WO2011004944A1 - Nano composite formed from starch and functional materials, and method for preparing same - Google Patents
Nano composite formed from starch and functional materials, and method for preparing same Download PDFInfo
- Publication number
- WO2011004944A1 WO2011004944A1 PCT/KR2009/007651 KR2009007651W WO2011004944A1 WO 2011004944 A1 WO2011004944 A1 WO 2011004944A1 KR 2009007651 W KR2009007651 W KR 2009007651W WO 2011004944 A1 WO2011004944 A1 WO 2011004944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starch
- dextrin
- complex
- functional material
- nano
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
- A61K8/025—Explicitly spheroidal or spherical shape
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/70—Fixation, conservation, or encapsulation of flavouring agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
- A23L29/35—Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/105—Plant extracts, their artificial duplicates or their derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/125—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
- A23L33/155—Vitamins A or D
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/732—Starch; Amylose; Amylopectin; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
Definitions
- the present invention relates to a nano-sized composite in which starch and a functional material are combined, and a method for preparing the same. More particularly, the present invention relates to a starch or starch dextrin, which includes a hydrophobic functional material to form a helical complex to accommodate a hydrophobic functional material. The present invention relates to a method for producing stabilized nano starch particles and a composite produced by the method.
- various functional ingredients such as hydrophobic or fat-soluble vitamins, omega 3 fatty acids, carotenoids, or food flavoring ingredients used in foods, cosmetics, and medicines are insoluble in water, making them difficult to use in foods, cosmetics, etc. Absorption does not work well even when applied. In order to overcome this, it can be solubilized by the preparation of emulsions, liposomes, etc., but additives such as some emulsifiers may be a problem for human safety, and the stability of the product is low during storage and distribution. In addition, there is a problem that these additives adversely affect the flavor (flavor) and taste (taste) to affect the taste and aroma of the target product inherent.
- CD and CCD molecules have a certain size of empty space and the outside is hydrophilic, the hydrophobic material can be enclosed inside and the solubility can be increased due to the hydrophilic outside.
- these materials have a disadvantage that the price is very expensive because they are obtained through a biological process prepared and purified by using a specific enzyme or microorganism from starch.
- the CD clathrate obtained in the aqueous solution is difficult to manufacture the nano-sized particles because it has the property of forming large particles as a whole when the concentration is high. Yifeng He et al. Micron 39 (2008).
- Starch is a cheap carbohydrate polymer obtained infinitely in nature as a storage material for photosynthetic energy and is a major carbohydrate in food. Starch is used not only as an energy source but also as a additive to foods, cosmetics and medicines. Starch may also be used as a sustained release formulation that entraps and stabilizes various substances. Starches produced in plants are obtained in various forms of particles, with an average diameter of about 1-100 micrometers. Crystalline fine particles present in the granular starch can be used as a fat replacement agent because it has properties similar to fatty micelles, and can be applied as a filler to increase the strength of various materials including natural rubber [P. R. Kulkarni et al Carbohydrate polymer 53 (2003); R.
- Another object of the present invention is to provide a composite of nanoparticles containing a hydrophobic functional material prepared by the above method.
- the present invention provides a method for preparing a polymer comprising: a) dissolving linear starch or dextrin in a water-soluble solvent; b) dissolving a functional material in a hydrophobic solvent; c) the hydrophobic solution and the starch comprising a functional material. Or mixing dextrin aqueous solution; And d) a nano-sized combination of starch and a functional material in a V-amylose form (starch molecule spirally wrapped in a functional material), comprising the step of changing the structure by enzymatic or acid treatment of the resultant of step c). It provides a method for producing a composite.
- the linear starch or dextrin of step a) means that the starch molecule is degraded by acid, enzyme, micro ray irradiation, or radiation irradiation, and is preferably converted by dextrinization. It is not limited.
- 'Nano size' in the present invention is the broadest meaning commonly used in the art, preferably 10 to 500nm is not limited thereto.
- the linear starch or dextrin of step a) is preferably converted by dextrinization of starch, but is not limited thereto.
- the starch of the present invention is a linear starch chain in which glucose is polymerized linearly by ⁇ (1-4) bond, preferably linear amylose or linear dextrin is complexed with various hydrophobic molecules such as fatty acids, emulsifiers, vitamins, flavor components, etc. Can be formed.
- Such a composite has a form in which linear starch chains spirally surround a guest compound as shown in the schematic diagram of FIG. 1.
- such a spiral complex forms a crystalline structure in a constant arrangement, and the shape of the crystal varies somewhat depending on the production conditions. The size of these crystals depends on complex formation conditions, but reports have been reported to be approximately 2-12 ⁇ m in diameter [J. Brisson et al., International Journal of Biological Macromolecules 12 (1990); M. A. Whittam et al., International Journal of Biological Macromolecules 11 (1989)].
- the present invention is a technology that allows starch chains to naturally form a complex with a clathrate by self-assembly by distributing such a spiral complex to disperse in an aqueous solution. To this end, it is important to suppress aggregation between starch chains to the maximum and to induce a maximum reaction between clathrate and starch.
- a starch complex different from the conventional one was synthesized by using a phase separation phenomenon of a water-soluble solvent and a hydrophobic solvent.
- starch molecules and clathrates are directly mixed to synthesize a complex.
- the yield of complex formation is low and large grains are formed because crystals are likely to grow largely or form amorphous precipitates.
- the clathrate and the starch molecules of the water-soluble solvent dissolved in the hydrophobic solvent may be in physical contact only at the boundary where the phase separation takes place, thereby controlling the reaction between the two molecules.
- suitable conditions for forming the complex are formed and are produced as nano-sized particles.
- the particles have a structure that surrounds the inclusion material inside the starch molecule, so that the hydrophobic inclusion material can be water-soluble, and by blocking the external environment, it inhibits oxidation and enzymatic reactions, thereby preventing stable and easily released phenomena. Therefore, it is effective in maintaining the functionality and activity of the encapsulated material for a long time. In addition, since the particle size is reduced to the nano-area, it can be effectively applied in various fields.
- the starch of step a) may be used any starch that can form a complex with the inclusion material, ordinary corn starch, high amylose corn starch, waxy corn starch, rice starch, glutinous rice Starch, goamylose rice starch, potato starch, potato potato starch, sweet potato starch, barley starch, waxy barley starch, soybean starch, wheat starch, waxy starch, sago starch, amaranth starch, tapioca starch, sorghum ), Starch, starch starch, banana starch, mung bean starch, eastern starch, kuzukiri starch, derivatives of these starches, dextrins of these starches, and starches selected from the group consisting of amylose extracted from these starches.
- the derivative of starch includes substituted starch, crosslinked starch, oxidized starch, etc., which artificially changed the structure of starch, and dextrin of starch is natural starch enzyme or acid treatment, heating and micro ray and irradiation, etc.
- decomposition means a low molecular weight product
- amylose extracted from these starch means a relatively linear starch molecule extracted by hot water extraction or alcohol extraction from natural starch.
- a starch or dextrin solution having a concentration of 10.0% or less in the step a).
- Dextrins having a low molecular weight are not a problem even if the concentration is slightly higher, but at higher concentrations, it is not preferable because the formation of complexes with clathrates may be delayed due to aggregation between starch or dextrin molecules.
- the hydrophobic solvent used in the steps b) and c) preferably does not form a complex with starch or has a lower complexing capacity than the inclusion material, and phase separation occurs with water.
- Any hydrophobic solvent can be used.
- the hexane, cyclohexane, iso-propyl ether, decalin, methyl tert- butyl ether, ethyl ether, petroleum ether, vegetable oils are suitable for this.
- the clathrate can be any substance which can form a complex with the starch chain.
- the reaction temperature in step c) is preferably 10-100 ° C. This is because, at 10 ° C. or less, starch mobility decreases and solubility of starch decreases, so that aggregation between starch molecules is likely to occur. Above 100 ° C, the reaction solvent may be easily volatilized and is not preferable because the formed starch complex may be melted again.
- a step of removing starch molecules that do not participate in complex formation includes a process by enzyme and acid treatment.
- Starch degrading enzymes are all starch degrading enzymes commonly used to process raw starch particles from corn, potatoes, rice, wheat, etc. in the food processing field, and alpha amylases that can hydrolyze 1-4 bonds in starch molecules.
- Acid used for acid hydrolysis may be any acid commonly used in food processing, and is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and acetic acid.
- Initial use of dextrin can reduce the amount of enzymes and acids used since most of the dextrin molecules can be involved in complex formation, and this process can be omitted.
- the decomposed starch molecules remain dissolved in the aqueous solution and can be removed later in the washing process.
- a method of inducing annealing by preserving at a constant temperature for a long time may be utilized.
- starch molecules that do not participate in complex formation may bind to each other to help the composite particles remain stable in a small state.
- This physical treatment temperature is suitably between 10 and 100 ° C. at which the composite does not decompose.
- the complex may be separated by washing and recovery.
- the washing of the complex minimizes structural changes and preferably uses a solvent of alcohols in which the entrapped material is not removed from the complex, whereby the starch complex is precipitated and can be recovered by simple filtration and centrifugation.
- the recovered starch composite may be dried and recovered as a powder product using various drying methods such as vacuum drying, freeze drying, investment drying, hot air drying and spray drying.
- the composite aqueous solution obtained in step c) and d) of the present invention may be directly used in a product without undergoing washing and recovery.
- the composite is synthesized by directly mixing the clathrate with an aqueous solution of starch or dextrin, and in this case, since the crystals are likely to grow significantly, the composite particles are usually large.
- the starch dextrin having a low molecular weight or to increase the mixing and stirring speed to make the size of the composite smaller.
- the dextrinization may be used for all starch enzymes commonly used to process raw starch particles from corn, potatoes, rice, wheat, etc. in the food processing field, for example, 1 ⁇ -amylase, glucoamylase, ⁇ -glucosidase, ⁇ -amylase capable of breaking down glycosidic bonds, and iso-amylase and pullula, which can hydrolyze 1-6 glycosidic bonds
- starch enzymes commonly used to process raw starch particles from corn, potatoes, rice, wheat, etc. in the food processing field
- iso-amylase and pullula which can hydrolyze 1-6 glycosidic bonds
- Dextrinization of starch using any one starch degrading enzyme selected from the group consisting of Naase or a mixture of the above enzymes is not limited thereto.
- the dextrinization is used for all acids commonly used in the food processing field, for example any one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid and acetic acid It is preferred, but not limited to, to dextrinize starch using an acid or a mixture of acids.
- the dextrinization is preferably, but not limited to, dextrinization of starch by using microrays or irradiation commonly used in the food processing field.
- the concentration of the starch or dextrin used in step a) is not a problem even if the concentration is slightly higher in the case of a small molecular weight dextrin, but if the concentration is too high, aggregation between the starch or dextrin molecules will occur It is not easy to form a complex, it is preferably 0.01 to 20.0%, more preferably 10% or less, most preferably 3% or less, but is not limited thereto.
- the functional material is not dissolved in a hydrophobic solvent, directly added to the starch or dextrin aqueous solution, characterized in that the method for producing a nano-sized composite combined with a starch and a functional material.
- the functional material has a hydrophobic property so that only a spiral structure can be included by forming a complex of a straight starch or dextrin molecule with a V-amylose form, and having useful functionality to a human body or an organism.
- any known material may be used, but anthracenic, astaxanthin, alpha-carotene, beta-carotene, beta-apo-4'-carotenal, beta-apo-8'-carotenal, canthaxanthin, citranasanthin, creep Toxanthine, Dihydroplectananthine, Diatoxanthin, Fucoxanthin, Fucosantinol, Lactucaxanthin, Lutein, Lycopene, Neoxanthin, Neurosporanthin, Neurosporene, Ferridinine, Phytoene, Roadpin, Siphonoxanthin, spheroidine, spiriloxanthin, torulladine, freeolide, freeolide acetate, violaxanthin, zeaxanthin, nerol, nerolidol, citral, cinnamic aldehyde, citronerole , cis-3-hexanal, vanillin, isoamy
- the functional material may be reacted directly or dissolved in a hydrophobic solvent.
- CoQ10 can be directly reacted with dextrin solution because it melts and becomes liquid when reacted at 50 ° C or higher because the melting temperature is 50 ° C or lower.
- beta carotene since beta carotene has a melting point of 181 ° C, it is dissolved in a hydrophobic solvent and then reacted with dextrin solution. Therefore, when the reaction is carried out at a temperature lower than the above range, the mobility of the starch molecules are lowered and the solubility of the starch is lowered to cause aggregation between starch molecules. When the reaction is carried out at a temperature higher than the above range, the formed starch complex may be melted again.
- reaction temperature 50 °C, in this case it is most preferred because the complex formation is easy with sufficient mobility of starch molecules.
- step c) the complex formation of step c) is preferably carried out through phase separation of the hydrophobic solution containing a functional material and the starch or dextrin aqueous solution.
- the composite is generally synthesized by directly mixing starch molecules and clathrates.
- the crystal formation yield is low and large particles are formed because crystals are likely to grow largely or form amorphous precipitates.
- the reaction between the two molecules is controlled because the functional material dissolved in the hydrophobic solvent and the starch molecules of the aqueous solution may be in physical contact only at the boundary where the phase separation takes place.
- suitable conditions for forming the complex are formed and are produced as nano-sized particles.
- This particle has a structure that wraps the functional material inside the starch molecule, so that the hydrophobic functional material can be water-soluble, and by blocking the external environment, it inhibits oxidation and enzymatic reactions, thereby preventing the phenomenon of being stable and easily released. Therefore, it is effective in maintaining the functionality and activity of the encapsulated material for a long time. In addition, since the particle size is reduced to the nano-area will be able to be effectively applied in a variety of fields.
- the phase separation was performed by slowly injecting a hydrophobic solution onto the aqueous solution so that phase separation was achieved without breaking the interface between the two solutions.
- the amount of the hydrophobic solution is injected in half of the amount of the aqueous solution, but a smaller amount may be used or a larger amount may be used.
- the hydrophobic solvent used in the preparation method of the present invention preferably has a component which does not form a complex with starch or has a lower complex forming ability than a functional material, and any hydrophobic solvent in which phase separation with water can be used.
- the hydrophobic solvent is hexane, cyclohexane, isopropyl ether (iso-propyl ether), decalin (decalin), methyl tert-butyl ether (methly tert-butyl ether, MTBE), ethyl ether (ethyl ether), petroleum ether ( petroleum ether), preferably selected from the group consisting of vegetable oils.
