WO2011006307A1 - 外加电场型光伏电池 - Google Patents

外加电场型光伏电池 Download PDF

Info

Publication number
WO2011006307A1
WO2011006307A1 PCT/CN2009/073040 CN2009073040W WO2011006307A1 WO 2011006307 A1 WO2011006307 A1 WO 2011006307A1 CN 2009073040 W CN2009073040 W CN 2009073040W WO 2011006307 A1 WO2011006307 A1 WO 2011006307A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
photovoltaic cell
conductive film
transparent conductive
electrode
Prior art date
Application number
PCT/CN2009/073040
Other languages
English (en)
French (fr)
Inventor
郭建国
毛星原
Original Assignee
Guo Jianguo
Mao Xingyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Jianguo, Mao Xingyuan filed Critical Guo Jianguo
Publication of WO2011006307A1 publication Critical patent/WO2011006307A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to an external electric field type photovoltaic cell, in particular to providing a photovoltaic cell with an electric field in the battery through an external power source, the electric field can enhance the self-built electric field of the carrier diffusion in the pn junction region, and the amorphous photovoltaic cell / internal electric field .
  • the electric field can enhance the self-built electric field of the carrier diffusion in the pn junction region, and the amorphous photovoltaic cell / internal electric field .
  • the basic structures of single crystal silicon, polycrystalline silicon and amorphous silicon photovoltaic cells are photovoltaic cells with pn junction characteristics and ⁇ -type semiconductors, and amorphous features, as shown in Fig. 1.
  • the single crystal or polycrystalline silicon photovoltaic cell is composed of: surface electrode 1.1, pn junction 1.2, back electrode 1.3, p-type semiconductor 1.4, and n-type semiconductor 1.5.
  • the amorphous silicon photovoltaic cell is composed of: transparent conductive film 1.1-1, back electrode 1.2-1, p-i-n structure layer 1.3-1, transparent glass 1.4-1.
  • p is a self-built electric field of a pn junction and an amorphous silicon photovoltaic cell in a single crystal or polycrystalline silicon photovoltaic cell
  • is a photovoltaic cell output current
  • / D is a pn junction forward current of a single crystal or polycrystalline silicon photovoltaic cell.
  • An n-type semiconductor is an n-type (electronic type) semiconductor in which an impurity is greatly increased by incorporating impurities in an intrinsic semiconductor material.
  • the p-type semiconductor is doped with impurities to greatly increase the hole concentration, and is called a p-type (hole type) semiconductor.
  • the n-type semiconductor of the single crystal or polycrystalline silicon photovoltaic cell is in direct contact with or through the conductor, and forms a pn junction at the contact surface, and the carrier is diffused in the depletion region to form a self-built electric field P.
  • Non An intrinsic semiconductor is added between the p-type semiconductor film layer and the n-type semiconductor film layer of the crystalline photovoltaic cell to form pin ⁇ , and a self-built electric field is formed between the w film layers. The electric field direction is directed from the n region to the p region.
  • the photon energy When incident photons enter the pn junction depletion region of a single crystal or polycrystalline silicon photovoltaic cell or the intrinsic semiconductor region of an amorphous photovoltaic cell, and the photon energy is greater than the pn junction depletion region or the i intrinsic semiconductor region energy gap, the photon energy is Absorbs, producing electrons and hole pairs of high potential energy. The electron and hole pairs are respectively affected by the self-built electric field to generate photocurrent Z.
  • the self-built electric field of the ⁇ junction region and the size and stability of the self-built electric field ⁇ are important parameters for the photovoltaic cell power generation efficiency.
  • the size of the self-built electric field in the pn junction region of a single crystal or polycrystalline silicon photovoltaic cell is determined by the purity of the intrinsic semiconductor material.
  • a single crystal silicon photovoltaic cell has a larger p- strength than a self-built electric field in a pn junction region of a polycrystalline silicon photovoltaic cell, and the field strength is relatively stable, so the conversion efficiency is high.
  • the manufacturing cost of monocrystalline silicon is several times that of polysilicon manufacturing, and the price of polycrystalline silicon is several times that of smelting grade silicon. If the photovoltaic cell can be prepared by smelting grade silicon, the cost can be greatly reduced.
  • the impurity content of the smelting grade silicon is too high, which directly affects the establishment and improvement of the self-built electric field in the pn junction region of the photovoltaic cell, resulting in low conversion efficiency of the photovoltaic cell. If you can manage the chemical or physical methods of smelting grade silicon, increase the self-built electric field in the pn junction area of the photovoltaic cell and meet the requirements of the photovoltaic cell. This kind of silicon is called solar cell grade silicon, also called SOG-Si.
  • the self-built electric field in the photovoltaic cell of polycrystalline material is the characteristic parameter of the semiconductor material and battery structure of the battery itself. Therefore, there are three main aspects that affect the self-built electric field of polycrystalline silicon photovoltaic cells:
  • the grain boundary acts as a crystal defect and acts as an effective composite positive load carrier.
  • the doped atoms will preferentially diffuse down along the grain boundaries to form a conductive shunt path to increase leakage current.
  • (a - Si:H) amorphous photovoltaic cell is /? - Structure, not the pn structure of monocrystalline silicon solar cells.
  • the photo-generated carriers in the amorphous solar cell are mainly generated in the undoped intrinsic absorption layer, and the carriers in the crystalline silicon solar cell are mainly moved by the pn junction diffusion region.
  • the photo-generated carrier The flow mainly relies on the electric field P between the n-layer and the P layer in the battery to make a drift motion, so that the photo-generated carriers are attracted to the n-side and the p-side immediately after being generated.
