WO2011004535A1 - Field-effect transistor - Google Patents

Field-effect transistor Download PDF

Info

Publication number
WO2011004535A1
WO2011004535A1 PCT/JP2010/003337 JP2010003337W WO2011004535A1 WO 2011004535 A1 WO2011004535 A1 WO 2011004535A1 JP 2010003337 W JP2010003337 W JP 2010003337W WO 2011004535 A1 WO2011004535 A1 WO 2011004535A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
semiconductor layer
type
type impurity
effect transistor
Prior art date
Application number
PCT/JP2010/003337
Other languages
French (fr)
Japanese (ja)
Inventor
安藤裕二
中山達峰
岡本康宏
大田一樹
井上隆
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011521784A priority Critical patent/JP5462261B2/en
Publication of WO2011004535A1 publication Critical patent/WO2011004535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a field effect transistor.
  • FIG. 12 is a schematic diagram showing a cross-sectional structure of a field effect transistor.
  • FET Field Effect Transistor
  • the field effect transistor shown in FIG. 12 has a buffer layer 101, a channel layer 103 made of undoped GaN (gallium nitride), and an electron supply made of n-type AlGaN (aluminum gallium nitride) on a SiC (silicon carbide) substrate 100.
  • the layer 105 is laminated.
  • the crystal growth direction with respect to the substrate surface is parallel to [0001].
  • An n-type conduction region 104 made of a two-dimensional electron gas (hereinafter referred to as “2DEG”) is formed in the channel layer 103 near the interface with the electron supply layer 105.
  • 2DEG two-dimensional electron gas
  • a source electrode 1071 and a drain electrode 1072 are formed on the electron supply layer 105 and are in ohmic contact with the n-type conduction region 104. Further, a gate electrode 108 is formed on the electron supply layer 105 via an insulating film 106 made of Si 3 N 4 (silicon nitride).
  • Patent Documents 1 and 2 disclose GaN field effect transistors employing a RESURF structure.
  • the electron supply layer (AlGaN layer) 105 has a depletion layer 200 as shown in FIG. (Shaded area) occurs.
  • the gate width is W g
  • the doping concentration to the electron supply layer (AlGaN layer) 105 is N d
  • the thickness (depth) of the doping region is t
  • this fixed charge density is q ⁇ N d ⁇ W g ⁇ t.
  • Q 1.6 ⁇ 10 ⁇ 19 C: elementary charge
  • the maximum electric field strength is (qN d L) / ⁇ ( ⁇ : dielectric constant of AlGaN). Therefore, the breakdown electric field strength F c is expressed as the following formula (1).
  • Field effect transistor has a high off-state breakdown voltage BV, the on-resistance R on low characteristics are required.
  • increasing the off-state breakdown voltage BV, in proportion to the square will increases the on-resistance R on, both off-state breakdown voltage BV and the on-resistance R on the required characteristics Is difficult to satisfy simultaneously.
  • the electric field concentration can be reduced by stacking the n-type RESURF layer on the p-type channel layer.
  • the impurity concentration of the RESURF layer and the film are considered in consideration of this effect.
  • the thickness must be designed. Further, since the surface potential depends on the formation conditions of the protective film, there has been a problem that the electric field concentration relaxation effect varies depending on the process factor.
  • the super junction structure is a structure widely used in Si (silicon) -based vertical power devices, in which n-type pillar layers and p-type pillar layers are alternately formed in the horizontal direction.
  • impurity ions are doped with acceleration energy of several MeV.
  • an annealing process at about 2000 ° C. exceeding the crystal growth temperature is required. That is, it is not practical to apply the vertical super junction structure as described above to a nitride semiconductor device.
  • An object of the present invention is to provide a field effect transistor made of a nitride semiconductor that solves the above-described problems and improves the trade-off between on-resistance and off-breakdown voltage.
  • a stacked body in which the first nitride semiconductor layer is electrically connected to the stacked body, and the gate insulating film and the gate electrode formed on the stacked body are opposed to the gate electrode.
  • a drain electrode provided on the stacked body, and a source electrode electrically connected to the first nitride semiconductor layer and provided on the opposite side of the drain electrode across the gate electrode.
  • the region of the second nitride semiconductor layer sandwiched between the gate electrode and the drain electrode is doped with an n-type impurity doped with an n-type impurity and doped with a p-type impurity.
  • FET stripes arranged alternately along the band, a direction extending said gate electrode is formed is provided.
  • the field effect transistor realized by the present invention includes an n-type impurity doped region and a p-type impurity doped region formed in the second nitride semiconductor layer, and / or the first nitride semiconductor layer and the second nitride semiconductor layer.
  • an n-type conduction region containing 2DEG and a two-dimensional hole gas is formed.
  • an n-type conductive region is formed near the interface with the n-type impurity doped region of the second nitride semiconductor layer, and a p-type conductive region is formed near the interface with the p-type impurity doped region.
  • the entire n-type conduction region and p-type conduction region are depleted, resulting from ionization of the n-type impurity and the p-type impurity.
  • the n-type conduction region and the p-type conduction region are formed in a striped pattern in the region sandwiched between the gate electrode and the drain electrode, so that the space charge cancels out. It will meet. For this reason, in the region sandwiched between the gate electrode and the drain electrode, the electric field strength is substantially constant, and the electric field concentration is alleviated.
  • a field effect transistor made of a nitride semiconductor having a high off breakdown voltage and a low on resistance can be obtained, and a high breakdown voltage and low loss of a nitrogen-based power semiconductor can be realized.
  • FIG. 1 is a structural diagram of a field effect transistor according to Embodiment 1.
  • FIG. 1 is a structural diagram of a field effect transistor according to Embodiment 1.
  • FIG. It is an energy band figure of a field effect transistor.
  • FIG. 6 is a correlation diagram between on-resistance and off-breakdown voltage. It is a distribution map of charge density, electric field strength, and potential.
  • 6 is a structural diagram of a field effect transistor according to Embodiment 2.
  • FIG. It is an energy band figure of a field effect transistor.
  • 6 is a structural diagram of a field effect transistor according to Embodiment 3.
  • FIG. 6 is a structural diagram of a field effect transistor according to Embodiment 4.
  • FIG. 6 is a structural diagram of a field effect transistor according to Embodiment 5.
  • FIG. 1 is a structural diagram of a field effect transistor according to Embodiment 1.
  • FIG. 1 is a structural diagram of a field effect transistor according to Embodiment 1.
  • FIG. 6 is a structural diagram of a field effect transistor according to Embodiment 5.
  • FIG. It is a structural diagram of a field effect transistor. It is a structural diagram of a field effect transistor. It is a distribution map of charge density, electric field strength, and potential.
  • FIG. 6 is a correlation diagram between on-resistance and off-breakdown voltage.
  • Embodiment 1 >> ⁇ Configuration of Field Effect Transistor of Embodiment 1>
  • FIG. 1 shows the configuration of the field effect transistor of this embodiment.
  • 1A is a schematic plan view
  • FIG. 1B is a schematic cross-sectional view taken along the plane (X1-Y1) of FIG. 1A
  • FIG. 1C is a schematic view of (X2-Y2) of FIG. It is the cross-sectional schematic in a surface.
  • the field effect transistor of the present embodiment includes a first nitride semiconductor layer 13 made of a first nitride semiconductor and a first nitride semiconductor layer 13 on the substrate 10.
  • Laminated bodies 13 and 15 each including a second nitride semiconductor layer 15 made of a second nitride semiconductor having a band gap larger than that of the nitride semiconductor are provided.
  • the vertical relationship between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 is not particularly limited, but for example, on the first nitride semiconductor layer 13 as shown in the figure.
  • a second nitride semiconductor layer 15 may be provided.
  • the stacked bodies 13 and 15 may be epitaxial layers, and the crystal growth may be parallel to the [0001] direction.
  • a buffer layer 11 of (0001) plane growth that lattice-matches with the first nitride semiconductor may be provided on the outermost surface between the stacked bodies 13 and 15 and the substrate 10.
  • a silicon (Si) substrate, a SiC substrate, an Al 2 O 3 (sapphire) substrate, a GaN substrate, or the like can be used.
  • the first nitride semiconductor one of GaN, InGaN (indium gallium nitride), AlGaN, InAlN (indium aluminum nitride), InAlGaN (indium aluminum gallium nitride), InN (indium nitride), and the like is selected. be able to.
  • a semiconductor can be selected.
  • GaN can be selected as the first nitride semiconductor
  • AlGaN can be selected as the second nitride semiconductor.
  • the field effect transistor of the present embodiment has a gate insulating film 16 and a gate electrode 18 and a first nitride semiconductor layer 13 on the stacked bodies 13 and 15.
  • a drain electrode 172 electrically connected to the gate electrode 18 and a source electrode 171 electrically connected to the first nitride semiconductor layer 13 and provided on the opposite side of the drain electrode 172 across the gate electrode 18; Is provided.
  • the electrical coupling between the first nitride semiconductor layer 13 and the drain electrode 172 and the electrical coupling between the first nitride semiconductor layer 13 and the source electrode 173 are preferably in ohmic contact.
  • the gate electrode 18 can be formed using a material such as Ti (titanium) / Pt (platinum) / Au (gold), Ni (nickel) / Au, or Pd (palladium) / Au.
  • the drain electrode 172 and the source electrode 171 are made of a material such as Ti / Al (aluminum) / Ni / Au, Ti / Al / Mo (molybdenum) / Au, or Ti / Al / Nb (niobium) / Au. Can be formed.
  • the gate insulating film 16 can be formed using a material such as Al 2 O 3 , Si 3 N 4 , or SiO 2 (silicon oxide).
  • the gate electrode 18 is preferably formed on the recess. When formed in this way, a normally-off operation is possible. However, a planar structure that does not form a recess is also possible. In order to enable a normally-off operation in the planar structure, the concentration of the activated impurity in the first nitride semiconductor layer 13 may be a p-type of 1 ⁇ 10 17 cm ⁇ 3 . Alternatively, the portion of the second nitride semiconductor layer 15 that contacts the gate electrode 18 may be the p-type impurity doped region 152.
  • the region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 is doped with an n-type impurity.
  • Striped patterns are formed in which n-type impurity doped regions 151 and p-type impurity doped regions 152 doped with p-type impurities are alternately arranged along the direction in which the gate electrode 18 extends.
  • an n-type impurity doped region 151 and / or a p-type impurity doped region 152 extending from immediately below the source electrode 171 to immediately below the drain electrode 172 are formed.
  • FIG. 1 shows, as an example, an n-type impurity doped region 151 that extends from directly below the source electrode 171 to immediately below the drain electrode 172 (see FIG. 1B).
  • n-type impurity for example, Si can be selected.
  • p-type impurity for example, Mg (magnesium), Be (beryllium), H (hydrogen), or the like can be selected.
  • FIG. 3A shows the profile of the (X1-Y1) plane
  • FIG. 3B shows the profile of the (X2-Y2) plane.
  • ⁇ p is a function of the Al composition x of the second nitride semiconductor layer 15 and can be approximated by the following equation (5).
  • N-type impurity concentration N d activation rate ⁇ d , n-type impurity doped region thickness (depth) t d , p-type impurity concentration N a , activation rate ⁇ a of second nitride semiconductor layer 15 when satisfying the thickness of the p-type impurity doped region (depth) t a, but the following expression (6), the sum of the fixed charge of the second nitride semiconductor layer 15 is positive.
  • the surface density N n of the positive fixed charge at this time is expressed by the following formula (7).
  • the n-type impurity doped region 151 of the second nitride semiconductor layer 15 is formed as an electron supply layer because the configuration is such that the formula (6) is satisfied between the gate and drain on the (X1-Y1) plane.
  • an n-type conductive region 141 containing 2DEG is formed (see FIG. 3 (a)).
  • concentration N d , activation rate ⁇ d , thickness (depth) t d of n-type impurity doped region, p-type impurity concentration N a , activation rate ⁇ a , thickness of p-type impurity doped region ( depth) t a case, but satisfying the formula (8), the sum of the fixed charge of the second nitride semiconductor layer 15 is negative.
  • the p-type impurity doped region 152 of the second nitride semiconductor layer 15 supplies holes.
  • a p-type conductive region 142 containing 2DHG is formed in the vicinity of the interface between the first nitride semiconductor layer 13 and the p-type impurity doped region 152 of the second nitride semiconductor layer 15. FIG. 3 (b)).
  • an n-type conductive region 141 containing 2DEG is formed in a column shape in the vicinity of the interface between the first nitride semiconductor layer 13 and the n-type impurity doped region 151 of the second nitride semiconductor layer 15.
  • a p-type conductive region 142 containing 2DHG is formed in a column shape.
  • the electron transit layer formed by the n-type conduction region 141 is spatially isolated from the n-type impurity doped region 151 of the second nitride semiconductor layer 15. Impurity scattering is suppressed and the mobility of 2DEG is improved. Further, when the heterointerface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 is configured to be flat at the atomic level, interface scattering is suppressed, and the mobility of 2DEG is further improved. In such a case, an electron mobility of about 1500 to 2000 cm 2 / Vs can be realized.
  • an n-type impurity doped region 151 and a p-type impurity doped region are formed in a region sandwiched between the gate electrode 18 and the drain electrode 172 except just below the gate electrode 18 and the drain electrode 172.
  • the effect of forming the stripe pattern in which the regions 152 are alternately arranged will be described with reference to FIG.
  • V d BV
  • 5A shows the charge density distribution
  • FIG. 5B shows the electric field distribution
  • FIG. 5C shows the potential distribution.
  • the depletion layer 20 (oblique line) is formed in the second nitride semiconductor layer 15 as shown in FIG. Area) occurs. Then, a fixed charge is generated due to ionization of the n-type impurity and the p-type impurity.
  • the unit in the n-type impurity doped region 151 of the second nitride semiconductor layer 15 is The fixed charge density per length is represented by q ⁇ N n ⁇ W n (FIG. 5A).
  • the unit in the p-type impurity doped region 152 of the second nitride semiconductor layer 15 is The fixed charge density per length is represented by ⁇ q ⁇ N p ⁇ W p (FIG. 5A).
  • the field effect transistor of the present embodiment sets the N n, N p, W n , W p so as to satisfy the following equation (10).
  • the surface density n d1 of the n-type activation impurity in the n-type impurity doped region 151 the surface density n a1 of the p-type activation impurity in the n-type impurity doped region 151, and the width W n of the n-type impurity doped region 151.
  • the surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the p-type impurity doped region 152 The surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the
  • the surface density ⁇ p of the polarization charge formed at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, and the elementary charge q ( 1.6 ⁇ 10 ⁇ 19 C). Is set so as to satisfy the relational expression of
  • ⁇ W n
  • the field effect transistor of the present embodiment desirably satisfies Equation (10), but can be configured within the range satisfying Equation (11) below.
  • the surface density n d1 of the n-type activation impurity in the n-type impurity doped region 151 the surface density n a1 of the p-type activation impurity in the n-type impurity doped region 151, and the width W n of the n-type impurity doped region 151.
  • the surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the p-type impurity doped region 152 The surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the
  • the surface density ⁇ p of the polarization charge formed at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, and the elementary charge q ( 1.6 ⁇ 10 ⁇ 19 C).
  • the n-type impurity doped regions 151 and the p-type impurity doped regions 152 are alternately arranged along the direction in which the gate electrode 18 extends.
  • the influence of the depletion layer acts equally on both the n-type impurity doped region 151 and the p-type impurity doped region 152. For this reason, it is not necessary to consider the influence of the surface depletion layer in the equation (10), and there is an advantage that the epi-design is facilitated. This is a feature that does not exist in the RESURF structure in which the p-type layer and the n-type layer are stacked in the vertical direction.
  • the on-resistance R on is proportional to the square of the off breakdown voltage BV, whereas in the case of the field effect transistor of this embodiment, the on resistance R on is the off breakdown voltage. Proportional to BV. That is, in the field effect transistor of this embodiment, the on-resistance Ron has a gentle dependence on the off-breakdown voltage BV. As a result, the field effect transistor of this embodiment can reduce the increase in the on-resistance R on even when the off-breakdown voltage BV is increased, as compared with the lateral field-effect transistor as shown in FIG. Can do.
  • the field effect transistor of the present embodiment As compared with the lateral field effect transistor as shown in FIG. 12, also reduces the on-resistance R on, to reduce the off-state breakdown voltage BV is to reduce be able to.
  • the field effect transistor of this embodiment has a lower on-resistance R on than the lateral field effect transistor as shown in FIG. Can do.
  • the on-resistance R on of the field effect transistor of this embodiment the on-resistance R on of the lateral field effect transistor as shown in FIG. 12, It becomes about 1/200 times.
  • FIG. 4 also shows a calculation result (broken line in the figure) when a vertical device structure having a super junction is applied to a GaN-based semiconductor material.
  • W n W p
  • ⁇ n 200 cm 2 / Vs
  • F c 3 MV / cm
  • N n / t 5 ⁇ 10 17 cm ⁇ 3 .
  • the electron mobility ⁇ n is lower than that in the field effect transistor of this embodiment.
  • electrons are bulky. This is because the semiconductor travels due to the influence of ionized impurity scattering.
  • the on-resistance R on of the field effect transistor of the present embodiment is about 1/10 smaller than the on-resistance R on of the vertical device structure having a super junction. I understand.
  • the field effect transistor of the present embodiment is on the stacked bodies 13 and 15 on the opposite side of the gate electrode 18 with the source electrode 171 interposed therebetween.
  • a fourth electrode 19 can be provided.
  • a third nitride semiconductor made of a third nitride semiconductor doped with a p-type or n-type impurity at a position below the stacked bodies 13 and 15 and in contact with the stacked bodies 13 and 15.
  • a layer 12 can be provided.
  • the p-type or n-type 1-type impurity doped region constituting the stripe region of the second nitride semiconductor layer 15 does not extend to just below the source electrode 171, but directly below the fourth electrode 19.
  • a 1-type impurity doped region doped with a 1-type impurity that is a n-type or an n-type may be formed.
  • the p-type impurity doped region 152 constituting the stripe region of the second nitride semiconductor layer 15 does not extend to directly below the source electrode 171, and the fourth electrode
  • a p-type impurity doped region 152 doped with a p-type impurity may be formed immediately below 19.
  • the fourth electrode 19 When configured as shown in FIGS. 1B and 1C, when the fourth electrode 19 is electrically grounded, for example, via the source electrode 171, holes generated by impact ionization are removed from the third nitride semiconductor. The layer 12 and the fourth electrode 19 can be extracted outside the device. As a result, the avalanche resistance of the device can be improved.
  • the fourth electrode 19 is formed using a material such as Ti (titanium) / Pt (platinum) / Au (gold), Ni (nickel) / Au, or Pd (palladium) / Au. be able to.
  • the field effect transistor of the present embodiment has the drain electrode 172 and the n-type conduction region 141.
  • a 2DEG channel connecting the source electrodes 171 is formed, and electrons travel.
  • the gate electrode 18 is set to 0 (zero) potential and a high voltage is applied to the drain electrode 172, the entire n-type conduction region 141 and p-type conduction region 142 are depleted and the space charges cancel each other. For this reason, in the region sandwiched between the gate electrode 18 and the drain electrode 172, the electric field strength is substantially constant, and the electric field concentration is reduced.
  • grounding the fourth electrode 19 to the same potential as the source electrode 171 for example, holes generated by impact ionization can be extracted outside the device, and the avalanche resistance of the element can be improved.
  • the field effect transistor of this embodiment can also be made into the structure which reversed the n-type and p-type in the above-mentioned description.
  • the second nitride semiconductor layer 15 is doped with impurities to form a stripe pattern.
  • the field effect transistor according to the present embodiment includes the first nitride semiconductor layer 13 in the first nitride semiconductor layer 13. It is also possible to form a stripe pattern by doping impurities. In such a case, the carriers travel not in the heterointerface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 but in the first nitride semiconductor layer 13, but the same effect as described above. Can be obtained.
  • the following manufacturing method is an example of a manufacturing method for manufacturing an example of the field effect transistor of the present embodiment. That is, the field effect transistor of this embodiment is not limited to the one manufactured by the method described below. This assumption is the same in all the following embodiments.
  • the following layers (1) to (5) are sequentially formed on the Si substrate 10 in the following order, for example, by metal organic chemical vapor deposition (hereinafter referred to as “MOCVD”). Grow.
  • MOCVD metal organic chemical vapor deposition
  • Undoped AlN layer (buffer layer 11) ... 200 nm
  • Undoped GaN layer (buffer layer 11) 1 ⁇ m
  • p-type GaN layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ” (third nitride semiconductor layer 12) 100 nm
  • Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm
  • p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ”(second nitride semiconductor layer 15) ... 60 nm
  • the p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ” (second nitride semiconductor layer 15) is thinner than the critical film thickness of dislocation generation, and is strained lattice It is a layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.05
  • the thickness of the p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ” (second nitride semiconductor layer 15) is 200 nm. By making it below, it is within the critical film thickness of dislocation generation.
  • a surface protective film such as SiN is formed on the second nitride semiconductor layer 15 by using, for example, a plasma-enhanced chemical vapor deposition (hereinafter referred to as “PECVD”) method. And a surface protective film for preventing surface damage due to ion implantation is formed.
  • PECVD plasma-enhanced chemical vapor deposition
  • ion implantation is performed on the dinitride semiconductor layer 15.
  • Si n-type impurity
  • the doping conditions are, for example, an acceleration energy of 60 kev, a dose of 6 ⁇ 10 13 cm ⁇ 2 , an average atomic concentration of 1 ⁇ 10 19 cm ⁇ 3 , and a depth-wise expansion (t d ) of 60 nm.
  • a region (n-type impurity doped region 151) can be selectively formed in the second nitride semiconductor layer 15.
  • activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained.
  • the depth of ion implantation is as shallow as about 100 nm or less, the activation annealing temperature can be lowered to 1200 ° C. or less, and the compatibility with the conventional GaN process is good.