- the step d) is capable of hydrolyzing 1-6 bonds with ⁇ -amylase, glucoamylase, ⁇ -glucosidase, ⁇ -amylase, which can degrade 1-4 bonds. It is preferable to decompose starch which is not involved in complex formation by using any one starch degrading enzyme or a mixture of the enzymes selected from the group consisting of iso-amylase and pullulanase, but is not limited thereto.
- step d) does not participate in complex formation using any acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid, and acetic acid, or a mixture of acids. It is preferred, but not limited to, decomposing starch.
- dextrin molecules when dextrin is initially used, most dextrin molecules may be required to form a complex, so that the amount of enzyme and acid may be reduced, or the process may be omitted.
- the starch molecules decomposed by the enzyme and acid remain in a dissolved state in an aqueous solution and are subsequently removed in the washing process.
- the washing of the complex in the additionally included washing and recovery process minimizes the structural change, it is preferable to use a solvent of alcohols such that the inclusion material is not removed from the complex, When the complex of the present invention is precipitated it can be recovered by simple filtration and centrifugation.
- the recovered composite can be dried using various drying methods, such as vacuum drying, freeze drying, investment drying, hot air drying and spray drying.
- the composite of the present invention becomes a solid powder state by the drying process.
- the obtained composite aqueous solution can be utilized directly in the product without undergoing the washing and recovery process.
- the complex of the starch or dextrin and the functional material of the present invention forms a nanoparticle by forming a structure surrounded by a spiral of functional molecules in a linear portion in which 5 to 10 glucoses are bonded by ⁇ (1-4) bonds. do.
- the complex may have a functional material between the helical units according to the type of the functional material.
- the complex has nano-sized particles, and the helical structure of these particles is hydrophilic on the outside while hydrophobic on the inside.
- Various hydrophobic functional materials can be entrapped inside, and the entrapped materials are easily dissolved in water by the hydrophilic spiral outer structure.
- hydrophobic functional material can more efficiently deliver the hydrophobic functional food material or drug components, it is possible to suppress the oxidation or denaturation of these substances on the way.
- hydrophobic flavor components can be enclosed inside the helical structure, and these components can be prevented from volatilizing easily, and thus can be stored and delivered more stably. Therefore, the nano starch complex may be used to capture and deliver functional substances or pharmaceutical components in the food, cosmetic, or pharmaceutical industries.
- the present invention provides a nano starch composite prepared by the preparation method according to the above method.
- Nano-sized fine starch particles of the present invention can be used in a variety of applications in the textile, paper, chemical industry and food industry. Specifically, in the food industry, it can be used as a dispersing agent, a flavor preservative, etc. in the food industry, and in the textile industry, it can be used as protection of yarn, printing, and coating for improving the weaving of fiber yarns. It can be used as an internal additive and an interlayer adhesive of cardboard.
- starch may be denatured and used as a powder such as an adhesive, a dispersant, and an anti-slip agent. In addition, it can be used as a filler to improve physical properties by adding to plastic films, molded products, and the like, and can also be used as a raw material for various absorbent resins.
- the present invention provides a nano-sized composite in which the starch and the functional material produced by the production method of the present invention is combined.
- the complex obtained in the present invention is a complex in which a hydrophobic substance is enclosed by utilizing linear starch molecules or starch dextrins. Hydrophobic materials have been accommodated and stabilized, not just as nanoscale starch particles, and these complexes have the effect of enhancing functionality in a variety of applications by making these nanoparticles into small sized particles.
- FIG. 1 is a diagram illustrating a complex formation process in which linear starch or dextrin is conjugated to a functional material.
- FIG. 2 is a view showing a method for producing nanostarch particles using phase separation.
- Example 3 is a view showing the shape of the nanoparticles prepared by Example 1.
- Example 4 is a view showing the particle size distribution of the nanoparticles prepared by Example 1.
- FIG. 5 is a diagram showing an x-ray diffraction diagram of the nanoparticles prepared in Example 1.
- FIG. 6 is a view showing a particle size distribution of nanoparticles prepared in Example 4.
- High amylose corn starch (Hylon VII, amylose content 70%, National starch, Bridgewater, NI, USA) was dispersed in 100 mL of 100% ethanol and then stirred well after adding 1 mL of 36% HCl. The mixed suspension was reacted at 20 ° C. for 72 hours and then washed with 50% ethanol until all acid and hydrolyzed sugars were removed. After washing once with acetone, it was dried for 12 hours at 40 °C and then ground.
- High amylose corn starch Hylon VII, amylose content 70%, National starch, Bridgewater, NI, USA
- dextrin 1 g was dispersed in 100 mL of distilled water, and then heated at 131 ° C. for 20 minutes to dissolve dextrin.
- Beta carotene 15 mg was dissolved in 60 mL of isopropyl ether, and then slowly added the isopropyl ether solution to the dextrin solution to cause phase separation from the dextrin solution as shown in FIG. 2.
- the dextrin solution was then reacted at 50 ° C. for 24 hours with stirring at 400 rpm.
- the composite was prepared in an open state without sealing the reaction solution.
- isopropyl ether is a solvent that dissolves beta-carotene well and phase-separates with water without forming a complex with starch.
- the particle size analyzer (Dynapro Titan, Wyatt Technology, SantaBarbara, CA) was used to measure the average diameter and size distribution of the particles prepared in the above examples.
- the nano-level starch particles were about 20% to 80 nm in size and about 10% were 100 nm or more. These results suggest that the nanoscale particles are agglomerated into some large mass.
- the crystallinity of the dextrin-betacarotene complex was measured using an X-ray diffraction analyzer (MO3XHF22 MAC science CO. Japan).
- Dextrin-beta-carotene complex showed V6 form crystallinity.
- V6 crystals form when helical complexes such as amylose, fats and alcohols form spiral complexes. These spiral crystals have a structure in which six glucose chains are consumed in one rotation, and beta carotene is enclosed within the spiral crystals. Can be confirmed.
- the particle size distribution was measured for the average diameter of the composite prepared in Example 2 using a particle analyzer.
- the complex dispersed in the aqueous solution before centrifugation was distributed as starch particles having an average particle size of 100 ⁇ 200 nm.
- the crystallinity of the crystal was measured using an X-ray diffraction analyzer.
- reaction was carried out at 50 ° C. for 72 hours while stirring at rpm. During this process, cocuten forms a complex with dextrin and is evenly distributed in the aqueous solution.
- Test Example 1 Dextrin Kokyuten Observation of particle size, distribution and crystallinity
- Example 3 Using a particle analyzer, the average diameter and particle size distribution of the composite prepared in Example 3 were measured. The dextrin-coutene complex dispersed in the solution was distributed into starch particles having an average particle size of 20-100 nm. In addition, the crystallinity of the dextrin-cocuten complex was measured using an X-ray diffractometer.
- the aqueous solution containing the complex was precipitated and recovered by high speed centrifugation ( ⁇ 25,000 g).
- the content of cocutene in the recovered complex was about 80-90 mg, and it was confirmed that 90% or more of the cocuten added was reacted with dextrin.
- Test Example 1 complexed with dextrin Kokyuten content
- the average diameter and particle size distribution of the composite prepared in Example 4 were measured using a particle analyzer (Dynapro Titan, Wyatt Technology, SantaBarbara, CA). The dextrin-cocuten complex dispersed in the solution was distributed into particles having an average diameter of 50 to 200 nm in size.
- nano-level particles can be prepared by complexing starch and starch dextrin with various hydrophobic materials.
- Nano starch particles prepared by the method of the present invention is converted to be used in a variety of products by receiving the encapsulated hydrophobic material.
- the composite may be formed to nanoparticle size to increase the bioabsorption rate and increase the stability of the inclusion material. Therefore, such particles can be usefully applied as a functional material or a drug delivery material in the food, cosmetic and pharmaceutical industries.
- it is expected to be used as a substitute, coating, capsule, reinforcing agent, and the like.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Botany (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
The present invention relates to a method for preparing a nano particle by synthesizing a composite of starch or dextrin and various functional materials. The method comprises the steps of: dissolving starch or dextrin prepared from starch into water or a water-soluble solvent; dissolving functional materials to be included into a hydrophobic solvent; adding the hydrophobic solvent into the aqueous starch solution and agitating the result; forming a starch composite; eliminating residual starch; and collecting the starch composite, wherein some of the functional materials can be added directly to the aqueous starch solution, rather than be dissolved into the aqueous solution, thereby forming the starch composite. During the process of forming the composite, aggregation of starch or dextrin should be suppressed and the reaction rate needs to be controlled for including functional materials. The nano starch composite, which includes the functional materials, allows insoluble materials to be soluble and increases stability and in-vivo absorption, and is thus expected to have the effect of increasing the usefulness as products. Therefore, the nano starch composite can be used as a carrier, a coating agent, and a reinforcing agent for functional materials in various fields, such as fields of food, medicine, cosmetics, and chemical products.
Description
본 발명은 전분과 기능성 물질이 결합된 나노 크기의 복합체 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 전분 혹은 전분 덱스트린에 소수성을 띄는 기능성 물질을 포접시켜 나선형 복합체를 형성하여 소수성 기능성 물질을 수용화, 안정화시킨 나노 전분입자를 제조하는 방법 및 그 제조방법에 의하여 생성된 복합체에 관한 것이다.The present invention relates to a nano-sized composite in which starch and a functional material are combined, and a method for preparing the same. More particularly, the present invention relates to a starch or starch dextrin, which includes a hydrophobic functional material to form a helical complex to accommodate a hydrophobic functional material. The present invention relates to a method for producing stabilized nano starch particles and a composite produced by the method.
일반적으로 식품, 화장품, 의약품에 이용되는 많은 소수성 혹은 지용성 비타민류, 오메가 3 지방산류, 카로테노이드류, 또는 식품 향미 성분 등 다양한 기능성 성분은 물에 불용성이므로 식품, 화장품 등에 활용하기 어려우며, 인체 또는 생물체에 적용할 때도 흡수 활용이 잘 되지 못한다. 이를 극복하기 위해 유화액, 리포좀 등의 제조로 수용화 시킬 수 있으나, 일부 유화제 등 첨가물질이 인체 안전성에 문제가 될 수 있으며, 저장 및 유통시 제품의 안정성이 낮다. 또한 이들 첨가물질이 향미(flavor) 및 식미 (taste)에 좋지 못한 영향을 줌으로서 타겟 제품 고유의 맛과 향 등에 영향을 주는 문제가 있다. In general, various functional ingredients such as hydrophobic or fat-soluble vitamins, omega 3 fatty acids, carotenoids, or food flavoring ingredients used in foods, cosmetics, and medicines are insoluble in water, making them difficult to use in foods, cosmetics, etc. Absorption does not work well even when applied. In order to overcome this, it can be solubilized by the preparation of emulsions, liposomes, etc., but additives such as some emulsifiers may be a problem for human safety, and the stability of the product is low during storage and distribution. In addition, there is a problem that these additives adversely affect the flavor (flavor) and taste (taste) to affect the taste and aroma of the target product inherent.
이러한 문제점을 해결하기 위하여 최근 기능성 식품소재를 사이클로덱스트린(CD), 클러스터덱스트린(CCD) 등 탄수화물에 포접시켜 수용성화 하는 기술이 대두되고 있는 실정이다. CD 및 CCD분자 내부는 일정한 크기의 빈공간이 있고 외부는 친수성이기 때문에 내부에 소수성 물질을 포접할 수 있으며 친수성인 외부로 인하여 용해도가 증가될 수 있다. 하지만 이들 소재는 전분으로부터 특이한 효소 또는 미생물을 사용하여 제조하고 정제 회수하는 생물학적 공정을 거쳐서 얻어지므로 가격이 매우 비싼 단점을 가지고 있다. 또한 수용액에서 얻어지는 CD 포접체는 농도가 높을 경우 서로 뭉쳐서 전체적으로 커다란 입자를 형성하는 특성을 갖기 때문에 나노크기의 입자로 제조하기가 어렵다 [Yifeng He 외 Micron 39 (2008)].
In order to solve this problem, a technique for encapsulating functional food materials with carbohydrates such as cyclodextrin (CD) and cluster dextrin (CCD) has recently emerged. Since CD and CCD molecules have a certain size of empty space and the outside is hydrophilic, the hydrophobic material can be enclosed inside and the solubility can be increased due to the hydrophilic outside. However, these materials have a disadvantage that the price is very expensive because they are obtained through a biological process prepared and purified by using a specific enzyme or microorganism from starch. In addition, the CD clathrate obtained in the aqueous solution is difficult to manufacture the nano-sized particles because it has the property of forming large particles as a whole when the concentration is high. Yifeng He et al. Micron 39 (2008).
한편 전분은 광합성 에너지의 저장체로서 천연에서 무한하게 얻어지는 값싼 탄수화물 고분자로서 식품의 주된 탄수화물이다. 전분은 에너지원으로 활용될 뿐 아니라 다양한 기능성을 부여하는 역할로 첨가제로 식품, 화장품, 의약품 등에 이용되기도 한다. 전분은 다양한 물질을 포접하여 안정화하거나 방출을 조절하는 서방형 제제로 사용되기도 한다. 식물체에서 생산되는 전분은 다양한 형태의 입자로 얻어지며 평균 직경이 1-100 마이크로미터 정도의 크기를 갖는다. 입자상 전분의 내부에 존재하는 결정성 미립자는 지방 미셀 (micelle)과 유사한 물성을 지니기 때문에 지방대체제로서 이용할 수 있으며, 천연고무를 비롯한 여러 가지 물질의 강도를 높이기 위한 충전제로 응용될 수 있다 [P. R. Kulkarni 외 Carbohydrate polymer 53 (2003); R. L. Whistler 외 Cereal food world 35 (1990); A. Dufresne 외 Macromolecules 38 (2005). 입자 크기를 낮춘 소형의 전분은 가소화 한 후 가공과정 중 가교제를 첨가하여 중합체 형태의 나노 입자를 생성하는 방법 [Y. Jiugao, L. Jie, Starch 46 (1994); 한국 공개특허 2001-0108128; 한국 공개특허 2001-0108052]에 의하여 제조가 가능하다고 보고되었다. 상기 제조방법을 이용하면 제조공정 및 방법에 따라 50nm-100㎛ 크기의 전분입자를 생성할 수 있으며, 미세 입자로 인하여 약품, 화장품, 식품, 도료, 코팅, 종이 및 잉크 등 다양한 응용분야에 활용될 수 있다. 이러한 미세 전분입자 제조방법은 유화제 및 가교제 등 인공적인 화학물질이 첨가되며 입자 크기 외에는 특별한 기능성이 없는 입자이다.Starch, on the other hand, is a cheap carbohydrate polymer obtained infinitely in nature as a storage material for photosynthetic energy and is a major carbohydrate in food. Starch is used not only as an energy source but also as a additive to foods, cosmetics and medicines. Starch may also be used as a sustained release formulation that entraps and stabilizes various substances. Starches produced in plants are obtained in various forms of particles, with an average diameter of about 1-100 micrometers. Crystalline fine particles present in the granular starch can be used as a fat replacement agent because it has properties similar to fatty micelles, and can be applied as a filler to increase the strength of various materials including natural rubber [P. R. Kulkarni et al Carbohydrate polymer 53 (2003); R. L. Whistler et al. Cereal food world 35 (1990); A. Dufresne et al Macromolecules 38 (2005). Small starch with reduced particle size is plasticized and crosslinking agent is added during processing to produce nanoparticles in polymer form [Y. Jiugao, L. Jie, Starch 46 (1994); Korean Patent Laid-Open No. 2001-0108128; It is reported that the preparation is possible by Korean Patent Laid-Open Publication 2001-0108052. By using the manufacturing method, it is possible to produce starch particles having a size of 50 nm-100 μm according to the manufacturing process and method, and because of the fine particles, they can be used in various applications such as medicine, cosmetics, food, paint, coating, paper and ink. Can be. The method for preparing fine starch particles is added to artificial chemicals such as emulsifiers and crosslinking agents and are particles having no special functionality except particle size.
