WO2011006571A1 - Verfahren zum betreiben eines kraftwagens - Google Patents

Verfahren zum betreiben eines kraftwagens Download PDF

Info

Publication number
WO2011006571A1
WO2011006571A1 PCT/EP2010/003688 EP2010003688W WO2011006571A1 WO 2011006571 A1 WO2011006571 A1 WO 2011006571A1 EP 2010003688 W EP2010003688 W EP 2010003688W WO 2011006571 A1 WO2011006571 A1 WO 2011006571A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
drive torque
gear
clutch
operating state
Prior art date
Application number
PCT/EP2010/003688
Other languages
English (en)
French (fr)
Inventor
Ottmar Gehring
Christof Bunz
Felix Kauffmann
Werner Schleif
Roland Dold
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2011006571A1 publication Critical patent/WO2011006571A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • F16H2061/168Forced shifts into neutral for safety reasons, e.g. in case of transmission failure or emergency braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the invention relates to a method for operating a motor vehicle after the
  • Driving modes selected.
  • a gear is engaged in a transmission and a clutch of the drive train of the motor vehicle is closed, wherein a
  • Drive torque is provided by an internal combustion engine of the motor vehicle. If there is no drive torque request, an input signal represents one
  • Control unit for the transmission thus a neutral state of the accelerator pedal, where is changed to a rolling state in which a neutral gear is engaged in the transmission, the clutch remains closed and the engine is therefore decoupled from the wheels of the motor vehicle and remains in an idle state.
  • the car can therefore, for example, on a gentle slope or when rolling on a level track, use its own kinetic and / or potential energy to maintain the driving operation without drag torque of the engine lead to a loss of speed.
  • a second rolling operation state is provided.
  • This second rolling operation state is selected in the presence of a drive torque requirement below a predetermined threshold and is in particular for use in vehicles with parallel hybrid drive, in which an electric motor on
  • Transmission input is arranged, suitable.
  • Neutral gear in the transmission of the powertrain is completely interrupted. If the torque request exceeds the threshold value of the second rolling operating state, then an engine speed is synchronized and changed back to the normal operating state in which, as usual, the drive torque is made available by the internal combustion engine.
  • control device environment data preferably by a control device environment data, in particular
  • Gradient data of a roadway for an upcoming stretch of road and / or operating state data such as travel speed, engine speed and the like evaluated and anticipated an expected value for the drive torque demand determined. On the basis of this expected value, a driving mode can then be selected subsequently.
  • Gradient data for a roadway can be, for example, map-based and, for example, determined by means of GPS
  • Vehicle position are determined, or even by evaluating a constantly updated with a digital camera image of the roadway in front of the vehicle to be determined.
  • Fig. 1 is a schematic representation of a drive train for a
  • Hybrid motor vehicle for use with a variant of a method according to the invention
  • Fig. 2 is a schematic representation of the components, by means of which a
  • Variant of the method according to the invention is executable
  • Fig. 3 is a flowchart of the choices of driving modes in
  • a drive train 10 of a motor vehicle has a drive machine 14, which is controlled by a control device 16.
  • a control device 16 about a power actuator in the form of an accelerator pedal 52, a driver can set specifications for a torque output of the engine 14.
  • an electric motor 15 is further arranged for the hybrid operation of the motor vehicle.
  • the clutch 12 and the gear change transmission 19 are also controlled by the controller 16.
  • the control device 16 is in signal communication with actuators and sensors, not shown, of the clutch 12 and the transmission 19.
  • the control device 16 the clutch 12 open or close and perform gear changes in the transmission 19.
  • the control device 16 is also connected to a shift lever 51, by means of which the driver can request circuits of the transmission 19.
  • circuits from a source to a target can also be used in a manner known per se by the
  • Control device 16 are triggered.
  • the determination of the target gear is dependent inter alia on the speed of the motor vehicle and an operating level of the accelerator pedal 52 by the driver.
  • the transmission 19 is designed as a so-called two-group transmission. Rotationally connected to the transmission input shaft 11, a primary gear in the form of a split group 17 is arranged. Downstream of the splitter group 17 is a main transmission 18. The main transmission 18 is designed as an unsynchronized transmission. It therefore has no synchronization for the individual gears. The synchronization of
  • the transmission input shaft 11 can be brought into operative connection via two different gear pairings 20, 21 with a countershaft 22 arranged parallel to the transmission input shaft 11.
  • the gear pairings 20, 21 have a different ratio.
  • the split group 17 is executed synchronized in contrast to the main transmission 18.
  • the idler gear 26 can by means of a sliding sleeve 30, the idler gears 27 and 28 by means of a sliding sleeve 31 rotationally and positively connected to the transmission output shaft 29. If a so-called neutral gear is engaged in the transmission 10, then none of the idler gears 26, 27 or 28 is connected to the transmission output shaft 29. The drive connection between the transmission input shaft 11 and transmission output shaft 29 is thus interrupted.
