RU2590284C1 - Солнечный элемент - Google Patents

Солнечный элемент Download PDF

Info

Publication number
RU2590284C1
RU2590284C1 RU2015113283/28A RU2015113283A RU2590284C1 RU 2590284 C1 RU2590284 C1 RU 2590284C1 RU 2015113283/28 A RU2015113283/28 A RU 2015113283/28A RU 2015113283 A RU2015113283 A RU 2015113283A RU 2590284 C1 RU2590284 C1 RU 2590284C1
Authority
RU
Russia
Prior art keywords
layer
amorphous hydrogenated
hydrogenated silicon
solar cell
silicon
Prior art date
Application number
RU2015113283/28A
Other languages
English (en)
Inventor
Дмитрий Львович Орехов
Алексей Станиславович Абрамов
Сергей Николаевич Аболмасов
Евгений Иванович Теруков
Александр Вячеславович Семенов
Дмитрий Александрович Андроников
Александр Васильевич Бобыль
Original Assignee
Общество с ограниченной ответственностью "НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе", ООО "НТЦ ТПТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе", ООО "НТЦ ТПТ" filed Critical Общество с ограниченной ответственностью "НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе", ООО "НТЦ ТПТ"
Priority to RU2015113283/28A priority Critical patent/RU2590284C1/ru
Application granted granted Critical
Publication of RU2590284C1 publication Critical patent/RU2590284C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно изобретению включает кристаллическую подложку из кремния n-типа (n)с-Si ориентации (100) с фронтальной и тыльной поверхностями, над фронтальной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; р-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H; слой оксида индия-олова (ITO); серебренная контактная сетка. При этом над тыльной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H; слой оксида индия-олова ITO; слой серебра Ag. Изобретение позволяет улучшить пассивацию поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного гидрогенизированного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения. 13 з.п. ф-лы, 3 ил.

