WO2011002118A1 - Method for treating insulating oil containing pcbs - Google Patents

Method for treating insulating oil containing pcbs Download PDF

Info

Publication number
WO2011002118A1
WO2011002118A1 PCT/KR2009/003605 KR2009003605W WO2011002118A1 WO 2011002118 A1 WO2011002118 A1 WO 2011002118A1 KR 2009003605 W KR2009003605 W KR 2009003605W WO 2011002118 A1 WO2011002118 A1 WO 2011002118A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcbs
insulating oil
polyol
chlorine
mixture
Prior art date
Application number
PCT/KR2009/003605
Other languages
French (fr)
Korean (ko)
Inventor
황성일
현준목
조종수
김영선
Original Assignee
(주)엠비즈텍씨앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠비즈텍씨앤씨 filed Critical (주)엠비즈텍씨앤씨
Priority to KR1020107004264A priority Critical patent/KR100970947B1/en
Priority to PCT/KR2009/003605 priority patent/WO2011002118A1/en
Publication of WO2011002118A1 publication Critical patent/WO2011002118A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids

Definitions

  • the present invention relates to an environmentally friendly method of removing PCBs contained in insulating oil of a waste transformer and recycling or recycling waste oil and shells, which are environmental wastes.
  • PCBs PolyChlorinated Biphenyls
  • PCBs are used in insulating oils in transformers and accumulators or in heat exchangers. It has been used as a medium and widely used in industries such as paint, ink and pesticides.
  • Korean Patent Application No. 10-1999-0018650 is a technology to decompose and remove PCBs including oil by water and carbon dioxide by oxidizing PCBs by using persulfate ion and ultraviolet ray. .
  • PCBs including oil by water and carbon dioxide by oxidizing PCBs by using persulfate ion and ultraviolet ray.
  • persulfate ion and ultraviolet ray persulfate ion and ultraviolet ray.
  • an object of the present invention is to provide a treatment method for removing PCBs contained in waste insulating oil by using waste and treating waste insulating oil from which PCBs have been removed as a resource for recycling.
  • Insulating oil treatment method comprising a PCBs according to the present invention for achieving the above object is a step of desorbing the chlorine of the PCBs from the insulating oil containing PCBs (Polychlorinated Biphenyls); And a step B of adsorbing the chlorine desorbed in the step A to an adsorbent; It includes, the adsorbent is characterized in that the waste containing calcium (Ca) or calcium carbonate (CaCO 3 ).
  • the waste is another feature that is a shell.
  • the waste is characterized in that the pores are formed.
  • the chlorine of the PCBs in step A is characterized in that the hydroxy group radicals generated by adding hydrogen peroxide and iron sulfate solution to the insulating oil is detached by the reaction of the PCBs.
  • hydroxy radical and the hydrocarbon compound of the insulating oil react to form a polyol.
  • step C after the step B to form a polyurethane from the polyol; It is characterized by another comprising a further.
  • step C is a step C1 of dehydrating a mixture of the adsorbent and the polyol to which the chlorine is adsorbed after the step B; And a step C2 of adding a crosslinking agent to the mixture dehydrated in step C1; It is another feature to include a.
  • step C is a step C0 of separating the upper polyol mixture after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture separated in step C0; And adding a crosslinking agent to the polyol mixture dehydrated in the step C1; It is another feature to include a.
  • step C is a C0 step of separating the polyol mixed precipitate of the lower layer after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture precipitate separated in step C0; And a step C2 of adding a crosslinking agent to the lower precipitate layer dehydrated in the step C1; It is another feature to include a.
  • the color of the polyurethane formed after the C2 step can be selected by controlling the heating temperature or the dehydration time for the polyol mixed precipitate in the C1 step.
  • Insulating oil treatment method including the PCBs according to the present invention for achieving the above object is a hydroxyl group radical generated by adding hydrogen peroxide and iron sulfate solution to the insulating oil containing PCBs (Polychlorinated Biphenyls) react with the PCBs A step of desorbing the chlorine of the PCBs; And B step of adsorbing the chlorine desorbed in the A step to the adsorbent.
  • the hydroxyl group radical reacts with the hydrocarbon compound of the insulating oil to form a polyol.
  • step C after the step B to form a polyurethane from the polyol; It is characterized by another comprising a further.
  • step C is a step C1 of dehydrating a mixture of the adsorbent and the polyol to which the chlorine is adsorbed after the step B; And a step C2 of adding a crosslinking agent to the mixture dehydrated in step C1; It is another feature to include a.
  • step C is a step C0 of separating the upper polyol mixture after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture separated in step C0; And adding a crosslinking agent to the polyol mixture dehydrated in the step C1; It is another feature to include a.
  • step C is a C0 step of separating the polyol mixed precipitate of the lower layer after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture precipitate separated in step C0; And a step C2 of adding a crosslinking agent to the lower precipitate layer dehydrated in the step C1; It is another feature to include a.
  • the color of the polyurethane formed after the C2 step can be selected by controlling the heating temperature or the dehydration time for the polyol mixed precipitate in the C1 step.
  • Insulating oil treatment method including PCBs according to the present invention uses environmental waste waste and hydroxy radicals to decompose and remove PCBs of harmful waste PCBs insulation oil so that the waste waste is recycled and harmful PCBs are recycled. Has the effect of removing the residue without residue.
  • the waste insulating oil from which the PCBs are decomposed and removed can be recycled without waste.
  • the polyol can be used to form a polyurethane, there is an advantage of recycling resources, and there is an advantage of forming a colored polyurethane according to the oxidation of the transparent polyurethane and iron sulfate.
  • FIG. 1 is a flow chart schematically showing an insulating oil processing method including PCBs according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional photograph of a shell showing a state before forming a porous structure in the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional photograph of a shell showing a porous structure formed on the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention.
  • PCBs (hereinafter, simply referred to as PCBs) according to an embodiment of the present invention.
  • PCBs insulating oil treatment method is made to include a step A and B and may further comprise a step C.
  • the PCBs insulating oil containing PCBs and paraffin hydrocarbons such as n-pentane (isopentane), isopentane (neo pentane) and naph such as cyclopentane (cyclopentane
  • n-pentane isopentane
  • isopentane isopentane
  • naph such as cyclopentane
  • cyclohexane cyclopentane
  • an adsorbent means the substance which adsorb
  • a step (S101) is a step of desorbing chlorine of the PCBs from the insulating oil containing the PCBs.
  • the reaction tank is filled with insulating oil containing PCBs (hereinafter, simply referred to as PCBs insulating oil), and hydrogen peroxide (H 2 O 2 35%) and iron sulfate (FeSO 4 ) aqueous solution (20%) are added to the hydroxy radical. (OH) is generated.
  • PCBs insulating oil insulating oil containing PCBs
  • H 2 O 2 35%) and iron sulfate (FeSO 4 ) aqueous solution (20%) are added to the hydroxy radical. (OH) is generated.
  • Hydroxy radicals attack and desorb chlorine bound to the diphenyl ring of PCBs. Desorbed chlorine is either blown off with chlorine gas or left in insulating oil with chlorine ions.
  • Hydrogen peroxide (formula: 35% H 2 O 2 ) and iron sulfate (FeSO 4 or Fe 2 (SO 4 ) 3 ) aqueous solution (solid content 20%) are used as radical generators to dissolve or decompose each molecule of PCBs insulating oil.
  • iron sulfate FeSO 4 or Fe 2 (SO 4 ) 3
  • aqueous solution solid content 20%
  • the weight ratio of oil to hydrogen peroxide is preferably 1: 0.2 to 1: 2.
  • the weight ratio of the oil to the iron sulfate solution is 1: 0.2 to 1: 2.
  • iron ions circulate between Fe 2 + and Fe 3 + when the organic material is oxidized and decomposed.
  • Fe + 2 which is a catalyst to catalyze the hydrogen peroxide generates a hydroxyl radical (and OH) and of hydrogen peroxide from the oxidized to the Fe + 3.
  • the generated (.OH) decomposes an organic substance to generate an organic radical (R.).
  • Fe 3 + by the organic radical is reduced back to Fe + 2.
  • Organic radicals are oxidatively decomposed.
  • hydroxy radical (.OH) generated by the reaction of hydrogen peroxide with iron sulfate is desorbed from the diphenyl ring of PCBs as outlined in Scheme 1, and the diphenyl ring is substituted with a hydroxyl group instead of chlorine.
  • the chlorine desorbed from the phenyl ring through the radical reaction is adsorbed to the adsorbent containing calcium or calcium carbonate in step B to be described later to become calcium chloride, and the chlorine component is removed from the oil.
  • hydroxy radicals desorb chlorine from PCBs as described above, but as shown schematically in Scheme 2, radical reactions to molecules of hydrocarbon oils in waste insulating oil form compounds such as polyols in which hydrogen is substituted with hydroxyl groups. Sometimes.
  • the polyol is formed by the reaction of hydroxy radicals and hydrocarbon oil as shown in Scheme 2 in step A (S101). This polyol formation reaction may occur while chlorine is adsorbed to the adsorbent in step B (S102), which will be described later. .
  • step S102 desorbed chlorine (chlorine ion) is adsorbed onto an adsorbent containing calcium (Ca) or calcium carbonate (CaCO 3 ).
  • an adsorbent containing calcium (Ca) or calcium carbonate (CaCO 3 ) it is preferable to use a porous waste containing calcium as the adsorbent. It is more preferable to use a shell as a porous waste containing calcium here.
  • porous waste containing calcium as an adsorbent for adsorbing chlorine for a while will be described.
  • Shells can be used as porous waste containing calcium.
  • the shell is shell of shellfish, which is composed of tananium calcium and composed of an outer layer, an inner layer, and a myostracum layer. Its main component is calcium carbonate and is usually composed of about 1 to 4% amino acids (NH 2 ).
  • the following predetermined processing can be performed on the shell.
  • FIG. 2 is a sectional view of a shell showing a state before forming a porous structure in the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention
  • Figure 3 includes a PCB according to an embodiment of the present invention Shell cross-section picture showing the porous structure formed on the shell in the insulating oil treatment method.
  • a shell is put in a sealed container to create an environment where oxygen is blocked.
  • the cross-sectional view of the shell before the predetermined processing is performed on the shell is as shown in FIG.
  • the shell is heat-treated at high temperature (for example 400-900 degrees Celsius).
  • the heat treatment time is heated to about 1 hour to 12 hours.
  • components such as amino acids are thermally decomposed to form a porous structure in the shell while expanding out of the gas state.
  • the porous structure formed on the shell is shown as a photograph shown in FIG.
  • carbon dioxide and oxygen are released from some of the main components of calcium carbonate and mixed with calcium, CaO, and CaCO 3 to increase the adsorption reactivity of the adsorbent.
  • a low oxygen environment is created in the container to prevent oxidation of the shell so that the porous structure of the shell does not collapse.
  • a shell having a porous structure including calcium or calcium carbonate as described above, is used to remove chlorine desorbed from PCBs.
  • step A a shell, which is a waste, is adsorbed into the reaction tank.
  • wet grinding is performed so that chlorine gas or chlorine ions can be smoothly adsorbed on the shell which is the adsorbent.
  • an adsorbent containing calcium after adding hydrogen peroxide and iron sulfate solution.
  • Calcium is alkaline and can neutralize the acid groups of hydrogen peroxide, which can interfere with the smooth production of radicals. Therefore, it is preferable to add the adsorbent containing calcium after a predetermined time passes after adding hydrogen peroxide and iron sulfate solution.
  • an adsorbent containing calcium is added in a weight ratio of 1: 0.1 to 1: 1 with respect to PCBs insulating oil.
  • the grinding of the adsorbent is preferably, for example, wet grinding to have a size of 30 ⁇ m or less by rotating at 300 to 3000 RPM with an injector for grinding for 5 to 30 minutes.
  • Step C (S200) is a step of forming a polyurethane using waste insulating oil in which PCBs are decomposed and removed after step B102 and a polyol is formed. That is, after step B (S102) to form a polyurethane from the polyol.
  • the C step (S200) of forming the polyurethane is made to include the C1 step (S202) and the C2 step (S203), it may be made by further comprising a C0 step (S201) as necessary.
  • step C0 (S201) will be described.
  • step C0 the PCBs are decomposed and removed after step B (S102), and the polyol mixture of the upper layer is left after leaving the waste insulating oil (ie, a mixture of chlorine-adsorbed adsorbent and polyol) having a polyol for a predetermined time.
  • waste insulating oil ie, a mixture of chlorine-adsorbed adsorbent and polyol
  • the polyol mixture in the transparent liquid layer of the upper layer is separated, and steps C1 (S202) and C2 (S203), which will be described later, are described in the polyol mixture in the transparent liquid layer of the separated upper layer.
  • Transparent polyurethane can be formed through.
  • the precipitated layer appearing in the lower layer is colored.
  • Hydrogen peroxide and ferrous sulfate in this embodiment FeSO 4 or Fe 2 (SO 4) 3
  • FeSO 4 or Fe 2 (SO 4) 3 using the aqueous solution process decomposing PCBs in the PCBs waste transformer oil, and while forming the polyol iron sulfate (FeSO 4 or Fe 2 (SO 4) 3
  • the yellow color of FeO is yellow due to the iron content of the aqueous solution.
  • the polyol sediment mixture in the sedimentation layer of the lower layer is separated, and steps C1 (S202) and C2 (S203) which will be described later on the separated polyol sediment mixture are performed. It is possible to form a colored polyurethane through.
  • Step C1 (S202) is a step of dehydrating the waste insulating oil (ie, a mixture of chlorine-adsorbed adsorbent and polyol) in which PCBs are decomposed and removed.
  • waste insulating oil ie, a mixture of chlorine-adsorbed adsorbent and polyol
  • the separation is subjected to a reduced pressure heating treatment for 1 to 24 hours at a temperature of 20 to 100 °C in an environment of vacuum 700 to 100 Torr. And in order to lower the water content, the adsorption treatment with activated carbon is dewatered to make the moisture content less than 0.05%.
  • the transparent polyurethane when the transparent polyurethane is to be formed, the polyol mixture in the transparent liquid layer separated in the C0 step (S201) is dehydrated, and then a transparent polyurethane can be formed by adding a crosslinking agent in the C2 step (S203). .
  • the color of the polyurethane may be determined according to a method of dehydrating the polyol precipitate mixture in the precipitate layer of the lower layer. That is, the color may be determined by adjusting the heating temperature or the dehydration time for the polyol mixed precipitate.
  • the polyol precipitate Iron sulfate contained in the mixture is oxidized to iron oxide (FeO) to obtain a yellow iron oxide-calcium composite polyol and the like.
  • the yellowish polyol precipitate mixture is a yellow iron oxide-calcium composite polyol dehydrated without color change.
  • the degree of oxidation of iron sulfate can be controlled (that is, the higher the temperature or the longer the dehydration time, the greater the oxidation of iron sulfate).
  • the color of the polyol is determined. When the polyol is formed of polyurethane, the color of the polyol becomes the color of the polyurethane.
  • Step C2 is a step of adding a crosslinking agent to the mixture dehydrated in step C1 (S202).
  • MDI methylene diphenyl diisocyanate
  • TDI toluene diisocyanate
  • HMDI hexamethylene diisocyanate
  • XDI xylene diisocyanate
  • MXDI m-xylene diisocyanate
  • Any one of aromatic isocyanate or aliphatic isocyanate such as) is selected and added. It is preferable that the weight ratio of a polyol and a crosslinking agent is 1: 0.1-1: 1 here. The addition of the crosslinking agent forms a polyurethane from the polyol.
  • the color of the polyurethane formed in step C2 (S203) is determined according to the color of the polyol mixture dehydrated in step C1 (S2020).
  • a transparent polyurethane is formed by adding a crosslinking agent to the transparent polyol dehydrated in step C1 (S202).
  • Yellow polyurethane is formed by adding a crosslinking agent to the yellow iron oxide-calcium composite polyol dehydrated without color change in step C1 (S202).
  • the reddish-brown polyurethane is formed by adding a crosslinking agent to the reddish-brown iron oxide (Fe 2 O 3 ) -calcium complex polyol formed during the dehydration process in step C1 (S202).
  • a black polyurethane is formed by adding a crosslinking agent to the iron (Fe 3 O 4 ) -calcium complex polyol of black (BLACK) formed while being dehydrated in the step C1 (S202).
  • chlorine is desorbed from the diphenyl ring, adsorbed to calcium, calcium chloride, and eventually included in the urethane polymer.
  • a small amount of calcium chloride is a harmless substance to the human body and does not adversely affect the environment.
  • calcium chloride is only about 0.0002% (2ppm) to less than 0.1% of the total amount of the polymer does not significantly affect the polyurethane polymer properties.
  • PCBs in which chlorine is bonded to a ring in diphenyl in waste insulating oil are completely removed without the problem of PCBs remaining by chlorine desorbing and adsorption.
  • PCBs residual test result PCBs were found to be 317ppm ⁇ “not detected” and PCBs were completely removed (see Table 1).
  • Example 1 The reaction product prepared in Example 1 was precipitated for 24 hours to obtain a transparent liquid phase of the upper layer, which was dehydrated for 6 hours at a temperature of 90 ° C. in a low vacuum environment of 100 to 700 Torr.
  • the reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated in a low vacuum environment at a vacuum degree of 100 to 700 Torr for 12 hours at a temperature of 30 ° C., followed by finishing dehydration treatment using an activated carbon filter. To a water content of 0.05% or less.
  • the reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated at a water content of 0.05% or less by dehydrating at 100 ° C to 700 Torr for 12 hours at a temperature of 90 ° C.
  • Example 1 The reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated in a vacuum of 100 to 700 Torr for 12 hours at a temperature of 180 ° C. to dehydrate to 0.05% or less of water content.
  • PCBs Residual Test Result PCBs were not completely removed from 317ppm to 92ppm (see Table 2).
  • PCBs residual test result PCBs increased from 317ppm to 426ppm (see Table 3).
  • PCBs insulating oil collected from the waste transformer (PCBs contained 317ppm) was put into the reactor and wet-pulverized the adsorbent with a blade infeller at a speed of RPM 1800, and 50g was sampled as follows. PCBs residual test was performed.
  • PCBs residual test result PCBs increased from 317ppm to 385ppm (see Table 4).
  • Comparative Example 3 As can be seen in Comparative Example 3, it can be seen that only the shells, which are environmental wastes, are decomposed and removed.
  • the insulating oil treatment method including the PCBs according to the present invention recycles waste wastes, which are environmental wastes, because the waste wastes and the hydroxyl radicals can be decomposed and removed so that PCBs of harmful waste PCBs insulation oils do not remain. Toxic PCBs can be removed.
  • the waste insulating oil from which the PCBs are decomposed can be recycled.
  • the polyol can be used to form a polyurethane, there is an advantage of resource recycling, and the colored polyurethane can be formed by oxidation of the transparent polyurethane and iron sulfate.
  • the present invention can be applied to the technical field of removing PCBs included in waste insulating oil and recycling or recycling waste oil and waste waste, which are environmental wastes.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention relates to a method for treating insulating oil containing polychlorinated biphenyls (PCBs), comprising the steps of: A) dissociating chlorine from PCBs in insulating oil; and B) adsorbing the dissociated chlorine in step A) on a sorbent, wherein as the sorbent is a waste product such as shells including calcium (Ca) or calcium carbonate (CaCO3), the method is capable of recycling insulating oil into a resource in which PCBs are degraded by recycling environmental waste products and degrading and removing PCBs.

