WO2011007598A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011007598A1
WO2011007598A1 PCT/JP2010/053812 JP2010053812W WO2011007598A1 WO 2011007598 A1 WO2011007598 A1 WO 2011007598A1 JP 2010053812 W JP2010053812 W JP 2010053812W WO 2011007598 A1 WO2011007598 A1 WO 2011007598A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
common electrode
electrode
pixel electrode
display device
Prior art date
Application number
PCT/JP2010/053812
Other languages
English (en)
French (fr)
Inventor
櫻井猛久
村田充弘
石原將市
神崎修一
中村正子
大竹忠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2010800307486A priority Critical patent/CN102472933A/zh
Priority to RU2012104845/28A priority patent/RU2012104845A/ru
Priority to JP2011522749A priority patent/JP5314140B2/ja
Priority to BR112012000796A priority patent/BR112012000796A2/pt
Priority to EP10799660A priority patent/EP2455803A4/en
Priority to US13/383,484 priority patent/US20120127417A1/en
Publication of WO2011007598A1 publication Critical patent/WO2011007598A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device in a mode in which the initial alignment of liquid crystal molecules is a vertical alignment and an electric field (for example, a horizontal electric field) is generated to control the liquid crystal molecules.
  • an electric field for example, a horizontal electric field
  • Liquid crystal display devices are characterized by thinness, light weight, and low power consumption, and are widely used in various fields. And the display performance has progressed remarkably with the passage of time, and now it has surpassed CRT (Cathode Ray Tube).
  • CRT Cathode Ray Tube
  • the display method of the liquid crystal display device is determined by how the liquid crystals are arranged in the cell.
  • a display method of a liquid crystal display device for example, a TN (Twisted Nematic) mode, an MVA (Multi-domain Vertical Alignment) mode, an IPS (In-plane Switching) mode, an OCB (Optically self-conferencing mode), and the like.
  • Various display methods are known.
  • the IPS mode is a display method in which a pixel electrode (liquid crystal drive electrode) and a counter electrode (common electrode) are arranged along the same direction, and the display is driven and controlled by an electric field formed therebetween.
  • a pixel electrode liquid crystal drive electrode
  • a counter electrode common electrode
  • the IPS mode has a feature that it has a wide viewing angle in order to change the orientation of liquid crystal molecules in the plane.
  • Patent Document 1 discloses a mode in which a picture element electrode is arranged at substantially the center of two counter electrodes, and the picture element electrode and the counter electrode are arranged at substantially equal intervals.
  • Patent Document 2 discloses a mode in which the distance between the liquid crystal drive electrode and the counter electrode is not uniform in one pixel but is a combination of two or more types of inter-electrode distances.
  • a nematic liquid crystal having a positive dielectric anisotropy is used as a liquid crystal material, and a pair of electrodes having comb teeth is formed while maintaining a high contrast by vertically aligning the nematic liquid crystal.
  • a mode display method has been proposed in which a transverse electric field is generated to control the orientation of liquid crystal molecules.
  • the background to the present invention will be described using the above mode as an example, but the present invention is not limited to the above mode.
  • the liquid crystal molecules exhibit a bend-like orientation in the lateral direction, and the director distribution forms an arch shape along the transverse electric field, so even when viewed from an oblique direction with respect to the display surface, The same display quality as when viewed from the front direction can be visually recognized. Therefore, for example, as in the VA mode, the state of birefringence of light differs between the front direction and the oblique direction due to the liquid crystal molecules being rod-shaped, and the voltage-transmittance characteristics (V ⁇ The problem that the (T-characteristic) is changed is solved.
  • FIG. 11 is a schematic plan view of a pixel unit of a liquid crystal display device showing a case where the interval between comb teeth of a pair of electrodes varies depending on the region.
  • comb teeth extending from the linear electrode constituting the upper side of the picture element toward the inner direction of the picture element, and the inner side of the picture element from the linear electrode constituting the lower side of the picture element The distance between the comb teeth extended in the direction differs depending on the location.
  • the shaded area in FIG. 11 causes non-uniform display. Therefore, it is conceivable to eliminate the non-uniformity by shielding the area where the non-uniform display occurs, but this causes a new problem that the effective aperture ratio decreases.
  • the present invention has been made in view of the above-described situation, and an object of the present invention is to provide a liquid crystal display device capable of obtaining a uniform display without reducing the transmittance.
  • the present inventors have made various studies on a liquid crystal display device using a pair of electrodes having comb teeth for a liquid crystal layer including a nematic liquid crystal having a positive dielectric anisotropy with an initial tilt as a vertical alignment. Attention was paid to the comb-tooth pattern of the pair of electrodes.
  • the pixel opening width is W
  • the width of the comb teeth is L
  • the distance between the comb teeth is S
  • the number of comb teeth of the electrode having the smaller number of comb teeth among the pair of electrodes is n.
  • the present invention is a liquid crystal display device comprising a first substrate and a second substrate disposed to face each other, and a liquid crystal layer sandwiched between the first substrate and the second substrate, wherein the liquid crystal The layer contains liquid crystal molecules having a positive dielectric anisotropy, and the liquid crystal molecules are aligned in a direction perpendicular to the surface of the first substrate in the absence of a voltage applied.
  • the common electrode trunk portion has two portions parallel to the length direction of the comb tooth portion of the common electrode, and each of the two parallel portions is arranged as described above.
  • One is arranged outside the comb teeth at both ends of the pixel electrode, and the distance between the two parallel parts is W,
  • the width of the comb teeth of the pixel electrode and the common electrode is L
  • the distance between the comb teeth of the pixel electrode and the comb teeth of the common electrode, and the comb teeth of the end of the pixel electrode and the above A liquid crystal satisfying a relationship of (W ⁇ S) / (L + S) of 2n + 1, where S is the distance between one of the two parallel parts and n is the number of comb teeth of the common electrode. It is a display device.
  • the liquid crystal display device of the present invention includes a first substrate and a second substrate that are arranged to face each other, and a liquid crystal layer that is sandwiched between the first substrate and the second substrate.
  • the liquid crystal layer is filled with liquid crystal molecules whose orientation is controlled by application of a constant voltage.
  • a voltage can be applied to the liquid crystal layer to control the orientation of the liquid crystal molecules.
  • the liquid crystal layer contains liquid crystal molecules having positive dielectric anisotropy. Therefore, when a voltage is applied to the liquid crystal layer, the liquid crystal molecules are aligned along the direction of the electric field, and as a result, the liquid crystal molecule group draws a suitable shape, for example, an arch shape.
  • the liquid crystal molecules are aligned in a direction perpendicular to the surface of the first substrate when no voltage is applied. By adjusting the initial alignment of the liquid crystal molecules in this way, light can be effectively blocked during black display.
  • Examples of a method for vertically aligning liquid crystal molecules without applying a voltage include a method in which a vertical alignment film is disposed on the surface of the first substrate and / or the second substrate in contact with the liquid crystal layer.
  • liquid crystal display device of the present invention since the liquid crystal molecules are vertically aligned in the state where no voltage is applied, high contrast can be obtained and, for example, in the state where the voltage is applied, bend-like alignment is exhibited. An excellent viewing angle can be obtained.
  • the first substrate includes a pixel electrode having a trunk portion and a comb tooth portion and a common electrode, and the comb tooth portion of the pixel electrode and the comb tooth portion of the common electrode are mutually spaced apart from each other at equal intervals.
  • the parts are arranged in parallel and alternately meshing with each other.
  • a pixel electrode is an electrode to which a signal voltage is applied
  • a common electrode is an electrode to which a common voltage is applied.
  • the trunk portion of the common electrode has two portions parallel to the length direction of the comb tooth portion of the common electrode, and each of the two parallel portions is a comb tooth portion at both ends of the pixel electrode. One outside is arranged.
  • the common electrode has a trunk as a component in addition to the comb teeth.
  • the trunk portion of the common electrode functions not only as a trunk portion for protruding the comb teeth, but also as a member surrounding the comb teeth portion of the pixel electrode.
  • the mode of the present invention is a display method in which a transverse electric field is formed between the comb-tooth portion of the pixel electrode and the comb-tooth portion of the common electrode in principle, but the trunk portion of the common electrode is further parallel to the comb-tooth portion of the pixel electrode.
  • the desired electric field (for example, a transverse electric field) can be formed between the comb teeth of the pixel electrode and the trunk of the common electrode, and can be used as an effective area of the pixel. Become.
  • the distance between the two parallel parts is W
  • the width of the comb teeth of the pixel electrode and the common electrode is L
  • the distance between the comb teeth of the pixel electrode and the comb teeth of the common electrode is S
  • the number of comb teeth of the common electrode is n
  • (WS) The value of / (L + S) satisfies the relationship of 2n + 1.
  • the area between the two parallel parts of the common electrode is not only used as the effective area of the picture element, but the width of the picture element area is defined by the two parallel parts.
  • the width of the comb tooth portion of the pixel electrode and the comb tooth portion of the common electrode is constant, and the distance between the comb tooth portion of the pixel electrode and the comb tooth portion of the common electrode is constant, Furthermore, the above relationship is satisfied when the distance between the comb tooth portion at the end of the pixel electrode and the trunk portion of the common electrode is the same as the distance between the comb tooth portion of the pixel electrode and the comb tooth portion of the common electrode.
  • the configuration of the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are essential.
  • the two parallel portions of the trunk portion of the common electrode represent two specified to define the range of picture elements, and the liquid crystal display device as a whole is limited to two. However, three or more may be used. Further, the two parallel portions of the trunk portion of the common electrode may have a single electrode structure connected to each other when viewed as a whole.
  • L, S, and W define L and S with respect to W, and do not limit the value of L or S for a portion that does not satisfy W.
  • L is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Thereby, a response speed can be improved and the probability of disconnection can be reduced.
