WO2011007670A1 - 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム - Google Patents

情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム Download PDF

Info

Publication number
WO2011007670A1
WO2011007670A1 PCT/JP2010/061158 JP2010061158W WO2011007670A1 WO 2011007670 A1 WO2011007670 A1 WO 2011007670A1 JP 2010061158 W JP2010061158 W JP 2010061158W WO 2011007670 A1 WO2011007670 A1 WO 2011007670A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase error
recording
information
groove
Prior art date
Application number
PCT/JP2010/061158
Other languages
English (en)
French (fr)
Inventor
祥行 梶原
昭栄 小林
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2010800307931A priority Critical patent/CN102473427A/zh
Priority to US13/382,322 priority patent/US8570847B2/en
Publication of WO2011007670A1 publication Critical patent/WO2011007670A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/0021Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving encryption or decryption of contents recorded on or reproduced from a record carrier
    • G11B20/00217Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving encryption or decryption of contents recorded on or reproduced from a record carrier the cryptographic key used for encryption and/or decryption of contents recorded on or reproduced from the record carrier being read from a specific source
    • G11B20/00253Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving encryption or decryption of contents recorded on or reproduced from a record carrier the cryptographic key used for encryption and/or decryption of contents recorded on or reproduced from the record carrier being read from a specific source wherein the key is stored on the record carrier
    • G11B20/00405Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving encryption or decryption of contents recorded on or reproduced from a record carrier the cryptographic key used for encryption and/or decryption of contents recorded on or reproduced from the record carrier being read from a specific source wherein the key is stored on the record carrier the key being stored by varying characteristics of the recording track, e.g. by altering the track pitch or by modulating the wobble track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00572Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium
    • G11B20/00586Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium said format change concerning the physical format of the recording medium
    • G11B20/00601Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving measures which change the format of the recording medium said format change concerning the physical format of the recording medium wherein properties of tracks are altered, e.g., by changing the wobble pattern or the track pitch, or by adding interruptions or eccentricity
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Definitions