  • the source electrode 171 and the drain electrode 172 are formed on the second nitride semiconductor layer 15 by evaporating and alloying a metal such as Ti / Al / Ni / Au, for example.
  • a metal such as Ti / Al / Ni / Au
  • the ohmic contact between 2DEG formed at the interface between the second nitride semiconductor layer 15 and the first nitride semiconductor layer 13 is formed.
  • an insulating film (not shown) such as SiN is deposited on the second nitride semiconductor layer 15 by using, for example, PECVD, for example, by 50 nm.
  • element isolation is performed by performing ion implantation of N (nitrogen) or the like through the insulating film.
  • an opening is formed in a region sandwiched between the source electrode 171 and the drain electrode 172 using a reactive gas such as SF 6 (sulfur fluoride), and then a reaction such as BCl 3 (boron chloride) is performed.
  • a recess is formed by etching away a part of the second nitride semiconductor layer 15 using a gas.
  • an insulating film 16 such as Al 2 O 3 is deposited to a thickness of about 50 nm using, for example, low-pressure chemical vapor deposition (hereinafter referred to as “LPCVD”) so as to fill the recess.
  • LPCVD low-pressure chemical vapor deposition
  • Expression (10) is established. For this reason, based on the above principle of operation, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
  • the Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) is made p-type (Mg doping), and in the subsequent steps, n
  • the n-type impurity doped region 151 is formed by doping the n-type impurity, the process of forming the n-type and the p-type can be reversed. That is, in the crystal growth stage, the Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) is made n-type (n-type impurity doping), and in the subsequent process, p-type impurities are doped.
  • the p-type impurity doped region 152 may be formed.
  • the GaN layer (first nitride semiconductor layer 13) is undoped, but it may be p-type or n-type having an activation impurity concentration of about 1 ⁇ 10 17 cm ⁇ 3 or less.
  • FIG. 6 shows the configuration of the field effect transistor of this embodiment.
  • 6A is a schematic plan view
  • FIG. 6B is a schematic cross-sectional view of the (X1-Y1) plane of FIG. 6A
  • FIG. 6C is (X2-Y2) of FIG. 6A. It is the cross-sectional schematic in a surface.
  • the second nitride semiconductor layer 15 located below the first nitride semiconductor layer 13 is indicated by a dotted line. That is, the n-type impurity doped region 151 and the p-type impurity doped region 152 shown in FIG. 6A are formed in the second nitride semiconductor layer 15.
  • the first nitride semiconductor layer 13 is provided on the upper side of the second nitride semiconductor layer 15 as shown in FIGS. Even if comprised in this way, the effect similar to the field effect transistor of Embodiment 1 is realizable. Further, with such a configuration, a semiconductor layer having a large band gap between the n-type conductive region 141 and the drain electrode 172 serving as an electron channel and between the n-type conductive region 141 and the source electrode 171. No longer exists. As a result, the contact resistance is reduced, it is possible to further improve the on-resistance R on.
  • the stacked bodies 13 and 15 are epitaxial layers, and the crystal growth may be parallel to the [0001] direction. Further, a buffer layer 11 of (0001) plane growth that lattice matches with the second nitride semiconductor on the outermost surface may be provided between the stacked bodies 13 and 15 and the substrate 10.
  • the field effect transistor of this example is manufactured by the following manufacturing method, for example.
  • the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
  • Undoped AlN layer (buffer layer 11) ... 200 nm (2) Undoped Al 0.06 Ga 0.94 N layer (buffer layer 11) 1 ⁇ m (3) p-type Al 0.06 Ga 0.94 N layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ”(third nitride semiconductor layer 12) ... 100 nm (4) Undoped Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) 40 nm (5) n-type Al 0.06 Ga 0.94 N layer “Si doping: concentration 1 ⁇ 10 18 cm ⁇ 3 ”(second nitride semiconductor layer 15) ... 60 nm (6) Undoped GaN layer (first nitride semiconductor layer 13) 100 nm
  • the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.06
  • the thickness of the first nitride semiconductor layer 13 is set to 200 nm or less, so that it is within the critical film thickness for occurrence of transition.
  • the density of impurity ions is maximized in the second nitride semiconductor layer 15 after forming a surface protective film (not shown) such as SiN using PECVD. Ion implantation is performed.
  • H p-type impurity
  • a region other than a region to be doped with a p-type impurity is covered with a resist film.
  • doping conditions for example, an acceleration energy of 150 kev, a dose of 6 ⁇ 10 13 cm ⁇ 2 , an average atomic concentration of 1 ⁇ 10 19 cm ⁇ 3 , and an extension in the depth direction (t a ) of 60 nm are H-doped.
  • a region (p-type impurity doped region 152) can be selectively formed in the second nitride semiconductor layer 15.
  • activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained.
  • the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
  • the gate electrode is formed on the first nitride semiconductor layer 13 via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16. 18 is formed.
  • . 7A shows the profile of the (X1-Y1) plane
  • FIG. 7B shows the profile of the (X2-Y2) plane.
  • the first nitride semiconductor layer (eg, GaN layer) 13 When the first nitride semiconductor layer (eg, GaN layer) 13 is crystal-grown on the (0001) plane second nitride semiconductor layer (eg, AlGaN layer) 15, the first nitride semiconductor layer 13 has a compressive strain. Works and piezo polarization occurs. Furthermore, since spontaneous polarization is also generated, a negative charge having a surface density ( ⁇ p ) is generated at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15.
  • ⁇ p is a function of the Al composition x of the second nitride semiconductor layer 15 and can be approximated by the following equation (15).
  • the value of the coefficient is smaller than the formula (5) when the second nitride semiconductor layer 15 is formed on the first nitride semiconductor layer 13 (Embodiment 1: FIG. 1).
  • the spontaneous polarization and piezoelectricity are the same. This is because the directions of polarization are reversed and cancel each other.
  • Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
  • the Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) is made n-type (Si doping), and in the subsequent steps, p
  • the p-type impurity doped region 152 is formed by doping the n-type impurity, the process of forming the n-type and the p-type can be reversed. That is, in the crystal growth stage, the Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) is made p-type (p-type impurity doping), and after that, n-type impurities are doped.
  • the n-type impurity doped region 151 may be formed.
  • GaN layer (first nitride semiconductor layer 13) was undoped, it may be about 1 ⁇ 10 17 cm -3 or less of p-type or n-type, which was activated impurity concentration.
  • Embodiment 3 >> ⁇ Configuration of Field Effect Transistor of Embodiment 3>
  • FIG. 8 shows the configuration of the field effect transistor of this embodiment.
  • 8 (a) is a schematic plan view
  • FIG. 8 (b) is a schematic cross-sectional view in the (X1-Y1) plane of FIG. 8 (a)
  • FIG. 8 (c) is (X2-Y2) in FIG. 8 (a). It is the cross-sectional schematic in a surface.
  • the field effect transistor according to the present embodiment is based on the field effect transistor according to the first embodiment, and a region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 as shown in FIG. Is different in that a striped pattern in which p-type impurity doped regions 152 doped with p-type impurities and undoped regions 151 are alternately arranged is formed.
  • the Al composition of the second nitride semiconductor layer 15 and the p-type impurity The density setting has been changed.
  • the buffer layer 11 can have a laminated structure including an AlN layer and a GaN layer formed thereon.
  • the field effect transistor according to the present embodiment can have the same configuration as that of the field effect transistor according to the first embodiment except for the differences.
  • the stacked bodies 13 and 15 are (0001) plane growth in which the second nitride semiconductor layer 15 is stacked on the first nitride semiconductor layer 13.
  • the second nitride semiconductor constituting the second nitride semiconductor layer 15 has a shorter a-axis length than the material constituting the buffer layer 11, and thus the second nitride.
  • a tensile strain is inherent in the semiconductor layer 15. Since positive fixed charges are generated at the interface between the second nitride semiconductor layer 15 and the first nitride semiconductor layer 13 based on the piezoelectric polarization effect and the spontaneous polarization effect, the undoped region 151 functions as an electron supply region. To do.
  • an n-type conductive region 141 containing 2DEG is formed in a column shape.
  • a p-type conductive region 142 containing 2DHG is formed in a column shape.
  • the field effect transistor of this embodiment supplies electrons in the n-type conduction region 141 by using the polarization effect of the second nitride semiconductor layer 15 formed on the (0001) plane first nitride semiconductor layer 13. It is configured as follows. In the case of the configuration in which the electrons of the n-type conduction region 141 are supplied using doping as in the first embodiment, the activation rate of the impurity atoms depends on the process conditions and the like, but in the present embodiment, the second nitridation is performed. The charge concentration is automatically determined by the Al composition of the physical semiconductor layer 15 (eg, AlGaN layer). For this reason, it is easy to adjust the epi structure so as to satisfy the relational expression (11), and the reproducibility of the device characteristics is improved. ⁇ Example of Field Effect Transistor of Embodiment 3>
  • the field effect transistor of this example is manufactured by the following manufacturing method, for example.
  • the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
  • Undoped AlN layer (buffer layer 11) ... 200 nm Undoped GaN layer (buffer layer 11) 1 ⁇ m (3) p-type GaN layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ” (third nitride semiconductor layer 12) 100 nm (4) Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm (5) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 40 nm
  • the second nitride semiconductor layer 15 is thinner than the film thickness of dislocation generation and is a strained lattice layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.2
  • the thickness of the second nitride semiconductor layer 15 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
  • ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and undoped Al 0.2 Ga 0.8 are performed.
  • a gate electrode 18 is formed on the N layer (second nitride semiconductor layer 15) via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16.
  • an H-doped region (p-type impurity doped region 152) having a depthwise extension (t a ) of 40 nm can be selectively formed in the second nitride semiconductor layer 15.
  • activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained.
  • the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
  • the field effect transistor of this example has a HEMT structure in which the buffer layer 11 is GaN, the first nitride semiconductor layer 13 is GaN, and the second nitride semiconductor layer 15 is Al 0.2 Ga 0.8 N in this order.
  • the impurity doped region 152 is doped with H (proton).
  • tensile strain is generated in the second nitride semiconductor layer 15 grown on the first nitride semiconductor layer 13, and the second nitride semiconductor layer 15 and the first nitride are caused by spontaneous polarization and piezoelectric polarization.
  • a positive polarization charge ⁇ p is generated at the interface with the physical semiconductor layer 13.
  • FIG. 9 shows the configuration of the field effect transistor of this embodiment.
  • 9A is a schematic plan view
  • FIG. 9B is a schematic cross-sectional view of the (X1-Y1) plane of FIG. 9A
  • FIG. 9C is (X2-Y2) of FIG. 9A. It is the cross-sectional schematic in a surface.
  • the second nitride semiconductor layer 15 located below the first nitride semiconductor layer 13 is indicated by a dotted line. That is, the n-type impurity doped region 151 and the undoped region 152 shown in FIG. 9A are formed in the second nitride semiconductor layer 15.
  • the field effect transistor according to the present embodiment is based on the field effect transistor according to the second embodiment, and a region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 as shown in FIG. 9A. Is different in that a striped pattern in which n-type impurity doped regions 151 doped with n-type impurities and undoped regions 152 are alternately arranged is formed.
  • holes are generated by the p-type impurity doping and the polarization effect, whereas in this embodiment, holes are generated only by the polarization effect, so that the Al composition of the second nitride semiconductor layer, the n-type The impurity concentration setting has been changed.
  • the buffer layer 11 includes an AlN layer and Al 0.2 Ga 0 formed thereon. .8 A multilayer structure composed of N layers can be formed.
  • the field effect transistor according to the present embodiment can have the same configuration as that of the field effect transistor according to the second embodiment except for the differences.
  • the stacked bodies 13 and 15 are (0001) plane growth in which the first nitride semiconductor layer 13 is stacked on the second nitride semiconductor layer 15.
  • the first nitride semiconductor constituting the first nitride semiconductor layer 13 has a longer a-axis length than the material constituting the buffer layer 11, and thus the first nitride A compressive strain is inherent in the semiconductor layer 13. Based on the piezoelectric polarization effect and the spontaneous polarization effect, negative fixed charges are generated at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, so that the undoped region 152 serves as a hole supply region. Function.
  • a p-type conductive region 142 containing 2DHG is formed in a column shape.
  • an n-type conductive region 141 containing 2DEG is formed in a column shape.
  • the field effect transistor of this embodiment uses the polarization effect on the first nitride semiconductor layer 13 formed on the (0001) plane second nitride semiconductor layer 15 to cause holes in the p-type conduction region 142 to flow. It is configured to supply.
  • the activation rate of the impurity atoms depends on the process conditions and the like.
  • the charge concentration is automatically determined by the Al composition of the nitride semiconductor layer 15 (eg, AlGaN layer). For this reason, it is easy to adjust the epi structure so as to satisfy the relational expression (11), and the reproducibility of the device characteristics is improved.
  • the field effect transistor of this example is manufactured by the following manufacturing method, for example.
  • the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
  • Undoped AlN layer (buffer layer 11) ... 200 nm (2) the undoped Al 0.2 Ga 0.8 N layer (buffer layer 11) ⁇ ⁇ ⁇ 1 [mu] m (3) p-type Al 0.2 Ga 0.8 N layer “Mg doping: concentration 1 ⁇ 10 19 cm ⁇ 3 ” (third nitride semiconductor layer 12)... 100 nm (4) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 100 nm (5) Undoped GaN layer (first nitride semiconductor layer 13) ... 40 nm
  • the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.2
  • the thickness of the first nitride semiconductor layer 13 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
  • a gate electrode 18 is formed on the layer 13) via a source electrode 171, a drain electrode 172, a fourth electrode 19, and an insulating film 16.
  • the Si-doped region (n-type impurity doped region 151) having an average atomic concentration of 5 ⁇ 10 19 cm ⁇ 3 and a spread in the depth direction (t d ) of 40 nm in the second nitride semiconductor layer 15 can be selectively formed.
  • activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained.
  • the activation annealing temperature can be lowered to 1200 ° C. or lower, and the compatibility with the conventional GaN process is good.
  • the buffer layer 11 is made of Al 0.2 Ga 0.8 N
  • the second nitride semiconductor layer 15 is made of Al 0.2 Ga 0.8 N
  • the first nitride semiconductor layer 13 is made of GaN.
  • the structure is an inverse HEMT structure, in which the n-type impurity doped region 151 is doped with Si. That the buffer layer 11 is that Al 0.2 Ga 0.8 N is lattice relaxation during the growth of a thick Al 0.2 Ga 0.8 N layer 11, Al 0.2 Ga 0.8 thereon No strain is generated no matter how thick N grows. For this reason, no distortion occurs in the second nitride semiconductor layer 15.
  • FIG. 10 shows the configuration of the field effect transistor of this embodiment.
  • 10 (a) is a schematic plan view
  • FIG. 10 (b) is a schematic cross-sectional view in the (X1-Y1) plane of FIG. 10 (a)
  • FIG. 10 (c) is (X2-Y2) in FIG. 10 (a). It is the cross-sectional schematic in a surface.
  • the field effect transistor according to the present embodiment is based on the configuration of the field effect transistor according to any one of the first to fourth embodiments, and is provided with the fourth electrode 19, and the stripe pattern of the second nitride semiconductor layer 15 is essential.
  • the p-type or n-type impurity doped region that constitutes n-type extends to a position immediately below the source electrode 171 and is the n-type or p-type that constitutes the stripe pattern of the second nitride semiconductor layer 15, which is The second-type impurity-doped regions having different shapes extend to just below the fourth electrode 19.
  • the n-type impurity doped region 151 constituting the stripe pattern of the second nitride semiconductor layer 15 extends to a position immediately below the source electrode 171, and the second nitride semiconductor
  • the p-type impurity doped region 152 constituting the stripe pattern of the layer 15 extends to a position immediately below the fourth electrode 19.
  • Such a field effect transistor according to this embodiment can achieve the same effect as the field effect transistors described in the first to fourth embodiments.
  • the p-type impurity doped region 152 constituting the stripe region of the second nitride semiconductor layer 15 extends to the fourth electrode 19 and is electrically connected to the fourth electrode 19. By doing so, holes generated in the channel can be extracted through the fourth electrode 19.
  • the p-type channel layer 12 (see FIG. 1 and the like) is not formed below the stacked bodies 13 and 15 including the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15. Can do.
  • the epi structure can be simplified and the increase in parasitic capacitance is relatively small.
  • the field effect transistor of the present embodiment may be configured such that the upper and lower positions of the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 are reversed.
  • the field effect transistor of this example is manufactured by the following manufacturing method, for example.
  • the layers shown in the following (1) to (4) are sequentially grown in the following order, for example, by MOCVD.
  • Undoped AlN layer (buffer layer 11) ... 200 nm
  • Undoped GaN layer (buffer layer 11) 1 ⁇ m
  • Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm
  • Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 40 nm
  • the second nitride semiconductor layer 15 is thinner than the film thickness of dislocation generation and is a strained lattice layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.2
  • the thickness of the second nitride semiconductor layer 15 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
  • ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and undoped Al 0.2 Ga 0.8 are performed.
  • a gate electrode 18 is formed on the N layer (second nitride semiconductor layer 15) via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16.
  • an H-doped region (p-type impurity doped region 152) having a depthwise extension (t a ) of 40 nm can be selectively formed in the second nitride semiconductor layer 15.
  • activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained.
  • the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
  • the second nitride semiconductor layer (example: AlGaN layer) 15 is crystal-grown on the (0001) plane first nitride semiconductor layer (example: GaN layer) 13, according to the equation (5) A positive polarization charge ⁇ p is generated at the heterointerface.
  • the field effect transistor of this example is manufactured by the following manufacturing method, for example.
  • the layers shown in the following (1) to (4) are sequentially grown in the order shown below, for example, by MOCVD.
  • Undoped AlN layer (buffer layer 11) ... 200 nm
  • Undoped Al 0.2 Ga 0.8 N layer (buffer layer 11) 1 ⁇ m
  • Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 100 nm
  • Undoped GaN layer (first nitride semiconductor layer 13) ... 40 nm
  • the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer.
  • the Al composition is generally preferably 0 ⁇ x ⁇ 0.4.
  • x 0.2
  • the thickness of the first nitride semiconductor layer 13 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
  • a gate electrode 18 is formed on the layer 13) via a source electrode 171, a drain electrode 172, a fourth electrode 19, and an insulating film 16.
  • the Si-doped region (n-type impurity doped region 151) having an average atomic concentration of 5 ⁇ 10 19 cm ⁇ 3 and a spread in the depth direction (t d ) of 40 nm in the second nitride semiconductor layer 15 can be selectively formed.
  • activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained.
  • the activation annealing temperature can be lowered to 1200 ° C. or lower, and the compatibility with the conventional GaN process is good.
  • the first nitride semiconductor layer (example: GaN layer) 13 is crystal-grown on the (0001) plane second nitride semiconductor layer (example: AlGaN layer) 15, according to the equation (15) Negative polarization charge ⁇ p is generated at the heterointerface.
  • Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. In addition, if the fourth electrode 19 is electrically connected to the source electrode 171, the avalanche resistance can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A field-effect transistor is provided with a multilayer body formed by stacking a first nitride semiconductor layer (13) comprised of a first nitride semiconductor, and a second nitride semiconductor layer (15) comprised of a second nitride semiconductor having a band gap larger than the first nitride semiconductor; a gate insulating film (16); a gate electrode (18); a drain electrode (172); and a source electrode (171); such that on a sandwiched region between the gate electrode (18) and the drain electrode (172) of the second nitride semiconductor layer (15), a striped pattern is formed by alternately arranging an n-type impurity doped region (151) into which an n-type impurity has been doped and a p-type impurity doped region (152) into which a p-type impurity has been doped along a direction in which the gate electrode (18) extends.

Description

電界効果トランジスタField effect transistor
 本発明は、電界効果トランジスタに関する。 The present invention relates to a field effect transistor.
 III族窒化物半導体を主材料として含む電界効果トランジスタ(Field Effect Transistor:FET)としては、例えば、図12に示すようなものがある。図12は、電界効果トランジスタの断面構造を示す概略図である。このような構造を有する電界効果トランジスタは、例えば、非特許文献1に報告されている。 An example of a field effect transistor (Field Effect Transistor: FET) containing a group III nitride semiconductor as a main material is shown in FIG. FIG. 12 is a schematic diagram showing a cross-sectional structure of a field effect transistor. A field effect transistor having such a structure is reported in Non-Patent Document 1, for example.
 図12に示す電界効果トランジスタは、SiC(炭化ケイ素)基板100の上に、バッファ層101と、アンドープGaN(窒化ガリウム)からなるチャネル層103と、n形AlGaN(窒化アルミニウムガリウム)からなる電子供給層105と、が積層されている。基板面に対する結晶成長方向は、[0001]に平行である。そして、チャネル層103内の電子供給層105との界面近傍には、二次元電子ガス(以下、「2DEG」という)からなるn形伝導領域104が形成されている。 The field effect transistor shown in FIG. 12 has a buffer layer 101, a channel layer 103 made of undoped GaN (gallium nitride), and an electron supply made of n-type AlGaN (aluminum gallium nitride) on a SiC (silicon carbide) substrate 100. The layer 105 is laminated. The crystal growth direction with respect to the substrate surface is parallel to [0001]. An n-type conduction region 104 made of a two-dimensional electron gas (hereinafter referred to as “2DEG”) is formed in the channel layer 103 near the interface with the electron supply layer 105.
 また、電子供給層105上には、ソース電極1071とドレイン電極1072が形成され、n形伝導領域104とのオーミック接触がとられている。さらに、電子供給層105上には、Si(窒化ケイ素)からなる絶縁膜106を介して、ゲート電極108が形成されている。 In addition, a source electrode 1071 and a drain electrode 1072 are formed on the electron supply layer 105 and are in ohmic contact with the n-type conduction region 104. Further, a gate electrode 108 is formed on the electron supply layer 105 via an insulating film 106 made of Si 3 N 4 (silicon nitride).
 その他、特許文献1、2には、リサーフ構造を採用したGaN系電界効果トランジスタが開示されている。 In addition, Patent Documents 1 and 2 disclose GaN field effect transistors employing a RESURF structure.