Description

Область техники
Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др.
Уровень техники
Солнечный элемент - устройство, которое преобразует энергию солнечного света в электрический ток. Солнечный элемент служит для прямого преобразования солнечного излучения в электрическую энергию, используемую для питания электронных приборов и электроприводов устройств и механизмов, применяющихся в электронике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности, экологии и др.
Среди возобновляемых источников энергии фотоэлектрическое преобразование солнечной энергии в настоящее время признано самым перспективным. Дальнейшее развитие солнечной энергетики требует постоянного совершенствования характеристик фотопреобразовательных устройств (солнечных элементов). Наиболее успешным направлением развития технологий повышения КПД солнечных элементов представляется использование гетеропереходов между аморфным гидрогенизированным и кристаллическим кремнием (a-Si:H/c-Si), которые обладают всеми преимуществами солнечных элементов на основе кристаллического кремния, но могут быть изготовлены при низких температурах, что позволяет существенно снизить стоимость изготовления солнечных элементов на основе гетеропереходов.
Эффективность работы первых солнечных элементов на основе a-Si:H/c-Si гетероперехода была ограничена низким качеством границы раздела a-Si:H/c-Si, что приводило к значительно меньшим значениям напряжения холостого хода и коэффициента заполнения, чем у традиционных солнечных элементов. Негативное влияние границы может быть снижено путем введения промежуточного слоя нелегированного гидрогенизированного аморфного кремния (i)-a-Si:H, который содержит меньше дефектов и позволяет уменьшить рекомбинацию на границе а-Si:H/c-Si. Еще большее увеличение эффективности было получено при использовании структуры (p)a-Si/(i)a-Si:H/(n)c-Si с нелегированным буферным слоем толщиной 5 нм, расположенным между кристаллической подложкой и аморфным эмиттером, что дало начало бурному развитию так называемых HIT структур (Heterojunction with Intrinsic Thin Layer - гетеропереходы с собственным тонким слоем). Например, технология получения солнечного элемента, описанная в патенте США (см. [1] US 5066340, МПК H01L 31/036, опубликованный 19.11.1991), включает структуру одностороннего фотопреобразователя (ФЭП), состоящего из кристаллического слоя одного типа проводимости, аморфного слоя другого типа проводимости, собственного микрокристаллического слоя между легированными слоями, лицевого и тыльного электродов.
Существенный прогресс в повышении КПД солнечных элементов за последние два десятилетия был достигнут компанией Sanyo, в первую очередь, за счет оптимизации фронтальной и тыльной поверхностей солнечного элемента.
Известен способ получения солнечного элемента, описанный в патенте США (см. [2] US 5401336, МПК H01L 31/0236, опубликованный 28.03.1995), где односторонняя структура представляет гетеропереход между кристаллическим и аморфным полупроводниками с аморфным или микрокристаллическим собственным слоем между ними, выполненный с применением текстурированных подложек и прозрачных электродов.
В другом патенте США (см. [3] US 5935344, МПК H01L 31/04, опубликованный 10.08.1999) описана структура СЭ (солнечного элемента) с гетеропереходами, состоящая из слоев собственного и легированного аморфного кремния, нанесенных на обе стороны подложки из кристаллического кремния.
Известен также способ получения солнечного элемента с многослойными гетеропереходами на основе слоев аморфного кремния и его сплавов, нанесенных на обе стороны подложки из кристаллического кремния (см. [4] ЕР 1187223, МПК H01L 31/04, опубликованный 13.03.2002).
Известен метод производства солнечного элемента с односторонним гетеропереходом (см. [5] US 20090293948, МПК H01L 21/027, опубликованный 03.12.2009), содержащий подложку, на которую в качестве буферного слоя нанесен слой аморфного кремния, затем слой легированного кремния, с обратной стороны подложки нанесено антиотражающие покрытие.
К недостаткам перечисленных солнечные элементов и методов их производства относится отсутствие второго гетероперехода, что снижает эффективность. Кроме этого, в перечисленных методах пассивация производится аморфным кремнием, что в свою очередь может вызвать эпитаксиальный рост на поверхности подложки.
Известен солнечный элемент с гетеропереходом на основе кристаллического кремния (см. [6] KR 100847741, МПК H01L 31/04, опубликованный 23.07.2008), содержащий слой карбида кремния для уменьшения дефектов, а также контактной площади между слоем аморфного и кристаллического кремния. Пассивирующий слой может быть изготовлен из SiO2, SiC, SiNx и собственного аморфного кремния. К недостаткам солнечного элемента можно отнести отсутствие рельефной поверхности кристаллического кремния с обеих сторон и обусловленное этим слабое рассеяние поступающего излучения.
В заявке США (см. [7] US 20090250108, МПК H01L 31/0224, опубликованной 08.10.2009) описана двухсторонняя структура на основе подложки из кристаллического кремния n-типа и нанесенных последовательно на обе стороны слоев карбида кремния, аморфного кремния p(n)-типа, проводящего слоя (ITO), Ag электродов в виде сетки на фронтальной и тыльной сторонах подложки. К недостаткам данного солнечного элемента можно отнести отсутствие с обеих сторон нелегированного слоя аморфного гидрогенизированного кремния: его функцию выполняет карбид кремния, который является более дефектным материалом.
В качестве наиболее близкого аналога (прототипа) выбрана заявка РСТ (см. [8] WO 2014148443 (А1), МПК H01L 31/0236, опубликованная 25.09.2014). Известный солнечный элемент содержит монокристаллическую подложку кремния, текстурированную с двух сторон, на которые нанесен слой аморфного кремния толщиной 2-3 нм, на одном из слоев аморфного кремния нанесен слой легированного аморфного кремния p-типа толщиной 10-30 нм, а на другом слое аморфного кремния нанесен слой легированного аморфного кремния n-типа толщиной 10-30 нм.
Сущность изобретения