Description

PCBs를 포함하는 절연유 처리방법Insulating oil treatment method including PCX
본 발명은 폐 변압기의 절연유에 포함된 PCBs를 제거하고 폐 오일과 환경폐기물인 패각(貝殼)을 재활용 또는 자원화하는 환경 친화적인 처리방법에 관한 것이다.The present invention relates to an environmentally friendly method of removing PCBs contained in insulating oil of a waste transformer and recycling or recycling waste oil and shells, which are environmental wastes.
폴리염화비페닐(PolyChlorinated Biphenyls. PCBs)은 두 개의 벤젠고리가 연결된 비페닐의 10개 수소원자중 2~10개가 염소원자로 치환된 화합물을 말한다. PolyChlorinated Biphenyls (PCBs) refer to compounds in which 2 to 10 of the 10 hydrogen atoms of biphenyl are linked with two benzene rings substituted with chlorine atoms.
이 화합물은 물에 불용성이며 유기용매에 대한 용해도가 좋으며 산과 알칼리에도 안정적이고 휘발성이 낮으며 높은 점도를 보이며 열에 대한 안정성이 매우 높기 때문에 PCBs는 변압기 및 축전지의 절연유에 포함되어 사용되거나 열교환기의 열교환매체로서 되었으며 페인트, 잉크, 농약 등의 산업분야에 널리 사용되었다. This compound is insoluble in water, good in solubility in organic solvents, stable in acids and alkalis, low in volatility, high in viscosity, and very high in thermal resistance, so PCBs are used in insulating oils in transformers and accumulators or in heat exchangers. It has been used as a medium and widely used in industries such as paint, ink and pesticides.
그러나 1970년대 중반에 PCBs가 건강과 환경에 심각한 악영향을 미치는 것으로 알려진 이래 이미 생산되어 폐기되어야 할 PCBs를 효과적으로 처리하는 방법의 개발에 많은 연구가 이루어져 왔다. However, since the PCBs are known to have serious adverse health and environmental impacts in the mid-1970s, much research has been made on the development of methods to effectively process PCBs that have already been produced and disposed of.
종래의 PCBs 혼합유의 처리 방법은 일반적으로 고온 소각 처리하였다. 그러나 소각방법은 다이옥신 및 이산화탄소가 다량 발생하는 문제점과 폐오일의 소각으로 인한 자원 낭비의 문제점이 있었기 때문에 다른 처리 방법이 연구되어 오고 있다. Conventional processes for treating PCBs mixed oils have generally been incinerated at high temperatures. However, since the incineration method has a problem of generating a large amount of dioxins and carbon dioxide and waste of resources due to incineration of waste oil, other treatment methods have been studied.
이러한 PCBs의 처리방법에 대한 기술로 "화학적 추출 분해방법"이 도쿄 전력회사의 인터넷 웹사이트에 ("PCBs의 무해화 처리 기술", 1996.12.2)에 소개된 바가 있다. 이 방법은 PCBs를 함유한 절연유에 솔벤트(solvent)를 첨가하여 PCBs속의 염소가 활성화 하여 수산화 나트륨과 반응하여 비페닐과 완전히 무해한 소금으로 변환시키는 기술이다. 그러나 이러한 기술에서 화학적 추출 분해방법은 명확한 것이 아니며 상기 화학적 반응만으로 처리하는 경우 화학적인 변환이 100% 가능하지 않고 잔여 PCBs가 미처리되는 문제점이 있었다.As a technique for processing such PCBs, a "chemical extraction decomposition method" has been introduced on Tokyo Electric Power Company's Internet website ("Decontamination Technology of PCBs", December 2, 1996). This method adds a solvent to the insulating oil containing PCBs, which activates chlorine in the PCBs to react with sodium hydroxide and convert it into biphenyl and a completely harmless salt. However, in this technique, the chemical extraction and decomposition method is not clear, and when the chemical reaction is only processed, there is a problem that the chemical conversion is not 100% possible and the remaining PCBs are not processed.
대한민국 특허출원 제10-1999-0018650호 (발명의 명칭:피씨비에스의 산화 분해 방법)에는 과황산이온과 자외선을 이용하여 PCBs를 산화시켜 오일을 포함한 PCBs를 물과 이산화탄소등으로 분해제거 하는 기술이다. 하지만 일반적인 함유량 약 0.1% 이하의 PCBs를 제거하려고 99.9%의 귀중한 자원인 다량의 폐 절연유를 재활용하지 못하고 소실시키는 문제점을 가지고 있었다 . Korean Patent Application No. 10-1999-0018650 (Invention: Oxidative Decomposition Method of PCB) is a technology to decompose and remove PCBs including oil by water and carbon dioxide by oxidizing PCBs by using persulfate ion and ultraviolet ray. . However, in order to remove PCBs with a general content of less than about 0.1%, there was a problem of failing to recycle a large amount of waste insulating oil, which is a valuable resource of 99.9%.
따라서, 본 발명이 해결하고자 하는 과제는 폐 절연유에 포함된 PCBs를 폐기물을 이용하여 제거하고 PCBs가 제거된 폐 절연유를 재활용할 수 있는 자원으로 처리하는 처리방법을 제공함에 있다. Accordingly, an object of the present invention is to provide a treatment method for removing PCBs contained in waste insulating oil by using waste and treating waste insulating oil from which PCBs have been removed as a resource for recycling.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 PCBs를 포함하는 절연유 처리방법은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유에서 PCBs의 염소를 탈리시키는 A단계; 및 상기 A단계에서 탈리된 상기 염소를 흡착체에 흡착시키는 B 단계; 를 포함하고, 상기 흡착체는 칼슘(Ca) 또는 탄산칼슘(CaCO3)을 포함하는 폐기물인 것을 특징으로 한다. Insulating oil treatment method comprising a PCBs according to the present invention for achieving the above object is a step of desorbing the chlorine of the PCBs from the insulating oil containing PCBs (Polychlorinated Biphenyls); And a step B of adsorbing the chlorine desorbed in the step A to an adsorbent; It includes, the adsorbent is characterized in that the waste containing calcium (Ca) or calcium carbonate (CaCO 3 ).
여기서, 상기 폐기물은 패각(貝殼)인 것을 또 하나의 특징으로 한다.Here, the waste is another feature that is a shell.
나아가 상기 폐기물에는 다공(多孔)이 형성된 것을 또 하나의 특징으로 한다. In addition, the waste is characterized in that the pores are formed.
여기서, 상기 A단계에서 상기 PCBs의 염소는 상기 절연유에 과산화수소 및 황산철수용액을 첨가하여 생성되는 하이드록시기 라디칼과 상기 PCBs와의 반응에 의해 탈리되는 것을 또 하나의 특징으로 한다.Here, the chlorine of the PCBs in step A is characterized in that the hydroxy group radicals generated by adding hydrogen peroxide and iron sulfate solution to the insulating oil is detached by the reaction of the PCBs.
나아가 상기 하이드록시기 라디칼과 상기 절연유의 탄화수소화합물이 반응을 하여 폴리올을 형성시키는 것을 또 하나의 특징으로 한다. Further, the hydroxy radical and the hydrocarbon compound of the insulating oil react to form a polyol.
더 나아가 상기 B단계 후 상기 폴리올로부터 폴리우레탄을 형성시키는 C단계; 를 더 포함하는 것을 또 하나의 특징으로 한다. Further step C after the step B to form a polyurethane from the polyol; It is characterized by another comprising a further.
여기서 상기 C단계는 상기 B단계 후 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다. Wherein the step C is a step C1 of dehydrating a mixture of the adsorbent and the polyol to which the chlorine is adsorbed after the step B; And a step C2 of adding a crosslinking agent to the mixture dehydrated in step C1; It is another feature to include a.
여기서 상기 C단계는 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 상층의 폴리올혼합물을 따로 분리시키는 C0단계; 상기 C0단계에서 분리된 폴리올혼합물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 폴리올혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다.Wherein step C is a step C0 of separating the upper polyol mixture after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture separated in step C0; And adding a crosslinking agent to the polyol mixture dehydrated in the step C1; It is another feature to include a.
여기서 상기 C단계는 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 하층의 폴리올혼합침전물을 따로 분리시키는 C0단계; 상기 C0단계에서 분리된 상기 폴리올혼합침전물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 하측의 침전물층에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다. Wherein step C is a C0 step of separating the polyol mixed precipitate of the lower layer after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture precipitate separated in step C0; And a step C2 of adding a crosslinking agent to the lower precipitate layer dehydrated in the step C1; It is another feature to include a.
나아가 상기 C1단계에서 상기 폴리올혼합침전물에 대한 가열온도 또는 탈수시간을 조절함으로써 상기 C2단계 후 형성되는 폴리우레탄의 색상을 선택할 수 있는 것을 또 하나의 특징으로 한다. Furthermore, it is another feature that the color of the polyurethane formed after the C2 step can be selected by controlling the heating temperature or the dehydration time for the polyol mixed precipitate in the C1 step.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 PCBs를 포함하는 절연유 처리방법은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유에 과산화수소 및 황산철수용액을 첨가함으로써 생성되는 하이드록시기 라디칼이 상기 PCBs와 반응을 하여 PCBs의 염소를 탈리시키는 A단계; 및 상기 A단계에서 탈리된 상기 염소를 흡착체에 흡착시키는 B 단계;를 포함하고, 상기 하이드록시기 라디칼이 상기 절연유의 탄화수소화합물과 반응을 하여 폴리올을 형성시키는 것을 특징으로 한다. Insulating oil treatment method including the PCBs according to the present invention for achieving the above object is a hydroxyl group radical generated by adding hydrogen peroxide and iron sulfate solution to the insulating oil containing PCBs (Polychlorinated Biphenyls) react with the PCBs A step of desorbing the chlorine of the PCBs; And B step of adsorbing the chlorine desorbed in the A step to the adsorbent. The hydroxyl group radical reacts with the hydrocarbon compound of the insulating oil to form a polyol.
여기서 상기 B단계 후 상기 폴리올로부터 폴리우레탄을 형성시키는 C단계; 를 더 포함하는 것을 또 하나의 특징으로 한다. Wherein step C after the step B to form a polyurethane from the polyol; It is characterized by another comprising a further.
여기서 상기 C단계는 상기 B단계 후 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다. Wherein the step C is a step C1 of dehydrating a mixture of the adsorbent and the polyol to which the chlorine is adsorbed after the step B; And a step C2 of adding a crosslinking agent to the mixture dehydrated in step C1; It is another feature to include a.
여기서 상기 C단계는 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 상층의 폴리올혼합물을 따로 분리시키는 C0단계; 상기 C0단계에서 분리된 폴리올혼합물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 폴리올혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다.Wherein step C is a step C0 of separating the upper polyol mixture after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture separated in step C0; And adding a crosslinking agent to the polyol mixture dehydrated in the step C1; It is another feature to include a.
