WO2011010620A1 - Powder surface treatment apparatus and powder surface treatment method - Google Patents

Powder surface treatment apparatus and powder surface treatment method Download PDF

Info

Publication number
WO2011010620A1
WO2011010620A1 PCT/JP2010/062111 JP2010062111W WO2011010620A1 WO 2011010620 A1 WO2011010620 A1 WO 2011010620A1 JP 2010062111 W JP2010062111 W JP 2010062111W WO 2011010620 A1 WO2011010620 A1 WO 2011010620A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
powder
surface treatment
electrode
powder surface
Prior art date
Application number
PCT/JP2010/062111
Other languages
French (fr)
Japanese (ja)
Inventor
貢士 田口
Original Assignee
株式会社魁半導体
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社魁半導体 filed Critical 株式会社魁半導体
Priority to JP2011523648A priority Critical patent/JP5501362B2/en
Publication of WO2011010620A1 publication Critical patent/WO2011010620A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic

Definitions

  • the present invention relates to a powder surface treatment apparatus and a powder surface treatment method for increasing the hydrophilicity of a powder.
  • Patent Document 1 describes a surface treatment method using plasma capable of continuously plasma-treating a large amount of powder.
  • Patent Document 5 describes that a surfactant is used to mix metal powder and resin.
  • JP-A-6-365 Japanese Patent Laid-Open No. 1-193332 JP-A-6-228739 Japanese Patent Laid-Open No. 2003-19434 JP 2008-108539 A
  • the conventional method of kneading or dispersing the powder in a resin or a solvent requires various additives such as a surfactant in order to obtain a uniform dispersion.
  • the additive reduces the purity of the powder and causes the original functions and characteristics of the powder to deteriorate.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a novel powder surface treatment apparatus and powder surface treatment method capable of efficiently performing powder surface treatment in a short time. To do.
  • the powder surface treatment apparatus stores the liquid 30 in the container, the container 20 that stores the liquid 30 therein, the first electrode 40 provided at a predetermined distance from the liquid surface of the liquid, and the container.
  • a second electrode provided to be electrically connected to the liquid 30 and a power source 50 connected to the first and second electrodes.
  • the liquid 30 is stored and the powder P as the object to be processed is placed on the liquid surface, and a voltage is applied to the first and second electrodes, whereby the first electrode and the liquid It is characterized by being configured to generate plasma between the liquid surface.
  • the affinity of the liquid is enhanced by the surface modification of the powder placed on the liquid surface by the action of the plasma generated on the liquid surface (water plasma), A dispersion using a liquid as a dispersion solvent can be produced.
  • This dispersion can maintain the dispersed state of the powder for a long period of time by physical action, and does not contain impurities such as a surfactant.
  • the powder surface treatment apparatus may be configured such that a plurality of the first electrodes 40 and a power source 50 are provided and electrically connected to the liquid 30 in parallel. With this configuration, the plasma generation range is expanded, so that a wide range of powders can be irradiated with plasma simultaneously. As a result, it is possible to surface-treat more powder with one discharge.
  • the powder processing apparatus may further include an inlet 70 and an outlet 80 for the liquid 30 and an inlet 90 for the powder P.
  • the liquid 30 is introduced from the introduction port 70 of the liquid 30 and the powder P is introduced from the powder introduction port 90 before the discharge treatment, and the dispersion obtained by the discharge is discharged after the discharge treatment. Since it can discharge
  • the voltage of the power supply 50 applied to the first electrode 40 is preferably 1 [kV / mm] or more per electrode interval. This is because the discharge start voltage can vary under various conditions, but if such a voltage is applied, a sustained plasma discharge is possible even in an air atmosphere at atmospheric pressure.
  • the first electrode 40 is preferably made of carbon or a transition metal element. This is to prevent the constituent elements of the first electrode from being dissolved or mixed in the liquid 30 due to a high temperature due to discharge.
  • the powder surface treatment method according to the present invention includes a step of introducing a powder as an object to be treated onto a liquid as a dispersion solvent, a step of generating a water plasma on the liquid surface of the liquid, and the water plasma. Generating a predetermined period of time.
  • the liquid 30 is preferably a hydrophilic liquid.
  • the powder P to be treated includes, for example, carbon-based powders such as carbon nanotubes, graphite carbon, fullerene (C 60 ), silicon-based powders such as silicon dioxide or trisilicon tetranitride, silver, tungsten, It is a metal-based powder such as titanium or titanium oxide, and the size is not limited.
  • the powder surface treatment apparatus is capable of making a powder compatible with a liquid in a short time without using a surfactant, so that a paint containing carbon powder or a hybrid material mixed with graphite carbon is used. Cost savings can be achieved in manufacturing. Furthermore, since the purity of the material lost by the surfactant can be maintained, it is effective in maintaining the characteristics. In addition, there is an effect that quality can be improved, for example, graphite carbon which is a positive electrode material or a negative electrode material of a battery can be easily aggregated and molded without a binder.
  • the conceptual diagram explaining the basic principle of the powder surface treatment apparatus of 1st Embodiment Schematic diagram showing the state of plasma discharge by the powder surface treatment apparatus of the first embodiment (a) During discharge (b) After discharge Photographs taken before and after plasma discharge by the powder surface treatment apparatus of the first embodiment (a) Immediately before the start of discharge (b) After discharge
  • the conceptual diagram for demonstrating the powder surface treatment apparatus of 2nd Embodiment The schematic diagram which shows the mode of the plasma discharge by the powder surface treatment apparatus of 2nd Embodiment.
  • FIG. 1 Schematic diagram illustrating how graphite resin powder is added to graphite carbon for molding
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • FIG. 1 Schematic diagram showing graphite carbon powder G
  • C Schematic diagram showing a state in which graphite carbon is molded without a binder
  • FIG. 1 is a conceptual diagram for explaining the basic principle of a powder surface treatment apparatus of the present invention as a first embodiment of the present invention.
  • the powder surface treatment apparatus 100 stores the liquid 30 inside the container 20 and is provided with a first electrode 40 spaced apart from the liquid surface by a predetermined distance (that is, via air or the like).
  • the first electrode 40 is connected to the positive electrode of the DC power supply 50.
  • the second electrode 60 has one end connected to the negative electrode of the DC power supply 50 and the other end electrically connected to the liquid 30 through an electric wire. Then, the powder P is placed on the liquid surface of the liquid 30.
  • the powder P examples include carbon-based powders such as carbon nanotubes, graphite carbon, and fullerene (C 60 ), silicon-based powders such as silicon dioxide or trisilicon tetranitride, silver, tungsten, titanium, and titanium oxide. It is a metal-based powder and does not have any size. For example, the particle size of the powder is about 1 nm to 100 ⁇ m.
  • the liquid 30 is preferably a hydrophilic liquid such as water (H 2 O) or an alcohol-based aqueous solution (alcohol).
  • a hydrophilic liquid such as water (H 2 O) or an alcohol-based aqueous solution (alcohol).
  • alcohol-type aqueous solution for a liquid, since there exists a danger of igniting alcohol by discharge, the gas atmosphere containing oxygen like air is unpreferable. In such a case, it is preferable to perform discharge in an atmosphere that does not contain oxygen gas, such as an argon gas atmosphere or a nitrogen gas atmosphere.
  • the powder P is charged from above the liquid 30 by a powder charging means (not shown), the powder P does not mix with the liquid 30 because the powder P is not hydrophilic immediately after the charging. Therefore, the liquid is separated above the liquid surface or remains floating on the liquid surface due to surface tension.
  • a high voltage is applied to the DC power source 50 to generate plasma between the first electrode 40 and the liquid level.
  • air or the like is interposed between the first electrode 40 and the liquid surface of the liquid 30, but when the voltage applied by the DC power supply 50 is increased, the dielectric breakdown voltage is finally reached and discharge is started.
  • the plasma discharge start condition affects the gas atmosphere, pressure, humidity, etc., and there are strict calculation formulas, but approximately 1 kV (that is, about 3 kV when 3 mm apart) is used as a guide for the discharge start voltage.
  • the distance between the first spacing electrode and the liquid surface may be approximately 0.1 mm to 30 mm.
  • the numerical value itself does not have so important meaning.
  • the first electrode 40 connected to the positive electrode is, for example, a rod-like (needle-like) conductive member as shown in FIG. 1, and the material thereof is preferably composed of, for example, carbon or a transition metal. This is to prevent the constituent elements of the first electrode from being dissolved or mixed in the liquid 30 due to a high temperature due to discharge. However, if the first electrode and the powder are made of the same kind of metal, there may be cases where the influence of the first electrode and the powder is reduced even if it is dissolved or mixed.