  • the present invention relates to an information recording apparatus, an information reproducing apparatus, a recording medium manufacturing apparatus, an information recording medium, a method, and a program. More specifically, an information recording apparatus, an information reproducing apparatus, and a recording medium manufacturing for recording or reproducing additional information such as a content key on a groove signal recorded as additional information such as a recording condition of a disc (information recording medium)
  • the present invention relates to an apparatus, an information recording medium, a method, and a program.
  • meandering that is, a wobbled groove
  • additional information such as address information and recording conditions for a data recording track.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-213781 discloses a configuration in which key information is recorded in a groove and used.
  • CPS data such as key information that is application data of the content protection system (CPS) is recorded on a disk and used are as follows. 1. The reliability of the CPS data playback signal is high. 2. It is difficult to copy CPS data to other media. 3. The manufacturing cost of the CPS data storage medium and the recording / reproducing drive must not be significantly increased. For example, there are such requirements.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-213781
  • Japanese Patent Laid-Open No. 2004-213781 discloses a configuration in which key information is recorded in a groove and used. This prior art is also devised to satisfy the above requirements.
  • secret information decoding technology is also progressing, and a recording configuration with even higher secrecy is required.
  • the present invention has been made in view of, for example, the above-described problems, and increases the difficulty of decoding in a configuration in which additional information such as an encryption key for content recorded on a disk is superimposed on a groove signal for recording or reproduction.
  • Another object of the present invention is to provide an information recording apparatus, an information reproducing apparatus, a recording medium manufacturing apparatus, an information recording medium, a method, and a program that enable accurate data reading.
  • the first aspect of the present invention is: A recording signal generator for generating a groove signal for recording additional information; A recording unit that records the recording signal generated by the recording signal generation unit on a master disk; The recording signal generator is Determine a phase error setting mode according to each bit value constituting the additional information, The recording medium manufacturing apparatus generates a recording signal in which a phase error corresponding to each bit value constituting the additional information is set for each predetermined section of the recording signal.
  • the recording signal generation unit sets a direction of a phase error to be set in the groove signal depending on whether the bit value of the additional information is 0 or 1 Or a recording signal in which the combination of directions is set in a different manner.
  • the additional information is information including an encryption key applied to an encryption process or a decryption process of content recorded on the disc.
  • the second aspect of the present invention provides A playback unit for reading the groove signal recorded on the disc; A signal analysis unit for analyzing a reproduction signal of the reproduction unit; The signal analysis unit In the information reproducing apparatus, the phase error direction included in the groove signal is determined in units of a predetermined signal section, and the constituent bit value of the additional information included in the groove signal is determined based on the determination result.
  • the signal analysis unit calculates a phase error index value using detected values of sampling points before and after the zero cross point of the groove signal, and the phase error index value Is performed to determine the setting direction of the phase error in the predetermined signal section by comparing the result obtained by integrating the signal in units of the predetermined signal section with a preset threshold value.
  • the information reproducing apparatus further applies an encryption key included in the additional information analyzed by the signal analyzing unit to record the encrypted content recorded on the disc.
  • a decryption processing unit for performing the decryption process.
  • the third aspect of the present invention provides A playback unit for reading the groove signal recorded on the disc; Signal analysis for discriminating the phase error direction included in the groove signal read from the disc in the reproducing unit in units of a predetermined signal section and analyzing the encryption key superimposed and recorded on the groove signal by the bit value judgment processing based on the discrimination result And An encryption processing unit that performs encryption processing of content by applying the encryption key analyzed by the signal analysis unit;
  • the information recording apparatus includes a recording unit that records the encrypted content generated by the encryption processing unit on the disc.
  • the signal analysis unit calculates a phase error index value using detected values of sampling points before and after the zero cross point of the groove signal, and the phase error index value Is performed to determine the setting direction of the phase error in the predetermined signal section by comparing the result obtained by integrating the signal in units of the predetermined signal section with a preset threshold value.
  • the fourth aspect of the present invention provides An information recording medium that records a groove signal used for recording additional information,
  • the groove signal is recorded as an additional information superimposed signal in which a phase error of a different aspect according to a configuration bit value of the additional information is set in a predetermined signal section unit,
  • the information recording medium enables reading of the additional information based on detection of the phase error setting mode in the reproducing apparatus.
  • the groove signal has a phase error direction or direction set in the groove signal according to a case where the bit value of the additional information is 0 or 1. It is the signal which set the combination to the different aspect.
  • the additional information is information including an encryption key applied to an encryption process or a decryption process of content recorded on the disc.
  • the fifth aspect of the present invention provides An information recording medium manufacturing method executed in a recording medium manufacturing apparatus, A recording signal generating unit that generates a groove signal for recording additional information; and The recording unit has a recording step of recording the recording signal generated in the recording signal generating step on a master disk, The recording signal generation step includes Determine a phase error setting mode according to each bit value constituting the additional information, The information recording medium manufacturing method includes a step of generating a recording signal in which a phase error corresponding to each bit value constituting the additional information is set for each predetermined section of the recording signal.
  • the sixth aspect of the present invention provides An information reproduction method executed in the information reproduction apparatus, A playback unit for reading a groove signal recorded on the disc;
  • the signal analysis unit has a signal analysis step for analyzing the reproduction signal in the reproduction step,
  • the signal analysis step includes In the information reproducing method, the phase error direction included in the groove signal is determined in units of a predetermined signal section, and the constituent bit value of the additional information included in the groove signal is determined based on the determination result.
  • the seventh aspect of the present invention provides An information recording method executed in an information recording device, A playback unit for reading a groove signal recorded on the disc;
  • the signal analysis unit discriminates the phase error direction included in the groove signal read from the disc in the reproduction step in units of a predetermined signal section, and the encryption key recorded and superimposed on the groove signal by the bit value determination process based on the discrimination result
  • a signal analysis step for analyzing the configuration bit information
  • An encryption processing step wherein the encryption processing unit executes the content encryption processing by applying the encryption key analyzed in the signal analysis step;
  • the recording unit includes a recording step of recording the encrypted content generated in the encryption processing step on the disc.
  • the eighth aspect of the present invention provides A program for executing information reproduction processing in the information reproducing apparatus; A reproduction step for causing the reproduction unit to read the groove signal recorded on the disc; A signal analysis step for causing the signal analysis unit to analyze the reproduction signal in the reproduction step;
  • the signal analysis step includes The program includes a step of determining a phase error direction included in the groove signal in units of a predetermined signal section and determining a constituent bit value of additional information included in the groove signal based on a determination result.
  • the ninth aspect of the present invention provides A program for executing an information recording process in an information recording device, A reproduction step for causing the reproduction unit to read the groove signal recorded on the disc; An encryption key that is recorded in a superimposed manner on the groove signal by a bit value determination process based on a determination result based on a phase difference direction included in the groove signal read from the disk in the reproduction step in a predetermined signal section unit.
  • a signal analysis step for analyzing the configuration bit information;
  • An encryption processing step for causing the encryption processing unit to execute content encryption processing by applying the encryption key analyzed in the signal analysis step;
  • the program includes a recording step of causing the recording unit to record the encrypted content generated in the encryption processing step on the disc.
  • the program of the present invention is a program that can be provided by, for example, a storage medium or a communication medium provided in a computer-readable format to an image processing apparatus or a computer system that can execute various program codes.
  • a storage medium or a communication medium provided in a computer-readable format to an image processing apparatus or a computer system that can execute various program codes.
  • system is a logical set configuration of a plurality of devices, and is not limited to one in which the devices of each configuration are in the same casing.
  • superimposed recording that realizes both reading difficulty and high-precision reading can be performed in a groove signal in which highly confidential additional information such as an encryption key is recorded on a disc. It becomes possible.
  • additional information is recorded, a groove signal in which a phase error corresponding to the bit value is set is recorded, and when the additional information is read, the phase error of the groove signal in a predetermined section is integrated to obtain a phase error of the groove signal in each section. It was set as the structure which discriminates a direction. By such processing, reading difficulty can be enhanced, and additional information can be recorded / reproduced to realize highly accurate reading.
  • FIG. 1 is a block diagram showing a configuration of a recording medium manufacturing apparatus according to an embodiment of the present invention.
  • the recording medium manufacturing apparatus 100 manufactures a master disk 130 that is a disk master. Thereafter, the disk 150 which is an information recording medium provided to the user by the stamper process of the master disk 130 is mass-produced.
  • the groove signal is constituted by meandering or wobbled grooves.
  • the recording medium manufacturing apparatus 100 inputs additional information 120 such as recording conditions, for example, additional information 120 such as an encryption key, and generates a recording signal.
  • additional information 120 such as an encryption key
  • the groove signal is recorded on the master disk 130 in accordance with the generated recording signal.
  • the additional information 120 is data including encryption key constituent bits such as 64 bits and 128 bits. This additional information 120 is input to the recording signal generator 102.
  • the recording signal generation unit 102 inputs additional information 120 such as recording conditions and generates a recording signal (groove signal) to be recorded on the master disk 130.
  • the recording signal generation unit 102 generates a wobbling groove signal indicating additional information such as a recording condition by FM (Frequency Modulation) modulation processing. Additional information such as recording conditions is recorded by setting a phase error for the groove signal (FM modulation signal). This process will be described in detail later.
  • the recording signal generated by the recording signal generation unit 102 is output to the recording unit 103.
  • the recording unit 103 forms a groove corresponding to a recording signal on the master disk 130 by laser output, for example.
  • the groove signal recorded on the master disk 130 is a spiral groove along the data track where the content is recorded.
  • additional information such as recording conditions, for example, a groove signal on which an encryption key is superimposed.
  • the disc 150 may be a disc on which content such as a movie is recorded, or a disc on which no content is recorded.
  • a disc on which no content is recorded is a disc on which data can be written by the user.
  • a user who has purchased such a disc 150 can record content such as a movie on the disc 150 at a later date.
  • a user who has purchased a disc on which no content is recorded connects to the content providing server via a network using a recording / playback device such as the user's PC.
  • the server provides the user device with encrypted content that can be decrypted using the encryption key recorded on the disk 150.
  • the user device records the content downloaded from the server on the disc 150. Thereafter, in the content reproduction process, the encryption key is read from the groove signal recorded on the disk 150, and the decryption process of the encrypted content recorded on the disk 150 is executed using the read encryption key to perform the content reproduction process. Can do.
  • the encrypted content and the encryption key applied to the decryption are stored together on one disk. Therefore, for example, even if the encrypted content is output and copied to another medium, the encryption key cannot be used, and unauthorized use of the content can be effectively prevented.
  • the recording signal generation unit 102 generates a recording signal including an encryption key as additional information such as recording conditions.
  • the recording signal generation unit 102 includes a modulation signal generation unit 122 and a phase error setting signal generation unit 123 as shown in FIG.
  • the recording signal generation unit 102 performs a positive phase error with respect to the groove signal, and when the additional information component bit is [0], the groove signal To generate a phase error setting signal in which a phase error in the negative direction is associated.
  • the modulation signal generation unit 122 generates a modulation signal that has been subjected to FM modulation processing according to additional information such as a recording condition.
  • the phase error setting signal generation unit 123 generates a recording signal in which the phase error is set in the modulation signal according to the phase error information corresponding to the additional information bit with respect to the modulation signal generated by the modulation signal generation unit 122.
  • FIG. 3 shows an example of a groove signal recorded on the master disk or the disk 150.
  • the groove signal is a signal obtained by reproducing a groove set in a spiral shape with respect to the disk 150.
  • 2 (1), (2a), and (2b) show some details. That is, an example of the groove signal of the AB portion of the disk 150 shown in FIG. 2 is shown.
  • FIG. 3 shows the following signal examples.
  • (1), (2a), (2b) correspond to the plane of the disc, and the right direction is the signal direction of the track.
  • the groove signal without the phase error setting shown in FIG. 3A is indicated by dotted lines in (2a) and (2b).
  • the solid lines shown in FIGS. 3 (2a) and (2b) are groove signals having a phase error, and the dotted lines are groove signals consisting only of additional information such as original recording conditions that do not have a phase error.
  • the + direction phase error setting groove signal indicated by the solid line is slightly shifted in the track traveling direction (+ direction) as compared to the groove signal indicated by the dotted line (no phase error). This deviation is a + direction phase error.
  • the -direction phase error setting groove signal indicated by the solid line is slightly shifted in the track opposite direction ( ⁇ direction) as compared with the groove signal indicated by the dotted line (no phase error). Yes. This deviation is a negative direction phase error.
  • the groove signal recorded on the master disk and the disk has a setting in which different types of groove signals in FIGS. 3 (1), (2a), and (2b) are mixed.
  • the constituent bits of the additional information such as key information are recorded by the phase error.
  • the reproducing apparatus detects a phase error from the groove signal and analyzes the bit value of the additional information based on the detected phase error. A specific example of correspondence between phase error setting and bit data will be described with reference to FIG.
  • FIG. 4 is a diagram showing an example of a recording process and a reproducing process of the groove signal.
  • An example in which a groove signal is recorded with such settings is shown.
  • the groove signal in which the phase error in the + direction (track traveling direction) is set is recorded for a predetermined period.
  • the component bit of the additional information is 1, a groove signal in which a phase error in the negative direction (track opposite direction) is set is recorded for a predetermined period.
  • phase error to be set is negligible. For example, a phase error of about 1 to 5% of the period T of the sampling signal in the reproduction process is set. Therefore, it is difficult to determine whether the set phase error is in the positive direction or the negative direction with one reading.
  • the groove signal having a phase error in the + direction is set and recorded in a certain section.
  • the playback device executes reading of the groove signal at a predetermined sampling time (T) interval, and accumulates (integrates) the value of the signal read at each sampling time.
  • T sampling time
  • the direction (+, ⁇ ) of the phase error of the groove signal read in a certain section is determined.
  • both the recording device and the reproducing device have various control timings set by the clock set in the device, and sections such as t1 to t2 shown in FIG. 4 can be discriminated based on a predetermined number of clocks. .
  • the playback device analyzes the phase error in units of a fixed interval such as t1 to t2 and t2 to t3 shown in FIG. By this analysis, it is possible to generate different phase error accumulation signals (integrated signals) corresponding to the three patterns.
  • phase error accumulation processing that is, detection signal integration processing, it is possible to detect without error whether the set phase error is in the + direction or the-direction.
  • the playback device performs the following processing.
  • FIG. 5 is a block diagram showing a configuration example of an information reproducing apparatus according to an embodiment of the present invention.
  • the information reproducing apparatus 200 includes a reproducing unit 201, a signal analyzing unit 202, and a decoding processing unit 204.
  • the playback unit 201 reads a signal from the disk 150.
  • the disk 150 is a disk on which a groove signal on which additional information such as the encryption key described above is superimposed is recorded. Further, encrypted content encrypted with the encryption key is recorded.
  • the reproduction unit 201 reads the groove signal and outputs it to the signal analysis unit 202.