  • the S is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Thereby, the transmittance can be improved and the possibility of a short circuit can be reduced. More preferably, the L is 2 ⁇ m or more and the S is 2 ⁇ m or more, whereby an optimally balanced display can be obtained.
  • an electric field (for example, a lateral electric field) is generated using a pair of electrodes with respect to a liquid crystal layer including a nematic liquid crystal having positive dielectric anisotropy that is vertically aligned. It is possible to suppress the occurrence of display unevenness in the liquid crystal display device.
  • FIG. 2 is a schematic plan view of a pixel unit of a TFT substrate provided in the liquid crystal display device of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view taken along the line A-A ′ of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view taken along line B-B ′ of FIG. 1 and shows a form in which L is widened.
  • FIG. 2 is a schematic cross-sectional view taken along line B-B ′ of FIG. 1 and shows a form in which S is expanded. It is a graph which shows the correlation of the applied voltage (V) according to the value of S, and the transmittance
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display device of Embodiment 3.
  • Embodiment 1 The liquid crystal display device of Embodiment 1 generates an arch-like lateral electric field with respect to a liquid crystal layer by a pair of electrodes formed on the same substrate, and controls the alignment of liquid crystal molecules whose initial alignment is vertical alignment. This is a liquid crystal display device of a type that controls display.
  • the liquid crystal display device of Embodiment 1 includes a liquid crystal layer and a pair of substrates that sandwich the liquid crystal layer. More specifically, the liquid crystal display device of Embodiment 1 includes these members in the order of the TFT substrate, the liquid crystal layer, and the counter substrate from the back side toward the observation surface side.
  • the liquid crystal layer contains nematic liquid crystal having positive dielectric anisotropy ( ⁇ > 0).
  • FIG. 1 is a schematic plan view of a pixel unit of a TFT substrate included in the liquid crystal display device according to the first embodiment.
  • the TFT substrate is a source wiring (signal electrode line) 11 for transmitting an image signal, a gate wiring (scanning signal line) 12 for transmitting a scanning signal, and a switching element, one for each picture element.
  • Thin film transistors (TFTs) 14 provided one by one.
  • the TFT 14 is provided in the vicinity of the intersection of the source wiring 11 and the gate wiring 12.
  • the TFT 14 is connected to the source electrode 11 connected to the source wiring 11, the gate electrode 12 connected to the gate wiring 12, and the semiconductor layer 15.
  • a drain electrode 13 connected to the source electrode 11 is included.
  • the TFT substrate has a pixel electrode 21 and a common electrode 22 for applying a constant voltage to the liquid crystal layer.
  • the source wirings 11 are provided so as to be linear and parallel to each other.
  • the gate wiring 12 is also provided in a straight line and parallel to each other.
  • the source wiring 11 and the gate wiring 12 are arranged so as to be orthogonal to each other.
  • the source line 11 is connected to a source driver, and a source voltage (signal voltage) that is an image signal supplied from the source driver is applied to the TFT 14.
  • the gate wiring 12 is connected to a gate driver, and a gate voltage serving as a scanning signal supplied in a pulse manner from the gate driver at a predetermined timing is applied to the TFT 14 in a line sequential manner.
  • a drain lead line 13 extends from the drain electrode 13 of the TFT 14.
  • the drain lead-out wiring 13 and the pixel electrode 21 are arranged in different layers via an insulating film, and are connected to each other via a contact portion 16 provided in the insulating film.
  • the TFT 14 is connected to the pixel electrode 21 via the drain lead-out wiring 13 and the contact portion 16, and the pixel electrode 21 is connected to the pixel electrode 21 through the TFT 14 which is turned on for a certain period by the input of the scanning signal.
  • a signal voltage supplied from the source wiring 11 is applied at a predetermined timing.
  • the common electrode 22 is disposed in a layer different from the source wiring 11 and the gate wiring 12 with an insulating film interposed therebetween, and is disposed so as to overlap with the source wiring 11 and the gate wiring 12. A common voltage maintained at a constant voltage is applied to the common electrode 22.
  • the pixel electrode 21 includes a trunk portion 21a having a relatively wide width and a plurality of comb teeth portions 21b having a relatively narrow width that are extended from a part of the trunk portion 21a.
  • the common electrode 22 is a trunk portion 22a having a relatively wide width at a portion overlapping with the source wiring 11 and the gate wiring 12, and has a comb tooth portion 22b having a relatively narrow width extending from a part of the trunk portion 22a.
  • the trunk portion 22a of the common electrode has a matrix shape corresponding to a shape in which the source wiring 11 and the gate wiring 12 are combined as a whole.
  • the comb teeth 21b of the pixel electrode 21 and the comb teeth 22b of the common electrode 22 are both linear and provided so as to be parallel to each other.
  • the comb-tooth portions 21 of the pixel electrode 21 and the comb-tooth portions 22b of the common electrode 22 are provided so that they are alternately meshed with each other at a predetermined interval.
  • the comb teeth 21 b of the pixel electrode 21 and the comb teeth 22 b of the common electrode 22 are provided in parallel with the source wiring 11. Therefore, the comb tooth portion 21 b of the pixel electrode 21 is also in a parallel relationship with a portion overlapping the source wiring 11 of the trunk portion 22 a of the common electrode 22.
  • the orientation of liquid crystal molecules can be controlled by a lateral electric field formed between the comb teeth of the pixel electrode and the comb teeth of the common electrode.
  • the orientation of the liquid crystal molecules can also be controlled by a lateral electric field formed between the comb teeth of the pixel electrode and a portion parallel to the comb teeth of the main electrode of the common electrode.
  • one picture element is defined by a region surrounded by the common electrode 22 and is controlled by one TFT 14.
  • the pixel opening width is defined by the distance between two portions of the trunk portion 22a of the common electrode 22 that are parallel to the comb-tooth portion of the pixel electrode.
  • the width L of the comb tooth portion 21b of the pixel electrode 21 and the width L of the comb tooth portion 22b of the common electrode 22 are provided so as to be substantially the same. Further, the distances S between the comb teeth 21b of the pixel electrode 21 and the comb teeth 22b of the common electrode 22 are also set to be substantially the same. Furthermore, the distance S between the comb tooth portion 21b of the pixel electrode 21 and the portion 22c parallel to the comb tooth portion 21b of the pixel electrode 21 of the trunk portion 22a of the common electrode 22 is also the distance between the comb tooth portion 21b of the pixel electrode 21.
  • the distance between the portions 22c of the trunk portion 22a of the common electrode 22 parallel to the comb teeth portion 21b of the pixel electrode 21 is the opening width W of the picture element.
  • the opening width of a picture element is defined by a distance W between portions 22 c parallel to the comb tooth portions 21 b of the pixel electrode 21 of the trunk portion 22 a of the common electrode 22.
  • the width of the comb tooth portion 21 b of the pixel electrode 21 is L
  • the width of the comb tooth portion 22 b of the common electrode 22 is L
  • the horizontal electric field formed in the picture element has uniformity, and it is possible to effectively suppress the occurrence of display unevenness and obtain a high aperture ratio. it can.
  • FIG. 2 is a schematic sectional view taken along the line A-A ′ of FIG.
  • the TFT substrate has a gate electrode (gate wiring) 12 on the surface of the insulating substrate 31 on the liquid crystal layer side, and further includes a semiconductor layer 15 and a source via a gate insulating film 32. It has an electrode (source wiring) 11 and a drain electrode (drain lead-out wiring) 13. The source electrode (source wiring) 11 is connected to the drain electrode (drain lead wiring) 13 through the semiconductor layer 15. Note that a combination of the gate electrode 12, the semiconductor layer 15, the source electrode 11, and the drain electrode 13 constitutes one TFT 14.
  • FIG. 3 and 4 are schematic sectional views taken along the line B-B 'of FIG.
  • FIG. 3 shows a form in which the L is widened
  • FIG. 4 shows a form in which the S is widened.
  • L is preferably 2 ⁇ m or more.
  • S is preferably 2 ⁇ m or more.
  • FIG. 5 is a graph showing the correlation between the applied voltage (V) and the transmittance (%) according to the value of S.
  • a dotted line indicates when S is narrower, and a solid line indicates when S is wider.
  • FIG. 5 when S is increased, the maximum transmittance is improved, but the applied voltage for obtaining sufficient transmittance is increased.
  • FIG. 6 is a graph showing a correlation between response time and transmittance (%) according to the value of S.
  • a dotted line indicates when S is narrower, and a solid line indicates when S is wider.
  • increasing S increases the maximum transmittance, but increases the response time to obtain a sufficient transmittance.
  • the liquid crystal molecule has a high response speed in a portion where L is large, that is, a portion where S is small, and a portion where L is small. That is, the response speed is slow in the portion where S is large.
  • the response speed of the entire picture element is slow. Therefore, only by setting equal L and S within one picture element, and setting each equal L and S parameter value corresponding to the opening width W of one picture element, an excellent effect can be obtained.
  • the present invention is different from the idea that the widths of L and S are simply widened or narrowed.
  • FIG. 7 is a graph showing the relationship between the values of L and S and the aperture ratio when W is fixed at 50 ⁇ m in the first embodiment.
  • the solid line indicates when L is fixed at 3 ⁇ m
  • the broken line indicates when S is fixed at 6 ⁇ m.
  • Examples of the material for the insulating substrate 31 include translucent materials such as glass and plastic.
  • Examples of the material of the gate insulating film 32 include transparent insulating materials such as silicon oxide and silicon nitride.
  • Examples of the material of the source electrode (source wiring) 11, the gate electrode (gate wiring) 12, and the drain electrode (drain leading wiring) 13 include metals such as aluminum, tantalum, and molybdenum. Since the source electrode (source wiring) 11 and the drain electrode (drain lead-out wiring) 13 are arranged in the same layer, the manufacturing process is simplified by using the same material for them.
  • An interlayer insulating film 33 is formed on the surface on the liquid crystal layer side of the source electrode (source wiring) 11 and the drain electrode (drain lead-out wiring) 13, and via a contact portion 16 provided in the interlayer insulating film 33.
  • the drain electrode (drain lead wiring) 13 and the pixel electrode 21 are connected.
  • the material of the interlayer insulating film 33 may be an inorganic material or an organic material.
  • the interlayer insulating film 33 may be composed of a plurality of layers made of different materials, and the plurality of layers may have a laminated structure of an inorganic insulating layer and an organic insulating layer.
  • the pixel electrode 21 and the common electrode 22 are both arranged in the same layer. Thereby, a horizontal electric field can be formed with high density between the pixel electrode 21 and the common electrode 22, and the liquid crystal molecules in the liquid crystal layer can be controlled with high accuracy.
