WO2020017351A1 - Battery material and method of manufacturing battery - Google Patents

Battery material and method of manufacturing battery Download PDF

Info

Publication number
WO2020017351A1
WO2020017351A1 PCT/JP2019/026764 JP2019026764W WO2020017351A1 WO 2020017351 A1 WO2020017351 A1 WO 2020017351A1 JP 2019026764 W JP2019026764 W JP 2019026764W WO 2020017351 A1 WO2020017351 A1 WO 2020017351A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
battery material
voltage
battery
water
Prior art date
Application number
PCT/JP2019/026764
Other languages
French (fr)
Japanese (ja)
Inventor
隆 ▲高▼澤
博憲 北嶋
Original Assignee
Jk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jk株式会社 filed Critical Jk株式会社
Priority to JP2020531236A priority Critical patent/JPWO2020017351A1/en
Publication of WO2020017351A1 publication Critical patent/WO2020017351A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components

Definitions

  • the present invention relates to a battery material and a method for manufacturing a battery.
  • Patent Document 1 JP-A-2014-203810
  • a step of generating cluster water (2) a step of generating an ultrasonic voltage treatment solution, and (3) a generation of a graphene-containing battery material. And a method of manufacturing a battery material.
  • the water generation step may be a step of performing ultrasonic treatment on distilled water to generate cluster water.
  • the ultrasonic treatment is performed on the graphene dispersion liquid in which the powdered graphene is dispersed in the cluster water to generate an ultrasonic treatment liquid, and a metal electrode is inserted into the ultrasonic treatment liquid.
  • the graphene-dispersed liquid in which the powdered graphene is dispersed in the cluster water is mixed with the ultrasonic voltage treatment liquid obtained in the step (2), and a voltage is applied to the graphene-containing battery.
  • This may be a step of producing a material.
  • (1.1) graphite is mixed with cluster water and subjected to ultrasonic treatment while applying a voltage thereto to obtain a graphene coarse dispersion from graphite, and to obtain graphene coarse liquid. Drying the dispersion to obtain powdered graphene.
  • the step (4) may include a step of mixing the graphene-containing battery material obtained in the step (3), nickel oxyhydroxide, and cobalt hydroxide to obtain a battery material mixture.
  • the weight ratio of the graphene-containing battery material to the nickel oxyhydroxide in the battery material mixture may be 1:10 to 2:10.
  • the supernatant liquid is removed, then, cluster water is added, ultrasonic treatment is performed, and the operation of removing the supernatant liquid is repeated. , And obtaining a dried precipitate as nickel oxyhydroxide used in step (4).
  • a step (5) there is provided a method for producing a battery including a step of sandwiching a molded article containing the battery material mixture obtained in the step (4) between electrodes.
  • a method for producing graphene comprising: (1) a cluster water generation step; and (1.1) a graphene generation step.
  • the cluster water generation step may be a cluster water generation step of performing ultrasonic treatment on water to generate cluster water.
  • the graphene generation step graphite is mixed with cluster water, and ultrasonic treatment is performed while applying a voltage thereto to obtain a graphene coarse dispersion from the graphite, and the graphene coarse dispersion is dried to obtain powdered graphene. To obtain graphene.
  • step (1.1) After the step (1.2), mixing the powdered graphene, carbon disulfide, and the cluster water, and then performing sonication to obtain a graphene suspension; (1.3) graphene Obtaining the supernatant of the suspension as a graphene extract.
  • FIG. 1 shows a first half flow illustrating a battery material and a method for manufacturing a battery in the present embodiment.
  • 2 shows a second half flow illustrating a battery material and a method for manufacturing a battery according to the present embodiment.
  • An example of a (1.1) graphene coarse dispersion generation step in the present embodiment is shown.
  • An example of a change in volume of the graphene coarse dispersion at the stage (1.1) is shown. It is a photograph of the graphene suspension before the process of (1.2) stage. It is a photograph of the graphene suspension after the process of (1.2) stage. It is a photograph of the ultrasonic voltage processing liquid obtained in (2) stage.
  • a photograph of the graphene-containing battery material obtained in step (3) is shown.
  • FIG. 9A is an enlarged view of a part of FIG. 9A.
  • 1 shows an example of a battery using the battery material according to the present embodiment.
  • 4 shows a photograph of an example of a battery using the battery material in the example.
  • 4 shows output characteristics of a battery using a battery material in Examples.
  • 4 shows output aging characteristics of a battery using a battery material in an example.
  • 13 shows an example of a production example of a battery according to Example 7.
  • 13 shows an example of a production example of a battery according to Example 7.
  • 13 shows an example of a production example of a battery according to Example 7.
  • 13 shows an example of a production example of a battery according to Example 7.
  • 13 shows an example of a production example of a battery according to Example 7.
  • 13 shows an example of a production example of a battery according to Example 7.
  • An example of an expected electromotive reaction is shown.
  • the battery material according to the present embodiment may be used as a battery material for various batteries including a water battery.
  • the battery material may be used as an active material or a catalyst for a water battery.
  • FIG. 1 shows a first half flow showing a battery material and a method for manufacturing a battery in this embodiment
  • FIG. 2 shows a second half flow.
  • the battery according to the present embodiment may be manufactured by performing at least a part of the steps (1) to (5) shown in FIGS.
  • cluster water is generated.
  • the cluster water may be water that has been subjected to any crushing treatment.
  • cluster water may be generated by performing ultrasonic treatment on water having no or little impurities such as distilled water, pure water, or ultrapure water.
  • the ultrasonic treatment may be performed by an ultrasonic irradiator such as an ultrasonic homogenizer. Also, the sonication may be performed for 10 to 180 minutes, preferably 30 to 90 minutes.
  • step (1.1) Powder Graphene Generation Step Next, in the step (1.1), powder graphene is generated. For example, first, graphite is mixed with the cluster water generated in the step (1), and ultrasonic treatment is performed while applying a voltage thereto to obtain a graphene coarse dispersion from graphite. Further, the graphene coarse dispersion may be dried to obtain powdered graphene.
  • graphite and cluster water are mixed and stirred to obtain a graphite suspension, two electrodes are inserted into the suspension, and a DC voltage is applied by a voltmeter while the graphite suspension is superimposed. The sonication may be performed simultaneously.
  • commercially available graphite may be used.
  • a commercially available electrode may be used as the electrode.
  • a wire mesh such as stainless steel that does not react with graphite may be used as the electrode.
  • the ultrasonic treatment may be performed by an ultrasonic irradiator such as an ultrasonic homogenizer.
  • FIG. 3 shows an example of the step (1.1) of generating a coarse graphene dispersion in the present embodiment.
  • the graphene coarse dispersion generation step is performed in the soundproof box 310.
  • a graphite suspension 303 in which graphite and cluster water are mixed is stored in a container such as a beaker.
  • the electrode 304 and the electrode 306 are inserted, and a DC voltage is applied to the graphite suspension 303 from the voltage generator 307 via the electrode 304 and the electrode 306.
  • the ultrasonic oscillator of the ultrasonic homogenizer 308 is also inserted here.
  • the voltage of the DC current is preferably, for example, 1 to 60 V, and is preferably performed for 10 to 180 minutes. Thereby, the ultrasonic treatment and the voltage application are performed simultaneously.
  • FIG. 4 shows an example of a change in volume of the coarse graphene dispersion at the stage (1.1).
  • the vertical axis in FIG. 4 shows the volume (ml) of the generated graphene coarse dispersion 302, and the horizontal axis shows the elapsed time of the ultrasonic / voltage application processing.
  • the generation amount of the graphene coarse dispersion 302 increases from the start of the treatment, but the generation amount is saturated after 20 minutes. Therefore, the ultrasonic treatment is preferably performed within 30 minutes, preferably within about 20 minutes.
  • the ultrasonic treatment is preferably performed for 5 minutes or more, preferably about 10 minutes or more.
  • the lower phase graphene coarse dispersion is separated from the graphite suspension, and the separated graphene coarse dispersion is dried to obtain powdered graphene. Drying of the graphene coarse dispersion may be performed by various drying means. For example, a vacuum rotary evaporator may be used as the drying means.
  • powder graphene is generated without using a high-cost and low-efficiency conventional manufacturing method such as a SiC thermal decomposition method or a chemical vapor deposition method (CVD method). be able to.
  • a high-cost and low-efficiency conventional manufacturing method such as a SiC thermal decomposition method or a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • the graphene powder generated in the step (1.1), carbon disulfide, and the cluster water generated in the step (1) are mixed.
  • 0.5 to 2 g of powdered graphene and 10 to 100 ml of carbon disulfide are mixed with 100 ml of cluster water.
  • the mixture is subjected to ultrasonic treatment to obtain a graphene suspension.
  • ultrasonic treatment is performed for 10 minutes to 3 hours using an ultrasonic cleaner or an ultrasonic homogenizer.
  • graphene is dispersed in the cluster water in the graphene suspension.
  • contamination components such as oil contained in graphene are washed with carbon disulfide, and the purity of graphene is improved.
  • the graphene suspension separates into two phases: a cluster water / graphene phase on the supernatant side and a carbon disulfide phase on the lower side.
  • FIG. 5 is a photograph of the graphene suspension before the ultrasonic treatment in the step (1.2). As illustrated, cluster water 501, graphene 502, and carbon disulfide 503 are separated into layers.
  • FIG. 6 is a photograph of the graphene suspension after the treatment in step (1.2). As shown, the graphene suspension is separated into a cluster water / graphene phase 601 and carbon disulfide 602.
  • the supernatant (ie, cluster water / graphene phase) of the graphene suspension generated in step (1.2) is obtained as a graphene extract.
  • the supernatant may be extracted from the graphene suspension using a known technique such as a dropper, a gradient method, and centrifugation.
  • a graphene dispersion liquid in which graphene is dispersed in water can be generated. That is, (1.1) to (1.3) can be regarded as a method for producing graphene (and a graphene dispersion). According to the method for manufacturing graphene (graphene dispersion liquid) of the present embodiment, an electrostatic repulsion effect is generated between the graphenes by the electric treatment, and the aggregation of graphene can be prevented. As a result, graphene with improved dispersibility can be obtained. As a result, according to the manufacturing method of the present embodiment, the resistance value of graphene can be reduced, and the conductivity can be improved. In this embodiment, steps (1.2) to (1.3) are mainly performed to remove contaminants. However, when the method is used as a method for producing graphene, steps (1.2) to (1.3) May be omitted and only (1.1) may be performed.
  • the manufactured graphene is further processed to obtain a graphene-containing battery material, but the graphene manufactured in the present embodiment may be used for other known applications.
  • the graphene manufactured in the present embodiment may be used for a conductive material, a reinforcing material, or a paint, an ink, or other additives.
  • step (1.3) Ultrasonic voltage treatment liquid generation step
  • ultrasonic treatment is performed on the graphene dispersion liquid in which powdered graphene is dispersed in cluster water to generate an ultrasonic treatment liquid, and a metal electrode is inserted into the ultrasonic treatment liquid.
  • a voltage is applied to generate an ultrasonic voltage treatment liquid.
  • the graphene extract obtained in step (1.3) may be used as a graphene dispersion.
  • a graphene extract obtained by diluting the graphene extract obtained in step (1.3) with the cluster water obtained in step (1) may be used as a graphene dispersion.
  • the graphene extract obtained in step (1.3) and the cluster water generated in step (1) may be diluted at a ratio of 1: 4 to 1: 6. The dilution can promote the reaction in step (3) described below.
  • the graphene extract itself obtained in the step (1.3) may be used as a graphene dispersion.
  • a commercially available graphene dispersed in distilled water, pure water, ultrapure water, or the like may be used as the graphene dispersion.
  • the ultrasonic treatment and the voltage application in the stage (2) may be performed by the same device configuration as that described in FIG. 3 in the paragraph (1.1). However, in the step (2), the ultrasonic treatment and the voltage application are not performed simultaneously but individually.
  • the graphene extract is first subjected to ultrasonic treatment to generate an ultrasonic treatment liquid.
  • the ultrasonic treatment is desirably performed for 10 to 60 minutes using an ultrasonic homogenizer or the like. Thereafter, a voltage is applied to the ultrasonic treatment liquid to generate an ultrasonic voltage treatment liquid.
  • the same electrodes as those used in the paragraph (1.1) may be used.
  • at least one of the positive and negative electrodes is preferably made of a nickel-based material.
  • the voltage is preferably applied by direct current, and it is desirable to apply a higher voltage (for example, 24 to 60 V) and / or a longer time (for example, 20 to 30 hours) than in the step (1.1). Thereby, the metal electrode material and the graphene can be promoted.
  • metal ions such as nickel ions are probably eluted from the electrode and aggregate in the process of moving to the cathode.
  • carbon fine particles such as graphene in water adhere and a transition metal complex (metal oxide semiconductor bonded to carbon molecules) precipitates.
  • FIG. 7 is a photograph of the ultrasonic voltage treatment solution obtained in step (2). As shown in FIG. 7, a yellow and transparent ultrasonic voltage treatment liquid is obtained by the treatment of the step (2).
  • a graphene dispersion liquid in which powdered graphene is dispersed in cluster water is mixed with the ultrasonic voltage treatment liquid obtained in step (2), and a voltage is applied to generate a graphene-containing battery material.
  • the graphene extract itself obtained in step (1.3) or the graphene extract diluted with cluster water may be used as the graphene dispersion.
  • a commercially available graphene dispersed in distilled water, pure water, ultrapure water, or the like may be used as the graphene dispersion liquid.
  • the graphene dispersion liquid the ultrasonic voltage treatment liquid may be mixed at a ratio of 10: 1 to 1:10.
  • An electrode pair may be inserted into a mixture of the graphene dispersion liquid and the ultrasonic voltage treatment liquid, and a voltage may be applied.
  • the voltage is desirably a DC voltage of 12 to 60V.
  • An electrode that does not react with the mixed solution such as a stainless steel wire mesh may be used as the electrode.
  • the voltage application time is desirably 1 to 5 hours. It is presumed that a carbon compound in which a transition metal complex is supported on the surface of carbon particles such as graphene is obtained by the treatment in the step (3).
  • FIG. 8 shows a photograph of the graphene-containing battery material obtained in step (3). As illustrated, the substance presumed to be the transition metal complex 802 appears white in the graphene-containing battery material 800.
  • the graphene-containing battery material obtained in the step (3), nickel oxyhydroxide, and cobalt hydroxide are mixed to obtain a battery material mixture.
  • the battery material mixture may be pressure molded after mixing.
  • the mixing ratio may be an arbitrary ratio.
  • the weight ratio of the graphene-containing battery material to the nickel oxyhydroxide in the battery material mixture is 0.1: 10 to 10:10, preferably 1:10 to It may be 2:10.
  • the graphene-containing battery material may be mixed with any material other than nickel oxyhydroxide and cobalt hydroxide.
  • Cobalt hydroxide may be added for the purpose of improving the conductivity of the battery material mixture.
  • the weight ratio of cobalt hydroxide to nickel oxyhydroxide in the battery material mixture may be from 0.01: 10 to 2:10, preferably from 0.1: 10 to 1:10.
  • the nickel oxyhydroxide a commercially available product may be used, or a product synthesized in-house may be used.
  • synthesizing after reacting with nickel hydroxide and aqueous hypochlorous acid, the supernatant liquid is removed, then, cluster water is added, ultrasonic treatment is performed, and one or more operations for removing the supernatant liquid are performed. Repeating the steps, drying the finally precipitated precipitate may be performed, and the dried precipitate may be obtained as nickel oxyhydroxide used in step (4).
  • NiOOH nickel oxyhydroxide NiOOH is obtained by the following reaction. Ni (OH) 2 + 2HClO ⁇ NiOOH + 2HCl + O 2 ⁇ + H ⁇
  • FIG. 9A shows a scanning electron micrograph of the battery material mixture obtained in step (4).
  • FIG. 9B shows an enlarged part of FIG. 9A.
  • spherical nickel oxyhydroxide 902 and transition metal complex 904 of plate or amorphous graphene-containing battery material are observed in the battery material mixture.
  • a battery is manufactured by sandwiching the molded body containing the battery material mixture obtained in the step (4) between electrodes.
  • the battery material mixture may be molded and cured with a binder resin or the like and / or molded under pressure to form a battery material solid, which may be sandwiched between electrodes.
  • the solid material of the battery may include an amount of a water absorbing material such as a nonwoven fabric or parator paper so that the solid material of the battery can come into contact with moisture when water is given.
  • FIG. 10 shows an example of a battery using the battery material according to the present embodiment.
  • the battery according to FIG. 10 includes a battery material mixture 1002, a positive electrode 1004, a negative electrode 1006, water 1010, and a load 1012.
  • the battery material mixture 1002 is sandwiched between the positive electrode 1004 and the negative electrode 1006, and the assembly of the battery material mixture 1002, the positive electrode 1004, and the negative electrode 1006 is immersed in water 1010. Accordingly, the battery generates an electromotive force, and operates the load 1012 such as a light bulb connected to the positive electrode 1004 and the negative electrode 1006 by wiring.
  • the positive electrode 1004 may be a copper plate and the negative electrode 1006 may be an aluminum plate.
  • a plurality of assemblies may be stacked and connected in parallel or in series.
  • a graphene-containing battery material J was produced in the same manner as in Battery Material Production Example 1 except that the following conditions were changed.
  • a direct current of 24 V was applied for 2 hours.
  • Example 1 Battery manufacture
  • the materials were mixed at the following composition ratio, and a molded article (dimensions: 20 mm ⁇ 40 mm ⁇ 0.5 mm) obtained by pressure molding was obtained.
  • the molded product was sandwiched between a positive electrode of a copper plate (dimensions: 20 mm ⁇ 40 mm ⁇ 0.1 mm) and a negative electrode of an aluminum plate (dimensions: 20 mm ⁇ 40 mm ⁇ 0.1 mm) to form an assembly. Wiring was connected to the positive and negative electrodes of the assembly and immersed in water. Thus, a water battery was obtained.
  • Example 2 A water battery was manufactured in the same procedure as in Example 1.
  • Example 3 A water battery was manufactured in the same manner as in Example 1 except that the composition ratio was changed as follows.
  • Graphene-containing battery material J 4 parts by weight
  • Nickel oxyhydroxide 5.9 parts by weight
  • Cobalt hydroxide 0.1 parts by weight
  • Example 4 A water battery was manufactured in the same procedure as in Example 3.
  • Example 5 A water battery was manufactured in the same manner as in Example 1 except that the composition ratio was changed as follows.
  • Graphene-containing battery material J 5 parts by weight
  • Nickel oxyhydroxide 4.9 parts by weight
  • Cobalt hydroxide 0.1 parts by weight
  • Example 6 A water battery was manufactured in the same procedure as in Example 5.
  • FIG. 11 shows photographs of an example of the batteries manufactured in Examples 1 to 6.
  • FIG. 12 shows the output characteristics of the batteries using the battery materials in Examples 1 to 6. As shown, the batteries manufactured in Examples 1 to 6 exhibited good voltage characteristics, current characteristics, and power characteristics.
  • FIG. 13 shows the output aging characteristics of the battery using the battery material in Example 1. As shown, the battery according to Example 1 still maintains current and voltage for more than 100 days, indicating that it has a very long life.
  • Example 7 A mixture of 2.0 g of the graphene-containing battery material J manufactured in Battery Material Manufacturing Example 1 and 11.0 g of nickel oxyhydroxide was divided into six equal portions, each of which was charged into six test tubes, and further pure water was injected. did. When a copper electrode and an aluminum electrode were inserted into the settled mixture, and these electrodes were connected to the LED via wiring, the LED was turned on.
  • FIGS. 14 and 15 show photographs of a production example of the battery according to the seventh embodiment.
  • two types of six-cell batteries were prepared by using two types of artificial graphites having different particle sizes for the artificial graphite (used in the (1.1) powder graphene generation step) as a raw material of the graphene-containing battery material J.
  • Artificial graphite B having a large particle size (trade name 075-01325, manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • the battery using artificial graphite A had an average output of 3.4 V (0.56 V per cell), and the battery using artificial graphite B had an average output of 3.2 V (0.53 V per cell). The same voltage was confirmed, but the current value was better for the type using artificial graphite A having a small particle size.
  • Example 8 2.0 g of the graphene-containing battery material J produced in Battery Material Production Example 1 and 11.0 g of nickel oxyhydroxide were mixed with 2.0 g of a water-soluble binder (SBR binder: TRD102A) to form a paint. This was applied to both sides of a nonwoven fabric (SP-1070E-HY), dried, and then subjected to a lamination treatment by sandwiching it between a copper electrode and an aluminum electrode to obtain a battery material resin composite. Pure water was absorbed by the battery material-resin composite, connected to the LED via wiring, and the LED was turned on. The specifications of the LED were as follows: voltage: 2.0 V, current value: 50 mA. 16, 17A, and 17B show photographs of a manufacturing example of the battery according to Example 8.
  • SBR binder water-soluble binder
  • the transition metal complex (for example, the transition metal complex 802 shown in FIG. 8 and the transition metal complex 1804 shown in FIG. 18) in the graphene-containing battery material obtained by forming the battery material reacts with H 2 O to generate hydrogen. Occurs.
  • Nickel oxyhydroxide NiOOH: nickel oxyhydroxide 1802 in FIG. 18 reacts with the generated hydrogen to be oxidized to nickel hydroxide Ni (OH) 2 , at which stage electrons are emitted.
  • the positive electrode and the negative electrode are connected to an external circuit, electricity flows, and is returned to nickel oxyhydroxide again by the reduction action of the catalytic reaction of the transition metal complex.
  • Nickel oxyhydroxide (NiOOH) is generally used as a positive electrode material of a “nickel-metal hydride battery”.
  • Example 7 a voltage of 0.53 to 0.56 V was generated per battery, and it is estimated that a voltage was substantially generated by the oxidation-reduction reaction of nickel oxyhydroxide (NiOOH). it can. It can be presumed that the voltage is slightly positive and that the voltage is related to the potential difference due to the difference in ionization tendency between the two electrodes.
  • the difference between the results of Example 7 using the artificial graphite A and the types using the artificial graphite B may be caused by the difference in the graphite (graphite) as a starting material when producing graphene. It is generally known that the higher the solid carbon component and the smaller the particle size, the higher the conductivity. As a result, it is possible that the use of artificial graphite B resulted in a better current value.
  • FIG. 18 shows an example of an expected electromotive reaction. As shown in FIG. 18, the reaction is considered to have occurred at the interface 1803 between the nickel oxyhydroxide 1802 and the graphene-containing battery material 1804.
  • the graphene-containing battery material 1804 has a square shape, and the nickel oxyhydroxide 1802 has a spherical shape.
  • nickel oxyhydroxide 1802 is first oxidized to nickel hydroxide.
  • electromotive force is started.
  • the voltage at this point measures an output of about 1.0 V, but drops after several hours.
  • the nickel oxyhydroxide 1802 becomes nickel hydroxide and is stabilized. (It becomes an insulator). Since the graphene-containing battery material 1804 has a catalytic reaction, the “redox reaction” is repeated only at the interface 1803 with nickel oxyhydroxide. The output at this time is 0.48V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Primary Cells (AREA)