여기서 상기 C단계는 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 하층의 폴리올혼합침전물을 따로 분리시키는 C0단계; 상기 C0단계에서 분리된 상기 폴리올혼합침전물을 탈수시키는 C1단계; 및 상기 C1단계에서 탈수된 상기 하측의 침전물층에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 또 하나의 특징으로 한다. Wherein step C is a C0 step of separating the polyol mixed precipitate of the lower layer after leaving the mixture of the adsorbent and the polyol adsorbed chlorine for a predetermined time; C1 step of dehydrating the polyol mixture precipitate separated in step C0; And a step C2 of adding a crosslinking agent to the lower precipitate layer dehydrated in the step C1; It is another feature to include a.
나아가 상기 C1단계에서 상기 폴리올혼합침전물에 대한 가열온도 또는 탈수시간을 조절함으로써 상기 C2단계 후 형성되는 폴리우레탄의 색상을 선택할 수 있는 것을 또 하나의 특징으로 한다. Furthermore, it is another feature that the color of the polyurethane formed after the C2 step can be selected by controlling the heating temperature or the dehydration time for the polyol mixed precipitate in the C1 step.
본 발명에 따른 PCBs를 포함하는 절연유 처리방법은 환경폐기물인 폐각과 하이드록시기 라디칼을 이용하여 유해한 폐기물인 PCBs 절연유의 PCBs가 잔류되지 않도록 분해제거시키기 때문에 환경폐기물인 폐각을 재활용하며 유해물질인 PCBs를 잔류없이 제거하는 효과가 있다.Insulating oil treatment method including PCBs according to the present invention uses environmental waste waste and hydroxy radicals to decompose and remove PCBs of harmful waste PCBs insulation oil so that the waste waste is recycled and harmful PCBs are recycled. Has the effect of removing the residue without residue.
또한 PCBs가 분해된 절연유의 오일에 하이드록시 라디칼이 반응하여 폴리올을 형성시키므로 PCBs가 분해제거된 폐절연유를 낭비없이 재활용할 수 있는 장점이 있다. In addition, since the hydroxyl radical reacts with the oil of the insulating oil from which the PCBs are decomposed to form a polyol, the waste insulating oil from which the PCBs are decomposed and removed can be recycled without waste.
나아가 폴리올을 이용하여 폴리우레탄을 형성시킬수 있으므로 자원재활용의 장점이 있으며, 투명한 폴리우레탄 및 황산철의 산화에 따라 유색(有色)의 폴리우레탄을 형성시킬 수 있는 장점이 있다. Furthermore, since the polyol can be used to form a polyurethane, there is an advantage of recycling resources, and there is an advantage of forming a colored polyurethane according to the oxidation of the transparent polyurethane and iron sulfate.
도 1은 본 발명의 실시 예에 따른 PCBs를 포함하는 절연유 처리방법을 개략적으로 나타낸 순서도이다. 1 is a flow chart schematically showing an insulating oil processing method including PCBs according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 PCBs를 포함하는 절연유 처리방법에서 패각에 다공질구조를 형성시키기 이전의 모습을 보여주는 패각의 단면사진이다.2 is a cross-sectional photograph of a shell showing a state before forming a porous structure in the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 PCBs를 포함하는 절연유 처리방법에서 패각에 다공질구조가 형성된 모습를 보여주는 패각의 단면사진이다.3 is a cross-sectional photograph of a shell showing a porous structure formed on the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention.
< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>
S101 : A단계 S101: Step A
S102 : B단계 S102: Stage B
S201 : C0단계 S201: C0 step
S202 : C1단계 S202: C1 step
S203 : C2단계 S203: C2 stage
이하에서는 본 발명에 대하여 보다 구체적으로 이해할 수 있도록 첨부된 도면을 참조한 바람직한 실시 예를 들어 설명한다. Hereinafter, with reference to the accompanying drawings to be described in more detail with respect to the present invention will be described with reference to a preferred embodiment.
도 1은 본 발명의 실시 예에 따른 PCBs(Polychlorinated biphenyls 이하 간략히 PCBs라 함)를 포함하는 절연유 처리방법의 개략적으로 나타낸 순서도이다.1 is a flow chart schematically showing an insulating oil treatment method including PCBs (hereinafter, simply referred to as PCBs) according to an embodiment of the present invention.
도 1을 참조하면 본 발명의 실시 예에 따른 PCBs 절연유 처리방법은 A단계 및 B단계를 포함하여 이루어지며 C단계를 더 포함하여 이루어질 수 있다.Referring to Figure 1 PCBs insulating oil treatment method according to an embodiment of the present invention is made to include a step A and B and may further comprise a step C.
그리고 본 명세서에서 PCBs절연유란 PCBs를 포함하며 n-펜탄(pentane), 이소펜탄(isopentane), 네오펜탄(neo pentane)과 같은 파라핀 탄화수소와 싸이클로펜탄(cyclopentane|), 싸이클로헥산(Cyclohexane)과 같은 나프텐(naphtene) 탄화수소의 단독 또는 혼합유를 말한다.And here, the PCBs insulating oil containing PCBs and paraffin hydrocarbons such as n-pentane (isopentane), isopentane (neo pentane) and naph such as cyclopentane (cyclopentane |), cyclohexane (cyclopentane) Refers to single or mixed oils of naphtene hydrocarbons.
또한, 본 명세서에서 흡착체란 소정의 물질을 흡착하는 물질을 말한다. In addition, in this specification, an adsorbent means the substance which adsorb | sucks a predetermined substance.
<A 단계>(S101)<Step A> (S101)
A단계(S101)는 PCBs를 포함하는 절연유에서 PCBs의 염소를 탈리시키는 단계이다. A step (S101) is a step of desorbing chlorine of the PCBs from the insulating oil containing the PCBs.
여기서, PCBs의 염소를 탈리시키는 방법으로 여러가지가 있을 수 있겠으나 라디칼을 이용하여 염소를 탈리시키는 것이 바람직하며, 절연유에 과산화수소(H2O2) 및 황산철수용액(FeSO4)을 첨가하여 생성되는 하이드록시기(hydroxy group) 라디칼(radical)과 절연유에 포함된 PCBs가 라디칼반응을 하여 PCBs에서 염소를 탈리시키는 것이 좀 더 바람직하다. Here, there may be various ways to desorb chlorine in PCBs, but it is preferable to desorb chlorine using radicals, and it is produced by adding hydrogen peroxide (H 2 O 2 ) and iron sulfate solution (FeSO 4 ) to insulating oil. It is more preferable that the hydroxy group radical and the PCBs contained in the insulating oil undergo radical reaction to desorb chlorine from the PCBs.
즉, 반응조에 PCBs를 포함하는 절연유(이하 간략히 PCBs절연유라 함)를 채우고 과산화수소( H2O2 35%)와 황산철(FeSO4)수용액(20%)을 첨가하여 하이드록시 라디칼(hydoroxy radical)(ㆍOH)을 발생시킨다. That is, the reaction tank is filled with insulating oil containing PCBs (hereinafter, simply referred to as PCBs insulating oil), and hydrogen peroxide (H 2 O 2 35%) and iron sulfate (FeSO 4 ) aqueous solution (20%) are added to the hydroxy radical. (OH) is generated.
하이드록시 라디칼은 PCBs의 디페닐고리에 결합되어 있는 염소를 공격하여 탈리시킨다. 탈리된 염소는 염소가스로 날아가거나 염소이온으로 절연유 속에 남아있게 된다. Hydroxy radicals attack and desorb chlorine bound to the diphenyl ring of PCBs. Desorbed chlorine is either blown off with chlorine gas or left in insulating oil with chlorine ions.
PCBs 절연유의 각각의 분자를 치환 또는 분해 반응시키는 라디칼 발생제로서 과산화수소(화학식 : H2O2 함량 35%)와 황산철(FeSO4 또는 Fe2(SO4)3)수용액(고형분 20%)을 10 내지 120분간 소량씩 PCBs절연유에 첨가하면 상온에서 급격한 발열 반응한다. 여기서, 오일 대 과산화수소의 중량비는 1:0.2 내지 1:2 인 것이 바람직하다. 그리고 오일 대 황산철수용액의 중량비는 1:0.2 내지 1:2 인 것이 바람직하다. Hydrogen peroxide (formula: 35% H 2 O 2 ) and iron sulfate (FeSO 4 or Fe 2 (SO 4 ) 3 ) aqueous solution (solid content 20%) are used as radical generators to dissolve or decompose each molecule of PCBs insulating oil. When a small amount is added to the PCBs insulating oil for 10 to 120 minutes, it generates a rapid exothermic reaction at room temperature. Here, the weight ratio of oil to hydrogen peroxide is preferably 1: 0.2 to 1: 2. And the weight ratio of the oil to the iron sulfate solution is 1: 0.2 to 1: 2.
이때 유기물이 산화되어 분해될 때 철 이온은 Fe2 + 와 Fe3 + 사이를 순환한다. 즉, 촉매역할을 하는 Fe2 +는 과산화수소에 촉매작용을 하여 과산화수소로부터 하이드록시 라디칼(ㆍOH)를 발생 시키고 Fe3 + 로 산화된다. At this time, iron ions circulate between Fe 2 + and Fe 3 + when the organic material is oxidized and decomposed. I.e., Fe + 2, which is a catalyst to catalyze the hydrogen peroxide generates a hydroxyl radical (and OH) and of hydrogen peroxide from the oxidized to the Fe + 3.
그리고 발생된 (ㆍOH)는 유기물을 분해하여 유기물라디칼 (Rㆍ)을 생성시킨다. 이 유기물 라디칼에 의해 Fe3 +는 다시 Fe2 +로 환원된다. 그리고 유기물 라디칼은 산화분해 된다. The generated (.OH) decomposes an organic substance to generate an organic radical (R.). Fe 3 + by the organic radical is reduced back to Fe + 2. Organic radicals are oxidatively decomposed.
여기서 유기물 라디칼에 의해 Fe3 + 이 Fe2 +로 환원되지 않는다면 Fe3 +의 농도가 높아지게 된다. 그러므로 Fe2 +를 추가적으로 공급되지 않는다면 산화반응이 중단된다. Here, if the Fe + 3 by organic radicals are reduced to Fe 2 +, the greater the concentration of Fe 3 +. Therefore, if the Fe 2 + is supplied further oxidation stops.
이와 같이 과산화수소와 황산철의 반응으로 발생한 하이드록시 라디칼(ㆍOH)은 반응식 1에 개략적으로 나타낸 바와 같이 PCBs의 디페닐 고리로부터 염소를 탈리시키며 디페닐고리에는 염소 대신에 수산기로 치환된다.The hydroxy radical (.OH) generated by the reaction of hydrogen peroxide with iron sulfate is desorbed from the diphenyl ring of PCBs as outlined in Scheme 1, and the diphenyl ring is substituted with a hydroxyl group instead of chlorine.
<반응식 1><Scheme 1>
Figure PCTKR2009003605-appb-I000001
Figure PCTKR2009003605-appb-I000001
이와 같이 라디칼반응을 통하여 페닐고리로부터 탈리된 염소는 후술할 B단계에서 칼슘 또는 탄산칼슘을 포함하는 흡착체에 흡착되어 염화칼슘이 되며 염소성분은 오일로부터 제거되게 된다. In this way, the chlorine desorbed from the phenyl ring through the radical reaction is adsorbed to the adsorbent containing calcium or calcium carbonate in step B to be described later to become calcium chloride, and the chlorine component is removed from the oil.
한편, 하이드록시 라디칼은 위에 설명한 바와 같이 PCBs의 염소를 탈리시키기도 하지만 반응식 2에 개략적으로 나타낸 바와 같이 폐절연유에 있는 탄화수소 오일의 분자에 라디칼반응을 하여 수소가 수산기로 치환된 폴리올 등의 화합물을 형성하기도 한다. On the other hand, hydroxy radicals desorb chlorine from PCBs as described above, but as shown schematically in Scheme 2, radical reactions to molecules of hydrocarbon oils in waste insulating oil form compounds such as polyols in which hydrogen is substituted with hydroxyl groups. Sometimes.
<반응식 2><Scheme 2>
Figure PCTKR2009003605-appb-I000002
Figure PCTKR2009003605-appb-I000002
(여기서, H와 OH의 치환 수는 최소한 2개 이상이다.)(Here, the number of substitution of H and OH is at least two.)
폴리올은 A단계(S101)에서 반응식2에 나타낸 바와 같이 하이드록시 라디칼과 탄화수소오일이 반응하여 형성되는데 후술할 B단계(S102)에서 염소가 흡착체에 흡착되는 동안에도 이러한 폴리올형성반응이 일어날 수 있다. The polyol is formed by the reaction of hydroxy radicals and hydrocarbon oil as shown in Scheme 2 in step A (S101). This polyol formation reaction may occur while chlorine is adsorbed to the adsorbent in step B (S102), which will be described later. .
<B단계> (S102)<Step B> (S102)
