lines, which are each struck on a pulley, whereby an active Control with low power consumption of the drive or using the instantaneous traction, passive control is realized without any power consumption of the drive.
  • one end of a right cable transmission line on the thick drum of the first drive unit and the other end are wound on each other in the same direction on the slender drum of the second drive unit.
  • one end of a left cable transmission line is wound on the thick drum of the second drive unit and the other end on the slender drum of the first drive unit.
  • the Doppela ⁇ triebsaku includes an additional, design-related redundancy, the failure of a drive can be compensated by the other drive, since he can perform both control movements without additional components or switching operations.
  • the double drive unit according to the invention is formed with spindles on the drum axles on whose spindle nuts on the one hand an axial cable guide is coupled for winding on the drums and on the other hand via transmission components, the position of a Symmetrielagegebers is determined, which represents the actual control position and thus one Loop via the mechanical feedback of the control target specification on brakes or clutches allows.
  • the same function is also possible with a differential gear.
  • Such a dual drive unit with control loop according to the invention is advantageously extended by an emergency control, which mechanically determines the desired control input via a mass pendulum whose gravitational position determines via transmission components.
  • an emergency control which mechanically determines the desired control input via a mass pendulum whose gravitational position determines via transmission components.
  • coupling geared components is formed, so z.
  • B. in case of failure of drives, electronic control or power supply a certain survival position of the windage element are passively driven to catch it ship or bottom side.
  • a mass for the pendulum specifically come in particular components in question, which are carried anyway, and are not subject to any functionally related arrangement, such. B. accumulators.
  • An advantageous asymmetric adjustment of the angle of attack of the two wing sides for Trag vomverwindung in order to improve the curve flight characteristics can via a pulley, which causes an opposing stroke of a back-compensation line, either by a compound of the back-compensation line with the control target specification or the actual control position or by a separate actuator of the back-compensation line can be realized.
  • An advantageous symmetrical adjustment of the angle of attack of the two sides of the wing is achieved by the introduction of back-Steuerieinen, which are struck on the wing trailing edge and whose length can be set active or passive.
  • the active adjustment by means of actuators is suitable for adapting the flight characteristics to the wind speed. This is also advantageous for reducing the tension in wind turbines with controlled kites in order to minimize the energy expenditure during retrieval and to largely avoid the low-yield times of the control of a trajectory section with low cable traction.
  • the effective lengths of Steuerieinen to the rear of the wing are symmetrically increased when exceeding a predetermined tensile force against the force of a preloaded spring and added directly to the segment-specific Steuerh. and reduced again when lowering the tensile force by the spring force , which corresponds to a temporary symmetrical fibrillation of the right and left rear portions of the wing.
  • the thick cable drums can be loaded independently of active drives by Seiltrommelcrue different diameter are each equipped with a Kochholkupplu ⁇ g against the common drive shaft.
  • the cable drums are connected to each other with a rotational work storing spring element.
  • the overrunning clutches are mounted in such a way that, as the traction force increases, the thick drum is blocked relative to the drive shaft and the slender drum overhauls the drive shaft and tensiones the torsion spring by means of cables of cable gearing.
  • the cable drums have a certain rotationally symmetrical basic shape, wherein the effective drum diameter co-determined by its leverage at the respective point of the cable outlet the effective moment, which is therefore uniquely associated with the respectively wound linen length. So that the rope assumes the intended winding position securely, Seil holderssnuten can be incorporated or an axis-parallel guide can be attached. If, as the basic form of the rope drums, an increasing diameter is chosen in the direction of unwinding, the stronger drive unit in each case gives priority to the storage of rope length by hysteresis movements and thus an automatic adjustment of the charge state of the two drive units due to the larger currently effective drum diameter.
  • Cord drum pairs which wind up segment-wise Seilegetriebeleinen, allows the determination of the individual control strokes of the wound lines by the selected gear stages.
  • a distribution of the total force is achieved by the division of the individual control lines on other cable transmission, which in detail smaller rope diameters can be used, which can be wound up on slimmer drums.
  • Fig. 1 control gondola with oppositely wound control lines