Abstract

Existing water batteries have limited life since electromotive force decreases due to the electrode material being consumed. Thus, the present invention addresses the problem of providing a battery that has a long life and a battery material for achieving the same. To solve this problem, a method of manufacturing a battery material is provided which includes: (1) a water cluster generating step of subjecting distilled water to sonication to generate water clusters; (2) a step of subjecting a graphene dispersion, which is powder graphene dispersed in the water clusters, to sonication, in order to generate a sonicated liquid, and inserting a metal electrode into the sonicated liquid and applying a voltage to generate a sonicated voltage-treated liquid; and (3) a step of mixing the graphene dispersion which is powder graphene dispersed in the water clusters and the sonicated voltage-treated liquid obtained in step (2) and applying a voltage thereto to generate a graphene-containing battery material.

Description

電池材料及び電池の製造方法Battery material and battery manufacturing method
 本発明は、電池材料及び電池の製造方法に関する。 The present invention relates to a battery material and a method for manufacturing a battery.
 水を注入することで起電力を生じる水電池が知られている(例えば特許文献1)。しかし、既存の水電池は、電極材料の費消により起電力が低下するため、寿命に制限があった。
 特許文献1:特開2014-203810号公報
BACKGROUND ART A water battery that generates an electromotive force by injecting water is known (for example, Patent Document 1). However, existing water batteries have a limited life because the electromotive force is reduced due to consumption of electrode materials.
Patent Document 1: JP-A-2014-203810
解決しようとする課題Issues to be solved
 本発明は、長寿命の電池及びこれを実現するための電池材料を提供することを課題とする。 。 It is an object of the present invention to provide a long-life battery and a battery material for realizing the battery.
一般的開示General disclosure
 上記課題を解決するために、本発明の第1の態様においては、(1)クラスター水生成段階と、(2)超音波電圧処理液を生成する段階と、(3)グラフェン含有電池材料を生成する段階とを備える電池材料の製造方法を提供する。(1)水生成段階は、蒸留水に対して超音波処理を行い、クラスター水を生成する段階であってよい。(2)超音波電圧処理液を生成する段階は、粉末グラフェンがクラスター水に分散したグラフェン分散液に超音波処理を行って超音波処理液を生成し、超音波処理液に金属電極を挿入して電圧印加して超音波電圧処理液を生成する段階であってよい。(3)グラフェン含有電池材料を生成する段階は、粉末グラフェンがクラスター水に分散したグラフェン分散液と(2)段階で得られた超音波電圧処理液とを混合し、電圧印加し、グラフェン含有電池材料を生成する段階であってよい。
 (1)段階及び(2)段階の間に、(1.1)グラファイトをクラスター水と混合し、これに電圧を印加しながら超音波処理を行ってグラファイトからグラフェン粗分散液を得、グラフェン粗分散液を乾燥して粉末グラフェンを得るグラフェン生成段階と、を備えてよい。
 (1.1)段階及び(2)段階の間に、(1.2)粉末グラフェン、二硫化炭素、クラスター水を混合した後、超音波処理を行ってグラフェン懸濁液を取得する段階と、(1.3)グラフェン懸濁液の上澄みをグラフェン抽出液として取得する段階と、を備えてよい。ここでグラフェン抽出液を、(2)段階におけるグラフェン分散液として用いてよい。
 (1.3)段階で得たグラフェン抽出液を、(3)段階におけるグラフェン分散液として用いてよい。
 (4)段階として、(3)段階で得られたグラフェン含有電池材料と、オキシ水酸化ニッケルと、水酸化コバルトとを混合して電池材料混合物を得る段階を備えてよい。
 (4)段階において、電池材料混合物中のグラフェン含有電池材料と、オキシ水酸化ニッケルとの重量比率は1:10~2:10であってよい。
 水酸化ニッケル及び次亜塩素酸水との反応させた後、上澄み液を除去し、その後、クラスター水を加え、超音波処理を行い、上澄み液を除去する操作を繰り返し、最後に沈殿した沈殿物を乾燥する段階を行い、乾燥された沈殿物を(4)段階で使用するオキシ水酸化ニッケルとして取得する段階を備えてよい。
 (5)段階として、(4)段階で得られた電池材料混合物を含む成形体を、電極で挟む段階を含む電池の製造方法を提供する。
 本発明の第2の態様においては、(1)クラスター水生成段階と、(1.1)グラフェン生成段階とを備えるグラフェンの製造方法を提供する。(1)クラスター水生成段階は、水に対して超音波処理を行い、クラスター水を生成するクラスター水生成段階であってよい。(1.1)グラフェン生成段階は、グラファイトをクラスター水と混合し、これに電圧を印加しながら超音波処理を行ってグラファイトからグラフェン粗分散液を得、グラフェン粗分散液を乾燥して粉末グラフェンを得るグラフェン生成段階であってよい。
 (1.1)段階の後に、(1.2)粉末グラフェン、二硫化炭素、クラスター水を混合した後、超音波処理を行ってグラフェン懸濁液を取得する段階と、(1.3)グラフェン懸濁液の上澄みをグラフェン抽出液として取得する段階と、を更に備えてよい。
In order to solve the above problems, in a first aspect of the present invention, there are provided (1) a step of generating cluster water, (2) a step of generating an ultrasonic voltage treatment solution, and (3) a generation of a graphene-containing battery material. And a method of manufacturing a battery material. (1) The water generation step may be a step of performing ultrasonic treatment on distilled water to generate cluster water. (2) In the step of generating the ultrasonic voltage treatment liquid, the ultrasonic treatment is performed on the graphene dispersion liquid in which the powdered graphene is dispersed in the cluster water to generate an ultrasonic treatment liquid, and a metal electrode is inserted into the ultrasonic treatment liquid. To generate an ultrasonic voltage treatment liquid by applying a voltage. (3) In the step of generating the graphene-containing battery material, the graphene-dispersed liquid in which the powdered graphene is dispersed in the cluster water is mixed with the ultrasonic voltage treatment liquid obtained in the step (2), and a voltage is applied to the graphene-containing battery. This may be a step of producing a material.
Between step (1) and step (2), (1.1) graphite is mixed with cluster water and subjected to ultrasonic treatment while applying a voltage thereto to obtain a graphene coarse dispersion from graphite, and to obtain graphene coarse liquid. Drying the dispersion to obtain powdered graphene.
(1.1) mixing graphene powder, carbon disulfide, and cluster water between the steps (1.1) and (2), and then performing sonication to obtain a graphene suspension; (1.3) obtaining the supernatant of the graphene suspension as a graphene extract. Here, the graphene extract may be used as the graphene dispersion in step (2).
The graphene extract obtained in the step (1.3) may be used as the graphene dispersion in the step (3).
The step (4) may include a step of mixing the graphene-containing battery material obtained in the step (3), nickel oxyhydroxide, and cobalt hydroxide to obtain a battery material mixture.
In the step (4), the weight ratio of the graphene-containing battery material to the nickel oxyhydroxide in the battery material mixture may be 1:10 to 2:10.
After reacting with nickel hydroxide and hypochlorous acid aqueous solution, the supernatant liquid is removed, then, cluster water is added, ultrasonic treatment is performed, and the operation of removing the supernatant liquid is repeated. , And obtaining a dried precipitate as nickel oxyhydroxide used in step (4).
As a step (5), there is provided a method for producing a battery including a step of sandwiching a molded article containing the battery material mixture obtained in the step (4) between electrodes.
In a second aspect of the present invention, there is provided a method for producing graphene, comprising: (1) a cluster water generation step; and (1.1) a graphene generation step. (1) The cluster water generation step may be a cluster water generation step of performing ultrasonic treatment on water to generate cluster water. (1.1) In the graphene generation step, graphite is mixed with cluster water, and ultrasonic treatment is performed while applying a voltage thereto to obtain a graphene coarse dispersion from the graphite, and the graphene coarse dispersion is dried to obtain powdered graphene. To obtain graphene.
(1.1) After the step (1.2), mixing the powdered graphene, carbon disulfide, and the cluster water, and then performing sonication to obtain a graphene suspension; (1.3) graphene Obtaining the supernatant of the suspension as a graphene extract.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The summary of the invention described above does not enumerate all necessary features of the invention. Further, a sub-combination of these feature groups can also be an invention.
本実施形態における電池材料及び電池の製造方法を示す前半フローを示す。1 shows a first half flow illustrating a battery material and a method for manufacturing a battery in the present embodiment. 本実施形態における電池材料及び電池の製造方法を示す後半フローを示す。2 shows a second half flow illustrating a battery material and a method for manufacturing a battery according to the present embodiment. 本実施形態における(1.1)段階のグラフェン粗分散液生成段階の一例を示す。An example of a (1.1) graphene coarse dispersion generation step in the present embodiment is shown. (1.1)段階におけるグラフェン粗分散液の容積変化の一例を示す。An example of a change in volume of the graphene coarse dispersion at the stage (1.1) is shown. (1.2)段階の処理前のグラフェン懸濁液の写真である。It is a photograph of the graphene suspension before the process of (1.2) stage. (1.2)段階の処理後のグラフェン懸濁液の写真である。It is a photograph of the graphene suspension after the process of (1.2) stage. (2)段階で得られた超音波電圧処理液の写真である。It is a photograph of the ultrasonic voltage processing liquid obtained in (2) stage. (3)段階で得られたグラフェン含有電池材料の写真を示す。A photograph of the graphene-containing battery material obtained in step (3) is shown. (4)段階で得られた電池材料混合物の走査型電子顕微鏡写真を示す。4 shows a scanning electron micrograph of the battery material mixture obtained in step (4). 図9Aの一部を拡大したものを示す。FIG. 9A is an enlarged view of a part of FIG. 9A. 本実施形態における電池材料を用いた電池の一例を示す。1 shows an example of a battery using the battery material according to the present embodiment. 実施例における電池材料を用いた電池の一例の写真を示す。4 shows a photograph of an example of a battery using the battery material in the example. 実施例における電池材料を用いた電池の出力特性を示す。4 shows output characteristics of a battery using a battery material in Examples. 実施例における電池材料を用いた電池の出力経時特性を示す。4 shows output aging characteristics of a battery using a battery material in an example. 実施例7に係る電池の製造例の一例を示す。13 shows an example of a production example of a battery according to Example 7. 実施例7に係る電池の製造例の一例を示す。13 shows an example of a production example of a battery according to Example 7. 実施例7に係る電池の製造例の一例を示す。13 shows an example of a production example of a battery according to Example 7. 実施例7に係る電池の製造例の一例を示す。13 shows an example of a production example of a battery according to Example 7. 実施例7に係る電池の製造例の一例を示す。13 shows an example of a production example of a battery according to Example 7. 予想される起電反応の一例を示す。An example of an expected electromotive reaction is shown.
 以下、発明の実施の形態を通じて本発明を説明する。以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが、発明の解決手段に必須であるとは限らない。以下の実施形態において、特に記載しない限り、操作及び測定等は、室温かつ相対湿度40%RH以上60%RH以下、及び/又は、常圧(一例として一気圧)の条件で行われてよい。室温は、例えば、20~25℃(一例として25℃)であってよい。 Hereinafter, the present invention will be described through embodiments of the present invention. The following embodiments do not limit the invention according to the claims. In addition, not all combinations of the features described in the embodiments are necessarily essential to the solution of the invention. In the following embodiments, unless otherwise specified, operations, measurements, and the like may be performed at room temperature and a relative humidity of 40% RH or more and 60% RH or less, and / or normal pressure (for example, 1 atm). The room temperature may be, for example, 20 to 25 ° C. (for example, 25 ° C.).