상기 명시된 제조방법 이외에도 효소 혹은 산 가수분해에 의한 미세 전분 제조 방법들 [A. Dufresne 외, Macromolecules 38 (2005); 한국 공개특허 특1995-0005843; 한국 등록특허 10-0873015]이 있다. 이 방법에 의하면 가수분해에 의한 공정으로 순수 전분만으로 구성된 미세 입자를 생성할 수는 있지만, 나노 수준의 전분입자를 제조하는데는 어려움이 있다. In addition to the production method specified above, methods for preparing fine starch by enzyme or acid hydrolysis [A. Dufresne et al., Macromolecules 38 (2005); Korean Unexamined Patent Publication No. 1995-0005843; Korean Patent No. 10-0873015. According to this method, it is possible to produce fine particles composed of pure starch only by the hydrolysis process, but it is difficult to produce nano-level starch particles.
본 발명의 목적은 전분 혹은 전분 덱스트린을 활용하여 소수성 기능성 물질을 포접한 나노 입자의 복합체를 제조하는 방법을 제공한다.It is an object of the present invention to provide a method for preparing a composite of nanoparticles containing a hydrophobic functional material by using starch or starch dextrin.
본 발명의 다른 목적은 상기 방법에 의하여 제조된 소수성 기능성 물질을 포접한 나노 입자의 복합체를 제공하는 것이다. Another object of the present invention is to provide a composite of nanoparticles containing a hydrophobic functional material prepared by the above method.
상기의 목적을 달성하기 위하여 본 발명은 a) 직쇄상 전분 또는 덱스트린을 수용성 용매에 용해하는 단계;b) 기능성 물질을 소수성 용매에 용해하는 단계;c) 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액을 혼합하는 단계; 및 d) 상기 c)단계의 결과물을 효소 또는 산 처리하여 구조를 변화시키는 단계를 포함하는 전분과 기능성 물질이 V-amylose 형태(전분 분자가 기능성 물질을 나선형으로 감싼 형태)로 결합된 나노 크기의 복합체의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for preparing a polymer comprising: a) dissolving linear starch or dextrin in a water-soluble solvent; b) dissolving a functional material in a hydrophobic solvent; c) the hydrophobic solution and the starch comprising a functional material. Or mixing dextrin aqueous solution; And d) a nano-sized combination of starch and a functional material in a V-amylose form (starch molecule spirally wrapped in a functional material), comprising the step of changing the structure by enzymatic or acid treatment of the resultant of step c). It provides a method for producing a composite.
본 발명의 일 구체예에 있어서, 상기 a) 단계의 직쇄상 전분 또는 덱스트린은 전분 분자를 산, 효소, 마이크로선 조사, 혹은 방사선 조사하여 분해한 것을 의미하며, 덱스트린화하여서 전환된 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the linear starch or dextrin of step a) means that the starch molecule is degraded by acid, enzyme, micro ray irradiation, or radiation irradiation, and is preferably converted by dextrinization. It is not limited.
본 발명에서 '나노 크기'란 당업계에서 통상적으로 사용되는 최광의 의미이며, 10~500nm 인 것이 바람직하나 이에 한정되지 아니한다.'Nano size' in the present invention is the broadest meaning commonly used in the art, preferably 10 to 500nm is not limited thereto.
본 발명의 일 구체예에 있어서, 상기 a) 단계의 직쇄상 전분 또는 덱스트린은 전분을 덱스트린화하여서 전환된 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the linear starch or dextrin of step a) is preferably converted by dextrinization of starch, but is not limited thereto.
본 발명의 상기 전분은 포도당이 α(1-4) 결합에 의해 직선형으로 중합된 직쇄상 전분사슬, 바람직하게 직쇄상 아밀로오스 또는 직쇄상 덱스트린은 지방산, 유화제, 비타민, 향미성분 등 다양한 소수성 분자와 복합체를 형성할 수 있다. 이러한 복합체는 도 1의 모식도와 같이 직쇄상 전분사슬이 나선형으로 포접물질(guest compound)을 감싸고 있는 형태를 지닌다. 도 1의 모식도와 같이 이러한 나선형 복합체는 일정한 배열로 결정성 구조를 형성하게 되며 생성 조건에 따라 결정의 형태가 다소 달라진다. 이러한 결정의 크기는 복합체 형성 조건에 따라 다르지만 대략 직경이 2 ~ 12 μm라는 보고가 있다 [J. Brisson 외, International Journal of Biological Macromolecules 12 (1990); M. A. Whittam 외,International Journal of Biological Macromolecules 11 (1989)]. The starch of the present invention is a linear starch chain in which glucose is polymerized linearly by α (1-4) bond, preferably linear amylose or linear dextrin is complexed with various hydrophobic molecules such as fatty acids, emulsifiers, vitamins, flavor components, etc. Can be formed. Such a composite has a form in which linear starch chains spirally surround a guest compound as shown in the schematic diagram of FIG. 1. As shown in the schematic diagram of FIG. 1, such a spiral complex forms a crystalline structure in a constant arrangement, and the shape of the crystal varies somewhat depending on the production conditions. The size of these crystals depends on complex formation conditions, but reports have been reported to be approximately 2-12 μm in diameter [J. Brisson et al., International Journal of Biological Macromolecules 12 (1990); M. A. Whittam et al., International Journal of Biological Macromolecules 11 (1989)].
본 발명에서는 이러한 나선형 복합체의 형성이 용이한 조건을 부여함으로써 전분 사슬이 자가조립(self assembly)에 의해서 포접물과 복합체를 자연스럽게 형성하여 수용액상에 분산시키도록 하는 기술이다. 이를 위해서는 전분사슬간의 응집을 최대한으로 억제하고 포접물과 전분 간의 반응을 최대한으로 유도시키는 것이 중요하다.In the present invention, it is a technology that allows starch chains to naturally form a complex with a clathrate by self-assembly by distributing such a spiral complex to disperse in an aqueous solution. To this end, it is important to suppress aggregation between starch chains to the maximum and to induce a maximum reaction between clathrate and starch.
본 발명의 따른 본 발명의 제조방법 1을 설명한다.The manufacturing method 1 of this invention by this invention is demonstrated.
본 방법에서는 수용성 용매와 소수성 용매의 상 분리 현상을 이용하여 기존과는 다른 전분 복합체를 합성하였다. 일반적으로 전분 분자와 포접물질을 직접 혼합하여 복합체를 합성하며 이러한 경우 결정이 크게 성장하거나 무정형의 침전을 형성할 가능성이 많기 때문에 복합체 형성 수율이 낮으며 큰 입자가를 형성하게 된다. 하지만 도 2와 같이 상이 분리된 시스템에서는 소수성 용매에 용해된 포접물질과 수용성 용매의 전분분자는 상 분리가 이루어지는 접경지대에서만 물리적인 접촉을 할 수 있기 때문에 두 분자간의 반응이 조절된다. 따라서 이렇게 복합체를 형성하는 적절한 조건이 형성되며 나노크기의 입자로 생성된다. 이 입자는 전분 분자내부에 포접물질을 감싸고 있는 구조를 갖게 되어 소수성인 포접물질을 수용성화 할 수 있으며 외부 환경을 차단함으로서 산화, 효소반응 등을 억제하여 안정해지고 쉽게 방출되는 현상을 저지한다. 따라서 포접되는 물질의 기능성 및 활성을 오랫동안 유지시키는데 효과적이다. 또한 입자의 크기가 나노 영역으로 작아지기 때문에 보다 다양한 분야에서 효과적으로 응용될 수 있을 것이라고 사료된다.In this method, a starch complex different from the conventional one was synthesized by using a phase separation phenomenon of a water-soluble solvent and a hydrophobic solvent. Generally, starch molecules and clathrates are directly mixed to synthesize a complex. In this case, the yield of complex formation is low and large grains are formed because crystals are likely to grow largely or form amorphous precipitates. However, in the phase-separated system as shown in FIG. 2, the clathrate and the starch molecules of the water-soluble solvent dissolved in the hydrophobic solvent may be in physical contact only at the boundary where the phase separation takes place, thereby controlling the reaction between the two molecules. Thus, suitable conditions for forming the complex are formed and are produced as nano-sized particles. The particles have a structure that surrounds the inclusion material inside the starch molecule, so that the hydrophobic inclusion material can be water-soluble, and by blocking the external environment, it inhibits oxidation and enzymatic reactions, thereby preventing stable and easily released phenomena. Therefore, it is effective in maintaining the functionality and activity of the encapsulated material for a long time. In addition, since the particle size is reduced to the nano-area, it can be effectively applied in various fields.
본 발명의 나노 전분입자 제조방법에서, 상기 a)단계의 전분은 포접물질과 복합체를 형성할 수 있는 어떤 전분도 사용할 수 있으며, 일반 옥수수 전분, 고아밀로오스 옥수수 전분, 찰옥수수 전분, 쌀 전분, 찹쌀 전분, 고아밀로오스 쌀 전분, 감자 전분, 찰감자 전분, 고구마 전분, 보리 전분, 찰보리 전분, 콩(pea) 전분, 밀 전분, 찰밀 전분, 사고(sago) 전분, 아마란스 전분, 타피오카 전분, 수수(sorghum) 전분, 찰수수 전분, 바나나 전분, 녹두 전분, 동부 전분, 쿠즈(kuzukiri) 전분, 이들 전분의 유도체, 이들 전분의 덱스트린, 및 이들 전분에서 추출된 아밀로즈로 이루어진 군에서 선택된 전분인 것이 바람직하다. 본 발명에서 상기 전분의 유도체는 전분의 구조를 인위적으로 변화시킨 치환전분, 가교전분, 산화전분 등이 포함되며, 상기 전분의 덱스트린은 천연 전분을 효소 또는 산처리, 가열 및 마이크로선 및 방사선 조사 등의 방법으로 분해시켜 저분자화 시킨 제품을 의미하고, 상기 이들 전분에서 추출된 아밀로오스는 천연 전분에서 열수 추출 또는 알코올 추출된 비교적 직쇄상의 전분분자를 의미한다.In the method for preparing nanostarch particles of the present invention, the starch of step a) may be used any starch that can form a complex with the inclusion material, ordinary corn starch, high amylose corn starch, waxy corn starch, rice starch, glutinous rice Starch, goamylose rice starch, potato starch, potato potato starch, sweet potato starch, barley starch, waxy barley starch, soybean starch, wheat starch, waxy starch, sago starch, amaranth starch, tapioca starch, sorghum ), Starch, starch starch, banana starch, mung bean starch, eastern starch, kuzukiri starch, derivatives of these starches, dextrins of these starches, and starches selected from the group consisting of amylose extracted from these starches. In the present invention, the derivative of starch includes substituted starch, crosslinked starch, oxidized starch, etc., which artificially changed the structure of starch, and dextrin of starch is natural starch enzyme or acid treatment, heating and micro ray and irradiation, etc. By means of the decomposition means a low molecular weight product, the amylose extracted from these starch means a relatively linear starch molecule extracted by hot water extraction or alcohol extraction from natural starch.
본 발명의 나노 전분입자 제조방법에서 상기 a)단계에서 10.0 % 이하 농도의 전분 또는 덱스트린 용액을 사용하는 것이 바람직하다. 분자량이 작은 덱스트린의 경우에는 농도가 다소 높아도 문제가 없지만 높은 농도에서는 전분 또는 덱스트린 분자간의 응집으로 인해서 포접 물질과의 복합체 형성이 지연될 가능성이 많기 때문에 바람직하지 않다.In the method for preparing nanostarch particles of the present invention, it is preferable to use a starch or dextrin solution having a concentration of 10.0% or less in the step a). Dextrins having a low molecular weight are not a problem even if the concentration is slightly higher, but at higher concentrations, it is not preferable because the formation of complexes with clathrates may be delayed due to aggregation between starch or dextrin molecules.
본 발명의 나노 전분입자 제조방법에서 상기 b)와 c)단계에서 사용하는 소수성 용매는 그 구성성분이 전분과 복합체를 형성하지 않거나 포접물질보다 복합체 형성 능력이 낮은 것이 바람직 하며 물과 상 분리가 일어나는 모든 소수성 용매를 사용할 수 있다. 여기에는 헥산, 사이클로헥산, iso-propyl ether, decalin, methyl tert-butyl ether, ethyl ether, petroleum ether, 식물성 오일로 이루어진 군에서 선택된 것이 적당하다.In the method for preparing nanostarch particles of the present invention, the hydrophobic solvent used in the steps b) and c) preferably does not form a complex with starch or has a lower complexing capacity than the inclusion material, and phase separation occurs with water. Any hydrophobic solvent can be used. The hexane, cyclohexane, iso-propyl ether, decalin, methyl tert- butyl ether, ethyl ether, petroleum ether, vegetable oils are suitable for this.