  • the first electrode is a carbon electrode and the powder that is the object to be processed is also a carbon-based powder.
  • the type of the second electrode 60 connected to the negative electrode is not particularly limited because it is not exposed to discharge. That is, the second electrode 60 may be any material as long as it is electrically connected to the liquid 30, and the type of the material is not limited.
  • a plasma discharge is generated in the gap between the first electrode (positive electrode) and the liquid surface of the liquid 30.
  • plasma discharge that discharges from a rod-shaped electrode (positive electrode) to a liquid surface of a wide area is referred to as “water plasma”.
  • the powder P separated from the liquid 30 is hydrophilically mixed and dispersed in the liquid 30.
  • This phenomenon is considered to be because the hydrophobic group terminating the surface of the powder is removed by the energy of the plasma and immediately after that, the hydrophilicity is imparted by contacting with the liquid.
  • This dispersed state is a physical state obtained without additives such as a surfactant, and lasts for a very long time. That is, the liquid 30 not only functions as a counter electrode with respect to the first electrode (positive electrode), but also functions as a dispersion solvent for the powder P.
  • FIG. 2A is a schematic diagram showing the state of the powder surface treatment apparatus 100 during plasma discharge.
  • D in the figure schematically shows a discharge generation region by water plasma.
  • FIG. 2B is a schematic diagram showing a state in which the powder is dispersed in the liquid after the plasma discharge.
  • the powder surface treatment apparatus of the first embodiment it is possible to efficiently impart hydrophilicity by subjecting the powder as the object to be treated to surface treatment.
  • the plasma discharge generation region is limited to the liquid surface where the object to be processed (powder) floats and its vicinity, so that the power source is used efficiently and the power consumption is greatly reduced. Can do.
  • a DC power source is used as the power source.
  • a configuration capable of generating water plasma and irradiating the powder is important, and the type of the power source is not limited.
  • an AC power supply may be used instead of the DC power supply. In this case, it goes without saying that a matching circuit and other additional equipment are required as necessary.
  • the powder dispersion obtained by the powder surface treatment method using the powder surface treatment apparatus of the first embodiment is basically composed of water and powder and does not contain additives such as surfactants. Therefore, there is an advantage that there are few factors that deteriorate the characteristics of the material such as conductivity.
  • this apparatus can be implemented in an air atmosphere under atmospheric pressure, and if the liquid is a water-soluble liquid, there is no problem even if it contains some impurities, such as tap water.
  • the apparatus of this embodiment is extremely easy to implement, for example, if it has a high-voltage power supply and electrodes that generate tens of kV at most, it does not require any special apparatus and can be carried out under atmospheric pressure in an air atmosphere. For this reason, if it implements in large quantities at a factory etc., a manufacturing cost can be reduced extremely.
  • the continuous mass processing in consideration of implementation in the factory will be described in detail in the second embodiment.
  • FIG. 3 (a) is a photograph of the beaker immediately before the start of discharge
  • FIG. 3 (b) is a photograph of the beaker after discharge.
  • the graphite carbon powder separated above the liquid level before the start of discharge was uniformly mixed and dispersed after the start of discharge.
  • FIG. 4 is a conceptual diagram for explaining a practical application example of the powder surface treatment apparatus as the second embodiment of the present invention.
  • the powder surface treatment apparatus 200 stores the liquid 30 inside the container 20, and is provided with first electrodes 40a to 40c separated from the liquid surface by a predetermined distance (that is, via air or the like).
  • the first electrodes 40a to 40c are connected to the positive electrodes of the DC power sources 50a to 50c, respectively.
  • the second electrode 60 has one end connected to the negative electrode of the DC power supply 50 and the other end electrically connected to the liquid 30 through an electric wire. Then, the powder P is placed on the liquid surface of the liquid 30.
  • the vessel 10 since the vessel 10 is enlarged and a plurality of electrodes on the positive electrode side of plasma discharge are provided, the generation range of the water plasma is expanded. It is configured to be able to.
  • a liquid inlet 70 and a discharge outlet 80 and a powder inlet 90 are provided.
  • the positions of the first electrodes 40a to 40c with respect to the liquid level are configured so that the relative distance from the liquid level can be finely adjusted by a moving means (not shown). This is because it is necessary to adjust the electrode interval of discharge in order to generate water plasma continuously and stably.
  • the introduction of the liquid before the plasma treatment, the discharge of the dispersion liquid after the plasma treatment and the introduction of the powder into the liquid are controlled by a control means (not shown). It becomes possible. Since other implementation conditions and the like are as described above, the description of the first embodiment is incorporated.
  • FIG. 5 is a schematic diagram showing a state of the powder surface treatment apparatus 200 during plasma discharge. After the plasma discharge, the powder P is uniformly dispersed in the liquid 30 as in FIG.
  • the plasma discharge range is widened by providing a plurality of plasma discharge electrodes, and a large amount of powder can be applied to the powder surface at once. Can be processed.
  • the powder surface treatment apparatus of the second embodiment it is possible to efficiently impart hydrophilicity by subjecting the powder as the object to be treated to surface treatment.
  • the plasma discharge generation region is limited to the liquid surface where the object to be processed (powder) floats and its vicinity, so that the power source is used efficiently and the power consumption is greatly reduced. Can do.
  • FIG. 6 is a cross-sectional view showing an example of an electrode structure of a lithium ion battery.
  • the negative electrode terminal 1 is connected to the positive electrode material 4 through the negative electrode 2 and the separator 3, and is connected to the positive electrode terminal 7 through the current collector 6.
  • a gasket 5 is provided around the battery.
  • fluorinated graphite containing graphite carbon as a main component is used.
  • graphite carbon is a difficult-to-mold material, a so-called fluorinated resin containing fluorine is kneaded to facilitate molding.
  • non-conductive polyvinylidene fluoride or water-dispersed styrene-butadiene rubber is used as a binder.
  • these are additives for facilitating molding, they are impurities that impede conductivity for electrode materials and are essentially unnecessary.
  • FIG. 7A is a schematic diagram showing the graphite carbon powder G
  • FIG. 7B is a schematic diagram showing the state immediately after the graphite carbon powder G and the fluorinated resin molecules F are mixed
  • FIG. 7C is a schematic diagram showing a state after the graphite carbon powder G and the fluorinated resin molecules F are mixed and molded.
  • a conventional molded body of graphite carbon powder G as an electrode material is added with a substance that inhibits conduction, such as a molecule F of a fluorinated resin, as a binder.
  • a substance that inhibits conduction such as a molecule F of a fluorinated resin
  • the actual situation includes various problems caused by mixing fluorinated resins, such as an increase, an increase in production cost, and an increase in weight.
  • FIG. 8A is a schematic diagram showing the graphite carbon powder G
  • FIG. 8B is a diagram immediately after the powder surface treatment method of the present invention is performed on the graphite carbon powder G of FIG.
  • FIG. 8C is a schematic diagram showing a state in which the graphite carbon of FIG. 8B is molded without a binder.
  • the present invention is expected to be applied to the production process of various products using powder, and the industrial applicability of the present invention is extremely large.
  • Powder surface treatment apparatus 100,200 Powder surface treatment apparatus 20 Container 30 Liquid 40 First electrode (positive electrode) 50 DC power supply 60 Second electrode 70 Liquid inlet 80 Ejector 90 Powder inlet

Abstract

Disclosed are a novel powder surface treatment apparatus and a novel powder surface treatment method, both of which enable the surfaces of powder particles to be treated within a short period and with high efficiency. The powder surface treatment apparatus comprises: a container (20) into which a liquid (30) is to be filled; a first electrode (40) which is placed a predetermined distance away from the surface of the liquid; a second electrode which is so arranged as to be electrically connected to the liquid (30) when the liquid (30) is filled in the container; and an electrical power source (50) which is connected to the first and second electrodes. The powder surface treatment apparatus is characterized by being so adapted that the liquid (30) is filled, powder (P) to be treated is placed on the surface of the liquid, and a voltage is then applied to the first and second electrodes, thereby causing the generation of plasma in a space between the first electrode and the surface of the liquid.