  • Main gear 18 can be actuated with the actuators of the transmission 19, not shown. This can be a positive connection between the associated
  • Switching elements and the transmission output shaft 29 are made or interrupted.
  • the controller 16 is in signal communication with a
  • Lane information device in the form of a digital camera 53, which detects a portion of the road in the direction of travel of the motor vehicle.
  • the camera 53 determines information about the course of the road, such as a slope or a slope, curves or a road condition such as moisture or ice. This information is provided by the camera 53 to the control device 16, which supplies these to the control of the drive machine 14 and the
  • the transmission may also have a so-called rear group, which is arranged behind the main transmission. With this rear group, which can be designed as a range group, the number of gears of the transmission can be doubled again.
  • the transmission can also have a central
  • Synchronizing such as a transmission brake
  • Synchronisierelements can be braked during upshifts, for example, the countershaft.
  • a control unit 60 receives from a preview module 62 information about the upcoming route, in particular the slope of a road ahead of the vehicle. From a control unit 64 of the battery for the electric motor 15 further information about the state of charge of the battery to the control unit 60 is passed. Based on the received data, the control unit 60 calculates an expected value for torque requests along the line ahead of the vehicle. Based on this
  • control unit 60 then gives instructions to the controller 66 for the electric motor 15 in the form of a desired torque of the electric motor 15 and to a
  • Transmission control unit 68 in the form of a driving mode.
  • Fig. 3 it can be selected between three driving modes.
  • normal operation 70 required driving torques are provided in the usual manner by the internal combustion engine 14.
  • the clutch 12 is closed and in the gear 19, a gear is engaged.
  • the electric motor 15 is de-energized here and does not contribute to the drive torque.
  • a transition is made to a first scrolling operating state 72 (transition 1).
  • the clutch 12 is closed here, in the transmission 19, a neutral gear is engaged.
  • Neither the electric motor 15 nor the internal combustion engine 14 contribute to the drive torque, the vehicle thus rolls completely unpowered, so that no additional energy is consumed.
  • the control device 60 determines that a high drive torque is again desired, for example in the case of an imminent strong incline, then it is returned to the
  • the control unit 60 expects a drive torque below a predetermined
  • Threshold for example, in an imminent light and short slope or even in an imminent light and short slope, which a
  • Brake torque required it is in a second roll state 74 (extended Ecoroll) transitioned (transition 3a).
  • the clutch 12 is opened in this state, so that the internal combustion engine 14 is decoupled from the drive train 10 and runs in idling mode, with no drag torques being transmitted to the drive train.
  • gear 19 a gear is engaged, the electric motor 15 provides a drive torque available.
  • the first rolling operation state 72 in this case represents the most economical mode of operation of the vehicle, since the towing losses in the transmission with engaged neutral gear and closed clutch are less than in the second rolling operation state 74, in which a gear is engaged and the clutch is open.
  • the second operating state 74 thus serves exclusively to operate short-term and low torque requests.
  • FIGS. 4 and 5 show a roadway profile Fb over the path s.
  • the vehicle 80 is operated with a high drive torque M_an, as can be seen in the curve 82.
  • M_an As shown in diagram 84, in this area are the
  • Rolling states 72 and 74 inactive (0) the vehicle 80 is in the normal driving state 70.
  • the driving torque here is zero.
  • the roadway has a flattening area 88 in which there is a non-zero torque request, as in FIG.
  • Detect area 90 of the torque curve 82 The drive torque request is in the range 90 below a predetermined threshold, so that the vehicle 80 does not return to the normal operating state 70, but rather assumes the second roll operating state 74. In a subsequent region 92 of the roadway, at which the gradient increases again, the torque requirement exceeds this threshold, so that the vehicle returns to the normal operating state 70.
  • Fig. 5 shows an alternative situation.
  • a slope 98 connects, in which, as already described with reference to FIG. 4, the vehicle 80 passes from the normal operating state in the free rolling state 92.
  • a positive drive torque is first required, which is below the threshold value for the torque curve in the region 102 of the torque curve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftwagens mit einem Hybridantrieb, bei welchem zwischen einer Mehrzahl von Fahrbetriebsarten gewählt wird, wobei bei Vorliegen einer Antriebsmomentenanforderung eine Normalbetriebszustand gewählt wird, bei welchem ein Gang in einem Getriebe (19) eingelegt ist, eine Kupplung (12) geschlossen ist und ein Antriebsmoment von der Brennkraftmaschine (14) bereitgestellt wird, und bei Vorliegen keiner Antriebsmomentenanforderung ein Rollbetriebszustand gewählt wird, bei welchem ein Neutralgang im Getriebe (19) eingelegt ist, die Kupplung (12) geschlossen ist und die Brennkraftmaschine (14) in einem Leerlaufzustand ist, wobei bei Vorliegen einer Antriebsmomentenanforderung unterhalb eines vorgegebenen Schwellwertes ein zweiter Rollbetriebszustand gewählt wird, bei welchem ein Gang im Getriebe (19) eingelegt ist, die Kupplung (12) geöffnet ist, ein Antriebsmoment von einem Elektromotor (15) bereitgestellt wird und die Brennkraftmaschine (14) im Leerlaufzustand ist.