포접물질은 전분사슬과 복합체를 형성할 수 있는 모든 물질이 가능하며 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올 및 각 알코올류 및 이성질체, 베타-카로틴, 레티놀과 같은 카로테노이드 계열 물질, 비타민 A, 비타민 E, 코큐텐과 같은 지용성 비타민, 레시친, DHA, EPA 등과 같은 지방산, menthone, linalool, graniol, decanal, 1-paphtol, 캡사이신 등 과 같은 향미성분 그리고 소수성 약물 성분으로 이루어진 군으로부터 선택된 것이 바람직하다.The clathrate can be any substance which can form a complex with the starch chain. Ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and alcohols and isomers, beta-carotene Carotenoids such as retinol, fat-soluble vitamins such as vitamin A, vitamin E, coQ10, fatty acids such as lecithin, DHA, EPA, flavors such as menthone, linalool, graniol, decanal, 1-paphtol, capsaicin, and hydrophobic drugs Preference is given to those selected from the group consisting of components.
본 발명의 나노 전분입자 제조방법에서 상기 c)단계에서 반응 온도는 10-100 ℃의 반응 온도가 바람직하다. 10℃ 이하에서는 전분의 이동성이 떨어지고 전분의 용해도가 낮아짐에 따라 전분 분자 간 응집이 일어날 가능성이 크기 때문이다. 100 ℃ 이상에서는 반응 용매가 쉽게 휘발할 가능성이 있고 형성된 전분 복합체가 다시 용융될 수 있기 때문에 바람직하지 않다.In the method of preparing nanostarch particles of the present invention, the reaction temperature in step c) is preferably 10-100 ° C. This is because, at 10 ° C. or less, starch mobility decreases and solubility of starch decreases, so that aggregation between starch molecules is likely to occur. Above 100 ° C, the reaction solvent may be easily volatilized and is not preferable because the formed starch complex may be melted again.
본 발명의 나노 전분입자 제조방법에서 상기 d)단계에서는 복합체 형성에 참여하지 않은 전분분자를 제거하는 공정으로, 효소 및 산처리에 의한 공정을 포함한다. 전분분해효소는 식품가공분야에서 옥수수, 감자, 쌀, 밀 등으로부터 생 전분 입자를 가공하는 데 통상적으로 사용되고 있는 모든 전분 분해효소가 사용되며 전분 분자내의 1-4 결합을 가수분해 할 수 있는 알파아밀라아제, 베타아밀라제 , 글루코아밀라아제, 알파글루코시다아제와 1-6 결합을 가수분해 할 수 있는 아이소아밀라제와 풀루라네이즈으로 이루어진 군에서 선택된 것이 적당하다. 산 가수분해에 쓰이는 산은 식품가공분야에서 통상적으로 사용되고 있는 모든 산이 사용되며 염산, 황산, 질산 그리고 초산으로 이루어진 군으로부터 선택된 것이 적당하다. 초기에 덱스트린을 사용하면 대부분의 덱스트린 분자가 복합체 형성에 소요될 수 있으므로 효소 및 산의 사용량을 줄일 수 있으며, 이 공정을 생략할 수 있다. 분해된 전분분자는 수용액에 용해된 상태로 잔류하여 추후 세척과정에서 제거될 수 있다. 이 때, 일정 온도에서 장기간 보존하여 어닐링(annealing)을 유도시키는 방법을 활용할 수 있다. 즉 복합체 형성에 참여하지 않은 전분 분자들이 자체적으로 결합하여, 복합체 입자가 작은 상태로 안정하게 유지될 수 있도록 도와줄 수 있다. 이러한 물리적 처리 온도는 복합체가 분해되지 않는 10~100℃ 사이에서 하는 것이 적당하다.In step d) of the method for preparing nanostarch particles of the present invention, a step of removing starch molecules that do not participate in complex formation includes a process by enzyme and acid treatment. Starch degrading enzymes are all starch degrading enzymes commonly used to process raw starch particles from corn, potatoes, rice, wheat, etc. in the food processing field, and alpha amylases that can hydrolyze 1-4 bonds in starch molecules. , Beta amylase, glucoamylase, alpha-glucosidase and isoamylase capable of hydrolyzing 1-6 bonds and those selected from the group consisting of pullulase. Acid used for acid hydrolysis may be any acid commonly used in food processing, and is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and acetic acid. Initial use of dextrin can reduce the amount of enzymes and acids used since most of the dextrin molecules can be involved in complex formation, and this process can be omitted. The decomposed starch molecules remain dissolved in the aqueous solution and can be removed later in the washing process. In this case, a method of inducing annealing by preserving at a constant temperature for a long time may be utilized. In other words, starch molecules that do not participate in complex formation may bind to each other to help the composite particles remain stable in a small state. This physical treatment temperature is suitably between 10 and 100 ° C. at which the composite does not decompose.
본 발명의 나노 전분입자 제조방법에서 상기 d)단계 후 세척 및 회수과정을 거쳐 복합체를 분리할 수 있다. 복합체의 세척은 구조 변화를 최소화하며 포접된 물질이 복합체로부터 제거되지 않는 알코올류의 용매를 사용하는 것이 바람직하며, 이 때 전분 복합체가 침전되어 간단한 여과 및 원심분리로 회수할 수 있게 된다. 회수된 전분 복합체는 다양한 건조방법, 예컨대 진공건조, 동결건조, 매몰건조, 열풍건조 및 스프레이건조 등을 사용하여 건조하여 분말 상태의 제품으로 회수할 수 있다. 본 발명의 c) 및 d) 단계에서 얻어진 복합체 수용액은 세척 및 회수과정을 거치지 않고 직접 제품에 활용할 수 있다.After the step d) in the method for preparing nanostarch particles of the present invention, the complex may be separated by washing and recovery. The washing of the complex minimizes structural changes and preferably uses a solvent of alcohols in which the entrapped material is not removed from the complex, whereby the starch complex is precipitated and can be recovered by simple filtration and centrifugation. The recovered starch composite may be dried and recovered as a powder product using various drying methods such as vacuum drying, freeze drying, investment drying, hot air drying and spray drying. The composite aqueous solution obtained in step c) and d) of the present invention may be directly used in a product without undergoing washing and recovery.
본 발명의 따른 제조방법 2를 설명한다.The manufacturing method 2 according to the present invention will be described.
상기 언급된 바와 같이 전분 또는 덱스트린 수용액에 포접물질을 직접 혼합하여 복합체를 합성하며 이러한 경우 결정이 크게 성장할 가능성이 많기 때문에 보편적으로 복합체 입자가 커지는 경우가 많다. 하지만 본 발명의 제조 방법2에서는 이러한 문제를 해결하기 위하여 분자량이 적은 전분 덱스트린을 활용하거나 혼합 및 교반 속도를 높여서 복합체의 크기를 작게 제조하는 것이 바람직하다.As mentioned above, the composite is synthesized by directly mixing the clathrate with an aqueous solution of starch or dextrin, and in this case, since the crystals are likely to grow significantly, the composite particles are usually large. However, in the production method 2 of the present invention, in order to solve such a problem, it is preferable to utilize the starch dextrin having a low molecular weight or to increase the mixing and stirring speed to make the size of the composite smaller.
본 발명의 나노 전분입자 제조방법2의 a) 공정에서 소수성 용매를 사용하지 않고 포접물질을 직접 혼합하는 점을 제외하고 기타공정은 제조방법1과 동일하게 적용될 수 있다.Except for directly mixing the inclusion material without using a hydrophobic solvent in the a) process of the method for preparing nanostarch particles of the present invention, other processes may be applied in the same manner as in the preparation method 1.
본 발명의 일 구체예에 있어서, 상기 덱스트린화는 식품가공분야에서 옥수수, 감자, 쌀, 밀 등으로부터 생 전분입자를 가공하는데 통상적으로 사용되고 있는 모든 전분분해효소를 사용할 수 있으며, 예를 들어서, 1-4 글리코시딕 결합을 분해할 수 있는 α-아밀라제, 글루코아밀라제, α-글루코시데이즈(glucosidase), β-아밀라제와 1-6 글리코시딕 결합을 가수분해 할 수 있는 iso-아밀라제와 풀룰라나아제로 이루어진 군에서 선택된 어느 하나의 전분 분해효소 또는 상기 효소의 혼합물을 사용하여 전분을 덱스트린화하는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the dextrinization may be used for all starch enzymes commonly used to process raw starch particles from corn, potatoes, rice, wheat, etc. in the food processing field, for example, 1 Α-amylase, glucoamylase, α-glucosidase, β-amylase capable of breaking down glycosidic bonds, and iso-amylase and pullula, which can hydrolyze 1-6 glycosidic bonds Dextrinization of starch using any one starch degrading enzyme selected from the group consisting of Naase or a mixture of the above enzymes is not limited thereto.
본 발명의 다른 일 구체예에 있어서, 상기 덱스트린화는 식품가공분야에서 통상적으로 사용되고 있는 모든 산이 사용되며, 예를 들어 염산, 황산, 질산, 인산, 구연산, 사과산 및 초산으로 이루어진 군으로부터 선택된 어느 하나의 산 또는 그 산의 혼합물을 사용하여 전분을 덱스트린화하는 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the dextrinization is used for all acids commonly used in the food processing field, for example any one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid and acetic acid It is preferred, but not limited to, to dextrinize starch using an acid or a mixture of acids.
본 발명의 다른 일 구체예에 있어서, 상기 덱스트린화는 식품가공분야에서 통상적으로 사용되고 있는 마이크로선 혹은 방사선 조사를 이용하여, 전분을 덱스트린화하는 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the dextrinization is preferably, but not limited to, dextrinization of starch by using microrays or irradiation commonly used in the food processing field.
본 발명의 일 구체예에 있어서, 상기 a) 단계에서 사용된 전분 또는 덱스트린의 농도는 분자량이 작은 덱스트린의 경우, 농도가 다소 높아도 문제가 없지만, 농도가너무 높으면, 전분 또는 덱스트린 분자간의 응집이 일어날 수 있어 복합체 형성이 용이하지 않아서, 0.01∼20.0 %인 것이 바람직하고, 10%이하인 것이 더욱 바람직하고, 3%이하인 것이 가장 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the concentration of the starch or dextrin used in step a) is not a problem even if the concentration is slightly higher in the case of a small molecular weight dextrin, but if the concentration is too high, aggregation between the starch or dextrin molecules will occur It is not easy to form a complex, it is preferably 0.01 to 20.0%, more preferably 10% or less, most preferably 3% or less, but is not limited thereto.
또한 본 발명의 다른 일 구체예에 있어서, 상기 기능성 물질은 소수성 용매에 용해하지 아니하고, 직접 전분 혹은 덱스트린 수용액에 첨가되고 혼합되는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법을 제공한다.In another embodiment of the present invention, the functional material is not dissolved in a hydrophobic solvent, directly added to the starch or dextrin aqueous solution, characterized in that the method for producing a nano-sized composite combined with a starch and a functional material. To provide.
본 발명의 바람직한 실시예에 있어서, 상기 기능성 물질은 직쇄상의 전분 또는 덱스트린 분자와 V-amylose 형태의 복합체를 형성하여 나선형 구조만이 포접될 수 있도록 소수성을 띠며, 인체 또는 생물체에 유용한 기능성을 갖는 종래 알려진 어떤 물질도 가능하나, 안테라크산틴, 아스타산틴, 알파카로틴, 베타카로틴, 베타-아포-4′-카로티날, 베타-아포-8′-카로티날,칸타크산틴, 시트라나산틴, 크립토크산틴, 디하이드로플렉타니아산틴, 다이아토산틴, 푸코산틴, 푸코산티놀, 락투카산틴, 루테인, 라이코펜, 네오산틴, 뉴로스포라산틴, 뉴로스포렌, 페리디닌, 파이토엔, 로드핀, 시포노크산틴, 스페로이딘, 스피릴로산틴, 토룰라로딘, 유리올라이드, 유리올라이드 아세테이드, 비올라크산틴, 제아산틴, 네롤, 네로리돌, 시트랄 , 시남알데하이드, 시트로네롤, cis-3-헥산알, 바닐린, 아이소아밀아세테이트, 1-옥텐-3-원, 옥틸아세테이트, 카다벌린, 헥산알,마소이아락톤, 멘톨, 메틸부트레이트, 멘톤, 펜틸부트레이트, 펜틸펜타노에이트, 리나룰, 제라니올, 데카날, 1-나프톨, 어유, 밀랍, D-리모넨, 비타민 A, 비타민 E, 코엔자임큐텐(Co-Q10), 레시틴, DHA, EPA, 캡사이신 및 소수성 약물을 포함하는 군으로부터 선택된 것 혹은 상기 언급된 물질의 혼합물인 것이 바람직하나 이에 한정되지 아니한다.In a preferred embodiment of the present invention, the functional material has a hydrophobic property so that only a spiral structure can be included by forming a complex of a straight starch or dextrin molecule with a V-amylose form, and having useful functionality to a human body or an organism. Any known material may be used, but anthracenic, astaxanthin, alpha-carotene, beta-carotene, beta-apo-4'-carotenal, beta-apo-8'-carotenal, canthaxanthin, citranasanthin, creep Toxanthine, Dihydroplectananthine, Diatoxanthin, Fucoxanthin, Fucosantinol, Lactucaxanthin, Lutein, Lycopene, Neoxanthin, Neurosporanthin, Neurosporene, Ferridinine, Phytoene, Roadpin, Siphonoxanthin, spheroidine, spiriloxanthin, torulladine, freeolide, freeolide acetate, violaxanthin, zeaxanthin, nerol, nerolidol, citral, cinnamic aldehyde, citronerole , cis-3-hexanal, vanillin, isoamyl acetate, 1-octene-3-one, octyl acetate, cardaberine, hexanal, masoaralactone, menthol, methyl butyrate, mentone, pentyl butyrate, pentylpentano Eight, linalul, geraniol, decanal, 1-naphthol, fish oil, beeswax, D-limonene, vitamin A, vitamin E, coenzymecuten (Co-Q10), lecithin, DHA, EPA, capsaicin and hydrophobic drugs It is preferably, but not limited to, one selected from the group consisting of, or a mixture of the aforementioned substances.
본 발명의 실시예에서, 상기 기능성물질의 예로써, 베타카로틴과 코큐텐을 나노 덱스크린에 포접시켜 복합체를 형성하는 실험을 하였으나, 상기 포접물질 이 외의 다른 소수성 기능성 물질들도 당연히 나노 덱스트린에 포접되어 복합체를 형성할 수 있음은 당업자에게 자명할 것이다.In the embodiment of the present invention, as an example of the functional material, but beta-carotene and coQ10 was included in the nano-deck screen experiment to form a complex, but other hydrophobic functional materials other than the inclusion material is naturally also included in the nano dextrin It will be apparent to those skilled in the art that the complex can be formed.