Description

粉体表面処理装置及び粉体表面処理方法Powder surface treatment apparatus and powder surface treatment method
 本発明は、粉体の親水性を高めるための粉体表面処理装置及び粉体表面処理方法に関する。 The present invention relates to a powder surface treatment apparatus and a powder surface treatment method for increasing the hydrophilicity of a powder.
 従来より、粉体に親水性を付与して濡れ性を向上させ、溶剤中に分散させるための方法として、粉体にプラズマを照射して表面処理を施す方法が知られている(特許文献1~4等)。例えば、特許文献1には、大量の粉体を連続的にプラズマ処理することができるプラズマによる表面処理方法が記載されている。 Conventionally, as a method for imparting hydrophilicity to a powder to improve wettability and to disperse it in a solvent, a method of performing surface treatment by irradiating the powder with plasma is known (Patent Document 1). ~ 4 etc.). For example, Patent Document 1 describes a surface treatment method using plasma capable of continuously plasma-treating a large amount of powder.
 一方、プラズマによる表面処理を行わない場合、粉体は粒子径が微細化するほど分散性が悪くなる傾向があるため、導電性ペーストなどや電極材に用いられる粉体は、界面活性剤などを用いて分散性を高めている。例えば、特許文献5では、金属粉体と樹脂を混ぜ合わせるために界面活性剤を用いることが記載されている。 On the other hand, when the surface treatment with plasma is not performed, the powder tends to be less dispersible as the particle diameter becomes finer. Used to increase dispersibility. For example, Patent Document 5 describes that a surfactant is used to mix metal powder and resin.
特開平6-365号公報JP-A-6-365 特開平1-193332号公報Japanese Patent Laid-Open No. 1-193332 特開平6-228739号公報JP-A-6-228739 特開2003-19434号公報Japanese Patent Laid-Open No. 2003-19434 特開2008-108539号公報JP 2008-108539 A
 しかし、粉体にプラズマ処理を施していわゆる表面処理を行う従来の方法は、いずれも複雑な設備を必要とするため、安価に大量に製造することはできなかった。 However, all of the conventional methods for performing so-called surface treatment by subjecting powder to plasma treatment require complicated equipment, and thus cannot be manufactured in large quantities at low cost.
 一方、粉体を樹脂や溶剤中に混練或いは分散させる従来の方法は、均一な分散液を得るために界面活性剤など種々の添加剤を必要とする。しかし、添加剤は粉体の純度を低下させ、粉体の持つ本来の機能乃至特性を低下させる原因となる。 On the other hand, the conventional method of kneading or dispersing the powder in a resin or a solvent requires various additives such as a surfactant in order to obtain a uniform dispersion. However, the additive reduces the purity of the powder and causes the original functions and characteristics of the powder to deteriorate.
 本発明は、上記に鑑みてなされたものであって、短時間に効率よく粉体の表面処理を行うことができる新規な粉体表面処理装置及び粉体表面処理方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a novel powder surface treatment apparatus and powder surface treatment method capable of efficiently performing powder surface treatment in a short time. To do.
 本発明に係る粉体表面処理装置は、内部に液体30を貯留する容器20と、前記液体の液面から所定の距離離間して設けられる第1の電極40と、容器に液体30を貯留したときこの液体30と電気的に接続されるように設けられる第2の電極と、前記第1及び第2の電極に接続される電源50とを具備し、
 前記液体30を貯留してその液面上に被処理体としての粉体Pを設置すると共に、前記第1及び第2の電極に電圧を印加することにより、前記第1の電極と前記液体の液面との間にプラズマを生成するように構成されることを特徴とする。
The powder surface treatment apparatus according to the present invention stores the liquid 30 in the container, the container 20 that stores the liquid 30 therein, the first electrode 40 provided at a predetermined distance from the liquid surface of the liquid, and the container. A second electrode provided to be electrically connected to the liquid 30 and a power source 50 connected to the first and second electrodes.
The liquid 30 is stored and the powder P as the object to be processed is placed on the liquid surface, and a voltage is applied to the first and second electrodes, whereby the first electrode and the liquid It is characterized by being configured to generate plasma between the liquid surface.
 上記粉体表面処理装置によると、液面上に生成されるプラズマ(水上プラズマ)の作用により、液面に設置された粉体の表面修飾が行われることで液体との親和性が高められ、液体を分散溶剤とする分散液を製造することができる。この分散液は物理的作用によって粉体の分散状態を長期間保持することができるものであって、界面活性剤などの不純物を含まない。 According to the above powder surface treatment apparatus, the affinity of the liquid is enhanced by the surface modification of the powder placed on the liquid surface by the action of the plasma generated on the liquid surface (water plasma), A dispersion using a liquid as a dispersion solvent can be produced. This dispersion can maintain the dispersed state of the powder for a long period of time by physical action, and does not contain impurities such as a surfactant.
 上記粉体表面処理装置は、前記第1の電極40及び電源50が複数設けられ、前記液体30に対して電気的に並列接続されるように構成してもよい。このように構成するとプラズマの生成範囲が拡大するため、広範囲の粉体に同時にプラズマを照射することができるようになる。その結果、1回の放電でより多くの粉体を表面処理することが可能となる。 The powder surface treatment apparatus may be configured such that a plurality of the first electrodes 40 and a power source 50 are provided and electrically connected to the liquid 30 in parallel. With this configuration, the plasma generation range is expanded, so that a wide range of powders can be irradiated with plasma simultaneously. As a result, it is possible to surface-treat more powder with one discharge.
 上記粉体処理装置は、前記液体30の導入口70と排出口80、及び粉体Pの投入口90をさらに具備していてもよい。このように構成すると、放電処理前は液体30の導入口70から液体30を導入すると共に粉体の投入口90から粉体Pを投入し、放電処理後は放電により得られた分散液を排出口80から排出できるため、連続的に大量の粉体表面処理を行うことができる。 The powder processing apparatus may further include an inlet 70 and an outlet 80 for the liquid 30 and an inlet 90 for the powder P. According to this configuration, the liquid 30 is introduced from the introduction port 70 of the liquid 30 and the powder P is introduced from the powder introduction port 90 before the discharge treatment, and the dispersion obtained by the discharge is discharged after the discharge treatment. Since it can discharge | emit from the exit 80, a lot of powder surface treatment can be performed continuously.
 前記第1の電極40に印加する電源50の電圧は、電極間隔あたり、1[kV/mm]以上であることが好ましい。放電開始電圧は種々の条件で変動しうるが、概ねこの程度の電圧を印加すれば、大気圧中の空気雰囲気下でも持続的なプラズマ放電が可能だからである。 The voltage of the power supply 50 applied to the first electrode 40 is preferably 1 [kV / mm] or more per electrode interval. This is because the discharge start voltage can vary under various conditions, but if such a voltage is applied, a sustained plasma discharge is possible even in an air atmosphere at atmospheric pressure.
 上記粉体表面処理装置は、第1の電極40の材質が、炭素又は遷移金属元素で構成されていることが好ましい。これは、放電による高温によって第1の電極の構成元素が液体30に溶解乃至混入することを防止するためである。 In the powder surface treatment apparatus, the first electrode 40 is preferably made of carbon or a transition metal element. This is to prevent the constituent elements of the first electrode from being dissolved or mixed in the liquid 30 due to a high temperature due to discharge.
 本発明に係る粉体表面処理方法は、分散溶剤とする液体上に、被処理対象としての粉体を投入するステップと、前記液体の液面上に水上プラズマを生成するステップと、前記水上プラズマの生成を一定時間持続するステップとを具備することを特徴とする。 The powder surface treatment method according to the present invention includes a step of introducing a powder as an object to be treated onto a liquid as a dispersion solvent, a step of generating a water plasma on the liquid surface of the liquid, and the water plasma. Generating a predetermined period of time.
 この液体30は、親水性のある液体が好ましい。また、被処理対象としての粉体Pは、例えば、カーボンナノチューブ、グラファイトカーボン、フラーレン(C60)などの炭素系粉体、二酸化ケイ素或いは四窒化三ケイ素などのシリコン系粉体、銀、タングステン、チタン、チタン酸化物などの金属系粉体であり、大きさは問わない。 The liquid 30 is preferably a hydrophilic liquid. The powder P to be treated includes, for example, carbon-based powders such as carbon nanotubes, graphite carbon, fullerene (C 60 ), silicon-based powders such as silicon dioxide or trisilicon tetranitride, silver, tungsten, It is a metal-based powder such as titanium or titanium oxide, and the size is not limited.
 本発明に係る粉体表面処理装置は、界面活性剤を用いず粉体を短時間で液体に親和させることが可能であるため、炭素粉体を含む塗料やグラファイトカーボンを混ぜ込んだハイブリッド材料の製造においてコスト削減を達成することができる。さらに、界面活性剤によって失われる材料の純度を保つことができるので、特性維持にも効果がある。また、電池の正極材や負極材であるグラファイトカーボンを凝集しやすくしてバインダーなしで成形することができるなど、品質を向上することができるといった効果を奏する。 The powder surface treatment apparatus according to the present invention is capable of making a powder compatible with a liquid in a short time without using a surfactant, so that a paint containing carbon powder or a hybrid material mixed with graphite carbon is used. Cost savings can be achieved in manufacturing. Furthermore, since the purity of the material lost by the surfactant can be maintained, it is effective in maintaining the characteristics. In addition, there is an effect that quality can be improved, for example, graphite carbon which is a positive electrode material or a negative electrode material of a battery can be easily aggregated and molded without a binder.