Задачей заявляемого изобретения является создание солнечного элемента, характеризующегося улучшенной пассивацией поверхности кристаллической пластины кремния, повышенным напряжением холостого хода солнечного элемента и, как следствие, увеличенной эффективностью.
Техническим результатом является улучшенная пассивация поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения.
Для решения поставленной задачи и достижения заявленного результата предлагается солнечный элемент, включающий кристаллическую подложку из кремния n-типа (n)c-Si ориентации (100) с фронтальной и тыльной поверхностями.
Над фронтальной поверхностью последовательно расположены:
a. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,
b. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,
c. p-легированный слой аморфного гидрогенизированного кремния (р)а-Si:H,
d. слой оксида индия-олова ITO,
e. серебренная контактная сетка,
над тыльной поверхностью последовательно расположены:
f. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,
g. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,
h. n-легированный слой аморфного гидрогенизированного кремния (n)а-Si:H,
i. слой оксида индия-олова ITO,
j. слой серебра Ag.
Для реализации настоящего решения может использоваться кристаллическая подложка из кремния n-типа (n)c-Si толщиной от 80 до 250 мкм.
Для реализации настоящего решения может использоваться промежуточный слой аморфного гидрогенизированного карбида кремния с формулой (i)a-SixCx-1:H, где 0,8<x<0,90, толщиной 0,5-2 нм.
Для реализации настоящего решения может использоваться нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H толщиной от 2 до 5 нм.
Для реализации настоящего решения может использоваться p-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H толщиной от 5 до 20 нм, при этом в качестве легирующего элемента может быть использован бор В.
Для реализации настоящего решения может использоваться слой оксида индия-олова ITO толщиной 90-110 нм на фронтальной поверхности и толщиной от 40 до 80 нм на тыльной поверхности.
Для реализации настоящего решения может использоваться n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H, легированный фосфором Р.
Для реализации настоящего решения может использоваться n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H толщиной от 10 до 20 нм на тыльной поверхности.
Для реализации настоящего решения может использоваться слой серебра Ag толщиной от 100 до 300 нм.
Для реализации настоящего решения может использоваться текстура в виде пирамид на фронтальной и тыльной поверхностях кристаллической подложки.
Краткое описание чертежей
На фиг. 1 изображена структура солнечного элемента.
На фиг. 2 - время жизни гладкой подложки кремния с наличием карбидного слоя и без него.
На фиг. 3 - время жизни текстурированной подложки кремния с наличием карбидного слоя и без него.
Осуществление изобретения
Солнечный элемент включает в себя кристаллическую подложку (1) кремния n-типа (n)c-Si ориентации (100), на обеих сторонах которой последовательно нанесен слой аморфного гидрогенизированного карбида кремния (2) в виде твердого раствора SixCx-1:H, где 0,8<x<0,90 толщиной 0,5-2 нм, нелегированный слой аморфного гидрогенизированного кремния (3) толщиной 2-5 нм, затем на фронтальной стороне (со стороны излучения) нанесен p-легированный слой (4) аморфного гидрогенизированного кремния толщиной 5-20 нм (для легирования используется газ В(СН3)32), слой оксида-олова ITO (6) толщиной 90-110 нм, серебренная контактная сетка 7. На тыльной стороне кристаллической подложки последовательно нанесен n-легированный слой аморфного гидрогенизированного кремния (5) толщиной 10-20 нм (для легирования используется газ РН32), слой оксида-олова ITO (8) толщиной 40-80 нм, слой серебра (9) толщиной 100-300 нм. Фотопреобразующая структура 1-5 под воздействием света разделяет электрический заряд и генерирует электричество. Кристаллическая подложка (1) толщиной 80-250 мкм является материалом, в котором происходит основное поглощение света, она занимает значительную часть солнечного элемента.
Ориентация (100) кремниевой подложки обладает наилучшей эффективностью, т.к. при щелочном травлении подложки с ориентацией (111), например, образуются слишком острые пирамиды.
Когда свет падает на солнечный элемент, он поглощается в основном в кристаллической подложке и в результате в ней генерируются электронно-дырочные пары. В основном за счет диффузии дырки направляются к p-области, а электроны - к n-области.
Использование в настоящем решении буферного (промежуточного) слоя аморфного гидрогенизированного карбида кремния толщиной менее 2 нм позволяет избежать процесса эпитаксии, характерного при использовании промежуточного слоя аморфного гидрогенизированного кремния. В свою очередь предотвращение процесса эпитаксиального роста кристаллического кремния позволяет обеспечить высокий уровень пассивации кремниевой подложки, а следовательно, и эффективности работы солнечного элемента.
Непосредственно перед процессом осаждения кремниевых слоев проводится снятие окисла с поверхностей кремниевой подложки. При этом в процессе роста аморфного кремния на данную подложку возможен процесс эпитаксии. Т.е. вместо роста аморфного кремния на подложке частично происходит рост кристаллического кремния, что не обеспечивает должного уровня пассивации кремниевой подложки. Для предотвращения процесса эпитаксии перед осаждением аморфного кремния используется буферный слой толщиной меньше 2 нм. В качестве методики оценки качества пассивации поверхности кремниевой пластины может служить измерение времени жизни запассивированной кремниевой подложки неосновных носителей заряда. На фиг. 2 представлен график зависимости времени жизни от концентрации неосновных носителей заряда. Время жизни неосновных носителей заряда гладкой пластины без наличия буферного слоя карбида кремния равно 117 мсек, а с данным слоем - 3410 мсек. В случае текстурированной пластины эффект выражен слабее, но также имеет место быть: 899 мсек и 1342 мсек без и с наличием слоя карбидного кремния соответственно (фиг. 3).