特開2007-134608号公報JP 2007-134608 A 特開2008-159631号公報JP 2008-159631 A
 図14は、図12に示す電界効果トランジスタにおいてチャネルをピンチオフさせてドレインに破壊耐圧(V=BV)を印加した時の電荷密度、電界強度、電位の分布の模式図である。図14(a)は電荷密度分布、図14(b)は電界強度分布、図14(c)は電位分布を示す。 FIG. 14 is a schematic diagram of the charge density, electric field strength, and potential distribution when the channel is pinched off and the breakdown voltage (V d = BV) is applied to the drain in the field effect transistor shown in FIG. 14A shows the charge density distribution, FIG. 14B shows the electric field intensity distribution, and FIG. 14C shows the potential distribution.
 ここで、図12に示す電界効果トランジスタにおいてチャネルをピンチオフさせてドレインに破壊耐圧(V=BV)を印加した時、図13に示すように電子供給層(AlGaN層)105には空乏層200(斜線領域)が発生する。そして、ゲート電極108端(x=0)から空乏層端(x=L)の間には、n形不純物のイオン化に起因した固定電荷が発生する。ゲート幅をW、電子供給層(AlGaN層)105へのドーピング濃度をN、ドーピング領域の厚さ(深さ)をtとすると、この固定電荷密度はq×N×W×tで表わされる(q=1.6×10-19C:素電荷)(図14(a))。 Here, when the channel is pinched off and a breakdown voltage (V d = BV) is applied to the drain in the field effect transistor shown in FIG. 12, the electron supply layer (AlGaN layer) 105 has a depletion layer 200 as shown in FIG. (Shaded area) occurs. A fixed charge due to ionization of the n-type impurity is generated between the gate electrode 108 end (x = 0) and the depletion layer end (x = L). When the gate width is W g , the doping concentration to the electron supply layer (AlGaN layer) 105 is N d , and the thickness (depth) of the doping region is t, this fixed charge density is q × N d × W g × t. (Q = 1.6 × 10 −19 C: elementary charge) (FIG. 14A).
 空乏層内の電界強度は空乏層端(x=L)からゲート端(x=0)に向かってほぼ線形に増加し、ゲート端(x=0)で最大値をとる(図14(b))。図12に示す電界効果トランジスタの場合、このようにゲート端(x=0)付近で電界集中が発生する。なお、ガウスの法則によれば、この最大電界強度は(qNL)/εとなる(ε:AlGaNの誘電率)。よって、破壊電界強度Fは下式(1)のように表わされる。 The electric field strength in the depletion layer increases almost linearly from the depletion layer end (x = L) to the gate end (x = 0), and takes a maximum value at the gate end (x = 0) (FIG. 14B). ). In the case of the field effect transistor shown in FIG. 12, electric field concentration occurs in the vicinity of the gate end (x = 0) in this way. According to Gauss's law, the maximum electric field strength is (qN d L) / ε (ε: dielectric constant of AlGaN). Therefore, the breakdown electric field strength F c is expressed as the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電界を距離で積分したものが電位となることから、オフ耐圧BVは下式(2)のように表わされ、電位分布は図14(c)のようになる。 Since the electric field integrated by the distance becomes the electric potential, the off breakdown voltage BV is expressed by the following equation (2), and the electric potential distribution is as shown in FIG.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 オン抵抗全体におけるドレイン空乏層抵抗の割合が十分大きいと仮定すると、オン抵抗Ronと空乏層の断面積Aの積は下式(3)のように表わされる。 Assuming that the ratio of the drain depletion layer resistance to the entire on resistance is sufficiently large, the product of the on resistance R on and the cross-sectional area A of the depletion layer is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、μは電子移動度である。次に、式(1)、(2)、(3)からLとNを消去すると、下式(4)が得られる。 Note that μ n is the electron mobility. Next, when L and Nd are eliminated from the equations (1), (2), and (3), the following equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、図15に、式(4)にてε/ε=10(ε:真空誘電率)、μ=2000cm/Vs、F=3MV/cmとした時のオフ耐圧BVとオン抵抗Ronの関係の計算結果を示す。図15から、オフ耐圧BVの2乗に比例してオン抵抗Ronが増加することがわかる。 Here, FIG. 15 shows an off breakdown voltage BV when ε / ε 0 = 10 (ε 0 : vacuum dielectric constant), μ n = 2000 cm 2 / Vs, and F c = 3 MV / cm in Equation (4). It shows the calculation results of the relationship between the on-resistance R on. FIG. 15 shows that the on-resistance R on increases in proportion to the square of the off breakdown voltage BV.
 電界効果トランジスタは、オフ耐圧BVが高く、オン抵抗Ronが低い特性が求められる。しかし、図12に示す電界効果トランジスタの場合、オフ耐圧BVを増加させると、その2乗に比例してオン抵抗Ronが増加してしまい、オフ耐圧BVとオン抵抗Ronの両方の要求特性を同時に満たすのは困難である。 Field effect transistor has a high off-state breakdown voltage BV, the on-resistance R on low characteristics are required. However, when the field effect transistor shown in FIG. 12, increasing the off-state breakdown voltage BV, in proportion to the square will increases the on-resistance R on, both off-state breakdown voltage BV and the on-resistance R on the required characteristics Is difficult to satisfy simultaneously.
 また、特許文献1、2に開示されているようなリサーフ構造の場合、p形チャネル層上にn形リサーフ層を積層することにより、電界集中を緩和することができる。しかし、特許文献1、2に開示されているリサーフ構造の場合、表面ポテンシャルの影響によるn形リサーフ層の空乏化の影響が避けられないため、この効果を考慮してリサーフ層の不純物濃度、膜厚を設計しなければならない。また、表面ポテンシャルは保護膜の形成条件に依存するため、電界集中緩和効果がプロセス要因で変動するという課題があった。 Further, in the case of the RESURF structure as disclosed in Patent Documents 1 and 2, the electric field concentration can be reduced by stacking the n-type RESURF layer on the p-type channel layer. However, in the case of the RESURF structure disclosed in Patent Documents 1 and 2, since the influence of depletion of the n-type RESURF layer due to the influence of the surface potential is unavoidable, the impurity concentration of the RESURF layer and the film are considered in consideration of this effect. The thickness must be designed. Further, since the surface potential depends on the formation conditions of the protective film, there has been a problem that the electric field concentration relaxation effect varies depending on the process factor.
 また、電界集中を緩和するためには、いわゆるスーパージャンクション構造が知られている。スーパージャンクション構造は、Si(ケイ素)系縦型のパワーデバイスに広く採用される構造であり、n形ピラー層とp形ピラー層を横方向に交互に形成したものである。なお、少なくとも数μmの深さのn形ピラー層、p形ピラー層を形成するため、数MeVの加速エネルギーで不純物イオンをドーピングすることとなる。しかしながら、このプロセスを窒化物半導体材料に適用する場合、窒化物半導体は融点が非常に高く格子欠陥の回復が困難なため、結晶成長温度を超える2000℃程度でのアニール処理が必要になる。すなわち、上述したような縦型のスーパージャンクション構造を窒化物半導体デバイスに適用することは現実的でない。 Also, a so-called super junction structure is known for reducing electric field concentration. The super junction structure is a structure widely used in Si (silicon) -based vertical power devices, in which n-type pillar layers and p-type pillar layers are alternately formed in the horizontal direction. In order to form an n-type pillar layer and a p-type pillar layer having a depth of at least several μm, impurity ions are doped with acceleration energy of several MeV. However, when this process is applied to a nitride semiconductor material, since the nitride semiconductor has a very high melting point and it is difficult to recover lattice defects, an annealing process at about 2000 ° C. exceeding the crystal growth temperature is required. That is, it is not practical to apply the vertical super junction structure as described above to a nitride semiconductor device.
 本発明は、上述した問題点を解消し、オン抵抗とオフ耐圧のトレードオフ性を改善した窒化物半導体からなる電界効果トランジスタを提供することを課題とする。 An object of the present invention is to provide a field effect transistor made of a nitride semiconductor that solves the above-described problems and improves the trade-off between on-resistance and off-breakdown voltage.
 本発明によれば、第一の窒化物半導体からなる第一窒化物半導体層、および、前記第一の窒化物半導体よりバンドギャップの大きい第二の窒化物半導体からなる第二窒化物半導体層、を積層した積層体と、前記積層体の上に形成されたゲート絶縁膜およびゲート電極と、前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極と対向するよう設けられるドレイン電極と、前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極を挟んで前記ドレイン電極の反対側に設けられるソース電極と、を備え、前記第二窒化物半導体層の前記ゲート電極と前記ドレイン電極で挟まれた領域には、n形不純物をドーピングされたn形不純物ドープ領域と、p形不純物をドーピングされたp形不純物ドープ領域と、を前記ゲート電極がのびる方向に沿って交互に配列した縞模様が形成されている電界効果トランジスタが提供される。 According to the present invention, a first nitride semiconductor layer made of a first nitride semiconductor, and a second nitride semiconductor layer made of a second nitride semiconductor having a larger band gap than the first nitride semiconductor, A stacked body in which the first nitride semiconductor layer is electrically connected to the stacked body, and the gate insulating film and the gate electrode formed on the stacked body are opposed to the gate electrode. A drain electrode provided on the stacked body, and a source electrode electrically connected to the first nitride semiconductor layer and provided on the opposite side of the drain electrode across the gate electrode. The region of the second nitride semiconductor layer sandwiched between the gate electrode and the drain electrode is doped with an n-type impurity doped with an n-type impurity and doped with a p-type impurity. FET stripes arranged alternately along the band, a direction extending said gate electrode is formed is provided.
 本発明で実現される電界効果トランジスタは、第二窒化物半導体層に形成したn形不純物ドープ領域およびp形不純物ドープ領域、および/または、第一窒化物半導体層と第二窒化物半導体層とを積層したことにより発生する分極効果、に起因して、第一窒化物半導体層の第二窒化物半導体層との界面近傍には、2DEGを内包するn形伝導領域および二次元正孔ガス(以下、「2DHG」という)を内包するp形伝導領域が形成されることとなる。具体的には、第二窒化物半導体層のn形不純物ドープ領域との界面近傍にはn形伝導領域が形成され、p形不純物ドープ領域との界面近傍にはp形伝導領域が形成される。 The field effect transistor realized by the present invention includes an n-type impurity doped region and a p-type impurity doped region formed in the second nitride semiconductor layer, and / or the first nitride semiconductor layer and the second nitride semiconductor layer. In the vicinity of the interface between the first nitride semiconductor layer and the second nitride semiconductor layer, an n-type conduction region containing 2DEG and a two-dimensional hole gas ( Hereinafter, a p-type conductive region including “2DHG”) is formed. Specifically, an n-type conductive region is formed near the interface with the n-type impurity doped region of the second nitride semiconductor layer, and a p-type conductive region is formed near the interface with the p-type impurity doped region. .
 そして、ゲート電極を0(ゼロ)電位にしてドレイン電極に高電圧を印加したオフ状態では、n形伝導領域とp形伝導領域の全体が空乏化し、n形不純物とp形不純物のイオン化に起因して固定電荷が発生するが、本実施形態の場合、ゲート電極とドレイン電極で挟まれた領域には、n形伝導領域とp形伝導領域が縞模様に形成されるため、空間電荷が打ち消しあうこととなる。このため、ゲート電極とドレイン電極で挟まれた領域は、電界強度がほぼ一定となり、電界集中が緩和される。 In the OFF state in which the gate electrode is set to 0 (zero) potential and a high voltage is applied to the drain electrode, the entire n-type conduction region and p-type conduction region are depleted, resulting from ionization of the n-type impurity and the p-type impurity. In the case of this embodiment, the n-type conduction region and the p-type conduction region are formed in a striped pattern in the region sandwiched between the gate electrode and the drain electrode, so that the space charge cancels out. It will meet. For this reason, in the region sandwiched between the gate electrode and the drain electrode, the electric field strength is substantially constant, and the electric field concentration is alleviated.
 本発明によれば、オフ耐圧が高く、オン抵抗の低い窒化物半導体からなる電界効果トランジスタが得られ、窒素系パワー半導体の高耐圧化、低損失化を実現することができる。 According to the present invention, a field effect transistor made of a nitride semiconductor having a high off breakdown voltage and a low on resistance can be obtained, and a high breakdown voltage and low loss of a nitrogen-based power semiconductor can be realized.
実施形態1の電界効果トランジスタの構造図である。1 is a structural diagram of a field effect transistor according to Embodiment 1. FIG. 実施形態1の電界効果トランジスタの構造図である。1 is a structural diagram of a field effect transistor according to Embodiment 1. FIG. 電界効果トランジスタのエネルギーバンド図である。It is an energy band figure of a field effect transistor. オン抵抗とオフ耐圧の相関図である。FIG. 6 is a correlation diagram between on-resistance and off-breakdown voltage. 電荷密度、電界強度、電位、の分布図である。It is a distribution map of charge density, electric field strength, and potential. 実施形態2の電界効果トランジスタの構造図である。6 is a structural diagram of a field effect transistor according to Embodiment 2. FIG. 電界効果トランジスタのエネルギーバンド図である。It is an energy band figure of a field effect transistor. 実施形態3の電界効果トランジスタの構造図である。6 is a structural diagram of a field effect transistor according to Embodiment 3. FIG. 実施形態4の電界効果トランジスタの構造図である。6 is a structural diagram of a field effect transistor according to Embodiment 4. FIG. 実施形態5の電界効果トランジスタの構造図である。6 is a structural diagram of a field effect transistor according to Embodiment 5. FIG. 実施形態5の電界効果トランジスタの構造図である。6 is a structural diagram of a field effect transistor according to Embodiment 5. FIG. 電界効果トランジスタの構造図である。It is a structural diagram of a field effect transistor. 電界効果トランジスタの構造図である。It is a structural diagram of a field effect transistor. 電荷密度、電界強度、電位、の分布図である。It is a distribution map of charge density, electric field strength, and potential. オン抵抗とオフ耐圧の相関図である。FIG. 6 is a correlation diagram between on-resistance and off-breakdown voltage.
 以下、本発明の実施の形態について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<<実施形態1>>
<実施形態1の電界効果トランジスタの構成>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
<< Embodiment 1 >>
<Configuration of Field Effect Transistor of Embodiment 1>
 図1に、本実施形態の電界効果トランジスタの構成を示す。図1(a)は平面概略図、図1(b)は図1(a)の(X1-Y1)面における断面概略図、図1(c)は図1(a)の(X2-Y2)面における断面概略図である。 FIG. 1 shows the configuration of the field effect transistor of this embodiment. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along the plane (X1-Y1) of FIG. 1A, and FIG. 1C is a schematic view of (X2-Y2) of FIG. It is the cross-sectional schematic in a surface.
 本実施形態の電界効果トランジスタは、図1(b)(c)に示すように、基板10の上に、第一の窒化物半導体からなる第一窒化物半導体層13、および、前記第一の窒化物半導体よりバンドギャップの大きい第二の窒化物半導体からなる第二窒化物半導体層15を積層した積層体13、15を備える。 As shown in FIGS. 1B and 1C, the field effect transistor of the present embodiment includes a first nitride semiconductor layer 13 made of a first nitride semiconductor and a first nitride semiconductor layer 13 on the substrate 10. Laminated bodies 13 and 15 each including a second nitride semiconductor layer 15 made of a second nitride semiconductor having a band gap larger than that of the nitride semiconductor are provided.
 なお、本実施形態においては、第一窒化物半導体層13と第二窒化物半導体層15との上下関係は特段制限されないが、例えば、図示するように、第一窒化物半導体層13の上に第二窒化物半導体層15が設けられてもよい。また、積層体13、15はエピタキシャル層であって、結晶成長は[0001]方向に平行としてもよい。さらに、積層体13、15と基板10との間に、最表面にて第一窒化物半導体と格子整合する(0001)面成長のバッファ層11を備えてもよい。 In the present embodiment, the vertical relationship between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 is not particularly limited, but for example, on the first nitride semiconductor layer 13 as shown in the figure. A second nitride semiconductor layer 15 may be provided. The stacked bodies 13 and 15 may be epitaxial layers, and the crystal growth may be parallel to the [0001] direction. Furthermore, a buffer layer 11 of (0001) plane growth that lattice-matches with the first nitride semiconductor may be provided on the outermost surface between the stacked bodies 13 and 15 and the substrate 10.
 基板10は、シリコン(Si)基板、SiC基板、Al(サファイア)基板、GaN基板などを用いることができる。第一の窒化物半導体としては、GaN、InGaN(窒化インジウムガリウム)、AlGaN、InAlN(窒化インジウムアルミニウム)、InAlGaN(窒化インジウムアルミニウムガリウム)、InN(窒化インジウム)などの中のいずれか一を選択することができる。第二の窒化物半導体としては、AlGaN、InGaN、InAlN、InAlGaN、GaN、AlN(窒化アルミニウム)などの中から、第一の窒化物半導体として選択された窒化物半導体よりもバンドギャップの大きい窒化物半導体を選択することができる。例えば、第一の窒化物半導体としてGaNを選択し、第二の窒化物半導体としてAlGaNを選択することができる。 As the substrate 10, a silicon (Si) substrate, a SiC substrate, an Al 2 O 3 (sapphire) substrate, a GaN substrate, or the like can be used. As the first nitride semiconductor, one of GaN, InGaN (indium gallium nitride), AlGaN, InAlN (indium aluminum nitride), InAlGaN (indium aluminum gallium nitride), InN (indium nitride), and the like is selected. be able to. As the second nitride semiconductor, a nitride having a larger band gap than the nitride semiconductor selected as the first nitride semiconductor from AlGaN, InGaN, InAlN, InAlGaN, GaN, AlN (aluminum nitride), etc. A semiconductor can be selected. For example, GaN can be selected as the first nitride semiconductor, and AlGaN can be selected as the second nitride semiconductor.
 また、本実施形態の電界効果トランジスタは、図1(b)(c)に示すように、積層体13、15の上に、ゲート絶縁膜16およびゲート電極18と、第一窒化物半導体層13と電気的に接続しゲート電極18と対向するドレイン電極172と、第一窒化物半導体層13と電気的に接続しゲート電極18を挟んでドレイン電極172と反対側に設けられるソース電極171と、を備える。第一窒化物半導体層13とドレイン電極172との電気的結合、および、第一窒化物半導体層13とソース電極173との電気的結合、はオーミック接触とするのが望ましい。 In addition, as shown in FIGS. 1B and 1C, the field effect transistor of the present embodiment has a gate insulating film 16 and a gate electrode 18 and a first nitride semiconductor layer 13 on the stacked bodies 13 and 15. A drain electrode 172 electrically connected to the gate electrode 18 and a source electrode 171 electrically connected to the first nitride semiconductor layer 13 and provided on the opposite side of the drain electrode 172 across the gate electrode 18; Is provided. The electrical coupling between the first nitride semiconductor layer 13 and the drain electrode 172 and the electrical coupling between the first nitride semiconductor layer 13 and the source electrode 173 are preferably in ohmic contact.
 ゲート電極18は、Ti(チタン)/Pt(白金)/Au(金)、Ni(ニッケル)/Au、または、Pd(パラジウム)/Au、などの材料を用いて形成することができる。ドレイン電極172、ソース電極171は、Ti/Al(アルミニウム)/Ni/Au、Ti/Al/Mo(モリブデン)/Au、または、Ti/Al/Nb(ニオビウム)/Au、などの材料を用いて形成することができる。ゲート絶縁膜16は、Al、Si、または、SiO(酸化ケイ素)、などの材料を用いて形成することができる。 The gate electrode 18 can be formed using a material such as Ti (titanium) / Pt (platinum) / Au (gold), Ni (nickel) / Au, or Pd (palladium) / Au. The drain electrode 172 and the source electrode 171 are made of a material such as Ti / Al (aluminum) / Ni / Au, Ti / Al / Mo (molybdenum) / Au, or Ti / Al / Nb (niobium) / Au. Can be formed. The gate insulating film 16 can be formed using a material such as Al 2 O 3 , Si 3 N 4 , or SiO 2 (silicon oxide).
 なお、ゲート電極18はリセス上に形成されるのが望ましい。このように形成した場合、ノーマリオフ動作が可能となる。しかし、リセスを形成しないプレーナ構造とすることも可能である。プレーナ構造においてノーマリオフ動作を可能にするためには、第一窒化物半導体層13の活性化不純物の濃度を1×1017cm-3のp形にすればよい。もしくは、第二窒化物半導体層15のゲート電極18と接触する部位をp形不純物ドープ領域152とすればよい。 The gate electrode 18 is preferably formed on the recess. When formed in this way, a normally-off operation is possible. However, a planar structure that does not form a recess is also possible. In order to enable a normally-off operation in the planar structure, the concentration of the activated impurity in the first nitride semiconductor layer 13 may be a p-type of 1 × 10 17 cm −3 . Alternatively, the portion of the second nitride semiconductor layer 15 that contacts the gate electrode 18 may be the p-type impurity doped region 152.
 本実施形態の電界効果トランジスタは、さらに、図1(a)に示すように、第二窒化物半導体層15のゲート電極18とドレイン電極172で挟まれた領域には、n形不純物をドーピングされたn形不純物ドープ領域151と、p形不純物をドーピングされたp形不純物ドープ領域152と、をゲート電極18がのびる方向に沿って交互に配列した縞模様が形成されている。 In the field effect transistor of this embodiment, as shown in FIG. 1A, the region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 is doped with an n-type impurity. Striped patterns are formed in which n-type impurity doped regions 151 and p-type impurity doped regions 152 doped with p-type impurities are alternately arranged along the direction in which the gate electrode 18 extends.