 まず、本実施形態に係る電池材料及び電池の製造方法について説明する。本実施形態に係る電池材料は、水電池を初めとする様々な電池の電池材料として用いられてよい。例えば、電池材料は、水電池の活物質又は触媒として用いられてよい。 First, the battery material and the method for manufacturing the battery according to the present embodiment will be described. The battery material according to the present embodiment may be used as a battery material for various batteries including a water battery. For example, the battery material may be used as an active material or a catalyst for a water battery.
 [電池材料及び電池の製造方法の説明]
 図1は本実施形態における電池材料及び電池の製造方法を示す前半フローを示し、図2は後半フローを示す。本実施形態に係る電池は、図1及び図2に示す(1)段階~(5)段階の少なくとも一部を行うことで製造されてよい。
[Description of Battery Material and Battery Manufacturing Method]
FIG. 1 shows a first half flow showing a battery material and a method for manufacturing a battery in this embodiment, and FIG. 2 shows a second half flow. The battery according to the present embodiment may be manufactured by performing at least a part of the steps (1) to (5) shown in FIGS.
 (1)クラスター水生成段階
 まず(1)段階において、クラスター水を生成する。本明細書において、クラスター水とは、何等かの破砕処理がなされた水であってよい。例えば、蒸留水、又、純水、超純水等の不純物の無い又は少ない水に対して、超音波処理を行うことによりクラスター水を生成してよい。
(1) Cluster water generation step First, in step (1), cluster water is generated. In the present specification, the cluster water may be water that has been subjected to any crushing treatment. For example, cluster water may be generated by performing ultrasonic treatment on water having no or little impurities such as distilled water, pure water, or ultrapure water.
 超音波処理は、超音波ホモジナイザ等の超音波照射器により行われてよい。また、超音波処理は、10分から180分、好ましくは30分から90分行われてよい。 The ultrasonic treatment may be performed by an ultrasonic irradiator such as an ultrasonic homogenizer. Also, the sonication may be performed for 10 to 180 minutes, preferably 30 to 90 minutes.
 (1.1)粉末グラフェン生成段階
 次に(1.1)段階において、粉末グラフェンを生成する。例えば、まず、グラファイトを(1)段階で生成したクラスター水と混合し、これに電圧を印加しながら超音波処理を行ってグラファイトからグラフェン粗分散液を得る。更に、グラフェン粗分散液を乾燥して粉末グラフェンを得てよい。
(1.1) Powder Graphene Generation Step Next, in the step (1.1), powder graphene is generated. For example, first, graphite is mixed with the cluster water generated in the step (1), and ultrasonic treatment is performed while applying a voltage thereto to obtain a graphene coarse dispersion from graphite. Further, the graphene coarse dispersion may be dried to obtain powdered graphene.
 例えば、グラフェン粗分散液の生成は、グラファイトとクラスター水を混合、撹拌して、グラファイト懸濁液を得、これに2枚の電極を挿入して、電圧器で直流電圧を印加しながら、超音波処理を同時にすることで行ってよい。ここで、グラファイトは市販のグラファイトを用いてよい。電極として市販の電極を用いてよい。例えば、電極としてグラファイトと反応しないステンレス等の金網メッシュを用いてよい。以上の処理によりビーカー中に電場(電界)が出来る。この電場を超音波処理により剥離されたグラフェンが通過することで層表面に-電子が帯電し、グラフェン層間に「静電反発効果」が生じる。この効果により再凝集が起こらないと判断される。ただし高電圧を印加した場合、グラファイト自身の分離が発生しビーカー底部と上層部に二分される。とくに上層部には「ダマ」が発生して純水と親和することが出来なくなる。超音波処理は、超音波ホモジナイザ等の超音波照射器により行われてよい。 For example, to produce a graphene coarse dispersion, graphite and cluster water are mixed and stirred to obtain a graphite suspension, two electrodes are inserted into the suspension, and a DC voltage is applied by a voltmeter while the graphite suspension is superimposed. The sonication may be performed simultaneously. Here, commercially available graphite may be used. A commercially available electrode may be used as the electrode. For example, a wire mesh such as stainless steel that does not react with graphite may be used as the electrode. By the above processing, an electric field (electric field) is generated in the beaker. When the graphene separated by the ultrasonic treatment passes through this electric field, -electrons are charged on the layer surface, and an "electrostatic repulsion effect" occurs between the graphene layers. It is determined that re-aggregation does not occur due to this effect. However, when a high voltage is applied, the graphite itself separates and is divided into a beaker bottom and an upper layer. In particular, "dama" is generated in the upper layer, and it becomes impossible to affinity with pure water. The ultrasonic treatment may be performed by an ultrasonic irradiator such as an ultrasonic homogenizer.
 図3は、本実施形態における(1.1)段階のグラフェン粗分散液生成段階の一例を示す。図示するように、グラフェン粗分散液生成段階は、防音箱310の中において実行される。ビーカー等の容器にグラファイトとクラスター水が混合したグラファイト懸濁液303が収容される。ここに、電極304及び電極306が挿入され、電極304及び電極306を介して電圧器307からグラファイト懸濁液303に直流電圧が印加される。また、ここに超音波ホモジナイザ308の超音波振動子も挿入される。直流電流の電圧は例えば1~60Vであることが望ましく、10~180分行われることが望ましい。これにより、超音波処理と電圧印加が同時に実行される。 FIG. 3 shows an example of the step (1.1) of generating a coarse graphene dispersion in the present embodiment. As shown, the graphene coarse dispersion generation step is performed in the soundproof box 310. A graphite suspension 303 in which graphite and cluster water are mixed is stored in a container such as a beaker. Here, the electrode 304 and the electrode 306 are inserted, and a DC voltage is applied to the graphite suspension 303 from the voltage generator 307 via the electrode 304 and the electrode 306. Further, the ultrasonic oscillator of the ultrasonic homogenizer 308 is also inserted here. The voltage of the DC current is preferably, for example, 1 to 60 V, and is preferably performed for 10 to 180 minutes. Thereby, the ultrasonic treatment and the voltage application are performed simultaneously.
 この結果、グラファイトの層構造の剥離が進行し、グラファイト懸濁液303の下相にグラフェン粗分散液302が生成される。処理時間の経過に伴って、生成されるグラフェン粗分散液302の量が増加するが、一定時間で生成量は飽和する。 (4) As a result, the exfoliation of the graphite layer structure proceeds, and a coarse graphene dispersion liquid 302 is generated in the lower phase of the graphite suspension 303. As the processing time elapses, the amount of the generated graphene coarse dispersion 302 increases, but the generated amount is saturated in a certain time.
 図4は、(1.1)段階におけるグラフェン粗分散液の容積変化の一例を示す。図4の縦軸は生成されるグラフェン粗分散液302の容積(ml)を示し、横軸は超音波・電圧印加処理の経過時間を示す。図示するように、処理開始後からグラフェン粗分散液302の生成量は増加していくが、20分を境に生成量は飽和する。このため、超音波処理は、30分以内、好ましくは20分以内程度が好ましい。また、処理時間が短い場合、グラフェンの一部が凝集してグラファイトに戻ってしまう場合がある。従って、超音波処理は、5分以上、好ましくは10分以上程度が好ましい。 FIG. 4 shows an example of a change in volume of the coarse graphene dispersion at the stage (1.1). The vertical axis in FIG. 4 shows the volume (ml) of the generated graphene coarse dispersion 302, and the horizontal axis shows the elapsed time of the ultrasonic / voltage application processing. As shown in the figure, the generation amount of the graphene coarse dispersion 302 increases from the start of the treatment, but the generation amount is saturated after 20 minutes. Therefore, the ultrasonic treatment is preferably performed within 30 minutes, preferably within about 20 minutes. In addition, when the processing time is short, a part of the graphene may aggregate and return to graphite. Therefore, the ultrasonic treatment is preferably performed for 5 minutes or more, preferably about 10 minutes or more.
 その後、グラファイト懸濁液から下相のグラフェン粗分散液を分離し、分離したグラフェン粗分散液を乾燥し、粉末グラフェンを得る。グラフェン粗分散液の乾燥は、種々の乾燥手段により行われてよい。例えば、乾燥手段として真空ロータリーエバポレータを用いてよい。 Thereafter, the lower phase graphene coarse dispersion is separated from the graphite suspension, and the separated graphene coarse dispersion is dried to obtain powdered graphene. Drying of the graphene coarse dispersion may be performed by various drying means. For example, a vacuum rotary evaporator may be used as the drying means.
 本実施形態によれば、(1.1)段階を実行することで、SiC熱分解法や化学蒸着法(CVD法)等の高コストかつ低効率の従来製法を経ずに粉末グラフェンを生成することができる。なお、本実施形態の変形例において、(1.1)段階で生成したグラフェンに代えて、従来製法で生成したグラフェン、又は、市販のグラフェン等を後続の段階で用いてもよい。 According to the present embodiment, by performing the step (1.1), powder graphene is generated without using a high-cost and low-efficiency conventional manufacturing method such as a SiC thermal decomposition method or a chemical vapor deposition method (CVD method). be able to. In the modification of this embodiment, instead of the graphene generated in the step (1.1), graphene generated by a conventional manufacturing method, commercially available graphene, or the like may be used in a subsequent step.
 (1.2)グラフェン懸濁液生成段階
 次に、(1.1)段階で生成した粉末グラフェン、二硫化炭素、(1)段階で生成したクラスター水を混合する。例えば、クラスター水100mlに対し、粉末グラフェン0.5~2g、二硫化炭素10~100mlの範囲で混合する。その後、混合液に対し、超音波処理を行ってグラフェン懸濁液を取得する。例えば、超音波洗浄機又は超音波ホモジナイザにより、10分~3時間超音波処理を行う。
(1.2) Graphene suspension generation step Next, the graphene powder generated in the step (1.1), carbon disulfide, and the cluster water generated in the step (1) are mixed. For example, 0.5 to 2 g of powdered graphene and 10 to 100 ml of carbon disulfide are mixed with 100 ml of cluster water. Thereafter, the mixture is subjected to ultrasonic treatment to obtain a graphene suspension. For example, ultrasonic treatment is performed for 10 minutes to 3 hours using an ultrasonic cleaner or an ultrasonic homogenizer.
 これにより、グラフェン懸濁液中でグラフェンがクラスター水に分散する。また、グラフェンに含まれる油分等のコンタミ成分が二硫化炭素により洗浄され、グラフェンの純度が向上する。グラフェン懸濁液は、上澄側のクラスター水/グラフェン相と、下側の二硫化炭素の相との2相に分離する。 に よ り Thereby, graphene is dispersed in the cluster water in the graphene suspension. In addition, contamination components such as oil contained in graphene are washed with carbon disulfide, and the purity of graphene is improved. The graphene suspension separates into two phases: a cluster water / graphene phase on the supernatant side and a carbon disulfide phase on the lower side.
 図5は、(1.2)段階の超音波処理前のグラフェン懸濁液の写真である。図示するようにクラスター水501、グラフェン502、及び、二硫化炭素503が層状に分離している。 FIG. 5 is a photograph of the graphene suspension before the ultrasonic treatment in the step (1.2). As illustrated, cluster water 501, graphene 502, and carbon disulfide 503 are separated into layers.
 図6は、(1.2)段階の処理後のグラフェン懸濁液の写真である。図示するように、グラフェン懸濁液はクラスター水/グラフェン相601と二硫化炭素602とに分離している。 FIG. 6 is a photograph of the graphene suspension after the treatment in step (1.2). As shown, the graphene suspension is separated into a cluster water / graphene phase 601 and carbon disulfide 602.
 (1.3)グラフェン分散液生成段階
 次に、(1.2)段階で生成したグラフェン懸濁液の上澄み(すなわち、クラスター水/グラフェン相)をグラフェン抽出液として取得する。スポイト、傾斜法、遠心分離等の公知の手法を用いて、グラフェン懸濁液から上澄みを抽出してよい。
(1.3) Graphene Dispersion Liquid Producing Step Next, the supernatant (ie, cluster water / graphene phase) of the graphene suspension generated in step (1.2) is obtained as a graphene extract. The supernatant may be extracted from the graphene suspension using a known technique such as a dropper, a gradient method, and centrifugation.