第1の実施形態の粉体表面処理装置の基本原理を説明する概念図The conceptual diagram explaining the basic principle of the powder surface treatment apparatus of 1st Embodiment 第1の実施形態の粉体表面処理装置によるプラズマ放電の様子を示す模式図(a)放電中 (b)放電後Schematic diagram showing the state of plasma discharge by the powder surface treatment apparatus of the first embodiment (a) During discharge (b) After discharge 第1の実施形態の粉体表面処理装置によるプラズマ放電前後の様子を撮影した写真 (a)放電開始直前 (b)放電後Photographs taken before and after plasma discharge by the powder surface treatment apparatus of the first embodiment (a) Immediately before the start of discharge (b) After discharge 第2の実施形態の粉体表面処理装置を説明するための概念図The conceptual diagram for demonstrating the powder surface treatment apparatus of 2nd Embodiment 第2の実施形態の粉体表面処理装置によるプラズマ放電の様子を示す模式図The schematic diagram which shows the mode of the plasma discharge by the powder surface treatment apparatus of 2nd Embodiment. リチウムイオン電池の電極構造を示す断面図Sectional view showing electrode structure of lithium ion battery グラファイトカーボンにフッ化系樹脂のバインダーを添加して成形する様子を説明する概念図(a)グラファイトカーボンの粉体Gを表す模式図(b)グラファイトカーボンの粉体Gとフッ化系樹脂の分子Fを混合した直後の状態を表す模式図(c)グラファイトカーボンの粉体Gとフッ化系樹脂の分子Fを混合して成形した後の状態を表す模式図(A) Schematic diagram illustrating how graphite resin powder is added to graphite carbon for molding (a) Schematic diagram showing graphite carbon powder G (b) Graphite carbon powder G and molecules of fluorinated resin Schematic diagram showing the state immediately after F is mixed (c) Schematic diagram showing the state after molding by mixing graphite carbon powder G and fluorinated resin molecule F グラファイトカーボンに本発明の表面処理を実施することにより、バインダーを添加することなく成形する様子を説明する概念図 (a)グラファイトカーボンの粉体Gを表す模式図 (b)グラファイトカーボンの粉体Gに本発明の粉体表面処理方法を実施した直後の状態を示す模式図 (c)グラファイトカーボンをバインダーなしで成形した状態を示す模式図Schematic diagram illustrating the state of molding without adding a binder by carrying out the surface treatment of the present invention on graphite carbon (a) Schematic diagram showing graphite carbon powder G (b) Graphite carbon powder G (C) Schematic diagram showing a state in which graphite carbon is molded without a binder
 本発明に係るプラズマ表面処理装置及び粉体表面処理方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定的に解釈されるものではない。また、同一又は同等の部材には同一の符号を付し、重複する説明は省略する。 Embodiments of a plasma surface treatment apparatus and a powder surface treatment method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not construed as being limited to the embodiments. Moreover, the same code | symbol is attached | subjected to the same or equivalent member, and the overlapping description is abbreviate | omitted.
(第1の実施形態)
 図1は、本発明の第1の実施形態として、本発明の粉体表面処理装置の基本原理を説明するための概念図である。粉体表面処理装置100は容器20の内部に液体30を貯留し、その液面から所定の距離離間して(すなわち空気等を介して)第1の電極40が設けられる。この第1の電極40は、直流電源50の正極に接続される。また、第2の電極60は一端が直流電源50の負極に接続され、電線を通じて他端は液体30に電気的に接続される。そして、この液体30の液面に粉体Pが設置される。
(First embodiment)
FIG. 1 is a conceptual diagram for explaining the basic principle of a powder surface treatment apparatus of the present invention as a first embodiment of the present invention. The powder surface treatment apparatus 100 stores the liquid 30 inside the container 20 and is provided with a first electrode 40 spaced apart from the liquid surface by a predetermined distance (that is, via air or the like). The first electrode 40 is connected to the positive electrode of the DC power supply 50. The second electrode 60 has one end connected to the negative electrode of the DC power supply 50 and the other end electrically connected to the liquid 30 through an electric wire. Then, the powder P is placed on the liquid surface of the liquid 30.
 粉体Pは、例えば、カーボンナノチューブ、グラファイトカーボン、フラーレン(C60)などの炭素系粉体、二酸化ケイ素或いは四窒化三ケイ素などのシリコン系粉体、銀、タングステン、チタン、チタン酸化物などの金属系粉体であり、大きさは問わない。例えば粉体の粒径が約1nm以上100μm以下である。 Examples of the powder P include carbon-based powders such as carbon nanotubes, graphite carbon, and fullerene (C 60 ), silicon-based powders such as silicon dioxide or trisilicon tetranitride, silver, tungsten, titanium, and titanium oxide. It is a metal-based powder and does not have any size. For example, the particle size of the powder is about 1 nm to 100 μm.
 一方、液体30は、例えば、水(HO)やアルコール系水溶液(アルコール類)などの親水性のある液体が好ましい。なお、液体にアルコール系水溶液を用いる場合は、放電によりアルコールに引火する危険性があるため、空気のような酸素を含むガス雰囲気は好ましくない。このような場合はアルゴンガス雰囲気や窒素ガス雰囲気など、酸素ガスを含まない雰囲気で放電を行うことが好ましい。 On the other hand, the liquid 30 is preferably a hydrophilic liquid such as water (H 2 O) or an alcohol-based aqueous solution (alcohol). In addition, when using alcohol-type aqueous solution for a liquid, since there exists a danger of igniting alcohol by discharge, the gas atmosphere containing oxygen like air is unpreferable. In such a case, it is preferable to perform discharge in an atmosphere that does not contain oxygen gas, such as an argon gas atmosphere or a nitrogen gas atmosphere.
 粉体Pは、図示しない粉体投入手段により液体30の上方から投入されるが、投入直後は、粉体Pに親水性はないため、粉体Pが液体30と混ざり合うことはない。したがって、液面上方に分離するか若しくは表面張力で液面上に浮かんだままの状態となる。 Although the powder P is charged from above the liquid 30 by a powder charging means (not shown), the powder P does not mix with the liquid 30 because the powder P is not hydrophilic immediately after the charging. Therefore, the liquid is separated above the liquid surface or remains floating on the liquid surface due to surface tension.
 次に、直流電源50に高電圧を印加して、第1の電極40と、液面との間にプラズマを生成する。上述の通り第1の電極40と液体30の液面との間には空気等が介在するが、直流電源50による印加電圧を上げるとついには絶縁破壊電圧に達し、放電が開始される。プラズマ放電の開始条件はガス雰囲気や圧力や湿度などに影響し、厳密な計算式もあるが、概ね1mm離間させるごとに1kV(すなわち3mm離間させた場合は3kV程度)を放電開始電圧の目安とし、例えば印加電圧は0.1kV~30kVの電源が用意できる場合、第1の間隔電極と液面の距離は概ね0.1mm~30mmとすればよい。但し、放電を開始するために必要な電圧及び距離で実施すればよく、数値自体はそれほど重要な意味を持たない。 Next, a high voltage is applied to the DC power source 50 to generate plasma between the first electrode 40 and the liquid level. As described above, air or the like is interposed between the first electrode 40 and the liquid surface of the liquid 30, but when the voltage applied by the DC power supply 50 is increased, the dielectric breakdown voltage is finally reached and discharge is started. The plasma discharge start condition affects the gas atmosphere, pressure, humidity, etc., and there are strict calculation formulas, but approximately 1 kV (that is, about 3 kV when 3 mm apart) is used as a guide for the discharge start voltage. For example, when a power supply with an applied voltage of 0.1 kV to 30 kV can be prepared, the distance between the first spacing electrode and the liquid surface may be approximately 0.1 mm to 30 mm. However, what is necessary is just to implement by the voltage and distance required in order to start discharge, and the numerical value itself does not have so important meaning.
 正極に接続される第1の電極40は、例えば図1のような棒状(針状)の導電部材であり、その材質は、例えば炭素や遷移金属などで構成されることが好ましい。これは、放電による高温によって第1の電極の構成元素が液体30に溶解乃至混入することを防止するためである。但し、第1の電極と粉体とを同種の金属としておくことで、万が一溶解乃至混入しても、その影響が少なくなるケースがあり得る。例えば、第1の電極が炭素電極であり被処理体である粉体も炭素系粉体である場合などである。このように、第1の電極の材料と粉体の材料とを同種若しくは同系の元素で構成される材料の組み合わせを選択することはメリットをもたらす場合がある。一方、負極に接続される第2の電極60は、放電にさらされることがないため、特にその種類は問わない。すなわち、第2の電極60は、液体30に電気的に接続するものであれば足り、その材質の種類は問わない。放電中は第1の電極(正極)と液体30の液面との空隙にプラズマ放電が生成されることになる。なお、このように棒状の電極(正極)から広い面積の液面に放電するプラズマ放電を本明細書では、「水上プラズマ」とよぶ。 The first electrode 40 connected to the positive electrode is, for example, a rod-like (needle-like) conductive member as shown in FIG. 1, and the material thereof is preferably composed of, for example, carbon or a transition metal. This is to prevent the constituent elements of the first electrode from being dissolved or mixed in the liquid 30 due to a high temperature due to discharge. However, if the first electrode and the powder are made of the same kind of metal, there may be cases where the influence of the first electrode and the powder is reduced even if it is dissolved or mixed. For example, the first electrode is a carbon electrode and the powder that is the object to be processed is also a carbon-based powder. As described above, there is a case where selecting a combination of materials composed of the same kind or the same kind of elements of the material of the first electrode and the material of the powder may bring merit. On the other hand, the type of the second electrode 60 connected to the negative electrode is not particularly limited because it is not exposed to discharge. That is, the second electrode 60 may be any material as long as it is electrically connected to the liquid 30, and the type of the material is not limited. During the discharge, a plasma discharge is generated in the gap between the first electrode (positive electrode) and the liquid surface of the liquid 30. In addition, in this specification, plasma discharge that discharges from a rod-shaped electrode (positive electrode) to a liquid surface of a wide area is referred to as “water plasma”.