 また、第二窒化物半導体層15には、ソース電極171直下からドレイン電極172直下までのびるn形不純物ドープ領域151、および/または、p形不純物ドープ領域152が形成される。図1では、一例として、ソース電極171直下からドレイン電極172直下まで延びるn形不純物ドープ領域151を示している(図1(b)参照)。 In the second nitride semiconductor layer 15, an n-type impurity doped region 151 and / or a p-type impurity doped region 152 extending from immediately below the source electrode 171 to immediately below the drain electrode 172 are formed. FIG. 1 shows, as an example, an n-type impurity doped region 151 that extends from directly below the source electrode 171 to immediately below the drain electrode 172 (see FIG. 1B).
 n形不純物としては、例えば、Siを選択することができる。p形不純物としては、例えば、Mg(マグネシウム)、Be(ベリリウム)、H(水素)、などを選択することができる。 As the n-type impurity, for example, Si can be selected. As the p-type impurity, for example, Mg (magnesium), Be (beryllium), H (hydrogen), or the like can be selected.
 ここで、上述したような構成の本実施形態の電界効果トランジスタの場合、第一窒化物半導体層13と、第二窒化物半導体層15のn形不純物ドープ領域151と、の界面近傍には、2DEGを内包するn形伝導領域141がコラム状に形成される。一方、第一窒化物半導体層13と、第二窒化物半導体層15のp形不純物ドープ領域152と、の界面近傍には、2DHGを内包するp形伝導領域142がコラム状に形成される。以下、図3を用いて、この原理について説明する。 Here, in the case of the field effect transistor of the present embodiment configured as described above, in the vicinity of the interface between the first nitride semiconductor layer 13 and the n-type impurity doped region 151 of the second nitride semiconductor layer 15, An n-type conductive region 141 containing 2DEG is formed in a column shape. On the other hand, in the vicinity of the interface between the first nitride semiconductor layer 13 and the p-type impurity doped region 152 of the second nitride semiconductor layer 15, a p-type conductive region 142 containing 2DHG is formed in a column shape. Hereinafter, this principle will be described with reference to FIG.
 図3は、本実施形態の電界効果トランジスタにおいて、ドレイン電極172とソース電極171とを等電圧(Vds=0)とした時の、ゲート―ドレイン間のチャネル近傍のポテンシャルプロファイルを示す。図3(a)は、(X1-Y1)面のプロファイル、図3(b)は、(X2-Y2)面のプロファイルである。 3, the field-effect transistor of the present embodiment, when the drain electrode 172 and source electrode 171 was set to equal voltage (V ds = 0), the gate - shows the channel near the drain potential profile. FIG. 3A shows the profile of the (X1-Y1) plane, and FIG. 3B shows the profile of the (X2-Y2) plane.
 (0001)面第一窒化物半導体層(例:GaN層)13上に、第二窒化物半導体層(例:AlGaN層)15を結晶成長した場合、第二窒化物半導体層15には引張歪が働いて、ピエゾ分極が発生する。更に、自発性分極も発生するため、第一窒化物半導体層13と第二窒化物半導体層15の界面には、面密度(σ)の正電荷が発生する。ここで、σは、第二窒化物半導体層15のAl組成xの関数であり、下式(5)により近似できる。 When a second nitride semiconductor layer (eg, AlGaN layer) 15 is grown on the (0001) plane first nitride semiconductor layer (eg, GaN layer) 13, tensile strain is applied to the second nitride semiconductor layer 15. Works and piezo polarization occurs. Furthermore, since spontaneous polarization also occurs, a positive charge having a surface density (σ p ) is generated at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15. Here, σ p is a function of the Al composition x of the second nitride semiconductor layer 15 and can be approximated by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 第二窒化物半導体層15のn形不純物の濃度N、活性化率η、n形不純物ドープ領域の厚さ(深さ)t、p形不純物の濃度N、活性化率η、p形不純物ドープ領域の厚さ(深さ)t、が下式(6)をみたす場合、第二窒化物半導体層15の固定電荷の総和が正となる。 N-type impurity concentration N d , activation rate η d , n-type impurity doped region thickness (depth) t d , p-type impurity concentration N a , activation rate η a of second nitride semiconductor layer 15 when satisfying the thickness of the p-type impurity doped region (depth) t a, but the following expression (6), the sum of the fixed charge of the second nitride semiconductor layer 15 is positive.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この時の正の固定電荷の面密度Nは下式(7)で表わされる。 The surface density N n of the positive fixed charge at this time is expressed by the following formula (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 本実施形態の場合、(X1-Y1)面のゲート―ドレイン間では、式(6)をみたすよう構成しているので、第二窒化物半導体層15のn形不純物ドープ領域151は電子供給層として機能し、第一窒化物半導体層13と、第二窒化物半導体層15のn形不純物ドープ領域151と、の界面近傍には、2DEGを内包するn形伝導領域141が形成される(図3(a))。 In the case of the present embodiment, the n-type impurity doped region 151 of the second nitride semiconductor layer 15 is formed as an electron supply layer because the configuration is such that the formula (6) is satisfied between the gate and drain on the (X1-Y1) plane. In the vicinity of the interface between the first nitride semiconductor layer 13 and the n-type impurity doped region 151 of the second nitride semiconductor layer 15, an n-type conductive region 141 containing 2DEG is formed (see FIG. 3 (a)).
 一方、濃度N、活性化率η、n形不純物ドープ領域の厚さ(深さ)t、p形不純物の濃度N、活性化率η、p形不純物ドープ領域の厚さ(深さ)t、が下式(8)をみたす場合、第二窒化物半導体層15の固定電荷の総和は負となる。 On the other hand, concentration N d , activation rate η d , thickness (depth) t d of n-type impurity doped region, p-type impurity concentration N a , activation rate η a , thickness of p-type impurity doped region ( depth) t a case, but satisfying the formula (8), the sum of the fixed charge of the second nitride semiconductor layer 15 is negative.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 この時の負の固定電荷の面密度Nは下式(9)で表わされる。 Surface density N p of the negative fixed charge at this time is represented by the following formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 本実施形態の場合、(X2-Y2)面のゲート―ドレイン間では、式(8)をみたすよう構成しているので、第二窒化物半導体層15のp形不純物ドープ領域152は正孔供給層として機能し、第一窒化物半導体層13と、第二窒化物半導体層15のp形不純物ドープ領域152と、の界面近傍には、2DHGを内包するp形伝導領域142が形成される(図3(b))。 In the present embodiment, since the gate-drain of the (X2-Y2) plane is configured to satisfy the formula (8), the p-type impurity doped region 152 of the second nitride semiconductor layer 15 supplies holes. A p-type conductive region 142 containing 2DHG is formed in the vicinity of the interface between the first nitride semiconductor layer 13 and the p-type impurity doped region 152 of the second nitride semiconductor layer 15. FIG. 3 (b)).
 上述したような原理により、第一窒化物半導体層13と、第二窒化物半導体層15のn形不純物ドープ領域151と、の界面近傍には2DEGを内包するn形伝導領域141がコラム状に形成され、第一窒化物半導体層13と、第二窒化物半導体層15のp形不純物ドープ領域152と、の界面近傍には2DHGを内包するp形伝導領域142がコラム状に形成される。 Based on the principle described above, an n-type conductive region 141 containing 2DEG is formed in a column shape in the vicinity of the interface between the first nitride semiconductor layer 13 and the n-type impurity doped region 151 of the second nitride semiconductor layer 15. In the vicinity of the interface between the first nitride semiconductor layer 13 and the p-type impurity doped region 152 of the second nitride semiconductor layer 15, a p-type conductive region 142 containing 2DHG is formed in a column shape.
 なお、図1に示すような構成の場合、n形伝導領域141により形成される電子走行層は、第二窒化物半導体層15のn形不純物ドープ領域151と空間的に隔離されるため、イオン化不純物散乱が抑制されて、2DEGの移動度が向上する。また、第一窒化物半導体層13と、第二窒化物半導体層15とのヘテロ界面が原子レベルで平坦になるよう構成した場合、界面散乱が抑制され、さらに2DEGの移動度が向上する。かかる場合、電子移動度として、1500~2000cm/Vs程度を実現することができる。 In the case of the configuration shown in FIG. 1, the electron transit layer formed by the n-type conduction region 141 is spatially isolated from the n-type impurity doped region 151 of the second nitride semiconductor layer 15. Impurity scattering is suppressed and the mobility of 2DEG is improved. Further, when the heterointerface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 is configured to be flat at the atomic level, interface scattering is suppressed, and the mobility of 2DEG is further improved. In such a case, an electron mobility of about 1500 to 2000 cm 2 / Vs can be realized.
 次に、図1(a)に示すように、ゲート電極18およびドレイン電極172の直下を除くゲート電極18とドレイン電極172で挟まれた領域に、n形不純物ドープ領域151と、p形不純物ドープ領域152と、を交互に配列した縞模様を形成することによる効果を、図5を用いて説明する。 Next, as shown in FIG. 1A, an n-type impurity doped region 151 and a p-type impurity doped region are formed in a region sandwiched between the gate electrode 18 and the drain electrode 172 except just below the gate electrode 18 and the drain electrode 172. The effect of forming the stripe pattern in which the regions 152 are alternately arranged will be described with reference to FIG.
 図5は、本実施形態の電界効果トランジスタにおいてチャネルをピンチオフさせてドレイン電極172に破壊電圧(V=BV)を印加したときのn形伝導領域141の中央線(図1中、X1-Y1方向)に沿った電荷密度、電界強度、電位の分布の模式図である。図5(a)は電荷密度分布、図5(b)は電界分布、図5(c)は電位分布を示す。 FIG. 5 shows the center line of the n-type conductive region 141 when a breakdown voltage (V d = BV) is applied to the drain electrode 172 by pinching off the channel in the field effect transistor of this embodiment (X1-Y1 in FIG. 1). It is a schematic diagram of a charge density, electric field strength, and potential distribution along (direction). 5A shows the charge density distribution, FIG. 5B shows the electric field distribution, and FIG. 5C shows the potential distribution.
 本実施形態の電界効果トランジスタにおいてチャネルをピンチオフさせてドレイン電極172に破壊電圧(V=BV)を印加した場合、図2に示すように第二窒化物半導体層15には空乏層20(斜線領域)が発生する。そして、n形不純物とp形不純物のイオン化に起因した固定電荷が発生する。 When the channel is pinched off and a breakdown voltage (V d = BV) is applied to the drain electrode 172 in the field effect transistor of this embodiment, the depletion layer 20 (oblique line) is formed in the second nitride semiconductor layer 15 as shown in FIG. Area) occurs. Then, a fixed charge is generated due to ionization of the n-type impurity and the p-type impurity.
 ここで、第二窒化物半導体層15のn形不純物ドープ領域151の幅をW、固定電荷の面密度をqNnとすると、第二窒化物半導体層15のn形不純物ドープ領域151における単位長さあたりの固定電荷密度は、q×N×Wで表わされる(図5(a))。 Here, if the width of the n-type impurity doped region 151 of the second nitride semiconductor layer 15 is W n and the surface density of the fixed charge is qN n , the unit in the n-type impurity doped region 151 of the second nitride semiconductor layer 15 is The fixed charge density per length is represented by q × N n × W n (FIG. 5A).
 また、第二窒化物半導体層15のp形不純物ドープ領域152の幅をW、固定電荷の面密度を-qNpとすると、第二窒化物半導体層15のp形不純物ドープ領域152における単位長さあたりの固定電荷密度は、-q×N×Wで表わされる(図5(a))。 Further, when the width of the p-type impurity doped region 152 of the second nitride semiconductor layer 15 is W p and the surface density of the fixed charge is −qN p , the unit in the p-type impurity doped region 152 of the second nitride semiconductor layer 15 is The fixed charge density per length is represented by −q × N p × W p (FIG. 5A).
 そして、本実施形態の電界効果トランジスタは、下式(10)をみたすようにN、N、W、Wを設定する。 The field effect transistor of the present embodiment sets the N n, N p, W n , W p so as to satisfy the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 すなわち、n形不純物ドープ領域151のn形活性化不純物の面密度nd1と、n形不純物ドープ領域151のp形活性化不純物の面密度na1と、n形不純物ドープ領域151の幅Wnと、p形不純物ドープ領域152のp形活性化不純物の面密度na2と、p形不純物ドープ領域152のn形活性化不純物の面密度nd2と、p形不純物ドープ領域152の幅Wpと、第一の窒化物半導体層13と第二の窒化物半導体層15との界面に形成される分極電荷の面密度σと、素電荷q(=1.6×10-19C)とが、|nd1-na1+σ/q|×W=|-nd2+na2-σ/q|×Wの関係式をみたすように設定する。 That is, the surface density n d1 of the n-type activation impurity in the n-type impurity doped region 151, the surface density n a1 of the p-type activation impurity in the n-type impurity doped region 151, and the width W n of the n-type impurity doped region 151. The surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the p-type impurity doped region 152. The surface density σ p of the polarization charge formed at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, and the elementary charge q (= 1.6 × 10 −19 C). Is set so as to satisfy the relational expression of | n d1 −n a1 + σ p / q | × W n = | −n d2 + n a2 −σ p / q | × W p .
 このように構成した場合、第二窒化物半導体層15内の平均電荷は0(ゼロ)となるため、図5(b)に示すように、空乏層のゲート電極側端(x=0)での電界集中は緩和され、空乏層のゲート電極側端(x=0)から空乏層端(x=L)の間の電界強度はほぼ一定(F=F)となる。その結果、オフ耐圧は改善される。 In such a configuration, since the average charge in the second nitride semiconductor layer 15 is 0 (zero), as shown in FIG. 5B, at the gate electrode side end (x = 0) of the depletion layer. The electric field concentration between the gate electrode side end (x = 0) and the depletion layer end (x = L) of the depletion layer becomes substantially constant (F = F c ). As a result, the off breakdown voltage is improved.
 なお、本実施形態の電界効果トランジスタは、式(10)をみたすのが望ましいが、下式(11)をみたす範囲に構成することも可能である。 It should be noted that the field effect transistor of the present embodiment desirably satisfies Equation (10), but can be configured within the range satisfying Equation (11) below.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 すなわち、n形不純物ドープ領域151のn形活性化不純物の面密度nd1と、n形不純物ドープ領域151のp形活性化不純物の面密度na1と、n形不純物ドープ領域151の幅Wnと、p形不純物ドープ領域152のp形活性化不純物の面密度na2と、p形不純物ドープ領域152のn形活性化不純物の面密度nd2と、p形不純物ドープ領域152の幅Wpと、第一の窒化物半導体層13と第二の窒化物半導体層15との界面に形成される分極電荷の面密度σと、素電荷q(=1.6×10-19C)とが、0.1<(|nd1-na1+σ/q|×W)/(|-nd2+na2-σ/q|×W)<10の関係式をみたすように設定することも可能である。 That is, the surface density n d1 of the n-type activation impurity in the n-type impurity doped region 151, the surface density n a1 of the p-type activation impurity in the n-type impurity doped region 151, and the width W n of the n-type impurity doped region 151. The surface density n a2 of the p-type activation impurity in the p-type impurity doped region 152, the surface density n d2 of the n-type activation impurity in the p-type impurity doped region 152, and the width W p of the p-type impurity doped region 152. The surface density σ p of the polarization charge formed at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, and the elementary charge q (= 1.6 × 10 −19 C). Is set so as to satisfy the relational expression 0.1 <(| n d1 −n a1 + σ p / q | × W n ) / (| −n d2 + n a2 −σ p / q | × W p ) <10 It is also possible to do.
 式(11)をみたす範囲に構成した場合についても、式(10)をみたすよう構成した際に得られる上述した効果と同様の一定の効果を得ることができる。 Also in the case where it is configured within the range satisfying the expression (11), the same effect as the above-described effect obtained when the structure is satisfied so as to satisfy the expression (10) can be obtained.
 ここで、実際には、表面ポテンシャルの影響で表面空乏層が形成されるが、表面空乏層部分の固定電荷は表面トラップの電荷により補償されるため、本来ならば、式(10)、(11)においてNおよびNから表面空乏層を差し引く必要がある。 Here, in actuality, a surface depletion layer is formed due to the influence of the surface potential, but the fixed charge in the surface depletion layer portion is compensated by the charge of the surface trap. it is necessary to subtract the surface depletion from n n and n p in).
 しかし、本実施形態では、図1(a)に示すように、n形不純物ドープ領域151とp形不純物ドープ領域152とがゲート電極18がのびる方向に沿って交互に配列されているため、表面空乏層の影響は、n形不純物ドープ領域151とp形不純物ドープ領域152の両方に同等に作用する。このため、式(10)において表面空乏層の影響を考慮する必要がなくなり、エピ設計が容易になるというメリットがある。これは、p形層とn形層を縦方向に積層したリサーフ構造にはない特徴である。 However, in the present embodiment, as shown in FIG. 1A, the n-type impurity doped regions 151 and the p-type impurity doped regions 152 are alternately arranged along the direction in which the gate electrode 18 extends. The influence of the depletion layer acts equally on both the n-type impurity doped region 151 and the p-type impurity doped region 152. For this reason, it is not necessary to consider the influence of the surface depletion layer in the equation (10), and there is an advantage that the epi-design is facilitated. This is a feature that does not exist in the RESURF structure in which the p-type layer and the n-type layer are stacked in the vertical direction.
 次に、本実施形態の電界効果トランジスタのオン抵抗Ronとオフ耐圧BVの関係について説明する。 Next, a description will be given of the relationship on-resistance of the field-effect transistor R on and off-state breakdown voltage BV of the present embodiment.
 まず、電界を距離で積分したものが電位となることから、図5(b)に示すように電界強度F=Fの場合、オフ耐圧BVは下式(12)のように表わされる(図5(c))。 First, since the the integral of the electric field in the distance is the potential, when electric field strength F = F c as shown in FIG. 5 (b), off-breakdown voltage BV is expressed by the following equation (12) (FIG. 5 (c)).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 オン抵抗全体における空乏層抵抗の割合が十分大きいと仮定すると、オン抵抗Ronと空乏層の断面積Aの積は、下式(13)のように表わされる。なお、tはチャネル厚、μは電子移動度である。 Assuming that the ratio of the depletion layer resistance to the entire on-resistance is sufficiently large, the product of the on-resistance R on and the cross-sectional area A of the depletion layer is expressed by the following equation (13). Here, t is the channel thickness and μ n is the electron mobility.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 そして、式(12)と式(13)より、下式(14)が得られる。 Then, the following equation (14) is obtained from the equations (12) and (13).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、図4に、式(14)を用いて計算されたオン抵抗Ronとオフ耐圧BVの関係を実線で示す。W=W、μ=2000cm/Vs、F=3MV/cm、N/t=5×1017cm-3と仮定した。なお、図4には、あわせて、図12に示すような横型の電界効果トランジスタにおける計算結果(図中、点線)を示してある。これは図15に示す抵抗Ronとオフ耐圧BVの関係と同じである。 Here, FIG. 4 shows the calculated on-relationship of the resistance R on and off-state breakdown voltage BV using equation (14) by a solid line. It was assumed that W n = W p , μ n = 2000 cm 2 / Vs, F c = 3 MV / cm, N n / t = 5 × 10 17 cm −3 . FIG. 4 also shows the calculation result (dotted line in the figure) of the horizontal field effect transistor as shown in FIG. This is the same as the relationship between the resistance R on and off-state breakdown voltage BV shown in FIG. 15.
 図12に示すような横型の電界効果トランジスタの場合、オン抵抗Ronがオフ耐圧BVの2乗に比例するのに対して、本実施形態の電界効果トランジスタの場合、オン抵抗Ronはオフ耐圧BVに比例する。すなわち、本実施形態の電界効果トランジスタの方が、オン抵抗Ronのオフ耐圧BV依存性は緩やかになっている。その結果、本実施形態の電界効果トランジスタの方が、図12に示すような横型の電界効果トランジスタに比べて、オフ耐圧BVを増加させても、オン抵抗Ronが増加するのを軽減することができる。換言すれば、本実施形態の電界効果トランジスタの方が、図12に示すような横型の電界効果トランジスタに比べて、オン抵抗Ronを減少させても、オフ耐圧BVが減少するのを軽減することができる。また、図4より、オフ耐圧BVを高く設定した場合に、本実施形態の電界効果トランジスタの方が、図12に示すような横型の電界効果トランジスタに比べて、オン抵抗Ronを低くすることができる。例えば、オフ耐圧BVを1.0×10Vと設定した場合、本実施形態の電界効果トランジスタのオン抵抗Ronは、図12に示すような横型の電界効果トランジスタのオン抵抗Ronの、約1/200倍になる。 In the case of the lateral field effect transistor as shown in FIG. 12, the on-resistance R on is proportional to the square of the off breakdown voltage BV, whereas in the case of the field effect transistor of this embodiment, the on resistance R on is the off breakdown voltage. Proportional to BV. That is, in the field effect transistor of this embodiment, the on-resistance Ron has a gentle dependence on the off-breakdown voltage BV. As a result, the field effect transistor of this embodiment can reduce the increase in the on-resistance R on even when the off-breakdown voltage BV is increased, as compared with the lateral field-effect transistor as shown in FIG. Can do. In other words, towards the field effect transistor of the present embodiment, as compared with the lateral field effect transistor as shown in FIG. 12, also reduces the on-resistance R on, to reduce the off-state breakdown voltage BV is to reduce be able to. In addition, as shown in FIG. 4, when the off breakdown voltage BV is set higher, the field effect transistor of this embodiment has a lower on-resistance R on than the lateral field effect transistor as shown in FIG. Can do. For example, if you set the off-state breakdown voltage BV and 1.0 × 10 4 V, the on-resistance R on of the field effect transistor of this embodiment, the on-resistance R on of the lateral field effect transistor as shown in FIG. 12, It becomes about 1/200 times.