 このように本実施形態では、(1.1)~(1.3)を行うことにより、グラフェンが水中に分散したグラフェン分散液を生成することができる。すなわち、(1.1)~(1.3)はグラフェン(及びグラフェン分散液)の製造方法として捉えることができる。本実施形態のグラフェン(グラフェン分散液)の製造方法によれば、電気的処理によりグラフェン間に静電反発効果が生じ、グラフェンの凝集を防ぐことができる。この結果、分散性の向上したグラフェンを得ることができる。この結果、本実施形態の製造方法によれば、グラフェンの抵抗値を下げることができ、導電性を改良することができる。なお、本実施形態では主にコンタミの除去のために(1.2)~(1.3)を行っているが、グラフェンの製造方法として用いる場合、(1.2)~(1.3)を省略し(1.1)のみを行ってもよい。 As described above, in this embodiment, by performing (1.1) to (1.3), a graphene dispersion liquid in which graphene is dispersed in water can be generated. That is, (1.1) to (1.3) can be regarded as a method for producing graphene (and a graphene dispersion). According to the method for manufacturing graphene (graphene dispersion liquid) of the present embodiment, an electrostatic repulsion effect is generated between the graphenes by the electric treatment, and the aggregation of graphene can be prevented. As a result, graphene with improved dispersibility can be obtained. As a result, according to the manufacturing method of the present embodiment, the resistance value of graphene can be reduced, and the conductivity can be improved. In this embodiment, steps (1.2) to (1.3) are mainly performed to remove contaminants. However, when the method is used as a method for producing graphene, steps (1.2) to (1.3) May be omitted and only (1.1) may be performed.
 以下では、製造したグラフェンに更に処理を行いグラフェン含有電池材料としているが、本実施形態で製造したグラフェンは他の公知の用途に用いてもよい。例えば、導電材料、補強材料、又は、塗料、インク、その他の添加剤等に用いてもよい。 In the following, the manufactured graphene is further processed to obtain a graphene-containing battery material, but the graphene manufactured in the present embodiment may be used for other known applications. For example, it may be used for a conductive material, a reinforcing material, or a paint, an ink, or other additives.
 (2)超音波電圧処理液生成段階
 次に、粉末グラフェンがクラスター水に分散したグラフェン分散液に超音波処理を行って超音波処理液を生成し、超音波処理液に金属電極を挿入して電圧印加して超音波電圧処理液を生成する。例えば、(1.3)段階で取得したグラフェン抽出液をグラフェン分散液に用いてよい。
(2) Ultrasonic voltage treatment liquid generation step Next, ultrasonic treatment is performed on the graphene dispersion liquid in which powdered graphene is dispersed in cluster water to generate an ultrasonic treatment liquid, and a metal electrode is inserted into the ultrasonic treatment liquid. A voltage is applied to generate an ultrasonic voltage treatment liquid. For example, the graphene extract obtained in step (1.3) may be used as a graphene dispersion.
 この一例として、(1.3)段階で取得したグラフェン抽出液を(1)段階で取得したクラスター水で希釈したものをグラフェン分散液として用いてよい。一例として、(1.3)段階で取得したグラフェン抽出液と(1)段階で生成したクラスター水とを1:4~1:6の割合で希釈してよい。希釈により、後述する(3)段階における反応を促進することができる。 As an example of this, a graphene extract obtained by diluting the graphene extract obtained in step (1.3) with the cluster water obtained in step (1) may be used as a graphene dispersion. As an example, the graphene extract obtained in step (1.3) and the cluster water generated in step (1) may be diluted at a ratio of 1: 4 to 1: 6. The dilution can promote the reaction in step (3) described below.
 この別の一例として、(1.3)段階で取得したグラフェン抽出液そのものを、グラフェン分散液として用いてよい。また、更に別の実施形態として、市販のグラフェンを蒸留水、純水又は超純水等に分散したものをグラフェン分散液として用いてよい。 As another example of this, the graphene extract itself obtained in the step (1.3) may be used as a graphene dispersion. In yet another embodiment, a commercially available graphene dispersed in distilled water, pure water, ultrapure water, or the like may be used as the graphene dispersion.
 (2)段階における超音波処理、及び、電圧印加は、(1.1)段落において図3で説明したものと同様の装置構成により実行してよい。ただし、(2)段階においては、超音波処理と電圧印加は同時ではなく、個別に実行される。例えば、本実施形態の(2)段階において、グラフェン抽出液に対し、まず超音波処理がなされ、超音波処理液が生成される。超音波処理は、超音波ホモジナイザ等により10~60分実行することが望ましい。その後に、超音波処理液に対し電圧印加が行われることにより、超音波電圧処理液が生成される。 超 The ultrasonic treatment and the voltage application in the stage (2) may be performed by the same device configuration as that described in FIG. 3 in the paragraph (1.1). However, in the step (2), the ultrasonic treatment and the voltage application are not performed simultaneously but individually. For example, in step (2) of the present embodiment, the graphene extract is first subjected to ultrasonic treatment to generate an ultrasonic treatment liquid. The ultrasonic treatment is desirably performed for 10 to 60 minutes using an ultrasonic homogenizer or the like. Thereafter, a voltage is applied to the ultrasonic treatment liquid to generate an ultrasonic voltage treatment liquid.
 電圧印加において、(1.1)段落において用いたものと同様の電極を用いてよい。ただし、正負電極の少なくとも一方はニッケル系材料とすることが望ましい。また、電圧印加は直流により行うことが望ましく、(1.1)段階よりも高い電圧(例えば、24~60V)及び/又は長時間(例えば、20~30時間)を印加することが望ましい。これにより、金属電極材料とグラフェンとの促進することができる。 In voltage application, the same electrodes as those used in the paragraph (1.1) may be used. However, at least one of the positive and negative electrodes is preferably made of a nickel-based material. The voltage is preferably applied by direct current, and it is desirable to apply a higher voltage (for example, 24 to 60 V) and / or a longer time (for example, 20 to 30 hours) than in the step (1.1). Thereby, the metal electrode material and the graphene can be promoted.
 係る処理により、恐らく電極からニッケルイオン等の金属イオンが溶出し、陰極に移動する過程で凝集する。その際に、水中のグラフェン等の炭素微粒子が付着し、遷移金属錯体(炭素分子と結合した金属酸化物半導体)が析出するものと推定される。 処理 By this treatment, metal ions such as nickel ions are probably eluted from the electrode and aggregate in the process of moving to the cathode. At that time, it is presumed that carbon fine particles such as graphene in water adhere and a transition metal complex (metal oxide semiconductor bonded to carbon molecules) precipitates.
 図7は、(2)段階で得られた超音波電圧処理液の写真である。図7に示すように、(2)段階の処理により黄色かつ透明の超音波電圧処理液が得られる。 FIG. 7 is a photograph of the ultrasonic voltage treatment solution obtained in step (2). As shown in FIG. 7, a yellow and transparent ultrasonic voltage treatment liquid is obtained by the treatment of the step (2).
 (3)電池材料生成段階
 次に、粉末グラフェンがクラスター水に分散したグラフェン分散液と(2)段階で得られた超音波電圧処理液とを混合し、電圧印加し、グラフェン含有電池材料を生成する。例えば、(1.3)段階で取得したグラフェン抽出液そのもの又はグラフェン抽出液をクラスター水で希釈したものを、グラフェン分散液として用いてよい。また、これに代えて、市販のグラフェンを蒸留水、純水又は超純水等に分散したものをグラフェン分散液として用いてよい。
(3) Battery material generation step Next, a graphene dispersion liquid in which powdered graphene is dispersed in cluster water is mixed with the ultrasonic voltage treatment liquid obtained in step (2), and a voltage is applied to generate a graphene-containing battery material. I do. For example, the graphene extract itself obtained in step (1.3) or the graphene extract diluted with cluster water may be used as the graphene dispersion. Alternatively, a commercially available graphene dispersed in distilled water, pure water, ultrapure water, or the like may be used as the graphene dispersion liquid.
 例えば、グラフェン分散液:超音波電圧処理液=10:1~1:10の割合で混合してよい。グラフェン分散液及び超音波電圧処理液の混合液に電極対を挿入し、電圧を印加してよい。電圧は、12~60Vの直流電圧であることが望ましい。電極は、ステンレス金網メッシュなどの混合液と反応しないものを用いてよい。また、電圧印加時間は1~5時間であることが望ましい。(3)段階の処理により、グラフェンなどの炭素粒子の表面に遷移金属錯体が担持された炭素化合物が得られるものと推定される。 For example, the graphene dispersion liquid: the ultrasonic voltage treatment liquid may be mixed at a ratio of 10: 1 to 1:10. An electrode pair may be inserted into a mixture of the graphene dispersion liquid and the ultrasonic voltage treatment liquid, and a voltage may be applied. The voltage is desirably a DC voltage of 12 to 60V. An electrode that does not react with the mixed solution such as a stainless steel wire mesh may be used as the electrode. Further, the voltage application time is desirably 1 to 5 hours. It is presumed that a carbon compound in which a transition metal complex is supported on the surface of carbon particles such as graphene is obtained by the treatment in the step (3).
 図8は、(3)段階で得られたグラフェン含有電池材料の写真を示す。図示するようにグラフェン含有電池材料800中に、遷移金属錯体802と推定される物質が白く見える。 FIG. 8 shows a photograph of the graphene-containing battery material obtained in step (3). As illustrated, the substance presumed to be the transition metal complex 802 appears white in the graphene-containing battery material 800.
 (4)電池材料混合物生成段階
 次に、(3)段階で得られたグラフェン含有電池材料と、オキシ水酸化ニッケルと、水酸化コバルトとを混合して電池材料混合物を得る。電池材料混合物は、混合後に加圧成形してもよい。混合割合は任意の割合を用いてよいが、例えば、電池材料混合物中のグラフェン含有電池材料と、オキシ水酸化ニッケルとの重量比率は0.1:10~10:10、好ましくは1:10~2:10であってよい。また、グラフェン含有電池材料は、オキシ水酸化ニッケル及び水酸化コバルト以外の任意の材料と混合してもよい。
(4) Battery Material Mix Generation Step Next, the graphene-containing battery material obtained in the step (3), nickel oxyhydroxide, and cobalt hydroxide are mixed to obtain a battery material mixture. The battery material mixture may be pressure molded after mixing. The mixing ratio may be an arbitrary ratio. For example, the weight ratio of the graphene-containing battery material to the nickel oxyhydroxide in the battery material mixture is 0.1: 10 to 10:10, preferably 1:10 to It may be 2:10. The graphene-containing battery material may be mixed with any material other than nickel oxyhydroxide and cobalt hydroxide.
 水酸化コバルトは、電池材料混合物の導電性を改善する目的で添加されるものであってよい。例えば、電池材料混合物中の水酸化コバルトと、オキシ水酸化ニッケルとの重量比率は0.01:10~2:10、好ましくは0.1:10~1:10であってよい。 コ バ ル ト Cobalt hydroxide may be added for the purpose of improving the conductivity of the battery material mixture. For example, the weight ratio of cobalt hydroxide to nickel oxyhydroxide in the battery material mixture may be from 0.01: 10 to 2:10, preferably from 0.1: 10 to 1:10.
 ここで、オキシ水酸化ニッケルは市販品を使用してもよく、自家合成したものを用いてもよい。合成する場合、水酸化ニッケル及び次亜塩素酸水との反応させた後、上澄み液を除去し、その後、クラスター水を加え、超音波処理を行い、上澄み液を除去する操作を1回又は複数回繰り返し、最後に沈殿した沈殿物を乾燥する段階を行い、乾燥された沈殿物を(4)段階で使用するオキシ水酸化ニッケルとして取得してよい。 Here, as the nickel oxyhydroxide, a commercially available product may be used, or a product synthesized in-house may be used. In the case of synthesizing, after reacting with nickel hydroxide and aqueous hypochlorous acid, the supernatant liquid is removed, then, cluster water is added, ultrasonic treatment is performed, and one or more operations for removing the supernatant liquid are performed. Repeating the steps, drying the finally precipitated precipitate may be performed, and the dried precipitate may be obtained as nickel oxyhydroxide used in step (4).
 超音波処理は、超音波ホモジナイザによって1分~1時間行ってよい。例えば、オキシ水酸化ニッケルNiOOHは以下の反応により得られる。
 Ni(OH)+2HClO → NiOOH+2HCl+O↑+H↑
The sonication may be performed by an ultrasonic homogenizer for 1 minute to 1 hour. For example, nickel oxyhydroxide NiOOH is obtained by the following reaction.
Ni (OH) 2 + 2HClO → NiOOH + 2HCl + O 2 {+ H}
 図9Aは、(4)段階で得られた電池材料混合物の走査型電子顕微鏡写真を示す。図9Bは、図9Aの一部を拡大したものを示す。図示するように電池材料混合物中には、球形のオキシ水酸化ニッケル902と板形又は不定形のグラフェン含有電池材料の遷移金属錯体904が観察される。 FIG. 9A shows a scanning electron micrograph of the battery material mixture obtained in step (4). FIG. 9B shows an enlarged part of FIG. 9A. As shown in the figure, spherical nickel oxyhydroxide 902 and transition metal complex 904 of plate or amorphous graphene-containing battery material are observed in the battery material mixture.
 (5)電池製造段階