  • the amorphous silicon p-region and n-region film materials also contain a large number of defects such as dangling bonds and vacancies, and thus have a defect density of 4 ⁇ , which provides a place where electrons and holes recombine.
  • defects such as dangling bonds and vacancies
  • defect density 4 ⁇
  • the invention provides an electric field type photovoltaic cell structure, in particular, an electric field pole of an electric field type photovoltaic cell is connected through an external power source to form an enhanced and stabilized self-built electric field in the battery, and the photovoltaic cell is improved.
  • the open circuit voltage and the maximum output power of the corpse form an electric field type photovoltaic cell structure with higher conversion efficiency.
  • An external electric field type photovoltaic cell wherein the photovoltaic cell is: a single crystal silicon photovoltaic cell composed of a p-type semiconductor, an n-type semiconductor and a pn junction therebetween, or a p-type semiconductor, an n-type semiconductor and a polycrystalline silicon photovoltaic cell composed of a pn junction between the two; or a p-amorphous layer, i intrinsic amorphous
  • An amorphous silicon photovoltaic cell composed of a layer and an n-amorphous layer, wherein the light-emitting surface (or surface) and the back surface of the photovoltaic cell are respectively provided with a surface electrode and a back electrode, characterized in that the light in the photovoltaic cell
  • a transparent conductive film is disposed on the upper surface of the radiation surface, and the transparent conductive film is electrically isolated (or referred to as "insulating" from the optical radiation surface of the photovoltaic cell through the insulating layer, and the transparent conductive
  • a composite conductive film is disposed under the back electrode of the photovoltaic cell, and the composite conductive film is electrically isolated (insulated) from the back electrode through the insulating layer, and an applied voltage is disposed between the transparent conductive film and the composite conductive film.
  • the invention accesses an external electric field type photovoltaic cell through an external power source, and the applied voltage range of the single junction photovoltaic cell is 0.6V ⁇ 3V (0.6V ⁇ V1 ⁇ 3V).
  • the size of the power supply voltage VI is related to the effective thickness of the photovoltaic cell between the electric field plates. The larger the thickness, the higher the voltage.
  • the thickness of the silicon wafer in the effective n-region and p-region of the single crystal silicon or polycrystalline silicon photovoltaic cell is required to be less than 300 micrometers.
  • the total thickness of the effective multilayer film and composite conductive film insulating layer of the amorphous silicon film laminated photovoltaic cell is required to be less than 10 microns.
  • the back electrode or the composite conductive film of the p-type semiconductor substrate is configured as a positive electrode to which an electric field is applied; and the transparent conductive film is configured as a negative electrode to which an electric field is applied.
  • the back electrode or the composite conductive film of the n-type semiconductor substrate is configured as a negative electrode to which an electric field is applied; and the transparent conductive film is configured as a positive electrode to which an electric field is applied.
  • the structure and working principle of the external electric field type photovoltaic cell of the present invention is: a transparent conductive film is disposed on the light radiating surface of the photovoltaic cell, and the transparent conductive film and the optical radiation surface are "+ surface electric isolation.
  • the light radiant energy enters the "+ diffusion region PN junction through the transparent conductive film and the anti-reflection film, and the p-type semiconductor serves as a substrate.
  • the entire lower surface of the p-type semiconductor substrate is coated with metal and sintered into a back electrode.
  • the transparent conductive film passes through the anti-reflective film and the surface electrode of the gate structure of the + diffusion region is also Electrically isolated.
  • the transparent conductive film and the back electrode are respectively connected to the positive electrode and the negative electrode of the electric field power source, and the electric field 1 is formed between the transparent conductive film and the back electrode, and the electric field 1 direction is directed from the transparent conductive film to the back electrode.
  • a p-type semiconductor and an n -type semiconductor may be used as a substrate between the transparent conductive film and the back electrode, and the entire lower surface of the n-type semiconductor substrate is coated with metal and sintered into a back electrode, and the electric field 1 is opposite in direction.
  • the electric field type amorphous silicon photovoltaic cell is characterized in that an insulating layer is laminated on the bottom surface of the back electrode, and a composite conductive film is sandwiched between the insulating layers, and the conductive film is electrically isolated from the back electrode through the insulating layer, and the conductive film is called electric field positive electrode. .
  • the transparent conductive film and the electric field positive electrode are respectively connected to the negative electrode and the positive electrode of the DC power source VI, and the electric field between the electric field positive electrode and the transparent conductive film forms an electric field 1 , and the electric field 1 direction is the same as the self-built electric field ⁇ , from the positive electrode of the electric field to the transparent conductive film.
  • the light radiating surface "+ surface is laminated with a transparent anti-reflective insulating film (such as: Si0 2 ), and a transparent conductive film is laminated on the other side of the anti-reflective insulating film, and the transparent conductive film passes through
  • the anti-reflective film is electrically isolated from the surface of the light-emitting surface.