 また、図4には、あわせて、スーパージャンクションを有する縦型デバイス構造をGaN系半導体材料に適用した場合の計算結果(図中、破線)を示してある。これは、W=W、μ=200cm/Vs、F=3MV/cm、N/t=5×1017cm-3と仮定した。ここで、スーパージャンクションを有する縦型デバイス構造の方が、本実施形態の電界効果トランジスタに比べて、電子移動度μが低いのは、スーパージャンクションを有する縦型デバイス構造の場合、電子がバルク半導体を走行するため、イオン化不純物散乱の影響を受けるためである。図4より、同じオフ耐圧BVの場合、本実施形態の電界効果トランジスタのオン抵抗Ronの方が、スーパージャンクションを有する縦型デバイス構造のオン抵抗Ronよりも、約1/10程度小さいことがわかる。 FIG. 4 also shows a calculation result (broken line in the figure) when a vertical device structure having a super junction is applied to a GaN-based semiconductor material. This was assumed to be W n = W p , μ n = 200 cm 2 / Vs, F c = 3 MV / cm, N n / t = 5 × 10 17 cm −3 . Here, in the vertical device structure having a super junction, the electron mobility μ n is lower than that in the field effect transistor of this embodiment. In the vertical device structure having a super junction, electrons are bulky. This is because the semiconductor travels due to the influence of ionized impurity scattering. From FIG. 4, in the case of the same off-breakdown voltage BV, the on-resistance R on of the field effect transistor of the present embodiment is about 1/10 smaller than the on-resistance R on of the vertical device structure having a super junction. I understand.
 ここで、本実施形態の電界効果トランジスタは、図1(b)(c)に示すように、積層体13、15の上であって、ソース電極171を挟んでゲート電極18の反対側に、第四の電極19を備えることができる。また、積層体13、15の下であって、積層体13、15と接する位置に、p形またはn形である1形不純物をドーピングされた第三の窒化物半導体からなる第三窒化物半導体層12を備えることができる。 Here, as shown in FIGS. 1B and 1C, the field effect transistor of the present embodiment is on the stacked bodies 13 and 15 on the opposite side of the gate electrode 18 with the source electrode 171 interposed therebetween. A fourth electrode 19 can be provided. A third nitride semiconductor made of a third nitride semiconductor doped with a p-type or n-type impurity at a position below the stacked bodies 13 and 15 and in contact with the stacked bodies 13 and 15. A layer 12 can be provided.
 そして、第二窒化物半導体層15の縞領域を構成するp形またはn形である1形不純物ドープ領域は、ソース電極171の直下まで延伸せず、第四の電極19の直下には、p形またはn形である1形不純物をドーピングされた1形不純物ドープ領域が形成されてもよい。例えば、図1(b)(c)に示すように、第二窒化物半導体層15の縞領域を構成するp形不純物ドープ領域152は、ソース電極171の直下まで延伸せず、第四の電極19の直下には、p形不純物をドーピングされたp形不純物ドープ領域152が形成されてもよい。 Then, the p-type or n-type 1-type impurity doped region constituting the stripe region of the second nitride semiconductor layer 15 does not extend to just below the source electrode 171, but directly below the fourth electrode 19. A 1-type impurity doped region doped with a 1-type impurity that is a n-type or an n-type may be formed. For example, as shown in FIGS. 1B and 1C, the p-type impurity doped region 152 constituting the stripe region of the second nitride semiconductor layer 15 does not extend to directly below the source electrode 171, and the fourth electrode A p-type impurity doped region 152 doped with a p-type impurity may be formed immediately below 19.
 図1(b)(c)に示すように構成した場合、第四の電極19を、例えばソース電極171を介して電気的に接地すると、衝突イオン化で発生した正孔を、第三窒化物半導体層12および第四の電極19を介して、デバイス外部に引き抜くことができる。その結果、素子のアバランシェ耐量を改善することができる。なお、第四の電極19は、Ti(チタン)/Pt(白金)/Au(金)、または、Ni(ニッケル)/Au、または、Pd(パラジウム)/Au、などの材料を用いて形成することができる。 When configured as shown in FIGS. 1B and 1C, when the fourth electrode 19 is electrically grounded, for example, via the source electrode 171, holes generated by impact ionization are removed from the third nitride semiconductor. The layer 12 and the fourth electrode 19 can be extracted outside the device. As a result, the avalanche resistance of the device can be improved. The fourth electrode 19 is formed using a material such as Ti (titanium) / Pt (platinum) / Au (gold), Ni (nickel) / Au, or Pd (palladium) / Au. be able to.
 このように、本実施形態の電界効果トランジスタは、図1(b)に示す状態からゲート電極18に正電圧を印加してチャネルをオン状態にすると、n形伝導領域141に、ドレイン電極172とソース電極171を結ぶ2DEGチャネルが形成され、電子が走行する。一方、ゲート電極18を0(ゼロ)電位にしてドレイン電極172に高電圧を印加したオフ状態では、n形伝導領域141とp形伝導領域142の全体が空乏化して、空間電荷が打ち消しあう。このため、ゲート電極18とドレイン電極172で挟まれた領域は、電界強度がほぼ一定となり、電界集中が緩和される。また、第四の電極19を、例えばソース電極171と等電位に接地することで、衝突イオン化で発生した正孔をデバイス外部に引き抜くことができ、素子のアバランシェ耐量を改善することができる。 As described above, when the channel is turned on by applying a positive voltage to the gate electrode 18 from the state shown in FIG. 1B, the field effect transistor of the present embodiment has the drain electrode 172 and the n-type conduction region 141. A 2DEG channel connecting the source electrodes 171 is formed, and electrons travel. On the other hand, in the OFF state in which the gate electrode 18 is set to 0 (zero) potential and a high voltage is applied to the drain electrode 172, the entire n-type conduction region 141 and p-type conduction region 142 are depleted and the space charges cancel each other. For this reason, in the region sandwiched between the gate electrode 18 and the drain electrode 172, the electric field strength is substantially constant, and the electric field concentration is reduced. In addition, by grounding the fourth electrode 19 to the same potential as the source electrode 171, for example, holes generated by impact ionization can be extracted outside the device, and the avalanche resistance of the element can be improved.
 なお、本実施形態の電界効果トランジスタは、上述した説明におけるn形とp形を逆にした構成とすることもできる。 In addition, the field effect transistor of this embodiment can also be made into the structure which reversed the n-type and p-type in the above-mentioned description.
 また、上述した説明では、第二窒化物半導体層15内に不純物のドーピングを行い、縞模様を形成する構成としたが、本実施形態の電界効果トランジスタは、第一窒化物半導体層13内に不純物のドーピングを行い、縞模様を形成する構成とすることもできる。かかる場合、キャリアは、第一窒化物半導体層13と第二窒化物半導体層15のヘテロ界面でなく、第一窒化物半導体層13内を走行することとなるが、上述した効果と同様の効果を得ることができる。 In the above description, the second nitride semiconductor layer 15 is doped with impurities to form a stripe pattern. However, the field effect transistor according to the present embodiment includes the first nitride semiconductor layer 13 in the first nitride semiconductor layer 13. It is also possible to form a stripe pattern by doping impurities. In such a case, the carriers travel not in the heterointerface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 but in the first nitride semiconductor layer 13, but the same effect as described above. Can be obtained.
 これらの前提については、以下のすべての実施形態について同様である。
<実施形態1の電界効果トランジスタの一例>
These assumptions are the same for all of the following embodiments.
<Example of Field Effect Transistor of Embodiment 1>
 次に、本実施形態の電界効果トランジスタの一つの実現例について説明する。 Next, one implementation example of the field effect transistor of the present embodiment will be described.
 最初に、製造方法について説明する。なお、以下の製造方法は、本実施形態の電界効果トランジスタの一例を製造するための製造方法の一例である。すなわち、本実施形態の電界効果トランジスタは、以下で説明する方法で製造されるものに限定されるものではない。当該前提は、以下のすべての実施形態において同様である。 First, the manufacturing method will be described. The following manufacturing method is an example of a manufacturing method for manufacturing an example of the field effect transistor of the present embodiment. That is, the field effect transistor of this embodiment is not limited to the one manufactured by the method described below. This assumption is the same in all the following embodiments.
 まず、Si基板10上に、例えば、有機金属気相成長(Metalorganic Chemical Vapor Deposition:以下、「MOCVD」という)法により、下記(1)~(5)に示す層を、下記に示す順で順次成長させる。 First, the following layers (1) to (5) are sequentially formed on the Si substrate 10 in the following order, for example, by metal organic chemical vapor deposition (hereinafter referred to as “MOCVD”). Grow.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープGaN層(バッファ層11)・・・1μm
(3)p形GaN層「Mgドーピング:濃度1×1019cm-3」(第三窒化物半導体層12)・・・100nm
(4)アンドープGaN層(第一窒化物半導体層13)・・・100nm
(5)p形Al0.05Ga0.95N層「Mgドーピング:濃度1×1019
cm-3」(第二窒化物半導体層15)・・・60nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) Undoped GaN layer (buffer layer 11) 1 μm
(3) p-type GaN layer “Mg doping: concentration 1 × 10 19 cm −3 ” (third nitride semiconductor layer 12) 100 nm
(4) Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm
(5) p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 × 10 19
cm −3 ”(second nitride semiconductor layer 15) ... 60 nm
 ここで、p形Al0.05Ga0.95N層「Mgドーピング:濃度1×1019cm-3」(第二窒化物半導体層15)は、転位発生の臨界膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.05とし、p形Al0.05Ga0.95N層「Mgドーピング:濃度1×1019cm-3」(第二窒化物半導体層15)の厚さを200nm以下とすることで、転位発生の臨界膜厚以内としている。 Here, the p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 × 10 19 cm −3 ” (second nitride semiconductor layer 15) is thinner than the critical film thickness of dislocation generation, and is strained lattice It is a layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In this example, x = 0.05, and the thickness of the p-type Al 0.05 Ga 0.95 N layer “Mg doping: concentration 1 × 10 19 cm −3 ” (second nitride semiconductor layer 15) is 200 nm. By making it below, it is within the critical film thickness of dislocation generation.
 次に、第二窒化物半導体層15の上に、例えば、プラズマ励起気相成長(Plasma-Enhanced Chemical Vapor Deposition:以下、「PECVD」という)法を用いて、SiNなどの表面保護膜(図示せず)を堆積し、イオン注入による表面損傷を防止するための表面保護膜を形成する。 Next, a surface protective film (not shown) such as SiN is formed on the second nitride semiconductor layer 15 by using, for example, a plasma-enhanced chemical vapor deposition (hereinafter referred to as “PECVD”) method. And a surface protective film for preventing surface damage due to ion implantation is formed.
 次に、二窒化物半導体層15にイオン注入を行う。例えば、n形不純物をドーピングする領域以外の領域をレジスト膜で覆った状態で、Si(n形不純物)をドーピングする。ドーピング条件としては、例えば、加速エネルギー60kev、ドーズ量は6×1013cm-2とすることで、平均原子濃度1×1019cm-3、深さ方向の拡がり(t)60nmのSiドープ領域(n形不純物ドープ領域151)を第二窒化物半導体層15中に選択的に形成できる。なお、n形不純物をドーピングする領域の幅Wと、n形不純物をドーピングしない領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、1000~1200℃にて活性化アニールを行うことにより、Siの活性化率として約10%を得ることができる。本例の場合、イオン注入の深さは100nm程度以下と浅いため、活性化アニール温度を1200℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。 Next, ion implantation is performed on the dinitride semiconductor layer 15. For example, Si (n-type impurity) is doped in a state where a region other than a region to be doped with n-type impurity is covered with a resist film. The doping conditions are, for example, an acceleration energy of 60 kev, a dose of 6 × 10 13 cm −2 , an average atomic concentration of 1 × 10 19 cm −3 , and a depth-wise expansion (t d ) of 60 nm. A region (n-type impurity doped region 151) can be selectively formed in the second nitride semiconductor layer 15. Note that the width W n of the region doped with n-type impurities and the width W p of the region not doped with n-type impurities were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained. In the case of this example, since the depth of ion implantation is as shallow as about 100 nm or less, the activation annealing temperature can be lowered to 1200 ° C. or less, and the compatibility with the conventional GaN process is good.
 次に、表面保護膜を除去した後、第二窒化物半導体層15上に、例えば、Ti/Al/Ni/Auなどの金属を蒸着、アロイ処理することにより、ソース電極171およびドレイン電極172を形成し、第二窒化物半導体層15と第一窒化物半導体層13の界面に形成される2DEGとのオーム性接触をとる。また、第二窒化物半導体層15上に、例えば、PECVD法を用いて、SiNなどの絶縁膜(図示せず)を、例えば50nm堆積する。その後、前記絶縁膜を介して、例えば、N(窒素)などのイオン注入を実施することで素子間分離を行う。 Next, after removing the surface protective film, the source electrode 171 and the drain electrode 172 are formed on the second nitride semiconductor layer 15 by evaporating and alloying a metal such as Ti / Al / Ni / Au, for example. The ohmic contact between 2DEG formed at the interface between the second nitride semiconductor layer 15 and the first nitride semiconductor layer 13 is formed. Further, an insulating film (not shown) such as SiN is deposited on the second nitride semiconductor layer 15 by using, for example, PECVD, for example, by 50 nm. Then, element isolation is performed by performing ion implantation of N (nitrogen) or the like through the insulating film.
 また、ソース電極171とドレイン電極172で挟まれた領域に、例えば、SF(フッ化硫黄)などの反応ガスを用いて開口部を形成した後、例えば、BCl(塩化ホウ素)などの反応ガスを用いて第二窒化物半導体層15の一部をエッチング除去することによりリセス部を形成する。その後、前記リセス部を埋め込むように、例えば、減圧気相成長(Low-Pressure Chemical Vapor Deposition:以下、「LPCVD」という)を用いてAlなどの絶縁膜16を50nm程度堆積する。そして、Ti/Pt/Auなどの金属を蒸着、リフトオフすることにより、絶縁膜16上にゲート電極18および第四の電極19を形成する。 Further, an opening is formed in a region sandwiched between the source electrode 171 and the drain electrode 172 using a reactive gas such as SF 6 (sulfur fluoride), and then a reaction such as BCl 3 (boron chloride) is performed. A recess is formed by etching away a part of the second nitride semiconductor layer 15 using a gas. Thereafter, an insulating film 16 such as Al 2 O 3 is deposited to a thickness of about 50 nm using, for example, low-pressure chemical vapor deposition (hereinafter referred to as “LPCVD”) so as to fill the recess. Then, a gate electrode 18 and a fourth electrode 19 are formed on the insulating film 16 by evaporating and lifting off a metal such as Ti / Pt / Au.
 上述した製造方法により製造された本例の電界効果トランジスタの場合、p形Al0.05Ga0.95N層(第二窒化物半導体層15)のAl組成はx=0.05であるので、式(5)よりσ/q=+3×1012cm-2となる。 In the case of the field effect transistor of this example manufactured by the manufacturing method described above, the Al composition of the p-type Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) is x = 0.05. From Equation (5), σ p / q = + 3 × 10 12 cm −2 is obtained.
 p形Al0.05Ga0.95N層(第二窒化物半導体層15)のn形不純物をドーピングしていない領域152においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=1×1019cm-3、活性化率η=0.1、p形不純物ドープ領域の厚さ(深さ)t=60nmであるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=3×1012cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 In the region 152 of the p-type Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) that is not doped with the n-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type Since the impurity concentration is N a = 1 × 10 19 cm −3 , the activation rate η a = 0.1, and the thickness (depth) of the p-type impurity doped region t a = 60 nm, the relational expression (8) Thus, a negative fixed charge having a surface density N p = 3 × 10 12 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, the p-type conduction region 142 is formed.
 また、p形Al0.05Ga0.95N層(第二窒化物半導体層15)のn形不純物をドーピングした領域151においては、n形不純物の濃度がN=1×1019cm-3、p形不純物の濃度がN=1×1019cm-3、活性化率η=η=0.1、p形不純物ドープ領域の厚さ(深さ)t=60nm、n形不純物ドープ領域の厚さ(深さ)t=60nmであるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=3×1012cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the region 151 doped with the n-type impurity of the p-type Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15), the concentration of the n-type impurity is N d = 1 × 10 19 cm −. 3, the concentration of the p-type impurity n a = 1 × 10 19 cm -3, activation ratio η a = η d = 0.1, the thickness of the p-type impurity doped region (depth) t a = 60nm, n Since the thickness (depth) of the impurity doped region t d = 60 nm, the relational expression (6) is established, and the surface density N n = 3 × 10 12 cm −2 in the second nitride semiconductor layer 15 is positive. Are formed. For this reason, an n-type conductive region 141 is formed.
 このように、上述した製造方法により製造された本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、上述した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と結合すれば、アバランシェ耐量を改善することができる。 Thus, in the case of the field effect transistor of this example manufactured by the above-described manufacturing method, Expression (10) is established. For this reason, based on the above principle of operation, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
 なお、上述した製造方法においては、結晶成長段階において、Al0.05Ga0.95N層(第二窒化物半導体層15)をp形にしておき(Mgドーピング)、その後の工程で、n形不純物をドーピングしてn形不純物ドープ領域151を形成したが、n形とp形を形成する処理を逆にすることもできる。すなわち、結晶成長段階において、Al0.05Ga0.95N層(第二窒化物半導体層15)をn形にしておき(n形不純物ドーピング)、その後の工程で、p形不純物をドーピングしてp形不純物ドープ領域152を形成してもよい。 In the manufacturing method described above, in the crystal growth stage, the Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) is made p-type (Mg doping), and in the subsequent steps, n Although the n-type impurity doped region 151 is formed by doping the n-type impurity, the process of forming the n-type and the p-type can be reversed. That is, in the crystal growth stage, the Al 0.05 Ga 0.95 N layer (second nitride semiconductor layer 15) is made n-type (n-type impurity doping), and in the subsequent process, p-type impurities are doped. Thus, the p-type impurity doped region 152 may be formed.
 また、(4)GaN層(第一窒化物半導体層13)はアンドープとしたが、活性化不純物濃度とした1×1017cm-3程度以下のp形もしくはn形としてもよい。 Further, (4) the GaN layer (first nitride semiconductor layer 13) is undoped, but it may be p-type or n-type having an activation impurity concentration of about 1 × 10 17 cm −3 or less.
 これらの前提については、以下のすべての実施形態の実現例において同様である。
<<実施形態2>>
<実施形態2の電界効果トランジスタの構成>
These assumptions are the same in the implementation examples of all the following embodiments.
<< Embodiment 2 >>
<Configuration of Field Effect Transistor of Second Embodiment>
 図6に、本実施形態の電界効果トランジスタの構成を示す。図6(a)は平面概略図、図6(b)は図6(a)の(X1-Y1)面における断面概略図、図6(c)は図6(a)の(X2-Y2)面における断面概略図である。なお、図6(a)において、第一窒化物半導体層13の下側に位置する第二窒化物半導体層15を点線で示してある。すなわち、図6(a)に示されているn形不純物ドープ領域151と、p形不純物ドープ領域152は、第二窒化物半導体層15に形成されているものである。 FIG. 6 shows the configuration of the field effect transistor of this embodiment. 6A is a schematic plan view, FIG. 6B is a schematic cross-sectional view of the (X1-Y1) plane of FIG. 6A, and FIG. 6C is (X2-Y2) of FIG. 6A. It is the cross-sectional schematic in a surface. In FIG. 6A, the second nitride semiconductor layer 15 located below the first nitride semiconductor layer 13 is indicated by a dotted line. That is, the n-type impurity doped region 151 and the p-type impurity doped region 152 shown in FIG. 6A are formed in the second nitride semiconductor layer 15.
 本実施形態の電界効果トランジスタは、図6(b)(c)に示すように、第一窒化物半導体層13が、第二窒化物半導体層15の上側に設けられている。このように構成しても、実施形態1の電界効果トランジスタと同様な効果を実現することができる。また、このように構成することにより、電子のチャネルとなるn形伝導領域141とドレイン電極172との間、および、n形伝導領域141とソース電極171との間に、バンドギャップの大きい半導体層が存在しなくなる。その結果、コンタクト抵抗が低減し、オン抵抗Ronをさらに改善することができる。 In the field effect transistor of the present embodiment, the first nitride semiconductor layer 13 is provided on the upper side of the second nitride semiconductor layer 15 as shown in FIGS. Even if comprised in this way, the effect similar to the field effect transistor of Embodiment 1 is realizable. Further, with such a configuration, a semiconductor layer having a large band gap between the n-type conductive region 141 and the drain electrode 172 serving as an electron channel and between the n-type conductive region 141 and the source electrode 171. No longer exists. As a result, the contact resistance is reduced, it is possible to further improve the on-resistance R on.
 なお、積層体13、15はエピタキシャル層であって、結晶成長は[0001]方向に平行としてもよい。また、積層体13、15と基板10との間に、最表面にて第二窒化物半導体と格子整合する(0001)面成長のバッファ層11を備えてもよい。 The stacked bodies 13 and 15 are epitaxial layers, and the crystal growth may be parallel to the [0001] direction. Further, a buffer layer 11 of (0001) plane growth that lattice matches with the second nitride semiconductor on the outermost surface may be provided between the stacked bodies 13 and 15 and the substrate 10.
 なお、その他の構成については、実施形態1と同様であるので、ここでの詳細な説明は省略する。
<実施形態2の電界効果トランジスタの一例>
Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted here.
<Example of Field Effect Transistor of Embodiment 2>
 次に、本実施形態の電界効果トランジスタの一つの実現例について説明する。本例の電界効果トランジスタは、例えば、以下のような製造方法により製造される。 Next, one implementation example of the field effect transistor of the present embodiment will be described. The field effect transistor of this example is manufactured by the following manufacturing method, for example.