 次に(4)段階で得られた電池材料混合物を含む成形体を、電極で挟むことにより電池を製造する。例えば、電池材料混合物をバインダー樹脂等で成形硬化し、及び/又は、加圧成形して、電池材料固形物とし、これを電極で挟持してよい。ここで、電池材料固形物に、不織布又はパレータ紙などの水分吸収材量を含ませ、水が与えられた際に電池材料固形物が水分と接触できるようにしてよい。
(5) Battery Manufacturing Step Next, a battery is manufactured by sandwiching the molded body containing the battery material mixture obtained in the step (4) between electrodes. For example, the battery material mixture may be molded and cured with a binder resin or the like and / or molded under pressure to form a battery material solid, which may be sandwiched between electrodes. Here, the solid material of the battery may include an amount of a water absorbing material such as a nonwoven fabric or parator paper so that the solid material of the battery can come into contact with moisture when water is given.
 図10は、本実施形態における電池材料を用いた電池の一例を示す。図10に係る電池は、電池材料混合物1002、正電極1004、負電極1006、水1010、及び、負荷1012を備える。 FIG. 10 shows an example of a battery using the battery material according to the present embodiment. The battery according to FIG. 10 includes a battery material mixture 1002, a positive electrode 1004, a negative electrode 1006, water 1010, and a load 1012.
 図示するように電池材料混合物1002は、正電極1004及び負電極1006に挟持されており、電池材料混合物1002、正電極1004、及び、負電極1006の組立体が水1010に浸されている。これにより、電池は、起電力を生じ、配線により正電極1004及び負電極1006に接続された電球等の負荷1012を動作させる。例えば、正電極1004は銅板であってよく、負電極1006はアルミニウム板であってよい。また、図10では組立体は1組のみ示されるが、複数の組立体を積層して、これらを並列又は直列に接続してもよい。 As shown, the battery material mixture 1002 is sandwiched between the positive electrode 1004 and the negative electrode 1006, and the assembly of the battery material mixture 1002, the positive electrode 1004, and the negative electrode 1006 is immersed in water 1010. Accordingly, the battery generates an electromotive force, and operates the load 1012 such as a light bulb connected to the positive electrode 1004 and the negative electrode 1006 by wiring. For example, the positive electrode 1004 may be a copper plate and the negative electrode 1006 may be an aluminum plate. Although only one set of assemblies is shown in FIG. 10, a plurality of assemblies may be stacked and connected in parallel or in series.
 [実施例]
 以下、本実施形態の電池材料等を製造した実施例について説明する。
[Example]
Hereinafter, examples in which the battery material and the like of the present embodiment are manufactured will be described.
 [電池材料製造例1]
 (1)クラスター水生成
 蒸留水500mlをビーカーに投入し、これに超音波ホモジナイザ(QSONICA製 Q700、マイクロチップ4220仕様)による超音波処理を30分行った。これによりクラスター水Aを生成した。
[Battery material production example 1]
(1) Generation of Cluster Water 500 ml of distilled water was put into a beaker, and subjected to ultrasonic treatment using an ultrasonic homogenizer (Q700 manufactured by QSONICA, microchip 4220 specification) for 30 minutes. Thereby, cluster water A was generated.
 (1.1)粉末グラフェン生成
 人工グラファイト15gをクラスター水A500mlに投入後、撹拌して、グラファイト懸濁液Bを得た。グラファイト懸濁液Bに図3で説明した装置構成により超音波印加と電圧印加とを同時に行った。ここで、電極としてステンレス金網メッシュ(JIS規格SUS430))を用いて、グラファイト懸濁液Bに対して直流電圧を30分印加した。超音波印加には、超音波ホモジナイザ(QSONICA製 Q700、マイクロチップ4220仕様)を用いた。
(1.1) Production of powdered graphene 15 g of artificial graphite was put into 500 ml of cluster water A, followed by stirring to obtain a graphite suspension B. Ultrasonic application and voltage application were simultaneously performed on the graphite suspension B by the apparatus configuration described with reference to FIG. Here, a DC voltage was applied to the graphite suspension B for 30 minutes using a stainless steel wire mesh (JIS SUS430) as an electrode. An ultrasonic homogenizer (QSONICA Q700, microchip 4220 specification) was used for ultrasonic application.
 これにより、グラファイト懸濁液Bの下相に100ml程度のグラフェン粗分散液Cが相分離した。その後、グラファイト懸濁液Bからグラフェン粗分散液Cのみを抽出した。グラフェン粗分散液Cを真空ロータリーエバポレータに投入して真空乾燥し、粉末グラフェンDを得た。 (4) As a result, approximately 100 ml of the graphene coarse dispersion C was phase-separated into the lower phase of the graphite suspension B. Thereafter, only the graphene coarse dispersion C was extracted from the graphite suspension B. The graphene coarse dispersion C was charged into a vacuum rotary evaporator and dried under vacuum to obtain powdered graphene D.
 (1.2)グラフェン懸濁液生成
 クラスター水A100ml、粉末グラフェンD0.5g、及び、市販の二硫化炭素50mlを混合した。混合液に対し、超音波洗浄機処理機(アズワン社US-1KS)で1時間超音波処理を行い、クラスター水/グラフェン相(上相)と二硫化炭素(下相)とに分離したグラフェン懸濁液Eを得た。
(1.2) Formation of graphene suspension 100 ml of cluster water A, 0.5 g of powdered graphene D, and 50 ml of commercially available carbon disulfide were mixed. The mixed solution was subjected to an ultrasonic treatment for 1 hour by an ultrasonic cleaner (US-1KS, AS-ONE) to separate the cluster water / graphene phase (upper phase) and carbon disulfide (lower phase) into graphene suspension. A suspension E was obtained.
 (1.3)グラフェン分散液生成
 グラフェン懸濁液Eの上相部分をスポイト等で取得し、グラフェン抽出液Fとした。
(1.3) Formation of Graphene Dispersion Liquid The upper phase portion of the graphene suspension E was obtained with a dropper or the like and used as a graphene extract F.
 (2)超音波電圧処理液生成
 クラスター水Aとグラフェン抽出液Fとを1:5の体積割合で混合してグラフェン分散液Gに対し、超音波ホモジナイザ(QSONICA製 Q700、マイクロチップ4220仕様)により超音波印加を10分行い、超音波処理液Hを生成した。
(2) Generation of ultrasonic voltage treatment liquid Cluster water A and graphene extract F were mixed at a volume ratio of 1: 5, and the graphene dispersion G was mixed with an ultrasonic homogenizer (QSONICA Q700, microchip 4220 specification). Ultrasonic application was performed for 10 minutes to produce an ultrasonic treatment liquid H.
 超音波印加の後、超音波処理液Hに対し、ニッケル電極対またはニッケルメッキ電極対を挿入し、直流24Vで20時間 電圧印加を行い、超音波電圧処理液Iを生成した。 After the application of ultrasonic waves, a nickel electrode pair or a nickel-plated electrode pair was inserted into the ultrasonic treatment liquid H, and a voltage was applied at DC 24 V for 20 hours to produce an ultrasonic voltage treatment liquid I.
 (3)電池材料生成
 グラフェン抽出液F350mlと超音波電圧処理液I 150mlとを混合して撹拌した。さらに混合液にステンレス金網メッシュの電極対を挿入し、直流24Vで2時間電圧印加を行い、グラフェン含有電池材料Jを得た。
(3) Production of battery material 350 ml of graphene extract F and 150 ml of ultrasonic voltage treatment solution I were mixed and stirred. Further, a stainless steel wire mesh electrode pair was inserted into the mixed solution, and a voltage was applied at DC 24 V for 2 hours to obtain a graphene-containing battery material J.
 [電池材料製造例2]
 下記の条件を変更したこと以外は、電池材料製造例1と同様の方法でグラフェン含有電池材料Jを製造した。
 (1)クラスター水生成において、超音波処理を60分行った。
 (1.1)グラフェン粉末生成において、ステンレス金網メッシュ(JIS規格SUS304)を用いて直流電流を20分印加した。
 (1.2)グラフェン懸濁液生成において、グラフェン粉末Dを1.0gを用いた。
 (2)超音波電圧処理液生成において、電圧印加を24Vで20時間の条件で行った。
 (3)電池材料生成において、直流24Vを2時間印加した。
[Battery material production example 2]
A graphene-containing battery material J was produced in the same manner as in Battery Material Production Example 1 except that the following conditions were changed.
(1) In the generation of cluster water, ultrasonic treatment was performed for 60 minutes.
(1.1) In producing graphene powder, a direct current was applied for 20 minutes using a stainless steel wire mesh (JIS standard SUS304).
(1.2) In producing graphene suspension, 1.0 g of graphene powder D was used.
(2) In the generation of the ultrasonic voltage treatment solution, the voltage was applied at 24 V for 20 hours.
(3) In producing the battery material, a direct current of 24 V was applied for 2 hours.
 (4)電池製造
 [実施例1]
 下記の組成比で材料を混合し、加圧成形した成形体(寸法:20mm×40mm×0.5mm)を得た。
 電池材料製造例1で製造したグラフェン含有電池材料J:3重量部、
 オキシ水酸化ニッケル:6.9重量部、
 水酸化コバルト:0.1重量部
(4) Battery manufacture [Example 1]
The materials were mixed at the following composition ratio, and a molded article (dimensions: 20 mm × 40 mm × 0.5 mm) obtained by pressure molding was obtained.
Graphene-containing battery material J produced in Battery Material Production Example 1: 3 parts by weight,
Nickel oxyhydroxide: 6.9 parts by weight,
Cobalt hydroxide: 0.1 parts by weight
 当該成形体を銅板の正電極(寸法:20mm×40mm×0.1mm)とアルミニウム板(寸法:20mm×40mm×0.1mm)の負電極で挟持して組立体を形成した。当該組立体の正電極及び負電極に配線を接続し、水に浸漬した。これにより、水電池を得た。 (4) The molded product was sandwiched between a positive electrode of a copper plate (dimensions: 20 mm × 40 mm × 0.1 mm) and a negative electrode of an aluminum plate (dimensions: 20 mm × 40 mm × 0.1 mm) to form an assembly. Wiring was connected to the positive and negative electrodes of the assembly and immersed in water. Thus, a water battery was obtained.
 [実施例2]
 実施例1と同様の手順で水電池を製造した。
[Example 2]
A water battery was manufactured in the same procedure as in Example 1.
 [実施例3]
 組成比を以下に変更したことを除いて実施例1と同様に水電池を製造した。
 グラフェン含有電池材料J:4重量部、
 オキシ水酸化ニッケル:5.9重量部、
 水酸化コバルト:0.1重量部
[Example 3]
A water battery was manufactured in the same manner as in Example 1 except that the composition ratio was changed as follows.
Graphene-containing battery material J: 4 parts by weight,
Nickel oxyhydroxide: 5.9 parts by weight,
Cobalt hydroxide: 0.1 parts by weight
 [実施例4]
 実施例3と同様の手順で水電池を製造した。
 [実施例5]
 組成比を以下に変更したことを除いて実施例1と同様に水電池を製造した。
 グラフェン含有電池材料J:5重量部、
 オキシ水酸化ニッケル:4.9重量部、
 水酸化コバルト:0.1重量部
[Example 4]
A water battery was manufactured in the same procedure as in Example 3.
[Example 5]
A water battery was manufactured in the same manner as in Example 1 except that the composition ratio was changed as follows.
Graphene-containing battery material J: 5 parts by weight,
Nickel oxyhydroxide: 4.9 parts by weight,
Cobalt hydroxide: 0.1 parts by weight
 [実施例6]
 実施例5と同様の手順で水電池を製造した。
[Example 6]
A water battery was manufactured in the same procedure as in Example 5.
 図11は、実施例1~6において製造した電池の一例の写真を示す。 FIG. 11 shows photographs of an example of the batteries manufactured in Examples 1 to 6.
 図12は、実施例1~6における電池材料を用いた電池の出力特性を示す。図示するように、実施例1~6で製造した電池は良好な電圧特性、電流特性、及び、電力特性を示した。 FIG. 12 shows the output characteristics of the batteries using the battery materials in Examples 1 to 6. As shown, the batteries manufactured in Examples 1 to 6 exhibited good voltage characteristics, current characteristics, and power characteristics.
 図13は、実施例1における電池材料を用いた電池の出力経時特性を示す。図示するように、実施例1に係る電池は100日を超えてもなお電流及び電圧を維持しつづけており、非常に長い寿命を有していることが示される。 FIG. 13 shows the output aging characteristics of the battery using the battery material in Example 1. As shown, the battery according to Example 1 still maintains current and voltage for more than 100 days, indicating that it has a very long life.
 [実施例7]
 電池材料製造例1で製造したグラフェン含有電池材料J2.0gとオキシ水酸化ニッケル11.0gとを混合して均等に6分割し、それぞれを6本の試験管に投入し、さらに純水を注入した。沈降した混合物に銅電極及びアルミ電極を挿入し、これらの電極を、配線を介してLEDに接続したところ、LEDが点灯した。
[Example 7]