  • the light radiant energy enters the "+ diffusion region pn junction through the transparent conductive film and the anti-reflection film, and the p-type semiconductor serves as a substrate.
  • the entire lower surface of the p-type semiconductor substrate is coated with metal and sintered into a back electrode.
  • the transparent conductive film is also electrically isolated from the surface electrode of the gate structure of the + diffusion region through the anti-reflective insulating film.
  • the transparent conductive film and the back electrode are respectively connected to the positive electrode and the negative electrode of the DC power source V1, and an electric field E1 is formed between the transparent conductive film and the back electrode, and the electric field 1 direction is directed from the transparent conductive film to the back electrode. Since the direction of the electric field 1 coincides with the electric field p direction of the pn junction region of the photovoltaic cell, ⁇ is strengthened and stabilized, the separation degree of the positive load carriers is enhanced, and the composite action of the positive load carriers is reduced.
  • the electric field ⁇ 1 + ⁇ ⁇ also reduces the ⁇ junction forward current ⁇ , that is, reduces the ⁇ junction reverse saturation current /. , can increase the open circuit voltage V of the battery.
  • c Photovoltaic power Pool load current /. Relationship with illumination:
  • the electric field £1 has a blocking and reflecting effect on the p-zone minority-electron, which reduces the composite effect of the back surface, and the electric field 1 can adjust the polycrystal grain boundary barrier direction, improve carrier migration, and reduce crystal grains.
  • the boundary complex positive load carriers increase the probability of the pn junction collecting the photon minority. Therefore, it is also possible to increase the short-circuit current and the open circuit voltage of the photovoltaic cell and increase the maximum output power P max of the photovoltaic cell.
  • is the fill factor for photovoltaic cells.
  • the electric field type photovoltaic cell structure is shown in Fig. 2.
  • the bottom surface of the back electrode is composited with an insulating layer, and a composite conductive film is sandwiched between the insulating layers, and the conductive film is electrically isolated from the back electrode through an insulating layer, which is called an electric field positive electrode.
  • the transparent conductive film and the electric field positive electrode are respectively connected to the negative electrode and the positive electrode of the DC power source VI, and the electric field positive electrode and the transparent conductive film form an electric field 1 between the structures, the electric field is in the direction of 1 and the self-built electric field ⁇ ⁇ Similarly, the positive electrode from the electric field is directed to the transparent conductive film. See Figure 3 for details.
  • the optimization scheme of the invention is:
  • the structure of the power supply device with the applied electric field is as follows: Referring to FIG. 5, a low-power photovoltaic cell 1 and a photovoltaic cell 2 are connected in series to form an electric field power source, and the positive and negative electrodes of the electric field power source are respectively connected to the transparent conductive film and the back electrode of the electric field type photovoltaic cell 3. .
  • a plurality of external electric field type photovoltaic cells are connected in series to form a higher output battery voltage; or a plurality of series electric field type photovoltaic cells are connected in parallel.
  • a non-glass transparent polymer is used to form an electric field type thin film organic semiconductor photovoltaic cell.
  • the invention accesses the electric field pole of the external electric field type photovoltaic cell through an external power source, forms an enhanced and stabilized self-built electric field in the battery, improves the open circuit voltage of the photovoltaic cell and the maximum output power P max , and forms a conversion efficiency with a higher conversion efficiency.
  • Electric field type photovoltaic cell structure Among them, the amorphous silicon photovoltaic cell structure reduces the SW effect by reducing the SW and the n-region film (which should have a large number of dangling bonds, vacancies, etc.) in the amorphous silicon by adjusting the electric field of £.
  • the electric field £1 + is beneficial to increase the open circuit voltage of the battery and increase the conversion efficiency of the battery.
  • Figure 1-A and Figure 1-B are schematic diagrams of the structure of the existing single crystal or polycrystalline silicon and amorphous silicon photovoltaic cells;
  • Figure 2-A and Figure 2-B show the structure principle of the electric field type single crystal or polycrystalline silicon photovoltaic cell respectively.
  • Figure 3 is a schematic structural view of an electric field type amorphous silicon photovoltaic cell of the present invention.
  • FIG. 4 is a schematic structural view of an electric field type amorphous silicon stacked photovoltaic cell of the present invention.
  • Figure 6 is a schematic diagram of the operation of the external electric field power supply in the series electric field type photovoltaic cell structure
  • Figure 7-A is a graph of output voltage-current of an electric field type photovoltaic cell
  • Figure 7-B is a graph of photovoltaic cell output voltage-current
  • a single crystal or polycrystalline silicon electric field type photovoltaic cell structure of the present invention is composed of: a gate surface electrode 3.1, a pn junction region 3.2, a back surface electrode 3.3, a p-type semiconductor 3.4, and an n-type semiconductor. 3.5.
  • the anti-reflective film 3.6, the transparent conductive film 3.7, the electric field power supply VI, and the load resistor R are composed.
  • the back electrode 3.3 and the gate surface electrode 3.1 are the positive electrode and the negative electrode of the photovoltaic cell output, and the transparent conductive film 3.7 and the back electrode 3.3 are connected to the positive electrode and the negative electrode of the electric field power source VI to make the transparent conductive