다음으로 B 단계(S102)에서는 탈리된 염소(염소이온)를 칼슘(Ca) 또는 탄산칼슘(CaCO3)이 포함된 흡착체에 흡착시킨다. 여기서 흡착체는 칼슘을 포함하는 다공질 폐기물을 이용하는 것이 바람직하다. 여기서 칼슘을 포함하는 다공질폐기물로서 패각(貝殼)을 이용하는 것이 더욱 바람직하다. Next, in step S102, desorbed chlorine (chlorine ion) is adsorbed onto an adsorbent containing calcium (Ca) or calcium carbonate (CaCO 3 ). In this case, it is preferable to use a porous waste containing calcium as the adsorbent. It is more preferable to use a shell as a porous waste containing calcium here.
여기서, 잠시 염소를 흡착하기 위한 흡착체로서 칼슘을 포함하는 다공질폐기물에 대해 설명하기로 한다. Here, the porous waste containing calcium as an adsorbent for adsorbing chlorine for a while will be described.
칼슘을 포함하는 다공질폐기물로서 패각을 이용할 수 있다. 패각은 타난칼슘으로 외층 중간층 내층 미오스트라컴층등으로 이루어진 패류의 껍질이다. 주 성분은 탄산칼슘이며 대체로 1 내지 4%정도의 아미노산(NH2)로 이루어져 있다.Shells can be used as porous waste containing calcium. The shell is shell of shellfish, which is composed of tananium calcium and composed of an outer layer, an inner layer, and a myostracum layer. Its main component is calcium carbonate and is usually composed of about 1 to 4% amino acids (NH 2 ).
이러한 패각을 이용하여 염소를 제거하는데 있어서 효과적으로 제거하기 위하여 패각에 대하여 다음과 같은 소정의 가공을 할 수 있다. In order to remove chlorine effectively by using such a shell, the following predetermined processing can be performed on the shell.
여기서 도 2 및 도 3에 나타낸 사진을 참고하여 설명한다. 먼저 도 2는 본 발명의 실시 예에 따른 PCBs를 포함하는 절연유 처리방법에서 패각에 다공질구조를 형성시키기 이전의 모습을 보여주는 패각단면사진이며, 도 3은 본 발명의 실시 예에 따른 PCBs를 포함하는 절연유 처리방법에서 패각에 다공질구조가 형성된 모습를 보여주는 패각단면사진이다.2 and 3 will be described with reference to the picture. 2 is a sectional view of a shell showing a state before forming a porous structure in the shell in the insulating oil processing method including the PCBs according to an embodiment of the present invention, Figure 3 includes a PCB according to an embodiment of the present invention Shell cross-section picture showing the porous structure formed on the shell in the insulating oil treatment method.
밀폐용기에 패각을 넣어 산소가 차단된 환경을 조성시킨다. 여기서 패각에 대하여 소정의 가공처리를 하기 이전의 패각의 단면 모습은 도 2에 나타낸 바와 같다. 그리고 패각을 고온(예를 들면 섭씨 400~900도)로 열처리한다. 열처리시간은 1시간 내지 12시간 정도로 하여 가열한다. 이 과정에서 아미노산 등의 성분이 열분해 되어 가스 상태로 팽창이탈하면서 패각에 다공질 구조가 형성된다. 여기서 패각에 형성되는 다공질구조는 도 3에 나타낸 사진과 같이 나타나게 된다. A shell is put in a sealed container to create an environment where oxygen is blocked. Here, the cross-sectional view of the shell before the predetermined processing is performed on the shell is as shown in FIG. And the shell is heat-treated at high temperature (for example 400-900 degrees Celsius). The heat treatment time is heated to about 1 hour to 12 hours. In this process, components such as amino acids are thermally decomposed to form a porous structure in the shell while expanding out of the gas state. Here, the porous structure formed on the shell is shown as a photograph shown in FIG.
그리고 주 성분인 탄산칼슘의 일부에서 이산화탄소 및 산소 등이 이탈되어 칼슘, CaO, CaCO3 로 혼성되어 흡착체의 흡착반응성을 증대시키게 된다. 패각을 열처리 하는 동안 용기 내에 저산소환경이 조성되어 패각에 대한 산화작용이 방지되므로 패각의 다공질 구조가 붕괴되지 않는다. In addition, carbon dioxide and oxygen are released from some of the main components of calcium carbonate and mixed with calcium, CaO, and CaCO 3 to increase the adsorption reactivity of the adsorbent. During the heat treatment of the shell, a low oxygen environment is created in the container to prevent oxidation of the shell so that the porous structure of the shell does not collapse.
이상에서 설명한 바와 같은 칼슘 또는 탄산칼슘을 포함하며 다공질 구조로 된 패각을 PCBs에서 탈리된 염소를 제거하는데 사용한다. A shell having a porous structure, including calcium or calcium carbonate as described above, is used to remove chlorine desorbed from PCBs.
A단계(S101)에서 탈리된 염소를 흡착시키기 위하여 흡착체로 폐기물인 패각을 반응조에 넣어준다. 그리고 염소가스 또는 염소이온이 흡착체인 패각에 원활하게 흡착될 수 있게 습식분쇄를 한다. In order to adsorb chlorine desorbed in step A (S101), a shell, which is a waste, is adsorbed into the reaction tank. In addition, wet grinding is performed so that chlorine gas or chlorine ions can be smoothly adsorbed on the shell which is the adsorbent.
라디칼반응시 탈리된 염소를 흡착하기 위하여 칼슘을 포함하는 흡착체를 과산화수소 및 황산철수용액을 첨가한 후에 첨가하는 것이 바람직하다. 칼슘은 알칼리성으로서 과산화수소의 산기를 중화시킬 수 있기 때문에 라디칼이 원활하게 생성되는 것을 방해할 수 있다. 따라서 칼슘을 포함하는 흡착체를 과산화수소 및 황산철수용액을 첨가한 후 소정의 시간이 흐른 후에 첨가하는 것이 바람직하다. In order to adsorb chlorine desorbed during radical reaction, it is preferable to add an adsorbent containing calcium after adding hydrogen peroxide and iron sulfate solution. Calcium is alkaline and can neutralize the acid groups of hydrogen peroxide, which can interfere with the smooth production of radicals. Therefore, it is preferable to add the adsorbent containing calcium after a predetermined time passes after adding hydrogen peroxide and iron sulfate solution.
그리고 칼슘을 포함하는 흡착체를 PCBs절연유에 대하여 1: 0.1 내지 1:1의 중량비로 첨가한다. And an adsorbent containing calcium is added in a weight ratio of 1: 0.1 to 1: 1 with respect to PCBs insulating oil.
그리고, 흡착체를 분쇄하지 않아도 탈리된 염소가 흡착체에 흡착되겠으나 좀더 원활하게 탈리된 염소가 흡착될 수 있도록 흡착체를 분쇄하여 주는 것이 바람직하다. 흡착체를 분쇄하여 주면 흡착체의 비표면적이 증가되므로 탈리된 염소의 원활한 흡착에 도움이 되며 후술할 폴리우레탄을 형성시키는데 있어서도 장애가 되지 않는다. 흡착체의 분쇄는, 예를 들어, 5 내지 30분간 분쇄용 인펠러로 300 내지 3000RPM 으로 회전시키어 30μm 이하의 크기를 갖도록 습식분쇄시키는 것이 바람직하다.And, even though the adsorbent is not crushed, desorbed chlorine will be adsorbed to the adsorbent, but it is preferable to crush the adsorbent so that the desorbed chlorine can be adsorbed more smoothly. Grinding the adsorbent increases the specific surface area of the adsorbent, thus aiding in the smooth adsorption of desorbed chlorine and is not an obstacle in forming the polyurethane to be described later. The grinding of the adsorbent is preferably, for example, wet grinding to have a size of 30 μm or less by rotating at 300 to 3000 RPM with an injector for grinding for 5 to 30 minutes.
<C 단계>(S200)<C step> (S200)
C단계(S200)는 B단계S102 후 PCBs가 분해제거 되고 폴리올이 형성된 폐절연유를 이용하여 폴리우레탄을 형성시키는 단계이다. 즉, B단계(S102) 후 폴리올로부터 폴리우레탄을 형성시키는 단계이다. Step C (S200) is a step of forming a polyurethane using waste insulating oil in which PCBs are decomposed and removed after step B102 and a polyol is formed. That is, after step B (S102) to form a polyurethane from the polyol.
이렇게 폴리우레탄을 형성시키는 C단계(S200)는 C1단계(S202) 및 C2단계(S203)를 포함하여 이루어지며, 필요에 따라 C0단계(S201)를 더 포함하여 이루어질 수 있다. The C step (S200) of forming the polyurethane is made to include the C1 step (S202) and the C2 step (S203), it may be made by further comprising a C0 step (S201) as necessary.
먼저 C0단계(S201)에 대해서 설명한다.First, step C0 (S201) will be described.
C0단계(S201)는 B단계(S102) 후 PCBs가 분해제거되고 폴리올이 형성된 폐절연유(즉, 염소가 흡착된 흡착체와 폴리올과의 혼합물)을 소정의 시간동안 방치한 후 상층의 폴리올혼합물을 따로 분리시키는 단계이다. In step C0 (S201), the PCBs are decomposed and removed after step B (S102), and the polyol mixture of the upper layer is left after leaving the waste insulating oil (ie, a mixture of chlorine-adsorbed adsorbent and polyol) having a polyol for a predetermined time. Separate step.
염소가 흡착된 흡착체와 폴리올과의 혼합물을 소정의 시간동안 방치하면 층상분리가 이루어진다. 혼합물의 상층부에는 투명한 액체층이 있게 되며 하층부에는 침전물을 포함한 침전층이 나타나게 된다. When the mixture of the chlorine adsorbent and the polyol is left for a predetermined time, layer separation occurs. In the upper part of the mixture there is a transparent liquid layer and in the lower part a sedimentary layer containing the precipitate appears.
여기서 투명한 폴리우레탄을 형성시키고자하는 경우 상층부의 투명한 액체층에 있는 폴리올혼합물을 분리해 내고, 분리된 상층부의 투명한 액체층에 있던 폴리올혼합물을 후술할 C1단계(S202) 및 C2단계(S203)를 통하여 투명한 폴리우레탄을 형성시킬 수 있다. In this case, in order to form a transparent polyurethane, the polyol mixture in the transparent liquid layer of the upper layer is separated, and steps C1 (S202) and C2 (S203), which will be described later, are described in the polyol mixture in the transparent liquid layer of the separated upper layer. Transparent polyurethane can be formed through.
한편, 하층부에 나타나는 침전층은 색깔을 띄고 있다. 본 실시예에서 과산화수소와 황산철(FeSO4 또는 Fe2(SO4)3)수용액을 사용하여 PCBs폐절연유에서 PCBs를 분해처리하고 폴리올을 형성시키면서 황산철(FeSO4 또는 Fe2(SO4)3 )수용액의 철성분으로 인하여 황색(FeO : 황색)을 띄게 된다. On the other hand, the precipitated layer appearing in the lower layer is colored. Hydrogen peroxide and ferrous sulfate in this embodiment (FeSO 4 or Fe 2 (SO 4) 3), using the aqueous solution process decomposing PCBs in the PCBs waste transformer oil, and while forming the polyol iron sulfate (FeSO 4 or Fe 2 (SO 4) 3 The yellow color of FeO is yellow due to the iron content of the aqueous solution.
따라서, 유색(有色)의 폴리우레탄을 형성시키고자 하는 경우에는 하층부의 침전층에 있는 폴리올침전혼합물을 분리해 내고, 분리된 폴리올침전혼합물을 후술할 C1단계(S202) 및 C2단계(S203)를 통하여 유색의 폴리우레탄을 형성시킬 수 있게 된다. Therefore, in the case of forming a colored polyurethane, the polyol sediment mixture in the sedimentation layer of the lower layer is separated, and steps C1 (S202) and C2 (S203) which will be described later on the separated polyol sediment mixture are performed. It is possible to form a colored polyurethane through.
C1단계(S202)는 PCBs가 분해제거되고 폴리올이 형성된 폐절연유(즉, 염소가 흡착된 흡착체와 폴리올과의 혼합물)를 탈수시키는 단계이다. Step C1 (S202) is a step of dehydrating the waste insulating oil (ie, a mixture of chlorine-adsorbed adsorbent and polyol) in which PCBs are decomposed and removed.
분리 후 진공도 700 내지 100 Torr의 환경에서 20 내지 100℃의 온도로 1 내지 24시간동안 처리하는 감압가열처리를 한다. 그리고 함수율을 낮추기 위하여 활성탄으로 수분흡착처리를 하여 수분 함량을 0.05% 이하가 되도록 탈수를 한다. After the separation is subjected to a reduced pressure heating treatment for 1 to 24 hours at a temperature of 20 to 100 ℃ in an environment of vacuum 700 to 100 Torr. And in order to lower the water content, the adsorption treatment with activated carbon is dewatered to make the moisture content less than 0.05%.