Description

Verfahren zum Betreiben eines Kraftwagens
Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftwagens nach dem
Oberbegriff von Patentanspruch 1.
Ein solches Verfahren ist aus der WO 01/92049 A1 bekannt. Bei einem derartigen Verfahren wird beim Betreiben eines Kraftwagens zwischen einer Mehrzahl von
Fahrbetriebsarten gewählt. In einem Normalbetriebszustand, welcher bei Vorliegen einer Antriebsmomentenanforderung gewählt wird, ist ein Gang in einem Getriebe eingelegt und eine Kupplung des Antriebsstrangs des Kraftwagens geschlossen, wobei ein
Antriebsmoment von einer Brennkraftmaschine des Kraftwagens bereitgestellt wird. Liegt keine Antriebsmomentenanforderung vor, repräsentiert ein Eingangssignal einer
Steuereinheit für das Getriebe also einen Neutralzustand des Gaspedals, wo wird in einen Rollbetriebszustand gewechselt, bei welchem ein Neutralgang im Getriebe eingelegt ist, die Kupplung geschlossen bleibt und die Brennkraftmaschine daher von den Rädern des Kraftwagens entkoppelt ist und in einem Leerlaufzustand bleibt.
Der Kraftwagen kann also, beispielsweise bei leichtem Gefälle oder beim Ausrollen auf ebener Strecke, die eigene kinetische und/oder potentielle Energie nutzen, um den Fahrbetrieb aufrechtzuerhalten, ohne dass Schleppmomente des Motors zu einem Geschwindigkeitsverlust führen.
Nachteiligerweise muss selbst bei Vorliegen kleinster Momentenanforderungen der Rollbetriebszustand verlassen werden und wieder in den Normalbetriebszustand zurückgekehrt werden. Dies führt gerade bei häufigen, schwachen Steigungswechseln einer Fahrbahn zur Verschwendung von Energie. Das Verfahren beschränkt sich weiterhin auf konventionelle, mittels Brennkraftmaschinen angetriebene Kraftwagen und nutzt zusätzliche Potentiale von Hybridantrieben nicht aus. Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren nach dem Oberbegriff von Patentanspruch 1 so weiterzuentwickeln, dass die Kraftstoffeinsparung verbessert wird und der Einsatz für Hybridfahrzeuge optimiert wird.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen von Patentanspruch 1 gelöst.
Neben den bereits bekannten Fahrbetriebsarten, nämlich einem Normalbetriebszustand, in welchem ein Gang in einem Getriebe eingelegt ist, eine Kupplung geschlossen ist und ein Antriebsmoment von einer Brennkraftmaschine des Kraftwagens bereitgestellt wird und einem ersten Rollbetriebszustand, bei welchem eine Antriebsverbindung zwischen der Brennkraftmaschine und einer Getriebeausgangswelle unterbrochen ist, ist bei einem solchen Verfahren erfindungsgemäß ein zweiter Rollbetriebszustand vorgesehen. Dieser zweite Rollbetriebszustand wird bei Vorliegen einer Antriebsmomentenanforderung unterhalb eines vorgegebenen Schwellwertes gewählt und ist insbesondere zum Einsatz in Fahrzeugen mit Parallel-Hybrid-Antrieb, bei welchem ein Elektromotor am
Getriebeeingang angeordnet ist, geeignet.
Im ersten Rollbetriebszustand kann die Antriebsverbindung zwischen der
Brennkraftmaschine und der Getriebeausgangswelle insbesondere dadurch unterbrochen werden, dass ein Neutralgang im Getriebe eingelegt ist, die Kupplung geschlossen ist und die Brennkraftmaschine in einem Leerlaufzustand oder stillgesetzt ist. Es ist aber auch möglich, dass die genannte Antriebsverbindung durch Öffnen der Kupplung unterbrochen wird.
Im zweiten Rollbetriebszustand wird ein Gang im Getriebe eingelegt, die Kupplung geöffnet und ein Antriebsmoment vom am Getriebeeingang angeordneten Elektromotor bereitgestellt. Durch das Öffnen der Kupplung ist die Brennkraftmaschine vom Getriebe abgekoppelt, so dass keine Schleppmomente der Brennkraftmaschine überwunden werden müssen. Die Brennkraftmaschine kann sich dann insbesondere im
Leerlaufzustand befinden. Es ist aber auch möglicht, dass im zweiten Rollbetriebszustand die Brennkraftmaschine stillgesetzt bzw. gestoppt ist und erst auf Anforderung wieder gestartet wird. Durch die Bereitstellung des Antriebsmoments vom Elektromotor kommt bei kleinen und/oder kurzfristigen Momentenanforderungen das Einsparpotential des Hybridantriebs voll zum Tragen, da derartige kleine Momentenanforderungen
ausschließlich vom Elektromotor bedient werden können. Es kann sich dabei sowohl um Beschleunigungs- als auch um Bremsanforderungen handeln. Besteht keine
Momentenanforderung mehr, so kann unmittelbar wieder in den ersten Rollbetriebszustand zurückgekehrt werden, bei welchem durch Einlegen des
Neutralgangs im Getriebe der Antriebsstrang komplett unterbrochen wird. Überschreitet die Momentenanforderung den Schwellwert des zweiten Rollbetriebszustands, so wird eine Motordrehzahl synchronisiert und wieder in den Normalbetriebszustand gewechselt, in welchem wie üblich das Antriebsmoment von der Brennkraftmaschine zur Verfügung gestellt wird.
Besonders große Einsparungen an Kraftstoff und Energie können durch eine