  • Fig. 2 control gondola with double drive and deflected, gege ⁇ si ⁇ nig wound
  • Fig. 4 control gondola with double drive and multi-stage cable gears
  • Fig. 6 control gondola in side view with hysteresis cable loading system
  • Fig. 1 shows a control gondola with oppositely wound control lines.
  • Control (47R 1 47L) corresponds to the ratio of the diameter of the thick cable drum (48) to that of the middle cable drum (49) to that of the slender cable drum (50).
  • Fig. 2 shows a control gondola with double drive and deflected, wound in opposite directions Seilegetechnischeleinen (1 1 R 1 11 L).
  • a control movement to the right with energy expenditure is caused by a clockwise rotation of the A-cable drums (13A, 14A) by means of their drive (18A), wherein the right cable transmission line (11 R) and the left cable transmission line (11 L) are unwound, whereby the Right outer control line (9R) with the right wing side (5R) is a little further than the left outer control line (9L) with the left wing side (5L) is gefhrt.
  • a left-hand drive motion with energy expenditure is effected by turning the B-pulleys (13B, 14B) to the left by means of their drive (18B), unwinding the left pulley line (11 L) and unwinding the right rope-line (11 R) outer control line (9L) with the left wing side (5L) is caught a little further than the right outer control line (9R) with the right wing side (5R) is gefhrt.
  • FIG. 3 illustrates an exploded double windage nacelle gating element.
  • FIG. 9 shows nine segments of the windage element (5R, 4R, 3R, 2R, 1, 2L, 3L, 4L, 5L) with strake trees, with the eight connecting segments without direct , segment-related lintel assignment, for the sake of clarity only by the dashed lines are shown without fidelity.
  • the entire wind engagement element is connected to the nacelle carrier (15) firstly at the fixed bearing (12) with statically fixed control and supporting line ends, secondly with the back compensation line (20) via back line deflection rollers (21, 27), thirdly the back center line (30 ) and fourthly through the right and left
  • Control cable (9R, 9L) is connected via the right and left cable transmission pulley (1OR, 10L) and right and left cable transmission line (11 R, 11L) via the drums (13A, 14A, 13B 1 14B).
  • a change of the front profile of the wing segments (5R, 4R, 3R, 2R, 1, 2L, 3L 1 4L, 5L) in the direction of a slight curvature is made by increasing the distance of both the right control line (9R) and the left control line (9L ) causes the nacelle carrier (15).
  • This change in the front profile is caused by a left turn of the B drive motor (18B) with the thick drum (13B) with simultaneous clockwise rotation of the A drive motor (18A) with the thick drum (13A), both more left Seilgetriebeleine (11 L ) as well as more right cable line (11 R) is released, as at the same time on the slender drums (14A, 14B) on the Seilgetriebeleinen (11 L, 11 R) is overtaken.
  • Gondola carrier (15) causes.
  • This change in the front profile is caused by a clockwise rotation of the B drive motor (18B) with the thick drum (13B) while turning to the left from the A drive motor (18A) with the thick drum (13A), with both more left cable line (11 L ) as well as more right-hand rope transmission line (11 R) is obtained, as at the same time on the slender drums (14A, 14B) on Seilgetriebeleinen (11 L, 1 1 R) is released.
  • the control of the windage element can be done by shifting the force application point, ie the nacelle carrier (15), on the Y-axis with respect to the airfoil front profile in different variants.
  • a right turn occurs on both the brakes (16A, 16B) a) by a left turn of the A-drive motor (18A) with its drum (13A, 14A), the right control line (9R) being caught and the left control line (9L) be fought; b) by turning left from the B drive motor (18B) with its drums (13B, 14B), catching the right control lines (9R) and flipping the left control lines (9L); c) both by a left turn from the A drive motor (18A) with its drums (13A 1 14A) and a left turn from the B drive motor (18B) with its drums (13B, 14B), at increased speed the right control line (9R ) and the left control line (9L) is triggered.
  • the thicker drum (13B) can turn to the left, catching the left control line (9L) and the slender B-drum (14B) catching up with the right rope transmission line (11R) as well as the right control line (9R) , which is made possible by free rotation of the unbraked B-epicyclic gear (17B).
  • Left control is applied to both the brakes (16A, 16B), e) by turning to the right of the B drive motor (18B) with its drums (13B, 14B), catching the left control line (9L) and pulling the right control line (9R). be fought; f) by a clockwise rotation of the A drive motor (18A) with its drums (13A, 14A), with the left control line (9L) being overtaken and the right control line (9R) being engaged; g) both by a clockwise rotation of the B-drive motor (18 B) with its drums (13 B, 14 B) and a clockwise rotation of the A-drive motor (18 A) with its drums (13 A, 14 A), wherein at increased speed, the left Steuerlei ⁇ e (9L ) and the right control line (9R) is caught.
  • the drums (13A, 13B) are each coupled with spindles (19A, ...) on which run Spindelemuttem (28A, 28B), which are interconnected with a lever as Symmetrielagegebergeber (26).
  • Symmetrielagegebergeber 26