 そして、水上プラズマを発生させて一定時間その放電状態を持続すると、液体30と分離していた粉体Pが親水性を帯びて混ざり合い、液体30に分散する。この現象は、粉体の表面を終端している疎水基がプラズマのエネルギーによって除去され、その直後に液体と接触することで親水性が付与されたためと考えられる。そして、この分散状態は界面活性剤などの添加物なしに得られた物理的なものであり、極めて長期間持続する。すなわち、液体30は液面が第1の電極(正極)に対する対向電極として作用するだけでなく、液体そのものが粉体Pの分散溶剤としても作用する。 Then, when water plasma is generated and the discharge state is maintained for a certain time, the powder P separated from the liquid 30 is hydrophilically mixed and dispersed in the liquid 30. This phenomenon is considered to be because the hydrophobic group terminating the surface of the powder is removed by the energy of the plasma and immediately after that, the hydrophilicity is imparted by contacting with the liquid. This dispersed state is a physical state obtained without additives such as a surfactant, and lasts for a very long time. That is, the liquid 30 not only functions as a counter electrode with respect to the first electrode (positive electrode), but also functions as a dispersion solvent for the powder P.
 図2(a)は、プラズマ放電中の粉体表面処理装置100の様子を示す模式図である。図中のDは水上プラズマによる放電生成領域を模式的に示している。また、図2(b)はプラズマ放電後に液体中に粉体が分散した様子を示す模式図である。 FIG. 2A is a schematic diagram showing the state of the powder surface treatment apparatus 100 during plasma discharge. D in the figure schematically shows a discharge generation region by water plasma. FIG. 2B is a schematic diagram showing a state in which the powder is dispersed in the liquid after the plasma discharge.
 以上のように、第1の実施形態の粉体表面処理装置によれば、被処理体としての粉体に表面処理を施して効率よく親水性を付与することができる。また、この装置の水上プラズマによるとプラズマ放電の生成領域が被処理体(粉体)が浮かぶ液面及びその近傍に限定されるため、電源の利用効率がよく、消費電力を大幅に低減することができる。なお、第1の実施形態では電源に直流電源を用いたが水上プラズマを生成して粉体に照射できる構成が重要であり、電源の種類は問わない。例えば、直流電源に代えて交流電源であってもよい。この場合、必要に応じてマッチング回路その他の付加的な設備が必要となることはいうまでもない。 As described above, according to the powder surface treatment apparatus of the first embodiment, it is possible to efficiently impart hydrophilicity by subjecting the powder as the object to be treated to surface treatment. In addition, according to the water plasma of this device, the plasma discharge generation region is limited to the liquid surface where the object to be processed (powder) floats and its vicinity, so that the power source is used efficiently and the power consumption is greatly reduced. Can do. In the first embodiment, a DC power source is used as the power source. However, a configuration capable of generating water plasma and irradiating the powder is important, and the type of the power source is not limited. For example, an AC power supply may be used instead of the DC power supply. In this case, it goes without saying that a matching circuit and other additional equipment are required as necessary.
 第1の実施形態の粉体表面処理装置による粉体表面処理方法によって得られた粉体の分散液は、基本的に水と粉体で構成され、界面活性剤などの添加物を含まないことから、例えば導電性などの材料の特性を低下させる要因が少ないという利点がある。 The powder dispersion obtained by the powder surface treatment method using the powder surface treatment apparatus of the first embodiment is basically composed of water and powder and does not contain additives such as surfactants. Therefore, there is an advantage that there are few factors that deteriorate the characteristics of the material such as conductivity.
 また、この装置は大気圧下で空気雰囲気で実施でき、液体も水溶性の液体であれば、例えば水道水などのように、多少の不純物を含んでいても問題はない。本実施形態の装置は高々数十kVを発生させる高電圧電源と電極があれば、特別な装置を一切必要とせず、空気雰囲気の大気圧下で実施できるなど、実施が極めて容易である。このため、工場などで大量に実施すれば極めて製造コストを下げることができる。なお、工場での実施を念頭においた連続的な大量処理については第2の実施形態において詳述する。 Also, this apparatus can be implemented in an air atmosphere under atmospheric pressure, and if the liquid is a water-soluble liquid, there is no problem even if it contains some impurities, such as tap water. The apparatus of this embodiment is extremely easy to implement, for example, if it has a high-voltage power supply and electrodes that generate tens of kV at most, it does not require any special apparatus and can be carried out under atmospheric pressure in an air atmosphere. For this reason, if it implements in large quantities at a factory etc., a manufacturing cost can be reduced extremely. In addition, the continuous mass processing in consideration of implementation in the factory will be described in detail in the second embodiment.
-実験例-
 本発明の効果を確認するための基礎実験として、以下の条件で実験を行った。はじめに、容器10として直径約5cmのビーカーを用い、ここに常温の水道水を約100mL入れ、水面から約2.5mm離間した位置に第1の電極40の先端を配置し、直流電源50の正極に接続した。他方、第2の電極を直流電源50の負極に接続し、他端をビーカー内の液中に接続した。ここに、質量約2~3gのグラファイトカーボンを投入した後、約2.5kVの直流電圧を印加して、プラズマ放電を開始した。放電を約1分間程度持続した後、放電を停止した。なお、放電時の雰囲気は大気圧の空気雰囲気とした。
-Experimental example-
As a basic experiment for confirming the effect of the present invention, an experiment was performed under the following conditions. First, a beaker having a diameter of about 5 cm is used as the container 10, about 100 mL of room temperature tap water is placed therein, the tip of the first electrode 40 is arranged at a position about 2.5 mm away from the water surface, and Connected to. On the other hand, the second electrode was connected to the negative electrode of the DC power source 50, and the other end was connected to the liquid in the beaker. Here, after putting graphite carbon having a mass of about 2 to 3 g, a DC voltage of about 2.5 kV was applied to start plasma discharge. After the discharge was continued for about 1 minute, the discharge was stopped. The atmosphere during discharge was an atmospheric air atmosphere.
 図3(a)は、放電開始直前のビーカーの様子を、図3(b)は、放電後のビーカーの様子を撮影した写真である。放電開始前には液面上方に分離していたグラファイトカーボンの粉末が、放電開始後には均一に混ざり合って分散状態となった。 3 (a) is a photograph of the beaker immediately before the start of discharge, and FIG. 3 (b) is a photograph of the beaker after discharge. The graphite carbon powder separated above the liquid level before the start of discharge was uniformly mixed and dispersed after the start of discharge.
(第2の実施形態)
 図4は、本発明の第2の実施形態として、粉体表面処理装置の実用的な応用例を説明するための概念図である。粉体表面処理装置200は容器20の内部に液体30を貯留し、その液面から所定の距離離間して(すなわち空気等を介して)第1の電極40a~40cが設けられる。第1の電極40a~40cは、直流電源50a~50cの正極にそれぞれ接続される。また、第2の電極60は一端が直流電源50の負極に接続され、電線を通じて他端は液体30に電気的に接続される。そして、この液体30の液面に粉体Pが設置される。
(Second Embodiment)
FIG. 4 is a conceptual diagram for explaining a practical application example of the powder surface treatment apparatus as the second embodiment of the present invention. The powder surface treatment apparatus 200 stores the liquid 30 inside the container 20, and is provided with first electrodes 40a to 40c separated from the liquid surface by a predetermined distance (that is, via air or the like). The first electrodes 40a to 40c are connected to the positive electrodes of the DC power sources 50a to 50c, respectively. The second electrode 60 has one end connected to the negative electrode of the DC power supply 50 and the other end electrically connected to the liquid 30 through an electric wire. Then, the powder P is placed on the liquid surface of the liquid 30.
 すなわち、第2の実施形態では、容器10を大型にすると共にプラズマ放電の正極側の電極を複数設けることによって、水上プラズマの生成範囲が拡大するため、広範囲の粉体に同時にプラズマを照射することができるように構成されている。そして、連続的に粉体の表面処理を実施するために、液体の導入口70と排出口80及び粉体の投入口90が設けられている。さらに、液面に対する第1の電極40a~40cの位置は、図示しない移動手段によって液面との相対的な距離を微調整できるように構成されている。これは水上プラズマを持続的に安定して生成するために放電の電極間隔を調整する必要があるためである。プラズマ処理前の液体の導入とプラズマ処理後の分散液の排出や液体への粉体の投入などは、図示しない制御手段によって制御され、これらの装置によって連続的にかつ大量の粉体表面処理が可能となる。その他の実施条件等については上述の通りであるため、第1の実施形態の記載を援用する。 That is, in the second embodiment, since the vessel 10 is enlarged and a plurality of electrodes on the positive electrode side of plasma discharge are provided, the generation range of the water plasma is expanded. It is configured to be able to. In order to continuously perform the powder surface treatment, a liquid inlet 70 and a discharge outlet 80 and a powder inlet 90 are provided. Further, the positions of the first electrodes 40a to 40c with respect to the liquid level are configured so that the relative distance from the liquid level can be finely adjusted by a moving means (not shown). This is because it is necessary to adjust the electrode interval of discharge in order to generate water plasma continuously and stably. The introduction of the liquid before the plasma treatment, the discharge of the dispersion liquid after the plasma treatment and the introduction of the powder into the liquid are controlled by a control means (not shown). It becomes possible. Since other implementation conditions and the like are as described above, the description of the first embodiment is incorporated.