vorausschauende Steuerung und Auswahl der Fahrbetriebsarten erzielt werden. Hierzu werden bevorzugt durch eine Steuereinrichtung Umgebungsdaten, insbesondere
Steigungsdaten einer Fahrbahn für einen bevorstehenden Streckenabschnitt, und/oder Betriebszustandsdaten wie Fahrtgeschwindigkeit, Motordrehzahl und dergleichen ausgewertet und vorausschauend ein Erwartungswert für den Antriebsmomentenbedarf bestimmt. Auf Grundlage dieses Erwartungswertes kann dann anschließend eine Fahrbetriebsart ausgewählt werden. Steigungsdaten für eine Fahrbahn können dabei beispielsweise kartenbasiert und einer zum Beispiel mittels GPS ermittelter
Fahrzeugposition bestimmt werden, oder auch durch Auswertung eines mit einer digitalen Kamera ständig aktualisierten Bildes der Fahrbahn vor dem Fahrzeug bestimmt werden.
Im Folgenden soll die Erfindung und ihre Ausführungsformen anhand der Zeichnungen näher erläutert werden. Hierbei zeigen:
Fig. 1 eine schematische Darstellung eines Antriebsstrangs für einen
Hybridkraftwagen zur Verwendung mit einer Variante eines erfindungsgemäßen Verfahrens,
Fig. 2 eine schematische Darstellung der Komponenten, mittels welcher eine
Variante des erfindungsgemäßen Verfahrens ausführbar ist,
Fig. 3 ein Flussdiagramm der Auswahlmöglichkeiten von Fahrbetriebsarten im
Rahmen der Variante des erfindungsgemäßen Verfahrens
Fig. 4 und 5 schematische Darstellungen von Fahrbahnprofilen, zugeordneten
Antriebsmomenten und ausgewählten Fahrbetriebsarten für zwei beispielhafte Fahrsituationen. Gemäß Fig. 1 weist ein Antriebsstrang 10 eines nicht dargestellten Kraftfahrzeugs eine Antriebsmaschine 14 auf, welche von einer Steuerungseinrichtung 16 angesteuert wird. Über ein Leistungsstellorgan in Form eines Fahrpedals 52 kann ein Fahrzeugführer Vorgaben für ein abgegebenes Drehmoment der Antriebsmaschine 14 einstellen. Auf der Getriebeeingangswelle 11 ist weiterhin ein Elektromotor 15 für den Hybridbetrieb des Kraftwagens angeordnet.
Die Kupplung 12 und das Zahnräderwechselgetriebe 19 werden ebenfalls von der Steuerungseinrichtung 16 angesteuert. Die Steuerungseinrichtung 16 steht dazu in Signalverbindung mit nicht dargestellten Stellgliedern und Sensoren der Kupplung 12 und des Getriebes 19. Damit kann die Steuerungseinrichtung 16 die Kupplung 12 öffnen oder schließen und Gangwechsel im Getriebe 19 durchführen. Die Steuerungseinrichtung 16 ist außerdem mit einem Schalthebel 51 verbunden, mittels welchem der Fahrzeugführer Schaltungen des Getriebes 19 anfordern kann. Alternativ dazu können Schaltungen von einem Ursprungs- in einen Zielgang auch in an sich bekannter Weise von der
Steuerungseinrichtung 16 ausgelöst werden. Die Ermittlung des Zielgangs ist dabei unter anderem von der Geschwindigkeit des Kraftfahrzeugs und einem Betätigungsgrad des Fahrpedals 52 durch den Fahrzeugführer abhängig.
Das Getriebe 19 ist als ein so genanntes Zwei-Gruppengetriebe ausgeführt. Drehfest verbunden mit der Getriebeeingangswelle 11 ist ein Vorschaltgetriebe in Form einer Splitgruppe 17 angeordnet. Der Splitgruppe 17 nachgeordnet ist ein Hauptgetriebe 18. Das Hauptgetriebe 18 ist als ein unsynchronisiertes Getriebe ausgeführt. Es weist damit für die einzelnen Gänge keine Synchronisierungen auf. Die Synchronisation der
Drehzahlen bei einem Gangwechsel wird mittels der Antriebsmaschine 14 durchgeführt.
Mittels der Splitgruppe 17 kann die Getriebeeingangswelle 11 über zwei verschiedene Zahnradpaarungen 20, 21 mit einer parallel zur Getriebeeingangswelle 11 angeordneten Vorgelegewelle 22 in Wirkverbindung gebracht werden. Die Zahnradpaarungen 20, 21 weisen eine unterschiedliche Übersetzung auf. Die Splitgruppe 17 ist im Gegensatz zum Hauptgetriebe 18 synchronisiert ausgeführt.
Auf der Vorgelegewelle 22 sind verdrehfest Festräder 23, 24, 25 für den 3., 2. und 1. Gang des Hauptgetriebes 18 angeordnet. Die Festräder 23, 24, 25 kämmen jeweils mit zugehörigen Losrädern 26, 27, 28, welche drehbar auf einer koaxial zur Getriebeeingangswelle 11 angeordneten Getriebeausgangswelle 29 angeordnet sind. Das Losrad 26 kann mittels einer Schiebemuffe 30, die Losräder 27 und 28 mittels einer Schiebemuffe 31 verdrehfest und formschlüssig mit der Getriebeausgangswelle 29 verbunden werden. Ist im Getriebe 10 ein so genannter Neutralgang eingelegt, so ist keines der Losräder 26, 27 oder 28 mit der Getriebeausgangswelle 29 verbunden. Die Antriebsverbindung zwischen Getriebeeingangswelle 11 und Getriebeausgangswelle 29 ist also unterbrochen.
Eine Schiebemuffe 41 der Splitgruppe 17 und die Schiebemuffen 30, 31 , 39 des
Hauptgetriebes 18 sind mit den nicht dargestellten Stellgliedern des Getriebes 19 betätigbar. Damit kann eine formschlüssige Verbindung zwischen zugehörigen
Schaltelementen und der Getriebeausgangswelle 29 hergestellt oder unterbrochen werden.