본 발명의 일 구체예에 있어서, 상기 기능성 물질을 포함하는 소수성 용액과 상기 전분 혹은 덱스트린 수용액을 혼합하는 단계 또는 상기 기능성물질을 직접 전분 혹은 덱스트린 수용액에 첨가하고 혼합하여 복합체 형성단계는 기능성 물질의 용융 온도보다 높은 온도에서 수행하는 것이 바람직하다.In one embodiment of the present invention, the step of mixing the hydrophobic solution containing the functional material and the starch or dextrin aqueous solution or the complex material forming step by adding and mixing the functional material directly to the starch or dextrin aqueous solution, the melting of the functional material Preference is given to performing at temperatures higher than the temperature.
본 발명의 실시예에 있어서, 기능성 물질의 용융 온도에 따라서 직접 반응 시키기도 하며 소수성 용매에 녹여서 반응시키기도 한다. 예를 들어 코큐텐은 용융 온도가 50℃ 이하이기 때문에 50℃ 이상에서 반응할 경우 용융하여 액체 상태가 되기 때문에 덱스트린 용액과 직접 반응시킬 수 있다. 반면 베타카로틴의 경우 용융점이 181℃이기 때문에 소수성 용매에 녹인 후 덱스트린 용액과 반응시키게 된다. 따라서 상기 범위보다 낮은 온도에서 반응을 수행하는 경우, 전분 분자의 이동성이 떨어지고 전분의 용해도가 낮아져 전분 분자 간 응집이 일어날 수 있다. 상기 범위보다 높은 온도에서 반응을 수행하는 경우, 형성된 전분 복합체가 다시 용융될 수 있다.In the embodiment of the present invention, depending on the melting temperature of the functional material may be reacted directly or dissolved in a hydrophobic solvent. For example, CoQ10 can be directly reacted with dextrin solution because it melts and becomes liquid when reacted at 50 ° C or higher because the melting temperature is 50 ° C or lower. On the other hand, since beta carotene has a melting point of 181 ° C, it is dissolved in a hydrophobic solvent and then reacted with dextrin solution. Therefore, when the reaction is carried out at a temperature lower than the above range, the mobility of the starch molecules are lowered and the solubility of the starch is lowered to cause aggregation between starch molecules. When the reaction is carried out at a temperature higher than the above range, the formed starch complex may be melted again.
본 발명의 일 실시예에서는 50 ℃의 반응온도에서 수행하였는데, 이 경우 전분 분자의 충분한 이동성으로 복합체 형성이 용이하므로 가장 바람직하다.In one embodiment of the present invention was carried out at a reaction temperature of 50 ℃, in this case it is most preferred because the complex formation is easy with sufficient mobility of starch molecules.
본 발명의 일 구체예에 있어서, 상기 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액을 혼합하는 단계 또는 상기 기능성물질을 직접 전분 혹은 덱스트린 수용액에 첨가하고 혼합하여 복합체 형성단계는 10 ℃ 내지 100 ℃의 온도에서 수행하는 것이 바람직하다. 상기 범위보다 낮은 온도에서 반응을 수행하는 경우, 전분 분자의 이동성이 떨어지고 전분의 용해도가 낮아져 전분 분자 간 응집이 일어날 수 있다. 상기 범위보다 높은 온도에서 반응을 수행하는 경우, 형성된 전분 복합체가 다시 용융될 수 있다.In one embodiment of the present invention, the step of mixing the hydrophobic solution containing the functional material and the starch or dextrin aqueous solution or the complex material by adding the functional material directly to the starch or dextrin aqueous solution and mixing step 10 Preference is given to performing at a temperature of from < RTI ID = 0.0 > When the reaction is carried out at a temperature lower than the above range, the mobility of the starch molecules is lowered and the solubility of the starch is lowered to cause aggregation between the starch molecules. When the reaction is carried out at a temperature higher than the above range, the formed starch complex may be melted again.
본 발명의 일 구체예에 있어서, 상기 c) 단계의 복합체 형성은 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액의 상분리를 통하여 수행되는 것이 바람직하다.In one embodiment of the present invention, the complex formation of step c) is preferably carried out through phase separation of the hydrophobic solution containing a functional material and the starch or dextrin aqueous solution.
즉, 일반적으로 전분 분자와 포접물질을 직접 혼합하여 복합체를 합성하며 이러한 경우 결정이 크게 성장하거나 무정형의 침전을 형성할 가능성이 많기 때문에 복합체 형성 수율이 낮으며 큰 입자를 형성하게 된다. 하지만 도 2와 같이 상이 분리된 시스템에서는 소수성 용매에 용해된 기능성물질과 수용성 용액의 전분분자는 상분리가 이루어지는 접경지대에서만 물리적인 접촉을 할 수 있기 때문에 두 분자간의 반응이 조절된다. 따라서 이렇게 복합체를 형성하는 적절한 조건이 형성되며 나노 크기의 입자로 생성된다. 이 입자는 전분분자 내부에 기능성 물질을 감싸고 있는 구조를 갖게 되어 소수성인 기능성물질을 수용성화 할 수 있으며 외부 환경을 차단함으로써 산화, 효소반응 등을 억제하여 안정해지고 쉽게 방출되는 현상을 저지한다. 따라서 포접되는 물질의 기능성 및 활성을 오랫동안 유지시키는데 효과적이다. 또한 입자의 크기가 나노 영역으로 작아지기 때문에 보다 다양한 분야에서 효과적으로 응용될 수 있을 것이다.In other words, the composite is generally synthesized by directly mixing starch molecules and clathrates. In this case, the crystal formation yield is low and large particles are formed because crystals are likely to grow largely or form amorphous precipitates. However, in the phase-separated system as shown in FIG. 2, the reaction between the two molecules is controlled because the functional material dissolved in the hydrophobic solvent and the starch molecules of the aqueous solution may be in physical contact only at the boundary where the phase separation takes place. Thus, suitable conditions for forming the complex are formed and are produced as nano-sized particles. This particle has a structure that wraps the functional material inside the starch molecule, so that the hydrophobic functional material can be water-soluble, and by blocking the external environment, it inhibits oxidation and enzymatic reactions, thereby preventing the phenomenon of being stable and easily released. Therefore, it is effective in maintaining the functionality and activity of the encapsulated material for a long time. In addition, since the particle size is reduced to the nano-area will be able to be effectively applied in a variety of fields.
본 발명의 실시예에서, 상기 상분리는 수용성 용액 위에 소수성 용액을 서서히 주입하여 양 용액의 경계면이 파괴되지 않으면서 상분리가 이루어지도록 하였다. 본 발명의 실시예 에서는 소수성 용액의 양을 수용성 용액의 양의 절반을 주입하였으나, 더 적은 양을 사용할 수도 있고 더 많은 양을 사용하여도 무방하다.In an embodiment of the present invention, the phase separation was performed by slowly injecting a hydrophobic solution onto the aqueous solution so that phase separation was achieved without breaking the interface between the two solutions. In the embodiment of the present invention, the amount of the hydrophobic solution is injected in half of the amount of the aqueous solution, but a smaller amount may be used or a larger amount may be used.
본 발명의 제조방법에서 사용되는 소수성 용매는 그 구성성분이 전분과 복합체를 형성하지 않거나 기능성물질보다 복합체 형성 능력이 낮은 것이 바람직하며, 물과 상 분리가 일어나는 모든 소수성 용매를 사용할 수있다. 상기 소수성 용매는 헥산, 사이클로헥산, 이소프로필 에테르(iso-propyl ether), 데카린(decalin), 메틸tert-부틸 에테르(methly tert-butyl ether, MTBE),에틸 에테르(ethyl ether), 석유 에테르(petroleum ether), 식물성 오일로 이루어진 군에서 선택된 것이 바람직하다.The hydrophobic solvent used in the preparation method of the present invention preferably has a component which does not form a complex with starch or has a lower complex forming ability than a functional material, and any hydrophobic solvent in which phase separation with water can be used. The hydrophobic solvent is hexane, cyclohexane, isopropyl ether (iso-propyl ether), decalin (decalin), methyl tert-butyl ether (methly tert-butyl ether, MTBE), ethyl ether (ethyl ether), petroleum ether ( petroleum ether), preferably selected from the group consisting of vegetable oils.
본 발명의 일 구체예에 있어서, 상기 d) 단계는 1-4 결합을 분해할 수 있는α-아밀라제, 글루코아밀라제, α-글루코시데이즈, β-아밀라제와 1-6 결합을 가수분해 할 수 있는 iso-아밀라제와 풀룰라나아제로 이루어진 군에서 선택된 어느 하나의 전분 분해효소 또는 상기 효소의 혼합물을 사용하여 복합체 형성에 참여하지 않은 전분을 분해하는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the step d) is capable of hydrolyzing 1-6 bonds with α-amylase, glucoamylase, α-glucosidase, β-amylase, which can degrade 1-4 bonds. It is preferable to decompose starch which is not involved in complex formation by using any one starch degrading enzyme or a mixture of the enzymes selected from the group consisting of iso-amylase and pullulanase, but is not limited thereto.
본 발명의 다른 일 구체예에 있어서, 상기 d) 단계는 염산, 황산, 질산, 인산, 구연산, 사과산 및 초산으로 이루어진 군으로부터 선택된 어느 하나의 산 또는 그 산의 혼합물을 사용하여 복합체 형성에 참여하지 않은 전분을 분해하는 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, step d) does not participate in complex formation using any acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid, and acetic acid, or a mixture of acids. It is preferred, but not limited to, decomposing starch.
본 발명의 제조방법에 있어서, 초기에 덱스트린을 사용하면 대부분의 덱스트린 분자가 복합체 형성에 소요될 수 있으므로 효소 및 산의 사용량을 줄일 수 있으며, 또는 이 공정을 생략할 수 있다. 상기의 효소 및 산에 의해 분해된 전분분자는 수용액에 용해된 상태로 잔류하여 추후 세척과정에서 제거된다.In the preparation method of the present invention, when dextrin is initially used, most dextrin molecules may be required to form a complex, so that the amount of enzyme and acid may be reduced, or the process may be omitted. The starch molecules decomposed by the enzyme and acid remain in a dissolved state in an aqueous solution and are subsequently removed in the washing process.
본 발명의 나노 전분복합체 제조방법에서, 추가적으로 선택적으로 포함되는 세척 및 회수과정에서 복합체의 세척은 구조 변화를 최소화하며 포접된 물질이 복합체로부터 제거되지 않는 알코올류의 용매를 사용하는 것이 바람직하며, 이 때 본 발명의 복합체가 침전되어 간단한 여과 및 원심분리로 회수할 수 있다.In the nanostarch composite manufacturing method of the present invention, the washing of the complex in the additionally included washing and recovery process minimizes the structural change, it is preferable to use a solvent of alcohols such that the inclusion material is not removed from the complex, When the complex of the present invention is precipitated it can be recovered by simple filtration and centrifugation.
본 발명의 복합체 제조방법에서, 상기 회수된 복합체는 다양한 건조방법, 예컨대 진공건조법, 동결건조법, 매몰건조법, 열풍건조법 및 스프레이건조법을 사용하여 건조할 수 있다. 본 발명의 복합체는 상기 건조과정에 의해 고체 분말 상태가 된다.In the composite production method of the present invention, the recovered composite can be dried using various drying methods, such as vacuum drying, freeze drying, investment drying, hot air drying and spray drying. The composite of the present invention becomes a solid powder state by the drying process.
본 발명의 상기 나노 복합체 제조방법에서, 얻어진 복합체 수용액은 상기 세척 및 회수과정을 거치지 않고 직접 제품에 활용할 수 있다.In the nanocomposite manufacturing method of the present invention, the obtained composite aqueous solution can be utilized directly in the product without undergoing the washing and recovery process.
본 발명의 전분 또는 덱스트린과 기능성물질의 복합체는 5개 내지 10개 정도의 포도당이 α(1-4) 결합으로 결합된 직쇄상 부분에 기능성물질 분자가 나선상으로 둘러싸여 형성된 구조를 이루어 나노입자를 형성한다. 또한, 상기의 복합체는 기능성물질의 종류에 따라 기능성물질이 나선형 단위체 사이에 존재할 수도 있다.상기 복합체는 나노 크기 입자를 갖으며 이들 입자의 나선형 구조는 외부가 친수성인 반면 내부는 소수성이기 때문에 나선형 구조 내부에 다양한 소수성 기능성물질을 포접시킬 수 있으며 포접된 물질은 친수성인 나선형 외부 구조에 의해 물에 쉽게 용해된다. 따라서 다양한 소수성 기능성물질을 쉽게 수용화 할 수 있으므로 소수성 기능성 식품 소재 또는 약물 성분을 보다 효율적으로 전달할 수 있으며 이들물질이 도중에 산화되거나 변성되는 것을 억제할 수 있다. 또한, 나선형 구조 내부에 소수성 향미성분이 포접될 수 있으며 이들 성분이 쉽게 휘발하는 것을 방지하여보다 안정적으로 보관 및 전달 할 수 있다. 따라서 상기 나노 전분복합체는 식품,화장품, 또는 약품 산업분야에서 기능성 물질이나 의약 성분을 포접하고 전달하는데 사용될 수 있다.The complex of the starch or dextrin and the functional material of the present invention forms a nanoparticle by forming a structure surrounded by a spiral of functional molecules in a linear portion in which 5 to 10 glucoses are bonded by α (1-4) bonds. do. In addition, the complex may have a functional material between the helical units according to the type of the functional material. The complex has nano-sized particles, and the helical structure of these particles is hydrophilic on the outside while hydrophobic on the inside. Various hydrophobic functional materials can be entrapped inside, and the entrapped materials are easily dissolved in water by the hydrophilic spiral outer structure. Therefore, it is possible to easily accommodate a variety of hydrophobic functional material can more efficiently deliver the hydrophobic functional food material or drug components, it is possible to suppress the oxidation or denaturation of these substances on the way. In addition, hydrophobic flavor components can be enclosed inside the helical structure, and these components can be prevented from volatilizing easily, and thus can be stored and delivered more stably. Therefore, the nano starch complex may be used to capture and deliver functional substances or pharmaceutical components in the food, cosmetic, or pharmaceutical industries.