  • Examples of the material of the pixel electrode 21 and the common electrode 22 include metal oxides such as ITO (Indium Tin Oxide) and indium zinc oxide (IZO), and metals such as aluminum and chromium. Since the pixel electrode 21 and the common electrode 22 are arranged in the same layer, the manufacturing process is simplified by using the same material. Further, as the material, the use of a transparent electrode such as the metal oxide from the viewpoint of increasing the transmittance.
  • metal oxides such as ITO (Indium Tin Oxide) and indium zinc oxide (IZO)
  • metals such as aluminum and chromium. Since the pixel electrode 21 and the common electrode 22 are arranged in the same layer, the manufacturing process is simplified by using the same material. Further, as the material, the use of a transparent electrode such as the metal oxide from the viewpoint of increasing the transmittance.
  • a vertical alignment film 34 covering these electrodes is disposed.
  • the initial inclination of the liquid crystal molecules can be aligned perpendicularly (90 ⁇ 0 to 4 °) with respect to the TFT substrate surface, and the vertical alignment can be obtained without applying voltage.
  • the material of the vertical alignment film 34 include resins such as polyimide.
  • FIGS. 8 and 9 are cross-sectional schematic view showing the overall configuration of a liquid crystal display panel included in the liquid crystal display device of Embodiment 1.
  • FIG. 8 shows a state in which no voltage is applied to the liquid crystal layer
  • FIG. 9 shows a state in which a voltage higher than the threshold is applied to the liquid crystal layer.
  • the liquid crystal display panel 1 includes a TFT substrate (first substrate) 2, a counter substrate (second substrate) 3 disposed to face the TFT substrate 2, and a gap between them. And a sandwiched liquid crystal layer 4.
  • the liquid crystal display device according to the first embodiment includes a backlight unit (not shown) provided on the back side of the liquid crystal display panel 1 in addition to the liquid crystal display panel 1.
  • the liquid crystal molecules 51 in the liquid crystal layer 4 exhibit homeotropic alignment, that is, alignment perpendicular to the substrate surface. More specifically, the long axes of the rod-like liquid crystal molecules 51 are oriented in a direction perpendicular to the substrate surface, and all the liquid crystal molecules 51 are arranged in the same direction.
  • the orientation of the liquid crystal molecules 51 changes along the arch-shaped lateral electric field formed between these electrodes. Arise.
  • the group of liquid crystal molecules 51 affected by the electric field in this way exhibits a bend-like orientation having symmetry about the intermediate region between the pixel electrode 21 and the counter electrode 22.
  • the liquid crystal molecules 51 located immediately above the pixel electrode 21 and the counter electrode 22 are not easily affected by changes in the electric field, so that the vertical alignment is maintained.
  • the liquid crystal molecules 51 located in the intermediate region between the electrodes farthest from each electrode also maintain the vertical alignment.
  • the counter substrate 3 disposed opposite to the TFT substrate 2 via the liquid crystal layer 4 has a range overlapping each pixel defined by the TFT substrate on the surface of the colorless and transparent insulating substrate 41 on the liquid crystal layer 4 side.
  • the organic resin layer 42 includes a color filter (CF) layer and a black matrix (BM) layer that shields light between the CFs.
  • An overcoat layer 43 for flattening the surface of the counter substrate 3 is disposed on the surface of the organic resin layer 42 on the liquid crystal layer 4 side, thereby suppressing the occurrence of disturbance in the liquid crystal molecules. Can do.
  • a vertical alignment film 44 similar to that of the TFT substrate 2 is disposed on the surface of the overcoat layer 43 on the liquid crystal layer 4 side.
  • the BM layer is formed so as to overlap with the periphery of the picture element, that is, to overlap with the source line 11, the gate line 12, and the common electrode 22.
  • the CF layer is used for color display, and is formed from a transparent organic resin such as an acrylic resin containing a pigment, so that the position of the CF layer corresponds to each pixel, that is, It is formed so as to overlap with a region surrounded by the common electrode 22.
  • Examples of the material of the insulating substrate 41 include translucent insulating materials such as glass and plastic.
  • Examples of the material for the BM layer include a light-shielding metal such as chromium (Cr), an organic film having a light-shielding property such as an acrylic resin containing carbon, and the like.
  • the liquid crystal display device is a color liquid crystal display device including the counter substrate 3 including the CF layer, and outputs light of each color such as red (R), green (G), and blue (B).
  • One pixel is composed of three picture elements (sub-pixels).
  • the type and number of the colors of the picture elements constituting each pixel are not particularly limited and can be set as appropriate.
  • Each pixel may be composed of, for example, three color picture elements of cyan (C), magenta (M), and yellow (Y), or may be composed of four or more color picture elements.
  • the TFT substrate 2 and the counter substrate 3 are bonded to each other by a sealant applied along the outer periphery of the display region via a spacer such as plastic beads.
  • a polarizing plate 35 is pasted on the surface of the insulating substrate 31 opposite to the liquid crystal layer 4 of the TFT substrate 2, and on the surface of the insulating substrate 41 opposite to the liquid crystal layer 4 of the counter substrate 3. Is attached with a polarizing plate 45.
  • the transmission axes of these polarizing plates 35 and 45 are in a crossed Nicols relationship orthogonal to each other. Further, the transmission axis of the polarizing plate 35 on the TFT substrate 2 side and the transmission axis of the polarizing plate 45 on the counter substrate 3 side are both the comb teeth 21 b of the pixel electrode 21 and the comb teeth 22 b of the common electrode 22.
  • an optical film such as a retardation film or a viewing angle compensation film may be disposed for the liquid crystal display device of the first embodiment.
  • FIG. 10 is a schematic plan view of a pixel unit of a TFT substrate included in the liquid crystal display device of the second embodiment.
  • the source line 11, the comb tooth portion 21 b of the pixel electrode 21, and a part of the trunk portion 22 a and the comb tooth portion 22 b of the common electrode 22 are not linear, but are pixel units.
  • the common line 22 parallel to the length direction of the source line 11 and a part of the trunk portion 22a of the common electrode 22, that is, the comb tooth portion 21b of the pixel electrode 21, formed across a plurality of picture elements.
  • the trunk portion 22c has a zigzag shape as a whole.
  • the pair of polarizing plates are arranged so that the direction of the polarization axis is the same as that of the first embodiment, that is, parallel to or perpendicular to the extending direction of the gate wiring 12.
  • the portion formed in the above-mentioned character shape is provided to extend in both directions with a vertical bisector of the picture element as a boundary. Further, the portion formed in the above-mentioned character shape has a symmetrical structure with respect to each other with respect to the vertical bisector of the picture element. By doing so, the liquid crystal molecules can be oriented obliquely with respect to the outer frame line of the picture element, and the area of each direction can be aligned equally, so that the viewing angle characteristics are further improved.
  • the width of the comb tooth portion 21b of the pixel electrode 21 is L
  • the width of the comb tooth portion 22b of the common electrode 22 is L
  • the comb tooth portion 21b of the pixel electrode 21 and the comb tooth portion 22b of the common electrode 22 S the distance between the portion 22c of the stem 22a of the common electrode 22 parallel to the comb tooth portion 21b of the pixel electrode 21 of the common electrode 22, and the comb tooth portion 21b of the pixel electrode 21 of the stem portion 22a of the common electrode 22 (W ⁇ S) where the distance between the parallel parts 22c, that is, the opening width of the picture element is W, and the number of comb teeth 22b of the common electrode 22 is n (WS).
  • the value of / (L + S) satisfies the relationship of 2n + 1.
  • the horizontal electric field formed in the picture element has uniformity, the occurrence of display unevenness is effectively suppressed, and a high aperture ratio can be obtained.
  • FIG. 12 is a schematic cross-sectional view illustrating the configuration of the liquid crystal display device according to the third embodiment.
  • the liquid crystal display device of Embodiment 3 includes a liquid crystal display panel having a liquid crystal layer 4 and a pair of substrates 2 and 3 sandwiching the liquid crystal layer 4, and one of the pair of substrates is a TFT substrate 2. And the other is the counter substrate 3.
  • the liquid crystal display device of Embodiment 3 differs from Embodiments 1 and 2 in the following points.
  • the liquid crystal display device of this embodiment has a counter electrode 61 on the counter substrate 3 side.
  • the counter substrate 3 includes an insulating substrate 41.
  • a counter electrode 61 On the main surface of the insulating substrate 41 on the liquid crystal layer 4 side, a counter electrode 61, a dielectric layer (insulating layer) 62, and a vertical alignment film 44. Are stacked in this order.
  • An organic resin layer such as a color filter layer or a black matrix layer may be provided between the counter electrode 61 and the insulating substrate 41.
  • the counter electrode 61 is formed from a transparent conductive film such as ITO or IZO. Each of the counter electrode 61 and the dielectric layer 62 is formed without a break so as to cover at least the entire display area. A predetermined potential common to each picture element is applied to the counter electrode 61.
  • the dielectric layer 62 is formed from a transparent insulating material. Specifically, it is formed from an inorganic insulating film such as silicon nitride, an organic insulating film such as acrylic resin, or the like.
  • the TFT substrate 2 includes an insulating substrate 31, and the pixel substrate 21, the common electrode 22, and the vertical alignment film 34 are provided on the TFT substrate 2 as in the first and second embodiments. Further, polarizing plates 35 and 45 are disposed on the outer main surfaces of the TFT substrate 2 and the counter substrate 3.
  • the common electrode 22 and the counter electrode 61 may be grounded, and the common electrode 22 and the counter electrode 61 may be applied with voltages having the same magnitude and polarity, or voltages having different magnitudes and polarities may be applied to each other. It may be applied.
  • the occurrence of display unevenness can be suppressed as in the first embodiment. Further, the response speed can be improved by forming the counter electrode 61.
  • Liquid crystal display panel 2 TFT substrate 3: Counter substrate 4: Liquid crystal layer 11: Source wiring (source electrode) 12: Gate wiring (gate electrode) 13: Drain lead wiring (drain electrode) 14: TFT 15: Semiconductor layer 16: Contact portion 21: Pixel electrode 21a: Pixel electrode (trunk portion) 21b: Pixel electrode (comb portion) 22: Common electrode 22a: Common electrode (stem) 22b: Common electrode (comb portion) 22c: Common electrode (part parallel to the length direction of the comb tooth portion of the pixel electrode) 31, 41: insulating substrate 32: gate insulating film 33: interlayer insulating film 34, 44: vertical alignment film 35, 45: polarizing plate 42: organic resin layer 43: overcoat layer 51: liquid crystal molecule 61: counter electrode 62: dielectric Body layer