  • An electric field 1 is formed between the film 3.7 and the back electrode 3.3.
  • the transparent conductive film 3.7 is electrically isolated from the n-type semiconductor 3.5 and the gate surface electrode 3.1 through the anti-reflection film 3.6.
  • the electric field power supply VI and the photovoltaic battery are also independent power sources.
  • the working principle of a single crystal or polycrystalline silicon electric field type photovoltaic cell structure is as follows:
  • the positive electrode and the negative electrode of the electric field power source VI are respectively connected between the transparent conductive film 3.7 and the back electrode 3.3, in the photovoltaic cell.
  • the n-type region and the p-type region are electrostatically induced to form an electric field of £.
  • the electric field £1 is consistent with the n-type diffusion region pn junction self-built electric field ⁇ ⁇ direction, and + enhancement, which helps to reduce the pn junction forward conduction current ⁇ , and improve the photovoltaic cell short-circuit current / sc .
  • £ + enhancement while reducing the pn junction reverse conduction current /.
  • the electric field £1 simultaneously has a small number of electrons in the P-type region.
  • the blocking and reflection effects reduce the composite effect of the back surface, especially the electric field 1 can adjust the polycrystalline grain boundary barrier direction, improve carrier migration, reduce the grain boundary complex positive load, and improve the The probability of collecting pn junctions for photons.
  • an electric field type amorphous silicon photovoltaic cell structure is composed of: a transparent conductive film 3.1-2, "structure 3.2-2, back electrode 3.3-2, insulating layer 3.4-2, electric field.
  • the positive electrode 3.5-2, the transparent glass 3.6-2, the electric field power supply VI, and the load resistor R are composed of the positive and negative electrodes of the electric field power supply VI connected to the electric field positive electrode 3.5-2 and the transparent conductive film 3.1-2, and at /?
  • the internal field E1 is formed in the structure 3.2-2, and the electric field E1 is the same as the self-built electric field ⁇ .
  • the electric field positive electrode 3.5-2 is electrically isolated from the back electrode of the amorphous photovoltaic cell.
  • an electric field type amorphous silicon stacked photovoltaic cell structure is a stacked structure amorphous silicon photovoltaic cell.
  • the structure consists of: transparent conductive film 3.1-1, 3-layer structure 3.2-1, back electrode 3.3-1, insulating layer 3.4-1, electric field positive electrode 3.5-1, transparent glass 3.6-1, electric field power supply VI, load resistance R Composed of.
  • the positive and negative electrodes of the electric field power supply VI are connected to the positive electrode 3.5-1 and the transparent conductive film 3.1-1, and the electric field E1 is formed inside the 3 layer/? structure 3.2-1, and the electric field E1 is the same as the self-built electric field ⁇ direction.
  • the electric field positive electrode 3.5-1 is electrically isolated from the back electrode of the amorphous silicon photovoltaic cell.
  • an electric field power source VI and an electric field type photovoltaic cell are mutually independent power sources.
  • This embodiment uses a separate photovoltaic cell as the electric field source VI.
  • a low-power photovoltaic cell 1 and an photovoltaic cell 2 are connected in series to form an electric field.
  • the power source, the positive and negative electrodes of the electric field power source are respectively connected to the transparent conductive film and the back electrode of the electric field type photovoltaic cell 3.
  • the output current of the electric field power supply should be 4 ⁇ .
  • the photovoltaic cell 1 and the photovoltaic cell 2 are connected in series to form an electric field power supply voltage.
  • the open circuit voltage can be considered as an open circuit voltage of 1.2V-1.3V.
  • 5B is a / diffusion region pn junction
  • an n-type semiconductor is a substrate
  • an n-type semiconductor substrate is coated with metal and sintered into an electric field type photovoltaic cell structure of a back electrode
  • a low-power photovoltaic cell is used as an electric field power source and an electric field.
  • an electric field type photovoltaic cell structure can perform a series connection of a plurality of electric field type photovoltaic cells to form a higher output battery voltage.
  • a plurality of series electric field type photovoltaic cells can also be connected in parallel.
  • FIG. 6 is a schematic diagram of the operation of connecting four electric field type photovoltaic cells in series with an external electric field power supply.
  • the surface electrode of the battery 1 is connected to the back electrode b2 of the battery 2
  • the surface electrode of the battery 2 is connected to the back electrode b3 of the battery 3
  • the surface electrode of the battery 3 and the back electrode b4 of the battery 4 connection In the battery 1 - battery 4 of the series electric field type photovoltaic cell, the surface electrode of the battery 1 is connected to the back electrode b2 of the battery 2, the surface electrode of the battery 2 is connected to the back electrode b3 of the battery 3, and the surface electrode of the battery 3 and the back electrode b4 of the battery 4 connection.
  • the surface electrode of the battery 4 and the back electrode of the battery 1 are the negative electrode and the positive electrode of the series battery output.
  • the connection between the positive and negative electric power VI series capacitor C1-C4, the positive electric power source battery 1 is connected el Al transparent conductive film, transparent conductive film 2 of the battery cell with the back electrode a2 BL, 4_ 3 series capacitor connected to the voltage e2,
  • the transparent conductive film a3 of the battery 3 is connected to the back electrode b2 of the battery 2
  • the transparent conductive film a4 of the battery 4 is connected to the back electrode b3 of the battery 3, the series capacitor voltage e4, and the negative electrode e5 of the electric field power supply VI is connected to the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