본 발명의 다른 양태에 따르면, 본 발명은 상기 방법에 따른 제조방법으로 제조된 나노 전분복합체를 제공한다. 본 발명의 나노 크기의 미세 전분입자는 섬유, 제지, 화학공업분야 및 식품산업에서 다양한 용도로 이용할 수 있다. 구체적으로, 식품산업에서는 가공식품의 분산제, 향 보존제 등으로 이용할 수 있으며, 섬유공업에서는 섬유사의 제직성을 높이기 위한 실의 가호, 나염 및 호제 등으로 이용가능 하며, 제지공업에서는 표면 사이징제, 코팅제, 내부첨가제 및 판지의 층간접착제 등으로 이용할 수 있다. 또한 화학공업에서는 전분을 변성화시켜 접착제, 분산제, 및 미끄럼 방지제 등의 분말로 이용할 수 있다. 그 외에도 플라스틱의 필름, 성형제품 등에 첨가하여 물리적 특성을 향상시키는 충전제로도 사용할 수 있으며, 각종 흡수성 수지의 원료로도 사용할 수 있다.According to another aspect of the present invention, the present invention provides a nano starch composite prepared by the preparation method according to the above method. Nano-sized fine starch particles of the present invention can be used in a variety of applications in the textile, paper, chemical industry and food industry. Specifically, in the food industry, it can be used as a dispersing agent, a flavor preservative, etc. in the food industry, and in the textile industry, it can be used as protection of yarn, printing, and coating for improving the weaving of fiber yarns. It can be used as an internal additive and an interlayer adhesive of cardboard. In the chemical industry, starch may be denatured and used as a powder such as an adhesive, a dispersant, and an anti-slip agent. In addition, it can be used as a filler to improve physical properties by adding to plastic films, molded products, and the like, and can also be used as a raw material for various absorbent resins.
또한 본 발명은 본 발명의 상기 제조방법에 의하여 제조된 전분과 기능성 물질이 결합된 나노 크기의 복합체를 제공한다.In another aspect, the present invention provides a nano-sized composite in which the starch and the functional material produced by the production method of the present invention is combined.
본 발명에서 얻어지는 복합체는 직쇄상의 전분 분자 또는 전분 덱스트린을 활용하여 소수성 물질이 포접된 복합체이다. 단순한 나노크기의 전분입자로서가 아니라 소수성 물질을 수용화하고 안정화하였으며, 이러한 복합체를 나노 수준의 작은 크기의 입자로 제조함으로서 다양한 분야에서 기능성을 높이는 효과를 가진다.The complex obtained in the present invention is a complex in which a hydrophobic substance is enclosed by utilizing linear starch molecules or starch dextrins. Hydrophobic materials have been accommodated and stabilized, not just as nanoscale starch particles, and these complexes have the effect of enhancing functionality in a variety of applications by making these nanoparticles into small sized particles.
도 1는 직쇄상 전분 혹은 덱스트린이 기능성 물질을 포접한 복합체 형성과정을 도식화한 도면이다.1 is a diagram illustrating a complex formation process in which linear starch or dextrin is conjugated to a functional material.
도 2은 상분리를 이용한 나노 전분입자 제조 방법을 나타내는 도면이다.2 is a view showing a method for producing nanostarch particles using phase separation.
도 3는 실시예 1에 의해 제조된 나노 입자의 형태를 나타내는 도면이다.3 is a view showing the shape of the nanoparticles prepared by Example 1.
도 4는 실시예1에 의해 제조된 나노 입자의 입자 크기 분포를 나타내는 도면이다.4 is a view showing the particle size distribution of the nanoparticles prepared by Example 1.
도 5은 실시예1에 의해 제조된 나노 입자의 x-선 회절도를 나타내는 도면이다.5 is a diagram showing an x-ray diffraction diagram of the nanoparticles prepared in Example 1. FIG.
도 6은 실시예 4에 의해 제조된 나노 입자의 입자 크기 분포를 나타내는 도면이다.6 is a view showing a particle size distribution of nanoparticles prepared in Example 4. FIG.
이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 목적으로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되어지지 아니한다.Hereinafter, the present invention will be described in more detail with reference to non-limiting examples. However, the following examples are described for the purpose of illustrating the present invention and the scope of the present invention is not to be construed as limited by the following examples.
실시예 1. 나노 덱스트린-베타카로틴 복합체의 제조Example 1.Preparation of Nano Dextrin-Betacarotene Complex
1) 덱스트린 제조1) Dextrin Manufacturing
고아밀로오즈 옥수수전분(Hylon VII,아밀로즈 함량 70%, National starch, Bridgewater,NI,USA) 25 g을 100% 에탄올 100 mL에 분산한 후 36% HCl 1 mL을 가한후 잘 교반하였다. 혼합된 현탄액을 20 ℃에서 72 시간 반응한 후 모든 산과 가수분해 된 당이 제거될 때까지 50% 에탄올로 세척하였다. 그 후 아세톤으로 1회 세척한 후 40 ℃에서 12 시간 동안 건조 후 분쇄하였다.25 g of high amylose corn starch (Hylon VII, amylose content 70%, National starch, Bridgewater, NI, USA) was dispersed in 100 mL of 100% ethanol and then stirred well after adding 1 mL of 36% HCl. The mixed suspension was reacted at 20 ° C. for 72 hours and then washed with 50% ethanol until all acid and hydrolyzed sugars were removed. After washing once with acetone, it was dried for 12 hours at 40 ℃ and then ground.
2) 덱스트린-베타카로틴 복합체 합성2) Dextrin-beta carotene complex synthesis
덱스트린을 1 g을 증류수 100 mL에 분산한 후 131 ℃에서 20 분간 가열하여덱스트린을 용해시켰다. 베타카로틴 15mg을 이소프로필 에테르 60 mL에 용해시킨 후 덱스트린 용액에 상기 이소프로필 에테르 용액을 천천히 가하여 도 2와 같이 덱스트린 용액과 상분리가 일어나게 하였다. 그 후 덱스트린 용액을 50 ℃에서 24 시간 동안 400 rpm으로 교반하면서 반응시켰다. 또한 반응을 가속화시키기 위하여 반응 용액을 밀봉하지 않고 개방한 상태에서 복합체를 제조하였다.1 g of dextrin was dispersed in 100 mL of distilled water, and then heated at 131 ° C. for 20 minutes to dissolve dextrin. Beta carotene 15 mg was dissolved in 60 mL of isopropyl ether, and then slowly added the isopropyl ether solution to the dextrin solution to cause phase separation from the dextrin solution as shown in FIG. 2. The dextrin solution was then reacted at 50 ° C. for 24 hours with stirring at 400 rpm. In addition, in order to accelerate the reaction, the composite was prepared in an open state without sealing the reaction solution.
3) 덱스트린-베타카로틴 복합체의 회수3) Recovery of dextrin-beta carotene complex
24 시간 후 복합체를 함유한 수용액을 고속 원심분리 (×25,000 g)하여 침전시킨 후 회수하였다. 본 실시예에서 베타카로틴의 용매로 이소프로필 에테르를 사용한 이유는 이소프로필 에테르는 전분과 복합체를 형성하지 않고 베타카로틴을 잘용해시키며 물과 상분리가 일어나는 용매이기 때문이다.After 24 hours the aqueous solution containing the complex was precipitated by high speed centrifugation (× 25,000 g) and then recovered. The reason for using isopropyl ether as a solvent of beta-carotene in this embodiment is that isopropyl ether is a solvent that dissolves beta-carotene well and phase-separates with water without forming a complex with starch.
시험예Test Example
1. 덱스트린과 복합체를 형성한 베타카로틴 함량 1. Beta-carotene content complexed with dextrin
상기 실시예 1에서 제조한 나노 덱스트린-베타카로틴 복합체 용액 100mL을 121℃에서 20분 간 가열하여 복합체를 파괴한 후 이소프로필 에테르용액을 상기 용액에 가하였다. 이소프리필 에테르와 수용액은 상분리가 일어나게 되고 베타카로틴은 모두 이소프로필 에테르 용액에 녹게 되며, 이소프로필 에테르 용액에 녹아 있는 베타카로틴 함량을 자외-가시선 분광광도계(Ultrospec 2000 UV/Visible Spectrophotometer, Pharmacia Biotech, UK)를 이용하여 448nm에서 흡광도의 변화로 측정하였다. 측정 결과 대략 90% (15mg 중 13.2mg)의 베타카로틴이 덱스트린과 복합체를 형성하였다.100 mL of the nanodextrin-beta carotene complex solution prepared in Example 1 was heated at 121 ° C. for 20 minutes to destroy the complex, and then an isopropyl ether solution was added to the solution. Isoprephyll ether and aqueous solution will be phase separated and all beta carotene will be dissolved in isopropyl ether solution, and the beta carotene content in isopropyl ether solution is determined by UV-Visible Spectrophotometer (Ultrospec 2000 UV / Visible Spectrophotometer, Pharmacia Biotech, UK ) Was measured as a change in absorbance at 448 nm. As a result, approximately 90% (13.2 mg of 15 mg) of beta carotene complexed with dextrin.
시험예Test Example
2. 입자 크기 및 결정성 관찰 2. Observation of particle size and crystallinity
입자 분석기 (Dynapro Titan, Wyatt Technology, SantaBarbara,CA)를 이용하여 상기 실시예에서 제조한 입자의 평균 직경 및 크기 분포를 측정하였다. 나노 수준의 전분 입자는 85% 정도의 입자가 20 ~ 80 nm 크기를 이루었으며 10% 정도가 100 nm 이상 수준의 입자였다. 이러한 결과는 대략 나노 수준의 입자들이 일부 서로 뭉쳐서 큰 덩어리를 이룬 것이라고 사료된다.The particle size analyzer (Dynapro Titan, Wyatt Technology, SantaBarbara, CA) was used to measure the average diameter and size distribution of the particles prepared in the above examples. The nano-level starch particles were about 20% to 80 nm in size and about 10% were 100 nm or more. These results suggest that the nanoscale particles are agglomerated into some large mass.
시험예Test Example
3. 입자 결정성 3. Particle Crystallinity
X-선 회절 분석기 (MO3XHF22 MAC science CO. Japan)를 이용하여 덱스트린-베타카로텐 복합체의 결정성을 측정하였다. 덱스트린-베타카로텐 복합체의 경우 V6 형태의 결정성을 보였다. V6 형태의 결정은 아밀로즈와 지방 및 알코올 같은 물질이 나선형 복합체를 형성하였을 경우 나타나는 결정형이며, 이러한 나선형 결정은 6개의 포도당 사슬이 한번 회전에 소모되는 구조를 지니고 있고 나선형 결정 내부에 베타카로텐이 포접되어 있음이 확인될 수 있다. The crystallinity of the dextrin-betacarotene complex was measured using an X-ray diffraction analyzer (MO3XHF22 MAC science CO. Japan). Dextrin-beta-carotene complex showed V6 form crystallinity. V6 crystals form when helical complexes such as amylose, fats and alcohols form spiral complexes. These spiral crystals have a structure in which six glucose chains are consumed in one rotation, and beta carotene is enclosed within the spiral crystals. Can be confirmed.
실시예EXAMPLE
2. 나노 전분-베타카로틴 복합체 제조 2. Preparation of Nano Starch-beta-carotene Complex
1) 전분-베타카로틴 복합체 합성1) Starch-beta carotene complex synthesis
고아밀로오즈 옥수수 전분 1 g을 증류수 100 mL에 분산한 후 121 ℃에서 20분간 가열하여 용해시켰다. 이소프로필 에테르 60 mL에 베타카로틴 15 mg을 용해시킨 후 상기 이소프로필 에테르 용액을 전분 용액에 천천히 가하여 도 3에서와 같이상분리가 일어나게 하였다. 그 후 전분 용액을 50 ℃에서 24 시간 동안 400 rpm으로 교반하면서 반응시켰다.1 g of high amylose corn starch was dispersed in 100 mL of distilled water and heated at 121 ° C. for 20 minutes to dissolve it. After dissolving 15 mg of beta-carotene in 60 mL of isopropyl ether, the isopropyl ether solution was slowly added to the starch solution to cause phase separation as shown in FIG. 3. The starch solution was then reacted with stirring at 400 rpm for 24 hours at 50 ° C.
2)전분-베타카로틴 복합체의 회수2) recovery of starch-beta carotene complex
24 시간 후, 피펫을 이용하여 상층을 제거한 후 하층의 복합체를 함유한 전분 용액만을 분리한 후 상기 용액에 알파 아밀라아제 (500 unit)를 첨가하고 50 ℃에서 1 시간 동안 교반하였다. 이 과정에서 복합체 형성을 하지 않은 전분 사슬은분해되고 복합체만 남게 된다. 그 후 고속 원심분리 (×25,000 g)하여 전분 복합체를 침전시키고 회수하였다.After 24 hours, the upper layer was removed using a pipette, and only the starch solution containing the complex of the lower layer was separated, and alpha amylase (500 unit) was added to the solution and stirred at 50 ° C. for 1 hour. In this process, starch chains that do not form complexes are decomposed and only the complexes remain. High speed centrifugation (× 25,000 g) then precipitated and recovered the starch complex.
시험예Test Example
1. 나노 전분-베타카로틴의 입자 크기, 분포 및 결정성 관찰 1. Observation of Particle Size, Distribution and Crystallinity of Nano Starch-Betacarotin
입자 분석기를 이용하여 상기 실시예 2에서 제조한 복합체의 평균 직경 및 입자 크기 분포를 측정하였다. 원심분리 시행전 수용액상에 분산된 복합체는 100 ~200 nm 크기의 평균 입자경을 갖는 전분 입자로 분포하였다. 또한 X-선 회절 분석기를 이용하여 결정성을 측정한 결과 V6 형태의 결정성을 보였다.The particle size distribution was measured for the average diameter of the composite prepared in Example 2 using a particle analyzer. The complex dispersed in the aqueous solution before centrifugation was distributed as starch particles having an average particle size of 100 ~ 200 nm. In addition, the crystallinity of the crystal was measured using an X-ray diffraction analyzer.
실시예EXAMPLE
3. 나노 찰옥수수 덱스트린- 3. Nano Waxy Dextrin-
코큐텐Kokyuten
복합체의 제조 Preparation of the complex
1) 덱스트린 제조1) Dextrin Manufacturing
찰옥수수 전분 1 g을 증류수 99 mL에 용해시킨 후 아세테이트 완충용액 (1M,pH 3.5, 1 mL)을 가한 후 이소아밀라아제 30,000 unit을 가하여 45 ℃에서 24 시간 조건으로 가수분해하였다. 가수분해 반응 종결 후, pH를 6.5로 맞춘 후 끓는 물에서 10분 동안 효소를 불활성화시킨 후 반응을 종결하였다.After dissolving 1 g of waxy corn starch in 99 mL of distilled water, acetate buffer solution (1 M, pH 3.5, 1 mL) was added, and 30,000 units of isoamylase were added thereto, followed by hydrolysis at 45 ° C. for 24 hours. After completion of the hydrolysis reaction, the pH was adjusted to 6.5, and then the enzyme was inactivated in boiling water for 10 minutes to terminate the reaction.