여기서 투명한 폴리우레탄을 형성시키고자하는 경우 C0단계(S201)에서 분리된 상층부의 투명한 액체층에 있던 폴리올혼합물을 탈수시킨 후 C2단계(S203)에서 가교제를 첨가함으로써 투명한 폴리우레탄을 형성시킬 수 있게 된다. In this case, when the transparent polyurethane is to be formed, the polyol mixture in the transparent liquid layer separated in the C0 step (S201) is dehydrated, and then a transparent polyurethane can be formed by adding a crosslinking agent in the C2 step (S203). .
특히, 유색의 폴리우레탄을 형성시키고자 하는 경우에는 하층부의 침전층에 있던 폴리올침전혼합물을 탈수하는 방법에 따라 폴리우레탄의 색상을 결정할 수 있다. 즉, 폴리올혼합침전물에 대한 가열온도 또는 탈수시간을 조절함으로써 색상을 결정할 수 있다. In particular, when the colored polyurethane is to be formed, the color of the polyurethane may be determined according to a method of dehydrating the polyol precipitate mixture in the precipitate layer of the lower layer. That is, the color may be determined by adjusting the heating temperature or the dehydration time for the polyol mixed precipitate.
폴리올침전혼합물을 진공도 700 내지 100 Torr의 환경 속에서 20℃ 내지 50℃이하의 온도로 5시간 이하의 시간동안 탈수과정을 거친 후 활성탄 필터에 폴리올침전혼합물을 통과시키면서 필터에 수분을 흡착시키면 폴리올침전혼합물에 포함되어 있던 황산철이 산화철(FeO)로 산화되며 황색의 산화철-칼슘 복합 폴리올 등을 얻을 수 있게 된다. 여기서 황색을 띄었던 폴리올침전혼합물은 색변화없이 탈수된 황색의 산화철-칼슘 복합 폴리올이 된다.After dehydrating the polyol precipitated mixture at a temperature of 20 ° C. to 50 ° C. under a vacuum of 700 to 100 Torr for 5 hours or less, adsorbing moisture to the filter while passing the polyol precipitate to the activated carbon filter, the polyol precipitate Iron sulfate contained in the mixture is oxidized to iron oxide (FeO) to obtain a yellow iron oxide-calcium composite polyol and the like. The yellowish polyol precipitate mixture is a yellow iron oxide-calcium composite polyol dehydrated without color change.
폴리올침전혼합물을 진공도 100 내지 700 Torr의 환경 속에서 80℃ 내지 100℃의 온도조건에서 5시간 이상 탈수를 시키면 황산철의 산화가 더욱 진행되어 황색에서 적갈색으로 색상이 변화되며, 적갈색의 산화철(Fe2O3) - 칼슘 복합 폴리올을 형성시킬 수 있다. When the polyol precipitant mixture is dehydrated for 5 hours or more in a vacuum environment of 100 to 700 Torr at a temperature of 80 ° C. to 100 ° C., the oxidation of iron sulfate proceeds further and the color changes from yellow to reddish brown. 2 O 3 )-can form calcium complex polyols.
또는 폴리올침전혼합물을 진공도 700 내지 100 Torr의 환경 속에서 120℃ 내지 200℃의 온도조건에서 3시간 이상 고온탈수 시에는 황산철의 산화가 더욱 더 진행되어 흑색(BLACK)의 산화철(Fe3O4) - 칼슘 복합 폴리올을 형성시킬 수 있다. Alternatively, when the polyol precipitate mixture is dehydrated at a high temperature of 120 ° C. to 200 ° C. for 3 hours or more in an environment of vacuum degree of 700 to 100 Torr, oxidation of iron sulfate is further progressed and black iron oxide (Fe 3 O 4 ) is black. )-Can form calcium complex polyols.
이와 같이 온도와 시간을 조절함으로써 황산철의 산화정도를 조절할 수 있고(즉, 온도가 고온이거나 탈수처리시간이 길수록 황산철의 산화 정도가 커지게 된다.) 황산철의 산화정도에 따라 나타나는 색상으로 폴리올의 색상이 결정된다. 이 폴리올을 폴리우레탄으로 형성시키면 폴리올의 색상이 폴리우레탄의 색상이 되는 것이다.By adjusting the temperature and time in this way, the degree of oxidation of iron sulfate can be controlled (that is, the higher the temperature or the longer the dehydration time, the greater the oxidation of iron sulfate). The color of the polyol is determined. When the polyol is formed of polyurethane, the color of the polyol becomes the color of the polyurethane.
C2단계(S203)는 C1단계(S202)에서 탈수된 혼합물에 가교제를 첨가시키는 단계이다. Step C2 (S203) is a step of adding a crosslinking agent to the mixture dehydrated in step C1 (S202).
탈수된 폴리올에 가교제로 MDI(메틸렌 디페닐 디이소시아네이트,Methylene Diphenyl Diisocyanate), TDI(톨루엔디이소시아네이트), HMDI(헥사메틸렌디이소시아네이트), XDI(키실렌디이소시아네이트), MXDI(m-키실렌디이소시아네이트) 등의 방향족 이소시아네이트 또는 지방족 이소시아네이트 중 임의의 1종을 선택하여 첨가한다. 여기서 폴리올과 가교제와의 중량비는 1 : 0.1 내지 1: 1인 것이 바람직하다. 가교제가 첨가되면 폴리올로부터 폴리우레탄이 형성된다. MDI (methylene diphenyl diisocyanate), TDI (toluene diisocyanate), HMDI (hexamethylene diisocyanate), XDI (xylene diisocyanate), MXDI (m-xylene diisocyanate) as crosslinking agent in dehydrated polyol Any one of aromatic isocyanate or aliphatic isocyanate such as) is selected and added. It is preferable that the weight ratio of a polyol and a crosslinking agent is 1: 0.1-1: 1 here. The addition of the crosslinking agent forms a polyurethane from the polyol.
C1단계(S2020에서 탈수된 폴리올혼합물의 색상에 따라 C2단계(S203)에서 형성되는 폴리우레탄의 색상이 결정된다. The color of the polyurethane formed in step C2 (S203) is determined according to the color of the polyol mixture dehydrated in step C1 (S2020).
C1단계(S202)에서 탈수된 투명한 폴리올에 가교제를 첨가하여 투명한 폴리우레탄이 형성된다.A transparent polyurethane is formed by adding a crosslinking agent to the transparent polyol dehydrated in step C1 (S202).
C1단계(S202)에서 색변화없이 탈수된 황색의 산화철-칼슘 복합 폴리올에 가교제를 첨가함으로써 황색의 폴리우레탄이 형성된다. C1단계(S202)에서 탈수처리하면서 형성된 적갈색의 산화철(Fe2O3) - 칼슘 복합 폴리올에 가교제를 첨가하여 적갈색의 폴리우레탄이 형성된다. 그리고 C1단계(S202)에서 탈수처리되면서 형성된 흑색(BLACK)의 산화철(Fe3O4) - 칼슘 복합 폴리올에 가교제를 첨가함으로써 흑색의 폴리우레탄이 형성된다. Yellow polyurethane is formed by adding a crosslinking agent to the yellow iron oxide-calcium composite polyol dehydrated without color change in step C1 (S202). The reddish-brown polyurethane is formed by adding a crosslinking agent to the reddish-brown iron oxide (Fe 2 O 3 ) -calcium complex polyol formed during the dehydration process in step C1 (S202). In addition, a black polyurethane is formed by adding a crosslinking agent to the iron (Fe 3 O 4 ) -calcium complex polyol of black (BLACK) formed while being dehydrated in the step C1 (S202).
이와 같이 본 발명에 따르면 디페닐 고리로부터 염소가 탈리하여 칼슘에 흡착 후 염화칼슘화되어 결국은 우레탄 중합체에 포함되는데 소량의 염화칼슘은 인체 무해한 물질로서 환경에 악영향을 주지 않는다. As described above, according to the present invention, chlorine is desorbed from the diphenyl ring, adsorbed to calcium, calcium chloride, and eventually included in the urethane polymer. A small amount of calcium chloride is a harmless substance to the human body and does not adversely affect the environment.
또한 염화칼슘이 중합체의 전체량에 약 0.0002%(2ppm)~0.1%이하의 소량에 불과하여 폴리우레탄 고분자 물성에 큰 영향을 끼치지 않게 된다. In addition, calcium chloride is only about 0.0002% (2ppm) to less than 0.1% of the total amount of the polymer does not significantly affect the polyurethane polymer properties.
그러므로 PCBs폐절연유를 처리할 때 중요한 문제인 PCBs의 잔류는 문제되지 않는다. 이와 같이 본 발명의 실시 예에 따르면 폐절연유 내의 디페닐에 고리에 염소가 결합된 PCBs는 염소가 탈리되고 흡착됨으로써 PCBs가 잔류되는 문제없이 완전히 제거된다.Therefore, the residual of PCBs, which is an important issue when handling PCBs waste insulating oil, is not a problem. Thus, according to the embodiment of the present invention, PCBs in which chlorine is bonded to a ring in diphenyl in waste insulating oil are completely removed without the problem of PCBs remaining by chlorine desorbing and adsorption.
이상에서 설명한 바와 같은 PCBs를 포함하는 절연유 처리방법에 따라 PCBs절연유를 처리한 좀 더 구체적인 실시 예 및 자료를 설명하기로 한다.According to the insulating oil treatment method including the PCBs as described above, more specific embodiments and data of treating the PCBs insulating oil will be described.
<실시 예 1 : PCBs 제거> Example 1 PCBs Removal
환경폐기물인 패각 1000g을 세라믹 밀폐용기에 넣은 후 밀폐시켜 817℃에서 4시간 가열하여 칼슘이 포함된 흡착체를 가공하여 두었다. 1000g of shells, which are environmental wastes, were placed in a ceramic sealed container and sealed, and heated at 817 ° C for 4 hours to process an adsorbent containing calcium.
그리고 폐 변압기에서 수거된 PCBs절연유(PCBs가 317ppm이 함유됨) 500g을 반응조에 넣었다. 이어서 RPM 200의 속도로 교반하면서 과산화수소(35%) 500g과 황산철 수용액(고형분20%)를 500g 30분에 걸쳐서 서서히 첨가하여 치환반응을 하였다. In addition, 500 g of PCBs insulating oil collected from the waste transformer (containing 317 ppm of PCBs) was placed in a reactor. Subsequently, 500 g of hydrogen peroxide (35%) and an aqueous solution of iron sulfate (20% of solid content) were slowly added over 500 g for 30 minutes while stirring at a speed of RPM 200 to perform a substitution reaction.
이어서 칼슘이 포함된 흡착체 500g을 반응물에 넣고 RPM 1800의 속도로 칼날 인펠러로 습식 분쇄하였다. 그리고 50g을 샘플링하여 아래와 같이 한국화학시험연구원에 의뢰 PCBs 잔류시험을 실시하였다.500 g of calcium sorbent was then added to the reaction and wet milled with a blade infeller at a speed of RPM 1800. Then, 50g was sampled and the PCBs residual test was performed by the Korea Testing Institute.
PCBs 잔류시험 결과 : PCBs 가 317ppm →“검출안됨”으로 나타났으며 PCBs가 완전히 제거되었음을 확인할 수 있었다.(표1 참조)PCBs residual test result: PCBs were found to be 317ppm → “not detected” and PCBs were completely removed (see Table 1).
표 1
시험항목 단위 결과치 시험방법
PCBs mg/L 검출안됨 폐기물공정시험기준:2008(제14항C법)
Table 1
Test Items unit Result Test Methods
PCBs mg / L Not detected Waste Process Test Criteria: 2008 (Section 14C Act)
<실시 예 1-1 : 투명한 폴리우레탄 형성>Example 1-1: Transparent Polyurethane Formation
상기 실시예 1에서 제조한 반응물을 24시간동안 침전시켜 상부 층의 투명한 액상을 수득하여 진공도 100 내지 700 Torr의 저진공 환경에서 90℃의 온도로 6시간동안 탈수처리하였다. The reaction product prepared in Example 1 was precipitated for 24 hours to obtain a transparent liquid phase of the upper layer, which was dehydrated for 6 hours at a temperature of 90 ° C. in a low vacuum environment of 100 to 700 Torr.
다음으로 탈수처리된 폴리올 100g 및 에틸아세테이트(유기용제)100g 과 가교제인 TDI(NCO 13%/송원산업 제품명:CA75) 10g 을 혼합하고 밀폐 조건에서 40℃의 온도로 2시간동안 중합반응을 하여 우레탄 프레폴리머를 형성시키었다. Next, 100 g of dehydrated polyol, 100 g of ethyl acetate (organic solvent), and 10 g of a crosslinking agent, TDI (NCO 13% / Songwon Industrial Product Name: CA75) 10g were mixed, and the polymerization reaction was carried out at a temperature of 40 ° C. for 2 hours under urethane to obtain a urethane. Prepolymers were formed.
이어서 틴(TIN)계 가교 촉진제(고형분 3%/송원산업 제품명:AT222R2) 10g을 넣고 철판에 50㎛ 두께로 도포하여 상온에서 48시간 경과한 후 경도 4H의 투명한 폴리우레탄 경화 도막이 형성 되었다. Subsequently, 10 g of a tin (TIN) -based crosslinking accelerator (solid content 3% / Songwon Industrial Product Name: AT222R2) was added thereto, and then applied to an iron plate with a thickness of 50 μm, after 48 hours at room temperature, a transparent polyurethane cured coating film having a hardness of 4H was formed.
