WO2011009397A1 - Moteur planaire comportant un réseau d’aimants permanents en trois dimensions - Google Patents

Moteur planaire comportant un réseau d’aimants permanents en trois dimensions Download PDF

Info

Publication number
WO2011009397A1
WO2011009397A1 PCT/CN2010/075304 CN2010075304W WO2011009397A1 WO 2011009397 A1 WO2011009397 A1 WO 2011009397A1 CN 2010075304 W CN2010075304 W CN 2010075304W WO 2011009397 A1 WO2011009397 A1 WO 2011009397A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
type
array
dimensional
pole
Prior art date
Application number
PCT/CN2010/075304
Other languages
English (en)
Chinese (zh)
Inventor
朱煜
张鸣
汪劲松
闵伟
胡金春
尹文生
杨开明
徐登峰
段广洪
蔡田
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2011009397A1 publication Critical patent/WO2011009397A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the invention relates to a planar motor, in particular to a planar motor using a three-dimensional permanent magnet array, which is mainly used in the field of manufacturing equipment and robots.
  • the conventional planar positioning device is formed by vertically stacking two or more linear driving units, each linear driving unit consisting of a rotating motor, a linear motion conversion mechanism and a linear guide, or a linear motor and A set of linear guides.
  • the linear drive unit at the bottom layer not only bears the drive of the end support table, but also the mass of the top linear drive unit, thus causing the planar positioning device to be in multiple directions (such as the X direction of the conventional XY table and In the Y direction, the motion inertia is seriously unbalanced, which affects the improvement of performance indexes such as motion stroke, response speed, and motion accuracy.
  • a planar motor that directly drives a single mover with electromagnetic force to directly realize multi-degree-of-freedom motion emerges at the historic moment. It avoids the idea of the conventional multi-degree-of-freedom work platform stack drive, and the precise planar positioning device It has broad application prospects and has received extensive attention.
  • the planar motor can be divided into an air floating plane motor and a magnetic floating plane motor, which adopt the air floating and magnetic floating modes to realize the non-motion freedom (such as yaw, Constraints of vertical and horizontal.
  • the magnetic floating method has the advantages of simple structure, no need for precision machining on the surface of the pedestal, active restraint of non-motional freedom, and easy application in a vacuum environment.
  • the current permanent magnet arrays all use 2D planar permanent magnet arrays.
  • the main structures are shown in Figure 1.
  • the array form shown in Figure 1(a) is first published by Asakawa in the patent "Two". Dimensional positioning devices" (U.S. Patent 4626 749, Dec. Presented in 1986.);
  • Figure 1(b) shows the array form by Chitayat in the patent "Two-axis motor with high density magnetic Presented in platen (U.S. Patent 5777 402, July 1998); Trumper et al. in the patent "Magnetic arrays" ( U.S. Patent 5,631, 618, May 1997) proposes an array of Halbach structures as shown in Figure 1(c); Cho et al.
  • the schach permanent magnet arrays commonly found in the literature are shown in Figure 1(e).
  • the above-mentioned permanent magnet arrays are all 2D planar permanent magnet arrays, and the spatial distribution of the permanent magnets inside the array does not change with the change of Z. Therefore, we can construct a 3D planar permanent magnet array to further improve the ratio of the field strength of the working space of the permanent magnet array to its own mass.
  • a planar motor using a three-dimensional permanent magnet array The utility model comprises a mover 5 and a stator 6 , wherein the planar motor comprises a moving iron structure using a permanent magnet array as a stator or a permanent magnet array as a moving iron structure, wherein the permanent magnet array adopts three-dimensional a permanent magnet array consisting of an S-type regular quadrangular large permanent magnet having an S-pole on the upper bottom surface, an N-type regular quadrangular large permanent magnet 2 having an upper surface and an N-pole, and a small permanent magnet 3, the S-type And the N-type positive quadrangular large permanent magnets are magnetized along the center line of the respective upper and lower bottom surfaces, and the small permanent magnet 3 is obtained by symmetrically cutting a quadrangular pyramid at the upper and lower bottom surfaces by a straight triangular prism whose bottom surface is an isosceles triangle.
  • the two sides of the small permanent magnet 3 are made into an isosceles trapezoid with one side of the N-type regular quadrangular large permanent magnet, and the magnetization direction is parallel to the bottom direction of the isosceles triangle of the bottom surface, and the S-type regular quadrangular large permanent magnets 1 and N
  • the positive quadrilateral large permanent magnet 2 has a lower bottom surface facing downward and is staggered in a plane array along the X direction and the Y direction; the small permanent magnet 3 is arranged between two adjacent S-type and N-type large permanent magnets, so that the small permanent magnet 3 sides are respectively associated with N-type and S-type positive four A side surface of the permanent magnet coincides NTU, and the magnetization direction of the small permanent magnet 3 is composed of N-type regular quadrangular NTU N pole of the permanent magnet 2 is directed to the adjacent S-shaped regular quadrangular NTU S pole of the permanent magnet 1.