  • Groove signal without phase error setting (2a) + Directional phase error setting groove signal (2b)-Directional phase error setting groove signal This is a groove signal in which these three patterns of signals are mixed.
  • the signal analysis unit 202 performs demodulation processing and analysis of the groove signal input from the reproduction unit 201, detects a phase error, and configures additional information constituent bits recorded in the groove signal based on the detected phase error Detect value.
  • the additional information 120 is obtained based on the configuration bit information of the additional information detected by the signal analysis unit 202.
  • the additional information 120 is an encryption key and is applied to the decryption process of the encrypted content recorded on the disc 150.
  • other additional information included in the groove signal for example, address information 125 is obtained from the result demodulated by the signal analysis unit 202.
  • the phase error set in the groove signal is a slight phase error as described above, and does not affect the acquired address information to the extent that an error occurs.
  • the process of obtaining other additional information included in the groove signal is performed as a general groove signal reading process. For example, FM demodulation processing is performed on the push-pull signal obtained as a read signal of the groove signal, band-pass filter processing and binarization processing are performed on the demodulation processing result, and processing such as ECC decoding and deinterleaving is performed as necessary.
  • other additional information included in the groove signal for example, address information 125 and basic information (disc type, write strategy parameter, etc.) of the disc are acquired.
  • the decryption processing unit 204 When reading the content recorded on the data track, for example, the address information in the data area is applied and a pickup is set at a predetermined track position to read the encrypted content.
  • the decryption processing unit 204 performs decryption processing of the encrypted content by applying the additional information (encryption key) 120 acquired from the groove signal, and performs content reproduction.
  • the signal analysis unit 202 includes a demodulation unit 221, a phase error detection unit 222, and a bit value determination unit 223.
  • the demodulating unit 221 inputs a groove signal recorded on the disc as an FM modulated signal from the reproducing unit 201 and executes demodulation processing.
  • the phase error detection unit 222 reads the groove signal at a predetermined sampling time (T) interval, and accumulates the value of the signal read at each sampling time ( Integration).
  • T sampling time
  • Integration the integration process is performed, for example, as an integration process for a push-pull signal obtained from a groove signal read signal.
  • the direction (+, ⁇ ) of the phase error of the groove signal read in a certain section is determined.
  • phase error detection unit 222 of the information reproducing apparatus determines which of the above three patterns is the error setting groove signal in units of a fixed interval such as t1 to t2 and t2 to t3 shown in FIG.
  • phase error detection process executed by the phase error detection unit 222 will be described with reference to FIG.
  • FIG. 7 (1) is an example of a groove signal similar to that described above with reference to FIG. 3 (2a).
  • the groove signal in which the phase error is set in the + direction (track traveling direction) is indicated by a solid line. Yes.
  • the dotted line shows the groove signal without phase error as a reference.
  • the reading of the groove signal by the playback device is executed at a sampling interval of a certain period.
  • a plurality of upward arrows shown in FIG. 7A indicate the sampling timing. From left to right, the groove signal is read at intervals T.
  • the sampling data before and after the zero cross point (zero cross point) of the groove signal is used to detect the phase error.
  • the zero cross point is a point where the groove signal line crosses the center position (0) as shown in FIG.
  • FIG. 7 (2) is an enlarged view in which the vicinity of the sampling times tp to tq shown in FIG. 7 (1) is enlarged.
  • a solid line indicates a groove signal having a phase error in the + direction, and a dotted line indicates a groove signal having no phase error as reference data.
  • Two sampling data of sampling times tp and tq on both sides of the zero cross point shown in FIG. 7 (2) are used for phase error detection.
  • Sampling time tp measured value X 1
  • Sampling time tq measured value X 2
  • the measurement value is acquired as a relative potential (voltage) value corresponding to the position of the groove.
  • the measurement is performed in a range where the relative potential value of ⁇ 64 to +64 is obtained from the end of the groove signal to the end.
  • the phase error index value ( ⁇ ) is calculated by applying the equation shown in FIG. 7 (3), for example. That is, the phase error index value ( ⁇ ) is calculated according to the following equation (Equation 1).
  • ((Y k ) (X k ⁇ 1 )) ⁇ ((Y k ⁇ 1 ) (X k )) (Equation 1)
  • X k-1 is the measured value immediately before the zero crossing
  • X k is the measured value immediately after the zero crossing Y k-1
  • Y k (+ 1)
  • X ⁇ 0, Y (-1) It is.
  • the above formula (formula 1) is a formula for calculating the phase error index value ( ⁇ ) corresponding to one zero cross point.
  • the phase error set in the groove signal is a slight error (for example, about several percent of the sampling period T). Therefore, it is difficult to determine whether the phase error is in the + direction or the ⁇ direction with only one data, and there is a high possibility that an error will occur when determining the bit value.
  • the recording apparatus can perform a groove signal in which errors in the same direction are set in consecutive groove signal sections (for example, t1 to t2 shown in FIG. 4) for a certain period. Record.
  • the reproducing apparatus discriminates the setting direction of the phase error in the interval by integration processing that sequentially adds the errors in the constant groove signal interval.
  • the reproducing apparatus integrates the phase error index value ( ⁇ ) represented by the above formula (formula 1) in a continuous groove signal section (for example, t1 to t2 shown in FIG. 4) of a certain period, and FIG.
  • Th1 ⁇ ⁇ Th2 ⁇ No phase error ⁇ ⁇ Th1 ⁇ + direction phase error ⁇ ⁇ Th2 ⁇ ⁇ direction phase error exists (Equation 2)
  • the presence / absence of the phase error and the direction are determined according to the above-described determination formula (Formula 2).
  • FIG. 8 is a diagram for explaining a specific example of a comparison process between the integration result ( ⁇ ) of the phase error index value ( ⁇ ) and the threshold value.
  • FIG. 8 shows an example of the following three patterns.
  • An example of comparison processing between the integration result ( ⁇ ) and the threshold values (Th1, Th2) is shown.
  • FIG. 8 (1) shows an example in which the groove signal in the signal interval t1 to t2 is a groove signal for which no phase error is set.
  • the phase error index value ( ⁇ ) at each zero cross point is generated in a substantially balanced manner in various directions without causing any bias.
  • each of the three patterns of groove signals can be determined by comparing the integration result ( ⁇ ) of the phase error index value ( ⁇ ) with the threshold value. That is, Th1 ⁇ ⁇ Th2 ⁇ No phase error ⁇ ⁇ Th1 ⁇ + direction phase error exists ⁇ > Th2 ⁇ ⁇ direction phase error exists According to the above determination formula, the presence / absence of phase error and the direction can be determined.
  • FIG. 7 illustrates an example of the calculation process of the phase error index value ( ⁇ ) in the case where the zero cross point of the + direction phase error setting groove signal is a downward-sloping line.
  • the zero cross point occurs for two types of lines, a right-down line and a right-up line.
  • the right-down line and the right-up line shown in the drawing correspond to different shake directions from the track direction on the disk plane, respectively.
  • phase error index value ( ⁇ ) in the + direction phase error setting groove signal and the ⁇ direction phase error setting groove signal will be described for each of these patterns.
  • FIG. 9 is a diagram illustrating a specific example of the calculation process of the phase error index value ( ⁇ ) for the + direction phase error setting groove signal.
  • FIG. 9A1 shows a groove signal in which a phase error is set in the + direction (track traveling direction) by a solid line.
  • the dotted line shows the groove signal without phase error as a reference.
  • FIGS. 9A2 and 9A3 are enlarged views of two patterns in the vicinity of the zero cross point of the groove signal.
  • A2 Processing example in the vicinity of the lower right line
  • A3 Example of processing in the vicinity of a line rising to the right, These are shown.
  • a dotted line is an example of a groove signal having no phase error shown as reference data.
  • FIG. 9 (a2) shows an example of measured values at sampling points tp and tq of a groove signal (solid line) in which a phase error in the + direction is set and a groove signal (dotted line) without a phase error.
  • phase error index value ( ⁇ ) is calculated by applying the formula (formula 1) described above.
  • a value less than 0 is calculated. This corresponds to FIG. 8 (2a).
  • FIG. 9 (a3) shows an example in which the groove signal line near the zero cross is rising to the right.
  • FIG. 9 (a3) also shows an example of measured values at the sampling points tr and ts of the groove signal (solid line) in which the phase error in the + direction is set and the groove signal (dotted line) without the phase error.
  • phase error index value ( ⁇ ) is calculated by applying the formula (formula 1) described above.
  • phase error index calculated from the measured values of the two points sandwiching the zero cross point of the groove signal in which the phase error in the + direction is set, regardless of whether the zero cross point line is a right-up line or a right-down line.
  • the value ( ⁇ ) is smaller than the phase error index value ( ⁇ ) calculated from the measured value of the groove signal for which no phase error is set.
  • phase error index value ( ⁇ ) By integrating the phase error index value ( ⁇ ) in a predetermined measurement section, an integration result V1 as shown in FIG. 8 (2a) described above is obtained. Compare this integration result V1 with a preset threshold Th1, V1 ⁇ Th1 When the above result is obtained, it can be determined that the phase error is set in the + direction (track traveling direction) in this measurement section.
  • FIG. 10 is a diagram for explaining a specific example of the calculation process of the phase error index value ( ⁇ ) for the negative direction phase error setting groove signal.
  • FIG. 10B1 shows a groove signal in which a phase error is set in the negative direction (track reverse direction) by a solid line.
  • the dotted line shows the groove signal without phase error as a reference.
  • FIGS. 10B2 and 10B3 are enlarged views of two patterns in the vicinity of the zero cross point of the groove signal.
  • B2 An example of processing in the vicinity of the lower right line
  • B3 An example of processing in the vicinity of the right-up line, These are shown.
  • a dotted line is an example of a groove signal having no phase error shown as reference data.
  • FIG. 10 (b2) shows an example of measured values at sampling points tp and tq of the groove signal (solid line) in which the phase error in the negative direction is set and the groove signal (dotted line) without the phase error.
  • FIG. 10 (b3) shows an example in which the groove signal line near the zero cross is rising to the right.
  • FIG. 10B3 also shows an example of measured values at the sampling points tr and ts of the groove signal (solid line) in which the phase error in the negative direction is set and the groove signal (dotted line) without the phase error.
  • phase error index value ( ⁇ ) is calculated by applying the formula (formula 1) described above.
  • the phase error index calculated from the measured values of the two points sandwiching the zero cross point of the groove signal in which the negative direction phase error is set The value ( ⁇ ) is larger than the phase error index value ( ⁇ ) calculated from the measured value of the groove signal for which no phase error is set.
  • phase error index value ( ⁇ ) By integrating this phase error index value ( ⁇ ) in a predetermined measurement section, an integration result V2 as shown in FIG. 8 (2b) described above is obtained. Compare this integration result V2 with a preset threshold Th2, V2 ⁇ Th2 When the above result is obtained, it can be determined that the phase error is set in the negative direction (track reverse direction) in this measurement section.
  • the user information recording / reproducing apparatus can read the groove signal recorded on the loaded disc and obtain the encryption key. Furthermore, it is possible to apply the acquired encryption key, execute an encryption process of the content acquired from the server, for example, and record it on the disc.
  • the server provides the user device with the encrypted content to which the same encryption key as that recorded on the disc is applied, and the user device records the encrypted content on the disc. It is also possible to perform decryption and reproduction processing using an encryption key acquired from a signal.
  • FIG. 11 shows the information recording apparatus as a user apparatus that mounts the disk 150 described above, that is, the disk 150 in which the encryption key is recorded as additional information on the groove signal, and executes the recording process of the encrypted content on the disk 150. It is a block diagram which shows the example of a structure of 300. FIG.
  • the information recording apparatus 300 includes a recording / playback unit 301, a signal analysis unit 302, an encryption processing unit 304, and a communication unit 305.
  • the recording / playback unit 301 reads a groove signal and recorded content from the disc 150 and further executes content recording processing.
  • the signal analysis unit 302 has the same configuration as the signal analysis unit 202 of the information reproduction apparatus 200 described above with reference to FIGS. 5 and 6 and executes the same processing. In other words, the demodulation and analysis of the groove signal input from the recording / reproducing unit 301 is executed to detect the phase error, and the constituent bit value of the additional information recorded in the groove signal is detected based on the detected phase error. To do.
  • the additional information 120 is obtained from the configuration bit information of the additional information detected by the signal analysis unit 302.
  • the additional information 120 is an encryption key, and is applied to an encryption process for content recorded on the disc 150. Further, the present invention is applied to decryption processing of encrypted content recorded on the disk 150.
  • address information 125 which is other additional information included in the groove signal, is obtained from the result demodulated by the signal analysis unit 302.
  • the address information 125 is used in data recording and reproduction processing with respect to the disc 150.
  • the information recording apparatus 300 communicates with the content server 400 via the communication unit 305 and acquires content from the content server 400.
  • the acquired content is either encrypted content or plaintext content that has not been encrypted.
  • the encrypted content is encrypted content that can be decrypted with an encryption key read from the groove signal of the disk 150.
  • the received encrypted content is recorded on the disc 150 via the recording / playback unit 301.
  • the content to be recorded on the disc is acquired from the content server 400 via the communication unit 305.
  • the content acquisition source is not limited to the server, and broadcasting and other information processing apparatuses Various settings such as other media are possible.
  • Content input via an interface as a content input unit corresponding to these acquisition sources can be recorded as encrypted content on a disc.
  • the encrypted content and the encryption key applied to the decryption are stored together on one disc. Therefore, for example, even if the encrypted content is output and copied to another medium, the encryption key cannot be used, and unauthorized use of the content can be effectively prevented.
  • a groove signal is recorded with such a setting, and bit value discrimination is performed based on these phase errors.
  • the correspondence relationship between the bit value and the phase error can be variously set, and the reverse setting described above, the setting for associating the bit value with a plurality of phase error patterns, and the like are also possible.
  • An example is shown in FIG.
  • FIG. 12 is a diagram showing an example of the recording process and the reproducing process of the groove signal, similar to FIG. 4 described above.
  • the groove signal is recorded with such a setting.
  • the example shown in FIG. 12 shows the following setting example.
  • t1 to t2 + direction phase error setting groove signal t2 to t3: ⁇ direction phase error setting groove signal
  • t3 to t4 -direction phase error setting groove signal t4 to t5: + direction phase error setting groove signal
  • the reproduction apparatus executes reading of the groove signal at a predetermined sampling time (T) interval, and sequentially integrates the values of the signals read at each sampling time as shown in the lower part of FIG. Process.
  • T sampling time
  • the direction (+, ⁇ ) of the phase error of the groove signal read in a certain section is determined.
  • the playback device performs the following processing.
  • t1 to t2 The phase error determination result based on the reading groove signal is accumulated (integrated), and it is determined that the phase error is set in the + direction.
  • t2 to t3 The phase error determination result based on the reading groove signal is accumulated (integrated), and it is determined that the phase error in the negative direction is set.
  • the bit value [1] is determined.
  • t3 to t4 The phase error determination result based on the reading groove signal is accumulated (integrated), and it is determined that the phase error in the negative direction is set.
  • t4 to t5 The phase error determination result based on the reading groove signal is accumulated (integrated), and it is determined that the phase error in the + direction is set.
  • the bit value [0] is determined based on the detection of the combination of the preceding + direction phase error setting groove signal and the subsequent ⁇ direction phase error setting groove signal.
  • phase error setting direction is set as [+] [-] [+] [-] [+] [-] [+] [-]
  • this problem can be solved by using a signal section in which a phase error is not set.
  • a groove signal having the following settings is recorded with [0] being a section in which no phase error is set.
  • Such a signal is recorded and [0] is used as a delimiter signal.
  • This setting makes it possible to determine which of the [+] and [-] pairs is the preceding groove signal during playback. 1110 ... It is possible to determine whether it is the bit string.
  • the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
  • the program recording the processing sequence is installed in a memory in a computer incorporated in dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It can be installed and run.
  • the program can be recorded in advance on a recording medium.
  • the program can be received via a network such as a LAN (Local Area Network) or the Internet and installed on a recording medium such as a built-in hard disk.
  • the various processes described in the specification are not only executed in time series according to the description, but may be executed in parallel or individually according to the processing capability of the apparatus that executes the processes or as necessary.
  • the system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to being in the same casing.
  • both the difficulty of reading and the high-precision reading are performed in the groove signal recorded on the disc with the highly confidential additional information such as the encryption key. It is possible to perform superposition recording that realizes the above.
  • a groove signal in which a phase error corresponding to the bit value is set is recorded, and when the additional information is read, the phase error of the groove signal in a predetermined section is integrated to obtain a phase error of the groove signal in each section. It was set as the structure which discriminates a direction. By such processing, reading difficulty is improved, and additional information recording / reproducing that realizes high-precision reading is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