2) 덱스트린-코큐텐 복합체 합성2) Synthesis of Dextrin-Cocuten Complex
상기의 제조된 덱스트린 3 g을 증류수 100 mL에 분산한 후 121 ℃에서 20 분간 가열하여 용해시켰다. 코큐텐 100 mg을 상기 덱스트린 용액에 첨가시킨 후 4003 g of the prepared dextrin was dispersed in 100 mL of distilled water, and then dissolved by heating at 121 ° C. for 20 minutes. 400 mg of CoQ10 was added to the dextrin solution after
rpm으로 교반하면서 50 ℃에서 72 시간 동안 반응시켰다. 이 과정 중, 코큐텐이 덱스트린과 복합체를 형성하게 되며 수용액 속에 고르게 분포하게 된다.The reaction was carried out at 50 ° C. for 72 hours while stirring at rpm. During this process, cocuten forms a complex with dextrin and is evenly distributed in the aqueous solution.
3) 덱스트린-코큐텐 복합체의 회수3) Recovery of Dextrin-Cocuten Complex
72 시간 반응 후, 복합체를 함유한 수용액을 고속 원심분리 하여 (×20,000g) 침전시키고 회수하였다. 회수된 복합체의 코큐텐 함량은 약 60 ~ 80 mg으로 첨After 72 hours reaction, the aqueous solution containing the complex was centrifuged at high speed (x20,000 g) and recovered. CoQ10 content of recovered complex is about 60 ~ 80 mg
가시킨 코큐텐의 60% 이상이 덱스트린과 반응하였음을 확인하였다.It was confirmed that more than 60% of the added cocuten reacted with dextrin.
시험예Test Example
1. 덱스트린- 1. Dextrin
코큐텐Kokyuten
입자의 크기, 분포 및 결정성 관찰 Observation of particle size, distribution and crystallinity
입자 분석기를 이용하여 상기 실시예 3에서 제조한 복합체의 평균 직경 및 입자 크기 분포를 측정하였다. 용액 상에 분산된 덱스트린-코튜텐 복합체는 20 ~100 nm 크기의 평균 입자경을 갖는 전분 입자로 분포하였다. 또한 X-선 회절 분석기를 이용하여 덱스트린-코큐텐 복합체의 결정성을 측정한 결과 V6-I 형태의 결정성을 보였다.Using a particle analyzer, the average diameter and particle size distribution of the composite prepared in Example 3 were measured. The dextrin-coutene complex dispersed in the solution was distributed into starch particles having an average particle size of 20-100 nm. In addition, the crystallinity of the dextrin-cocuten complex was measured using an X-ray diffractometer.
실시예EXAMPLE
4. 나노 옥수수 덱스트린- 4. Nano Corn Dextrin-
코큐텐Kokyuten
복합체의 제조 Preparation of the complex
1)덱스트린 제조1) dextrin manufacturer
고아밀로오즈 옥수수전분 25 g을 100% 에탄올 100 mL에 분산한 후 36% HCl 1 mL을 가한 후 잘 교반하였다. 혼합된 현탄액을 20 ℃에서 72 시간 반응한 후 모든 산과 가수분해 된 당이 제거될 때까지 50% 에탄올로 세척하였다. 그 후 아세톤으로 1회 세척한 후 40 ℃에서 12 시간 동안 건조 후 분쇄 하였다.25 g of high amylose corn starch was dispersed in 100 mL of 100% ethanol, and then 1 mL of 36% HCl was added, followed by stirring well. The mixed suspension was reacted at 20 ° C. for 72 hours and then washed with 50% ethanol until all acid and hydrolyzed sugars were removed. Then washed once with acetone and then dried for 12 hours at 40 ℃ and pulverized.
2)덱스트린-코큐텐 복합체 합성2) Synthesis of Dextrin-Cocuten Complex
제조된 덱스트린 3 g을 100 mL 증류수에 분산한 후 131 ℃에서 20 분간 가열하여 용해시켰다. 코큐텐 100 mg을 상기 덱스트린 용액에 첨가시킨 후 550 rpm으로 교반하면서 70 ℃에서 1시간 동안 코큐텐을 용해시키고 3 분간 초음파를 가한 후, 72 시간 동안 반응시켰다. 이 과정 중, 코큐텐이 덱스트린과 복합체를 형성하여 수용액 속에 고르게 분포하게 된다.3 g of the prepared dextrin was dispersed in 100 mL of distilled water, and then dissolved by heating at 131 ° C. for 20 minutes. 100 mg of CoQ10 was added to the dextrin solution, followed by dissolution of CoQ10 for 1 hour at 70 ° C. with stirring at 550 rpm, and ultrasonication for 3 minutes, followed by reaction for 72 hours. During this process, cocuten forms a complex with dextrin and is evenly distributed in the aqueous solution.
3)덱스트린-코큐텐 복합체의 회수3) Recovery of Dextrin-Cocuten Complex
72 시간 후, 복합체를 함유한 수용액을 고속 원심분리 (×25,000 g)하여 침전시키고 회수하였다. 회수된 복합체의 코큐텐 함량은 약 80 ~ 90 mg으로 첨가시킨코큐텐의 90% 이상이 덱스트린과 반응하였음을 확인하였다.After 72 hours, the aqueous solution containing the complex was precipitated and recovered by high speed centrifugation (× 25,000 g). The content of cocutene in the recovered complex was about 80-90 mg, and it was confirmed that 90% or more of the cocuten added was reacted with dextrin.
시험예Test Example
1. 덱스트린과 복합체를 형성한 1. complexed with dextrin
코큐텐Kokyuten
함량 content
상기 실시예 1에서 제조한 나노 덱스트린-코큐텐 복합체 용액 100mL을 121℃에서 20분 간 가열하여 복합체를 파괴한 후 이소프로필 에테르용액을 상기 용액에 가하였다. 이소프리필 에테르와 수용액은 상분리가 일어나게 되고 코큐텐은 모두 이소프로필 에테르 용액에 녹게 되며, 이소프로필 에테르 용액에 녹아 있는 코큐텐 함량을 자외-가시선 분광광도계(Ultrospec 2000 UV/Visible Spectrophotometer, Pharmacia Biotech, UK)를 이용하여 275nm에서 흡광도의 변화로 측정하였다. 측정 결과 첨가한 대략 80 ~ 90% 코큐텐이 덱스트린과 복합체를 형성하였다.100 mL of the nanodextrin-cocuten complex solution prepared in Example 1 was heated at 121 ° C. for 20 minutes to destroy the complex, and then an isopropyl ether solution was added to the solution. Isoprephyll ether and aqueous solution will be phase separated and cocuten will all be dissolved in isopropyl ether solution, and the content of cocuten dissolved in isopropyl ether solution is measured using an ultraviolet-visible spectrophotometer (Ultrospec 2000 UV / Visible Spectrophotometer, Pharmacia Biotech, UK). It was measured by the change in absorbance at 275 nm. As a result of the measurement, approximately 80-90% cocutene added complexed with dextrin.
시험예Test Example
2. 입자의 크기 관찰 2. Observation of particle size
입자 분석기(Dynapro Titan, Wyatt Technology, SantaBarbara,CA)를 이용하여 상기 실시예 4에서 제조한 복합체의 평균 직경 및 입자 크기 분포를 측정하였다. 용액 상에 분산된 덱스트린-코큐텐 복합체는 50 ~ 200 nm 크기의 평균 직경을 갖는 입자로 분포하였다.The average diameter and particle size distribution of the composite prepared in Example 4 were measured using a particle analyzer (Dynapro Titan, Wyatt Technology, SantaBarbara, CA). The dextrin-cocuten complex dispersed in the solution was distributed into particles having an average diameter of 50 to 200 nm in size.
상기의 해결방법과 하기 실시예에 의해서 알 수 있는 바와 같이, 본 발명에 따르면 전분 및 전분 덱스트린을 다양한 소수성 물질과 복합체를 형성시킴으로서 나노 수준의 입자를 제조할 수 있다.As can be seen by the above solution and the following examples, according to the present invention, nano-level particles can be prepared by complexing starch and starch dextrin with various hydrophobic materials.
본 발명의 방법으로 제조된 나노 전분입자는 포접된 소수성 물질을 수용화 시켜 다양한 제품에 활용할 수 있도록 전환시킨다. 또한 나노 입자 크기로 복합체가 형성되어 생체 흡수율을 증가시킬 수 있을 것으로 기대되고 포접물질의 안정성을 증가시킬 수 있다. 따라서 이러한 입자는 식품, 화장품 및 약품 산업에서 기능성 물질이나 약품의 전달 물질로서 유용하게 응용이 가능하다. 뿐만 아니라 지방대체, 코팅제, 캡슐제, 보강제 등으로 사용할 수 있을 것으로 기대된다.Nano starch particles prepared by the method of the present invention is converted to be used in a variety of products by receiving the encapsulated hydrophobic material. In addition, it is expected that the composite may be formed to nanoparticle size to increase the bioabsorption rate and increase the stability of the inclusion material. Therefore, such particles can be usefully applied as a functional material or a drug delivery material in the food, cosmetic and pharmaceutical industries. In addition, it is expected to be used as a substitute, coating, capsule, reinforcing agent, and the like.
Claims (15)
- a) 직쇄상 전분 또는 덱스트린을 수용성 용매에 용해하는 단계;a) dissolving linear starch or dextrin in an aqueous solvent;b) 기능성 물질을 소수성 용매에 용해하는 단계;b) dissolving the functional material in a hydrophobic solvent;c) 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액을 혼합하는 단계; 및 c) mixing the hydrophobic solution containing the functional material with the starch or dextrin aqueous solution; Andd) 상기 c)단계의 결과물을 효소 또는 산 처리하여 구조를 변화시키는 단계를 포함하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.d) a method of preparing a nano-sized complex in which starch and a functional material are combined, comprising the step of changing the structure by enzymatic or acid treatment of the resultant of step c).
- 제 1항에 있어서, 상기 a) 단계의 직쇄상 전분 또는 덱스트린은 전분을 덱스트린화하여서 전환된 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method according to claim 1, wherein the starch or dextrin of step a) is prepared by dextrinizing starch, and the method of producing a nano-sized composite combined with a starch and a functional material.
- 제 2항에 있어서, 상기 덱스트린화는 1-4 결합을 분해할 수 있는 α-아밀라제, 글루코아밀라제, α-글루코시데이즈, β-아밀라제와 1-6 결합을 가수분해 할 수 있는 iso-아밀라제와 풀룰라나아제(pullulanase)로 이루어진 군에서 선택된 어느 하나의 전분 분해효소 또는 상기 효소의 혼합물을 사용하여 전분을 덱스트린화하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.3. The dextrinization of claim 2, wherein the dextrinization comprises an α-amylase, a glucoamylase, an α-glucosidase, a β-amylase capable of degrading 1-4 bonds, and an iso-amylase capable of hydrolyzing 1-6 bonds. A method for producing a nano-sized complex in which a starch and a functional substance are combined, characterized in that the starch is dextrinized using any one starch degrading enzyme selected from the group consisting of pullulanase or a mixture of the enzymes.
- 제 2항에 있어서, 상기 덱스트린화는 염산, 황산, 질산, 인산, 구연산, 사과산 및 초산으로 이루어진 군으로부터 선택된 어느 하나의 산 또는 그 산의 혼합물을 사용하여 전분을 덱스트린화하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.3. The starch according to claim 2, wherein the dextrinization is dextrinized with starch using any one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid and acetic acid or a mixture thereof. Method for producing a nano-sized composite combined with a functional material.
- 제 2항에 있어서, 상기 덱스트린화는 마이크로 선 혹은 방사선을 사용하여 전분을 덱스트린화하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 2, wherein the dextrinization is dextrinization of starch using micro ray or radiation.
- 제 1항에 있어서, 상기 a) 단계에서 사용된 전분 또는 덱스트린의 농도는 0.01∼20.0 %인 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the concentration of starch or dextrin used in step a) is 0.01 to 20.0%.
- 제 1항에 있어서, 상기 전분은 옥수수 전분, 고아밀로오스 옥수수 전분, 찰옥수수 전분, 쌀 전분, 찹쌀 전분, 고아밀로오스 쌀 전분, 감자 전분, 찰감자 전분, 고구마 전분, 보리 전분, 찰보리 전분, 콩(pea) 전분, 밀전분, 찰밀 전분, 사고(sago) 전분, 아마란스 전분, 타피오카 전분, 수수(sorghum) 전분, 찰수수 전분, 바나나 전분, 녹두 전분, 동부 전분, 쿠즈(kuzukiri) 전분, 이들 전분의 유도체, 및 이들 전분에서 추출된 아밀로오즈로 이루어진 군에서 선택된 전분인 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.According to claim 1, wherein the starch is corn starch, high amylose corn starch, waxy corn starch, rice starch, glutinous rice starch, high amylose rice starch, potato starch, waxy potato starch, sweet potato starch, barley starch, barley starch, soybeans ( pea starch, wheat starch, chamomile starch, sago starch, amaranth starch, tapioca starch, sorghum starch, brisket starch, banana starch, mung bean starch, eastern starch, kuzukiri starch, derivatives of these starches And a starch selected from the group consisting of amylose extracted from these starches.
- 제 1항에 있어서, 상기 기능성 물질은 소수성 용매에 용해하지 아니하고, 직접 전분 혹은 덱스트린 수용액에 첨가되고 혼합되는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the functional material is not dissolved in a hydrophobic solvent, but directly added to the starch or dextrin aqueous solution and mixed.