  • the deviation from the symmetrical position of the force application point of the windage element with respect to the Y-axis shifts the back-compensation line fixation (24) and adjusted over the
  • Pulleys (21, 27) asymmetrically the wing trailing edge.
  • the back compensation line (20) is guided over load limiting back line deflection rollers (21), which are mounted on a Lastbegre ⁇ zungshebel (22), which is held with a prestressed spring (23) in its initial position. Further, a back center segment line (30) is posted on the load limiting lever (22) on the back center segment line fixture (24).
  • Fig. 4 shows a control gondola with dual drive and multi-stage cable gearboxes for the realization of freely selectable, segment-specific Steuerleinenhübe.
  • the segment-specific control lines are bound here in each case via separate Seilgetriebeleinen to several separate cable transmission drum units, which are each connected to each other via gear stages (52, 53) and belong to FIG. 2 respectively to drive unit A or B.
  • the outer (9R, 9L) 1 semi-inner (46R, 46L) and inner (47R 1 47L) control lines have control strokes derived from the gear ratios (52, 53) and the Drum diameters are determined.
  • Fig. 5 shows an overrunning clutch in detail, as used in Fig. 6 as component 33A and 33B.
  • the shaft with the overrunning clutch inner ring (55) only a rotation in the direction of the inner arrow relative to the fixed overrunning clutch outer ring (54) is possible.
  • Overrunning clutch outer ring (54) is only a rotation in the direction of the outer arrow relative to the fixed overrunning clutch inner ring (55) possible. In a rotation opposite to the respective arrow direction of the overrunning clutch inner ring (55) is coupled by the clamping body (56) to the overrunning clutch outer ring (54).
  • the overrunning clutch is shown as a ball bearing symbol, and a central point indicates the side at which the shaft side would move out of the drawing surface towards the viewer.
  • FIG. 6 shows a control gondola in side view with a hysteresis cable loading system.
  • the term right-hand rotation is oriented in FIG. 6 in the X-direction.
  • the right control cable (9R) is moved via the right cable transmission pulley (1 OR) by means of the right rope transmission line (11 R), which with one end on the thick A-drum! (13A) and wound on the other end in the same direction on the slender B-drum (14B) and fixed.
  • the ends of the left rope transmission line (11 L) are on the one hand on the thick B-drum (13 B) and on the other hand on the slender A-drum (14 A) in the same direction, but with respect to the Aufwicklu ⁇ g the ends of the right Seilgetriebelei ⁇ e (11 R) wound in opposite directions and fixed ,
  • the outer rings of the epicyclic gears (17A, 17B) are blocked by the brakes (16A, 16B) by the spring force of the springs (34A, 34B).
  • Cable transmission line (11 R) remains stationary at the thick A-drum (13A) through the blocked A-overrunning clutch (33A).
  • this increase in tractive effort causes the slender A-drum (33A), freewheeled by the A-over-center clutch relative to the A-axis (40A), to turn clockwise, leaving some left-hand cable transmission line (11 L) and the A-torsion spring (32A ) is stretched.
  • the other end of the left cable transmission line (11 L) remains stationary on the thick B-drum (13 B) by the blocked B-overrunning clutch (33 B).
  • the mechanical feedback of the target specification of the control is shown.
  • the target specification by an adjustment at the end of the brake setpoint lever (36) in the direction A of the control target specification (41) is specified.
  • brake lever (37), brake lever (38) and A-brake lever (35A) the A-brake (16A) is released by being raised against the force of the spring (34A).
  • the A spindle nut on the A spindle and thus also the symmetry sensor (26) move in the direction of the gondola carrier (15).
  • cable guides (31 A, 31 B) can be realized by suitable gradients of the spindles (19 A, 19 B).
  • Fig. 7 shows the Seil Concreteu ⁇ g the cable transmission to the assignments and winding directions of the right Seilgetriebeleine (11 R) to the thick AT drum (13 A) and the slender B-drum (14 B) and the left cable transmission line (11 L) to the thick B Drum (13B) and the slim A drum (14A).
  • Fig. 8 shows a mechanical emergency control in which a grounded (58) pendulum (65) via a linkage (57) by means of a driver (61) by a locking bolt (62) is fixed, as long as current flows through the magnetic coil (63).
  • the linkage (57) couples the brake setpoint lever (36) with the brake lever (60) in the sense of normal operation of the control target specification of FIG. 6.
  • the spring (64) pulls the locking pin (62), thus solving the fixation, whereby a compression spring (59) moves the driver, so that the coupling of the brake setpoint lever (36) is released and a coupling of the brake lever (60) with the mass-bearing (58) pendulum (65) is formed.
  • the force acting on the mass (58) gravity thereby assumes the control target (41).
  • Control path 28A A-spindle nut
  • Control path 32A A-torsion spring
  • Overrunning clutch inner ring Overrunning clutch outer ring Segment center roller R Control right half outside L Control left half outside R Right control half inside L Control left half inside R Control right inside left Control left inside