 図5は、プラズマ放電中の粉体表面処理装置200の様子を示す模式図である。プラズマ放電後には図2(b)同様に液体30中に粉体Pが均一に分散する。 FIG. 5 is a schematic diagram showing a state of the powder surface treatment apparatus 200 during plasma discharge. After the plasma discharge, the powder P is uniformly dispersed in the liquid 30 as in FIG.
 この図に示すように、第2の実施形態による粉体表面処理装置によれば、プラズマ放電の電極が複数設けられることでプラズマ放電の範囲が広範囲となり、一度に大量の粉体を粉体表面処理をすることができる。 As shown in this figure, according to the powder surface treatment apparatus according to the second embodiment, the plasma discharge range is widened by providing a plurality of plasma discharge electrodes, and a large amount of powder can be applied to the powder surface at once. Can be processed.
 以上のように、第2の実施形態の粉体表面処理装置によれば、被処理体としての粉体に表面処理を施して効率よく親水性を付与することができる。また、この装置の水上プラズマによるとプラズマ放電の生成領域が被処理体(粉体)が浮かぶ液面及びその近傍に限定されるため、電源の利用効率がよく、消費電力を大幅に低減することができる。 As described above, according to the powder surface treatment apparatus of the second embodiment, it is possible to efficiently impart hydrophilicity by subjecting the powder as the object to be treated to surface treatment. In addition, according to the water plasma of this device, the plasma discharge generation region is limited to the liquid surface where the object to be processed (powder) floats and its vicinity, so that the power source is used efficiently and the power consumption is greatly reduced. Can do.
(第3の実施形態)
 図6は、リチウムイオン電池の電極構造の一例を示す断面図である。負極端子1は、負極2とセパレータ3を介して正極の電極材4に接続され、集電体6を介して正極端子7に接続される。また電池の周囲にはガスケット5が設けられる。このようなリチウムイオン電池などの電池類に用いられる電極材5には、グラファイトカーボンを主成分とするフッ化黒鉛が用いられている。しかし、グラファイトカーボンは難成形材であるため、フッ素を含むいわゆるフッ化系樹脂を練り込んで成形を容易にしている。
(Third embodiment)
FIG. 6 is a cross-sectional view showing an example of an electrode structure of a lithium ion battery. The negative electrode terminal 1 is connected to the positive electrode material 4 through the negative electrode 2 and the separator 3, and is connected to the positive electrode terminal 7 through the current collector 6. A gasket 5 is provided around the battery. For the electrode material 5 used in such batteries as lithium ion batteries, fluorinated graphite containing graphite carbon as a main component is used. However, since graphite carbon is a difficult-to-mold material, a so-called fluorinated resin containing fluorine is kneaded to facilitate molding.
 グラファイトカーボン同士を凝集させて成形場合、導体性のないポリフッ化ビニリデンや水分散系のスチレン-ブタジエンゴムをバインダーとして用いている。これらは成形を容易にするための添加剤であるが電極材にとっては導電性を阻害する不純物であり、本来は不要なものである。 When molding by agglomerating graphite carbon, non-conductive polyvinylidene fluoride or water-dispersed styrene-butadiene rubber is used as a binder. Although these are additives for facilitating molding, they are impurities that impede conductivity for electrode materials and are essentially unnecessary.
 図7(a)は、グラファイトカーボンの粉体Gを表す模式図であり、図7(b)は、グラファイトカーボンの粉体Gとフッ化系樹脂の分子Fを混合した直後の状態を表す模式図であり、図7(c)は、グラファイトカーボンの粉体Gとフッ化系樹脂の分子Fを混合して成形した後の状態を表す模式図である。 FIG. 7A is a schematic diagram showing the graphite carbon powder G, and FIG. 7B is a schematic diagram showing the state immediately after the graphite carbon powder G and the fluorinated resin molecules F are mixed. FIG. 7C is a schematic diagram showing a state after the graphite carbon powder G and the fluorinated resin molecules F are mixed and molded.
 この図に示すように、従来の電極材としてのグラファイトカーボンの粉体Gによる成形体は、フッ化系樹脂の分子Fなどの導電を阻害する物質をバインダーとして添加するため、電極の電気抵抗の増大、製造コストの増大、重量の増大など、フッ化系樹脂を混合することによる種々の問題を含んでいるのが実情である。 As shown in this figure, a conventional molded body of graphite carbon powder G as an electrode material is added with a substance that inhibits conduction, such as a molecule F of a fluorinated resin, as a binder. The actual situation includes various problems caused by mixing fluorinated resins, such as an increase, an increase in production cost, and an increase in weight.
 ところが、グラファイトカーボンの粉体を本発明の粉体表面処理方法によって表面処理することで、表面が活性化され、グラファイトカーボン同士が互いを引き寄せ合う結果、成形後には導電性を阻害する不純物を含まない、純粋な炭素材となる。 However, surface treatment of graphite carbon powder by the powder surface treatment method of the present invention activates the surface, and as a result of the graphite carbon attracting each other, it contains impurities that impede conductivity after molding. Not a pure carbon material.
 図8(a)は、グラファイトカーボンの粉体Gを表す模式図であり、図8(b)は、(a)のグラファイトカーボンの粉体Gに本発明の粉体表面処理方法を実施した直後の状態を示す模式図であり、図8(c)は、(b)のグラファイトカーボンをバインダーなしで成形した状態を示す模式図である。 FIG. 8A is a schematic diagram showing the graphite carbon powder G, and FIG. 8B is a diagram immediately after the powder surface treatment method of the present invention is performed on the graphite carbon powder G of FIG. FIG. 8C is a schematic diagram showing a state in which the graphite carbon of FIG. 8B is molded without a binder.
 以上のように、本発明の粉体表面処理方法をグラファイトカーボンに適用し、電池の電極材として用いることにより、バインダーなしに成形可能となり、電気的特性の向上、製造コスト及び重量の削減に寄与することが期待される。 As described above, by applying the powder surface treatment method of the present invention to graphite carbon and using it as a battery electrode material, it becomes possible to mold without a binder, contributing to improvement of electrical characteristics, production cost and weight reduction. Is expected to do.
(その他の実施形態)
 本発明の粉体表面処理方法を適用した各種粉体の応用分野としては、以下のようなものが考えられる。
(1)水溶性インクへの応用
 電気配線をカーボンナノチューブなどで描画する際の水溶性インクは、原料となる炭素や有機粉体を水溶性の液体に溶かし込むことが必要であるが、製造効率のよい技術は確立していない。しかし、本発明の粉体表面処理方法によれば、製造効率を向上させ、製造コストを下げることが期待される。
(2)創薬開発への応用
 新たな創薬の開発に、従来はレーザー技術を用いて水溶液中にフラーレンを溶かし込むことが行われているが、生産性及び製造コストの面から実用化に大きな壁が立ちはだかっていた。しかし、本発明の粉体表面処理方法によれば、製造効率を向上させ、製造コストを下げることが期待される。
(3)摺動材などへの応用
 グラファイトカーボンを樹脂に混ぜ込むことで耐熱温度や摩擦係数を向上させ、摺動材として用いられている。現在の摺動材は、分散性を向上させるために界面活性剤を混合しているが、界面活性剤の添加によって性能の低下及び製造コストを増大させる要因ともなっている。
(4)その他の技術への応用
 各種粉体は、化粧品の一つであるファンデーション(TiO)や、半導体集積回路装置の研磨工程に用いられるスラリーなど、様々な分野ですでに実用化されている。これらのいくつかには、分散性を向上させるために、或いはその他の目的のために、種々の添加剤を混入させている。しかし、本発明の粉体表面処理方法を適用して得られる物理的な作用により長期間にわたり分散性を保持する分散液を用いることで、特性の向上や製造コストの低下を実現できる可能性は大きい。
(Other embodiments)
The following can be considered as application fields of various powders to which the powder surface treatment method of the present invention is applied.
(1) Application to water-soluble ink Water-soluble ink for drawing electrical wiring with carbon nanotubes, etc., needs to dissolve carbon or organic powder as a raw material in water-soluble liquid, but the production efficiency No good technology has been established. However, according to the powder surface treatment method of the present invention, it is expected to improve the production efficiency and lower the production cost.
(2) Application to drug discovery development Conventionally, fullerenes have been dissolved in aqueous solutions using laser technology for the development of new drug discovery. A big wall was standing. However, according to the powder surface treatment method of the present invention, it is expected to improve the production efficiency and lower the production cost.
(3) Application to sliding material, etc. Heat resistance temperature and friction coefficient are improved by mixing graphite carbon into resin, and it is used as a sliding material. In the current sliding material, a surfactant is mixed in order to improve dispersibility. However, the addition of the surfactant also causes a decrease in performance and an increase in manufacturing cost.
(4) Application to other technologies Various powders have already been put into practical use in various fields such as foundation (TiO 2 ), which is one of cosmetics, and slurries used in polishing processes of semiconductor integrated circuit devices. Yes. Some of these are mixed with various additives in order to improve dispersibility or for other purposes. However, by using a dispersion that retains dispersibility over a long period of time due to the physical action obtained by applying the powder surface treatment method of the present invention, there is a possibility that improvement in characteristics and reduction in manufacturing cost can be realized. large.
 本発明は、粉体を利用した種々の製品の製造工程に適用されることが期待され、本発明の産業上の利用可能性は極めて大きい。 The present invention is expected to be applied to the production process of various products using powder, and the industrial applicability of the present invention is extremely large.
100,200 粉体表面処理装置
20 容器
30 液体
40 第1の電極(正極)
50 直流電源
60 第2の電極
70 液体の導入口
80 排出口
90 粉体の投入口
100,200 Powder surface treatment apparatus 20 Container 30 Liquid 40 First electrode (positive electrode)
50 DC power supply 60 Second electrode 70 Liquid inlet 80 Ejector 90 Powder inlet