Von der Getriebeausgangswelle 29 wird das gewandelte Drehmoment und die Drehzahl der Antriebsmaschine 14 mittels einer Antriebswelle 32 an ein Achsgetriebe 33
übertragen, welches in an sich bekannter Weise die Drehzahl in gleichen oder
unterschiedlichen Anteilen über zwei Abtriebswellen 34, 35 an Antriebsräder 36, 37 überträgt.
Die Steuerungseinrichtung 16 steht in Signalverbindung mit einer
Fahrbahninformationseinrichtung in Form einer digitalen Kamera 53, welche einen Abschnitt der Fahrbahn in Fahrrichtung des Kraftfahrzeugs erfasst. Die Kamera 53 ermittelt daraus Informationen über den Verlauf der Fahrbahn, wie beispielsweise eine Steigung oder ein Gefälle, Kurven oder einen Fahrbahnzustand wie beispielsweise Nässe oder Eis. Diese Informationen stellt die Kamera 53 der Steuerungseinrichtung 16 zur Verfügung, welche diese bei der Ansteuerung der Antriebsmaschine 14 und des
Getriebes 19 berücksichtigt.
Das Getriebe kann auch noch über eine so genannte Nachschaltgruppe verfügen, welche hinter dem Hauptgetriebe angeordnet ist. Mit dieser Nachschaltgruppe, welche als eine Rangegruppe ausgeführt sein kann, kann die Gangzahl des Getriebes noch einmal verdoppelt werden. Das Getriebe kann auch noch über ein zentrales
Synchronisierelement, wie beispielsweise über eine Getriebebremse, verfügen. Mittels des Synchronisierelements kann bei Hochschaltungen beispielsweise die Vorgelegewelle abgebremst werden.
Das Blockschaltbild in Fig. 2 veranschaulicht nochmals das Zusammenwirken
verschiedener Komponenten des Antriebsstrangs. Eine Steuerungseinheit 60 empfängt von einem Vorausschaumodul 62 Informationen über die bevorstehende Fahrtstrecke, insbesondere die Steigung einer Fahrbahn vor dem Fahrzeug. Von einer Steuereinheit 64 der Batterie für die E-Maschine 15 werden weiterhin Informationen über den Ladezustand der Batterie an die Steuereinheit 60 weitergegeben. Aufgrund der empfangenen Daten berechnet die Steuereinheit 60 einen Erwartungswert für Momentenanforderungen entlang der vor dem Fahrzeug liegenden Strecke. Auf Grundlage dieses
Erwartungswertes gibt die Steuereinheit 60 dann Anweisungen an die Steuerung 66 für die E-Maschine 15 in Form eines Sollmoments der E-Maschine 15 und an eine
Getriebesteuereinheit 68 in Form einer Fahrbetriebsart.
Wie aus Fig. 3 zu entnehmen ist, kann dabei zwischen drei Fahrbetriebsarten gewählt werden. Im Normalbetrieb 70 werden dabei benötigte Antriebsmomente auf übliche Weise von der Brennkraftmaschine 14 bereitgestellt. Die Kupplung 12 ist geschlossen und im Getriebe 19 ist ein Gang eingelegt. Der Elektromotor 15 ist hier unbestromt und trägt nicht zum Antriebsmoment bei. Sobald keine Momentenanforderung mehr besteht, wird in einen ersten Rollbetriebszustand 72 übergegangen (Übergang 1 ). Die Kupplung 12 ist hier geschlossen, im Getriebe 19 ist ein Neutralgang eingelegt. Weder der Elektromotor 15 noch die Brennkraftmaschine 14 tragen zum Antriebsmoment bei, das Fahrzeug rollt somit vollkommen antriebslos, so dass keine zusätzliche Energie verbraucht wird. Stellt die Steuereinrichtung 60 fest, dass wieder ein hohes Antriebsmoment gewünscht wird, beispielsweise bei einer bevorstehenden starken Steigung, so wird wieder in den
Normalbetriebszustand 70 zurückgekehrt (Übergang 2b).
Erwartet die Steuereinheit 60 ein Antriebsmoment unter einem vorgegebenen
Schwellenwert, beispielsweise bei einer bevorstehenden leichten und kurzen Steigung oder auch bei einem bevorstehenden leichten und kurzen Gefälle, welches ein
Bremsmoment benötigt, so wird in einen zweiten Rollzustand 74 (erweitertes Ecoroll) übergegangen (Übergang 3a). Die Kupplung 12 ist in diesem Zustand geöffnet, so dass die Brennkraftmaschine 14 vom Antriebsstrang 10 entkoppelt ist und im Leerlaufbetrieb läuft, wobei keinerlei Schleppmomente auf den Antriebsstrang übertragen werden. Im Getriebe 19 ist ein Gang eingelegt, der Elektromotor 15 stellt ein Antriebsmoment zur Verfügung. Damit werden kurze und kleine Momentenanforderungen überbrückt, ohne dass vom reinen Rollen im Betriebszustand 72 auf eine Aktivierung der Brennkraftmaschine 14 zurückgegriffen werden muss.
Endet die kurzfristige Momentenanforderung, so kann wieder in den reinen Rollzustand 72 zurückgekehrt werden (Übergang 3a). Bei starken Momentenanforderungen während des zweiten Rollbetriebszustands 74 kann auch unmittelbar in den Normalbetriebszustand 70 übergegangen werden, in welchem die Brennkraftmaschine 14 wieder die
gewünschten Momente zur Verfügung stellt (Übergang 3b).
Der erste Rollbetriebszustand 72 stellt hierbei die sparsamste Betriebsart des Fahrzeugs dar, da die Schleppverluste im Getriebe bei eingelegtem Neutralgang und geschlossener Kupplung geringer sind als im zweiten Rollbetriebszustand 74, bei welchem ein Gang eingelegt ist und die Kupplung geöffnet ist. Der zweite Betriebszustand 74 dient somit ausschließlich der Bedienung kurzfristiger und geringer Momentenanforderungen.