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)
  • Transmission Devices (AREA)

Abstract

La navigation commerciale est entrée dans une ère nouvelle avec l'exploitation de la force du vent pour la traction de navires au moyen d'éléments de prise au vent pilotés, de type cerfs-volants. L'arrimage au moyen d'un câble de traction permet à l'élément de prise au vent de travailler à des altitudes qui ne sont pas exploitables avec la navigation à voile traditionnelle, où prédominent des forces de vents plus élevées et plus stables. Cette technique est également applicable à des centrales éoliennes utilisant des cerfs-volants pilotables. Le présent dispositif d'assistance de pilotage est caractérisé par une amélioration de la sécurité d'utilisation, de la durée de vie et du rendement énergétique obtenus grâce à un agencement ingénieux de composants éprouvés. La variété des solutions applicables proposées repose sur le principe de l'enroulement en sens opposé de lignes de réglage sur des tambours, combiné de manière fonctionnelle à des composants actifs et passifs. Le dispositif de l'invention utilise les forces de traction disponibles pour la mise en œuvre des mouvements de réglage d'orientation, lesquels peuvent être exécutés à des vitesses élevées même en cas de charge extrême. Comme ce dispositif peut se dispenser d'unités d'entraînement lourdes, il permet de réduire le poids correspondant et le coût de l'alimentation en énergie par la nacelle. L'amélioration résultante de la dynamique de vol est renforcée par un système de réglage individuel des caractéristiques aérodynamiques de l'élément de prise au vent. La sécurité de pilotage est ainsi assurée même dans des situations extrêmes. La modification des angles d'incidence par segments permet d'atteindre une amélioration de la dynamique de vol par un réglage asymétrique. Le réglage symétrique par filage du bord de fuite des surfaces portantes assure une réponse sûre contre les surcharges, étant donné que la limitation de la charge par couplage mécanique direct produit une réaction immédiate. La redondance est assurée par une construction sous forme d'unité d'entraînement double. Un système de manœuvre d'urgence place l'élément de prise au vent en position de survie par pilotage passif, afin qu'il puisse être amené au navire en cas de panne des systèmes d'entraînement, du pilotage électronique ou de l'alimentation.
PCT/DE2010/000825 2009-07-27 2010-07-21 Dispositif de pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2 WO2011012107A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009035240A DE102009035240A1 (de) 2009-07-27 2009-07-27 Steuerungsvorrichtung für frei ausfliegende Windangriffselemente mit einer Tragflächengröße von mehr als 20 m2
DE102009035240.6 2009-07-27

Publications (3)

Publication Number Publication Date
WO2011012107A2 true WO2011012107A2 (fr) 2011-02-03
WO2011012107A3 WO2011012107A3 (fr) 2011-08-25
WO2011012107A9 WO2011012107A9 (fr) 2011-10-13

Family

ID=43216992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000825 WO2011012107A2 (fr) 2009-07-27 2010-07-21 Dispositif de pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2

Country Status (2)

Country Link
DE (1) DE102009035240A1 (fr)
WO (1) WO2011012107A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545588A (zh) * 2012-04-10 2016-05-04 罗琮贵 筝、筝驱工作机构、筝发电机暨方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275779A (zh) * 2011-04-24 2011-12-14 罗琮贵 控缆机、两种筝、三种风力及水流发电机暨风筝电船
CN102220938B (zh) * 2011-06-08 2012-11-28 广东高空风能技术有限公司 伞型风力装置及风能动力系统
DE202011102743U1 (de) * 2011-07-04 2012-11-15 Skysails Gmbh Vorrichtung zur Steuerung eines gefesselten Flugelements
US20150042100A1 (en) * 2012-11-16 2015-02-12 John A. Saavedra Power generator utilizing a tethered wind resistor
FR3133833A1 (fr) * 2022-03-25 2023-09-29 Maloric Systeme de commande automatique d’une aile de traction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200499A1 (fr) 1985-04-27 1986-11-05 Nippon Steel Corporation Procédé pour amorcer des arcs électriques
DE102004018838A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Positionierungsvorrichtung für ein frei ausfliegendes drachenartiges Windangriffselement bei einem Wasserfahrzeug mit Windantrieb
DE102004018835A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Wasserfahrzeug mit einem frei ausfliegenden manövrierbaren Windangriffselement als Antrieb
DE102004018837A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Wasserfahrzeug mit einem frei ausfliegenden drachenartigen Windangriffselement als Windantrieb
DE102005019226A1 (de) 2005-04-20 2006-10-26 Schulte-Tigges, Gotthard, Dr. System zur Speicherung von Hysteresebewegungen
DE202006005389U1 (de) 2006-03-31 2007-08-02 Skysails Gmbh & Co. Kg Windenergieanlage mit steuerbarem Drachen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2098946A (en) * 1981-05-21 1982-12-01 British Petroleum Co Plc A tethered sail assembly for marine or other uses
ITTO20060874A1 (it) * 2006-12-11 2008-06-12 Modelway S R L Sistema di attuazione del controllo automatico del volo di profili alari di potenza
CN101327840A (zh) * 2008-07-04 2008-12-24 冯光根 风筝船