読み取り困難性と高精度な読み取りの双方を実現する情報の記録処理構成を提供する。暗号鍵などの秘匿性の高い付加情報をディスクに記録されるグルーブ信号中に、読み取り困難性と高精度な読み取りの双方を実現させる重畳記録を行うことが可能となる。付加情報の記録に際してビット値に応じた位相誤差を設定したグルーブ信号を記録し、付加情報の読み取り時には、所定区間のグルーブ信号の位相誤差を積分処理して、各区間内のグルーブ信号の位相誤差方向を判別する構成とした。このような処理により読み取り困難性を高めるとともに、精度の高い読み取りを実現する付加情報の記録再生を実現した。

Description

情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム
 本発明は、情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラムに関する。さらに詳細には、ディスク(情報記録媒体)の記録条件等の付加情報として記録されるグルーブ信号にコンテンツ鍵などの付加情報を重畳して記録または再生する情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラムに関する。
 光ディスクにおいて、蛇行すなわちウォブル(wobble)させたグルーブ(溝)をデータ記録トラックに対するアドレス情報および記録条件等の付加情報として利用することが知られている。このウォブリンググルーブを利用してピックアップを所望のトラック位置に設定してトラックに対するデータ記録やトラックからのデータ再生が行われる。
 一方、昨今、光ディスクに記録されたコンテンツの違法コピーが問題となっており、コンテンツの保護を目的とする堅牢なコンテンツ保護システム(CPS:Contents Protection System)が求められている。
 コンテンツ保護システム(CPS)の1つとして、ディスクに格納するコンテンツを暗号化する手法がある。暗号化コンテンツの復号に適用する鍵情報や、その他のコンテンツ利用制御情報などを前述のグルーブにアドレス情報に重畳して記録する構成が提案されている。例えば特許文献1(特開2004-213781号公報)は鍵情報をグルーブに記録して利用する構成を開示している。
 しかし、暗号化コンテンツの復号に適用する鍵情報や、その他のコンテンツ利用制御情報などの多くは秘密情報であり、漏洩防止のため容易な読み取りを防ぐ必要がある。一方、ディスクに鍵データが記録されている場合、正当なコンテンツ利用権を持つユーザの再生装置は鍵構成ビットを正確に読み取ることが必要となる。読み取り精度が低下すると、正確な鍵情報を取得できずコンテンツの復号が行えなくなるからである。
 例えばコンテンツの復号に適用する鍵情報を前述のグルーブに記録する場合、容易な読み取りを回避するとともに、正確な読み取りも実現するという相反する要求を満たすことが必要となる。
 コンテンツ保護システム(CPS)の適用データである鍵情報などのCPSデータをディスクに記録して利用する構成に求められる要件には例えば以下の要件がある。
 1.CPSデータの再生信号の信頼性が高いこと。
 2.CPSデータの他メディアへのコピーが困難であること。
 3.CPSデータ格納媒体や、記録再生ドライブの製造コストが大幅に高くならないこと。
 例えば、このような要件がある。
 前述した特許文献1(特開2004-213781号公報)は鍵情報をグルーブに記録して利用する構成を開示している。この従来技術も、上記の要件を満たすような工夫が施されている。しかしながら、一方では、秘密情報の解読技術も進んでおり、さらなる高度な秘匿性を持つ記録構成が求められている。
特開2004-213781号公報
 本発明は、例えば上記問題点に鑑みてなされたものであり、グルーブ信号にディスクに記録されるコンテンツ用の暗号鍵などの付加情報を重畳して記録または再生する構成において、解読困難性を高め、かつ正確なデータ読み取りも可能とする情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラムを提供することを目的とする。
 本発明の第1の側面は、
 付加情報を記録するグルーブ信号を生成する記録信号生成部と、
 前記記録信号生成部の生成した記録信号をマスタディスクに記録する記録部を有し、
 前記記録信号生成部は、
 前記付加情報を構成する各ビット値に応じた位相誤差設定態様を決定し、
 前記記録信号の所定区間単位で前記付加情報を構成する各ビット値に応じた位相誤差を設定した記録信号を生成する記録媒体製造装置にある。
 さらに、本発明の記録媒体製造装置の一実施態様において、前記記録信号生成部は、前記付加情報のビット値が0の場合と1の場合に応じて、前記グルーブ信号に設定する位相誤差の方向、または方向の組み合わせを異なる態様に設定した記録信号を生成する。
 さらに、本発明の記録媒体製造装置の一実施態様において、前記付加情報は、前記ディスクに記録されるコンテンツの暗号化処理または復号処理に適用する暗号鍵を含む情報である。
 さらに、本発明の第2の側面は、
 ディスクに記録されたグルーブ信号を読み取る再生部と、
 前記再生部の再生信号の解析を行う信号解析部を有し、
 前記信号解析部は、
 前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行う構成である情報再生装置にある。
 さらに、本発明の情報再生装置の一実施態様において、前記信号解析部は、前記グルーブ信号のゼロクロス点の前後のサンプリング点の検出値を用いて位相誤差指標値を算出し、該位相誤差指標値を前記所定信号区間単位で積分して得られる結果と予め設定した閾値との比較により、前記所定信号区間における位相誤差の設定方向を判別する処理を行なう。
 さらに、本発明の情報再生装置の一実施態様において、前記情報再生装置は、さらに、前記信号解析部の解析した付加情報に含まれる暗号鍵を適用して、前記ディスクに記録された暗号化コンテンツの復号処理を行う復号処理部を有する。
 さらに、本発明の第3の側面は、
 ディスクに記録されたグルーブ信号を読み取る再生部と、
 前記再生部においてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別し、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵を解析する信号解析部と、
 前記信号解析部の解析した暗号鍵を適用してコンテンツの暗号化処理を実行する暗号処理部と、
 前記暗号処理部の生成した暗号化コンテンツを前記ディスクに記録する記録部を有する情報記録装置にある。
 さらに、本発明の情報記録装置の一実施態様において、前記信号解析部は、前記グルーブ信号のゼロクロス点の前後のサンプリング点の検出値を用いて位相誤差指標値を算出し、該位相誤差指標値を前記所定信号区間単位で積分して得られる結果と予め設定した閾値との比較により、前記所定信号区間における位相誤差の設定方向を判別する処理を行なう。
 さらに、本発明の第4の側面は、
 付加情報を記録するために利用されるグルーブ信号を記録した情報記録媒体であり、
 前記グルーブ信号は、所定信号区間単位で付加情報の構成ビット値に応じた異なる態様の位相誤差が設定された付加情報重畳信号として記録され、
 再生装置において前記位相誤差の設定態様の検出に基づいて前記付加情報を読み取ることを可能とした情報記録媒体にある。
 さらに、本発明の情報記録媒体の一実施態様において、前記グルーブ信号は、前記付加情報のビット値が0の場合と1の場合に応じて、前記グルーブ信号に設定する位相誤差の方向または方向の組み合わせを異なる態様に設定した信号である。
 さらに、本発明の情報記録媒体の一実施態様において、前記付加情報は、前記ディスクに記録されるコンテンツの暗号化処理または復号処理に適用する暗号鍵を含む情報である。
 さらに、本発明の第5の側面は、
 記録媒体製造装置において実行する情報記録媒体製造方法であり、
 記録信号生成部が、付加情報を記録するグルーブ信号を生成する記録信号生成ステップと、
 記録部が、前記記録信号生成ステップにおいて生成した記録信号をマスタディスクに記録する記録ステップを有し、
 前記記録信号生成ステップは、
 前記付加情報を構成する各ビット値に応じた位相誤差設定態様を決定し、
 前記記録信号の所定区間単位で、前記付加情報を構成する各ビット値に応じた位相誤差を設定した記録信号を生成するステップを有する情報記録媒体製造方法にある。
 さらに、本発明の第6の側面は、
 情報再生装置において実行する情報再生方法であり、
 再生部が、ディスクに記録されたグルーブ信号を読み取る再生ステップと、
 信号解析部が、前記再生ステップにおける再生信号の解析を行う信号解析ステップを有し、
 前記信号解析ステップは、
 前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて、前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行うステップを有する情報再生方法にある。
 さらに、本発明の第7の側面は、
 情報記録装置において実行する情報記録方法であり、
 再生部が、ディスクに記録されたグルーブ信号を読み取る再生ステップと、
 信号解析部が、前記再生ステップにおいてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別し、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵構成ビット情報を解析する信号解析ステップと、
 暗号処理部が、前記信号解析ステップにおいて解析した暗号鍵を適用してコンテンツの暗号化処理を実行する暗号処理ステップと、
 記録部が、前記暗号処理ステップにおいて生成した暗号化コンテンツを前記ディスクに記録する記録ステップを有する情報記録方法にある。
 さらに、本発明の第8の側面は、
 情報再生装置において情報再生処理を実行させるプログラムであり、
 再生部に、ディスクに記録されたグルーブ信号を読み取らせる再生ステップと、
 信号解析部に、前記再生ステップにおける再生信号の解析を行わせる信号解析ステップを有し、
 前記信号解析ステップは、
 前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて、前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行わせるステップを有するプログラムにある。
 さらに、本発明の第9の側面は、
 情報記録装置において情報記録処理を実行させるプログラムであり、
 再生部に、ディスクに記録されたグルーブ信号を読み取らせる再生ステップと、
 信号解析部に、前記再生ステップにおいてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別させ、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵構成ビット情報を解析させる信号解析ステップと、
 暗号処理部に、前記信号解析ステップにおいて解析した暗号鍵を適用してコンテンツの暗号化処理を実行させる暗号処理ステップと、
 記録部に、前記暗号処理ステップにおいて生成した暗号化コンテンツを前記ディスクに記録させる記録ステップを有するプログラムにある。
 なお、本発明のプログラムは、例えば、様々なプログラム・コードを実行可能な画像処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、画像処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。
 本発明のさらに他の目的、特徴や利点は、後述する本発明の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 本発明の一実施例によれば、暗号鍵などの秘匿性の高い付加情報をディスクに記録されるグルーブ信号中に、読み取り困難性と高精度な読み取りの双方を実現させる重畳記録を行うことが可能となる。付加情報の記録に際してビット値に応じた位相誤差を設定したグルーブ信号を記録し、付加情報の読み取り時には、所定区間のグルーブ信号の位相誤差を積分処理して、各区間内のグルーブ信号の位相誤差方向を判別する構成とした。このような処理により読み取り困難性を高めるとともに、精度の高い読み取りを実現する付加情報の記録再生を実現することができる。
本発明の一実施例に係る記録媒体製造装置の構成例について説明する図である。 本発明の一実施例に係る記録媒体製造装置の記録信号生成部の構成例について説明する図である。 本発明の一実施例に係る位相誤差設定グルーブ信号の例について説明する図である。 本発明の一実施例に係る位相誤差設定グルーブ信号の記録処理と再生処理例について説明する図である。 本発明の一実施例に係る情報再生装置の構成例について説明する図である。 本発明の一実施例に係る情報再生装置の信号解析部の詳細構成例について説明する図である。 本発明の一実施例に係る情報再生装置の実行するグルーブ信号に対する信号解析処理による付加情報の取得処理例について説明する図である。 本発明の一実施例に係る情報再生装置の実行するグルーブ信号に対する信号解析処理による付加情報の取得処理例について説明する図である。 本発明の一実施例に係る情報再生装置の実行するグルーブ信号に対する信号解析処理による付加情報の取得処理例について説明する図である。 本発明の一実施例に係る情報再生装置の実行するグルーブ信号に対する信号解析処理による付加情報の取得処理例について説明する図である。 本発明の一実施例に係る情報記録装置の構成例について説明する図である。 本発明の一実施例に係る位相誤差設定グルーブ信号の記録処理と再生処理例について説明する図である。
 以下、図面を参照しながら本発明の情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラムの詳細について説明する。説明は、以下の項目に従って行う。
 1.記録媒体製造装置の構成と処理、および情報記録媒体について
 2.情報再生装置の構成と処理について
 3.情報記録装置の構成と処理について
 4.その他の実施例について
  [1.記録媒体製造装置の構成と処理、および情報記録媒体について]
 まず、本発明の一実施例に係る記録媒体製造装置の構成と処理、および情報記録媒体について、図1以下を参照して説明する。
 図1は、本発明の一実施例に係る記録媒体製造装置の構成を示すブロック図である。記録媒体製造装置100は、ディスク原盤であるマスタディスク130の製造を行う。その後、マスタディスク130のスタンパ処理によってユーザに提供される情報記録媒体であるディスク150が大量生産される。
 マスタディスク130には、記録条件等の付加情報を記録するために利用されるグルーブ信号が記録される。グルーブ信号は、蛇行すなわちウォブル(wobble)した溝によって構成される。
 図1に示すように記録媒体製造装置100は、記録条件等の付加情報120、例えば暗号鍵などの付加情報120を入力し記録信号を生成する。この生成記録信号に従ってマスタディスク130に対するグルーブ信号の記録処理を行う。
 付加情報120は例えば64ビット、128ビットなどの暗号鍵の構成ビットを含むデータである。この付加情報120は記録信号生成部102に入力される。
 記録信号生成部102は、記録条件等の付加情報120を入力してマスタディスク130に記録する記録信号(グルーブ信号)を生成する。記録信号生成部102は、記録条件等の付加情報を示すウォブリンググルーブ信号をFM(Frequency Modulation)変調処理により生成する。記録条件等の付加情報はグルーブ信号(FM変調信号)に対する位相誤差の設定によって記録される。この処理については、後段で詳細に説明する。
 記録信号生成部102の生成した記録信号は、記録部103に出力される。記録部103はたとえばレーザ出力によりマスタディスク130に対して記録信号に応じた溝(グルーブ)を形成する。マスタディスク130に記録されるグルーブ信号は、コンテンツの記録されるデータトラックに沿ったスパイラル状の溝である。
 記録部103による記録処理によって、記録条件等の付加情報、例えば暗号鍵が重畳されたグルーブ信号を記録したマスタディスク130が製造される。このマスタディスク130のスタンパ処理によって、ユーザに提供する大量のディスク150が生産される。
 なお、ディスク150は、例えば映画などのコンテンツが記録されたディスク、あるいは、コンテンツの記録されていないディスク、いずれでもよい。コンテンツの記録されていないディスクは、ユーザによるデータ書き込みが可能なディスクである。このようなディスク150を購入したユーザは後日、映画などのコンテンツをディスク150に記録することができる。
 例えばコンテンツの記録されていないディスクを購入したユーザは、ユーザのPCなとの記録再生装置を利用してコンテンツ提供サーバにネットワークを介して接続する。サーバは、ディスク150に記録されている暗号鍵を用いて復号可能な暗号化コンテンツをユーザ装置に提供する。
 ユーザ装置は、サーバからダウンロードしたコンテンツをディスク150に記録する。その後、コンテンツ再生処理に際して、ディスク150に記録されたグルーブ信号から暗号鍵を読み取り、読み取った暗号鍵を用いてディスク150に記録された暗号化コンテンツの復号処理を実行してコンテンツ再生処理を行うことができる。
 あるいは、サーバから暗号化されていないコンテンツを取得し、ユーザ装置側でディスクのグルーブ信号から読み取った暗号鍵を適用して取得コンテンツの暗号化処理を行ってディスクに記録することも可能となる。
 いずれの態様においても、暗号化コンテンツとその復号に適用する暗号鍵は1つのディスクにまとまって格納されることになる。従って、例えば暗号化コンテンツを他のメディアに出力してコピーしても、暗号鍵が利用できないことになり、コンテンツの不正利用を効果的に防止することができる。
 次に図2を参照して、記録媒体製造装置100の記録信号生成部102の構成と処理の詳細について説明する。記録信号生成部102は前述したように、記録条件等の付加情報として暗号鍵などを含む記録信号を生成する。
 記録信号生成部102は図2に示すように、変調信号生成部122、位相誤差設定信号生成部123を有する。
 記録信号生成部102は、例えば、付加情報の構成ビットが[1]の場合には、グルーブ信号に対して+方向の位相誤差、付加情報の構成ビットが[0]の場合には、グルーブ信号に対して-方向の位相誤差を対応付けた位相誤差設定信号を生成する。