Claims (8)

  1.  内部に液体を貯留する容器と、前記液体の液面から所定の距離離間して設けられる第1の電極と、容器に液体を貯留したときこの液体と電気的に接続されるように設けられる第2の電極と、前記第1及び第2の電極に接続される電源とを具備し、
     前記液体を貯留してその液面上に被処理体としての粉体Pを設置すると共に、前記第1及び第2の電極に電圧を印加することにより、前記第1の電極と前記液体の液面との間にプラズマを生成するように構成される粉体表面処理装置。
    A container for storing liquid therein, a first electrode provided at a predetermined distance from the liquid surface of the liquid, and a first electrode provided to be electrically connected to the liquid when the liquid is stored in the container Two electrodes, and a power source connected to the first and second electrodes,
    The liquid is stored, and the powder P as an object to be processed is placed on the liquid surface, and a voltage is applied to the first and second electrodes, whereby the first electrode and the liquid liquid A powder surface treatment apparatus configured to generate plasma between surfaces.
  2.  前記第1の電極及び電源が複数設けられ、前記液体に対して電気的に並列接続されることを特徴とする請求項1記載の粉体表面処理装置。 The powder surface treatment apparatus according to claim 1, wherein a plurality of the first electrodes and power sources are provided and electrically connected in parallel to the liquid.
  3.  前記液体の導入口と排出口、及び粉体の投入口をさらに具備することを特徴とする請求項2記載の粉体表面処理装置。 3. The powder surface treatment apparatus according to claim 2, further comprising an inlet and an outlet for the liquid and an inlet for the powder.
  4.  前記第1の電極に印加する電源の電圧は、電極間隔あたり、1[kV/mm]以上であることを特徴とする請求項1乃至3のいずれか1項に記載の粉体表面処理装置。 The powder surface treatment apparatus according to any one of claims 1 to 3, wherein a voltage of a power source applied to the first electrode is 1 [kV / mm] or more per electrode interval.
  5.  前記粉体表面処理装置は、第1の電極の材質が、炭素又は遷移金属元素で構成されていることを特徴とする請求項1乃至4のいずれか1項に記載の粉体表面処理装置。 The powder surface treatment apparatus according to any one of claims 1 to 4, wherein the material of the first electrode is made of carbon or a transition metal element.
  6.  粉体の表面を改質して前記粉体を液体中に分散させるための粉体表面処理方法であって、
     分散溶剤とする液体上に、被処理対象としての粉体を投入するステップと、前記液体の液面上に水上プラズマを生成するステップと、前記水上プラズマの生成を一定時間持続するステップとを具備することを特徴とする粉体表面処理方法。
    A powder surface treatment method for modifying a powder surface to disperse the powder in a liquid,
    A step of introducing a powder as an object to be treated onto a liquid as a dispersion solvent; a step of generating a water plasma on a liquid surface of the liquid; and a step of maintaining the generation of the water plasma for a predetermined time. A powder surface treatment method comprising:
  7.  前記液体が、親水性の液体であることを特徴とする請求項6記載の粉体表面処理方法。 The powder surface treatment method according to claim 6, wherein the liquid is a hydrophilic liquid.
  8.  前記被処理対象としての粉体は、カーボンナノチューブ、グラファイトカーボン、フラーレン(C60)などの炭素系粉体、二酸化ケイ素或いは四窒化三ケイ素などのシリコン系粉体、銀、タングステン、チタン、チタン酸化物などの金属系粉体のいずれか1つ以上を含むことを特徴とする請求項6又は7記載の粉体表面処理装置。 The powders to be treated include carbon-based powders such as carbon nanotubes, graphite carbon, fullerene (C 60 ), silicon-based powders such as silicon dioxide or trisilicon tetranitride, silver, tungsten, titanium, and titanium oxide. The powder surface treatment apparatus according to claim 6 or 7, comprising any one or more of metal-based powders such as products.
PCT/JP2010/062111 2009-07-23 2010-07-16 Powder surface treatment apparatus and powder surface treatment method WO2011010620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523648A JP5501362B2 (en) 2009-07-23 2010-07-16 Powder surface treatment apparatus and powder surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009172117 2009-07-23
JP2009-172117 2009-07-23