  • the technical feature of the present invention is also that, for a moving iron structure using a permanent magnet array as a mover, the stator 6 is composed of a plurality of mutually perpendicular coil arrays, each coil array being linearly composed of a plurality of rectangular coreless coils 4 Arranged; for a moving coil type structure using a permanent magnet array as a stator, the mover is composed of a plurality of coil arrays, and adjacent coil arrays are perpendicular to each other, and each coil array is composed of a plurality of rectangular coreless coils 4 linearly arranged.
  • the technical feature of the present invention is also that the arrangement direction of the coil array is 45° with the arrangement direction of the permanent magnet array.
  • the planar motor adopting the three-dimensional permanent magnet array according to the present invention has the following advantages and outstanding effects: a three-dimensional permanent magnet array is adopted, which further improves the ratio of the field strength of the permanent air array working air gap to its own mass, thereby driving current The constant thrust and suspension capability of the planar motor is improved under constant conditions, which greatly improves the acceleration and load capacity of the planar motor.
  • Figure 1 shows several permanent magnet arrays disclosed in the prior art.
  • FIG. 2 is a three-dimensional view of a planar motor employing a three-dimensional permanent magnet array in accordance with the present invention.
  • FIG. 3 is a three-dimensional view of a positive quadrilateral large permanent magnet of a planar motor using a three-dimensional permanent magnet array according to the present invention.
  • FIG. 4 is a three-dimensional view of a small permanent magnet of a planar motor using a three-dimensional permanent magnet array according to the present invention.
  • FIG. 5 is an assembled three-dimensional view of two positive quadrangular large permanent magnets and one small permanent magnet of a planar motor using a three-dimensional permanent magnet array according to the present invention.
  • Fig. 6 is a view showing the relationship of the vertical component of the air gap magnetic induction intensity of the permanent magnet array according to the present invention with respect to the XY coordinates.
  • Figure 2 is a three-dimensional view of a planar motor using a three-dimensional permanent magnet array according to the present invention.
  • the planar motor using the three-dimensional permanent magnet array of the present invention includes a mover 5 and a stator 4, and the mover adopts a three-dimensional permanent magnet array.
  • the permanent magnet array adopts a three-dimensional permanent magnet array, which is composed of an S-type regular quadrangular large permanent magnet with an S-pole on the upper bottom surface, an N-type regular quadrangular large permanent magnet 2 with an upper surface and an N-pole, and a small permanent magnet.
  • the S-type and N-type regular quadrangular large permanent magnets are magnetized along the center line of the respective upper and lower bottom surfaces, and the small permanent magnet 3 is symmetrical at the upper and lower bottom surfaces by a straight triangular prism whose bottom surface is an isosceles triangle A quadrangular pyramid is cut off, so that the two sides of the small permanent magnet 3 become an isosceles trapezoid with one side of the N-type regular quadrangular large permanent magnet, and the magnetization direction is parallel to the bottom direction of the isosceles triangle of the bottom surface, S-type positive four
  • the ribbed large permanent magnet 1 and the N-type regular quadrangular large permanent magnet 2 have a lower bottom surface facing downward, and are staggered in a plane array along the X direction and the Y direction; the small permanent magnet 3 is arranged in two adjacent S-type and N-type large permanent magnets.
  • Fig. 5 is a three-dimensional view showing the arrangement of small permanent magnets between S-type regular quadrangular large permanent magnets and N-type regular quadrangular large permanent magnets.
  • the "S" and “N” in the figure indicate that the upper and lower faces of the large square permanent magnet are S pole and N pole, respectively.
  • the arrows indicate the direction of magnetization of the small permanent magnets.
  • the two sides of the small permanent magnet respectively coincide with the sides of the two positive quadrangular large permanent magnets.
  • the planar motor adopts a magnetic floating manner to achieve a constraint on non-movement degrees of freedom;
  • the stator 6 is composed of a plurality of mutually perpendicular coil arrays, each of which is linearly arranged by a plurality of rectangular coreless coils 4
  • the alignment direction of the coil array is 45° with the arrangement direction of the permanent magnet array.
  • FIG. 6 is a schematic diagram showing the relationship of the vertical component Bz of the air gap magnetic induction intensity of the planar permanent magnet array shown in FIG. 2 with respect to the XY coordinates by finite element simulation analysis.
  • is the polar distance The distance between the centers of the upper and lower surfaces of the two adjacent positive quadrangular permanent magnets in 2 The distance between two adjacent peaks of the air gap magnetic induction of the 2 mid-plane permanent magnet array.
  • the three-dimensional permanent magnet array has the same magnetic induction intensity of the working air gap than the existing several permanent magnet arrays under the same mass, thus improving the thrust of the planar motor under the condition of constant driving current. And the ability to suspend, greatly improve the acceleration and load capacity of the planar motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