 なお、この設定は、様々な設定が可能であり、上述の逆の設定や、以下のような設定もある。
 ビット[1]の場合、先行する+方向の位相誤差と後続する-方向の位相誤差の設定の組み合わせ、
 ビット[0]の場合、先行する-方向の位相誤差と後続する+方向の位相誤差の設定の組み合わせ、
 このような設定など、様々な設定が可能である。
 変調信号生成部122は、記録条件等の付加情報に応じてFM変調処理を行った変調信号を生成する。
 位相誤差設定信号生成部123は、変調信号生成部122の生成した変調信号に対して付加情報ビットに応じた位相誤差情報に応じて、変調信号に位相誤差を設定した記録信号を生成する。
 図3にマスタディスクやディスク150に記録されるグルーブ信号の例を示す。グルーブ信号は、ディスク150に対してスパイラル状に設定された溝を再生した信号である。図2(1)(2a),(2b)には、その一部の詳細を示している。すなわち、図2に示すディスク150のAB部分のグルーブ信号の例を示している。
 図3には、以下の各信号例を示している。
 (1)位相誤差設定なしのグルーブ信号
 (2a)+方向位相誤差設定グルーブ信号
 (2b)-方向位相誤差設定グルーブ信号
 (1),(2a),(2b)は、ディスクの平面に相当し、右方向がトラックの信号方向である。図3(1)に示す位相誤差設定なしのグルーブ信号を(2a),(2b)に点線で示している。図3(2a),(2b)に示す実線が位相誤差を持つグルーブ信号であり、点線が、位相誤差を持たない本来の記録条件等の付加情報のみからなるグルーブ信号である。
 図3(2a)に示す例では、実線で示す+方向位相誤差設定グルーブ信号が、点線で示すグルーブ信号(位相誤差なし)に比較してトラック進行方向(+方向)にわずかにずれている。このずれが+方向位相誤差である。
 また、図3(2b)に示す例では、実線で示す-方向位相誤差設定グルーブ信号が、点線で示すグルーブ信号(位相誤差なし)に比較してトラック反対方向(-方向)にわずかにずれている。このずれが-方向位相誤差である。
 マスタディスクおよびディスクに記録されるグルーブ信号は、図3(1),(2a),(2b)の異なるタイプのグルーブ信号が混在した設定となる。位相誤差により鍵情報などの付加情報の構成ビットが記録される。再生装置は、グルーブ信号の読み取りに際して、グルーブ信号から位相誤差を検出し、検出した位相誤差に基づいて付加情報のビット値を解析する。具体的な位相誤差の設定例とビットデータとの対応例について図4を参照して説明する。
 図4はグルーブ信号の記録処理と再生処理例について示した図である。図4の例は、
 ビット=1の場合に、+方向の位相誤差を設定したグルーブ信号、
 ビット=0の場合に、-方向の位相誤差を設定したグルーブ信号、
 このような設定でグルーブ信号を記録した場合の例を示している。
 グルーブ信号の記録処理に際しては、付加情報の構成ビット=1の場合には、+方向(トラック進行方向)の位相誤差を設定したグルーブ信号を所定区間記録する。付加情報の構成ビット=1の場合には、-方向(トラック反対方向)の位相誤差を設定したグルーブ信号を所定区間記録する。
 図4に示す例では、
 t1~t2:+方向位相誤差設定グルーブ信号(ビット値=1に対応)
 t2~t3:-方向位相誤差設定グルーブ信号(ビット値=0に対応)
 t3~t4:+方向位相誤差設定グルーブ信号(ビット値=1に対応)
 t4~t5:+方向位相誤差設定グルーブ信号(ビット値=1に対応)
 t5~t6:+方向位相誤差設定グルーブ信号(ビット値=0に対応)
 このような設定で、グルーブ信号が生成されて記録される。
 なお、設定する位相誤差は、ごくわずかである。例えば、再生処理におけるサンプリング信号の周期Tの1~5%程度の位相誤差が設定される。従って、一度の読み取りでは設定された位相誤差が+方向なのか-方向なのかを判定することが困難な設定である。
 グルーブ信号の記録処理に際しては、例えば付加情報の構成ビットがビット値=1の場合には、+方向の位相誤差を持つグルーブ信号を一定区間設定して記録する。またビット=0の場合には、-方向の位相誤差を持つグルーブ信号を一定区間設定して記録する。
 再生装置は、グルーブ信号の読み取りを所定のサンプリングタイム(T)間隔で実行し、各サンプリングタイムにおいて読み取られた信号の値を蓄積(積分)する。この積分処理によって、一定区間(例えばt1~t2)において読み取られたグルーブ信号の位相誤差の方向(+,-)を判定する。
 なお、記録装置、再生装置のいずれも装置に設定されたクロックによって様々な制御のタイミングが設定され、図4に示すt1~t2などの区間については、予め規定したクロック数によって判別することができる。
 ディスクには、図3を参照して説明したように、
 (1)位相誤差設定なしグルーブ信号
 (2a)+方向位相誤差設定グルーブ信号
 (2b)-方向位相誤差設定グルーブ信号
 これらの3パターンの信号が記録される。
 一定区間単位、例えば図4に示すt1~t2、t2~t3などの一定区間単位で、上記3パターンのいずれかの設定でグルーブ信号を記録する。
 再生装置は、図4に示すt1~t2、t2~t3などの一定区間単位で、位相誤差の解析を実行する。この解析により上記3パターンに対応する異なる位相誤差蓄積信号(積分信号)を生成することが可能となる。このような位相誤差蓄積処理、すなわち検出信号の積分処理により、設定された位相誤差が+方向であるか-方向であるかを誤りなく検出することが可能となる。
 この処理が図4の下部に示す処理である。例えば、再生装置は以下のような処理を行う。
 t1~t2:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、+方向の位相誤差が設定された区間であると判断し、ビット値=[1]と判定する。
 t2~t3:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、-方向の位相誤差が設定された区間であると判断し、ビット値=[0]と判定する。
 以下、同様の処理を実行して、ビットの値を順次、取得していく。
 この処理を継続することで、例えば64ビットや128ビットの鍵を構成するビット値をすべて正確に取得することができる。
  [2.情報再生装置の構成と処理について]
 次に、上述した付加情報を重畳したグルーブ信号を記録したディスクの再生処理を行う再生装置の構成と処理例について説明する。
 図5は、本発明の一実施例に係る情報再生装置の構成例を示すブロック図である。図5に示すように情報再生装置200は、再生部201、信号解析部202、復号処理部204を有する。
 再生部201はディスク150からの信号読み取りを行う。ディスク150は、先に説明した暗号鍵などの付加情報を重畳したグルーブ信号が記録されたディスクである。さらに、その暗号鍵で暗号化された暗号化コンテンツが記録されている。
 再生部201は、グルーブ信号を読み取り、信号解析部202に出力する。グルーブ信号は、先に図3等を参照して説明したように、
 (1)位相誤差設定なしグルーブ信号
 (2a)+方向位相誤差設定グルーブ信号
 (2b)-方向位相誤差設定グルーブ信号
 これらの3パターンの信号の混在したグルーブ信号である。
 信号解析部202は、再生部201から入力するグルーブ信号の復調処理および解析を実行して、位相誤差の検出を行い、検出した位相誤差に基づいてグルーブ信号中に記録された付加情報の構成ビット値を検出する。
 信号解析部202において検出された付加情報の構成ビット情報に基づいて付加情報120を得る。例えば付加情報120は暗号鍵であり、ディスク150に記録された暗号化コンテンツの復号処理に適用される。
 また、信号解析部202において復調された結果からは、グルーブ信号に含まれるその他の付加情報、例えばアドレス情報125が得られる。なお、グルーブ信号に設定された位相誤差は前述したようにわずかな位相誤差であり、取得されたアドレス情報にエラーを発生させるほどの影響はない。なお、グルーブ信号に含まれるその他の付加情報、例えばアドレス情報125を取得する処理は、一般的なグルーブ信号の読み取り処理として行われる。例えば、グルーブ信号の読み取り信号として得られるプッシュプル信号に対するFM復調処理を行い、復調処理結果に対するバンドパスフィルタ処理、2値化処理を行い、さらに必要に応じてECCデコード、デインターリーブなどの処理がなされて、グルーブ信号に含まれるその他の付加情報、例えばアドレス情報125や、そのディスクの基本情報(ディスク種別、ライトストラテジのパラメータ等)が取得される。
 なお、データトラックに記録されたコンテンツの読み取りに際しては、例えばデータ領域中のアドレス情報を適用して所定トラック位置にピックアップを設定して、暗号化コンテンツの読み取りが行われる。復号処理部204は、グルーブ信号から取得した付加情報(暗号鍵)120を適用して暗号化コンテンツの復号処理を実行してコンテンツ再生を行う。
 信号解析部202の詳細構成と処理について、図6を参照して説明する。
 図6に示すように、信号解析部202は、復調部221、位相誤差検出部222、ビット値判定部223を有する。
 復調部221は、FM変調信号としてディスクに記録されたグルーブ信号を再生部201から入力して復調処理を実行する。
 位相誤差検出部222は、先に図4を参照して説明したように、グルーブ信号の読み取りを所定のサンプリングタイム(T)間隔で実行し、各サンプリングタイムにおいて読み取られた信号の値を蓄積(積分)する。なお、積分処理は、例えば、グルーブ信号の読み取り信号から得られるプッシュプル信号に対する積分処理として行われる。この積分処理によって、一定区間(例えばt1~t2)において読み取られたグルーブ信号の位相誤差の方向(+,-)を判定する。
 ディスクには、図3を参照して説明したように、
 (1)位相誤差設定なしグルーブ信号
 (2a)+方向位相誤差設定グルーブ信号
 (2b)-方向位相誤差設定グルーブ信号
 これらの3パターンの信号が記録されている。
 情報再生装置の位相誤差検出部222は、例えば図4に示すt1~t2、t2~t3などの一定区間単位で、上記3パターンのいずれの誤差設定のグルーブ信号であるかを判別する。
 位相誤差検出部222の実行する位相誤差検出処理の具体例について、図7以下を参照して説明する。
 図7(1)は、先に図3(2a)を参照して説明したと同様のグルーブ信号の例であり、+方向(トラック進行方向)に位相誤差を設定したグルーブ信号を実線で示している。点線は位相誤差無しのグルーブ信号を参考として示している。
 再生装置によるグルーブ信号の読み取りは、一定期間のサンプリング間隔で実行される。図7(1)に示す複数の上向き矢印がサンプリングタイミングを示している。左から右に、グルーブ信号が間隔Tごとに読み取られる。
 位相誤差の検出には、グルーブ信号のゼロクロス点(ゼロクロスポイント)の前後のサンプリングデータが利用される。ゼロクロス点とは、図7に示すようにグルーブ信号ラインが中央位置(0)を横切るポイントである。
 このゼロクロス点の前後のサンプリングタイム、すなわち図7に示す時間tp,tqの2つのサンプリングデータが位相誤差検出に利用される。
 この処理の詳細について図7(2),(3)を参照して説明する。
 図7(2)は、図7(1)に示すサンプリングタイムtp~tq近傍を拡大した拡大図である。実線が+方向の位相誤差を持つグルーブ信号であり、点線が位相誤差の無いグルーブ信号を参考データとして示している。
 図7(2)に示すゼロクロス点の両側のサンプリング時間tp,tqの2つのサンプリングデータが位相誤差検出に利用される。
 例えば、図7(2)に示す例では、
 サンプリング時間tp:計測値X
 サンプリング時間tq:計測値X
 これらの計測値が取得される。
 なお、計測値は、グルーブの位置に応じた相対的な電位(電圧)の値として取得される。例えば、図7(2)に示すようにグルーブ信号の端から端までを-64~+64の相対電位値とした範囲で計測される。
 ゼロクロス点を挟む2つのサンプリング時間tp,tqにおける計測値X、Xを適用して、位相誤差指標値(Δτ)が、例えば図7(3)に示す式を適用して算出される。
 すなわち、位相誤差指標値(Δτ)は下式(式1)に従って算出される。
  Δτ=((Y)(Xk-1))-((Yk-1)(X))・・・(式1)
 ただし、
 Xk-1はゼロクロス直前の計測値
 Xはゼロクロス直後の計測値
 Yk-1,Yは、
 X≧0のときY=(+1)
 X<0のときY=(-1)
 である。
 上記式(式1)は、1つのゼロクロス点に対応する位相誤差指標値(Δτ)の算出式である。前述したようにグルーブ信号に設定される位相誤差はわずかの誤差(例えばサンプリング期間Tの数%程度)である。従って、1つのデータのみで位相誤差が+方向であるか-方向であるかを判別することは困難であり、ビット値判定に際してエラーが発生する可能性が高い。
 従って、先に図4を参照して説明したように、記録装置は、ある一定期間の連続するグルーブ信号区間(例えば図4に示すt1~t2)に連続した同一方向の誤差を設定したグルーブ信号を記録する。再生装置は、この一定のグルーブ信号区間の誤差を順次加算する積分処理によりその区間の位相誤差の設定方向を判別する。
 再生装置は、上記式(式1)で示される位相誤差指標値(Δτ)を、ある一定期間の連続するグルーブ信号区間(例えば図4に示すt1~t2)において積分して、図7(3)に示す判定を行う。すなわち、以下のように、位相誤差指標値(Δτ)の積分結果(ΣΔτ)と、閾値Th1,Th2との比較により、位相誤差の有無および方向の判定を実行する。
  Th1<ΣΔτ<Th2 → 位相誤差なし
  ΣΔτ≦Th1 → +方向位相誤差あり
  ΣΔτ≧Th2 → -方向位相誤差あり
                ・・・・(式2)
 上記判定式(式2)に従って、位相誤差の有無および方向の判定を実行する。
 図8は、位相誤差指標値(Δτ)の積分結果(ΣΔτ)と閾値との比較処理の具体例について説明する図である。
 図8には、以下の3パターンの例を示している。
 (1)位相誤差設定なしグルーブ信号
 (2a)+方向位相誤差設定グルーブ信号
 (2b)-方向位相誤差設定グルーブ信号
 これらの3パターンの信号に対する信号区間t1~t2の位相誤差指標値(Δτ)の積分結果(ΣΔτ)と閾値(Th1,Th2)との比較処理例を示している。
 図8(1)は、信号区間t1~t2のグルーブ信号が、位相誤差の設定されていないグルーブ信号である場合の例である。この場合、各ゼロクロス点の位相誤差指標値(Δτ)は、いずれか一方に偏りが発生することなく様々な方向にほぼバランスされて発生する。この結果、信号区間t1~t2における位相誤差指標値(Δτ)の積分結果(ΣΔτ)=V0は、予め設定された閾値Th1~Th2の範囲となる。
 これは、例えば図7(2)に示す点線の位相誤差のないグルーブ信号に従って計測される計測値X11,X12を適用して、前述した式、すなわち、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
 上記式に従って、位相誤差指標値(Δτ)を算出して、その積分結果(ΣΔτ)=V0を算出した場合に相当する。
 図8(2a)は、信号区間t1~t2のグルーブ信号が、+方向の位相誤差の設定がなされたグルーブ信号である場合の例である。これは、図7を参照して説明した例に対応する。この場合、各ゼロクロス点の位相誤差指標値(Δτ)は、一方に偏りが発生する。この結果、信号区間t1~t2における位相誤差指標値(Δτ)の積分結果(ΣΔτ)=V1は、予め設定された閾値Th1以下の値となる。
 図8(2b)は、信号区間t1~t2のグルーブ信号が、-方向の位相誤差の設定がなされたグルーブ信号である場合の例である。この場合も、各ゼロクロス点の位相誤差指標値(Δτ)は、一方に偏りが発生して発生する。図8(2a)の逆の偏りが発生する。この結果、信号区間t1~t2における位相誤差指標値(Δτ)の積分結果(ΣΔτ)=V2は、予め設定された閾値Th2以上の値となる。
 このように、位相誤差指標値(Δτ)の積分結果(ΣΔτ)と閾値との比較によって、3パターンのグルーブ信号の各々について判別することができる。すなわち、
  Th1<ΣΔτ<Th2 → 位相誤差なし
  ΣΔτ<Th1 → +方向位相誤差あり
  ΣΔτ>Th2 → -方向位相誤差あり
 上記判定式に従って、位相誤差の有無および方向の判定が可能となる。
 図7では、+方向位相誤差設定グルーブ信号のゼロクロス点が右下がりのラインである場合の位相誤差指標値(Δτ)の算出処理例について説明した。しかし、ゼロクロス点は、右下がりライン、右上がりラインの2種類のラインに対して発生する。ただし、図面上で示す右下がりライン、右上がりラインはそれぞれディスク平面におけるトラック方向からの異なる振れ方向に相当する。
 図9、図10を参照して、これらの各パターンについて、+方向位相誤差設定グルーブ信号と、-方向位相誤差設定グルーブ信号における位相誤差指標値(Δτ)の算出処理の具体例について説明する。
 図9は、+方向位相誤差設定グルーブ信号に対する位相誤差指標値(Δτ)の算出処理の具体例を説明する図である。
 図9(a1)は、+方向(トラック進行方向)に位相誤差を設定したグルーブ信号を実線で示している。点線は位相誤差無しのグルーブ信号を参考として示している。
 図9(a2),(a3)は、グルーブ信号のゼロクロス点の近傍の2つのパターンの拡大図である。
 (a2)右下がりライン近傍の処理例、
 (a3)右上がりライン近傍の処理例、
 これらを示している。
 なお、点線は、参考データとして示す位相誤差のないグルーブ信号の例である。
 (a2)右下がりライン近傍の処理例において、実線で示す+方向の位相誤差を設定したグルーブ信号におけるゼロクロス点前後のサンプリング点tp,tqの2つのサンプリングデータが位相誤差検出に利用される。
 図9(a2)には、+方向の位相誤差を設定したグルーブ信号(実線)と、位相誤差のないグルーブ信号(点線)各々のサンプリング点tp,tqの計測値の例を示している。
 +方向の位相誤差を設定したグルーブ信号(実線)の計測値は、
 サンプリング時間tp:計測値c=+40、
 サンプリング時間tq:計測値d=-26、
 これらの計測値である。
 位相誤差のないグルーブ信号(点線)の計測値は、
 サンプリング時間tp:計測値a=+32、
 サンプリング時間tq:計測値b=-32、
 これらの計測値である。
 実線、点線のラインの位置関係から、たとえば上記の計測値が取得される。
 これらの計測値に基づいて、先に説明した式(式1)を適用して、位相誤差指標値(Δτ)を算出する。