Claims (14)

1. Солнечный элемент, включающий кристаллическую подложку из кремния n-типа (n)c-Si ориентации (100) с фронтальной и тыльной поверхностями, над фронтальной поверхностью последовательно расположены:
a. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,
b. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,
c. p-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H,
d. слой оксида индия-олова ITO,
e. серебренная контактная сетка,
а над тыльной поверхностью последовательно расположены:
f. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,
g. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,
h. n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H,
i. слой оксида индия-олова ITO,
j. слой серебра Ag.
2. Солнечный элемент по п. 1, отличающийся тем, что кристаллическая подложка из кремния n-типа (n)c-Si имеет толщину от 80 до 250 мкм.
3. Солнечный элемент по п. 1, отличающийся тем, что промежуточный слой аморфного гидрогенизированного карбида кремния задается формулой (i)a-SixCx-1:H, где 0,8<x<0,90.
4. Солнечный элемент по п. 3, отличающийся тем, что промежуточный слой аморфного гидрогенизированного карбида кремния (i)a-SixCx-1:H имеет толщину от 0,5 до 2 нм.
5. Солнечный элемент по п. 1, отличающийся тем, что нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H имеет толщину от 2 до 5 нм.
6. Солнечный элемент по п. 1, отличающийся тем, что p-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H имеет толщину от 5 до 20 нм.
7. Солнечный элемент по п. 6, отличающийся тем, что в качестве легирующего элемента для р-легированного слоя аморфного гидрогенизированного кремния (p)a-Si:H используется бор В.
8. Солнечный элемент по п. 1, отличающийся тем, что слой оксида индия-олова ITO на фронтальной поверхности имеет толщину 90-110 нм.
9. Солнечный элемент по п. 1, отличающийся тем, что в качестве легирующего элемента для n-легированного слоя аморфного гидрогенизированного кремния (n)a-Si:H используется фосфор Р.
10. Солнечный элемент по п. 1, отличающийся тем, что n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H на тыльной поверхности имеет толщину от 10 до 20 нм.
11. Солнечный элемент по п. 1, отличающийся тем, что слой оксида индия-олова ITO на тыльной поверхности имеет толщину от 40 до 80 нм.
12. Солнечный элемент по п. 1, отличающийся тем, что слой серебра Ag имеет толщину от 100 до 300 нм.
13. Солнечный элемент по любому из пп. 1-10, отличающийся тем, что на фронтальной и тыльной поверхностях кристаллической подложки нанесена текстура.
14. Солнечный элемент по любому из пп. 1-10, отличающийся тем, что на фронтальной и тыльной поверхностях кристаллической подложки нанесена текстура в виде пирамид.
RU2015113283/28A 2015-04-10 2015-04-10 Солнечный элемент RU2590284C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015113283/28A RU2590284C1 (ru) 2015-04-10 2015-04-10 Солнечный элемент

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015113283/28A RU2590284C1 (ru) 2015-04-10 2015-04-10 Солнечный элемент

Publications (1)

Publication Number Publication Date
RU2590284C1 true RU2590284C1 (ru) 2016-07-10

Family

ID=56371710

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015113283/28A RU2590284C1 (ru) 2015-04-10 2015-04-10 Солнечный элемент

Country Status (1)

Country Link
RU (1) RU2590284C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU188622U1 (ru) * 2018-12-20 2019-04-18 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Светоизлучающий солнечный элемент
RU2694113C2 (ru) * 2017-11-24 2019-07-09 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
RU195827U1 (ru) * 2019-11-01 2020-02-06 федеральное государственное автономное образовательное учреждение высшего образования"Национальный исследовательский университет ИТМО" (Университет ИТМО) Перестраиваемый светодиод на основе перовскита с модификацией интерфейса
WO2020082151A1 (ru) * 2018-10-26 2020-04-30 Владимир Яковлевич ШИРИПОВ Кремниевый солнечный элемент и способ его изготовления
RU2757544C1 (ru) * 2021-04-22 2021-10-18 Общество с ограниченной ответственностью «НТЦ тонкопленочных технологий в энергетике» Двухсторонний гетеропереходный фотоэлектрический преобразователь на основе кремния