A mixture of 2.0 g of the graphene-containing battery material J manufactured in Battery Material Manufacturing Example 1 and 11.0 g of nickel oxyhydroxide was divided into six equal portions, each of which was charged into six test tubes, and further pure water was injected. did. When a copper electrode and an aluminum electrode were inserted into the settled mixture, and these electrodes were connected to the LED via wiring, the LED was turned on.
 図14~15に、実施例7に係る電池の製造例の写真を示す。実施例7では、グラフェン含有電池材料Jの原料となる人工グラファイト((1.1)粉末グラフェン生成工程で使用)に、粒径の異なる2種類の人工グラファイトを用いて、2種類の6連電池を製造した。具体的には、1つに粒径が小さい人工グラファイトA(伊藤黒鉛工業株式会社製、商品名Z-5F、固定炭素分99.11%。粒径4.38μm)を用い、もう1つに粒径が大きい人工グラファイトB(和光純薬株式会社製、商品名075-01325)を用いた。人工グラファイトAを用いた電池では平均3.4V(1個当たり0.56V)の出力、人工グラファイトBを用いた電池では平均3.2V(1個当たり0.53V)の出力となり、どちらもほぼ同じ電圧が確認できたが、電流値は粒径の小さい人工グラファイトAを用いたタイプの方が良好であった。 ~ FIGS. 14 and 15 show photographs of a production example of the battery according to the seventh embodiment. In Example 7, two types of six-cell batteries were prepared by using two types of artificial graphites having different particle sizes for the artificial graphite (used in the (1.1) powder graphene generation step) as a raw material of the graphene-containing battery material J. Was manufactured. Specifically, one uses artificial graphite A having a small particle size (manufactured by Ito Graphite Industry Co., Ltd., trade name: Z-5F, fixed carbon content: 99.11%, particle size: 4.38 μm), and the other uses Artificial graphite B having a large particle size (trade name 075-01325, manufactured by Wako Pure Chemical Industries, Ltd.) was used. The battery using artificial graphite A had an average output of 3.4 V (0.56 V per cell), and the battery using artificial graphite B had an average output of 3.2 V (0.53 V per cell). The same voltage was confirmed, but the current value was better for the type using artificial graphite A having a small particle size.
 [実施例8]
 電池材料製造例1で製造したグラフェン含有電池材料J2.0gとオキシ水酸化ニッケル11.0gとを水溶性バインダ-(SBRバインダ-:TRD102A)2.0gと混合して塗料化した。これを不織布(SP-1070E-HY)の両面に塗布し、乾燥後に銅電極及びアルミ電極に挟んでラミネ-ト処理を行い、電池材料樹脂複合体を得た。電池材料樹脂複合体に純水を吸収させ、配線を介してLEDと接続させ、LEDを点灯させた。なお、LEDのスペックは電圧:2.0V、電流値:50mAとした。図16、図17A及び図17Bに、実施例8に係る電池の製造例の写真を示す。
[Example 8]
2.0 g of the graphene-containing battery material J produced in Battery Material Production Example 1 and 11.0 g of nickel oxyhydroxide were mixed with 2.0 g of a water-soluble binder (SBR binder: TRD102A) to form a paint. This was applied to both sides of a nonwoven fabric (SP-1070E-HY), dried, and then subjected to a lamination treatment by sandwiching it between a copper electrode and an aluminum electrode to obtain a battery material resin composite. Pure water was absorbed by the battery material-resin composite, connected to the LED via wiring, and the LED was turned on. The specifications of the LED were as follows: voltage: 2.0 V, current value: 50 mA. 16, 17A, and 17B show photographs of a manufacturing example of the battery according to Example 8.
 次に本実施形態の電池材料による起電メカニズムについて概説する。(3)電池材料生成で得られたグラフェン含有電池材料中の遷移金属錯体(例えば、図8に示される遷移金属錯体802及び図18の遷移金属錯体1804)は、HOとの反応で水素を発生する。この発生した水素にオキシ水酸化ニッケル(NiOOH:図18のオキシ水酸化ニッケル1802)が反応して水酸化ニッケルNi(OH)に酸化され、その段階で電子が放出される。一方、+電極と-電極を外部回路に接続することで電気が流れ、遷移金属錯体の触媒反応の還元作用でふたたびオキシ水酸化ニッケルに戻される。なお、オキシ水酸化ニッケルは絶縁体であるため、導電性にして放出された電子の移動を助けるために微量の水酸化コバルトを加える。以上のことからグラフェン含有電池材料は「グラフェン触媒」として作用していると仮定できる。その反応は以下の通りである。
また溶媒としてHOが必要である。純水が最適であるが水溶液であれば一応起電は可能で
ある。実験ではHOの蒸発分を含め1試験管当たり一日数滴の補給が必要である。
 (1)NiOOH+H+e → Ni(OH)         酸化反応
 (2)Ni(OH)+OH → NiOOH +HO+e   還元反応
Next, an electromotive mechanism by the battery material of the present embodiment will be outlined. (3) The transition metal complex (for example, the transition metal complex 802 shown in FIG. 8 and the transition metal complex 1804 shown in FIG. 18) in the graphene-containing battery material obtained by forming the battery material reacts with H 2 O to generate hydrogen. Occurs. Nickel oxyhydroxide (NiOOH: nickel oxyhydroxide 1802 in FIG. 18) reacts with the generated hydrogen to be oxidized to nickel hydroxide Ni (OH) 2 , at which stage electrons are emitted. On the other hand, when the positive electrode and the negative electrode are connected to an external circuit, electricity flows, and is returned to nickel oxyhydroxide again by the reduction action of the catalytic reaction of the transition metal complex. Note that since nickel oxyhydroxide is an insulator, a small amount of cobalt hydroxide is added to make it conductive and help transfer of emitted electrons. From the above, it can be assumed that the graphene-containing battery material acts as a “graphene catalyst”. The reaction is as follows.
Also, H 2 O is required as a solvent. Pure water is optimal, but if it is an aqueous solution, electromotive force is possible. The experiment requires a few drops per day per test tube, including the evaporation of H 2 O.
(1) NiOOH + H + + e - → Ni (OH) 2 oxidation reaction (2) Ni (OH) 2 + OH - → NiOOH + H 2 O + e - reduction reaction
 外部回路を接続することで電子が移動し、酸化還元反応が繰り返されると推定した。なお、銅とアルミの電位差を利用した発電では回路を接続した場合、酸化アルミに変化していくアルミの電蝕反応が起きるのが通例である。本触媒発電では溶媒としてHOを使用するため若干の電蝕反応は起きている可能性はあるものの、アルミの溶解は殆ど確認されなかった。 It is presumed that electrons move by connecting an external circuit, and the oxidation-reduction reaction is repeated. In the case of power generation using a potential difference between copper and aluminum, when a circuit is connected, an electrolytic corrosion reaction of aluminum, which changes to aluminum oxide, usually occurs. In this catalytic power generation, although H 2 O was used as a solvent, there was a possibility that a slight electrolytic corrosion reaction might occur, but almost no dissolution of aluminum was confirmed.
 オキシ水酸化ニッケル(NiOOH)は一般的に「ニッケル・水素蓄電池」の正極材として用いられている。充放電により酸化還元反応が繰り返され、その反応から発生する電圧は下記のようになる。(https://ja.wikipedia.org/wiki/水酸化ニッケル(II))
 NiOOH+HO+e⇔Ni(OH)+OH、E(起電圧)=0.48V
Nickel oxyhydroxide (NiOOH) is generally used as a positive electrode material of a “nickel-metal hydride battery”. The oxidation-reduction reaction is repeated by charging and discharging, and the voltage generated from the reaction is as follows. (Https://en.wikipedia.org/wiki/Nickel(II) hydroxide)
NiOOH + H 2 O + e ⇔Ni (OH) 2 + OH , E (electromotive voltage) = 0.48 V
 上記した通り、実施例7においては電池1個当たり0.53~0.56Vの電圧が生じており、ほぼ上記のオキシ水酸化ニッケル(NiOOH)の酸化還元反応による電圧が発生していると推測できる。若干のプラスで電圧は両電極のイオン化傾向の差による電位差が関係しているものと推測できる。また、実施例7の人工グラファイトAを用いたタイプと人工グラファイトBを用いたタイプの結果の違いはグラフェンを作る際の出発原料であるグラファイト(黒鉛)の違いに起因する可能性がある。固形炭素成分が高く、粒径が小さいほど導電性が向上することは一般的に知られており、その結果、人工グラファイトBを用いた方が良好な電流値となった可能性がある。 As described above, in Example 7, a voltage of 0.53 to 0.56 V was generated per battery, and it is estimated that a voltage was substantially generated by the oxidation-reduction reaction of nickel oxyhydroxide (NiOOH). it can. It can be presumed that the voltage is slightly positive and that the voltage is related to the potential difference due to the difference in ionization tendency between the two electrodes. In addition, the difference between the results of Example 7 using the artificial graphite A and the types using the artificial graphite B may be caused by the difference in the graphite (graphite) as a starting material when producing graphene. It is generally known that the higher the solid carbon component and the smaller the particle size, the higher the conductivity. As a result, it is possible that the use of artificial graphite B resulted in a better current value.
 図18は、予想される起電反応の一例を示す。図18に示されるように、反応はオキシ水酸化ニッケル1802とグラフェン含有電池材料1804との界面1803で生じていると考えられる。グラフェン含有電池材料1804は角形形状、オキシ水酸化ニッケル1802は球状をしている。純水を投入した時点でまずオキシ水酸化ニッケル1802が水酸化ニッケルに酸化される。この時に起電が開始される。この時点での電圧は1.0V程度の出力を計測するが数時間後に低下する。オキシ水酸化ニッケル1802が水酸化ニッケルになり安定する。(絶縁体となる)。グラフェン含有電池材料1804は触媒反応を有するため、オキシ水酸化ニッケルとの界面1803でのみ「酸化還元反応」が繰り返される。この時の出力が0.48Vである。 FIG. 18 shows an example of an expected electromotive reaction. As shown in FIG. 18, the reaction is considered to have occurred at the interface 1803 between the nickel oxyhydroxide 1802 and the graphene-containing battery material 1804. The graphene-containing battery material 1804 has a square shape, and the nickel oxyhydroxide 1802 has a spherical shape. When pure water is charged, nickel oxyhydroxide 1802 is first oxidized to nickel hydroxide. At this time, electromotive force is started. The voltage at this point measures an output of about 1.0 V, but drops after several hours. The nickel oxyhydroxide 1802 becomes nickel hydroxide and is stabilized. (It becomes an insulator). Since the graphene-containing battery material 1804 has a catalytic reaction, the “redox reaction” is repeated only at the interface 1803 with nickel oxyhydroxide. The output at this time is 0.48V.
 以上、本発明を実施の形態を用いて説明した。本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 The present invention has been described using the embodiments. The technical scope of the present invention is not limited to the scope described in the above embodiment. It is apparent to those skilled in the art that various changes or improvements can be made to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示したプロセスおよび方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each processing such as operation, procedure, step, and stage in the processes and methods shown in the claims, the description, and the drawings is specifically indicated as "before", "before", and the like. It should be noted that they can be implemented in any order as long as the output of the previous process is not used in the subsequent process. Even if the operation flow in the claims, the specification, and the drawings is described using “first”, “next”, etc. for convenience, it means that it is essential to implement in this order is not.
 302 グラフェン粗分散液
 303 グラファイト懸濁液
 304 電極
 306 電極
 307 電圧器
 308 超音波ホモジナイザ
 310 防音箱
 501 クラスター水
 502 グラフェン
 503 二硫化炭素
 601 クラスター水/グラフェン相
 602 二硫化炭素
 800 グラフェン含有電池材料
 802 遷移金属錯体
 902 オキシ水酸化ニッケル
 904 遷移金属錯体
 1002 電池材料混合物
 1004 正電極
 1006 負電極
 1010 水
 1012 負荷
 1802 オキシ水酸化ニッケル
 1803 界面
 1804 グラフェン含有電池材料
302 Rough dispersion of graphene 303 Graphite suspension 304 Electrode 306 Electrode 307 Voltage generator 308 Ultrasonic homogenizer 310 Soundproof box 501 Cluster water 502 Graphene 503 Carbon disulfide 601 Cluster water / graphene phase 602 Carbon disulfide 800 Graphene-containing battery material 802 Transition Metal complex 902 Nickel oxyhydroxide 904 Transition metal complex 1002 Battery material mixture 1004 Positive electrode 1006 Negative electrode 1010 Water 1012 Load 1802 Nickel oxyhydroxide 1803 Interface 1804 Graphene-containing battery material