Abstract

本発明は、透過率を落とさずに均一な表示を得ることができる液晶表示装置を提供する。 本発明の液晶表示装置は、互いに対向配置された第一基板及び第二基板と、上記第一基板と上記第二基板との間に挟持された液晶層とを備える液晶表示装置であって、上記液晶層は、正の誘電率異方性をもつ液晶分子を含有し、上記液晶分子は、電圧無印加状態で上記第一基板の表面に対して垂直の方向に配向し、上記第一基板は、幹部と櫛歯部とを有する画素電極及び共通電極を有し、上記画素電極の櫛歯部と上記共通電極の櫛歯部とは、等間隔を空けて互いの櫛歯部が平行に、かつ交互に噛み合わさって配置されており、上記共通電極の幹部は、上記共通電極の櫛歯部の長さ方向と平行な部位を二本有し、上記二本の平行な部位のそれぞれは、上記画素電極の両末端の櫛歯部の外側に一つずつ配置され、上記二本の平行な部位間の距離をW、上記画素電極及び上記共通電極の櫛歯部の幅をL、上記画素電極の櫛歯部と上記共通電極の櫛歯部との間の距離、及び、上記画素電極の末端の櫛歯部と上記二本の平行な部位の一方との間の距離をS、上記共通電極の櫛歯部の数をnとしたときに、(W-S)/(L+S)の値が2n+1の関係を満たす液晶表示装置である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、液晶分子の初期配向を垂直配向とし、電界(例えば、横電界)を発生させて液晶分子の制御を行うモードの液晶表示装置に関する。
液晶表示装置は薄型、軽量及び低消費電力を特徴とし、様々な分野で広く用いられている。そしてその表示性能は、年月の経過に伴い格段に進歩してきており、いまやCRT(陰極線管)を凌ぐほどまでになってきている。
液晶表示装置の表示方式はセル内で液晶をどのように配列させるかによって決定される。従来、液晶表示装置の表示方式としては、例えば、TN(Twisted Nematic)モード、MVA(Multi-domain Vertical Alignment)モード、IPS(In-plane Switching)モード、OCB(Optically self-Compensated Birefringence)モード等の各種表示方式が知られている。
このうち、IPSモードは、絵素電極(液晶駆動電極)と対向電極(共通電極)とを同一の方向に沿って配置し、これらの間で形成される電界によって表示を駆動制御する表示方式である(例えば、特許文献1及び2参照。)。IPSモードは、面内で液晶分子の配向の向きを変化させるため広い視野角を有するという特徴を有する。
特許文献1では、絵素電極が2本の対向電極のほぼ中央に配置され、絵素電極と対向電極との間隔が実質的に等間隔となるように配置される形態が開示されている。特許文献2では、液晶駆動電極と対向電極との距離を1画素内で全て均一とするのではなく、2種類以上の電極間距離の組み合わせとしている形態が開示されている。
特開平9-230380号公報 特開平10-62802号公報
このようなIPSモードに対し、最近、液晶材料として正の誘電率異方性を有するネマチック液晶を用い、該ネマチック液晶を垂直配向させて高コントラスト性を保ちながら、櫛歯をもつ一対の電極を用いて横電界を発生させて液晶分子の配向を制御するモードの表示方式が提案されている。以下、上記モードを例にして、本発明に至った経緯について説明するが、本発明は上記モードに限定されるものではない。
上記モードによれば、液晶分子は横方向のベンド状配向を示し、ダイレクター分布が横電界に沿ったアーチ状を形成するため、表示面に対して斜め方向から見たときであっても、正面方向から見たときと同様の表示品位を視認することができるようになる。したがって、例えば、VAモードのように、液晶分子が棒状であることに起因して正面方向と斜め方向との間で光の複屈折の状態が異なり、見る角度によって電圧-透過率特性(V-T特性)が変化してしまうといった問題は解消される。
しかしながら、上記モードにおいては、上記一対の電極が有する櫛歯の設計によっては、表示ムラの発生や視角によって見え方が異なるという現象が生じることがあった。
図11は、一対の電極の櫛歯の間隔が領域によって異なる場合を示す液晶表示装置の絵素単位の平面模式図である。図11に示すように、絵素の上辺を構成する線状の電極から絵素の内部方向に向かって延伸された櫛歯と、絵素の下辺を構成する線状の電極から絵素の内部方向に向かって延伸された櫛歯との間の距離が、場所によってそれぞれ異なっている。このような場合、図11の斜線で示した領域が不均一な表示を発生させる原因となる。そこで、この不均一な表示を発生させる領域を遮光してしまうことで、不均一さを解消することが考えられるが、そうすると実効開口率が減少してしまうという新たな課題を生じてしまう。
本発明は、上記現状に鑑みてなされたものであり、透過率を落とさずに均一な表示を得ることができる液晶表示装置を提供することを目的とするものである。
本発明者らは、初期傾斜を垂直配向とした正の誘電率異方性を有するネマチック液晶を含む液晶層に対して櫛歯をもつ一対の電極を用いるタイプの液晶表示装置について種々検討したところ、一対の電極が有する櫛歯のパターンに着目した。そして、絵素の開口幅をW、櫛歯の幅をL、櫛歯間の距離をS、一対の電極のうち櫛歯の数がより少ない側の電極の櫛歯の数をnとしたときに、(W-S)/(L+S)の値が2n+1の関係を満たすときに、透過率を落とさずに均一な表示を得ることが可能となることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、互いに対向配置された第一基板及び第二基板と、上記第一基板と上記第二基板との間に挟持された液晶層とを備える液晶表示装置であって、上記液晶層は、正の誘電率異方性をもつ液晶分子を含有し、上記液晶分子は、電圧無印加状態で上記第一基板の表面に対して垂直の方向に配向し、上記第一基板は、幹部と櫛歯部とを有する画素電極及び共通電極を有し、上記画素電極の櫛歯部と上記共通電極の櫛歯部とは、等間隔を空けて互いの櫛歯部が平行に、かつ交互に噛み合わさって配置されており、上記共通電極の幹部は、上記共通電極の櫛歯部の長さ方向と平行な部位を二本有し、上記二本の平行な部位のそれぞれは、上記画素電極の両末端の櫛歯部の外側に一つずつ配置され、上記二本の平行な部位間の距離をW、上記画素電極及び上記共通電極の櫛歯部の幅をL、上記画素電極の櫛歯部と上記共通電極の櫛歯部との間の距離、及び、上記画素電極の末端の櫛歯部と上記二本の平行な部位の一方との間の距離をS、上記共通電極の櫛歯部の数をnとしたときに、(W-S)/(L+S)の値が2n+1の関係を満たす液晶表示装置である。
本発明の液晶表示装置は、互いに対向配置された第一基板及び第二基板と、上記第一基板と上記第二基板との間に挟持された液晶層とを備える。上記液晶層には、一定の電圧の印加によって配向性が制御される液晶分子が充填されている。上記第一基板及び/又は上記第二基板に配線、電極、半導体素子等を設けることで、液晶層内に電圧を印加し、液晶分子の配向性を制御することができる。
上記液晶層は、正の誘電率異方性をもつ液晶分子を含有する。そのため、液晶層に電圧が印加されることで、液晶分子は電界の向きに沿って配向することになり、結果として、液晶分子群は、好適な形状、例えば、アーチ状を描くことになる。
上記液晶分子は、電圧無印加状態で上記第一基板の表面に対して垂直の方向に配向する。液晶分子の初期配向をこのように調節することで、黒表示時の光の遮断を効果的に行うことができる。電圧無印加の状態で液晶分子を垂直配向させる方法としては、例えば、上記第一基板及び/又は第二基板の液晶層と接する面に垂直配向膜を配置する方法が挙げられる。
したがって、本発明の液晶表示装置によれば、電圧無印加状態で液晶分子が垂直配向しているため、高いコントラストを得ることができ、かつ電圧印加状態で、例えば、ベンド状配向を示すため、優れた視野角を得ることができる。
上記第一基板は、幹部と櫛歯部とを有する画素電極及び共通電極を有し、上記画素電極の櫛歯部と上記共通電極の櫛歯部とは、等間隔を空けて互いの櫛歯部が平行に、かつ交互に噛み合わさって配置されている。本発明において画素電極とは、信号電圧が印加される電極であり、共通電極とは、共通電圧が印加される電極である。画素電極及び共通電極のそれぞれに櫛歯部を設けることで、効率的に液晶層内に所望の電界(例えば、横電界)を形成することができる。また、これらの櫛歯部を互いに平行に、かつ交互に噛み合わせて配置することで、均一な電界を生じさせることができるので、表示ムラの低減となる。