<실시 예 1-2 : 황색의 폴리우레탄형성>Example 1-2 Yellow Polyurethane Formation
상기 실시예 1에서 제조한 반응물을 침전시켜 침전 층인 황색의 액상을 수득하여 30℃의 온도로 12시간동안 진공도 100 내지 700 Torr의 저진공 환경에서 탈수처리한 후 활성탄 필터를 이용하여 마무리 탈수처리를 하여 함수율 0.05% 이하로 탈수하였다. The reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated in a low vacuum environment at a vacuum degree of 100 to 700 Torr for 12 hours at a temperature of 30 ° C., followed by finishing dehydration treatment using an activated carbon filter. To a water content of 0.05% or less.
탈수처리한 후 황색의 착색 폴리올 100g 및 TDI(NCO13%/송원산업 제품명:CA75) 10g 을 혼합하고 밀폐 조건에서 30℃에서 1시간동안 중합반응을 통하여 우레탄 프레폴리머를 형성시킨 후 이어서 틴(TIN)계 가교 촉진제(고형분 3%/송원산업 제품명:AT222R2) 5g 혼합하여 상온에서 24시간동안 건조시키어 탄성있는 황색의 엘라스토머(elastomer:탄성중합체)를 얻었다. After dehydration, 100 g of a yellow colored polyol and 10 g of TDI (NCO13% / Songwon Industrial Product Name: CA75) were mixed, and a urethane prepolymer was formed by polymerization for 1 hour at 30 ° C. under closed conditions, followed by tin (TIN). 5 g of a crosslinking accelerator (solid content 3% / Songwon Industrial Product Name: AT222R2) was mixed and dried at room temperature for 24 hours to obtain an elastic yellow elastomer (elastomer).
<실시 예 1-3 : 적갈색의 폴리우레탄형성>Example 1-3: Reddish-brown Polyurethane Formation
상기 실시예 1에서 제조한 반응물을 침전시켜 침전 층인 황색의 액상을 수득하여 90℃의 온도로 12시간동안 진공도 100 내지 700 Torr의 환경에서 탈수처리함으로써 함수율 0.05% 이하로 탈수처리하였다. The reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated at a water content of 0.05% or less by dehydrating at 100 ° C to 700 Torr for 12 hours at a temperature of 90 ° C.
탈수처리한 후 적갈색의 착색 폴리올 100g 및 TDI(NCO13%/송원산업 제품명:CA75) 10g 을 혼합하고 밀폐 조건에서 30℃에서 1시간동안 중합반응을 통하여 우레탄 프레폴리머를 형성시킨 후 이어서 틴(TIN)계 가교 촉진제(고형분 3%/송원산업 제품명:AT222R2) 5g 혼합하여 상온에서 24시간동안 건조시키어 탄성있는 적갈색의 엘라스토머(elastomer) 를 얻게 되었다. After dehydration, 100 g of reddish brown colored polyol and 10 g of TDI (NCO13% / Songwon Industrial Product Name: CA75) were mixed, and a urethane prepolymer was formed through polymerization for 1 hour at 30 ° C. under closed conditions, followed by tin (TIN). 5 g of a crosslinking accelerator (solid content 3% / Songwon Industrial Product Name: AT222R2) was mixed and dried at room temperature for 24 hours to obtain an elastic reddish brown elastomer.
<실시 예 1-4><Example 1-4>
상기 실시예 1에서 제조한 반응물을 침전시켜 침전 층인 황색의 액상을 수득하여 180℃의 온도로 12시간동안 진공도 100 내지 700 Torr의 환경에서 탈수처리하여 함수율 0.05% 이하로 탈수하였다. The reactant prepared in Example 1 was precipitated to obtain a yellow liquid, which is a precipitate layer, and dehydrated in a vacuum of 100 to 700 Torr for 12 hours at a temperature of 180 ° C. to dehydrate to 0.05% or less of water content.
탈수처리한 후 흑색의 착색 폴리올 100g 및 TDI(NCO13%/송원산업 제품명:CA75) 10g 을 혼합하고 밀폐 조건에서 30℃에서 1시간 중합반응 하여 우레탄 프레폴리머를 형성시킨 후 이어서 틴(TIN)계 가교 촉진제(고형분 3%/송원산업 제품명:AT222R2) 5g 혼합하여 상온에서 24시간동안 건조시키어 탄성있는 흑색의 엘라스토머(elastomer)를 얻게 되었다. After dehydration, 100 g of black colored polyol and 10 g of TDI (NCO13% / Songwon Industrial Product Name: CA75) were mixed and polymerized at 30 ° C. for 1 hour in a sealed condition to form a urethane prepolymer, followed by tin-based crosslinking. 5 g of an accelerator (solid content 3% / Songwon Industrial product name: AT222R2) was mixed and dried at room temperature for 24 hours to obtain an elastic black elastomer.
<비교 예 1 : PCBs의 잔류>Comparative Example 1: Residue of PCBs
폐 변압기에서 수거한 절연유(PCBs가 317ppm 함유됨) 1kg을 반응조에 넣고, RPM 200의 속도로 교반하면서 과산화수소(35%) 0.5kg과 황산철 수용액(고형분20%) 0.5kg 을 60분에 걸쳐서 서서히 첨가하여 치환반응을 하였다. 이후 50g을 샘플링하여 아래와 같이 한국화학시험연구원에 PCBs 잔류시험을 의뢰하여 시험결과를 얻었다.1 kg of insulating oil (containing 317 ppm of PCBs) collected from the waste transformer is placed in the reactor, and 0.5 kg of hydrogen peroxide (35%) and 0.5 kg of aqueous solution of iron sulfate (solid content of 20%) are slowly mixed over 60 minutes while stirring at a speed of 200 rpm. The addition reaction was performed. Thereafter, 50g was sampled and the PCBs residual test was requested to the Korea Testing Institute.
PCBs 잔류시험 결과 : PCBs가 317ppm→92ppm 으로 완전히 제거되지 않았다.(표2 참조) PCBs Residual Test Result: PCBs were not completely removed from 317ppm to 92ppm (see Table 2).
표 2
시험항목 단위 결과 치 시험방법
PCBs mg/L 92 폐기물공정시험기준:2008(제14항C법)
TABLE 2
Test Items unit Result Test Methods
PCBs mg / L 92 Waste Process Test Criteria: 2008 (Section 14C Act)
<실시 예1> 과 <비교 예 1>의 시험결과를 비교하여 본 바 본 발명에 따른 PCBs 처리방법에 따르면 PCBs가 잔류되지 않고 제거되었다는 것을 알 수 있다.As a result of comparing the test results of <Example 1> and <Comparative Example 1> according to the PCBs processing method according to the present invention it can be seen that the PCBs were removed without remaining.
그리고 환경폐기물인 패각을 이용하여 PCBs에서 탈리된 염소를 흡착처리함으로써 잔류되는 PCBs가 없다는 것을 알 수 있다. And it can be seen that there is no PCBs remaining by adsorbing chlorine desorbed from PCBs using shells, which are environmental wastes.
<비교 예 2 ><Comparative Example 2>
패각 0.5kg을 세라믹 밀폐용기에 넣은 후 밀폐시켜 817℃에서 4시간 가열하여 칼슘이 포함된 흡착체로 가공하였다. 그리고 폐 변압기에서 수거된 PCBs절연유(PCBs가 317ppm이 함유됨) 1kg과 함께 반응조에 넣었다. 이어서 RPM 1800의 속도로 칼날 인펠러로 상기의 흡착체를 습식 분쇄하고 과산화수소 200g을 첨가하여 30분간 교반하였다. 0.5kg shells were placed in a ceramic sealed container and sealed, and heated at 817 ° C for 4 hours to process calcium adsorbent. In addition, 1 kg of PCBs insulating oil collected from the waste transformer (containing 317 ppm of PCBs) was placed in the reactor. Subsequently, the adsorbent was wet-pulverized with a blade infeller at a speed of RPM 1800, and 200 g of hydrogen peroxide was added thereto, followed by stirring for 30 minutes.
이후 50g을 샘플링하여 아래와 같이 한국화학시험연구원에 의뢰 PCBs 잔류시험을 실시하였다. After that, 50g was sampled and the PCBs residual test was conducted by the Korea Testing Institute.
PCBs 잔류시험 결과 : PCBs 가 317ppm→ 426ppm으로 증가하였다.(표3 참조) PCBs residual test result: PCBs increased from 317ppm to 426ppm (see Table 3).
표 3
시험항목 단위 결과 치 시험방법
PCBs mg/L 426 폐기물공정시험기준:2008(제14항C법)
TABLE 3
Test Items unit Result Test Methods
PCBs mg / L 426 Waste Process Test Criteria: 2008 (Section 14C Act)
이와 같이 황산철수용액을 첨가하지 않은 결과 PCBs가 분해제거 되지 않음을 알 수 있다. As a result of not adding the iron sulfate solution, it can be seen that PCBs are not decomposed.
<비교 예 3 ><Comparative Example 3>
패각 0.5kg을 세라믹 밀폐용기에 넣은 후 밀폐시켜 817℃에서 4시간 가열하여 칼슘이 포함된 흡착체를 가공하였다. 그리고 폐 변압기에서 수거된 PCBs절연유(PCBs가 317ppm이 함유됨) 1kg과 함께 반응조에 넣고, RPM 1800의 속도로 칼날 인펠러로 상기의 흡착체를 습식 분쇄하고 50g을 샘플링하여 아래와 같이 한국화학시험연구원에 의뢰 PCBs 잔류시험을 실시하였다. 0.5 kg of shells were placed in a ceramic sealed container and sealed, and heated at 817 ° C. for 4 hours to process an adsorbent containing calcium. In addition, 1kg of PCBs insulating oil collected from the waste transformer (PCBs contained 317ppm) was put into the reactor and wet-pulverized the adsorbent with a blade infeller at a speed of RPM 1800, and 50g was sampled as follows. PCBs residual test was performed.
PCBs 잔류시험 결과 : PCBs 가 317ppm→ 385ppm으로 증가하였다.(표4 참조)PCBs residual test result: PCBs increased from 317ppm to 385ppm (see Table 4).
표 4
시험항목 단위 결과 치 시험방법
PCBs mg/L 385 폐기물공정시험기준:2008(제14항C법)
Table 4
Test Items unit Result Test Methods
PCBs mg / L 385 Waste Process Test Criteria: 2008 (Section 14C Act)
비교 예 3에서 알 수 있는 바와 같이 환경폐기물인 패각을 넣는 것만으로는 PCBs가 분해제거되지 않음을 알 수 있다. As can be seen in Comparative Example 3, it can be seen that only the shells, which are environmental wastes, are decomposed and removed.
이와 같이 본 발명에 따른 PCBs를 포함하는 절연유 처리방법은 환경폐기물인 폐각과 하이드록시기 라디칼을 이용하여 유해한 폐기물인 PCBs 절연유의 PCBs가 잔류되지 않도록 분해제거시킬 수 있기 때문에 환경폐기물인 폐각을 재활용하며 유해물질인 PCBs를 제거할 수 있다. As described above, the insulating oil treatment method including the PCBs according to the present invention recycles waste wastes, which are environmental wastes, because the waste wastes and the hydroxyl radicals can be decomposed and removed so that PCBs of harmful waste PCBs insulation oils do not remain. Toxic PCBs can be removed.
또한 PCBs가 분해된 절연유의 오일에 하이드록시 라디칼이 반응하여 폴리올을 형성시키므로 PCBs가 분해제거된 폐절연유를 재활용할 수 있다. In addition, since the hydroxy radicals react with the oil of the insulating oil in which the PCBs are decomposed to form a polyol, the waste insulating oil from which the PCBs are decomposed can be recycled.
나아가 폴리올을 이용하여 폴리우레탄을 형성시킬수 있으므로 자원재활용의 장점이 있으며, 투명한 폴리우레탄 및 황산철의 산화에 따라 유색(有色)의 폴리우레탄을 형성시킬 수 있게 된다. Furthermore, since the polyol can be used to form a polyurethane, there is an advantage of resource recycling, and the colored polyurethane can be formed by oxidation of the transparent polyurethane and iron sulfate.
이상에서 설명된 바와 같이, 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예들에 의해서 이루어졌지만, 상술한 실시예들은 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시 예에만 국한되는 것으로 이해되어져서는 아니되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings, but since the above-described embodiments have only been described with reference to the preferred examples of the present invention, the present invention has been described above. It should not be understood to be limited only to the embodiments, and the scope of the present invention should be understood by the claims and equivalent concepts described below.
본 발명은 폐절연유에 포함된 PCBs를 제거하고 폐오일과 환경폐기물인 폐각을 재활용 또는 자원화 하는 기술분야에 적용될 수 있다.The present invention can be applied to the technical field of removing PCBs included in waste insulating oil and recycling or recycling waste oil and waste waste, which are environmental wastes.