 まず、Si基板10上に、例えば、MOCVD法により、下記(1)~(5)に示す層を、下記に示す順で順次成長させる。 First, on the Si substrate 10, the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープAl0.06Ga0.94N層(バッファ層11)・・・1μm
(3)p形Al0.06Ga0.94N層「Mgドーピング:濃度1×1019
cm-3」(第三窒化物半導体層12)・・・100nm
(4)アンドープAl0.06Ga0.94N層(第二窒化物半導体層15)・・・40nm
(5)n形Al0.06Ga0.94N層「Siドーピング:濃度1×1018
cm-3」(第二窒化物半導体層15)・・・60nm
(6)アンドープGaN層(第一窒化物半導体層13)・・・100nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) Undoped Al 0.06 Ga 0.94 N layer (buffer layer 11) 1 μm
(3) p-type Al 0.06 Ga 0.94 N layer “Mg doping: concentration 1 × 10 19
cm −3 ”(third nitride semiconductor layer 12) ... 100 nm
(4) Undoped Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) 40 nm
(5) n-type Al 0.06 Ga 0.94 N layer “Si doping: concentration 1 × 10 18
cm −3 ”(second nitride semiconductor layer 15) ... 60 nm
(6) Undoped GaN layer (first nitride semiconductor layer 13) 100 nm
 ここで、第一窒化物半導体層13は、転位発生の膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.06とし、第一窒化物半導体層13の厚さを200nm以下とすることで、転移発生の臨界膜厚以内としている。 Here, the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In the case of this example, x = 0.06, and the thickness of the first nitride semiconductor layer 13 is set to 200 nm or less, so that it is within the critical film thickness for occurrence of transition.
 なお、本例の電界効果トランジスタの場合、例えば、PECVD法を用いてSiNなどの表面保護膜(図示せず)を形成後、第二窒化物半導体層15にて不純物イオンの密度が最大となるようにイオン注入を行う。 In the case of the field effect transistor of this example, for example, the density of impurity ions is maximized in the second nitride semiconductor layer 15 after forming a surface protective film (not shown) such as SiN using PECVD. Ion implantation is performed.
 イオン注入は、例えば、p形不純物をドーピングする領域以外の領域をレジスト膜で覆った状態で、H(p形不純物)をドーピングする。ドーピング条件としては、例えば、加速エネルギー150kev、ドーズ量は6×1013cm-2とすることで、平均原子濃度1×1019cm-3、深さ方向の拡がり(t)60nmのHドープ領域(p形不純物ドープ領域152)を第二窒化物半導体層15中に選択的に形成できる。なお、p形不純物をドーピングしない領域の幅Wと、p形不純物をドーピングする領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、400~500℃にて活性化アニールを行うことにより、Hの活性化率として約10%を得ることができる。このように、活性化アニール温度を600℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。 In the ion implantation, for example, H (p-type impurity) is doped in a state where a region other than a region to be doped with a p-type impurity is covered with a resist film. As doping conditions, for example, an acceleration energy of 150 kev, a dose of 6 × 10 13 cm −2 , an average atomic concentration of 1 × 10 19 cm −3 , and an extension in the depth direction (t a ) of 60 nm are H-doped. A region (p-type impurity doped region 152) can be selectively formed in the second nitride semiconductor layer 15. Note that the width W n of the region not doped with the p-type impurity and the width W p of the region doped with the p-type impurity were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained. Thus, the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
 これ以降、実施形態1で説明した製造方法に準じて、第一窒化物半導体層13の上に、ソース電極171、ドレイン電極172、第四の電極19、および、絶縁膜16を介してゲート電極18を形成する。 Thereafter, in accordance with the manufacturing method described in the first embodiment, the gate electrode is formed on the first nitride semiconductor layer 13 via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16. 18 is formed.
 ここで、図7に、本実施形態における電界効果トランジスタにおいて、ドレイン電極172とソース電極171とを等電圧(Vds=0)とした時の、ゲート―ドレイン間のチャネル近傍のポテンシャルプロファイルを示す。図7(a)は、(X1-Y1)面のプロファイル、図7(b)は、(X2-Y2)面のプロファイルである。 Here, FIG. 7 shows a potential profile in the vicinity of the channel between the gate and the drain when the drain electrode 172 and the source electrode 171 have the same voltage (V ds = 0) in the field effect transistor according to the present embodiment. . 7A shows the profile of the (X1-Y1) plane, and FIG. 7B shows the profile of the (X2-Y2) plane.
 (0001)面第二窒化物半導体層(例:AlGaN層)15上に、第一窒化物半導体層(例:GaN層)13を結晶成長した場合、第一窒化物半導体層13には圧縮歪が働いて、ピエゾ分極が発生する。更に、自発性分極も発生するため、第一窒化物半導体層13と第二窒化物半導体層15の界面には、面密度(σ)の負電荷が発生する。ここで、σは、第二窒化物半導体層15のAl組成xの関数であり、下式(15)により近似できる。 When the first nitride semiconductor layer (eg, GaN layer) 13 is crystal-grown on the (0001) plane second nitride semiconductor layer (eg, AlGaN layer) 15, the first nitride semiconductor layer 13 has a compressive strain. Works and piezo polarization occurs. Furthermore, since spontaneous polarization is also generated, a negative charge having a surface density (σ p ) is generated at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15. Here, σ p is a function of the Al composition x of the second nitride semiconductor layer 15 and can be approximated by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、係数の値が式(5)より小さいのは、第一窒化物半導体層13の上に第二窒化物半導体層15を形成した場合(実施形態1:図1)には自発性分極とピエゾ分極の向きが同じで強め合うのに対し、第二窒化物半導体層15の上に第一窒化物半導体層13を形成した場合(実施形態2:図6)には自発性分極とピエゾ分極の向きが逆で打ち消し合うためである。 Here, the value of the coefficient is smaller than the formula (5) when the second nitride semiconductor layer 15 is formed on the first nitride semiconductor layer 13 (Embodiment 1: FIG. 1). In contrast, when the first nitride semiconductor layer 13 is formed on the second nitride semiconductor layer 15 (Embodiment 2: FIG. 6), the spontaneous polarization and piezoelectricity are the same. This is because the directions of polarization are reversed and cancel each other.
 本例では、n形Al0.06Ga0.94N層(第二窒化物半導体層15)のAl組成はx=0.06であるので、式(15)よりσ/q=-3×1012cm-2となる。 In this example, since the Al composition of the n-type Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) is x = 0.06, σ p / q = −3 from Equation (15). × 10 12 cm -2
 n形Al0.06Ga0.94N層(第二窒化物半導体層15)のp形不純物をドーピングしていない領域151においては、n形不純物の濃度がN=1×1018cm-3、活性化率η=1.0、n形不純物ドープ領域の厚さ(深さ)t=60nm、p形不純物の濃度がN=0cm-3、であるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=3×1012cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the region 151 of the n-type Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) which is not doped with the p-type impurity, the concentration of the n-type impurity is N d = 1 × 10 18 cm −. 3. Since the activation rate η d = 1.0, the thickness (depth) of the n-type impurity doped region t d = 60 nm, and the concentration of the p-type impurity is N a = 0 cm −3 , the relational expression (6 ) Is formed, and a positive fixed charge having an areal density N n = 3 × 10 12 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, an n-type conductive region 141 is formed.
 また、n形Al0.06Ga0.94N層(第二窒化物半導体層15)のp形不純物をドーピングした領域152においては、n形不純物の濃度がN=1×1018cm-3、活性化率η=1.0、n形不純物ドープ領域の厚さ(深さ)t=60nm、p形不純物の濃度がN=1×1019cm-3、活性化率η=1.0、p形不純物ドープ領域の厚さ(深さ)t=60nm、であるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=3×1012cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 In the n-type Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) doped with the p-type impurity, the n-type impurity concentration is N d = 1 × 10 18 cm −. 3. Activation rate η d = 1.0, n-type impurity doped region thickness (depth) t d = 60 nm, p-type impurity concentration is N p = 1 × 10 19 cm −3 , activation rate η Since a = 1.0 and the thickness (depth) of the p-type impurity doped region t a = 60 nm, the relational expression (8) is established, and the surface density N p = 3 in the second nitride semiconductor layer 15. A negative fixed charge of × 10 12 cm -2 is formed. For this reason, the p-type conduction region 142 is formed.
 このように、本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、実施形態1で説明した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と結合すれば、アバランシェ耐量を改善することができる。 Thus, in the case of the field effect transistor of this example, Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
 なお、上述した製造方法においては、結晶成長段階において、Al0.06Ga0.94N層(第二窒化物半導体層15)をn形にしておき(Siドーピング)、その後の工程で、p形不純物をドーピングしてp形不純物ドープ領域152を形成したが、n形とp形を形成する処理を逆にすることもできる。すなわち、結晶成長段階において、Al0.06Ga0.94N層(第二窒化物半導体層15)をp形にしておき(p形不純物ドーピング)、その後の工程で、n形不純物をドーピングしてn形不純物ドープ領域151を形成してもよい。 In the manufacturing method described above, in the crystal growth stage, the Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) is made n-type (Si doping), and in the subsequent steps, p Although the p-type impurity doped region 152 is formed by doping the n-type impurity, the process of forming the n-type and the p-type can be reversed. That is, in the crystal growth stage, the Al 0.06 Ga 0.94 N layer (second nitride semiconductor layer 15) is made p-type (p-type impurity doping), and after that, n-type impurities are doped. Thus, the n-type impurity doped region 151 may be formed.
 また、(5)GaN層(第一窒化物半導体層13)はアンドープとしたが、活性化不純物濃度とした1×1017cm-3程度以下のp形もしくはn形としてもよい。 Also, (5) GaN layer (first nitride semiconductor layer 13) was undoped, it may be about 1 × 10 17 cm -3 or less of p-type or n-type, which was activated impurity concentration.
 これらの前提については、以下のすべての実施形態の実現例において同様である。
<<実施形態3>>
<実施形態3の電界効果トランジスタの構成>
These assumptions are the same in the implementation examples of all the following embodiments.
<< Embodiment 3 >>
<Configuration of Field Effect Transistor of Embodiment 3>
 図8に、本実施形態の電界効果トランジスタの構成を示す。図8(a)は平面概略図、図8(b)は図8(a)の(X1-Y1)面における断面概略図、図8(c)は図8(a)の(X2-Y2)面における断面概略図である。 FIG. 8 shows the configuration of the field effect transistor of this embodiment. 8 (a) is a schematic plan view, FIG. 8 (b) is a schematic cross-sectional view in the (X1-Y1) plane of FIG. 8 (a), and FIG. 8 (c) is (X2-Y2) in FIG. 8 (a). It is the cross-sectional schematic in a surface.
 本実施形態の電界効果トランジスタは、実施形態1の電界効果トランジスタを基本とし、図8(a)に示すように、第二窒化物半導体層15のゲート電極18とドレイン電極172で挟まれた領域には、p形不純物をドーピングされたp形不純物ドープ領域152と、アンドープ領域151と、を交互に配列した縞模様が形成される点で異なる。ただし、実施形態1ではn形不純物ドーピングと分極効果により電子を発生させるのに対し、本実施形態では分極効果のみで電子を発生させる為、第二窒化物半導体層15のAl組成、p形不純物濃度の設定を変えてある。バッファ層11は、例えば、第一窒化物半導体層13を構成する第一窒化物半導体をGaNとした場合、AlN層とその上に形成したGaN層からなる積層構造とすることができる。 The field effect transistor according to the present embodiment is based on the field effect transistor according to the first embodiment, and a region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 as shown in FIG. Is different in that a striped pattern in which p-type impurity doped regions 152 doped with p-type impurities and undoped regions 151 are alternately arranged is formed. However, in the first embodiment, electrons are generated by the n-type impurity doping and the polarization effect, whereas in this embodiment, electrons are generated only by the polarization effect. Therefore, the Al composition of the second nitride semiconductor layer 15 and the p-type impurity The density setting has been changed. For example, when the first nitride semiconductor constituting the first nitride semiconductor layer 13 is GaN, the buffer layer 11 can have a laminated structure including an AlN layer and a GaN layer formed thereon.
 本実施形態の電界効果トランジスタは、前記相違点以外は、実施形態1の電界効果トランジスタと同様の構成とすることができる。なお、積層体13、15は、第一窒化物半導体層13の上に第二窒化物半導体層15を積層した(0001)面成長である。 The field effect transistor according to the present embodiment can have the same configuration as that of the field effect transistor according to the first embodiment except for the differences. The stacked bodies 13 and 15 are (0001) plane growth in which the second nitride semiconductor layer 15 is stacked on the first nitride semiconductor layer 13.
 このような本実施形態の電界効果トランジスタの場合、第二窒化物半導体層15を構成する第二窒化物半導体は、バッファ層11を構成する物質よりもa軸長が短いため、第二窒化物半導体層15には引張歪が内在している。ピエゾ分極効果と自発性分極効果に基づいて、第二窒化物半導体層15と第一窒化物半導体層13の界面には正の固定電荷が生成されるため、アンドープ領域151は電子供給領域として機能する。その結果、第一窒化物半導体層13と、第二窒化物半導体層15のアンドープ領域151と、の界面近傍には、2DEGを内包するn形伝導領域141がコラム状に形成される。 In the field effect transistor according to this embodiment, the second nitride semiconductor constituting the second nitride semiconductor layer 15 has a shorter a-axis length than the material constituting the buffer layer 11, and thus the second nitride. A tensile strain is inherent in the semiconductor layer 15. Since positive fixed charges are generated at the interface between the second nitride semiconductor layer 15 and the first nitride semiconductor layer 13 based on the piezoelectric polarization effect and the spontaneous polarization effect, the undoped region 151 functions as an electron supply region. To do. As a result, in the vicinity of the interface between the first nitride semiconductor layer 13 and the undoped region 151 of the second nitride semiconductor layer 15, an n-type conductive region 141 containing 2DEG is formed in a column shape.
 一方、第一窒化物半導体層13と、第二窒化物半導体層15のp形不純物ドープ領域152と、の界面近傍には、2DHGを内包するp形伝導領域142がコラム状に形成される。 On the other hand, in the vicinity of the interface between the first nitride semiconductor layer 13 and the p-type impurity doped region 152 of the second nitride semiconductor layer 15, a p-type conductive region 142 containing 2DHG is formed in a column shape.
 その結果、実施形態1で説明した電界効果トランジスタと同様な効果を実現することができる。 As a result, the same effect as the field effect transistor described in the first embodiment can be realized.
 また、本実施形態の電界効果トランジスタは、(0001)面第一窒化物半導体層13上に形成した第二窒化物半導体層15の分極効果を用いて、n形伝導領域141の電子を供給するよう構成している。実施形態1のようにドーピングを用いて、n形伝導領域141の電子を供給する構成の場合、不純物原子の活性化率がプロセス条件などに依存するが、本実施形態の場合には第二窒化物半導体層15(例:AlGaN層)のAl組成により自動的に電荷濃度が決定される。このため、関係式(11)をみたすようにエピ構造を調整するのが容易で、デバイス特性の再現性が向上する。
<実施形態3の電界効果トランジスタの一例>
The field effect transistor of this embodiment supplies electrons in the n-type conduction region 141 by using the polarization effect of the second nitride semiconductor layer 15 formed on the (0001) plane first nitride semiconductor layer 13. It is configured as follows. In the case of the configuration in which the electrons of the n-type conduction region 141 are supplied using doping as in the first embodiment, the activation rate of the impurity atoms depends on the process conditions and the like, but in the present embodiment, the second nitridation is performed. The charge concentration is automatically determined by the Al composition of the physical semiconductor layer 15 (eg, AlGaN layer). For this reason, it is easy to adjust the epi structure so as to satisfy the relational expression (11), and the reproducibility of the device characteristics is improved.
<Example of Field Effect Transistor of Embodiment 3>
 次に、本実施形態の電界効果トランジスタの一つの実現例について説明する。本例の電界効果トランジスタは、例えば、以下のような製造方法により製造される。 Next, one implementation example of the field effect transistor of the present embodiment will be described. The field effect transistor of this example is manufactured by the following manufacturing method, for example.
 まず、Si基板10上に、例えば、MOCVD法により、下記(1)~(5)に示す層を、下記に示す順で順次成長させる。 First, on the Si substrate 10, the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープGaN層(バッファ層11)・・・1μm
(3)p形GaN層「Mgドーピング:濃度1×1019cm-3」(第三窒化物半導体層12)・・・100nm
(4)アンドープGaN層(第一窒化物半導体層13)・・・100nm
(5)アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)・・・40nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) Undoped GaN layer (buffer layer 11) 1 μm
(3) p-type GaN layer “Mg doping: concentration 1 × 10 19 cm −3 ” (third nitride semiconductor layer 12) 100 nm
(4) Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm
(5) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 40 nm
 ここで、第二窒化物半導体層15は、転位発生の膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.2とし、第二窒化物半導体層15の厚さを60nm以下とすることで、転移発生の臨界膜厚以内としている。 Here, the second nitride semiconductor layer 15 is thinner than the film thickness of dislocation generation and is a strained lattice layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In the case of this example, x = 0.2, and the thickness of the second nitride semiconductor layer 15 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
 以降、実施形態1で説明した製造方法に準じて、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)へのイオン注入、および、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)の上にソース電極171、ドレイン電極172、第四の電極19、および、絶縁膜16を介してゲート電極18の形成を行う。 Thereafter, in accordance with the manufacturing method described in Embodiment 1, ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and undoped Al 0.2 Ga 0.8 are performed. A gate electrode 18 is formed on the N layer (second nitride semiconductor layer 15) via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16.
 なお、イオン注入のドーピング条件としては、例えば、p形不純物としてHを用い、加速エネルギー40kev、ドーズ量は2.4×1014cm-2とすることで、平均原子濃度6×1019cm-3、深さ方向の拡がり(t)40nmのHドープ領域(p形不純物ドープ領域152)を第二窒化物半導体層15中に選択的に形成できる。なお、n形不純物をドーピングする領域の幅Wと、n形不純物をドーピングしない領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、400~500℃にて活性化アニールを行うことにより、Hの活性化率として約10%を得ることができる。このように、活性化アニール温度を600℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。 As the doping conditions for ion implantation, for example, H is used as the p-type impurity, the acceleration energy is 40 kev, and the dose amount is 2.4 × 10 14 cm −2 , so that the average atomic concentration is 6 × 10 19 cm −. 3 , an H-doped region (p-type impurity doped region 152) having a depthwise extension (t a ) of 40 nm can be selectively formed in the second nitride semiconductor layer 15. Note that the width W n of the region doped with n-type impurities and the width W p of the region not doped with n-type impurities were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained. Thus, the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
 本例の電界効果トランジスタは、バッファ層11がGaN、第一窒化物半導体層13がGaN、第二窒化物半導体層15がAl0.2Ga0.8Nの順のHEMT構造であり、p形不純物ドープ領域152にH(プロトン)がドーピングされた構成となっている。バッファ層11がGaNということは、厚いGaN層11の成長過程で格子緩和しており、その上にGaNを幾ら厚く成長しても歪が発生しない。このため、第一窒化物半導体層13に歪は発生しない。しかしながら、第一窒化物半導体層13上に成長された第二窒化物半導体層15には引張歪が発生し、自発性分極とピエゾ分極に起因して第二窒化物半導体層15と第一窒化物半導体層13との界面に正の分極電荷σが発生する。 The field effect transistor of this example has a HEMT structure in which the buffer layer 11 is GaN, the first nitride semiconductor layer 13 is GaN, and the second nitride semiconductor layer 15 is Al 0.2 Ga 0.8 N in this order. The impurity doped region 152 is doped with H (proton). The fact that the buffer layer 11 is GaN is lattice-relaxed during the growth process of the thick GaN layer 11, and no strain is generated even if GaN is grown to a certain thickness. For this reason, no distortion occurs in the first nitride semiconductor layer 13. However, tensile strain is generated in the second nitride semiconductor layer 15 grown on the first nitride semiconductor layer 13, and the second nitride semiconductor layer 15 and the first nitride are caused by spontaneous polarization and piezoelectric polarization. A positive polarization charge σ p is generated at the interface with the physical semiconductor layer 13.
 そして、本例では、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のAl組成はx=0.2であるので、式(5)よりσ/q=+1.2×1013cm-2となる。 In this example, since the Al composition of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) is x = 0.2, σ p / q = + 1 from Equation (5). 2 × 10 13 cm −2 .
 アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のp形不純物をドーピングしていない領域151においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=0cm-3、であるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=1.2×1013cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the region 151 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) that is not doped with the p-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since the concentration of N a = 0 cm −3 , the relational expression (6) is established, and a positive fixed charge having a surface density N n = 1.2 × 10 13 cm −2 in the second nitride semiconductor layer 15 is satisfied. Is formed. For this reason, an n-type conductive region 141 is formed.
 また、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のp形不純物をドーピングした領域152においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=6×1019cm-3、活性化率η=0.1、p形不純物ドープ領域の厚さ(深さ)t=40nm、であるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=1.2×1013cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 Further, in the region 152 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) doped with the p-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since N a = 6 × 10 19 cm −3 , activation rate η a = 0.1, and p-type impurity doped region thickness (depth) t a = 40 nm, the relational expression (8) Thus, a negative fixed charge having a surface density N p = 1.2 × 10 13 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, the p-type conduction region 142 is formed.
 このように、本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、実施形態1で説明した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と結合すれば、アバランシェ耐量を改善することができる。
<<実施形態4>>
<実施形態4の電界効果トランジスタの構成>
Thus, in the case of the field effect transistor of this example, Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
<< Embodiment 4 >>
<Configuration of Field Effect Transistor of Embodiment 4>
 図9に、本実施形態の電界効果トランジスタの構成を示す。図9(a)は平面概略図、図9(b)は図9(a)の(X1-Y1)面における断面概略図、図9(c)は図9(a)の(X2-Y2)面における断面概略図である。なお、図9(a)において、第一窒化物半導体層13の下側に位置する第二窒化物半導体層15を点線で示してある。すなわち、図9(a)に示されているn形不純物ドープ領域151と、アンドープ領域152は、第二窒化物半導体層15に形成されているものである。 FIG. 9 shows the configuration of the field effect transistor of this embodiment. 9A is a schematic plan view, FIG. 9B is a schematic cross-sectional view of the (X1-Y1) plane of FIG. 9A, and FIG. 9C is (X2-Y2) of FIG. 9A. It is the cross-sectional schematic in a surface. In FIG. 9A, the second nitride semiconductor layer 15 located below the first nitride semiconductor layer 13 is indicated by a dotted line. That is, the n-type impurity doped region 151 and the undoped region 152 shown in FIG. 9A are formed in the second nitride semiconductor layer 15.