上記共通電極の幹部は、上記共通電極の櫛歯部の長さ方向と平行な部位を二本有し、上記二本の平行な部位のそれぞれは、上記画素電極の両末端の櫛歯部の外側に一つずつ配置されている。本発明において共通電極は、櫛歯部のほかに幹部を構成要素として有している。上記共通電極の幹部は、櫛歯を突出させる幹の部分としての役割のみならず、画素電極の櫛歯部を囲う部材としても機能する。本発明のモードは、原則として画素電極の櫛歯部と共通電極の櫛歯部との間で横電界を形成する表示方式であるが、共通電極の幹部を更に画素電極の櫛歯部と平行に延伸することで、画素電極の櫛歯部と共通電極の幹部との間においても所望の電界(例えば、横電界)を形成することができ、絵素の有効領域として活用することが可能となる。
上記二本の平行な部位間の距離をW、上記画素電極及び上記共通電極の櫛歯部の幅をL、上記画素電極の櫛歯部と上記共通電極の櫛歯部との間の距離、及び、上記画素電極の末端の櫛歯部と上記二本の平行な部位の一方との間の距離をS、上記共通電極の櫛歯部の数をnとしたときに、(W-S)/(L+S)の値が2n+1の関係を満たす。すなわち、このように共通電極の二本の平行な部位を用いてこれらで挟まれる領域を絵素の有効領域とするのみならず、上記二本の平行な部位によって絵素領域の幅を規定し、その幅の値に合わせて、画素電極の櫛歯部及び共通電極の櫛歯部の幅を一定とし、画素電極の櫛歯部と共通電極の櫛歯部との間の距離を一定とし、更に、画素電極の末端の櫛歯部と共通電極の幹部との間の距離を、画素電極の櫛歯部と共通電極の櫛歯部との間の距離と同じとしたとき、上記関係を満たす条件でパターニングを行うことで、所望の電界(例えば、横電界)を最も均一に形成することができ、その結果、どの位置及び角度から絵素を見ても均一な表示を視認することが可能な特性を得ることができる。
本発明の液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明の液晶表示装置において上記共通電極の幹部の二本の平行な部位とは、絵素の範囲を規定するために特定される二本を表しており、液晶表示装置全体として二本に限定されるわけではなく、三本以上であってもよい。また、上記共通電極の幹部の二本の平行な部位は、全体として見たときには互いにつながった一本の電極構造であってもよい。
本発明で特定される上記関係は、式で表すと(W-S)/(L+S)=2n+1であり、nは自然数である。上記式では、左辺と右辺との間において小数点第一位以下の誤差は四捨五入で選択することができ、そのような誤差は表示特性の劣化にほとんど影響を与えないため無視することができる。
なお、上記L、S及びWは、Wに対してL及びSを規定するものであり、Wを満たさない部分に対してL又はSの値を制限するものではない。
上記Lは、1μm以上であることが好ましく、2μm以上であることがより好ましい。これにより、応答速度を向上させることができ、かつ断線の確率を減少させることができる。また、上記Sは、1μm以上であることが好ましく、2μm以上であることがより好ましい。これにより、透過率を向上させることができ、かつ短絡の可能性を低減させることができる。更に好ましくは、上記Lが2μm以上で、かつ上記Sが2μm以上である形態であり、これにより、最適なバランスをもった表示を得ることができる。
本発明の液晶表示装置によれば、垂直配向させた正の誘電率異方性を有するネマチック液晶を含む液晶層に対して一対の電極を用いて電界(例えば、横電界)を発生させるタイプの液晶表示装置において表示むらが発生することを抑制することができる。
実施形態1の液晶表示装置が備えるTFT基板の絵素単位の平面模式図である。 図1のA-A’線に沿った断面模式図である。 図1のB-B’線に沿った断面模式図であり、Lを広げた形態を示している。 図1のB-B’線に沿った断面模式図であり、Sを広げた形態を示している。 Sの値に応じた印加電圧(V)と透過率(%)との相関関係を示すグラフである。 Sの値に応じた応答時間と透過率(%)との相関関係を示すグラフである。 実施形態1においてWを50μmで固定したときの、L及びSの値と開口率との関係を示すグラフである。 実施形態1の液晶表示装置が備える液晶表示パネルの全体構成を示す断面模式図であり、液晶層に対し電圧無印加の状態を示している。 実施形態1の液晶表示装置が備える液晶表示パネルの全体構成を示す断面模式図であり、液晶層に対し閾値以上の電圧が印加された状態を示している。 実施形態2の液晶表示装置が備えるTFT基板の絵素単位の平面模式図である。 一対の電極の櫛歯部の間隔が領域によって異なる場合を示す液晶表示装置の絵素単位の平面模式図である。 実施形態3の液晶表示装置の構成を示す断面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
実施形態1の液晶表示装置は、同一基板に形成された一対の電極によって液晶層に対してアーチ状の横電界を発生させ、初期配向が垂直配向である液晶分子の配向を制御することにより画像表示を制御するタイプの液晶表示装置である。
実施形態1の液晶表示装置では、複数の絵素(サブ画素)によって構成される画素が複数、マトリクス状に形成されている。実施形態1の液晶表示装置は、液晶層及び液晶層を挟持する一対の基板を有する。より詳しくは、実施形態1の液晶表示装置は、背面側から観察面側に向かって、TFT基板、液晶層及び対向基板の順にこれらの部材を備える。液晶層は、正の誘電率異方性(Δε>0)を有するネマチック液晶を含有している。
図1は、実施形態1の液晶表示装置が備えるTFT基板の絵素単位の平面模式図である。図1に示すように、TFT基板は、画像信号を伝達するソース配線(信号電極線)11と、走査信号を伝達するゲート配線(走査信号線)12と、スイッチング素子であり各絵素に1つずつ設けられた薄膜トランジスタ(TFT:Thin Film Transistor)14とを有する。TFT14は、ソース配線11及びゲート配線12の交差部近傍に設けられており、ソース配線11と接続されたソース電極11、ゲート配線12と接続されたゲート電極12、及び、半導体層15を介してソース電極11と接続されたドレイン電極13を有する。また、TFT基板は、液晶層に対して一定電圧を印加するための画素電極21及び共通電極22を有する。
ソース配線11は、直線状に、かつ互いが平行となるように設けられている。ゲート配線12もまた、直線状に、かつ互いが平行となるように設けられている。ソース配線11とゲート配線12とは、互いが直交するようにして配置されている。
ソース配線11はソースドライバに接続されており、ソースドライバから供給される画像信号となるソース電圧(信号電圧)が、TFT14に印加される。ゲート配線12はゲートドライバに接続されており、ゲートドライバから所定のタイミングでパルス的に供給される走査信号となるゲート電圧が、線順次でTFT14に印加される。
TFT14のドレイン電極13からはドレイン引き出し配線13が延伸されている。ドレイン引き出し配線13と画素電極21とは、絶縁膜を介して互いに異なる層に配置されており、かつ絶縁膜内に設けられたコンタクト部16を介して互いに接続されている。これにより、TFT14が、ドレイン引き出し配線13とコンタクト部16とを介して画素電極21と接続されることになり、走査信号の入力により一定期間だけオン状態とされたTFT14を通じて、画素電極21にはソース配線11から供給される信号電圧が所定のタイミングで印加される。
共通電極22は、絶縁膜を介してソース配線11及びゲート配線12と異なる層に配置されており、かつソース配線11及びゲート配線12のそれぞれと重畳して配置されている。共通電極22には、一定の電圧で維持された共通電圧が印加される。
画素電極21は、比較的広い幅をもつ幹部21aと、幹部21aの一部から延伸された比較的細い幅をもつ複数の櫛歯部21bとを有する。共通電極22は、ソース配線11及びゲート配線12と重畳する部位が比較的広い幅をもつ幹部22aであり、幹部22aの一部から延伸された比較的細い幅をもつ櫛歯部22bを有する。共通電極の幹部22aは、全体として見れば、ソース配線11とゲート配線12とを組み合わせた形状に対応したマトリクス形状を有している。
画素電極21の櫛歯部21b、及び、共通電極22の櫛歯部22bは、いずれも直線状であり、かつ互いが平行となるように設けられている。画素電極21の櫛歯部21と共通電極22の櫛歯部22bとは、一定の間隔を空けて互いが交互に噛みあわさるようにして設けられている。
また、画素電極21の櫛歯部21b、及び、共通電極22の櫛歯部22bは、ソース配線11とも平行となるように設けられている。したがって、画素電極21の櫛歯部21bは、共通電極22の幹部22aのソース配線11と重畳した部位とも平行な関係にある。
実施形態1の液晶表示装置によれば、画素電極の櫛歯部と共通電極の櫛歯部との間で形成される横電界によって液晶分子の配向性の制御を行うことができるが、更に、画素電極の櫛歯部と、共通電極の幹部の画素電極の櫛歯部と平行な部位との間に形成される横電界によっても液晶分子の配向性の制御を行うことができる。