Beispielhaft ist dies in den Fig. 4 und 5 dargestellt. Die Kurve 76 in Fig. 4 zeigt ein Fahrbahnprofil Fb über dem Weg s. In einem ersten ebenen Bereich 78 der Fahrbahn wird das Fahrzeug 80 mit einem hohen Antriebsmoment M_an betrieben, wie in der Kurve 82 zu erkennen. Wie im Diagramm 84 dargestellt, sind in diesem Bereich die
Rollbetriebszustände 72 und 74 inaktiv (0), das Fahrzeug 80 befindet sich im normalen Fahrzustand 70. In einem an die Ebene 78 anschließenden Gefälle 86 befindet sich das Fahrzeug 80 im reinen Rollbetriebszustand, das Antriebsmoment hier ist null.
Anschließend an das Gefälle 68 weist die Fahrbahn einen sich abflachenden Bereich 88 auf, in welchem eine von null verschiedene Momentenanforderung besteht, wie im
Bereich 90 der Momentenkurve 82 zu erkennen. Die Antriebsmomentenanforderung liegt im Bereich 90 unterhalb eines vorgegebenen Schwellenwertes, so dass das Fahrzeug 80 nicht in den Normalbetriebszustand 70 zurückkehrt, sondern vielmehr den zweiten Rollbetriebszustand 74 einnimmt. In einem anschließenden Bereich 92 der Fahrbahn, an welchem die Steigung wieder zunimmt, überschreitet der Momentenbedarf diesen Schwellenwert, so dass wieder in den Normalbetriebszustand 70 zurückgekehrt wird.
Fig. 5 zeigt eine alternative Situation. An eine Ebene 94 im Fahrbahnprofil 96 schließt sich ein Gefälle 98 an, in welchem, wie bereits anhand von Fig. 4 beschrieben, das Fahrzeug 80 vom Normalbetriebszustand in den freien Rollzustand 92 übergeht. Bei Abflachung des Gefälles im Bereich 100 wird zunächst ein positives Antriebsmoment benötigt, welches im Bereich 102 der Momentenkurve unterhalb des Schwellenwertes für den
Normalbetriebszustand liegt. Das Fahrzeug 80 geht hier also in den zweiten Rollbetriebszustand 74 über, in dem der Momentenbedarf durch den Elektromotor 15 gedeckt wird. Im Anschluss an die Abflachung 100 geht das Fahrbahnprofil 96 in ein stärkeres Gefälle 104 über. Wie im Bereich 106 der Momentenkurve zu erkennen, besteht hier Bedarf für ein negatives Antriebsmoment, also für ein Abbremsen des Fahrzeugs 80. Auch das negative Antriebsmoment liegt unterhalb eines vorgegebenen Schwellenwertes, so dass auch hier lediglich der Elektromotor 15 im zweiten Rollbetriebszustand 70 zum Einsatz kommt. Im Gegensatz zum Bereich 102 der Momentenkurve wird hier der Elektromotor 15 allerdings nicht zum Beschleunigen, sondern zum Abbremsen des Fahrzeugs 80 genutzt. Die hierbei rekuperierte Energie kann wiederum der Batterie des elektrischen Teiles des Hybridantriebs zugeführt werden, was zu zusätzlichen
Energieeinsparungen führt.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Kraftwagens, bei welchem zwischen einer Mehrzahl von Fahrbetriebsarten (70, 72, 74) gewählt wird, wobei bei Vorliegen einer
Antriebsmomentenanforderung eine Normalbetriebszustand (70) gewählt wird, bei welchem ein Gang in einem Getriebe (19) eingelegt ist, eine Kupplung (12) geschlossen ist und ein Antriebsmoment von der Brennkraftmaschine (14) bereitgestellt wird, und bei Vorliegen keiner Antriebsmomentenanforderung ein erster Rollbetriebszustand (72) gewählt wird, bei welchem eine Antriebsverbindung zwischen der Brennkraftmaschine (14) und einer Getriebeausgangswelle (29) unterbrochen ist,
dadurch gekennzeichnet, dass
bei Vorliegen einer Antriebsmomentenanforderung unterhalb eines vorgegebenen Schwellwertes ein zweiter Rollbetriebszustand (74) gewählt wird, bei welchem ein Gang im Getriebe (19) eingelegt ist, die Kupplung (12) geöffnet ist, ein
Antriebsmoment von einem Elektromotor (15) bereitgestellt wird.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
im ersten Rollbetriebszustand (72) ein Neutralgang im Getriebe (19) eingelegt und die Kupplung (12) geschlossen ist.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
beim Überschreiten des Schwellwertes im zweiten Rollbetriebszustand (74) eine Motordrehzahl synchronisiert wird und in den Normalbetriebszustand (70) gewechselt wird.
4. Verfahren nach Anspruch 1 , 2 oder 3,
dadurch gekennzeichnet, dass
durch eine Steuereinrichtung (60) Umgebungsdaten, insbesondere Steigungsdaten einer Fahrbahn, für einen bevorstehenden Streckenabschnitt, und/oder
Betriebszustandsdaten, insbesondere Fahrtgeschwindigkeit, Motordrehzahl und dgl., ausgewertet werden und vorausschauend ein Erwartungswert für einen Antriebsmomentenbedarf bestimmt wird.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass
auf Grundlage des Erwartungswertes eine Fahrbetriebsart (70, 72, 74) ausgewählt wird.
PCT/EP2010/003688 2009-07-17 2010-06-18 Verfahren zum betreiben eines kraftwagens WO2011006571A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009033866A DE102009033866A1 (de) 2009-07-17 2009-07-17 Verfahren zum Betreiben eines Kraftwagens
DE102009033866.7 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011006571A1 true WO2011006571A1 (de) 2011-01-20