Claims (10)

  1. (1)水に対して超音波処理を行い、クラスター水を生成するクラスター水生成段階と、
    (2)粉末グラフェンがクラスター水に分散したグラフェン分散液に超音波処理を行って超音波処理液を生成し、超音波処理液に金属電極を挿入して電圧印加して超音波電圧処理液する段階と、
    (3)粉末グラフェンがクラスター水に分散したグラフェン分散液と前記(2)段階で得られた超音波電圧処理液とを混合し、電圧印加し、グラフェン含有電池材料を生成する段階と、
     を備える電池材料の製造方法。
    (1) a cluster water generation step of performing ultrasonic treatment on water to generate cluster water;
    (2) Ultrasonic treatment is performed on a graphene dispersion liquid in which powdered graphene is dispersed in cluster water to generate an ultrasonic treatment liquid, and a metal electrode is inserted into the ultrasonic treatment liquid to apply a voltage to apply an ultrasonic voltage treatment liquid. Stages and
    (3) mixing a graphene dispersion liquid in which powdered graphene is dispersed in cluster water with the ultrasonic voltage treatment liquid obtained in step (2), applying a voltage, and generating a graphene-containing battery material;
    A method for producing a battery material comprising:
  2.  前記(1)段階及び前記(2)段階の間に、
     (1.1)グラファイトを前記クラスター水と混合し、これに電圧を印加しながら超音波処理を行って前記グラファイトからグラフェン粗分散液を得、前記グラフェン粗分散液を乾燥して粉末グラフェンを得るグラフェン生成段階と、
     を備える請求項1に記載の電池材料の製造方法。
    Between the steps (1) and (2),
    (1.1) Graphite is mixed with the cluster water and subjected to ultrasonic treatment while applying a voltage thereto to obtain a graphene coarse dispersion from the graphite, and the graphene coarse dispersion is dried to obtain powder graphene. A graphene generation stage;
    The method for producing a battery material according to claim 1, comprising:
  3.  前記(1.1)段階及び前記(2)段階の間に、
    (1.2)前記粉末グラフェン、二硫化炭素、前記クラスター水を混合した後、超音波処理を行ってグラフェン懸濁液を取得する段階と、
    (1.3)前記グラフェン懸濁液の上澄みをグラフェン抽出液として取得する段階と、
     を備え、
     前記グラフェン抽出液を、前記(2)段階における前記グラフェン分散液として用いる、
     請求項2に記載の電池材料の製造方法。
    Between the steps (1.1) and (2),
    (1.2) mixing the powdered graphene, carbon disulfide, and the cluster water, and then performing ultrasonic treatment to obtain a graphene suspension;
    (1.3) obtaining a supernatant of the graphene suspension as a graphene extract;
    With
    Using the graphene extract as the graphene dispersion in step (2);
    A method for producing the battery material according to claim 2.
  4.  前記(1.3)段階で得た前記グラフェン抽出液を、前記(3)段階における前記グラフェン分散液として用いる請求項3に記載の電池材料の製造方法。 The method for producing a battery material according to claim 3, wherein the graphene extract obtained in the step (1.3) is used as the graphene dispersion in the step (3).
  5.  (4)前記(3)段階で得られた前記グラフェン含有電池材料と、オキシ水酸化ニッケルと、水酸化コバルトとを混合して電池材料混合物を得る段階を備える、
     請求項1から4のいずれか1項に記載の電池材料の製造方法。
    (4) a step of mixing the graphene-containing battery material obtained in the step (3), nickel oxyhydroxide, and cobalt hydroxide to obtain a battery material mixture;
    A method for producing the battery material according to claim 1.
  6.  (4)段階において、電池材料混合物中の前記グラフェン含有電池材料と、前記オキシ水酸化ニッケルとの重量比率は1:10~2:10である、
     請求項5に記載の電池材料の製造方法。
    In the step (4), the weight ratio of the graphene-containing battery material to the nickel oxyhydroxide in the battery material mixture is 1:10 to 2:10.
    A method for producing the battery material according to claim 5.
  7.  水酸化ニッケル及び次亜塩素酸水との反応させた後、上澄み液を除去し、
     その後、前記クラスター水を加え、超音波処理を行い、上澄み液を除去する操作を繰り返し、
     最後に沈殿した沈殿物を乾燥する段階を行い、
     乾燥された前記沈殿物を前記(4)段階で使用する前記オキシ水酸化ニッケルとして取得する段階を備える、
     請求項5又は6に記載の電池材料の製造方法。
    After reacting with nickel hydroxide and aqueous hypochlorous acid, remove the supernatant,
    Thereafter, the above-mentioned cluster water was added, ultrasonic treatment was performed, and the operation of removing the supernatant was repeated,
    Finally, a step of drying the precipitated precipitate is performed,
    Obtaining the dried precipitate as the nickel oxyhydroxide used in step (4).
    A method for producing a battery material according to claim 5.
  8. (5)請求項5に記載の前記(4)段階で得られた電池材料混合物を含む成形体を、電極で挟む段階を含む電池の製造方法。 (5) A method for producing a battery, comprising a step of sandwiching a molded article containing the battery material mixture obtained in the step (4) according to the step (4) between electrodes.
  9. (1)水に対して超音波処理を行い、クラスター水を生成するクラスター水生成段階と、
    (1.1)グラファイトを前記クラスター水と混合し、これに電圧を印加しながら超音波処理を行って前記グラファイトからグラフェン粗分散液を得、前記グラフェン粗分散液を乾燥して粉末グラフェンを得るグラフェン生成段階と、
     を備えるグラフェンの製造方法。
    (1) a cluster water generation step of performing ultrasonic treatment on water to generate cluster water;
    (1.1) Graphite is mixed with the cluster water and subjected to ultrasonic treatment while applying a voltage thereto to obtain a graphene coarse dispersion from the graphite, and the graphene coarse dispersion is dried to obtain powder graphene. A graphene generation stage;
    A method for producing graphene, comprising:
  10.  前記(1.1)段階の後に、
    (1.2)前記粉末グラフェン、二硫化炭素、前記クラスター水を混合した後、超音波処理を行ってグラフェン懸濁液を取得する段階と、
    (1.3)前記グラフェン懸濁液の上澄みをグラフェン抽出液として取得する段階と、
     を更に備える
     を備える請求項9に記載のグラフェンの製造方法。
    After the step (1.1),
    (1.2) mixing the powdered graphene, carbon disulfide, and the cluster water, and then performing ultrasonic treatment to obtain a graphene suspension;
    (1.3) obtaining a supernatant of the graphene suspension as a graphene extract;
    The method for producing graphene according to claim 9, further comprising:
PCT/JP2019/026764 2018-07-17 2019-07-05 Battery material and method of manufacturing battery WO2020017351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531236A JPWO2020017351A1 (en) 2018-07-17 2019-07-05 Battery material and battery manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133876 2018-07-17
JP2018133876 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017351A1 true WO2020017351A1 (en) 2020-01-23