そのため、実施形態1の液晶表示装置において一つの絵素は、共通電極22で囲まれた領域で定義され、かつ一つのTFT14によって制御される。そして、絵素の開口幅は、共通電極22の幹部22aのうち、二本の、画素電極の櫛歯部と平行な部位同士の間の距離によって定義される。
実施形態1においては、画素電極21の櫛歯部21bの幅Lと共通電極22の櫛歯部22bの幅Lとは、それぞれ実質的に同一となるように設けられている。また、画素電極21の櫛歯部21bと共通電極22の櫛歯部22bとの間の距離Sも、それぞれ実質的に同一となるように設けられている。更に、画素電極21の櫛歯部21bと、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22cとの間の距離Sもまた、画素電極21の櫛歯部21bの幅と共通電極22の櫛歯部22bの幅との間の距離Sと実質的に同一となるように設けられている。そして、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22c間の距離が、絵素の開口幅Wとなる。
実施形態1の液晶表示装置では、共通電極22の櫛歯部22bの数をnとしたとき、上記L、S及びWで規定される(W-S)/(L+S)の値が2n+1の関係を満たす。
これは以下のようにして導くことができる。図1に示すように、実施形態1において絵素の開口幅は、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22c間の距離Wで規定される。そうすると、実施形態1では、画素電極21の櫛歯部21bの幅がL、共通電極22の櫛歯部22bの幅がL、画素電極21の櫛歯部21bと共通電極22の櫛歯部22bとの間の距離がS、画素電極21の櫛歯部21bと、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22cとの間の距離がSであることから、共通電極22の櫛歯部22bの数をnとすると、W=L・n+L・(n+1)+S・(2n+1)+S+Dであり、nは自然数であるためにこのように余りのDが発生する。このとき、開口率は(W-D)/Wで表され、開口率が1であるときが最も好ましいので、D=0である条件が最適条件となる。そこで、D=0を代入し、展開を行うと、W=L・n+L・n+L+2S・n+S+Sとなり、W=L(2n+1)+S(2n+1)+Sと経て、(W-S)/(L+S)=2n+1が導かれることになる。
このような条件を満たすことで、絵素内に形成される横電界が均一性を有するものとなり、表示むらが発生することを効果的に抑制することができ、かつ高い開口率を得ることができる。
図2は、図1のA-A’線に沿った断面模式図である。図2に示すように、実施形態1においてTFT基板は、絶縁基板31の液晶層側の面上にゲート電極(ゲート配線)12を有し、更にゲート絶縁膜32を介して半導体層15、ソース電極(ソース配線)11及びドレイン電極(ドレイン引き出し配線)13を有している。ソース電極(ソース配線)11は、半導体層15を介してドレイン電極(ドレイン引き出し配線)13と接続されている。なお、ゲート電極12、半導体層15、ソース電極11及びドレイン電極13の組み合わせが一つのTFT14を構成する。
図3及び図4は、図1のB-B’線に沿った断面模式図である。図3は上記Lを広げた形態を示し、図4は上記Sを広げた形態を示している。実施形態1においては、関係式(W-S)/(L+S)=2n+1を満たす限り、L及びSの大きさを変更することができる。Lを小さくすればするほど応答速度を向上させることができるが断線の確率を増加させるため、Lは2μm以上とすることが好ましい。また、Sを大きくすればするほど透過率を向上させることができ、かつ短絡の可能性を低減させることができる。具体的には、Sは2μm以上とすることが好ましい。
図5は、上記Sの値に応じた印加電圧(V)と透過率(%)との相関関係を示すグラフである。点線がよりSが狭いときを示し、実線がよりSが広いときを示す。図5に示すように、Sを大きくすると最大透過率は向上するが、充分な透過率を得るための印加電圧が増大する。
図6は、上記Sの値に応じた応答時間と透過率(%)との相関関係を示すグラフである。点線がよりSが狭いときを示し、実線がよりSが広いときを示す。図6に示すように、Sを大きくすると最大透過率は向上するが、充分な透過率を得るための応答時間が増大する。
なお、一つの絵素内で均等でない幅の櫛歯部L又は櫛歯間隔Sが混在する場合、液晶分子は、Lが大きい部分、すなわちSが小さい部分では応答速度が速く、Lが小さい部分、すなわちSが大きい部分では応答速度が遅い。しかしながら、Sの大きい部分の面積が絵素全体の大部分を占める場合、絵素内全体としての応答速度は、遅いものとなる。したがって、一つの絵素内で均等なL及びSを設定し、一つの絵素の開口幅Wに対応させてそれぞれ均等なL及びSの各パラメータの値を設定することではじめて優れた効果を得ることができるとするものであり、本発明は、単純にL及びSの幅を広げた又は狭めたという発想とは異なる。
図7は、実施形態1においてWを50μmで固定したときの、L及びSの値と開口率との関係を示すグラフである。図7中、実線がLを3μmで固定したときを示し、破線がSを6μmで固定したときを示している。
(実施例1)
Wを50μmとし、Sを10.25μmとしたときであって、かつnが自然数であるときに上記関係式から導き出されるLの値としては、3μm(このとき、n=1)が挙げられ、図7のグラフで高い開口率を得ることができるポイントと一致していた。
(実施例2)
Wを50μmとし、Sを6μmとしたときであって、かつnが自然数であるときに上記関係式から導き出されるLの値としては、2.8μm(このとき、n=2)が挙げられ、図7のグラフで高い開口率を得ることができるポイントと一致していた。
(比較例1)
一方、Wを50μmとし、Sを6μmとしたときであって、かつnが自然数であるときに上記関係式を満たさないLの値としては、3μm(このとき、n=2)が挙げられ、図7のグラフで低い開口率を得るポイントと一致していた。
上記結果をまとめたものを表1として下記に示す。
Figure JPOXMLDOC01-appb-T000001
以下、図3及び図4で図示された各部材についてより詳しく説明する。絶縁基板31の材料としては、ガラス、プラスチック等の透光性の材料が挙げられる。ゲート絶縁膜32の材料としては、酸化シリコン、窒化シリコン等の透明絶縁材料が挙げられる。
ソース電極(ソース配線)11、ゲート電極(ゲート配線)12、及び、ドレイン電極(ドレイン引き出し配線)13の材料としては、アルミニウム、タンタル、モリブデン等の金属が挙げられる。ソース電極(ソース配線)11とドレイン電極(ドレイン引き出し配線)13とは同じ層に配置されているので、これらに同一材料を用いることで製造工程が簡略化する。
ソース電極(ソース配線)11及びドレイン電極(ドレイン引き出し配線)13の液晶層側の面上には層間絶縁膜33が形成されており、層間絶縁膜33内に設けられたコンタクト部16を介して、ドレイン電極(ドレイン引き出し配線)13と画素電極21とが接続されている。
層間絶縁膜33の材料は、無機材料であっても有機材料であってもよい。また、層間絶縁膜33は異なる材料からなる複数層で構成されていてもよく、これら複数層は、無機絶縁層と有機絶縁層との積層構造であってもよい。
画素電極21及び共通電極22は、いずれも同じ層に配置されている。これにより、画素電極21と共通電極22との間に横電界を高密度に形成することができ、液晶層内の液晶分子を高精度に制御できる。
画素電極21及び共通電極22の材料としては、ITO(Indium Tin Oxide:インジウム酸化スズ)、インジウム酸化亜鉛(IZO:Indium Zinc Oxide)等の金属酸化物、アルミニウム、クロム等の金属等が挙げられる。画素電極21と共通電極22とは同じ層に配置されているので、同一材料を用いることで製造工程が簡略化する。また、上記材料としては、上記金属酸化物等の透明電極を用いることが、透過率を大きくする観点から好ましい。
画素電極21及び共通電極22の液晶層側の面上には、これらの電極を覆う垂直配向膜34が配置されている。垂直配向膜34により、液晶分子の初期傾斜をTFT基板面に対して垂直(90±0~4°)に配向させることができ、電圧無印加状態で垂直配向を得ることができる。垂直配向膜34の材料としては、ポリイミド等の樹脂が挙げられる。
図8及び図9は、実施形態1の液晶表示装置が備える液晶表示パネルの全体構成を示す断面模式図である。図8は液晶層に対し電圧無印加の状態を示し、図9は液晶層に対し閾値以上の電圧が印加された状態を示している。図8及び図9に示すように、液晶表示パネル1は、TFT基板(第一基板)2と、TFT基板2に対して対向配置された対向基板(第二基板)3と、これらの間に狭持された液晶層4とを備える。なお、実施形態1の液晶表示装置は、このような液晶表示パネル1に加え、液晶表示パネル1の背面側に設けられたバックライトユニット(図示せず)等を備える。