 +方向の位相誤差を設定したグルーブ信号(実線)の計測値、
 サンプリング時間tp:計測値c=+40、
 サンプリング時間tq:計測値d=-26、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((-1)(+40))-((+1)(-26))=-14<0
 このように0未満の値が算出される。
 これは、図8(2a)に対応する。
 一方、位相誤差のないグルーブ信号(点線)の計測値、
 サンプリング時間tp:計測値a=+32、
 サンプリング時間tq:計測値b=-32、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((-1)(+32))-((+1)(-32))=0
 このように0が算出される。
 これは、図8(1)に対応する。
 次に、図9(a3)右上がりライン近傍の処理例について説明する。図9(a3)には、ゼロクロス近傍のグルーブ信号ラインが右上がりである場合の例である。図9(a3)にも、+方向の位相誤差を設定したグルーブ信号(実線)と、位相誤差のないグルーブ信号(点線)各々のサンプリング点tr,tsの計測値の例を示している。
 +方向の位相誤差を設定したグルーブ信号(実線)の計測値は、
 サンプリング時間tr:計測値g=-40、
 サンプリング時間ts:計測値h=+26、
 これらの計測値である。
 位相誤差のないグルーブ信号(点線)の計測値は、
 サンプリング時間tr:計測値e=-32、
 サンプリング時間ts:計測値f=+32、
 これらの計測値である。
 実線、点線のラインの位置関係から、たとえば上記の計測値が取得される。
 これらの計測値に基づいて、先に説明した式(式1)を適用して、位相誤差指標値(Δτ)を算出する。
 +方向の位相誤差を設定したグルーブ信号(実線)の計測値、
 サンプリング時間tr:計測値g=-40、
 サンプリング時間ts:計測値h=+26、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((+1)(-40))-((-1)(+26))=-14<0
 このように0未満の値が算出される。
 これは、図8(2a)に対応する。
 一方、位相誤差のないグルーブ信号(点線)の計測値、
 サンプリング時間tp:計測値e=-32、
 サンプリング時間tq:計測値f=+32、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((+1)(-32))-((-1)(+32))=0
 このように0が算出される。
 これは、図8(1)に対応する。
 このように、ゼロクロス点のラインが、右上がりライン、右下がりラインいずれの場合も、+方向の位相誤差の設定されたグルーブ信号のゼロクロス点を挟む2点の計測値によって算出される位相誤差指標値(Δτ)は、位相誤差の設定されていないグルーブ信号の計測値によって算出される位相誤差指標値(Δτ)よりも小さい値となる。
 この位相誤差指標値(Δτ)を所定の計測区間において積分することで、先に説明した図8(2a)に示すような積分結果V1が得られることになる。この積分結果V1と、予め設定された閾値Th1と比較し、
 V1≦Th1
 上記結果が得られた場合、この計測区間における位相誤差の設定は+方向(トラック進行方向)であると判別することができる。
 図10は、-方向位相誤差設定グルーブ信号に対する位相誤差指標値(Δτ)の算出処理の具体例を説明する図である。
 図10(b1)は、-方向(トラック逆方向)に位相誤差を設定したグルーブ信号を実線で示している。点線は位相誤差無しのグルーブ信号を参考として示している。
 図10(b2),(b3)は、グルーブ信号のゼロクロス点の近傍の2つのパターンの拡大図である。
 (b2)右下がりライン近傍の処理例、
 (b3)右上がりライン近傍の処理例、
 これらを示している。
 なお、点線は、参考データとして示す位相誤差のないグルーブ信号の例である。
 (b2)右下がりライン近傍の処理例において、実線で示す-方向の位相誤差を設定したグルーブ信号におけるゼロクロス点前後のサンプリング点tp,tqの2つのサンプリングデータが位相誤差検出に利用される。
 図10(b2)には、-方向の位相誤差を設定したグルーブ信号(実線)と、位相誤差のないグルーブ信号(点線)各々のサンプリング点tp,tqの計測値の例を示している。
 -方向の位相誤差を設定したグルーブ信号(実線)の計測値は、
 サンプリング時間tp:計測値c=+26、
 サンプリング時間tq:計測値d=-40、
 これらの計測値である。
 位相誤差のないグルーブ信号(点線)の計測値は、
 サンプリング時間tp:計測値a=+32、
 サンプリング時間tq:計測値b=-32、
 これらの計測値である。
 実線、点線のラインの位置関係から、たとえば上記の計測値が取得される。
 これらの計測値に基づいて、先に説明した式(式1)を適用して、位相誤差指標値(Δτ)を算出する。
 -方向の位相誤差を設定したグルーブ信号(実線)の計測値、
 サンプリング時間tp:計測値c=+26、
 サンプリング時間tq:計測値d=-40、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((-1)(+26))-((+1)(-40))=+14>0
 このように0より大きい値が算出される。
 これは、図8(2b)に対応する。
 一方、位相誤差のないグルーブ信号(点線)の計測値、
 サンプリング時間tp:計測値a=+32、
 サンプリング時間tq:計測値b=-32、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((-1)(+32))-((+1)(-32))=0
 このように0が算出される。
 これは、図8(1)に対応する。
 次に、図10(b3)右上がりライン近傍の処理例について説明する。図10(b3)には、ゼロクロス近傍のグルーブ信号ラインが右上がりである場合の例である。図10(b3)にも、-方向の位相誤差を設定したグルーブ信号(実線)と、位相誤差のないグルーブ信号(点線)各々のサンプリング点tr,tsの計測値の例を示している。
 -方向の位相誤差を設定したグルーブ信号(実線)の計測値は、
 サンプリング時間tr:計測値g=-26、
 サンプリング時間ts:計測値h=+40、
 これらの計測値である。
 位相誤差のないグルーブ信号(点線)の計測値は、
 サンプリング時間tr:計測値e=-32、
 サンプリング時間ts:計測値f=+32、
 これらの計測値である。
 実線、点線のラインの位置関係から、たとえば上記の計測値が取得される。
 これらの計測値に基づいて、先に説明した式(式1)を適用して、位相誤差指標値(Δτ)を算出する。
 +方向の位相誤差を設定したグルーブ信号(実線)の計測値、
 サンプリング時間tr:計測値g=-26、
 サンプリング時間ts:計測値h=+40、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((+1)(-26))-((-1)(+40))=+14>0
 このように0より大きい値が算出される。
 これは、図8(2b)に対応する。
 一方、位相誤差のないグルーブ信号(点線)の計測値、
 サンプリング時間tp:計測値e=-32、
 サンプリング時間tq:計測値f=+32、
 これらの計測値を適用すると、
 Δτ=((Y)(Xk-1))-((Yk-1)(X))
  =((+1)(-32))-((-1)(+32))=0
 このように0が算出される。
 これは、図8(1)に対応する。
 このように、ゼロクロス点のラインが、右上がりライン、右下がりラインいずれの場合も、-方向の位相誤差の設定されたグルーブ信号のゼロクロス点を挟む2点の計測値によって算出される位相誤差指標値(Δτ)は、位相誤差の設定されていないグルーブ信号の計測値によって算出される位相誤差指標値(Δτ)よりも大きい値となる。
 この位相誤差指標値(Δτ)を所定の計測区間において積分することで、先に説明した図8(2b)に示すような積分結果V2が得られることになる。この積分結果V2と、予め設定された閾値Th2と比較し、
 V2≧Th2
 上記結果が得られた場合、この計測区間における位相誤差の設定は-方向(トラック逆方向)であると判別することができる。
  [3.情報記録装置の構成と処理について]
 グルーブ信号に重畳された付加情報が例えば暗号鍵である場合、ユーザの情報記録再生装置は、装着したディスクに記録されたグルーブ信号読み取り、暗号鍵を取得することができる。さらに、取得した暗号鍵を適用して、たとえばサーバから取得したコンテンツの暗号化処理を実行して、ディスクに記録することができる。
 あるいはサーバがディスクに記録されたと同一の暗号鍵を適用した暗号化コンテンツをユーザ装置に提供し、ユーザ装置側でディスクに対する暗号化コンテンツの記録を実行して、その後の再生処理において、ディスクのグルーブ信号から取得した暗号鍵を適用した復号、再生処理を行うことも可能である。
 このように暗号鍵をグルーブ信号に重畳させて記録したディスクに暗号化コンテンツの記録処理を行う情報記録装置の構成と処理例について、図11を参照して説明する。
 図11は、前述したディスク150、すなわち、グルーブ信号に付加情報として暗号鍵が記録されたディスク150を装着し、ディスク150に対して暗号化コンテンツの記録処理を実行するユーザ装置としての情報記録装置300の構成例を示すブロック図である。
 情報記録装置300は、図11に示すように、記録再生部301、信号解析部302、暗号処理部304、通信部305を有する。
 記録再生部301はディスク150からのグルーブ信号、記録コンテンツの読み取り、さらにコンテンツの記録処理を実行する。
 信号解析部302は、先に、図5、図6を参照して説明した情報再生装置200の信号解析部202と同様の構成を有し、同様の処理を実行する。すなわち、記録再生部301から入力するグルーブ信号の復調処理および解析を実行して、位相誤差の検出を行い、検出した位相誤差に基づいてグルーブ信号中に記録された付加情報の構成ビット値を検出する。
 信号解析部302において検出された付加情報の構成ビット情報により付加情報120を得る。例えば付加情報120は暗号鍵であり、ディスク150に記録するコンテンツの暗号化処理に適用される。また、ディスク150に記録された暗号化コンテンツの復号処理に適用される。
 さらに、信号解析部302において復調された結果からは、グルーブ信号に含まれるその他の付加情報であるアドレス情報125が得られる。アドレス情報125は、ディスク150に対するデータ記録や再生処理において利用される。
 情報記録装置300は、通信部305を介してコンテンツサーバ400と通信を実行し、コンテンツサーバ400からコンテンツを取得する。取得コンテンツは、暗号化コンテンツ、あるいは暗号化処理が施されていない平文コンテンツのいずれかである。
 暗号化コンテンツである場合、その暗号化コンテンツは、ディスク150のグルーブ信号から読み取られる暗号鍵によって復号可能な暗号化コンテンツである。このような暗号化コンテンツをサーバから受信した場合、受信した暗号化コンテンツは、記録再生部301を介してディスク150に記録される。
 また、コンテンツサーバ400から暗号化処理が施されていない平文コンテンツを受信した場合は、ディスク150のグルーブ信号から読み取った付加情報120としての暗号鍵を適用して、暗号処理部304において暗号化処理が実行される。この結果、生成された暗号化コンテンツが記録再生部301を介してディスク150に記録される。
 ディスク150に記録された暗号化コンテンツを再生する場合は、ディスク150から暗号化コンテンツを読み取るとともに、グルーブ信号から暗号鍵を読み取り、読み取った暗号鍵を適用して暗号化コンテンツを復号して再生処理を行う。この処理は、先に、図5を参照して説明した情報再生装置200の処理と同様の処理である。
 なお、図11に示す構成では、ディスクに記録するコンテンツは通信部305を介してコンテンツサーバ400から取得する構成としたが、コンテンツの取得元はサーバに限らず、放送や、他の情報処理装置、他のメディアなど様々な設定が可能である。これらの取得元に応じたコンテンツ入力部としてのインタフェースを介して入力したコンテンツをディスクに暗号化コンテンツとして記録することができる。
 図11に示す情報記録装置300においてディスクに対する暗号化コンテンツの記録を行うと、暗号化コンテンツとその復号に適用する暗号鍵は1つのディスクにまとまって格納されることになる。従って、例えば暗号化コンテンツを他のメディアに出力してコピーしても、暗号鍵が利用できないことになり、コンテンツの不正利用を効果的に防止することができる。
  [4.その他の実施例について]
 グルーブ信号に対する付加情報の重畳記録におけるビット値に応じた位相誤差設定態様については、先に図4を参照して説明した構成の他、様々な設定が可能である。
 図4を参照して説明した例は、
 ビット=1の場合に、+方向の位相誤差を設定したグルーブ信号、
 ビット=0の場合に、-方向の位相誤差を設定したグルーブ信号、
 このような設定でグルーブ信号を記録し、これらの位相誤差に基づいてビット値判別を行う例である。
 ビット値と位相誤差との対応関係は、様々な設定が可能であり、上述の逆の設定や、ビット値と、複数の位相誤差パターンとを対応付ける設定なども可能である。図12にその一例を示す。
 図12は先に説明した図4と同様、グルーブ信号の記録処理と再生処理例について示した図である。図12の例は、
 ビット=1の場合に、先行する+方向位相誤差設定グルーブ信号と後続の-方向位相誤差設定グルーブ信号、
 ビット=0の場合に、先行する-方向位相誤差設定グルーブ信号と後続の+方向位相誤差設定グルーブ信号、
 このような設定でグルーブ信号を記録した例である。
 図12に示す例は以下のような設定例を示している。
 t1~t2:+方向位相誤差設定グルーブ信号
 t2~t3:-方向位相誤差設定グルーブ信号
 このt1~t3区間のグルーブ信号によって、ビット値=1を示している。
 t3~t4:-方向位相誤差設定グルーブ信号
 t4~t5:+方向位相誤差設定グルーブ信号
 このt3~t5区間のグルーブ信号によって、ビット値=0を示している。
 図12上段に示すように、グルーブ信号の記録処理に際しては、付加情報の構成ビットがビット値=1の場合と0の場合において、上記設定に従った移送誤差を持つグルーブ信号を生成して記録する。
 再生処理に際しては、再生装置は、グルーブ信号の読み取りを所定のサンプリングタイム(T)間隔で実行し、図12下段に示すように、各サンプリングタイムにおいて読み取られた信号の値を、順次加算する積分処理を行う。この積分処理によって、一定区間(例えばt1~t2)において読み取られたグルーブ信号の位相誤差の方向(+,-)を判定する。
 例えば、再生装置は以下のような処理を行う。
 t1~t2:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、+方向の位相誤差が設定された区間であると判断する。
 t2~t3:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、-方向の位相誤差が設定された区間であると判断する。
 このt1~t3区間において、先行する+方向位相誤差設定グルーブ信号と後続の-方向位相誤差設定グルーブ信号の組み合わせが検出されたことに基づいて、ビット値[1]と判定する。
 次に、
 t3~t4:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、-方向の位相誤差が設定された区間であると判断する。
 t4~t5:読み取りグルーブ信号に基づく位相誤差判定結果を蓄積(積分)し、+方向の位相誤差が設定された区間であると判断する。
 このt3~t5区間において、先行する+方向位相誤差設定グルーブ信号と後続の-方向位相誤差設定グルーブ信号の組み合わせが検出されたことに基づいて、ビット値[0]と判定する。
 このような処理を実行することで、例えば64ビットや128ビットの鍵を構成するビット値をすべて正確に取得することができる。
 なお、位相誤差設定方向が、[+][-][+][-][+][-]といったように設定されると先行と後続するグルーブ信号区間を判別することができなくなる可能性が発生するが、例えば、位相誤差を設定しない信号区間を利用することで、この問題は解決できる。例えば位相誤差を設定しない区間を[0]として、以下のような設定のグルーブ信号を記録する。
 [+][-][0][+][-][0][+][-][0][-][+]
 このような信号を記録し[0]を区切り信号として利用する。
 この設定により、再生時に、[+],[-]のペアのいずれが先行するグルーブ信号であるかを判別することが可能となり、上記信号の場合、
 1110・・・・
 上記ビット列であることの判別処理が可能となる。
 なお、図12に示す例は、+-の2つの異なる位相誤差設定グルーブ信号の配列でビット値(0,1)を識別する構成として説明したが、さらに、
 [+][+][-]をビット値=1、
 [-][-][+]をビット値=0、
 とする設定など、多様な設定が可能である。
 以上、特定の実施例を参照しながら、本発明について詳解してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本発明の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 以上、説明したように、本発明の一実施例の構成によれば、暗号鍵などの秘匿性の高い付加情報をディスクに記録されるグルーブ信号中に、読み取り困難性と高精度な読み取りの双方を実現させる重畳記録を行うことが可能となる。付加情報の記録に際してビット値に応じた位相誤差を設定したグルーブ信号を記録し、付加情報の読み取り時には、所定区間のグルーブ信号の位相誤差を積分処理して、各区間内のグルーブ信号の位相誤差方向を判別する構成とした。このような処理により読み取り困難性を高めるとともに、精度の高い読み取りを実現する付加情報の記録再生を実現した。
 100 記録媒体製造装置
 102 記録信号生成部
 103 記録部
 120 付加情報
 122 変調信号生成部
 123 位相誤差設定信号生成部
 125 アドレス情報
 130 マスタディスク
 150 ディスク
 201 再生部
 202 信号解析部
 204 復号処理部
 221 復調部
 222 位相誤差検出部
 223 ビット値判定部
 301 記録再生部
 302 信号解析部
 304 暗号処理部