 本実施形態の電界効果トランジスタは、実施形態2の電界効果トランジスタを基本とし、図9(a)に示すように、第二窒化物半導体層15のゲート電極18とドレイン電極172で挟まれた領域には、n形不純物をドーピングされたn形不純物ドープ領域151と、アンドープ領域152と、を交互に配列した縞模様が形成される点で異なる。ただし、実施形態2ではp形不純物ドーピングと分極効果により正孔を発生させるのに対し、本実施形態では分極効果のみで正孔を発生させる為、第二窒化物半導体層のAl組成、n形不純物濃度の設定を変えてある。バッファ層11は、例えば、第二窒化物半導体層15を構成する第二窒化物半導体をAl0.2Ga0.8Nとした場合、AlN層とその上に形成したAl0.2Ga0.8N層からなる積層構造とすることができる。 The field effect transistor according to the present embodiment is based on the field effect transistor according to the second embodiment, and a region sandwiched between the gate electrode 18 and the drain electrode 172 of the second nitride semiconductor layer 15 as shown in FIG. 9A. Is different in that a striped pattern in which n-type impurity doped regions 151 doped with n-type impurities and undoped regions 152 are alternately arranged is formed. However, in the second embodiment, holes are generated by the p-type impurity doping and the polarization effect, whereas in this embodiment, holes are generated only by the polarization effect, so that the Al composition of the second nitride semiconductor layer, the n-type The impurity concentration setting has been changed. For example, when the second nitride semiconductor constituting the second nitride semiconductor layer 15 is Al 0.2 Ga 0.8 N, the buffer layer 11 includes an AlN layer and Al 0.2 Ga 0 formed thereon. .8 A multilayer structure composed of N layers can be formed.
 本実施形態の電界効果トランジスタは、前記相違点以外は、実施形態2の電界効果トランジスタと同様の構成とすることができる。なお、積層体13、15は、第二窒化物半導体層15の上に第一窒化物半導体層13を積層した(0001)面成長である。 The field effect transistor according to the present embodiment can have the same configuration as that of the field effect transistor according to the second embodiment except for the differences. The stacked bodies 13 and 15 are (0001) plane growth in which the first nitride semiconductor layer 13 is stacked on the second nitride semiconductor layer 15.
 このような本実施形態の電界効果トランジスタの場合、第一窒化物半導体層13を構成する第一窒化物半導体は、バッファ層11を構成する物質よりもa軸長が長いため、第一窒化物半導体層13には圧縮歪が内在している。ピエゾ分極効果と自発性分極効果に基づいて、第一窒化物半導体層13と第二窒化物半導体層15の界面には負の固定電荷が生成されるため、アンドープ領域152は正孔供給領域として機能する。その結果、第一窒化物半導体層13と、第二窒化物半導体層15のアンドープ領域152と、の界面近傍には、2DHGを内包するp形伝導領域142がコラム状に形成される。 In the case of the field effect transistor of this embodiment, the first nitride semiconductor constituting the first nitride semiconductor layer 13 has a longer a-axis length than the material constituting the buffer layer 11, and thus the first nitride A compressive strain is inherent in the semiconductor layer 13. Based on the piezoelectric polarization effect and the spontaneous polarization effect, negative fixed charges are generated at the interface between the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15, so that the undoped region 152 serves as a hole supply region. Function. As a result, in the vicinity of the interface between the first nitride semiconductor layer 13 and the undoped region 152 of the second nitride semiconductor layer 15, a p-type conductive region 142 containing 2DHG is formed in a column shape.
 一方、第一窒化物半導体層13と、第二窒化物半導体層15のn形不純物ドープ領域151と、の界面近傍には、2DEGを内包するn形伝導領域141がコラム状に形成される。 On the other hand, in the vicinity of the interface between the first nitride semiconductor layer 13 and the n-type impurity doped region 151 of the second nitride semiconductor layer 15, an n-type conductive region 141 containing 2DEG is formed in a column shape.
 その結果、実施形態2で説明した電界効果トランジスタと同様な効果を実現することができる。 As a result, the same effect as the field effect transistor described in the second embodiment can be realized.
 また、本実施形態の電界効果トランジスタは、(0001)面第二窒化物半導体層15上に形成した第一窒化物半導体層13上の分極効果を用いて、p形伝導領域142の正孔を供給するよう構成している。実施形態2のようにドーピングを用いて、p形伝導領域142の正孔を供給する構成の場合、不純物原子の活性化率がプロセス条件などに依存するが、本実施形態の場合には第二窒化物半導体層15(例:AlGaN層)のAl組成により自動的に電荷濃度が決定される。このため、関係式(11)をみたすようにエピ構造を調整するのが容易で、デバイス特性の再現性が向上する。
<実施形態4の電界効果トランジスタの一例>
In addition, the field effect transistor of this embodiment uses the polarization effect on the first nitride semiconductor layer 13 formed on the (0001) plane second nitride semiconductor layer 15 to cause holes in the p-type conduction region 142 to flow. It is configured to supply. In the case of the configuration in which the holes of the p-type conduction region 142 are supplied using doping as in the second embodiment, the activation rate of the impurity atoms depends on the process conditions and the like. The charge concentration is automatically determined by the Al composition of the nitride semiconductor layer 15 (eg, AlGaN layer). For this reason, it is easy to adjust the epi structure so as to satisfy the relational expression (11), and the reproducibility of the device characteristics is improved.
<Example of Field Effect Transistor of Embodiment 4>
 次に、本実施形態の電界効果トランジスタの一つの実現例について説明する。本例の電界効果トランジスタは、例えば、以下のような製造方法により製造される。 Next, one implementation example of the field effect transistor of the present embodiment will be described. The field effect transistor of this example is manufactured by the following manufacturing method, for example.
 まず、Si基板10上に、例えば、MOCVD法により、下記(1)~(5)に示す層を、下記に示す順で順次成長させる。 First, on the Si substrate 10, the layers shown in the following (1) to (5) are sequentially grown in the order shown below, for example, by MOCVD.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープAl0.2Ga0.8N層(バッファ層11)・・・1μm
(3)p形Al0.2Ga0.8N層「Mgドーピング:濃度1×1019cm-3」(第三窒化物半導体層12)・・・100nm
(4)アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)・・・100nm
(5)アンドープGaN層(第一窒化物半導体層13)・・・40nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) the undoped Al 0.2 Ga 0.8 N layer (buffer layer 11) · · · 1 [mu] m
(3) p-type Al 0.2 Ga 0.8 N layer “Mg doping: concentration 1 × 10 19 cm −3 ” (third nitride semiconductor layer 12)... 100 nm
(4) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 100 nm
(5) Undoped GaN layer (first nitride semiconductor layer 13) ... 40 nm
 ここで、第一窒化物半導体層13は、転位発生の膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.2とし、第一窒化物半導体層13の厚さを60nm以下とすることで、転移発生の臨界膜厚以内としている。 Here, the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In the case of this example, x = 0.2, and the thickness of the first nitride semiconductor layer 13 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
 以降、実施形態2で説明した製造方法に準じて、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)へのイオン注入、および、アンドープGaN層(第一窒化物半導体層13)の上にソース電極171、ドレイン電極172、第四の電極19、および、絶縁膜16を介してゲート電極18の形成を行う。 Thereafter, in accordance with the manufacturing method described in the second embodiment, ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and the undoped GaN layer (first nitride semiconductor) A gate electrode 18 is formed on the layer 13) via a source electrode 171, a drain electrode 172, a fourth electrode 19, and an insulating film 16.
 なお、イオン注入のドーピング条件としては、例えば、n形不純物としてSiを用い、加速エネルギー200kev、ドーズ量は2.0×1014
cm-2とすることで、平均原子濃度5×1019cm-3、深さ方向の拡がり(t)40nmのSiドープ領域(n形不純物ドープ領域151)を第二窒化物半導体層15中に選択的に形成できる。なお、n形不純物をドーピングする領域の幅Wと、n形不純物をドーピングしない領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、1000~1200℃にて活性化アニールを行うことにより、Siの活性化率として約10%を得ることができる。このように、活性化アニール温度を1200℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。
In addition, as doping conditions for ion implantation, for example, Si is used as an n-type impurity, acceleration energy is 200 kev, and a dose is 2.0 × 10 14.
By setting cm −2 , the Si-doped region (n-type impurity doped region 151) having an average atomic concentration of 5 × 10 19 cm −3 and a spread in the depth direction (t d ) of 40 nm in the second nitride semiconductor layer 15 Can be selectively formed. Note that the width W n of the region doped with n-type impurities and the width W p of the region not doped with n-type impurities were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained. Thus, the activation annealing temperature can be lowered to 1200 ° C. or lower, and the compatibility with the conventional GaN process is good.
 本例の電界効果トランジスタは、バッファ層11がAl0.2Ga0.8N、第二窒化物半導体層15がAl0.2Ga0.8N、第一窒化物半導体層13がGaNの逆HEMT構造であり、n形不純物ドープ領域151にSiがドーピングされた構成となっている。バッファ層11がAl0.2Ga0.8Nということは、厚いAl0.2Ga0.8N層11の成長過程で格子緩和しており、その上にAl0.2Ga0.8Nを幾ら厚く成長しても歪が発生しない。このため、第二窒化物半導体層15には歪は発生しない。しかしながら、第二窒化物半導体層15上に成長された第一窒化物半導体層13には圧縮歪が発生し、自発性分極とピエゾ分極に起因して第一窒化物半導体層13と第二窒化物半導体層15の界面に負の分極電荷σが発生する。 In the field effect transistor of the present example, the buffer layer 11 is made of Al 0.2 Ga 0.8 N, the second nitride semiconductor layer 15 is made of Al 0.2 Ga 0.8 N, and the first nitride semiconductor layer 13 is made of GaN. The structure is an inverse HEMT structure, in which the n-type impurity doped region 151 is doped with Si. That the buffer layer 11 is that Al 0.2 Ga 0.8 N is lattice relaxation during the growth of a thick Al 0.2 Ga 0.8 N layer 11, Al 0.2 Ga 0.8 thereon No strain is generated no matter how thick N grows. For this reason, no distortion occurs in the second nitride semiconductor layer 15. However, compressive strain is generated in the first nitride semiconductor layer 13 grown on the second nitride semiconductor layer 15, and the first nitride semiconductor layer 13 and the second nitride are caused by spontaneous polarization and piezoelectric polarization. Negative polarization charge σ p is generated at the interface of the physical semiconductor layer 15.
 そして、本例では、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のAl組成はx=0.2であるので、式(15)よりσ/q=-1.0×1013cm-2となる。 In this example, since the Al composition of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) is x = 0.2, σ p / q = − from Equation (15). 1.0 × 10 13 cm −2 .
 アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のn形不純物をドーピングしていない領域152においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=0cm-3、であるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=1.0×1013cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 In the region 152 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) not doped with the n-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since the concentration of N a = 0 cm −3 , the relational expression (8) is satisfied, and the negative fixed charge having the surface density N p = 1.0 × 10 13 cm −2 in the second nitride semiconductor layer 15 is satisfied. Is formed. For this reason, the p-type conduction region 142 is formed.
 また、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のn形不純物をドーピングした領域151においては、n形不純物の濃度がN=5×1019cm-3、活性化率η=0.1、n形不純物ドープ領域の厚さ(深さ)t=40nm、p形不純物の濃度がN=0cm-3であるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=1.0×1013cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) in which the n-type impurity is doped, the concentration of the n-type impurity is N d = 5 × 10 19 cm −3. Since the activation rate η d = 0.1, the thickness (depth) of the n-type impurity doped region t d = 40 nm, and the concentration of the p-type impurity is N a = 0 cm −3 , the relational expression (6) is As a result, a positive fixed charge having a surface density N n = 1.0 × 10 13 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, an n-type conductive region 141 is formed.
 このように、本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、実施形態1で説明した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と結合すれば、アバランシェ耐量を改善することができる。
<<実施形態5>>
<実施形態5の電界効果トランジスタの構成>
Thus, in the case of the field effect transistor of this example, Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
<< Embodiment 5 >>
<Configuration of Field Effect Transistor of Embodiment 5>
 図10に、本実施形態の電界効果トランジスタの構成を示す。図10(a)は平面概略図、図10(b)は図10(a)の(X1-Y1)面における断面概略図、図10(c)は図10(a)の(X2-Y2)面における断面概略図である。 FIG. 10 shows the configuration of the field effect transistor of this embodiment. 10 (a) is a schematic plan view, FIG. 10 (b) is a schematic cross-sectional view in the (X1-Y1) plane of FIG. 10 (a), and FIG. 10 (c) is (X2-Y2) in FIG. 10 (a). It is the cross-sectional schematic in a surface.
 本実施形態の電界効果トランジスタは、実施形態1~4のいずれか一の電界効果トランジスタの構成を基本とし、第四の電極19を備えることを必須として、第二窒化物半導体層15の縞模様を構成するp形またはn形である1形不純物ドープ領域は、ソース電極171の直下まで延伸し、第二窒化物半導体層15の縞模様を構成するn形またはp形であって1形とは異なる形の2形不純物ドープ領域は、第四の電極19の直下まで延伸している。 The field effect transistor according to the present embodiment is based on the configuration of the field effect transistor according to any one of the first to fourth embodiments, and is provided with the fourth electrode 19, and the stripe pattern of the second nitride semiconductor layer 15 is essential. The p-type or n-type impurity doped region that constitutes n-type extends to a position immediately below the source electrode 171 and is the n-type or p-type that constitutes the stripe pattern of the second nitride semiconductor layer 15, which is The second-type impurity-doped regions having different shapes extend to just below the fourth electrode 19.
 例えば、図10(b)(c)に示すように、第二窒化物半導体層15の縞模様を構成するn形不純物ドープ領域151は、ソース電極171の直下まで延伸し、第二窒化物半導体層15の縞模様を構成するp形不純物ドープ領域152は、第四の電極19の直下まで延伸している。 For example, as shown in FIGS. 10B and 10C, the n-type impurity doped region 151 constituting the stripe pattern of the second nitride semiconductor layer 15 extends to a position immediately below the source electrode 171, and the second nitride semiconductor The p-type impurity doped region 152 constituting the stripe pattern of the layer 15 extends to a position immediately below the fourth electrode 19.
 このような本実施形態の電界効果トランジスタは、実施形態1~4に記載の電界効果トランジスタと同様な効果を実現することができる。 Such a field effect transistor according to this embodiment can achieve the same effect as the field effect transistors described in the first to fourth embodiments.
 また、本実施形態の電界効果トランジスタは、第二窒化物半導体層15の縞領域を構成するp形不純物ドープ領域152を第四の電極19まで延長し、第四の電極19と電気的に接続することにより、チャネルで発生した正孔を第四の電極19を介して抜き取ることが可能な構成となっている。このような構成により、第一窒化物半導体層13と第二窒化物半導体層15からなる積層体13、15の下部に、p形チャネル層12(図1など参照)を形成しない構成とすることができる。その結果、エピ構造を簡略化でき、寄生容量の増加が比較的小さいといったメリットがある。 In the field effect transistor of this embodiment, the p-type impurity doped region 152 constituting the stripe region of the second nitride semiconductor layer 15 extends to the fourth electrode 19 and is electrically connected to the fourth electrode 19. By doing so, holes generated in the channel can be extracted through the fourth electrode 19. With such a configuration, the p-type channel layer 12 (see FIG. 1 and the like) is not formed below the stacked bodies 13 and 15 including the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15. Can do. As a result, there is an advantage that the epi structure can be simplified and the increase in parasitic capacitance is relatively small.
 なお、本実施形態の電界効果トランジスタは、図11に示すように、第一窒化物半導体層13と第二窒化物半導体層15の上下位置を逆にした構成とすることも可能である。
<実施形態5の電界効果トランジスタの一例>
As shown in FIG. 11, the field effect transistor of the present embodiment may be configured such that the upper and lower positions of the first nitride semiconductor layer 13 and the second nitride semiconductor layer 15 are reversed.
<Example of Field Effect Transistor of Embodiment 5>
 次に、本実施形態の電界効果トランジスタの一つの実現例について説明する。
<<例1>>
Next, one implementation example of the field effect transistor of the present embodiment will be described.
<< Example 1 >>
 本例の電界効果トランジスタは、例えば、以下のような製造方法により製造される。 The field effect transistor of this example is manufactured by the following manufacturing method, for example.
 まず、Si基板10上に、例えば、MOCVD法により、下記(1)~(4)に示す層を、下記に示す順で順次成長させる。 First, on the Si substrate 10, the layers shown in the following (1) to (4) are sequentially grown in the following order, for example, by MOCVD.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープGaN層(バッファ層11)・・・1μm
(3)アンドープGaN層(第一窒化物半導体層13)・・・100nm
(4)アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)・・・40nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) Undoped GaN layer (buffer layer 11) 1 μm
(3) Undoped GaN layer (first nitride semiconductor layer 13) ... 100 nm
(4) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 40 nm
 ここで、第二窒化物半導体層15は、転位発生の膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.2とし、第二窒化物半導体層15の厚さを60nm以下とすることで、転移発生の臨界膜厚以内としている。 Here, the second nitride semiconductor layer 15 is thinner than the film thickness of dislocation generation and is a strained lattice layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In the case of this example, x = 0.2, and the thickness of the second nitride semiconductor layer 15 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
 以降、実施形態1で説明した製造方法に準じて、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)へのイオン注入、および、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)の上にソース電極171、ドレイン電極172、第四の電極19、および、絶縁膜16を介してゲート電極18の形成を行う。 Thereafter, in accordance with the manufacturing method described in Embodiment 1, ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and undoped Al 0.2 Ga 0.8 are performed. A gate electrode 18 is formed on the N layer (second nitride semiconductor layer 15) via the source electrode 171, the drain electrode 172, the fourth electrode 19, and the insulating film 16.
 なお、イオン注入のドーピング条件としては、例えば、p形不純物としてHを用い、加速エネルギー40kev、ドーズ量は2.4×1014cm-2とすることで、平均原子濃度6×1019cm-3、深さ方向の拡がり(t)40nmのHドープ領域(p形不純物ドープ領域152)を第二窒化物半導体層15中に選択的に形成できる。なお、n形不純物をドーピングする領域の幅Wと、n形不純物をドーピングしない領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、400~500℃にて活性化アニールを行うことにより、Hの活性化率として約10%を得ることができる。このように、活性化アニール温度を600℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。 As the doping conditions for ion implantation, for example, H is used as the p-type impurity, the acceleration energy is 40 kev, and the dose amount is 2.4 × 10 14 cm −2 , so that the average atomic concentration is 6 × 10 19 cm −. 3 , an H-doped region (p-type impurity doped region 152) having a depthwise extension (t a ) of 40 nm can be selectively formed in the second nitride semiconductor layer 15. Note that the width W n of the region doped with n-type impurities and the width W p of the region not doped with n-type impurities were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 400 to 500 ° C. in an N 2 atmosphere, so that an activation rate of H of about 10% can be obtained. Thus, the activation annealing temperature can be lowered to 600 ° C. or lower, and the compatibility with the conventional GaN process is good.
 本実施形態では、(0001)面第一窒化物半導体層(例:GaN層)13上に、第二窒化物半導体層(例:AlGaN層)15を結晶成長するので、式(5)にしたがってヘテロ界面に正の分極電荷σが発生する。 In the present embodiment, since the second nitride semiconductor layer (example: AlGaN layer) 15 is crystal-grown on the (0001) plane first nitride semiconductor layer (example: GaN layer) 13, according to the equation (5) A positive polarization charge σ p is generated at the heterointerface.
 そして、本例では、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のAl組成はx=0.2であるので、式(5)よりσ/q=+1.2×1013cm-2となる。 In this example, since the Al composition of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) is x = 0.2, σ p / q = + 1 from Equation (5). 2 × 10 13 cm −2 .
 アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のp形不純物をドーピングしていない領域151においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=0cm-3、であるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=1.2×1013cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the region 151 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) that is not doped with the p-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since the concentration of N a = 0 cm −3 , the relational expression (6) is established, and a positive fixed charge having a surface density N n = 1.2 × 10 13 cm −2 in the second nitride semiconductor layer 15 is satisfied. Is formed. For this reason, an n-type conductive region 141 is formed.
 また、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のp形不純物をドーピングした領域152においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=6×1019cm-3、活性化率η=0.1、p形不純物ドープ領域の厚さ(深さ)t=40nm、であるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=1.2×1013cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 Further, in the region 152 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) doped with the p-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since N a = 6 × 10 19 cm −3 , activation rate η a = 0.1, and p-type impurity doped region thickness (depth) t a = 40 nm, the relational expression (8) Thus, a negative fixed charge having a surface density N p = 1.2 × 10 13 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, the p-type conduction region 142 is formed.
 このように、本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、実施形態1で説明した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と結合すれば、アバランシェ耐量を改善することができる。
<<例2>>
Thus, in the case of the field effect transistor of this example, Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. Further, when the fourth electrode 19 is coupled with the source electrode 171, the avalanche resistance can be improved.
<< Example 2 >>
 本例の電界効果トランジスタは、例えば、以下のような製造方法により製造される。 The field effect transistor of this example is manufactured by the following manufacturing method, for example.
 まず、Si基板10上に、例えば、MOCVD法により、下記(1)~(4)に示す層を、下記に示す順で順次成長させる。 First, on the Si substrate 10, the layers shown in the following (1) to (4) are sequentially grown in the order shown below, for example, by MOCVD.
(1)アンドープAlN層(バッファ層11)・・・200nm
(2)アンドープAl0.2Ga0.8N層(バッファ層11)・・・1μm
(3)アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)・・・100nm
(4)アンドープGaN層(第一窒化物半導体層13)・・・40nm
(1) Undoped AlN layer (buffer layer 11) ... 200 nm
(2) Undoped Al 0.2 Ga 0.8 N layer (buffer layer 11) 1 μm
(3) Undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) ... 100 nm
(4) Undoped GaN layer (first nitride semiconductor layer 13) ... 40 nm
 ここで、第一窒化物半導体層13は、転位発生の膜厚より薄く、歪格子層となっている。良好な結晶品質を得る観点から、Al組成は、通常、0<x<0.4とするのが望ましい。本例の場合x=0.2とし、第一窒化物半導体層13の厚さを60nm以下とすることで、転移発生の臨界膜厚以内としている。 Here, the first nitride semiconductor layer 13 is thinner than the thickness of dislocation generation and is a strained lattice layer. From the viewpoint of obtaining good crystal quality, the Al composition is generally preferably 0 <x <0.4. In the case of this example, x = 0.2, and the thickness of the first nitride semiconductor layer 13 is set to 60 nm or less, so that it is within the critical film thickness for occurrence of transition.