図8に示すように、電圧無印加時において液晶層4内の液晶分子51は、ホメオトロピック配向性、すなわち、基板面に対して垂直な配向性を示している。より具体的には、棒状の液晶分子51のそれぞれの長軸が基板面に対して垂直な方向を向いており、液晶分子51のいずれもが同じ方向を向いて並んでいる。
図9に示すように、画素電極21と対向電極22との間に電圧が印加されると、これらの電極間に形成されたアーチ状の横電界に沿って液晶分子51の配向性に変化が生じる。そして、このように電界の影響を受ける液晶分子51群は、画素電極21と対向電極22との間の中間領域を中心として対称性をもつベンド状配向を示す。ただし、図9からわかるように、画素電極21及び対向電極22の直上に位置する液晶分子51は電界の変化の影響を受けにくいため、垂直配向が維持される。また、各電極から最も遠い、各電極間の中間領域に位置する液晶分子51もまた、垂直配向が維持される。
液晶層4を介してTFT基板2に対して対向配置された対向基板3は、無色透明な絶縁基板41の液晶層4側の面上に、TFT基板で規定される各絵素と範囲が重なるように設けられたカラーフィルタ(CF)層、及び、各CFの間を遮光するブラックマトリクス(BM)層を含む有機樹脂層42を有する。有機樹脂層42の液晶層4側の面上には、対向基板3の表面を平坦化するためのオーバーコート層43が配置されており、これにより、液晶分子に乱れが生じることを抑制することができる。オーバーコート層43の液晶層4側の面上には、TFT基板2と同様の垂直配向膜44が配置されている。
BM層は絵素の周囲と重畳するように、すなわち、ソース配線11及びゲート配線12、並びに、共通電極22と重畳するように形成されている。また、CF層はカラー表示を行うために用いられるものであり、顔料を含有するアクリル樹脂等の透明な有機樹脂等から形成され、CF層の位置が各絵素と対応するように、すなわち、共通電極22で囲まれる領域と重畳するように形成されている。
絶縁基板41の材料としては、ガラス、プラスチック等の透光性の絶縁材料が挙げられる。BM層の材料としては、クロム(Cr)等の遮光性を有する金属、炭素を含有するアクリル樹脂等の遮光性を有する有機膜等が挙げられる。
このように、実施形態1の液晶表示装置は、対向基板3にCF層を備えるカラー液晶表示装置であり、赤(R)、緑(G)、青(B)等の各色の光を出力する3個の絵素(サブ画素)から1個の画素が構成される。実施形態1において各画素を構成する絵素の色の種類及び数は特に限定されず、適宜設定することができる。各画素は、例えば、シアン(C)、マゼンタ(M)及びイエロー(Y)の3色の絵素から構成されてもよいし、4色以上の絵素から構成されてもよい。
TFT基板2と対向基板3とは、プラスチックビーズ等のスペーサを介して、表示領域の外周に沿って塗布されたシール剤によって互いに貼り合わされている。
TFT基板2が有する絶縁基板31の液晶層4と反対側の面上には、偏光板35が貼り付けられており、対向基板3が有する絶縁基板41の液晶層4と反対側の面上には、偏光板45が貼り付けられている。これらの偏光板35,45の透過軸は、互いに直交するクロスニコルの関係にある。また、TFT基板2側の偏光板35の透過軸と、対向基板3側の偏光板45の透過軸とはともに、画素電極21の櫛歯部21b、及び、共通電極22の櫛歯部22bのそれぞれの櫛歯部の長さ方向に対して、それぞれ45°の角度をなすように配置されている。なお、実施形態1の液晶表示装置に対しては、これら偏光板35,45に加え、位相差フィルム、視野角補償フィルム等の光学フィルムを配置してもよい。
実施形態2
図10は、実施形態2の液晶表示装置が備えるTFT基板の絵素単位の平面模式図である。実施形態2の液晶表示装置は、ソース配線11、画素電極21の櫛歯部21b、並びに、共通電極22の幹部22aの一部及び櫛歯部22bのそれぞれが、直線状ではなく、絵素単位でくの字(半転したV字)状に形成されている点で実施形態1の液晶表示装置と異なるが、それ以外は実施形態1の液晶表示装置と同様である。また、複数の絵素にまたがって形成される、ソース配線11、及び、上記共通電極22の幹部22aの一部、すなわち、画素電極21の櫛歯部21bの長さ方向と平行な共通電極22の幹部22cは全体としてみればジグザグ形状を有する。実施形態2において一対の偏光板は、偏光軸の方位が実施形態1と同じ設定になるように、すなわち、ゲート配線12の延伸方向と平行又は垂直となるように配置した。
上記くの字状に形成された部位は、絵素の縦方向の二等分線を境として両側方向に延伸されて設けられている。また、上記くの字状に形成された部位は、絵素の縦方向の二等分線を境として互いの櫛歯部が対称的な構造をもつ。こうすることで、液晶分子を絵素の外枠線に対して斜め方向に、かつ各方位の面積を等しく配向させることができるので、視野角特性が更に向上する。
実施形態2においても、画素電極21の櫛歯部21bの幅をL、共通電極22の櫛歯部22bの幅をL、画素電極21の櫛歯部21bと共通電極22の櫛歯部22bとの間の距離をS、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22cとの間の距離をS、共通電極22の幹部22aの画素電極21の櫛歯部21bと平行な部位22c間の距離、すなわち、絵素の開口幅をW、共通電極22の櫛歯部22bの数をnとしたとき、上記L、S及びWで規定される(W-S)/(L+S)の値が2n+1の関係を満たす。
したがって、実施形態2の液晶表示装置では、絵素内に形成される横電界が均一性を有し、表示むらが発生することが効果的に抑制され、かつ高い開口率を得ることができる。
実施形態3
図12は、実施形態3の液晶表示装置の構成を示す断面模式図である。図12に示すように、実施形態3の液晶表示装置は、液晶層4及び液晶層4を挟持する一対の基板2,3を有する液晶表示パネルを備え、一対の基板の一方はTFT基板2であり、他方が対向基板3である。実施形態3の液晶表示装置は、以下の点で実施形態1、2と異なる。本実施形態の液晶表示装置は、対向基板3側に対向電極61を有する。図12に示すように、対向基板3は、絶縁基板41を含み、絶縁基板41の液晶層4側の主面上には、対向電極61、誘電体層(絶縁層)62及び垂直配向膜44がこの順に積層されている。なお、対向電極61と絶縁基板41の間には、カラーフィルタ層、ブラックマトリクス層等の有機樹脂層が設けられてもよい。
対向電極61は、ITO、IZO等の透明導電膜から形成される。対向電極61及び誘電体層62はそれぞれ、少なくとも全表示エリアを覆うように切れ目なく形成されている。対向電極61には、各絵素に共通の所定の電位が印加される。
誘電体層62は、透明な絶縁材料から形成される。具体的には、窒化シリコン等の無機絶縁膜、アクリル樹脂等の有機絶縁膜等から形成される。
TFT基板2は、絶縁基板31を含み、TFT基板2には、実施形態1、2と同様の、画素電極21、共通電極22及び垂直配向膜34が設けられている。また、TFT基板2、対向基板3の外主面上には偏光板35、45が配設されている。
なお、黒表示時以外、画素電極21と、共通電極22及び対向電極61との間には異なる電圧が印加される。共通電極22及び対向電極61は、接地されてもよいし、共通電極22及び対向電極61には、同じ大きさかつ極性の電圧が印加されてもよいし、互いに異なる大きさかつ極性の電圧が印加されてもよい。
本実施形態の液晶表示装置によっても、実施形態1と同様に、表示むらが発生することを抑制することができる。また、対向電極61を形成することにより、応答速度を向上することができる。
なお、本願は、2009年7月13日に出願された日本国特許出願2009-164984号、及び、2010年1月13日に出願された日本国特許出願2010-005110号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1:液晶表示パネル
2:TFT基板
3:対向基板
4:液晶層
11:ソース配線(ソース電極)
12:ゲート配線(ゲート電極)
13:ドレイン引き出し配線(ドレイン電極)
14:TFT
15:半導体層
16:コンタクト部
21:画素電極
21a:画素電極(幹部)
21b:画素電極(櫛歯部)
22:共通電極
22a:共通電極(幹部)
22b:共通電極(櫛歯部)
22c:共通電極(画素電極の櫛歯部の長さ方向と平行な部位)
31,41:絶縁基板
32:ゲート絶縁膜
33:層間絶縁膜
34,44:垂直配向膜
35,45:偏光板
42:有機樹脂層
43:オーバーコート層
51:液晶分子
61:対向電極
62:誘電体層
 