Family

ID=69164358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026764 WO2020017351A1 (en) 2018-07-17 2019-07-05 Battery material and method of manufacturing battery

Country Status (2)

Country Link
JP (1) JPWO2020017351A1 (en)
WO (1) WO2020017351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687873A (en) * 2020-12-23 2021-04-20 湖南永盛新材料股份有限公司 Preparation method of high-specific-energy lithium battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536141A (en) * 2010-06-25 2013-09-19 ナショナル ユニヴァーシティー オブ シンガポール Method for forming graphene by exfoliation of graphite
JP2016060887A (en) * 2014-09-19 2016-04-25 康博 青木 Power generating composition and power generating element using the same, power generating device and power generation and storage device
JP2018049711A (en) * 2016-09-20 2018-03-29 康博 青木 Electrogenic composition, power-generating device using the same, power generator, and power storage-generator
JP2019167391A (en) * 2018-03-21 2019-10-03 康博 青木 Power generating composition, and power generation element, power generating device and power storage and generation device, using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536141A (en) * 2010-06-25 2013-09-19 ナショナル ユニヴァーシティー オブ シンガポール Method for forming graphene by exfoliation of graphite
JP2016060887A (en) * 2014-09-19 2016-04-25 康博 青木 Power generating composition and power generating element using the same, power generating device and power generation and storage device
JP2018049711A (en) * 2016-09-20 2018-03-29 康博 青木 Electrogenic composition, power-generating device using the same, power generator, and power storage-generator
JP2019167391A (en) * 2018-03-21 2019-10-03 康博 青木 Power generating composition, and power generation element, power generating device and power storage and generation device, using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687873A (en) * 2020-12-23 2021-04-20 湖南永盛新材料股份有限公司 Preparation method of high-specific-energy lithium battery

Also Published As

Publication number Publication date
JPWO2020017351A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Ejigu et al. A simple electrochemical route to metallic phase trilayer MoS 2: evaluation as electrocatalysts and supercapacitors
Song et al. Oligolayered Ti 3 C 2 T x MXene towards high performance lithium/sodium storage
Liu et al. Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries
Zhang et al. Ultrathin WS 2 nanosheets vertically embedded in a hollow mesoporous carbon framework–a triple-shell structure with enhanced lithium storage and electrocatalytic properties
Wang et al. General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors
Li et al. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries
Wang et al. Fabrication of high‐performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator
Zhang et al. 3D hierarchical core–shell structural NiCoMoS@ NiCoAl hydrotalcite for high-performance supercapacitors
Sannasi et al. H 2 O 2-assisted microwave synthesis of NiO/CNT nanocomposite material for supercapacitor applications
KR20070030274A (en) Nanocarbon composite structure having ruthenium oxide trapped therein
Ouyang et al. Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors
Hu et al. Graphitic C 3 N 4-Pt nanohybrids supported on a graphene network for highly efficient methanol oxidation
Wu et al. Synthesis of MnO 2/NiCo-Layered double hydroxide hybrid as electrode materials for supercapacitor
KR101799639B1 (en) Fabricating method for reduced graphene oxide composites and reduced graphene oxide composites fabricated by the method and supercapacitor having the reduced graphene oxide composites
CN110615438A (en) Ti3C2Method for preparing powder
JP4849265B2 (en) Method for manufacturing electrode for electric double layer capacitor and electric double layer capacitor
KR101451354B1 (en) Free-standing carbon nanotube/metal oxide particle composite film and the manufacturing method
Ko et al. A facile and scalable approach to develop electrochemical unzipping of multi-walled carbon nanotubes to graphene nanoribbons
CN113809304B (en) Preparation method and application of plasma-based tin dioxide/carbon nanotube composite material
Yang et al. Assembly of flower-like Mn3O4/NiCo-LDH@ carbon nanotube nanocomposites on Ni foam for binder-free capacitor electrode
WO2020017351A1 (en) Battery material and method of manufacturing battery
Zheng et al. Enhanced capacitive deionization by rGO@ PEI/MoS2 nanocomposites with rich heterostructures
Hassan et al. Enhancing the Electrochemical Performance of Ternary Metallic Phosphates for High‐Energy and Anti‐Self‐Discharge Supercapacitors through Binder Optimization
Yang et al. FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage
WO2012141308A1 (en) Carbon black composite and lithium-ion secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837414

Country of ref document: EP

Kind code of ref document: A1