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200499A1 (fr) 1985-04-27 1986-11-05 Nippon Steel Corporation Procédé pour amorcer des arcs électriques
DE102004018838A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Positionierungsvorrichtung für ein frei ausfliegendes drachenartiges Windangriffselement bei einem Wasserfahrzeug mit Windantrieb
DE102004018835A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Wasserfahrzeug mit einem frei ausfliegenden manövrierbaren Windangriffselement als Antrieb
DE102004018837A1 (de) 2004-04-19 2005-11-03 Skysails Gmbh Wasserfahrzeug mit einem frei ausfliegenden drachenartigen Windangriffselement als Windantrieb
DE102005019226A1 (de) 2005-04-20 2006-10-26 Schulte-Tigges, Gotthard, Dr. System zur Speicherung von Hysteresebewegungen
DE202006005389U1 (de) 2006-03-31 2007-08-02 Skysails Gmbh & Co. Kg Windenergieanlage mit steuerbarem Drachen
WO2007112993A1 (fr) 2006-03-31 2007-10-11 Skysails Gmbh & Co. Kg Installation à énergie éolienne à cerf-volant pouvant être commandé

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545588A (zh) * 2012-04-10 2016-05-04 罗琮贵 筝、筝驱工作机构、筝发电机暨方法

Also Published As

Publication number Publication date
WO2011012107A9 (fr) 2011-10-13
DE102009035240A1 (de) 2011-02-03
WO2011012107A3 (fr) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2011012107A2 (fr) Dispositif de pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2
EP1108647B1 (fr) Système de contrôle d'attitude et d'arrondissement d'un parachute pour largage et méthode d'opération
EP3176084A1 (fr) Procédé d'amélioration des qualités de vol d'un muticoptère dans des situations de panne et multicoptère présentant des qualités de vol améliorées dans des situations de panne
EP2908005B1 (fr) Éolienne verticale
DE60130534T2 (de) Klappenstellantriebssystem
EP1786666B1 (fr) Embarcation a element de type cerf-volant
EP2885533B1 (fr) Installation génératrice d'énergie à flux
DE10241585B4 (de) Lastengleitfallschirm-System
DE102011018906A1 (de) Hochauftriebssystem für ein Flugzeug und Verfahren zum Beeinflussen der Hochauftriebseigenschaften eines Flugzeugs
WO2011012112A2 (fr) Dispositif d'aide au pilotage pour éléments de prise au vent volant librement, d'une surface portante supérieure à 20m2
DE743890C (de) Fluegelverstelleinrichtung
DE102006001806A1 (de) Anlage und Verfahren zur Nutzung von Windenergie
DE3117996C2 (fr)
DE102016121102B3 (de) Variabler Offset am Rotorkopf eines Tragschraubers
WO2009018793A2 (fr) Actionneur
WO2010118804A1 (fr) Actionneur à éléments en forme de bande ou de câble
WO2014040716A1 (fr) Éolienne volante multicâbles à fonctionnement en yoyo
EP0499186B1 (fr) Servo-commande pour un levier de frein à main
DE102020131131A1 (de) Steuereinrichtung für ein seilgebundenes Fluggerät, Verfahren zur Steuerung und Fluggerät
DE523076C (de) Verfahren zur Steuerung fuer Hubschrauber
DE123805C (fr)
DE102012003078A1 (de) Schnellverseilmaschine
WO2008116325A1 (fr) Dispositif de commande du mouvement transversal de fils de chaîne d'un métier à tisser le textile
DE102011104825B4 (de) Steuervorrichtung zur Steuerung drachenartiger Flugkörper und Fluggerätesystem mit einer derartigen Steuervorrichtung
DE102011011084A1 (de) Rotorblatt für eine Windenergieanlage mit einer ausfahrbaren Blattvergrößerung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10754663

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10754663

Country of ref document: EP

Kind code of ref document: A2