Claims (16)

  1.  付加情報を記録するグルーブ信号を生成する記録信号生成部と、
     前記記録信号生成部の生成した記録信号をマスタディスクに記録する記録部を有し、
     前記記録信号生成部は、
     前記付加情報を構成する各ビット値に応じた位相誤差設定態様を決定し、
     前記記録信号の所定区間単位で前記付加情報を構成する各ビット値に応じた位相誤差を設定した記録信号を生成する記録媒体製造装置。
  2.  前記記録信号生成部は、
     前記付加情報のビット値が0の場合と1の場合に応じて、前記グルーブ信号に設定する位相誤差の方向、または方向の組み合わせを異なる態様に設定した記録信号を生成する請求項1に記載の記録媒体製造装置。
  3.  前記付加情報は、前記ディスクに記録されるコンテンツの暗号化処理または復号処理に適用する暗号鍵を含む情報である請求項1または2に記載の記録媒体製造装置。
  4.  ディスクに記録されたグルーブ信号を読み取る再生部と、
     前記再生部の再生信号の解析を行う信号解析部を有し、
     前記信号解析部は、
     前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行う構成である情報再生装置。
  5.  前記信号解析部は、
     前記グルーブ信号のゼロクロス点の前後のサンプリング点の検出値を用いて位相誤差指標値を算出し、該位相誤差指標値を前記所定信号区間単位で積分して得られる結果と予め設定した閾値との比較により、前記所定信号区間における位相誤差の設定方向を判別する処理を行なう請求項4に記載の情報再生装置。
  6.  前記情報再生装置は、さらに、
     前記信号解析部の解析した付加情報に含まれる暗号鍵を適用して、前記ディスクに記録された暗号化コンテンツの復号処理を行う復号処理部を有する請求項4または5に記載の情報再生装置。
  7.  ディスクに記録されたグルーブ信号を読み取る再生部と、
     前記再生部においてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別し、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵を解析する信号解析部と、
     前記信号解析部の解析した暗号鍵を適用してコンテンツの暗号化処理を実行する暗号処理部と、
     前記暗号処理部の生成した暗号化コンテンツを前記ディスクに記録する記録部を有する情報記録装置。
  8.  前記信号解析部は、
     前記グルーブ信号のゼロクロス点の前後のサンプリング点の検出値を用いて位相誤差指標値を算出し、該位相誤差指標値を前記所定信号区間単位で積分して得られる結果と予め設定した閾値との比較により、前記所定信号区間における位相誤差の設定方向を判別する処理を行なう請求項7に記載の情報記録装置。
  9.  付加情報を記録するために利用されるグルーブ信号を記録した情報記録媒体であり、
     前記グルーブ信号は、所定信号区間単位で付加情報の構成ビット値に応じた異なる態様の位相誤差が設定された付加情報重畳信号として記録され、
     再生装置において前記位相誤差の設定態様の検出に基づいて前記付加情報を読み取ることを可能とした情報記録媒体。
  10.  前記グルーブ信号は、前記付加情報のビット値が0の場合と1の場合に応じて、前記グルーブ信号に設定する位相誤差の方向または方向の組み合わせを異なる態様に設定した信号である請求項9に記載の情報記録媒体。
  11.  前記付加情報は、前記ディスクに記録されるコンテンツの暗号化処理または復号処理に適用する暗号鍵を含む情報である請求項9または10に記載の情報記録媒体。
  12.  記録媒体製造装置において実行する情報記録媒体製造方法であり、
     記録信号生成部が、付加情報を記録するグルーブ信号を生成する記録信号生成ステップと、
     記録部が、前記記録信号生成ステップにおいて生成した記録信号をマスタディスクに記録する記録ステップを有し、
     前記記録信号生成ステップは、
     前記付加情報を構成する各ビット値に応じた位相誤差設定態様を決定し、
     前記記録信号の所定区間単位で、前記付加情報を構成する各ビット値に応じた位相誤差を設定した記録信号を生成するステップを有する情報記録媒体製造方法。
  13.  情報再生装置において実行する情報再生方法であり、
     再生部が、ディスクに記録されたグルーブ信号を読み取る再生ステップと、
     信号解析部が、前記再生ステップにおける再生信号の解析を行う信号解析ステップを有し、
     前記信号解析ステップは、
     前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて、前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行うステップを有する情報再生方法。
  14.  情報記録装置において実行する情報記録方法であり、
     再生部が、ディスクに記録されたグルーブ信号を読み取る再生ステップと、
     信号解析部が、前記再生ステップにおいてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別し、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵構成ビット情報を解析する信号解析ステップと、
     暗号処理部が、前記信号解析ステップにおいて解析した暗号鍵を適用してコンテンツの暗号化処理を実行する暗号処理ステップと、
     記録部が、前記暗号処理ステップにおいて生成した暗号化コンテンツを前記ディスクに記録する記録ステップを有する情報記録方法。
  15.  情報再生装置において情報再生処理を実行させるプログラムであり、
     再生部に、ディスクに記録されたグルーブ信号を読み取らせる再生ステップと、
     信号解析部に、前記再生ステップにおける再生信号の解析を行わせる信号解析ステップを有し、
     前記信号解析ステップは、
     前記グルーブ信号に含まれる位相誤差方向を、所定信号区間単位で判別して判別結果に基づいて、前記グルーブ信号に含まれる付加情報の構成ビット値の判定を行わせるステップを有するプログラム。
  16.  情報記録装置において情報記録処理を実行させるプログラムであり、
     再生部に、ディスクに記録されたグルーブ信号を読み取らせる再生ステップと、
     信号解析部に、前記再生ステップにおいてディスクから読み取られたグルーブ信号に含まれる位相誤差方向を所定信号区間単位で判別させ、判別結果に基づくビット値判定処理により前記グルーブ信号に重畳記録された暗号鍵構成ビット情報を解析させる信号解析ステップと、
     暗号処理部に、前記信号解析ステップにおいて解析した暗号鍵を適用してコンテンツの暗号化処理を実行させる暗号処理ステップと、
     記録部に、前記暗号処理ステップにおいて生成した暗号化コンテンツを前記ディスクに記録させる記録ステップを有するプログラム。
PCT/JP2010/061158 2009-07-13 2010-06-30 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム WO2011007670A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800307931A CN102473427A (zh) 2009-07-13 2010-06-30 信息记录装置、信息再现装置、记录介质制造装置、信息记录介质、方法及程序
US13/382,322 US8570847B2 (en) 2009-07-13 2010-06-30 Recording medium manufacturing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009165145A JP2011023051A (ja) 2009-07-13 2009-07-13 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム
JP2009-165145 2009-07-13