外加电场型光伏电池
技术领域
本发明涉及一种外加电场型的光伏电池, 尤其是通过外部电源为光伏电 池提供一个调控电池内电场, 该电场可以增强 pn结区载流子扩散自建电场, 以及非晶光伏电池/ 内电场。提高光伏电池的最大输出功率 形成转 换效率较高的多晶体与非晶光伏电池。
背景技术
当前单晶硅、 多晶硅与非晶硅光伏电池的基本结构, 都是采用 ρ型半导 体、 η型半导体所组成具有 pn结特征, 以及非晶 《特征的光伏电池, 参 看附图 1 所示。
单晶或多晶硅光伏电池是由: 表面电极 1.1、 pn结 1.2、 背面电极 1.3、 p 型半导体 1.4、 n型半导体 1.5 所组成。
非晶硅光伏电池是由: 透明导电膜 1.1-1、 背面电极 1.2- 1、 p - i - n结构 层 1.3-1、 透明玻璃 1.4- 1 所组成。
图中 p是单晶或多晶硅光伏电池内 pn结与非晶硅光伏电池 w结构 自建电场, ^是光伏电池输出电流, /D是单晶或多晶硅光伏电池 pn结正向 电流。
n型半导体是在本征半导体材料中,掺入杂质使自由电子浓度大大增加, 称为 n型 (电子型)半导体。 p型半导体在本征半导体中, 掺入杂质使空穴浓 度大大增加, 称为 p型 (空穴型)半导体。
单晶或多晶硅光伏电池的 n型半导体与 p型半导体直接接触或通过导体 接触, 并在接触面形成 pn结, 并在耗尽区载流子扩散形成自建电场 P。 非 晶光伏电池的 p型半导体膜层与 n型半导体膜层之间加有 i本征半导体,形成 p-i-n ^ , 并在 w膜层之间内自建电场 £ ^电场方向从 n区指向 p 区。
当入射光子进入单晶或多晶硅光伏电池 pn结耗尽区或非晶光伏电池的 i 本征半导体区,并光子能量大于 pn结耗尽区或 i本征半导体区能隙时,光子能 量会被吸收, 产生高势能的电子和空穴对。 电子和空穴对会分别受到自建电 场^ ^的影响而产生光电流 Z 。
光伏电池的基本结构中,ρη结区载流子扩散自建电场与 «结构自建 电场 Εηρ的大小与稳定, 是光伏电池发电效率的重要参数。
单晶或多晶硅光伏电池内 pn结区自建电场^ ^大小, 首先是由本征半导 体材料的纯度决定的。 如: 单晶硅光伏电池比多晶硅光伏电池内 pn结区自建 电场 p强度要大, 并且场强较为稳定, 所以转换效率高。 但单晶硅的制造 成本是多晶硅制造成本的几十倍, 而多晶硅价格又是冶炼级硅的几十倍。 若 能以冶炼级硅来制备光伏电池, 就能大大降低成本。 可是, 冶炼级硅的杂质 含量太高, 直接影响光伏电池内 pn结区自建电场 ^的建立与提高, 造成光 伏电池的转换效率较低。 若能设法将冶炼级硅用筒单的化学或物理方法, 提 高光伏电池内 pn结区自建电场 并能满足光伏电池的要求, 这种硅就叫 太阳能电池级硅, 又叫 SOG-Si。
多晶材料的光伏电池内自建电场^ ^, 是电池本身半导体材料及电池结 构的特征参数。 所以, 影响多晶材料光伏电池自建电场^^ 主要有以下三 个主要方面影响:
1、 晶粒间界处存在势垒, 阻断载流子的通过。 2、 晶粒间界作为一种晶体缺陷, 起着有效复合正负载流子对中心作用。
3、 在形成 pn结的工艺过程中, 掺杂的原子会沿着晶粒间界向下择优扩 散, 形成导电分流路径, 增大漏电流。
而 (a - Si:H )非晶光伏电池是/?- 结构, 而不是单晶硅太阳能电池 的 pn结构。 非晶太阳能电池内光生载流子主要产生于未掺杂的 i本征吸收层, 与晶态硅太阳能电池中载流子主要由 pn结扩散区移动不同,在非晶太阳能电 池中,光生载流子主要依靠电池内 n层 -P层之间电场 P作用做漂移运动,使光 生载流子产生后立即被吸引到 n侧和 p侧。 但是非晶硅 p区与 n区膜材料中, 还 包含有大量的悬挂键、 空位等缺陷, 因而其有 4艮高的缺陷态密度, 它们提供 了电子和空穴复合的场所。 另外由于非晶硅电池在经过长时间光照后, 其光 电导和暗电导都显著减小,这一现象被称为 Staebler-Wronski效应,筒称 S-W 效应。 由于 S-W效应使非晶硅膜中缺陷态密度增加, 导致电池内的光生电子 和空穴复合几率增加, 电池的转换效率下降。
发明内容
为了提高光伏电池转换效率, 本发明提供一种电场型光伏电池结构, 尤 其是通过外部电源接入电场型光伏电池的电场极, 形成一个增强与稳定电池 内自建电场^ ^电场,提高光伏电池的开路电压与最大输出功率尸皿, 形成转 换效率较高的电场型光伏电池结构。
实现本发明目的技术方案是:
一种外加电场型光伏电池, 所述的光伏电池是指: 由 p型半导体、 n型 半导体及两者之间的 pn结组成的单晶硅光伏电池,或由 p型半导体、 n型半 导体及两者之间的 pn结组成的多晶硅光伏电池; 或由 p非晶层、 i本征非晶 层及 n非晶层组成的非晶硅光伏电池, 所述光伏电池的光辐射面(或称为表 面)与背面分别设有表面电极和背面电极, 其特征在于, 在所述光伏电池的 光辐射面的上面设有透明导电膜,该透明导电膜通过绝缘层与所述光伏电池 的光辐射面电隔离 (或称为 "绝缘" , 同时, 该透明导电膜与表面电极之间 也是电隔离); 所述光伏电池的背面电极的下面设有复合导电膜, 该复合导 电膜通过绝缘层与背面电极电隔离 (绝缘) , 同时, 在该透明导电膜与复合 导电膜之间设有外加电压。