 以降、実施形態2で説明した製造方法に準じて、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)へのイオン注入、および、アンドープGaN層(第一窒化物半導体層13)の上にソース電極171、ドレイン電極172、第四の電極19、および、絶縁膜16を介してゲート電極18の形成を行う。 Thereafter, in accordance with the manufacturing method described in the second embodiment, ion implantation into the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) and the undoped GaN layer (first nitride semiconductor) A gate electrode 18 is formed on the layer 13) via a source electrode 171, a drain electrode 172, a fourth electrode 19, and an insulating film 16.
 なお、イオン注入のドーピング条件としては、例えば、n形不純物としてSiを用い、加速エネルギー200kev、ドーズ量は2.0×1014
cm-2とすることで、平均原子濃度5×1019cm-3、深さ方向の拡がり(t)40nmのSiドープ領域(n形不純物ドープ領域151)を第二窒化物半導体層15中に選択的に形成できる。なお、n形不純物をドーピングする領域の幅Wと、n形不純物をドーピングしない領域の幅Wは、W=W=100nm(任意の設計事項)とした。イオン注入の後、N雰囲気中、1000~1200℃にて活性化アニールを行うことにより、Siの活性化率として約10%を得ることができる。このように、活性化アニール温度を1200℃以下と低くすることができ、従来のGaNプロセスとの適合性は良好である。
In addition, as doping conditions for ion implantation, for example, Si is used as an n-type impurity, acceleration energy is 200 kev, and a dose is 2.0 × 10 14.
By setting cm −2 , the Si-doped region (n-type impurity doped region 151) having an average atomic concentration of 5 × 10 19 cm −3 and a spread in the depth direction (t d ) of 40 nm in the second nitride semiconductor layer 15 Can be selectively formed. Note that the width W n of the region doped with n-type impurities and the width W p of the region not doped with n-type impurities were set to W n = W p = 100 nm (arbitrary design matters). After ion implantation, activation annealing is performed at 1000 to 1200 ° C. in an N 2 atmosphere, so that an Si activation rate of about 10% can be obtained. Thus, the activation annealing temperature can be lowered to 1200 ° C. or lower, and the compatibility with the conventional GaN process is good.
 本実施形態では、(0001)面第二窒化物半導体層(例:AlGaN層)15上に、第一窒化物半導体層(例:GaN層)13を結晶成長するので、式(15)にしたがってヘテロ界面に負の分極電荷σが発生する。 In the present embodiment, since the first nitride semiconductor layer (example: GaN layer) 13 is crystal-grown on the (0001) plane second nitride semiconductor layer (example: AlGaN layer) 15, according to the equation (15) Negative polarization charge σ p is generated at the heterointerface.
 そして、本例では、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のAl組成はx=0.2であるので、式(15)よりσ/q=-1.0×1013cm-2となる。 In this example, since the Al composition of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) is x = 0.2, σ p / q = − from Equation (15). 1.0 × 10 13 cm −2 .
 アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のn形不純物をドーピングしていない領域152においては、n形不純物の濃度がN=0cm-3、p形不純物の濃度がN=0cm-3、であるので、関係式(8)が成り立ち、第二窒化物半導体層15中に面密度N=1.0×1013cm-2の負の固定電荷が形成される。このため、p形伝導領域142が形成される。 In the region 152 of the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) not doped with the n-type impurity, the concentration of the n-type impurity is N d = 0 cm −3 , and the p-type impurity is Since the concentration of N a = 0 cm −3 , the relational expression (8) is satisfied, and the negative fixed charge having the surface density N p = 1.0 × 10 13 cm −2 in the second nitride semiconductor layer 15 is satisfied. Is formed. For this reason, the p-type conduction region 142 is formed.
 また、アンドープAl0.2Ga0.8N層(第二窒化物半導体層15)のn形不純物をドーピングした領域151においては、n形不純物の濃度がN=5×1019cm-3、活性化率η=0.1、n形不純物ドープ領域の厚さ(深さ)t=40nm、p形不純物の濃度がN=0cm-3であるので、関係式(6)が成り立ち、第二窒化物半導体層15中に面密度N=1.0×1013cm-2の正の固定電荷が形成される。このため、n形伝導領域141が形成される。 In the undoped Al 0.2 Ga 0.8 N layer (second nitride semiconductor layer 15) in which the n-type impurity is doped, the concentration of the n-type impurity is N d = 5 × 10 19 cm −3. Since the activation rate η d = 0.1, the thickness (depth) of the n-type impurity doped region t d = 40 nm, and the concentration of the p-type impurity is N a = 0 cm −3 , the relational expression (6) is As a result, a positive fixed charge having a surface density N n = 1.0 × 10 13 cm −2 is formed in the second nitride semiconductor layer 15. For this reason, an n-type conductive region 141 is formed.
 このように、本例の電界効果トランジスタの場合、式(10)が成り立つ。このため、実施形態1で説明した作用原理に基づいて、ゲート電極18とドレイン電極172に挟まれた領域内の電界強度はほぼ一定となり、電界集中が緩和される。また、第四の電極19をソース電極171と電気的に接続すれば、アバランシェ耐量を改善することができる。 Thus, in the case of the field effect transistor of this example, Expression (10) is established. For this reason, based on the operation principle described in the first embodiment, the electric field strength in the region sandwiched between the gate electrode 18 and the drain electrode 172 becomes substantially constant, and the electric field concentration is alleviated. In addition, if the fourth electrode 19 is electrically connected to the source electrode 171, the avalanche resistance can be improved.
 この出願は、2009年7月7日に出願された日本特許出願特願2009-160698号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-160698 filed on July 7, 2009, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  第一の窒化物半導体からなる第一窒化物半導体層、および、前記第一の窒化物半導体よりバンドギャップの大きい第二の窒化物半導体からなる第二窒化物半導体層、を積層した積層体と、
     前記積層体の上に形成されたゲート絶縁膜およびゲート電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極と対向するよう設けられるドレイン電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極を挟んで前記ドレイン電極の反対側に設けられるソース電極と、
    を備え、
     前記第二窒化物半導体層の前記ゲート電極と前記ドレイン電極で挟まれた領域には、
      n形不純物をドーピングされたn形不純物ドープ領域と、p形不純物をドーピングされたp形不純物ドープ領域と、を前記ゲート電極がのびる方向に沿って交互に配列した縞模様が形成されている電界効果トランジスタ。
    A laminated body in which a first nitride semiconductor layer made of a first nitride semiconductor and a second nitride semiconductor layer made of a second nitride semiconductor having a larger band gap than the first nitride semiconductor are laminated; ,
    A gate insulating film and a gate electrode formed on the laminate;
    A drain electrode electrically connected to the first nitride semiconductor layer on the stacked body and provided to face the gate electrode;
    On the stacked body, electrically connected to the first nitride semiconductor layer, a source electrode provided on the opposite side of the drain electrode across the gate electrode,
    With
    In the region sandwiched between the gate electrode and the drain electrode of the second nitride semiconductor layer,
    An electric field in which an n-type impurity doped region doped with an n-type impurity and a p-type impurity doped region doped with a p-type impurity are alternately arranged along the direction in which the gate electrode extends. Effect transistor.
  2.  前記n形不純物ドープ領域のn形活性化不純物の面密度nd1と、
     前記n形不純物ドープ領域のp形活性化不純物の面密度na1と、
     前記n形不純物ドープ領域の幅Wnと、
     前記p形不純物ドープ領域のp形活性化不純物の面密度na2と、
     前記p形不純物ドープ領域のn形活性化不純物の面密度nd2と、
     前記p形不純物ドープ領域の幅Wpと、
     前記第一の窒化物半導体層と前記第二の窒化物半導体層との界面に形成される分極電荷の面密度σと、
     素電荷q(=1.6×10-19C)と、が0.1<(|nd1-na1+σ/q|×W)/(|-nd2+na2-σ/q|×W)<10
    の関係式をみたす請求項1に記載の電界効果トランジスタ。
    N-type activation impurity surface density n d1 of the n-type impurity doped region;
    A surface density na1 of the p-type activation impurity in the n-type impurity doped region;
    A width W n of the n-type impurity doped region;
    The surface density na2 of the p-type activation impurity in the p-type impurity doped region;
    The surface density n d2 of the n-type activation impurity in the p-type impurity doped region;
    A width W p of the p-type impurity doped region;
    The surface density σ p of the polarization charge formed at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer;
    Elementary charge q (= 1.6 × 10 −19 C) and 0.1 <(| n d1 −n a1 + σ p / q | × W n ) / (| −n d2 + n a2 −σ p / q | × W p ) <10
    The field effect transistor according to claim 1, wherein:
  3.  前記n形不純物ドープ領域のn形活性化不純物の面密度nd1と、
     前記n形不純物ドープ領域のp形活性化不純物の面密度na1と、
     前記n形不純物ドープ領域の幅Wnと、
     前記p形不純物ドープ領域のp形活性化不純物の面密度na2と、
     前記p形不純物ドープ領域のn形活性化不純物の面密度nd2と、
     前記p形不純物ドープ領域の幅Wpと、
     前記第一の窒化物半導体層と前記第二の窒化物半導体層との界面に形成される分極電荷の面密度σと、
     素電荷q(=1.6×10-19C)と、が
    |nd1-na1+σ/q|×W=|-nd2+na2-σ/q|×Wの関係式をみたす請求項2に記載の電界効果トランジスタ。
    N-type activation impurity surface density n d1 of the n-type impurity doped region;
    A surface density na1 of the p-type activation impurity in the n-type impurity doped region;
    A width W n of the n-type impurity doped region;
    The surface density na2 of the p-type activation impurity in the p-type impurity doped region;
    The surface density n d2 of the n-type activation impurity in the p-type impurity doped region;
    A width W p of the p-type impurity doped region;
    The surface density σ p of the polarization charge formed at the interface between the first nitride semiconductor layer and the second nitride semiconductor layer;
    Relational expression of elementary charge q (= 1.6 × 10 −19 C) and | n d1 −n a1 + σ p / q | × W n = | −n d2 + n a2 −σ p / q | × W p The field effect transistor according to claim 2, wherein:
  4.  前記第一窒化物半導体層は、前記第二窒化物半導体層の上側または下側に設けられている請求項1から3のいずれか一に記載の電界効果トランジスタ。 4. The field effect transistor according to claim 1, wherein the first nitride semiconductor layer is provided on an upper side or a lower side of the second nitride semiconductor layer.
  5.  第一の窒化物半導体からなる第一窒化物半導体層の上に、前記第一の窒化物半導体よりバンドギャップの大きい第二の窒化物半導体からなる第二窒化物半導体層を積層した(0001)面成長の積層体と、
     前記積層体の上に形成されたゲート絶縁膜およびゲート電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極と対向するよう設けられるドレイン電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極を挟んで前記ドレイン電極の反対側に設けられるソース電極と、
    を基板上に備え、
     前記第二窒化物半導体層の前記ゲート電極と前記ドレイン電極で挟まれた領域には、
      p形不純物をドーピングされたp形不純物ドープ領域と、アンドープ領域と、を交互に配列した縞模様が形成され、
      前記積層体と前記基板との間には、前記第一窒化物半導体層との界面にて前記第一窒化物半導体と格子整合する(0001)面成長のバッファ層をさらに備える電界効果トランジスタ。
    On the first nitride semiconductor layer made of the first nitride semiconductor, a second nitride semiconductor layer made of the second nitride semiconductor having a larger band gap than the first nitride semiconductor was laminated (0001) A surface-growing laminate,
    A gate insulating film and a gate electrode formed on the laminate;
    A drain electrode electrically connected to the first nitride semiconductor layer on the stacked body and provided to face the gate electrode;
    On the stacked body, electrically connected to the first nitride semiconductor layer, a source electrode provided on the opposite side of the drain electrode across the gate electrode,
    On the substrate,
    In the region sandwiched between the gate electrode and the drain electrode of the second nitride semiconductor layer,
    A striped pattern in which p-type impurity doped regions doped with p-type impurities and undoped regions are alternately arranged is formed,
    A field effect transistor further comprising a buffer layer having a (0001) plane growth lattice-matched with the first nitride semiconductor at an interface with the first nitride semiconductor layer between the stacked body and the substrate.
  6.  第一の窒化物半導体からなる第一窒化物半導体層の下に、前記第一の窒化物半導体よりバンドギャップの大きい第二の窒化物半導体からなる第二窒化物半導体層を積層した(0001)面成長の積層体と、
     前記積層体の上に形成されたゲート絶縁膜およびゲート電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極と対向するよう設けられるドレイン電極と、
     前記積層体の上に、前記第一窒化物半導体層と電気的に接続し、前記ゲート電極を挟んで前記ドレイン電極の反対側に設けられるソース電極と、
    を基板上に備え、
     前記第二窒化物半導体層の前記ゲート電極と前記ドレイン電極で挟まれた領域には、
      n形不純物をドーピングされたn形不純物ドープ領域と、アンドープ領域と、を交互に配列した縞模様が形成され、
     前記積層体と前記基板との間には、前記第二窒化物半導体層との界面にて前記第二窒化物半導体と格子整合する(0001)面成長のバッファ層をさらに備える電界効果トランジスタ。
    A second nitride semiconductor layer made of a second nitride semiconductor having a band gap larger than that of the first nitride semiconductor was laminated under the first nitride semiconductor layer made of the first nitride semiconductor (0001) A surface-growing laminate,
    A gate insulating film and a gate electrode formed on the laminate;
    A drain electrode electrically connected to the first nitride semiconductor layer on the stacked body and provided to face the gate electrode;
    On the stacked body, electrically connected to the first nitride semiconductor layer, a source electrode provided on the opposite side of the drain electrode across the gate electrode,
    On the substrate,
    In the region sandwiched between the gate electrode and the drain electrode of the second nitride semiconductor layer,
    A striped pattern in which n-type impurity doped regions doped with n-type impurities and undoped regions are alternately arranged is formed,
    A field effect transistor further comprising a (0001) plane grown buffer layer lattice-matched with the second nitride semiconductor at the interface with the second nitride semiconductor layer between the stacked body and the substrate.
  7.  前記積層体はエピタキシャル層である請求項1から6のいずれか一に記載の電荷効果トランジスタ。 The charge effect transistor according to any one of claims 1 to 6, wherein the stacked body is an epitaxial layer.
  8.  前記積層体の上であって、前記ソース電極を挟んで前記ゲート電極の反対側に、第四の電極を備えるとともに、
     前記積層体の下であって、前記積層体と接する位置に、p形またはn形である1形不純物をドーピングされた第三の窒化物半導体からなる第三窒化物半導体層を備え、
     前記第二窒化物半導体層の前記縞模様を構成するp形またはn形である1形不純物ドープ領域は、前記ソース電極の直下まで延伸せず、
     前記第四の電極の直下には、前記1形不純物をドーピングされた前記1形不純物ドープ領域が形成されている請求項1から7のいずれか一に記載の電界効果トランジスタ。
    A fourth electrode is provided on the stacked body, on the opposite side of the gate electrode across the source electrode, and
    A third nitride semiconductor layer made of a third nitride semiconductor doped with a p-type or n-type impurity at a position below the multilayer body and in contact with the multilayer body;
    The p-type or n-type 1-type impurity doped region constituting the striped pattern of the second nitride semiconductor layer does not extend to just below the source electrode,
    The field effect transistor according to any one of claims 1 to 7, wherein the first-type impurity doped region doped with the first-type impurity is formed immediately below the fourth electrode.
  9.  前記積層体の上であって、前記ソース電極を挟んで前記ゲート電極の反対側に、第四の電極を備え、
     前記第二窒化物半導体層の前記縞模様を構成するp形またはn形である1形不純物ドープ領域は、前記ソース電極の直下まで延伸し、
     前記第二窒化物半導体層の前記縞模様を構成するn形またはp形であって1形とは異なる形の2形不純物ドープ領域は、前記第四の電極の直下まで延伸している請求項1から7のいずれか一に記載の電界効果トランジスタ。
    A fourth electrode is provided on the stacked body, on the opposite side of the gate electrode across the source electrode,
    A p-type or n-type impurity doped region constituting the striped pattern of the second nitride semiconductor layer extends to a position immediately below the source electrode;
    2. The n-type or p-type, which is the n-type or p-type that forms the stripe pattern of the second nitride semiconductor layer, and has a shape different from the type 1, extends to a position immediately below the fourth electrode. 8. The field effect transistor according to any one of 1 to 7.
  10.  前記第四の電極は、前記ソース電極を介して電気的に接地している請求項8または9に記載の電界効果トランジスタ。 The field effect transistor according to claim 8 or 9, wherein the fourth electrode is electrically grounded via the source electrode.
PCT/JP2010/003337 2009-07-07 2010-05-18 Field-effect transistor WO2011004535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011521784A JP5462261B2 (en) 2009-07-07 2010-05-18 Field effect transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009160698 2009-07-07
JP2009-160698 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004535A1 true WO2011004535A1 (en) 2011-01-13

Family

ID=43428968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003337 WO2011004535A1 (en) 2009-07-07 2010-05-18 Field-effect transistor

Country Status (2)

Country Link
JP (1) JP5462261B2 (en)
WO (1) WO2011004535A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178454A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2013080895A (en) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd Nitride semiconductor element and manufacturing method of the same
CN113066864A (en) * 2020-04-30 2021-07-02 英诺赛科(苏州)半导体有限公司 Semiconductor device with a plurality of transistors
JP2021125536A (en) * 2020-02-04 2021-08-30 株式会社デンソー Nitride semiconductor device
EP4120363A1 (en) * 2021-07-13 2023-01-18 Samsung Electronics Co., Ltd. High electron mobility transistor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006731A (en) * 2002-03-27 2004-01-08 Toshiba Corp Field effect transistor and its application device
JP2005079346A (en) * 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device
JP2007134608A (en) * 2005-11-14 2007-05-31 National Institute Of Advanced Industrial & Technology Nitride semiconductor hetero-junction transistor using resurf structure
JP2007165719A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor element
JP2007329205A (en) * 2006-06-06 2007-12-20 Matsushita Electric Ind Co Ltd Transistor
JP2009111204A (en) * 2007-10-31 2009-05-21 Panasonic Corp Field effect transistor and its manufacturing method
JP2009130106A (en) * 2007-11-22 2009-06-11 Toshiba Corp Semiconductor device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447065B2 (en) * 1999-01-11 2010-04-07 富士電機システムズ株式会社 Superjunction semiconductor device manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006731A (en) * 2002-03-27 2004-01-08 Toshiba Corp Field effect transistor and its application device
JP2005079346A (en) * 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device
JP2007134608A (en) * 2005-11-14 2007-05-31 National Institute Of Advanced Industrial & Technology Nitride semiconductor hetero-junction transistor using resurf structure
JP2007165719A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor element
JP2007329205A (en) * 2006-06-06 2007-12-20 Matsushita Electric Ind Co Ltd Transistor
JP2009111204A (en) * 2007-10-31 2009-05-21 Panasonic Corp Field effect transistor and its manufacturing method
JP2009130106A (en) * 2007-11-22 2009-06-11 Toshiba Corp Semiconductor device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178454A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2013080895A (en) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd Nitride semiconductor element and manufacturing method of the same
JP2021125536A (en) * 2020-02-04 2021-08-30 株式会社デンソー Nitride semiconductor device
JP7388216B2 (en) 2020-02-04 2023-11-29 株式会社デンソー nitride semiconductor device
CN113066864A (en) * 2020-04-30 2021-07-02 英诺赛科(苏州)半导体有限公司 Semiconductor device with a plurality of transistors
CN113066864B (en) * 2020-04-30 2022-09-13 英诺赛科(苏州)半导体有限公司 Semiconductor device with a plurality of transistors
EP4120363A1 (en) * 2021-07-13 2023-01-18 Samsung Electronics Co., Ltd. High electron mobility transistor

Also Published As

Publication number Publication date
JPWO2011004535A1 (en) 2012-12-13
JP5462261B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US10014403B2 (en) Semiconductor device
US8921894B2 (en) Field effect transistor, method for producing the same, and electronic device
US9837519B2 (en) Semiconductor device
US8963207B2 (en) Semiconductor device
US8907349B2 (en) Semiconductor device and method of manufacturing the same
EP1779438B2 (en) Iii-v hemt devices
JP6368197B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20110227132A1 (en) Field-effect transistor
US8344422B2 (en) Semiconductor device
US20130099245A1 (en) Field effect transistor, method for producing the same, and electronic device
WO2015056797A1 (en) Nitride semiconductor device, method for manufacturing same, diode, and field effect transistor
JP2017073506A (en) Nitride semiconductor device and method for manufacturing the same
WO2007122800A1 (en) Field effect transistor
JP5568891B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JP5462261B2 (en) Field effect transistor
JP5510324B2 (en) Method for manufacturing field effect transistor
JP5991000B2 (en) Semiconductor device and manufacturing method thereof
KR20110067512A (en) Enhancement normally off nitride smiconductor device and manufacturing method thereof
CN116344586A (en) Folded channel gallium nitride-based field effect transistor and preparation method thereof
US20200411647A1 (en) Nitride semiconductor device
JP2018093239A (en) Semiconductor device
JP7069486B2 (en) High electron mobility transistor
CN118248725A (en) Group III nitride high electron mobility transistor with buried P-type layer and method of making same
JP7512620B2 (en) Nitride Semiconductor Device
JP6415466B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521784

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796849

Country of ref document: EP

Kind code of ref document: A1