- 제 1항에 있어서, 상기 기능성 물질은 안테라크산틴(antheraxanthin), 아스타산틴(astaxanthin), 알파카로틴(alpha-carotene), 베타카로틴(beta-carotene), 베타-아포-4′-카로티날(beta-apo-4'-carotenal), 베타-아포-8′-카로티날(beta-apo-8'-carotenoic acid),칸타크산틴(canthaxanthin), 시트라나산틴(citranaxanthin), 크립토크산틴(cryptoxanthin), 디하이드로플렉타니아산틴(dehydroplectaniaxanthin), 다이아토산틴(diatoxanthin), 푸코산틴(fucoxanthin), 푸코산티놀(fucoxanthinol), 락투카산틴(lactucaxanthin), 루테인(lutein), 라이코펜(lycopene), 네오산틴(neoxanthin), 뉴로스포라산틴(neurosporaxanthin), 뉴로스포렌(neurosporene), 페리디닌(peridinin), 파이토엔(phytoene), 로드핀(rhodopin), 시포노크산틴(siphonaxanthin), 스페로이딘(spheroidene), 스피릴로산틴(spirilloxanthin), 토룰라로딘(torularodin), 유리올라이드(uriolide), 유리올라이드 아세테이드(uriolide acetate), 비올라크산틴(violaxanthin), 제아산틴(zeaxanthin), 네롤(nerol), 네로리돌(nerolidol), 시트랄 (citral), 시남알데하이드(cinnamaldehyde), 시트로네롤(citronellol), cis-3-헥산알(cis-3hexenal), 바닐린(vanillin), 아이소아밀아세테이트(isoamyl acetate), 1-옥텐-3-원(1-octen-3-one), 옥틸아세테이트(octyl acetate), 카다벌린(cadaverine), 헥산알(hexanal),마소이아락톤(massoia lactone), 멘톨(menthol), 메틸부트레이트(methyl butyrate), 멘톤(menthone), 펜틸부트레이트(pentyl butyrate), 펜틸펜타노에이트(pentyl pentanoate, 리나룰(linalool), 제라니올(geraniol), 데카날(decanal), 1-나프톨(naphthol), 어유(fish oil), 밀랍(beewax), D-리모넨(limonene), 비타민 A, 비타민 E, 코엔자임큐텐(Co-Q10), 레시틴, DHA, EPA, 캡사이신 및 소수성 약물을 포함하는 군으로부터 선택된 것 혹은 상기 물질의 혼합물인 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the functional material is antheraxanthin, asaxanthin, alpha-carotene, beta-carotene, beta-carotene, beta-apo-4'-carotenal (beta) -apo-4'-carotenal, beta-apo-8'-carotenoic acid, canthaxanthin, citranaxanthin, cryptoxanthin , Dehydroplectaniaxanthin, diatoxanthin, fucoxanthin, fucoxanthinol, lactucaxanthin, lutein, lycopene, neoxanthin (neoxanthin), neurorosporaxanthin, neurorosporene, neurosporene, peridinin, phytoene, rhodopin, siphonaxanthin, spheroidine , Spirilloxanthin, torralloodin, uriolide, uriolide acetate ( uriolide acetate, violaxanthin, zeaxanthin, nerol, nerolidol, citral, cinnaaldehyde, citronaldehyde, citronellol, cis-3- Cis-3hexenal, vanillin, isoamyl acetate, 1-octen-3-one, octyl acetate, cadaverine Hexanal, massoia lactone, menthol, methyl butyrate, menhone, pentyl butyrate, pentyl pentanoate, lina Linalool, geraniol, decanal, 1-naphthol, fish oil, beeswax, D-limonene, vitamin A, vitamin E, coenzyme A combination of starch and functional substances selected from the group consisting of cutene (Co-Q10), lecithin, DHA, EPA, capsaicin and hydrophobic drugs or mixtures of these substances; The method of size of the complex.
- 제 1항에 있어서, 상기 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액을 혼합하는 단계는 10-100 ℃에서 수행하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the mixing of the hydrophobic solution containing the functional material and the starch or dextrin aqueous solution is performed at 10-100 ° C. Way.
- 제 8항에 있어서, 상기 기능성물질을 직접 전분 혹은 덱스트린 수용액에 첨가하고 혼합하는 단계는 10-100 ℃에서 수행하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 8, wherein the adding of the functional material directly to the starch or dextrin aqueous solution and mixing is performed at 10-100 ° C. 10.
- 제 1항에 있어서, 상기 d) 단계는 1-4 결합을 분해할 수 있는α-아밀라제, 글루코아밀라제, α-글루코시데이즈, β-아밀라제와 1-6 결합을 가수분해 할 수 있는 iso-아밀라제와 풀룰라나아제로 이루어진 군에서 선택된 어느 하나의 전분 분해효소 또는 상기 효소의 혼합물을 사용하여 복합체 형성에 참여하지 않은 전분을 분해하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the step d) comprises α-amylase, glucoamylase, α-glucosidase, β-amylase capable of breaking down 1-4 bonds, and iso-amylase capable of hydrolyzing down 1-6 bonds. And a nano-sized complex in which starch and a functional substance are combined, by using any one of the starch degrading enzymes selected from the group consisting of and a pullulanase or a mixture of the enzymes. Way.
- 제 1항에 있어서, 상기 d) 단계는 염산, 황산, 질산, 인산, 구연산, 사과산 및 초산으로 이루어진 군으로부터 선택된 어느 하나의 산 또는 그 산의 혼합물을 사용하여 복합체 형성에 참여하지 않은 전분을 분해하는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법.The method of claim 1, wherein the d) step is used to decompose starch that does not participate in complex formation using any acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, malic acid and acetic acid or a mixture thereof. Method for producing a nano-sized composite combined with a starch and a functional material, characterized in that.
- 제 1항에 있어서, 상기 c) 단계의 복합체 형성은 기능성 물질을 포함하는 상기 소수성 용액과 상기 전분 혹은 덱스트린 수용액의 상분리를 통하여 수행되는 것을 특징으로 하는 전분과 기능성 물질이 결합된 나노 크기의 복합체의 제조방법. The method of claim 1, wherein the forming of the complex of step c) is performed by the phase separation of the hydrophobic solution containing the functional material and the starch or dextrin aqueous solution of the nano-sized composite combined with the starch and the functional material Manufacturing method.
- 제 1항 내지 제14항 중 임의의 한 항의 제조방법에 의하여 제조된 전분과 기능성 물질이 결합된 나노 크기의 복합체.A nano-sized composite in which starch prepared by the method of any one of claims 1 to 14 and a functional material are combined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0062789 | 2009-07-10 | ||
KR1020090062789A KR101231238B1 (en) | 2009-07-10 | 2009-07-10 | Functional nano starch complexes and their preparation methods |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011004944A1 true WO2011004944A1 (en) | 2011-01-13 |
WO2011004944A9 WO2011004944A9 (en) | 2012-03-01 |
Family
ID=43429356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/007651 WO2011004944A1 (en) | 2009-07-10 | 2009-12-21 | Nano composite formed from starch and functional materials, and method for preparing same |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR101231238B1 (en) |
WO (1) | WO2011004944A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017096411A2 (en) | 2015-11-30 | 2017-06-08 | Council For Scientific And Industrial Research | Amylose-lipid complexes |
KR101871189B1 (en) * | 2016-01-26 | 2018-07-04 | 신종순 | A traditional adhesives for restoring cultural-assets and documentary and method thereof |
CN109172481A (en) * | 2018-10-24 | 2019-01-11 | 西安惟颐生物科技有限公司 | Women stern treats hip pad essence dew |
CN113940395A (en) * | 2021-11-17 | 2022-01-18 | 西南科技大学 | Preparation method of probiotic preparation for piglets |
CN114041598A (en) * | 2021-11-26 | 2022-02-15 | 江南大学 | Processing method for improving quality and enhancing efficiency of fat-soluble plant compound and application |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101404990B1 (en) * | 2012-05-30 | 2014-06-10 | 고려대학교 산학협력단 | A functional beverage comprising coenzyme Q10 starch complex and preparation thereof |
KR101876507B1 (en) * | 2015-11-24 | 2018-07-09 | 한국과학기술연구원 | Fucoxanthin fine powder based on casein and method for manufacturing the same |
KR101876506B1 (en) * | 2015-11-24 | 2018-07-09 | 한국과학기술연구원 | Fucoxanthin fine powder based on whey protein and method for manufacturing the same |
KR101876505B1 (en) * | 2016-11-04 | 2018-07-09 | 한국과학기술연구원 | Fucoxanthin fine powder based on beta cyclodextrin and method for manufacturing the same |
KR102217554B1 (en) * | 2018-10-10 | 2021-02-22 | 명지대학교 산학협력단 | Sedum takesimense extract carbornhydrate nanocomposite and method for producing the same |
CN109805388A (en) * | 2019-01-25 | 2019-05-28 | 集美大学 | A kind of fucoxanthol-oyster peptide nanoparticles and its preparation method and application |
WO2021182905A1 (en) * | 2020-03-12 | 2021-09-16 | 고려대학교 산학협력단 | Method for preparation of nondigestible dextrins by continuous debranching and recrystallization treatment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950005843B1 (en) * | 1987-06-15 | 1995-05-31 | 가부시기가이샤 히다찌 세이사꾸쇼 | Lubricated bearing apparatus for hydraulic machinery |
US20030031722A1 (en) * | 2001-06-04 | 2003-02-13 | Hongjie Cao | Starch-oil composites for use in personal care applications |
KR20090054547A (en) * | 2007-11-27 | 2009-06-01 | 고려대학교 산학협력단 | Crystal nano starch -alcohols complex, and preparing method of crystal nano starch particles using the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970005348B1 (en) * | 1993-08-25 | 1997-04-15 | 이용현 | Preparation method of microcrystalline starch containing fragmentation of raw starch or raw starch-material particle to microcrystalline |
KR20070022018A (en) * | 2004-03-19 | 2007-02-23 | 네스텍소시에테아노님 | Delivery of functional ingredients |
US7375214B2 (en) * | 2005-02-22 | 2008-05-20 | Lenlo Chem, Inc. | Hydrophobic starch having near-neutral dry product pH |
KR101535044B1 (en) * | 2005-12-08 | 2015-07-09 | 디에스엠 아이피 어셋츠 비.브이. | Protective hydrocolloid for active ingredients |
AU2008205325B2 (en) * | 2007-01-10 | 2013-09-12 | Dsm Nutritional Products Ag | Vegetarian microcapsules |
KR20090090832A (en) * | 2008-02-22 | 2009-08-26 | (주)뉴트리 | Composition for dissolving carotenoids and method for preparing solution and emulsion of carotenoids using the same |
-
2009
- 2009-07-10 KR KR1020090062789A patent/KR101231238B1/en active IP Right Grant
- 2009-12-21 WO PCT/KR2009/007651 patent/WO2011004944A1/en active Application Filing
-
2011
- 2011-05-23 KR KR1020110048605A patent/KR101152167B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950005843B1 (en) * | 1987-06-15 | 1995-05-31 | 가부시기가이샤 히다찌 세이사꾸쇼 | Lubricated bearing apparatus for hydraulic machinery |
US20030031722A1 (en) * | 2001-06-04 | 2003-02-13 | Hongjie Cao | Starch-oil composites for use in personal care applications |
KR20090054547A (en) * | 2007-11-27 | 2009-06-01 | 고려대학교 산학협력단 | Crystal nano starch -alcohols complex, and preparing method of crystal nano starch particles using the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017096411A2 (en) | 2015-11-30 | 2017-06-08 | Council For Scientific And Industrial Research | Amylose-lipid complexes |
KR101871189B1 (en) * | 2016-01-26 | 2018-07-04 | 신종순 | A traditional adhesives for restoring cultural-assets and documentary and method thereof |
CN109172481A (en) * | 2018-10-24 | 2019-01-11 | 西安惟颐生物科技有限公司 | Women stern treats hip pad essence dew |
CN109172481B (en) * | 2018-10-24 | 2021-05-11 | 西安惟颐生物科技有限公司 | Female hip treatment and protection essence |
CN113940395A (en) * | 2021-11-17 | 2022-01-18 | 西南科技大学 | Preparation method of probiotic preparation for piglets |
CN113940395B (en) * | 2021-11-17 | 2023-05-23 | 西南科技大学 | Preparation method of probiotic preparation for piglets |
CN114041598A (en) * | 2021-11-26 | 2022-02-15 | 江南大学 | Processing method for improving quality and enhancing efficiency of fat-soluble plant compound and application |
CN114041598B (en) * | 2021-11-26 | 2023-03-28 | 江南大学 | Processing method for improving quality and enhancing efficiency of fat-soluble plant compound and application |
Also Published As
Publication number | Publication date |
---|---|
KR101231238B1 (en) | 2013-02-08 |
WO2011004944A9 (en) | 2012-03-01 |
KR20110059697A (en) | 2011-06-03 |
KR101152167B1 (en) | 2012-06-22 |
KR20110005330A (en) | 2011-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011004944A1 (en) | Nano composite formed from starch and functional materials, and method for preparing same | |
Ribeiro et al. | Microencapsulation of natural dyes with biopolymers for application in food: A review | |
Qiu et al. | Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation | |
Yuan et al. | Shellac: A promising natural polymer in the food industry | |
Yu et al. | Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation | |
Qin et al. | Effects of degree of polymerization on size, crystal structure, and digestibility of debranched starch nanoparticles and their enhanced antioxidant and antibacterial activities of curcumin | |
Jiang et al. | Preparation and characterization of quinoa starch nanoparticles as quercetin carriers | |
Fathi et al. | Nanoencapsulation of food ingredients using carbohydrate based delivery systems | |
Meng et al. | Konjac glucomannan octenyl succinate as a novel encapsulation wall material to improve curcumin stability and bioavailability | |
Qiu et al. | Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles | |
Zhang et al. | Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation | |
Kim et al. | Preparation of aqueous dispersion of β-carotene nano-composites through complex formation with starch dextrin | |
CN105902401B (en) | A kind of method preparing H- aggressiveness or J- aggressiveness astaxanthin polymer nanometer disperse systems and application | |
Putro et al. | Effect of natural and synthetic surfactants on polysaccharide nanoparticles: Hydrophobic drug loading, release, and cytotoxic studies | |
KR101175209B1 (en) | Methods for stabilization of functional nano-starch complex particles and stabilized complex thereof | |
Sun | Starch nanoparticles | |
Zou et al. | Assembling cyanidin-3-O-glucoside by using low-viscosity alginate to improve its in vitro bioaccessibility and in vivo bioavailability | |
Li et al. | Novel amphiphilic carboxymethyl curdlan-based pH responsive micelles for curcumin delivery | |
Yuan et al. | Nanocarriers based on polysaccharides for improving the stability and bioavailability of anthocyanins: A review | |
Zhong et al. | Shape and size-controlled starch nanoparticles prepared by self-assembly in natural deep eutectic solvents: Effect and mechanism | |
Li et al. | Preparation and characterization of fine and stable short amylose nanocarriers for curcumin using a highly efficient and convenient method | |
Zhao et al. | Recent advances of octenyl succinic anhydride modified polysaccharides as wall materials for nano‐encapsulation of hydrophobic bioactive compounds | |
Wang et al. | Study on preparation and properties of camellia oleifera seed oil microcapsules by complex coacervation and spray drying | |
Li et al. | Recent preparation, modification and application progress of starch nanocrystals: A review | |
KR101848563B1 (en) | The manufacturing methode of the dextrin particle by the muti- hydrolysis and dextrin particle prepared thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09847138 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09847138 Country of ref document: EP Kind code of ref document: A1 |