La présente invention concerne un moteur planaire comportant un réseau d’aimants permanents en trois dimensions comprenant un translateur (5) et un stator (6). Le translateur (5) comporte le réseau d’aimants permanents en trois dimensions. Le réseau d’aimants permanents en trois dimensions est constitué de grands aimants permanents de type S et de type N (1, 2) les deux en forme tronconique de pyramides carrées et de petits aimants permanent (3), et les surfaces de base supérieures de chacun des grands aimants permanents de type S et de type N (1, 2) sont un pôle sud et un pôle nord respectivement. Chacun des aimants permanents de type S et de type N (1, 2) sont tous les deux magnétisés dans la direction de lignes formées par des centres de connexion des surfaces de base supérieures et inférieures respectives. Chaque petit aimant permanent (3) est obtenu par la découpe symétrique d’une pyramide rectangulaire à partir de la surface de base supérieure et la surface de base inférieure d’un prisme triangulaire linéaire dont la surface de base est sous la forme d’un triangle isocèle. La direction de magnétisation est parallèle à la direction du côté inférieur du triangle isocèle de la surface de base. Les surfaces de base inférieures de chacun des grands aimants permanents de type S et de type N (1, 2) sont orientées vers le bas. Chacun des grands aimants permanents de type S et de type N est disposé en quinconce selon la direction X et la direction Y pour former un réseau planaire. Chaque petit aimant permanent (3) est disposé entre deux grands aimants permanents, et la direction de magnétisation de chaque petit aimant permanent (3) est orientée vers un pôle sud du grand aimant permanent de type S adjacent (1) depuis le pôle nord du grand aimant permanent de type N (2). Le translateur (5) peut générer un rapport supérieur d’intensité de champ à la masse dans l’entrefer, améliorant ainsi la poussée et l’accélération du moteur planaire.
PCT/CN2010/075304 2009-07-21 2010-07-20 Moteur planaire comportant un réseau d’aimants permanents en trois dimensions WO2011009397A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100888939A CN101610054B (zh) 2009-07-21 2009-07-21 采用三维永磁阵列的平面电机
CN200910088893.9 2009-07-21

Publications (1)

Publication Number Publication Date
WO2011009397A1 true WO2011009397A1 (fr) 2011-01-27

Family

ID=41483678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075304 WO2011009397A1 (fr) 2009-07-21 2010-07-20 Moteur planaire comportant un réseau d’aimants permanents en trois dimensions

Country Status (2)