Publications (1)

Publication Number Publication Date
WO2011010620A1 true WO2011010620A1 (en) 2011-01-27

Family

ID=43499093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062111 WO2011010620A1 (en) 2009-07-23 2010-07-16 Powder surface treatment apparatus and powder surface treatment method

Country Status (2)

Country Link
JP (1) JP5501362B2 (en)
WO (1) WO2011010620A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034914A (en) * 2011-08-04 2013-02-21 Nippon Menaade Keshohin Kk Method for dispersing fine particle and dispersion
JP2014019783A (en) * 2012-07-18 2014-02-03 Nippon Menaade Keshohin Kk Surface treatment method of powder, surface-treated powder and cosmetics
JP2014019782A (en) * 2012-07-18 2014-02-03 Nippon Menaade Keshohin Kk Method of altering isoelectric point of metal oxide, and metal oxide treated by this method
JP2014040352A (en) * 2012-08-23 2014-03-06 Chube Univ Method for manufacturing graphene
JP2015160151A (en) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 Fluid dispersion, method and apparatus for producing the same
JP2017154928A (en) * 2016-03-01 2017-09-07 株式会社ダイセル Graphene oxide, graphene oxide dispersion liquid and method for producing graphene oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134296A (en) * 1992-10-27 1994-05-17 Ii C Kagaku Kk Surface treatment of ultrafine particles
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2005274058A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency High heat generating device and its method
JP2006216468A (en) * 2005-02-04 2006-08-17 Toyohashi Univ Of Technology Plasma surface treatment method, plasma generation apparatus, and plasma surface treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134296A (en) * 1992-10-27 1994-05-17 Ii C Kagaku Kk Surface treatment of ultrafine particles
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2005274058A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency High heat generating device and its method
JP2006216468A (en) * 2005-02-04 2006-08-17 Toyohashi Univ Of Technology Plasma surface treatment method, plasma generation apparatus, and plasma surface treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034914A (en) * 2011-08-04 2013-02-21 Nippon Menaade Keshohin Kk Method for dispersing fine particle and dispersion
JP2014019783A (en) * 2012-07-18 2014-02-03 Nippon Menaade Keshohin Kk Surface treatment method of powder, surface-treated powder and cosmetics
JP2014019782A (en) * 2012-07-18 2014-02-03 Nippon Menaade Keshohin Kk Method of altering isoelectric point of metal oxide, and metal oxide treated by this method
JP2014040352A (en) * 2012-08-23 2014-03-06 Chube Univ Method for manufacturing graphene
JP2015160151A (en) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 Fluid dispersion, method and apparatus for producing the same
JP2017154928A (en) * 2016-03-01 2017-09-07 株式会社ダイセル Graphene oxide, graphene oxide dispersion liquid and method for producing graphene oxide

Also Published As

Publication number Publication date
JP5501362B2 (en) 2014-05-21
JPWO2011010620A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5501362B2 (en) Powder surface treatment apparatus and powder surface treatment method
CN105148818B (en) The preparation and its application of the composite of granular materials including granular materials
JP6066184B2 (en) Method for producing surface-modified carbon material
EP2769967A1 (en) Dense material including carbon nanohorns and use thereof
JP6785463B2 (en) Method for producing graphene oxide, graphene oxide dispersion and graphene oxide
GB2521751A (en) Treating particles
KR100840500B1 (en) Method for preparing carbon nano-fine particle, apparatus for preparing the same and mono-layer carbon nanotube
CN110526237B (en) Device and method for preparing noble metal/graphene composite nano material
JP2017222538A (en) Method for producing graphene and chemically modified graphene
Kaneko et al. Creation of nanoparticle–nanotube conjugates for life-science application using gas–liquid interfacial plasmas
KR20100067453A (en) Method and apparatus for synthesis of semiconductor nanopowders by wire explosion in liquid
Kozáková et al. Generation of silver nanoparticles by the pin-hole DC plasma source with and without gas bubbling
Wang et al. A novel method to enhance the conductance of transitional metal oxide electrodes
KR101866638B1 (en) Method and device for coating particles with graphene and making graphene flakes by using underwater plasma device
WO2020017351A1 (en) Battery material and method of manufacturing battery
Fang et al. Atmospheric plasma jet-enhanced anodization and nanoparticle synthesis
JP2017137550A (en) Method of oxide thin film formation and apparatus of oxide thin film formation
JP2011077268A (en) Method of manufacturing conductor formed of conductive ink
KR101841626B1 (en) Carbon encapsulated metal nanoparticle and a manufacturing method the same
KR102421790B1 (en) Apparatus for dispersing nanomaterials using underwater plasma and a nanomaterial dispersion method using the apparatus for dispersing the same
KR20180042701A (en) Apparatus and method for producing nanopowder by nanosecond pulse discharge
KR102441127B1 (en) Method for enhance water-dispersibility of conductivity carbon powder and method for colloidal solution of conductivity carbon powder
Imasaka et al. Enhancement and stabilization of pulsed streamer discharge in water by adding carbon nanotubes
KR100926699B1 (en) Method for controlling porosity of carbon nanotube thin film and manufacturing method thereof
Fathi et al. Graphene oxide nanoribbons and their applications in supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802240

Country of ref document: EP

Kind code of ref document: A1