本发明通过外部电源接入外加电场型光伏电池,在单结光伏电池外加电 源电压范围是 0.6V~3V ( 0.6V≤V1≤3V ) 。 其中电源电压 VI的大小与电场极 板之间光伏电池有效厚度有关, 厚度越大, 电压越高, 一般单晶硅或多晶硅 光伏电池有效 n区与 p区的硅片厚度要求在 300微米以下, 而非晶硅薄膜叠层 光伏电池有效多层 薄膜加复合导电膜绝缘层总厚度要求在 10微米以 下。
所述 p型半导体衬底的背面电极或复合导电膜构成为外加电场的正电 极; 所述透明导电膜构成为外加电场的负电极。 而 n型半导体衬底的背面电 极或复合导电膜构成为外加电场的负电极; 所述透明导电膜构成为外加电场 的正电极。
更具体地说, 本发明的外加电场型光伏电池的结构和工作原理是: 在所述光伏电池的光辐射面设有透明导电膜, 该透明导电膜与所述的光 辐射面《+表面电隔离。 光辐射能是通过透明导电膜、 减反绝缘膜进入《+扩 散区 PN结, p型半导体为衬底, p型半导体衬底整个下表面涂金属并烧结成背 面电极。其中透明导电膜通过减反绝缘膜与《+扩散区的栅结构表面电极也是 电隔离。 电场型光伏电池中透明导电膜与背面电极分别连接电场电源的正极 与负极, 透明导电膜与背面电极之间形成电场 1 , 电场 1方向从透明导电 膜指向背面电极。其中,透明导电膜与背面电极之间也可采用 p_型半导体与 n型半导体为衬底, n型半导体衬底整个下表面涂金属并烧结成背面电极, 电 场 1方向相反。
其电场型非晶硅光伏电池特征是, 背面电极底面复合一层绝缘层, 并在 绝缘层中间夹有复合导电膜, 导电膜通过绝缘层与背面电极电隔离, 该导电 膜称为电场正电极。 电场型非晶硅光伏电池中透明导电膜与电场正电极分别 连接直流电源 VI的负极与正极, 电场正电极与透明导电膜之间 w结构 形成电场 1 , 电场 1方向与自建电场^ ^相同, 从电场正电极指向透明导电 膜。
在电场型多晶硅光伏电池结构中,光辐射面《+表面复合一层透明的减反 绝缘膜(如: Si02 ), 并在减反绝缘膜另一面复合一层透明导电膜, 透明导 电膜通过减反绝缘膜与光辐射面《+表面电隔离。 光辐射能是通过透明导电 膜、 减反绝缘膜进入《+扩散区 pn结, p型半导体为衬底, p型半导体衬底整个 下表面涂金属并烧结成背面电极。其中透明导电膜通过减反绝缘膜与《+扩散 区的栅结构表面电极也是电隔离。 电场型光伏电池中透明导电膜与背面电极 分别连接直流电源 V 1的正极与负极, 透明导电膜与背面电极之间形成电场 El , 电场 1方向从透明导电膜指向背面电极。 由于电场 1方向与光伏电池 的 pn结区电场 p方向一致, ρ加强与稳定, 增强正负载流子的分离度, 减 少了正负载流子的复合作用。 电场 Ε1 + Εηρ同时也降低了 ρη结正向电流^ , 也就是降低了 ρη结反向饱和电流 /。, 能够提高电池的开路电压 V。c。 光伏电 池负载电流 /。与照度关系:
Figure imgf000008_0001
/为光生电流, /。为 ΡΝ结反向饱和电流, 波尔茨曼常数, Γ为绝对温度, 为电子电荷, 《为 ΡΝ结特性参数。 当 V = 0时, 可得光伏电池短路电流:
± SC — P ~ 1 光伏电池的开路电压:
q lo
另外, 电场 £1对 p区少子 -电子有阻挡和反射作用, 既减少了背表面之复 合作用, 同时电场 1能调整多晶体晶粒间界势垒方向, 提高载流子迁移, 降 低晶粒间界复合正负载流子, 又提高了 pn结对光生少子的收集几率。 所以也 就能提高光伏电池的短路电流与开路电压,提高光伏电池最大输出功率 Pmax
P max = FFxVn OrCI S,rC
^为光伏电池的填充因子。 电场型光伏电池结构, 参看附图 2所示。
在电场型非晶硅光伏电池结构中, 背面电极底面复合一层绝缘层, 并在 绝缘层中间夹有复合导电膜, 导电膜通过绝缘层与背面电极电隔离, 该导电 膜称为电场正电极。 电场型非晶硅光伏电池中透明导电膜与电场正电极分别 连接直流电源 VI的负极与正极, 电场正电极与透明导电膜在 结构之 间形成电场 1 , 电场 £1方向与自建电场^ ^相同, 从电场正电极指向透明导 电膜。 参看附图 3所示。 本发明的优化方案有:
所述外加电场的电源装置的结构是: 参照图 5 , 采用小功率的光伏电池 1 与光伏电池 2串联形成电场电源, 电场电源正负电极分别连接电场型光伏电 池 3的透明导电膜与背面电极。
多个外加电场型光伏电池串联连接, 形成输出较高电池电压; 或者多个 串联电场型光伏电池进行并联连接。
在所述的太阳辐射面是采用非玻璃的透明聚合物, 形成电场型薄膜有机 半导体光伏电池。
本发明通过外部电源接入外加电场型光伏电池的电场极, 形成一个增强 与稳定电池内自建电场^ ^电场, 提高光伏电池的开路电压与最大输出功率 Pmax , 形成转换效率较高的外加电场型光伏电池结构。 其中的非晶硅光伏电 池结构是通过外加调控电场 £1 ,减少非晶硅 p区与 n区膜(应为有大量的悬挂 键、 空位等缺陷) 中电子和空穴复合, 降低 S-W效应。 电场 £1 + 有利提高 电池的开路电压, 增加电池转化效率。
本发明通过外部电源接入外加电场型光伏电池, 而外部电源所形成的外 部电场在 El = 2Enp时, 外加电场型光伏电池电压-电流曲线及转化功率尸皿, 参看附图 7-A和附图 7-B所示。