Country Link
CN (1) CN101610054B (fr)
WO (1) WO2011009397A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502646A (ja) * 2013-12-31 2017-01-19 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド 磁石アレイ及び磁気浮上平面モータ
CN111416496A (zh) * 2020-04-26 2020-07-14 山东理工大学 一种基于复合式Halbach阵列的动圈式电磁直线作动器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610054B (zh) * 2009-07-21 2011-02-16 清华大学 采用三维永磁阵列的平面电机
CN101750187B (zh) * 2010-01-19 2011-04-06 清华大学 一种基于磁钢阵列的运动平台二维定位方法
CN102097982B (zh) * 2011-02-24 2013-06-05 华中科技大学 一种永磁同步磁悬浮平面电机
CN103208867B (zh) * 2012-01-17 2015-06-17 上海微电子装备有限公司 磁铁单元、磁铁阵列、磁浮平面电机及应用该磁浮平面电机的光刻装置
CN103795297B (zh) * 2012-11-02 2017-08-29 上海微电子装备(集团)股份有限公司 一种磁浮平面电机
CN103973172B (zh) * 2013-01-25 2016-09-28 上海微电子装备有限公司 一种动线圈式磁浮平面电机磁对准系统及其对准方法
CN103543613B (zh) * 2013-09-25 2015-12-23 清华大学 一种动铁式无线缆的六自由度磁浮运动平台
CN104269947B (zh) * 2014-09-24 2016-11-30 江苏大学 一种磁悬浮永磁平面电机磁钢阵列参数优化的方法
CN104218770B (zh) * 2014-09-28 2016-12-07 浙江理工大学 多相嵌套绕组式永磁同步平面电机
CN104218771A (zh) * 2014-09-28 2014-12-17 浙江理工大学 磁悬浮多自由度永磁同步平面电机
CN105141106B (zh) * 2015-09-15 2018-01-16 清华大学 一种三自由度的运动工作台
CN105425552A (zh) * 2016-01-14 2016-03-23 哈尔滨工业大学 基于平面光栅测量动磁钢气磁结合气浮双工件台矢量圆弧换台方法及装置
CN105487346A (zh) * 2016-01-14 2016-04-13 哈尔滨工业大学 基于电磁阻尼的动磁钢磁浮双工件台矢量圆弧换台方法及装置
CN105425548A (zh) * 2016-01-14 2016-03-23 哈尔滨工业大学 基于人字形线圈排布的动线圈磁浮无线微动台矢量圆弧换台方法及装置
CN105487347A (zh) * 2016-01-14 2016-04-13 哈尔滨工业大学 基于弹簧阻尼的动磁钢磁浮双工件台矢量圆弧换台方法及装置
CN107819391B (zh) * 2017-10-30 2023-07-07 中国石油大学(华东) 一种永磁阵列及平面电机
CN114747125A (zh) * 2019-11-27 2022-07-12 B和R工业自动化有限公司 运输装置
CN112713685B (zh) * 2021-01-11 2022-07-12 光华临港工程应用技术研发(上海)有限公司 一种轮毂电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285097B1 (en) * 1999-05-11 2001-09-04 Nikon Corporation Planar electric motor and positioning device having transverse magnets
CN1758512A (zh) * 2005-10-27 2006-04-12 西安交通大学 动磁型同步表面电机
CN101214617A (zh) * 2007-12-28 2008-07-09 清华大学 动圈式大范围移动磁浮六自由度工作台
CN101610054A (zh) * 2009-07-21 2009-12-23 清华大学 采用三维永磁阵列的平面电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285097B1 (en) * 1999-05-11 2001-09-04 Nikon Corporation Planar electric motor and positioning device having transverse magnets
CN1758512A (zh) * 2005-10-27 2006-04-12 西安交通大学 动磁型同步表面电机
CN101214617A (zh) * 2007-12-28 2008-07-09 清华大学 动圈式大范围移动磁浮六自由度工作台
CN101610054A (zh) * 2009-07-21 2009-12-23 清华大学 采用三维永磁阵列的平面电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502646A (ja) * 2013-12-31 2017-01-19 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド 磁石アレイ及び磁気浮上平面モータ
KR101810202B1 (ko) 2013-12-31 2017-12-18 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 자석 배열 및 자기 서스팬션 평면 모터
CN111416496A (zh) * 2020-04-26 2020-07-14 山东理工大学 一种基于复合式Halbach阵列的动圈式电磁直线作动器
CN111416496B (zh) * 2020-04-26 2024-04-05 山东理工大学 一种基于复合式Halbach阵列的动圈式电磁直线作动器

Also Published As

Publication number Publication date
CN101610054B (zh) 2011-02-16
CN101610054A (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2011009397A1 (fr) Moteur planaire comportant un réseau d’aimants permanents en trois dimensions
CN101214617B (zh) 动圈式大范围移动磁浮六自由度工作台
CN102097982B (zh) 一种永磁同步磁悬浮平面电机
CN102723842B (zh) 多自由度长行程磁悬浮工作台
US9634540B2 (en) Magnetic suspension planar motor with structure of superconductor excitation
CN103277409B (zh) 一种电磁铁分布的五自由度磁浮导轨
CN100521468C (zh) 永磁同步平面电动机
CN110429868B (zh) 低刚度的磁悬浮重力补偿器、驱动装置及六自由度微动台
CN101741289B (zh) 短行程多自由度磁悬浮平面电机
WO2011009398A1 (fr) Moteur planaire comportant une bobine de type à rainures
CN101694560A (zh) 采用气浮平面电机的硅片台双台交换系统
WO2013078860A1 (fr) Moteur plan synchrone à aimants permanents à enroulements concentriques
CN101710779A (zh) 集成绕组结构长行程同步平面电机
CN101286368A (zh) 多磁足驱动式大范围磁浮平面工作台
CN102185443B (zh) 有限行程高动态平面电机
CN101752983A (zh) 长行程高精度多自由度平面电机
CN102739122B (zh) 双边初级结构磁悬浮平面电机
CN101800460B (zh) 集成绕组结构短行程直流平面电机
CN102223052B (zh) 多自由度短行程平面电机
CN104218770B (zh) 多相嵌套绕组式永磁同步平面电机
CN204205908U (zh) 一种多相嵌套绕组式永磁同步平面电机
CN100552827C (zh) 大范围移动磁浮平面工作台
CN202652117U (zh) 一种局部磁场可调式微驱动器
CN102951607B (zh) 磁悬浮式定位平台
CN112928891B (zh) 一种六自由度磁浮台装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10801956

Country of ref document: EP

Kind code of ref document: A1