Claims (11)

  1. PCBs(Polychlorinated Biphenyls)를 포함하는 절연유에서 PCBs의 염소를 탈리시키는 A단계; 및 A step of desorbing the chlorine of the PCBs in the insulating oil containing polychlorinated Biphenyls (PCBs); And
    상기 A단계에서 탈리된 상기 염소를 흡착체에 흡착시키는 B 단계; 를 포함하고,A step B of adsorbing the chlorine desorbed in the step A to an adsorbent; Including,
    상기 흡착체는 칼슘(Ca) 또는 탄산칼슘(CaCO3)을 포함하는 폐기물인 것을 특징으로 하는 The adsorbent is characterized in that the waste containing calcium (Ca) or calcium carbonate (CaCO 3 )
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  2. 제 1항에 있어서,The method of claim 1,
    상기 폐기물은 패각(貝殼)인 것을 특징으로 하는The waste is characterized in that the shell (貝殼)
    PCBs를 포함하는 절연유 처리방법. Insulating oil treatment method including PCBs.
  3. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 폐기물에는 다공(多孔)이 형성된 것을 특징으로 하는 The waste is characterized in that the pores are formed
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  4. 제 1항에 있어서,The method of claim 1,
    상기 A단계에서 상기 PCBs의 염소는 The chlorine in the PCBs in step A
    상기 절연유에 과산화수소 및 황산철수용액을 첨가하여 생성되는 하이드록시기 라디칼과 상기 PCBs와의 반응에 의해 탈리되는 것을 특징으로 하는 It is characterized in that the desorption by the reaction of the hydroxyl groups and the PCBs generated by the addition of hydrogen peroxide and iron sulfate solution to the insulating oil
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 하이드록시기 라디칼과 상기 절연유의 탄화수소화합물이 반응을 하여 폴리올을 형성시키는 것을 특징으로 하는The hydroxy radical and the hydrocarbon compound of the insulating oil react to form a polyol
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  6. PCBs(Polychlorinated Biphenyls)를 포함하는 절연유에 과산화수소 및 황산철수용액을 첨가함으로써 생성되는 하이드록시기 라디칼이 상기 PCBs와 반응을 하여 PCBs의 염소를 탈리시키는 A단계; 및A step in which the hydroxyl radical generated by adding hydrogen peroxide and iron sulfate solution to the insulating oil containing Polychlorinated Biphenyls (PCBs) reacts with the PCBs to desorb chlorine from the PCBs; And
    상기 A단계에서 탈리된 상기 염소를 흡착체에 흡착시키는 B 단계;를 포함하고,And a step B of adsorbing the chlorine desorbed in the step A to an adsorbent.
    상기 하이드록시기 라디칼이 상기 절연유의 탄화수소화합물과 반응을 하여 폴리올을 형성시키는 것을 특징으로 하는 The hydroxyl radical reacts with the hydrocarbon compound of the insulating oil to form a polyol
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  7. 제 5항 또는 제 6항에 있어서,The method according to claim 5 or 6,
    상기 B단계 후 상기 폴리올로부터 폴리우레탄을 형성시키는 C단계; 를 더 포함하는 것을 특징으로 하는C step of forming a polyurethane from the polyol after the step B; Characterized in that it further comprises
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 C단계는 Step C is
    상기 B단계 후 상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 탈수시키는 C1단계; 및  Dehydrating a mixture of the adsorbent to which the chlorine is adsorbed after the step B and the polyol; And
    상기 C1단계에서 탈수된 상기 혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 특징으로 하는 C2 step of adding a crosslinking agent to the mixture dehydrated in the C1 step; Characterized in that it comprises
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  9. 제 7항에 있어서, The method of claim 7, wherein
    상기 C단계는 Step C is
    상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 상층의 폴리올혼합물을 따로 분리시키는 C0단계;  C0 step of separating the polyol mixture of the upper layer after leaving the mixture of the adsorbent and the polyol adsorbed the chlorine for a predetermined time;
    상기 C0단계에서 분리된 폴리올혼합물을 탈수시키는 C1단계; 및 C1 step of dehydrating the polyol mixture separated in step C0; And
    상기 C1단계에서 탈수된 상기 폴리올혼합물에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 특징으로 하는 C2 step of adding a crosslinking agent to the polyol mixture dehydrated in the C1 step; Characterized in that it comprises
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  10. 제 7항에 있어서, The method of claim 7, wherein
    상기 C단계는Step C is
    상기 염소가 흡착된 상기 흡착체와 상기 폴리올과의 혼합물을 소정의 시간동안 방치한 후 하층의 폴리올혼합침전물을 따로 분리시키는 C0단계; C0 step of separately separating the polyol mixture precipitate of the lower layer after the mixture of the adsorbent adsorbed with the chlorine and the polyol for a predetermined time;
    상기 C0단계에서 분리된 상기 폴리올혼합침전물을 탈수시키는 C1단계; 및  C1 step of dehydrating the polyol mixture precipitate separated in step C0; And
    상기 C1단계에서 탈수된 상기 하측의 침전물층에 가교제를 첨가시키는 C2단계; 를 포함하는 것을 특징으로 하는 A C2 step of adding a crosslinking agent to the lower precipitate layer dehydrated in the C1 step; Characterized in that it comprises
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
  11. 제 10항에 있어서, The method of claim 10,
    상기 C1단계에서 상기 폴리올혼합침전물에 대한 가열온도 또는 탈수시간을 조절함으로써 상기 C2단계 후 형성되는 폴리우레탄의 색상을 선택할 수 있는 것을 특징으로 하는The color of the polyurethane formed after the step C2 can be selected by adjusting the heating temperature or dehydration time for the polyol mixture precipitate in the step C1.
    PCBs를 포함하는 절연유 처리방법.Insulating oil treatment method including PCBs.
PCT/KR2009/003605 2009-07-01 2009-07-01 Method for treating insulating oil containing pcbs WO2011002118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107004264A KR100970947B1 (en) 2009-07-01 2009-07-01 Disposal method of the mixture of pcbs in insulating oil
PCT/KR2009/003605 WO2011002118A1 (en) 2009-07-01 2009-07-01 Method for treating insulating oil containing pcbs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/003605 WO2011002118A1 (en) 2009-07-01 2009-07-01 Method for treating insulating oil containing pcbs