Family

ID=43302707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/003688 WO2011006571A1 (de) 2009-07-17 2010-06-18 Verfahren zum betreiben eines kraftwagens

Country Status (2)

Country Link
DE (1) DE102009033866A1 (de)
WO (1) WO2011006571A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102887143A (zh) * 2011-07-08 2013-01-23 通用汽车环球科技运作有限责任公司 用于车辆运行的方法以及车辆
CN103608231A (zh) * 2011-06-10 2014-02-26 斯堪尼亚商用车有限公司 用于车辆的方法和系统
CN103974845A (zh) * 2011-12-21 2014-08-06 Zf腓德烈斯哈芬股份公司 机动车的混合动力驱动装置及其运行方法
WO2015169448A1 (de) * 2014-05-09 2015-11-12 Audi Ag Verfahren zum betrieb eines fahrzeugs

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016131B4 (de) * 2011-03-29 2015-11-12 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Verfahren zum Betreiben eines Hybrid-Antriebsstranges
DE102012221889A1 (de) * 2012-11-29 2014-06-05 Zf Friedrichshafen Ag Zugkraftunterstütztes Mehrgruppengetriebe
DE102013009279A1 (de) * 2013-06-04 2014-12-04 Daimler Ag Verfahren und Vorrichtung zum Betrieb eines Hybridantriebsstrangs eines Fahrzeugs
DE102014019543A1 (de) 2014-12-23 2015-06-25 Daimler Ag Verfahren und Vorrichtung zum Betrieb eines Antriebsstrangs eines Fahrzeugs
DE102015016758A1 (de) 2015-12-23 2017-06-29 Daimler Ag Verfahren zum Bewegen, insbesondere zum Steuern oder Regeln, einer Fahrzeugkolonne
US11207967B2 (en) 2016-12-01 2021-12-28 Cummins Inc. Systems and methods for controlling a hybrid engine system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979257A (en) * 1997-12-01 1999-11-09 Chrysler Corporation Automated manual transmission mode selection controller
WO2001092049A1 (en) 2000-05-30 2001-12-06 Volvo Lastvagnar Ab Motor vehicle gearbox
US20040158365A1 (en) * 2000-09-14 2004-08-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for variable-cylinder engine, and control apparatus for automotive vehicle including variable-cylinder engine
EP1450037A1 (de) * 2003-01-31 2004-08-25 Volkswagen Aktiengesellschaft Antriebsvorrichtung für ein Kraftfahrzeug und entsprechendes Verfahren
DE102004041265A1 (de) * 2004-08-26 2006-03-02 Daimlerchrysler Ag Antriebsstrang eines Kraftfahrzeugs
DE102006016133A1 (de) * 2006-04-06 2007-10-11 Robert Bosch Gmbh Betriebsarten- und Momentenkoordination bei Hybrid-Kraftfahrzeugantrieben
DE102007035424A1 (de) * 2007-07-28 2009-01-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug, Betriebsverfahren und Bedienschnittstelle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979257A (en) * 1997-12-01 1999-11-09 Chrysler Corporation Automated manual transmission mode selection controller
WO2001092049A1 (en) 2000-05-30 2001-12-06 Volvo Lastvagnar Ab Motor vehicle gearbox
US20040158365A1 (en) * 2000-09-14 2004-08-12 Toyota Jidosha Kabushiki Kaisha Control apparatus for variable-cylinder engine, and control apparatus for automotive vehicle including variable-cylinder engine
EP1450037A1 (de) * 2003-01-31 2004-08-25 Volkswagen Aktiengesellschaft Antriebsvorrichtung für ein Kraftfahrzeug und entsprechendes Verfahren
DE102004041265A1 (de) * 2004-08-26 2006-03-02 Daimlerchrysler Ag Antriebsstrang eines Kraftfahrzeugs
DE102006016133A1 (de) * 2006-04-06 2007-10-11 Robert Bosch Gmbh Betriebsarten- und Momentenkoordination bei Hybrid-Kraftfahrzeugantrieben