Claims (3)

  1. 互いに対向配置された第一基板及び第二基板と、該第一基板と該第二基板との間に挟持された液晶層とを備える液晶表示装置であって、
    該液晶層は、正の誘電率異方性をもつ液晶分子を含有し、
    該液晶分子は、電圧無印加状態で該第一基板の表面に対して垂直の方向に配向し、
    該第一基板は、幹部と櫛歯部とを有する画素電極及び共通電極を有し、
    該画素電極の櫛歯部と該共通電極の櫛歯部とは、等間隔を空けて互いの櫛歯部が平行に、かつ交互に噛み合わさって配置されており、
    該共通電極の幹部は、該共通電極の櫛歯部の長さ方向と平行な部位を二本有し、
    該二本の平行な部位のそれぞれは、該画素電極の両末端の櫛歯部の外側に一つずつ配置され、
    該二本の平行な部位間の距離をW、該画素電極及び該共通電極の櫛歯部の幅をL、該画素電極の櫛歯部と該共通電極の櫛歯部との間の距離、及び、該画素電極の末端の櫛歯部と該二本の平行な部位の一方との間の距離をS、該共通電極の櫛歯部の数をnとしたときに、(W-S)/(L+S)の値が2n+1の関係を満たす
    ことを特徴とする液晶表示装置。
  2. 前記Lは、2μm以上であることを特徴とする請求項1記載の液晶表示装置。
  3. 前記Sは、2μm以上であることを特徴とする請求項1又は2記載の液晶表示装置。
     
PCT/JP2010/053812 2009-07-13 2010-03-08 液晶表示装置 WO2011007598A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010800307486A CN102472933A (zh) 2009-07-13 2010-03-08 液晶显示装置
RU2012104845/28A RU2012104845A (ru) 2009-07-13 2010-03-08 Жидкокристаллическое устройство отображения
JP2011522749A JP5314140B2 (ja) 2009-07-13 2010-03-08 液晶表示装置
BR112012000796A BR112012000796A2 (pt) 2009-07-13 2010-03-08 dispositivo de exibição de cristal líquido
EP10799660A EP2455803A4 (en) 2009-07-13 2010-03-08 LIQUID CRYSTAL DISPLAY DEVICE
US13/383,484 US20120127417A1 (en) 2009-07-13 2010-03-08 Liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-164984 2009-07-13
JP2009164984 2009-07-13
JP2010005110 2010-01-13
JP2010-005110 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011007598A1 true WO2011007598A1 (ja) 2011-01-20

Family

ID=43449208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053812 WO2011007598A1 (ja) 2009-07-13 2010-03-08 液晶表示装置

Country Status (7)

Country Link
US (1) US20120127417A1 (ja)
EP (1) EP2455803A4 (ja)
JP (1) JP5314140B2 (ja)
CN (1) CN102472933A (ja)
BR (1) BR112012000796A2 (ja)
RU (1) RU2012104845A (ja)
WO (1) WO2011007598A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009459A1 (en) * 2011-12-26 2015-01-08 Sharp Kabushiki Kaisha Liquid crystal display panel and liquid crystal display device
JP5591843B2 (ja) * 2012-02-27 2014-09-17 株式会社東芝 液晶レンズ素子及び立体画像表示装置
CN102809853A (zh) * 2012-08-10 2012-12-05 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
JP2014178541A (ja) * 2013-03-15 2014-09-25 Japan Display Inc 液晶表示装置
CN103529613A (zh) * 2013-10-22 2014-01-22 京东方科技集团股份有限公司 一种阵列基板及其制造方法、显示装置
CN103984141B (zh) * 2014-05-04 2015-05-06 京东方科技集团股份有限公司 一种液晶显示面板及液晶显示装置
CN105204239A (zh) * 2014-05-28 2015-12-30 群创光电股份有限公司 显示面板与显示装置
CN106405948B (zh) * 2015-08-12 2020-09-22 群创光电股份有限公司 显示面板
JP7341790B2 (ja) * 2019-08-22 2023-09-11 株式会社ジャパンディスプレイ 液晶表示装置
CN115335890B (zh) * 2021-03-01 2023-06-09 京东方科技集团股份有限公司 移位寄存器、栅极驱动电路和显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230380A (ja) 1996-02-27 1997-09-05 Sharp Corp アクティブマトリクス基板及び液晶表示装置
JPH1062802A (ja) 1996-08-19 1998-03-06 Oobayashi Seiko Kk 液晶表示装置
JP2002139736A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 液晶表示装置
JP2009164984A (ja) 2008-01-09 2009-07-23 Sony Corp 放送受信装置及び方法、並びにプログラム
JP2010005110A (ja) 2008-06-26 2010-01-14 Olympia:Kk 弾球遊技機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186351A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
JP4364332B2 (ja) * 1998-06-23 2009-11-18 シャープ株式会社 液晶表示装置
US6642984B1 (en) * 1998-12-08 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having wide transparent electrode and stripe electrodes
JP2004054090A (ja) * 2002-07-23 2004-02-19 Hitachi Displays Ltd 液晶表示装置
KR100958246B1 (ko) * 2003-11-26 2010-05-17 엘지디스플레이 주식회사 횡전계 방식의 액정표시장치 및 그 제조방법
JP4385993B2 (ja) * 2005-05-10 2009-12-16 三菱電機株式会社 液晶表示装置及びその製造方法
JP4858820B2 (ja) * 2006-03-20 2012-01-18 日本電気株式会社 アクティブマトリクス基板及び液晶表示装置並びにその製造方法
KR101245991B1 (ko) * 2006-06-23 2013-03-20 엘지디스플레이 주식회사 액정표시장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230380A (ja) 1996-02-27 1997-09-05 Sharp Corp アクティブマトリクス基板及び液晶表示装置
JPH1062802A (ja) 1996-08-19 1998-03-06 Oobayashi Seiko Kk 液晶表示装置
JP2002139736A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 液晶表示装置
JP2009164984A (ja) 2008-01-09 2009-07-23 Sony Corp 放送受信装置及び方法、並びにプログラム
JP2010005110A (ja) 2008-06-26 2010-01-14 Olympia:Kk 弾球遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2455803A4

Also Published As

Publication number Publication date
EP2455803A4 (en) 2013-01-02
CN102472933A (zh) 2012-05-23
RU2012104845A (ru) 2013-08-20
BR112012000796A2 (pt) 2016-02-23
EP2455803A1 (en) 2012-05-23
JPWO2011007598A1 (ja) 2012-12-20
US20120127417A1 (en) 2012-05-24
JP5314140B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5314140B2 (ja) 液晶表示装置
EP2345927B1 (en) Liquid crystal display device
US7453086B2 (en) Thin film transistor panel
KR101332154B1 (ko) 액정 표시 장치 및 그 제조 방법
JP5301251B2 (ja) 液晶表示装置
WO2013168566A1 (ja) 液晶表示装置
WO2011040080A1 (ja) 液晶表示装置
WO2011024495A1 (ja) 液晶表示装置
JP2000356786A (ja) 液晶表示装置
WO2010137427A1 (ja) 液晶表示装置
WO2011016267A1 (ja) 液晶表示装置
US20200050063A1 (en) Liquid crystal display device
RU2509326C1 (ru) Жидкокристаллическое устройство отображения
JP2002139727A (ja) 液晶表示装置及びその製造方法
JP2014215348A (ja) 液晶パネル
JP2014215347A (ja) 液晶パネル
US8427619B2 (en) Liquid crystal display unit
WO2010137428A1 (ja) 液晶表示装置
WO2011086742A1 (ja) 液晶表示パネル及び液晶表示装置
WO2011001742A1 (ja) 液晶表示装置
US20110279762A1 (en) Liquid crystal display element and liquid crystal display apparatus
WO2011083616A1 (ja) 液晶表示装置
WO2016031638A1 (ja) 液晶表示装置
JP5677923B2 (ja) 液晶表示装置
US8907938B2 (en) Liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030748.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010799660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9923/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011522749

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13383484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012104845

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012000796

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112012000796

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120112