附图说明
图 1-A、图 1-B分别为现有单晶或多晶硅与非晶硅光伏电池结构原理图; 图 2-A、图 2-B分别为本发明电场型单晶或多晶硅光伏电池结构原理图; 图 3为本发明电场型非晶硅光伏电池结构原理图;
图 4为本发明电场型非晶硅叠层光伏电池结构原理图; 原理图;
图 6为串联电场型光伏电池结构中外电场电源工作原理图;
图 7- A为电场型光伏电池输出电压-电流曲线图;
图 7- B为光伏电池输出电压-电流曲线图; 具体实施方式
实施例 1
实施例 1 , 参照附图 2所示, 本发明一种单晶或多晶硅电场型光伏电池结 构是由: 栅型表面电极 3.1、 pn结区 3.2、 背面电极 3.3、 p型半导体 3.4、 n型 半导体 3.5、 减反绝缘膜 3.6、 透明导电膜 3.7、 电场电源 VI、 负载电阻 R所组 成。 电场型光伏电池结构中, 背面电极 3.3与栅型表面电极 3.1 , 是光伏电池 输出的正电极与负电极, 而透明导电膜 3.7与背面电极 3.3 , 连接电场电源 VI 的正极与负极, 使透明导电膜 3.7与背面电极 3.3之间形成电场 1。 其中透明 导电膜 3.7是通过减反绝缘膜 3.6与 n型半导体 3.5、 栅型表面电极 3.1进行电隔 离。 而电场电源 VI与光伏电池也是相互独立的电源。
参照附图 2所示, 本发明实施例一种单晶或多晶硅电场型光伏电池结构 的工作原理是: 电场电源 VI的正极与负极分别连接透明导电膜 3.7与背面电 极 3.3之间,在光伏电池 n型区与 p型区整体静电感应形成电场 £1。该电场 £1与 n型扩散区 pn结自建电场^ ^方向一致, 而 + 增强,有助减小 pn结正向导 通电流^ , 提高光伏电池短路电流 /sc。 £1 + 增强, 同时减小 pn结反向导 通电流 /。, 提高光伏电池开路电压 V。c。 该电场 £1同时对 P型区少子-电子有 阻挡和反射作用,既减少了背表面之复合作用,特别是电场 1能调整多晶体 晶粒间界势垒方向, 提高载流子迁移, 降低晶粒间界复合正负载流子, 又提 高了 pn结对光生少子的收集几率。
实施例 2
参照附图 3所示, 本发明实施例一种电场型非晶硅光伏电池结构是由: 透明导电膜 3.1-2、 "结构 3.2-2、 背面电极 3.3-2、 绝缘层 3.4-2、 电场正 电极 3.5-2、 透明玻璃 3.6-2、 电场电源 VI、 负载电阻 R所组成。 其中电场电源 VI的正负极连接电场正电极 3.5-2与透明导电膜 3.1-2, 并在/?- 结构 3.2-2 内部形成电场 E1 , 电场 E1与自建电场^ ^方向相同。 而且电场正电极 3.5-2与 非晶光伏电池背面电极电气隔离。
实施例 3
参照附图 4所示, 本发明实施例一种电场型非晶硅叠层光伏电池结构, 是叠层 结构的非晶硅光伏电池。 其结构由: 透明导电膜 3.1-1、 3层 结构 3.2-1、 背面电极 3.3-1、 绝缘层 3.4-1、 电场正电极 3.5-1、 透明玻 璃 3.6-1、 电场电源 VI、 负载电阻 R所组成。 其中电场电源 VI的正负极连接电 场正电极 3.5-1与透明导电膜 3.1-1 , 并在 3层/? 结构 3.2-1内部形成电场 E1 , 电场 E1与自建电场^ ^方向相同。 而且电场正电极 3.5-1与非晶硅光伏电 池背面电极电气隔离。
实施例 4
参照附图 5所示, 本发明实施例一种电场型光伏电池结构中电场电源 VI 与电场型光伏电池是相互独立的电源。本实施例使用独立的光伏电池作为电 场电源 VI。 参照附图 5A中, 小功率的光伏电池 1与光伏电池 2串联形成电场 电源, 电场电源正负电极分别连接电场型光伏电池 3的透明导电膜与背面电 极。 应为电场电源输出电流 4艮小, 光伏电池 1与光伏电池 2串联形成电场电源 电压可以认为开路电压, 开路电压在 1.2V-1.3V。 图中 5B是/ 扩散区 pn结, n 型半导体为衬底, n型半导体衬底整个下表面涂金属并烧结成背面电极的电 场型光伏电池结构, 而小功率的光伏电池作为电场电源与电场型光伏电池连 接示意图。
参照附图 6所示, 本发明实施例一种电场型光伏电池结构, 可以进行多 个电场型光伏电池串联连接, 形成输出较高电池电压。 多个串联电场型光伏 电池也可以进行并联连接。 附图 6中是 4个电场型光伏电池串联与外电场电源 连接工作原理图。 串联电场型光伏电池中电池 1-电池 4中, 电池 1表面电极与 电池 2的背面电极 b2连接, 电池 2表面电极与电池 3的背面电极 b3连接, 电池 3 表面电极与电池 4的背面电极 b4连接。 电池 4表面电极与电池 1背面电极是串 联电池输出的负电极与正电极。 电场电源 VI的正负极之间连接串联电容 C1-C4, 电场电源正极 el连接电池 1透明导电膜 al , 电池 2的透明导电膜 a2与 电池 1背面电极 bl、 串联电容 4_3电压 e2连接, 电池 3的透明导电膜 a3与电池 2 背面电极 b2、 串联电容 3_2电压 e3连接, 电池 4的透明导电膜 a4与电池 3背面电 极 b3、 串联电容 电压 e4连接, 电场电源 VI的负极 e5连接电池 4的背面电极 b4。