Publications (1)

Publication Number Publication Date
WO2011002118A1 true WO2011002118A1 (en) 2011-01-06

Family

ID=43411183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003605 WO2011002118A1 (en) 2009-07-01 2009-07-01 Method for treating insulating oil containing pcbs

Country Status (2)

Country Link
KR (1) KR100970947B1 (en)
WO (1) WO2011002118A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179992B1 (en) * 2009-08-19 2012-09-05 주식회사 맥스포 TREATING METHOD OF INSULATING OIL COMPRISING PCBs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070401A (en) * 1998-09-01 2000-03-07 Sumitomo Metal Ind Ltd Non-heating dehalogenation method for organic halogen compound
KR20060071566A (en) * 2004-12-22 2006-06-27 재단법인 포항산업과학연구원 The treatment method of pcbs contained in transformer oil
KR100733571B1 (en) * 2006-05-22 2007-06-28 안동대학교 산학협력단 Destruction and removal of pcbs in hydrocarbon oil by chemical treatment technology
JP2008271999A (en) * 2006-12-04 2008-11-13 Meidensha Corp Method of making pcb in electric equipment insulating oil harmless and method of cleaning electric equipment insulating oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070401A (en) * 1998-09-01 2000-03-07 Sumitomo Metal Ind Ltd Non-heating dehalogenation method for organic halogen compound
KR20060071566A (en) * 2004-12-22 2006-06-27 재단법인 포항산업과학연구원 The treatment method of pcbs contained in transformer oil
KR100733571B1 (en) * 2006-05-22 2007-06-28 안동대학교 산학협력단 Destruction and removal of pcbs in hydrocarbon oil by chemical treatment technology
JP2008271999A (en) * 2006-12-04 2008-11-13 Meidensha Corp Method of making pcb in electric equipment insulating oil harmless and method of cleaning electric equipment insulating oil

Also Published As

Publication number Publication date
KR100970947B1 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
EP2996990B1 (en) Improved process for the production of polyimide and polyamic ester polymers
WO2012099445A2 (en) Method for manufacturing an organic-inorganic composite hybrid sorbent by impregnating an oxide into nanopores of activated carbon and method for using the method in water treatment
WO2014204218A2 (en) Polyamide-based water-treatment separation membrane having excellent salt removal rate and permeation flux characteristics and method for manufacturing same
WO2011002118A1 (en) Method for treating insulating oil containing pcbs
WO2015072740A1 (en) Method for treating organic waste liquid including sludge and waste water using solvent extraction
WO2020105926A1 (en) Sulfur-doped reduced graphene oxide, manufacturing method therefor, and polyimide nanocomposite containing sulfur-doped reduced graphene oxide
WO2017123036A1 (en) Solid-phase catalyst for decomposing hydrogen peroxide and method for producing same
WO2017078415A1 (en) Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus
KR101179992B1 (en) TREATING METHOD OF INSULATING OIL COMPRISING PCBs
WO2016013759A1 (en) Method for treating waste by using plasma pyrolysis
WO2019139452A2 (en) System for treating polystyrene gel, device for separating solvent, and method for recycling foam polystyrene
JP2005154525A (en) Method and apparatus for treating polystyrene-based resin composition
CN113304729B (en) Mixture containing polyethylene glycol derivatives and application thereof
WO2020130264A1 (en) Manufacturing method and device for aromatic vinyl compound-vinyl cyanide compound polymer
WO2022231384A1 (en) Sludge treatment process
WO2016195337A1 (en) Method for removing organic acids in crude oil using gas hydrate inhibitor and catalyst
WO2017052256A1 (en) Water treatment membrane and method for manufacturing same
KR100673267B1 (en) A Treatment Method of Contaminated Waste including Poly Halogen Compounds by Using the Reactive Polymer
JP2004261767A (en) Recycling system of contaminated soil and storing device of contaminated soil
WO2023182562A1 (en) Valuable metal recovery method using solvent extraction from zinc and copper waste material
WO2009096688A2 (en) Method of stablizing and solidifying elemental mercury using sulfur and paraffin
Ikuta et al. A pyrolysis-based technology for recovering useful materials from ic package molding resin waste
WO2011136598A2 (en) Method for treating a liquid waste material containing a carbon group
JP2000246228A (en) Method and apparatus for cleaning solid contaminated with organic halogen compound
JP4022267B2 (en) PCB waste detoxification and product recycling

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20107004264

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846857

Country of ref document: EP

Kind code of ref document: A1