Publications (1)

Publication Number Publication Date
WO2011007670A1 true WO2011007670A1 (ja) 2011-01-20

Family

ID=43449280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061158 WO2011007670A1 (ja) 2009-07-13 2010-06-30 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム

Country Status (4)

Country Link
US (1) US8570847B2 (ja)
JP (1) JP2011023051A (ja)
CN (1) CN102473427A (ja)
WO (1) WO2011007670A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357533A (ja) * 1999-07-07 2001-12-26 Matsushita Electric Ind Co Ltd 光ディスク、その記録装置、記録方法及び再生装置
WO2002021518A1 (fr) * 2000-09-01 2002-03-14 Matsushita Electric Industrial Co., Ltd. Disque optique, lecture et enregistrement de disque optique
JP2004213781A (ja) * 2003-01-06 2004-07-29 Sony Corp マスタリング装置、ディスク製造方法、ディスク状記録媒体、ディスク再生装置、ディスク再生方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917119A (ja) * 1995-06-30 1997-01-17 Sony Corp データ記録媒体、データ記録方法及びデータ再生方法
US6735160B1 (en) 1999-07-07 2004-05-11 Matsushita Electric Industrial Co., Ltd. Optical disc, and recording apparatus, recording method, and reproducing apparatus for the same
CN1229782C (zh) * 2001-11-21 2005-11-30 松下电器产业株式会社 再现方法和装置
JP4267901B2 (ja) * 2001-11-21 2009-05-27 パナソニック株式会社 再生方法および装置
US7649824B2 (en) * 2002-07-01 2010-01-19 Panasonic Corporation Optical storage medium control data region
JP3994834B2 (ja) * 2002-09-13 2007-10-24 ソニー株式会社 情報記録装置、情報記録方法及び光学式記録媒体
KR100499586B1 (ko) * 2003-05-20 2005-07-07 엘지전자 주식회사 고밀도 광디스크의 복사 방지 정보 관리방법 및 그에 따른고밀도 광디스크와 복사 방지 정보 검출장치
JP4110530B2 (ja) * 2003-10-22 2008-07-02 ソニー株式会社 情報記録処理装置、情報再生処理装置、情報記録媒体、および方法、並びにコンピュータ・プログラム
JP4114605B2 (ja) * 2003-12-24 2008-07-09 ソニー株式会社 情報処理装置、情報記録媒体、および情報処理方法、並びにコンピュータ・プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357533A (ja) * 1999-07-07 2001-12-26 Matsushita Electric Ind Co Ltd 光ディスク、その記録装置、記録方法及び再生装置
WO2002021518A1 (fr) * 2000-09-01 2002-03-14 Matsushita Electric Industrial Co., Ltd. Disque optique, lecture et enregistrement de disque optique
JP2004213781A (ja) * 2003-01-06 2004-07-29 Sony Corp マスタリング装置、ディスク製造方法、ディスク状記録媒体、ディスク再生装置、ディスク再生方法

Also Published As

Publication number Publication date
CN102473427A (zh) 2012-05-23
US8570847B2 (en) 2013-10-29
US20120147723A1 (en) 2012-06-14
JP2011023051A (ja) 2011-02-03

Similar Documents

Publication Publication Date Title
EP1785995B1 (en) Data processing method, information recording medium manufacturing management system, recording data generation device and method, and computer program
JP4355027B2 (ja) 光ディスク、その記録装置、記録方法及び再生装置
US20020044657A1 (en) Information recording device, information playback device, information recording method, information playback method, and information recording medium and program providing medium used therewith
US20060026444A1 (en) Information recording device, information playback device, information recording method, information playback method, and information recording medium and program providing medium used therewith
US20090276635A1 (en) Controlling distribution and use of digital works
EP1616324A1 (en) Method for managing copy protection information of recording medium
JP4354614B2 (ja) 光ディスク記録装置、光ディスク記録方法
JP5407482B2 (ja) 情報処理装置、および情報処理方法、並びにプログラム
US7624282B2 (en) Method and apparatus for DVD copy protection with selective data pattern insertion
EP2270786B1 (en) Information recording processing apparatus, information reproduction processing apparatus, information recording processing method, and information reproduction processing method
JPH0721688A (ja) 光記録媒体及びその再生装置
EP1353331A2 (en) Optical disk reproduction apparatus and optical disk reproduction controlling method
KR20060048496A (ko) 정보 기록 매체 검증 장치, 및 정보 기록 매체 검증 방법,및 컴퓨터·프로그램
US7136335B2 (en) Information recording medium, recording apparatus, and reproduction apparatus
US20060291361A1 (en) Information recording device, information reproducing device, information recording medium, method, and computer program
WO2011007670A1 (ja) 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム
KR20080077407A (ko) 변별적 특징을 갖는 데이터 기록방법
JP4607605B2 (ja) 著作権管理方法、情報記録再生方法及び装置、並びに情報記録媒体及びその製造方法
EP1132906A2 (en) Optical disk apparatus and optical disk
JP2007500917A (ja) 保存媒体内情報の保全装置及び方法
WO2011030656A1 (ja) 情報記録装置、情報再生装置、記録媒体製造装置、情報記録媒体、および方法、並びにプログラム
WO2005027124A1 (ja) 情報記録処理装置、情報再生処理装置、情報記録媒体、および方法、並びにコンピュータ・プログラム
JP2009520309A (ja) 弁別的特徴を持つデータを書き込む方法
US20050140527A1 (en) Information recording processor, information playback processor, method therefor, and information recording medium and computer program used therewith
JP2004005936A (ja) 情報記録媒体、記録装置、再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030793.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13382322

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10799730

Country of ref document: EP

Kind code of ref document: A1