Claims

权 利 要 求
1、 一种外加电场型光伏电池, 所述的光伏电池是指: 由 p型半导体、 n 型半导体及两者之间的 pn结组成的单晶硅光伏电池, 或由 p型半导体、 n型半 导体及两者之间的 pn结组成的多晶硅光伏电池; 或由 p非晶层、 i本征非晶层 及 n非晶层组成的非晶硅光伏电池, 所述光伏电池的光辐射面与背面分别设 有表面电极和背面电极, 其特征在于, 在所述光伏电池的光辐射面的上面设 有透明导电膜, 该透明导电膜通过绝缘层与所述光伏电池的光辐射面电隔 离; 所述光伏电池的背面电极的下面设有复合导电膜, 该复合导电膜通过绝 缘层与所述背面电极电隔离, 同时, 在该透明导电膜与所述复合导电膜之间 设有外加电压; 该外加电压的方向是: p型半导体村底的背面电极或复合导 电膜构成为外加电场的正电极; 所述透明导电膜构成为外加电场的负电极; 而 n型半导体村底的背面电极或复合导电膜构成为外加电场的负电极; 所述 透明导电膜构成为外加电场的正电极。
2、 根据权利要求 1所述的外加电场型光伏电池, 其特征在于, 所述透明 导电膜与所述复合导电膜之间外加电压的数值范围是: 在单结光伏电池外加 电源电压范围是: 0.6V~3V。
3、 根据权利要求 2所述的外加电场型光伏电池, 其特征在于, 所述单晶硅或多晶硅光伏电池有效 n区与 p区的硅片厚度要求在 300微米 以下;
所述非晶硅薄膜叠层光伏电池有效多层 薄膜加复合导电膜绝缘 层总厚度要求在 10微米以下。
4、 根据权利要求 1所述的外加电场型光伏电池, 其特征在于, 所述复 合导电膜的结构是: 所述背面电极底面复合一层绝缘层, 并在绝缘层中间夹 有复合导电膜。
5、 根据权利要求 1或 2或 3或 4所述的外加电场型光伏电池, 其特征在于, 所述的光伏电池光辐射表面上复合有一层透明的减反绝缘膜, 并在减反绝缘 膜另一面复合一层透明导电膜,透明导电膜通过减反绝缘膜与光伏电池光辐 射表面电隔离。
6、 根据权利要求 5所述的外加电场型光伏电池, 其特征在于, 所述外加 电场型光伏电池的具体结构如下:
外加电场型单晶或多晶硅电场型光伏电池装置是由: 栅型表面电极 (3.1)、 pn结区 (3.2)、 背面电极 (3.3)、 p型半导体 (3.4)、 n型半导体 (3.5)、 减反 绝缘膜 (3.6)、 透明导电膜 (3.7)、 电场电源 (Vl)、 负载电阻(R )所组成; 单 晶或多晶硅电场型光伏电池结构中, 背面电极 (3.3)与栅型表面电极 (3.1) , 是 光伏电池输出的正电极与负电极, 而透明导电膜 (3.7)与背面电极 (3.3) , 连接 电场电源 (VI)的正极与负极, 使透明导电膜 (3.7)与背面电极 (3.3)之间形成电 场( £1 );其中透明导电膜 (3.7)是通过减反绝缘膜 ( 3.6 )与 n型半导体( 3.5 ) 、 栅型表面电极(3.1 )进行电隔离; 而电场电源 (VI)与光伏电池也是相互独立 的电源;
外加电场型非晶硅光伏电池结构装置是由: 透明导电膜 (3.1-2)、 p— i— n 结构 (3.2-2)、 背面电极 (3.3-2)、 绝缘层 (3.4-2)、 电场正电极 (3.5-2)、 透明玻璃 (3.6-2)、 电场电源 (Vl)、 负载电阻 (R)所组成; 其中电场电源 (VI)的正负极连 接电场正电极 (3.5-2)与透明导电膜 (3.1-2) , 并在/?- "结构 (3.2-2)内部形成 电场 (El), 电场 (El)与自建电场( „p)方向相同; 而且电场正电极 (3.5-2)与非 晶光伏电池背面电极电气隔离;
外加电场型非晶硅叠层光伏电池结构装置是由: 透明导电膜 (3.1-1)、 3 层/?- 结构 (3.2-1)、背面电极( 3.3-1 )、绝缘层( 3.4-1 )、电场正电极( 3.5-1 )、 透明玻璃(3.6-1 )、 电场电源 (Vl )、 负载电阻(R )所组成; 其中电场电源 (VI)的正负极连接电场正电极 (3.5-1)与透明导电膜 (3.1-1),并在 3层/ «结 构 (3.2-1)内部形成电场 (E1), 电场 (E1)与自建电场( „p)方向相同; 而且电场 正电极 (3.5-1)与非晶光伏电池背面电极电气隔离。
7、 根据权利要求 6所述的外加电场型光伏电池, 其特征在于, 所述外加 电场的电源装置的结构是: 采用小功率的光伏电池 (1)与光伏电池 (2)串联形 成电场电源,电场电源正负电极分别连接电场型光伏电池 (3)的透明导电膜与 背面电极。
8、 根据权利要求 6所述的外加电场型光伏电池, 其特征在于, 多个外加 电场型光伏电池串联连接, 形成输出较高电池电压; 或者多个串联电场型光 伏电池进行并联连接。
9、 根据权利要求 7或 8所述的外加电场型光伏电池, 其特征在于, 在所 述的太阳辐射面是采用非玻璃的透明聚合物,形成电场型薄膜有机半导体光 伏电池。
PCT/CN2009/073040 2009-07-14 2009-08-02 外加电场型光伏电池 WO2011006307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910182141 2009-07-14
CN200910182141.9 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011006307A1 true WO2011006307A1 (zh) 2011-01-20

Family

ID=43448881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073040 WO2011006307A1 (zh) 2009-07-14 2009-08-02 外加电场型光伏电池

Country Status (1)

Country Link
WO (1) WO2011006307A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287690A (zh) * 1998-01-22 2001-03-14 时至准钟表股份有限公司 太阳能电池装置及其制造方法
CN1065073C (zh) * 1994-04-28 2001-04-25 佳能株式会社 太阳能电池组件
CN201081816Y (zh) * 2007-07-24 2008-07-02 王金忠 一种太阳能电池
CN101246930A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 薄膜太阳能电池的超白反射层

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065073C (zh) * 1994-04-28 2001-04-25 佳能株式会社 太阳能电池组件
CN1287690A (zh) * 1998-01-22 2001-03-14 时至准钟表股份有限公司 太阳能电池装置及其制造方法
CN101246930A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 薄膜太阳能电池的超白反射层
CN201081816Y (zh) * 2007-07-24 2008-07-02 王金忠 一种太阳能电池

Similar Documents

Publication Publication Date Title
US20170271622A1 (en) High efficiency thin film tandem solar cells and other semiconductor devices
US20090283138A1 (en) High performance optoelectronic device
US20110056544A1 (en) Solar cell
CN101197399B (zh) 一种薄膜硅/晶体硅背结太阳能电池
KR100850641B1 (ko) 고효율 결정질 실리콘 태양전지 및 그 제조방법
WO2011044766A1 (zh) 外加电源提供电场效应的薄膜光伏电池
WO2008157637A9 (en) Single p-n junction tandem photovoltaic device
TW201322465A (zh) 全背電極異質接面太陽能電池
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
CN112103392A (zh) 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN101826566A (zh) 外加电场型光伏电池
RU2590284C1 (ru) Солнечный элемент
CN102244111A (zh) 一种薄膜太阳能电池
KR20090128954A (ko) 태양전지 모듈
US20100037940A1 (en) Stacked solar cell
TWI483406B (zh) 太陽電池
KR101411996B1 (ko) 고효율 태양전지
US8062920B2 (en) Method of manufacturing a photovoltaic device
US20120266933A1 (en) Solar cell
CN116759468A (zh) 太阳能电池、太阳能电池的制造方法及光伏组件
KR101062486B1 (ko) 발열체를 이용한 저열화 실리콘 박막 태양 전지
WO2011006307A1 (zh) 外加电场型光伏电池
CN101866969A (zh) 太阳电池
CN106910792A (zh) 一种多晶硅薄膜太阳能电池
TWI438910B (zh) 具有微晶矽質薄膜太陽能電池及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847232

Country of ref document: EP

Kind code of ref document: A1