DE102007035424A1 (de) * 2007-07-28 2009-01-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug, Betriebsverfahren und Bedienschnittstelle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608231A (zh) * 2011-06-10 2014-02-26 斯堪尼亚商用车有限公司 用于车辆的方法和系统
CN103608231B (zh) * 2011-06-10 2016-06-01 斯堪尼亚商用车有限公司 用于车辆的方法和系统
CN102887143A (zh) * 2011-07-08 2013-01-23 通用汽车环球科技运作有限责任公司 用于车辆运行的方法以及车辆
CN103974845A (zh) * 2011-12-21 2014-08-06 Zf腓德烈斯哈芬股份公司 机动车的混合动力驱动装置及其运行方法
WO2015169448A1 (de) * 2014-05-09 2015-11-12 Audi Ag Verfahren zum betrieb eines fahrzeugs
US10189459B2 (en) 2014-05-09 2019-01-29 Audi Ag Method for operating a vehicle

Also Published As

Publication number Publication date
DE102009033866A1 (de) 2011-02-03

Similar Documents

Publication Publication Date Title
WO2011006571A1 (de) Verfahren zum betreiben eines kraftwagens
EP2524155B1 (de) Verfahren zum betreiben eines fahrzeugantriebsstranges mit einer antriebsmaschine und mit einer getriebeeinrichtung mit mehreren schaltelementen
EP2691277B1 (de) Verfahren zum betreiben eines hybrid-antriebsstranges
EP2708400B1 (de) Verfahren zum Ansteuern eines Hybridantriebsstranges
EP2726354B1 (de) Verfahren zum betrieb eines kraftfahrzeugs
EP2504211B1 (de) Verfahren und vorrichtung zum betreiben eines hybridfahrzeuges
DE102010008726A1 (de) Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug
EP2855226A2 (de) Verfahren und vorrichtung zum ansteuern einer mobilen arbeitsmaschine
WO2007031192A1 (de) Nutzfahrzeug mit einem schaltklauengetriebe und einem elektromotor
WO2010046198A2 (de) Verfahren und vorrichtung zum anfahren eines hybridfahrzeuges
EP1564446A2 (de) Verfahren und Vorrichtung zum Steuern eines Gangwechsels in einem Parallelschaltgetriebe eines Fahrzeuges
EP2240709B1 (de) Vorrichtung und verfahren zum verhindern von fehlschaltungen in automatischen getrieben von kraftfahrzeugen
DE102010023093B4 (de) Antriebsstrang für ein Kraftfahrzeug und Verfahren zum Ansteuern eines Kraftfahrzeug-Antriebsstranges
EP3501928B1 (de) Verfahren zum betreiben eines hybrid-antriebsstranges sowie hybrid-antriebsstrang für ein kraftfahrzeug
EP3558777B1 (de) Verfahren zum betrieb eines kraftfahrzeugs mit vorzeitigem motorneustart aus dem engine-off-coasting
WO2017182384A1 (de) Verfahren und steuereinheit zum betrieb eines getriebes
DE102008040457A1 (de) Verfahren zum Ansteuern eines Antriebsstranges
EP2813734B1 (de) Verfahren und Vorrichtung zur Steuerung eines Schaltgetriebes
DE102010022912B4 (de) Verfahren zum Ansteuern eines Kraftfahrzeug-Antriebsstranges
WO2006021429A1 (de) Antriebsstrang eines kraftfahrzeugs
DE102014201974A1 (de) Verfahren zum Betreiben eines Automatikgetriebes und Steuerungseinrichtung zur Durchführung des Verfahrens
DE102016125003A1 (de) Verfahren zur Einrückpunkt-Ermittlung einer Reibkupplung in einem Hybrid-Antriebsstrang
EP3797231B1 (de) Antriebsstrang für ein kraftfahrzeug und verfahren zum betreiben desselben
WO2018065313A1 (de) Verfahren zum anfahren eines kraftfahrzeuges
DE102011100754A1 (de) Antriebsstrang für einen Kraftwagen, insbesondere ein Hybrid-Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10727679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10727679

Country of ref document: EP

Kind code of ref document: A1