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130669Y (zh) * 2007-03-09 2008-10-08 宁波杉杉尤利卡太阳能科技发展有限公司 两面光照的hit太阳电池
RU2371811C1 (ru) * 2008-05-06 2009-10-27 Российская академия Сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Полупроводниковый фотоэлектрический генератор (варианты) и способ его изготовления (варианты)
CN102522446A (zh) * 2011-12-30 2012-06-27 常州天合光能有限公司 一种hit太阳电池结构及其制作方法
WO2014148443A1 (ja) * 2013-03-19 2014-09-25 長州産業株式会社 光起電力素子及びその製造方法
RU2532137C2 (ru) * 2009-09-18 2014-10-27 Син-Эцу Кемикал Ко., Лтд. Солнечный элемент, способ изготовления солнечного элемента и модуль солнечных элементов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130669Y (zh) * 2007-03-09 2008-10-08 宁波杉杉尤利卡太阳能科技发展有限公司 两面光照的hit太阳电池
RU2371811C1 (ru) * 2008-05-06 2009-10-27 Российская академия Сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Полупроводниковый фотоэлектрический генератор (варианты) и способ его изготовления (варианты)
RU2532137C2 (ru) * 2009-09-18 2014-10-27 Син-Эцу Кемикал Ко., Лтд. Солнечный элемент, способ изготовления солнечного элемента и модуль солнечных элементов
CN102522446A (zh) * 2011-12-30 2012-06-27 常州天合光能有限公司 一种hit太阳电池结构及其制作方法
WO2014148443A1 (ja) * 2013-03-19 2014-09-25 長州産業株式会社 光起電力素子及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694113C2 (ru) * 2017-11-24 2019-07-09 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
RU2694113C9 (ru) * 2017-11-24 2019-11-07 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления
WO2020082151A1 (ru) * 2018-10-26 2020-04-30 Владимир Яковлевич ШИРИПОВ Кремниевый солнечный элемент и способ его изготовления
RU188622U1 (ru) * 2018-12-20 2019-04-18 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Светоизлучающий солнечный элемент
RU195827U1 (ru) * 2019-11-01 2020-02-06 федеральное государственное автономное образовательное учреждение высшего образования"Национальный исследовательский университет ИТМО" (Университет ИТМО) Перестраиваемый светодиод на основе перовскита с модификацией интерфейса
RU2757544C1 (ru) * 2021-04-22 2021-10-18 Общество с ограниченной ответственностью «НТЦ тонкопленочных технологий в энергетике» Двухсторонний гетеропереходный фотоэлектрический преобразователь на основе кремния

Similar Documents

Publication Publication Date Title
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
AU2013309484B2 (en) Tunneling-junction solar cell with shallow counter doping layer in the substrate
US8872020B2 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
KR101626248B1 (ko) 실리콘 태양전지 및 이의 제조 방법
US20140283902A1 (en) Back junction solar cell with tunnel oxide
KR100850641B1 (ko) 고효율 결정질 실리콘 태양전지 및 그 제조방법
US20100243042A1 (en) High-efficiency photovoltaic cells
RU2590284C1 (ru) Солнечный элемент
JP2010130023A (ja) 太陽電池およびその製造方法
KR100990864B1 (ko) 태양전지 및 그 제조 방법
KR20130082066A (ko) 광기전력소자 및 제조 방법
KR101612133B1 (ko) Mwt형 태양전지 및 그 제조방법
KR20090078275A (ko) 요철 형태의 절연막을 포함하는 태양전지 및 그 제조방법
KR20080105280A (ko) 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지
KR20090105482A (ko) 반도체 나노소재를 이용한 광전 변환 장치 및 그 제조 방법
KR20210085057A (ko) 저온 소성 도전성 페이스트를 이용한 태양전지의 전극 제조 방법
JP5645734B2 (ja) 太陽電池素子
KR20130061346A (ko) 태양전지 및 그 제조방법
RU2757544C1 (ru) Двухсторонний гетеропереходный фотоэлектрический преобразователь на основе кремния
TWI455329B (zh) 太陽能電池及其製作方法
KR101303594B1 (ko) 표면 텍스처가 형성된 유리기판을 이용한 박막형 태양전지 및 이의 제조방법
RU2360324C1 (ru) Кремниевый солнечный элемент с эпитаксиальным эмиттером
KR101101621B1 (ko) 전후면전계 태양전지 및 그 제조방법
KR20130039896A (ko) 박막 태양 전지